

Robot Framework API documentation

This documentation describes the public API of Robot Framework [http://robotframework.org].
Installation, basic usage and wealth of other topics are
covered by the Robot Framework User Guide [http://robotframework.org/robotframework/#user-guide].

Main API entry points are documented here, but the lower level
implementation details are not always that well documented. If the
documentation is insufficient, it is possible to view the source code
by clicking [source] link in the documentation. In case viewing the
source is not helpful either, questions may be sent to the
robotframework-users [http://groups.google.com/group/robotframework-users] mailing list.

Entry points

Command line entry points are implemented as Python modules and they also
provide programmatic APIs. Following entry points exist:

	robot.run entry point for executing tests.

	robot.rebot entry point for post-processing outputs (Rebot).

	robot.libdoc entry point for Libdoc tool.

	robot.testdoc entry point for Testdoc tool.

	robot.tidy entry point for Tidy tool.

See built-in tool documentation [http://robotframework.org/robotframework/#built-in-tools] for more details about Rebot, Libdoc,
Testdoc, and Tidy tools.

Java entry points

The Robot Framework Jar distribution contains also a Java API, in the form
of the org.robotframework.RobotFramework class.

Public API

robot.api package exposes the public APIs of Robot Framework.

Unless stated otherwise, the APIs exposed in this package are considered
stable, and thus safe to use when building external tools on top of
Robot Framework. Notice that all parsing APIs were rewritten in Robot
Framework 3.2.

Currently exposed APIs are:

	logger module for libraries’ logging purposes.

	deco module with decorators libraries can utilize.

	exceptions module containing exceptions that libraries can utilize for
reporting failures and other events. These exceptions can be imported also directly
via robot.api like from robot.api import SkipExecution.

	parsing module exposing the parsing APIs. This module is new in Robot
Framework 4.0. Various parsing related functions and classes were exposed
directly via robot.api already in Robot Framework 3.2, but they are
effectively deprecated and will be removed in the future.

	TestSuite class for creating executable
test suites programmatically and
TestSuiteBuilder class
for creating such suites based on existing test data on the file system.

	SuiteVisitor abstract class for processing testdata
before execution. This can be used as a base for implementing a pre-run
modifier that is taken into use with --prerunmodifier commandline option.

	ExecutionResult() factory method
for reading execution results from XML output files and
ResultVisitor abstract class to ease
further processing the results.
ResultVisitor can also be used as a base
for pre-Rebot modifier that is taken into use with --prerebotmodifier
commandline option.

	ResultWriter class for writing
reports, logs, XML outputs, and XUnit files. Can write results based on
XML outputs on the file system, as well as based on the result objects
returned by the ExecutionResult() or
an executed TestSuite.

All of the above names can be imported like:

from robot.api import ApiName

See documentations of the individual APIs for more details.

Tip

APIs related to the command line entry points are exposed directly
via the robot root package.

All packages

All robot packages are listed below. Typically you should not
need to import anything from them directly, but the above public APIs may
return objects implemented in them.

	robot package

	robot.api package

	robot.conf package

	robot.htmldata package

	robot.libdocpkg package

	robot.libraries package

	robot.model package

	robot.output package

	robot.parsing package

	robot.reporting package

	robot.result package

	robot.running package

	robot.utils package

	robot.variables package

Indices

	Index

	Module Index

	Search Page

robot package

The root of the Robot Framework package.

The command line entry points provided by the framework are exposed for
programmatic usage as follows:

	run(): Function to run tests.

	run_cli(): Function to run tests
with command line argument processing.

	rebot(): Function to post-process outputs.

	rebot_cli(): Function to post-process outputs
with command line argument processing.

	libdoc: Module for library documentation generation.

	testdoc: Module for test case documentation generation.

	tidy: Module for test data clean-up and format change.

All the functions above can be imported like from robot import run.
Functions and classes provided by the modules need to be imported like
from robot.libdoc import libdoc_cli.

The functions and modules listed above are considered stable. Other modules in
this package are for for internal usage and may change without prior notice.

Tip

More public APIs are exposed by the robot.api package.

	
robot.run(*tests, **options)

	Programmatic entry point for running tests.

	Parameters

	
	tests – Paths to test case files/directories to be executed similarly
as when running the robot command on the command line.

	options – Options to configure and control execution. Accepted
options are mostly same as normal command line options to the robot
command. Option names match command line option long names without
hyphens so that, for example, --name becomes name.

Most options that can be given from the command line work. An exception
is that options --pythonpath, --argumentfile, --help and
--version are not supported.

Options that can be given on the command line multiple times can be
passed as lists. For example, include=['tag1', 'tag2'] is equivalent
to --include tag1 --include tag2. If such options are used only once,
they can be given also as a single string like include='tag'.

Options that accept no value can be given as Booleans. For example,
dryrun=True is same as using the --dryrun option.

Options that accept string NONE as a special value can also be used
with Python None. For example, using log=None is equivalent to
--log NONE.

listener, prerunmodifier and prerebotmodifier options allow
passing values as Python objects in addition to module names these command
line options support. For example, run('tests', listener=MyListener()).

To capture the standard output and error streams, pass an open file or
file-like object as special keyword arguments stdout and stderr,
respectively.

A return code is returned similarly as when running on the command line.
Zero means that tests were executed and no critical test failed, values up
to 250 denote the number of failed critical tests, and values between
251-255 are for other statuses documented in the Robot Framework User Guide.

Example:

from robot import run

run('path/to/tests.robot')
run('tests.robot', include=['tag1', 'tag2'], splitlog=True)
with open('stdout.txt', 'w') as stdout:
 run('t1.robot', 't2.robot', name='Example', log=None, stdout=stdout)

Equivalent command line usage:

robot path/to/tests.robot
robot --include tag1 --include tag2 --splitlog tests.robot
robot --name Example --log NONE t1.robot t2.robot > stdout.txt

	
robot.run_cli(arguments=None, exit=True)

	Command line execution entry point for running tests.

	Parameters

	
	arguments – Command line options and arguments as a list of strings.
Starting from RF 3.1, defaults to sys.argv[1:] if not given.

	exit – If True, call sys.exit with the return code denoting
execution status, otherwise just return the rc.

Entry point used when running tests from the command line, but can also
be used by custom scripts that execute tests. Especially useful if the
script itself needs to accept same arguments as accepted by Robot Framework,
because the script can just pass them forward directly along with the
possible default values it sets itself.

Example:

from robot import run_cli

Run tests and return the return code.
rc = run_cli(['--name', 'Example', 'tests.robot'], exit=False)

Run tests and exit to the system automatically.
run_cli(['--name', 'Example', 'tests.robot'])

See also the run() function that allows setting options as keyword
arguments like name="Example" and generally has a richer API for
programmatic test execution.

	
robot.rebot(*outputs, **options)

	Programmatic entry point for post-processing outputs.

	Parameters

	
	outputs – Paths to Robot Framework output files similarly
as when running the rebot command on the command line.

	options – Options to configure processing outputs. Accepted
options are mostly same as normal command line options to the rebot
command. Option names match command line option long names without
hyphens so that, for example, --name becomes name.

The semantics related to passing options are exactly the same as with the
run() function. See its documentation for more details.

Examples:

from robot import rebot

rebot('path/to/output.xml')
with open('stdout.txt', 'w') as stdout:
 rebot('o1.xml', 'o2.xml', name='Example', log=None, stdout=stdout)

Equivalent command line usage:

rebot path/to/output.xml
rebot --name Example --log NONE o1.xml o2.xml > stdout.txt

	
robot.rebot_cli(arguments=None, exit=True)

	Command line execution entry point for post-processing outputs.

	Parameters

	
	arguments – Command line options and arguments as a list of strings.
Starting from RF 3.1, defaults to sys.argv[1:] if not given.

	exit – If True, call sys.exit with the return code denoting
execution status, otherwise just return the rc.

Entry point used when post-processing outputs from the command line, but
can also be used by custom scripts. Especially useful if the script itself
needs to accept same arguments as accepted by Rebot, because the script can
just pass them forward directly along with the possible default values it
sets itself.

Example:

from robot import rebot_cli

rebot_cli(['--name', 'Example', '--log', 'NONE', 'o1.xml', 'o2.xml'])

See also the rebot() function that allows setting options as keyword
arguments like name="Example" and generally has a richer API for
programmatic Rebot execution.

Subpackages

	robot.api package
	Submodules

	robot.api.deco module

	robot.api.exceptions module

	robot.api.logger module

	robot.api.parsing module

	robot.conf package
	Submodules

	robot.conf.gatherfailed module

	robot.conf.settings module

	robot.htmldata package
	Submodules

	robot.htmldata.htmlfilewriter module

	robot.htmldata.jartemplate module

	robot.htmldata.jsonwriter module

	robot.htmldata.normaltemplate module

	robot.htmldata.template module

	robot.libdocpkg package
	Submodules

	robot.libdocpkg.builder module

	robot.libdocpkg.consoleviewer module

	robot.libdocpkg.datatypes module

	robot.libdocpkg.htmlutils module

	robot.libdocpkg.htmlwriter module

	robot.libdocpkg.java9builder module

	robot.libdocpkg.javabuilder module

	robot.libdocpkg.jsonbuilder module

	robot.libdocpkg.jsonwriter module

	robot.libdocpkg.model module

	robot.libdocpkg.output module

	robot.libdocpkg.robotbuilder module

	robot.libdocpkg.specbuilder module

	robot.libdocpkg.writer module

	robot.libdocpkg.xmlwriter module

	robot.libraries package
	Submodules

	robot.libraries.BuiltIn module

	robot.libraries.Collections module

	robot.libraries.DateTime module

	robot.libraries.Dialogs module

	robot.libraries.Easter module

	robot.libraries.OperatingSystem module

	robot.libraries.Process module

	robot.libraries.Remote module

	robot.libraries.Reserved module

	robot.libraries.Screenshot module

	robot.libraries.String module

	robot.libraries.Telnet module

	robot.libraries.XML module

	robot.libraries.dialogs_ipy module

	robot.libraries.dialogs_jy module

	robot.libraries.dialogs_py module

	robot.model package
	Submodules

	robot.model.body module

	robot.model.configurer module

	robot.model.control module

	robot.model.filter module

	robot.model.fixture module

	robot.model.itemlist module

	robot.model.keyword module

	robot.model.message module

	robot.model.metadata module

	robot.model.modelobject module

	robot.model.modifier module

	robot.model.namepatterns module

	robot.model.statistics module

	robot.model.stats module

	robot.model.suitestatistics module

	robot.model.tags module

	robot.model.tagsetter module

	robot.model.tagstatistics module

	robot.model.testcase module

	robot.model.testsuite module

	robot.model.totalstatistics module

	robot.model.visitor module

	robot.output package
	Subpackages

	Submodules

	robot.output.debugfile module

	robot.output.filelogger module

	robot.output.librarylogger module

	robot.output.listenerarguments module

	robot.output.listenermethods module

	robot.output.listeners module

	robot.output.logger module

	robot.output.loggerhelper module

	robot.output.output module

	robot.output.pyloggingconf module

	robot.output.stdoutlogsplitter module

	robot.output.xmllogger module

	robot.parsing package
	Subpackages

	Submodules

	robot.parsing.suitestructure module

	robot.reporting package
	Submodules

	robot.reporting.expandkeywordmatcher module

	robot.reporting.jsbuildingcontext module

	robot.reporting.jsexecutionresult module

	robot.reporting.jsmodelbuilders module

	robot.reporting.jswriter module

	robot.reporting.logreportwriters module

	robot.reporting.outputwriter module

	robot.reporting.resultwriter module

	robot.reporting.stringcache module

	robot.reporting.xunitwriter module

	robot.result package
	Example

	Submodules

	robot.result.configurer module

	robot.result.executionerrors module

	robot.result.executionresult module

	robot.result.flattenkeywordmatcher module

	robot.result.keywordremover module

	robot.result.merger module

	robot.result.messagefilter module

	robot.result.model module

	robot.result.modeldeprecation module

	robot.result.resultbuilder module

	robot.result.suiteteardownfailed module

	robot.result.visitor module

	robot.result.xmlelementhandlers module

	robot.running package
	Examples

	Subpackages

	Submodules

	robot.running.bodyrunner module

	robot.running.context module

	robot.running.dynamicmethods module

	robot.running.handlers module

	robot.running.handlerstore module

	robot.running.importer module

	robot.running.librarykeywordrunner module

	robot.running.libraryscopes module

	robot.running.model module

	robot.running.modelcombiner module

	robot.running.namespace module

	robot.running.outputcapture module

	robot.running.randomizer module

	robot.running.runkwregister module

	robot.running.signalhandler module

	robot.running.status module

	robot.running.statusreporter module

	robot.running.suiterunner module

	robot.running.testlibraries module

	robot.running.usererrorhandler module

	robot.running.userkeyword module

	robot.running.userkeywordrunner module

	robot.tidypkg package
	Submodules

	robot.tidypkg.transformers module

	robot.utils package
	Submodules

	robot.utils.application module

	robot.utils.argumentparser module

	robot.utils.asserts module

	robot.utils.charwidth module

	robot.utils.compat module

	robot.utils.compress module

	robot.utils.connectioncache module

	robot.utils.dotdict module

	robot.utils.encoding module

	robot.utils.encodingsniffer module

	robot.utils.error module

	robot.utils.escaping module

	robot.utils.etreewrapper module

	robot.utils.filereader module

	robot.utils.frange module

	robot.utils.htmlformatters module

	robot.utils.importer module

	robot.utils.markuputils module

	robot.utils.markupwriters module

	robot.utils.match module

	robot.utils.misc module

	robot.utils.normalizing module

	robot.utils.platform module

	robot.utils.recommendations module

	robot.utils.restreader module

	robot.utils.robotenv module

	robot.utils.robotinspect module

	robot.utils.robotio module

	robot.utils.robotpath module

	robot.utils.robottime module

	robot.utils.robottypes module

	robot.utils.robottypes2 module

	robot.utils.robottypes3 module

	robot.utils.setter module

	robot.utils.sortable module

	robot.utils.text module

	robot.utils.unic module

	robot.variables package
	Submodules

	robot.variables.assigner module

	robot.variables.evaluation module

	robot.variables.filesetter module

	robot.variables.finders module

	robot.variables.notfound module

	robot.variables.replacer module

	robot.variables.scopes module

	robot.variables.search module

	robot.variables.store module

	robot.variables.tablesetter module

	robot.variables.variables module

Submodules

robot.errors module

Exceptions and return codes used internally.

External libraries should not used exceptions defined here.

	
exception robot.errors.RobotError(message='', details='')

	Bases: exceptions.Exception

Base class for Robot Framework errors.

Do not raise this method but use more specific errors instead.

	
message

	

	
args

	

	
exception robot.errors.FrameworkError(message='', details='')

	Bases: robot.errors.RobotError

Can be used when the core framework goes to unexpected state.

It is good to explicitly raise a FrameworkError if some framework
component is used incorrectly. This is pretty much same as
‘Internal Error’ and should of course never happen.

	
args

	

	
message

	

	
exception robot.errors.DataError(message='', details='')

	Bases: robot.errors.RobotError

Used when the provided test data is invalid.

DataErrors are not caught by keywords that run other keywords
(e.g. Run Keyword And Expect Error).

	
args

	

	
message

	

	
exception robot.errors.VariableError(message='', details='')

	Bases: robot.errors.DataError

Used when variable does not exist.

VariableErrors are caught by keywords that run other keywords
(e.g. Run Keyword And Expect Error).

	
args

	

	
message

	

	
exception robot.errors.KeywordError(message='', details='')

	Bases: robot.errors.DataError

Used when no keyword is found or there is more than one match.

KeywordErrors are caught by keywords that run other keywords
(e.g. Run Keyword And Expect Error).

	
args

	

	
message

	

	
exception robot.errors.TimeoutError(message='', test_timeout=True)

	Bases: robot.errors.RobotError

Used when a test or keyword timeout occurs.

This exception is handled specially so that execution of the
current test is always stopped immediately and it is not caught by
keywords executing other keywords (e.g. Run Keyword And Expect Error).

	
keyword_timeout

	

	
args

	

	
message

	

	
exception robot.errors.Information(message='', details='')

	Bases: robot.errors.RobotError

Used by argument parser with –help or –version.

	
args

	

	
message

	

	
exception robot.errors.ExecutionStatus(message, test_timeout=False, keyword_timeout=False, syntax=False, exit=False, continue_on_failure=False, skip=False, return_value=None)

	Bases: robot.errors.RobotError

Base class for exceptions communicating status in test execution.

	
timeout

	

	
dont_continue

	

	
continue_on_failure

	

	
can_continue(context, templated=False)

	

	
get_errors()

	

	
status

	

	
args

	

	
message

	

	
exception robot.errors.ExecutionFailed(message, test_timeout=False, keyword_timeout=False, syntax=False, exit=False, continue_on_failure=False, skip=False, return_value=None)

	Bases: robot.errors.ExecutionStatus

Used for communicating failures in test execution.

	
args

	

	
can_continue(context, templated=False)

	

	
continue_on_failure

	

	
dont_continue

	

	
get_errors()

	

	
message

	

	
status

	

	
timeout

	

	
exception robot.errors.HandlerExecutionFailed(details)

	Bases: robot.errors.ExecutionFailed

	
args

	

	
can_continue(context, templated=False)

	

	
continue_on_failure

	

	
dont_continue

	

	
get_errors()

	

	
message

	

	
status

	

	
timeout

	

	
exception robot.errors.ExecutionFailures(errors, message=None)

	Bases: robot.errors.ExecutionFailed

	
get_errors()

	

	
args

	

	
can_continue(context, templated=False)

	

	
continue_on_failure

	

	
dont_continue

	

	
message

	

	
status

	

	
timeout

	

	
exception robot.errors.UserKeywordExecutionFailed(run_errors=None, teardown_errors=None)

	Bases: robot.errors.ExecutionFailures

	
args

	

	
can_continue(context, templated=False)

	

	
continue_on_failure

	

	
dont_continue

	

	
get_errors()

	

	
message

	

	
status

	

	
timeout

	

	
exception robot.errors.ExecutionPassed(message=None, **kwargs)

	Bases: robot.errors.ExecutionStatus

Base class for all exceptions communicating that execution passed.

Should not be raised directly, but more detailed exceptions used instead.

	
set_earlier_failures(failures)

	

	
earlier_failures

	

	
status

	

	
args

	

	
can_continue(context, templated=False)

	

	
continue_on_failure

	

	
dont_continue

	

	
get_errors()

	

	
message

	

	
timeout

	

	
exception robot.errors.PassExecution(message)

	Bases: robot.errors.ExecutionPassed

Used by ‘Pass Execution’ keyword.

	
args

	

	
can_continue(context, templated=False)

	

	
continue_on_failure

	

	
dont_continue

	

	
earlier_failures

	

	
get_errors()

	

	
message

	

	
set_earlier_failures(failures)

	

	
status

	

	
timeout

	

	
exception robot.errors.ContinueForLoop(message=None, **kwargs)

	Bases: robot.errors.ExecutionPassed

Used by ‘Continue For Loop’ keyword.

	
args

	

	
can_continue(context, templated=False)

	

	
continue_on_failure

	

	
dont_continue

	

	
earlier_failures

	

	
get_errors()

	

	
message

	

	
set_earlier_failures(failures)

	

	
status

	

	
timeout

	

	
exception robot.errors.ExitForLoop(message=None, **kwargs)

	Bases: robot.errors.ExecutionPassed

Used by ‘Exit For Loop’ keyword.

	
args

	

	
can_continue(context, templated=False)

	

	
continue_on_failure

	

	
dont_continue

	

	
earlier_failures

	

	
get_errors()

	

	
message

	

	
set_earlier_failures(failures)

	

	
status

	

	
timeout

	

	
exception robot.errors.ReturnFromKeyword(return_value=None, failures=None)

	Bases: robot.errors.ExecutionPassed

Used by ‘Return From Keyword’ keyword.

	
args

	

	
can_continue(context, templated=False)

	

	
continue_on_failure

	

	
dont_continue

	

	
earlier_failures

	

	
get_errors()

	

	
message

	

	
set_earlier_failures(failures)

	

	
status

	

	
timeout

	

	
exception robot.errors.RemoteError(message='', details='', fatal=False, continuable=False)

	Bases: robot.errors.RobotError

Used by Remote library to report remote errors.

	
args

	

	
message

	

robot.jarrunner module

robot.libdoc module

Module implementing the command line entry point for the Libdoc tool.

This module can be executed from the command line using the following
approaches:

python -m robot.libdoc
python path/to/robot/libdoc.py

Instead of python it is possible to use also other Python interpreters.

This module also provides libdoc() and libdoc_cli() functions
that can be used programmatically. Other code is for internal usage.

Libdoc itself is implemented in the libdocpkg package.

	
class robot.libdoc.LibDoc

	Bases: robot.utils.application.Application

	
validate(options, arguments)

	

	
main(args, name='', version='', format=None, docformat=None, specdocformat=None, quiet=False)

	

	
console(msg)

	

	
execute(*arguments, **options)

	

	
execute_cli(cli_arguments, exit=True)

	

	
parse_arguments(cli_args)

	Public interface for parsing command line arguments.

	Parameters

	cli_args – Command line arguments as a list

	Returns

	options (dict), arguments (list)

	Raises

	Information when –help or –version used

	Raises

	DataError when parsing fails

	
robot.libdoc.libdoc_cli(arguments=None, exit=True)

	Executes Libdoc similarly as from the command line.

	Parameters

	
	arguments – Command line options and arguments as a list of strings.
Starting from RF 4.0, defaults to sys.argv[1:] if not given.

	exit – If True, call sys.exit automatically. New in RF 4.0.

The libdoc() function may work better in programmatic usage.

Example:

from robot.libdoc import libdoc_cli

libdoc_cli(['--version', '1.0', 'MyLibrary.py', 'MyLibrary.html'])

	
robot.libdoc.libdoc(library_or_resource, outfile, name='', version='', format=None, docformat=None, specdocformat=None, quiet=False)

	Executes Libdoc.

	Parameters

	
	library_or_resource – Name or path of the library or resource
file to be documented.

	outfile – Path path to the file where to write outputs.

	name – Custom name to give to the documented library or resource.

	version – Version to give to the documented library or resource.

	format – Specifies whether to generate HTML, XML or JSON output.
If this options is not used, the format is got from the extension of
the output file. Possible values are 'HTML', 'XML', 'JSON'
and 'LIBSPEC'.

	docformat – Documentation source format. Possible values are
'ROBOT', 'reST', 'HTML' and 'TEXT'. The default value
can be specified in library source code and the initial default
is 'ROBOT'.

	specdocformat – Specifies whether the keyword documentation in spec
files is converted to HTML regardless of the original documentation
format. Possible values are 'HTML' (convert to HTML) and 'RAW'
(use original format). The default depends on the output format.
New in Robot Framework 4.0.

	quiet – When true, the path of the generated output file is not
printed the console. New in Robot Framework 4.0.

Arguments have same semantics as Libdoc command line options with same names.
Run libdoc --help or consult the Libdoc section in the Robot Framework
User Guide for more details.

Example:

from robot.libdoc import libdoc

libdoc('MyLibrary.py', 'MyLibrary.html', version='1.0')

robot.pythonpathsetter module

Module that adds directories needed by Robot to sys.path when imported.

	
robot.pythonpathsetter.add_path(path, end=False)

	

	
robot.pythonpathsetter.remove_path(path)

	

robot.rebot module

Module implementing the command line entry point for post-processing outputs.

This module can be executed from the command line using the following
approaches:

python -m robot.rebot
python path/to/robot/rebot.py

Instead of python it is possible to use also other Python interpreters.
This module is also used by the installed rebot start-up script.

This module also provides rebot() and rebot_cli() functions
that can be used programmatically. Other code is for internal usage.

	
class robot.rebot.Rebot

	Bases: robot.run.RobotFramework

	
main(datasources, **options)

	

	
console(msg)

	

	
execute(*arguments, **options)

	

	
execute_cli(cli_arguments, exit=True)

	

	
parse_arguments(cli_args)

	Public interface for parsing command line arguments.

	Parameters

	cli_args – Command line arguments as a list

	Returns

	options (dict), arguments (list)

	Raises

	Information when –help or –version used

	Raises

	DataError when parsing fails

	
validate(options, arguments)

	

	
robot.rebot.rebot_cli(arguments=None, exit=True)

	Command line execution entry point for post-processing outputs.

	Parameters

	
	arguments – Command line options and arguments as a list of strings.
Starting from RF 3.1, defaults to sys.argv[1:] if not given.

	exit – If True, call sys.exit with the return code denoting
execution status, otherwise just return the rc.

Entry point used when post-processing outputs from the command line, but
can also be used by custom scripts. Especially useful if the script itself
needs to accept same arguments as accepted by Rebot, because the script can
just pass them forward directly along with the possible default values it
sets itself.

Example:

from robot import rebot_cli

rebot_cli(['--name', 'Example', '--log', 'NONE', 'o1.xml', 'o2.xml'])

See also the rebot() function that allows setting options as keyword
arguments like name="Example" and generally has a richer API for
programmatic Rebot execution.

	
robot.rebot.rebot(*outputs, **options)

	Programmatic entry point for post-processing outputs.

	Parameters

	
	outputs – Paths to Robot Framework output files similarly
as when running the rebot command on the command line.

	options – Options to configure processing outputs. Accepted
options are mostly same as normal command line options to the rebot
command. Option names match command line option long names without
hyphens so that, for example, --name becomes name.

The semantics related to passing options are exactly the same as with the
run() function. See its documentation for more details.

Examples:

from robot import rebot

rebot('path/to/output.xml')
with open('stdout.txt', 'w') as stdout:
 rebot('o1.xml', 'o2.xml', name='Example', log=None, stdout=stdout)

Equivalent command line usage:

rebot path/to/output.xml
rebot --name Example --log NONE o1.xml o2.xml > stdout.txt

robot.run module

Module implementing the command line entry point for executing tests.

This module can be executed from the command line using the following
approaches:

python -m robot.run
python path/to/robot/run.py

Instead of python it is possible to use also other Python interpreters.
This module is also used by the installed robot start-up script.

This module also provides run() and run_cli() functions
that can be used programmatically. Other code is for internal usage.

	
class robot.run.RobotFramework

	Bases: robot.utils.application.Application

	
main(datasources, **options)

	

	
validate(options, arguments)

	

	
console(msg)

	

	
execute(*arguments, **options)

	

	
execute_cli(cli_arguments, exit=True)

	

	
parse_arguments(cli_args)

	Public interface for parsing command line arguments.

	Parameters

	cli_args – Command line arguments as a list

	Returns

	options (dict), arguments (list)

	Raises

	Information when –help or –version used

	Raises

	DataError when parsing fails

	
robot.run.run_cli(arguments=None, exit=True)

	Command line execution entry point for running tests.

	Parameters

	
	arguments – Command line options and arguments as a list of strings.
Starting from RF 3.1, defaults to sys.argv[1:] if not given.

	exit – If True, call sys.exit with the return code denoting
execution status, otherwise just return the rc.

Entry point used when running tests from the command line, but can also
be used by custom scripts that execute tests. Especially useful if the
script itself needs to accept same arguments as accepted by Robot Framework,
because the script can just pass them forward directly along with the
possible default values it sets itself.

Example:

from robot import run_cli

Run tests and return the return code.
rc = run_cli(['--name', 'Example', 'tests.robot'], exit=False)

Run tests and exit to the system automatically.
run_cli(['--name', 'Example', 'tests.robot'])

See also the run() function that allows setting options as keyword
arguments like name="Example" and generally has a richer API for
programmatic test execution.

	
robot.run.run(*tests, **options)

	Programmatic entry point for running tests.

	Parameters

	
	tests – Paths to test case files/directories to be executed similarly
as when running the robot command on the command line.

	options – Options to configure and control execution. Accepted
options are mostly same as normal command line options to the robot
command. Option names match command line option long names without
hyphens so that, for example, --name becomes name.

Most options that can be given from the command line work. An exception
is that options --pythonpath, --argumentfile, --help and
--version are not supported.

Options that can be given on the command line multiple times can be
passed as lists. For example, include=['tag1', 'tag2'] is equivalent
to --include tag1 --include tag2. If such options are used only once,
they can be given also as a single string like include='tag'.

Options that accept no value can be given as Booleans. For example,
dryrun=True is same as using the --dryrun option.

Options that accept string NONE as a special value can also be used
with Python None. For example, using log=None is equivalent to
--log NONE.

listener, prerunmodifier and prerebotmodifier options allow
passing values as Python objects in addition to module names these command
line options support. For example, run('tests', listener=MyListener()).

To capture the standard output and error streams, pass an open file or
file-like object as special keyword arguments stdout and stderr,
respectively.

A return code is returned similarly as when running on the command line.
Zero means that tests were executed and no critical test failed, values up
to 250 denote the number of failed critical tests, and values between
251-255 are for other statuses documented in the Robot Framework User Guide.

Example:

from robot import run

run('path/to/tests.robot')
run('tests.robot', include=['tag1', 'tag2'], splitlog=True)
with open('stdout.txt', 'w') as stdout:
 run('t1.robot', 't2.robot', name='Example', log=None, stdout=stdout)

Equivalent command line usage:

robot path/to/tests.robot
robot --include tag1 --include tag2 --splitlog tests.robot
robot --name Example --log NONE t1.robot t2.robot > stdout.txt

robot.testdoc module

Module implementing the command line entry point for the Testdoc tool.

This module can be executed from the command line using the following
approaches:

python -m robot.testdoc
python path/to/robot/testdoc.py

Instead of python it is possible to use also other Python interpreters.

This module also provides testdoc() and testdoc_cli() functions
that can be used programmatically. Other code is for internal usage.

	
class robot.testdoc.TestDoc

	Bases: robot.utils.application.Application

	
main(datasources, title=None, **options)

	

	
console(msg)

	

	
execute(*arguments, **options)

	

	
execute_cli(cli_arguments, exit=True)

	

	
parse_arguments(cli_args)

	Public interface for parsing command line arguments.

	Parameters

	cli_args – Command line arguments as a list

	Returns

	options (dict), arguments (list)

	Raises

	Information when –help or –version used

	Raises

	DataError when parsing fails

	
validate(options, arguments)

	

	
robot.testdoc.TestSuiteFactory(datasources, **options)

	

	
class robot.testdoc.TestdocModelWriter(output, suite, title=None)

	Bases: robot.htmldata.htmlfilewriter.ModelWriter

	
write(line)

	

	
write_data()

	

	
handles(line)

	

	
class robot.testdoc.JsonConverter(output_path=None)

	Bases: object

	
convert(suite)

	

	
robot.testdoc.testdoc_cli(arguments)

	Executes Testdoc similarly as from the command line.

	Parameters

	arguments – command line arguments as a list of strings.

For programmatic usage the testdoc() function is typically better. It
has a better API for that and does not call sys.exit() like
this function.

Example:

from robot.testdoc import testdoc_cli

testdoc_cli(['--title', 'Test Plan', 'mytests', 'plan.html'])

	
robot.testdoc.testdoc(*arguments, **options)

	Executes Testdoc programmatically.

Arguments and options have same semantics, and options have same names,
as arguments and options to Testdoc.

Example:

from robot.testdoc import testdoc

testdoc('mytests', 'plan.html', title='Test Plan')

robot.tidy module

Module implementing the command line entry point for the Tidy tool.

This module can be executed from the command line using the following
approaches:

python -m robot.tidy
python path/to/robot/tidy.py

Instead of python it is possible to use also other Python interpreters.

This module also provides Tidy class and tidy_cli() function
that can be used programmatically. Other code is for internal usage.

	
class robot.tidy.Tidy(space_count=4, use_pipes=False, line_separator='n')

	Bases: robot.parsing.suitestructure.SuiteStructureVisitor

Programmatic API for the Tidy tool.

Arguments accepted when creating an instance have same semantics as
Tidy command line options with same names.

	
file(path, outpath=None)

	Tidy a file.

	Parameters

	
	path – Path of the input file.

	outpath – Path of the output file. If not given, output is
returned.

Use inplace() to tidy files in-place.

	
inplace(*paths)

	Tidy file(s) in-place.

	Parameters

	paths – Paths of the files to to process.

	
directory(path)

	Tidy a directory.

	Parameters

	path – Path of the directory to process.

All files in a directory, recursively, are processed in-place.

	
visit_file(file)

	

	
visit_directory(directory)

	

	
end_directory(structure)

	

	
start_directory(structure)

	

	
class robot.tidy.TidyCommandLine

	Bases: robot.utils.application.Application

Command line interface for the Tidy tool.

Typically tidy_cli() is a better suited for command line style
usage and Tidy for other programmatic usage.

	
main(arguments, recursive=False, inplace=False, usepipes=False, spacecount=4, lineseparator='\n')

	

	
validate(opts, args)

	

	
console(msg)

	

	
execute(*arguments, **options)

	

	
execute_cli(cli_arguments, exit=True)

	

	
parse_arguments(cli_args)

	Public interface for parsing command line arguments.

	Parameters

	cli_args – Command line arguments as a list

	Returns

	options (dict), arguments (list)

	Raises

	Information when –help or –version used

	Raises

	DataError when parsing fails

	
class robot.tidy.ArgumentValidator

	Bases: object

	
mode_and_args(args, recursive, inplace, **others)

	

	
line_sep(lineseparator, **others)

	

	
spacecount(spacecount)

	

	
robot.tidy.tidy_cli(arguments)

	Executes Tidy similarly as from the command line.

	Parameters

	arguments – Command line arguments as a list of strings.

Example:

from robot.tidy import tidy_cli

tidy_cli(['--spacecount', '2', 'tests.robot'])

robot.version module

	
robot.version.get_version(naked=False)

	

	
robot.version.get_full_version(program=None, naked=False)

	

	
robot.version.get_interpreter()

	

robot.api package

robot.api package exposes the public APIs of Robot Framework.

Unless stated otherwise, the APIs exposed in this package are considered
stable, and thus safe to use when building external tools on top of
Robot Framework. Notice that all parsing APIs were rewritten in Robot
Framework 3.2.

Currently exposed APIs are:

	logger module for libraries’ logging purposes.

	deco module with decorators libraries can utilize.

	exceptions module containing exceptions that libraries can utilize for
reporting failures and other events. These exceptions can be imported also directly
via robot.api like from robot.api import SkipExecution.

	parsing module exposing the parsing APIs. This module is new in Robot
Framework 4.0. Various parsing related functions and classes were exposed
directly via robot.api already in Robot Framework 3.2, but they are
effectively deprecated and will be removed in the future.

	TestSuite class for creating executable
test suites programmatically and
TestSuiteBuilder class
for creating such suites based on existing test data on the file system.

	SuiteVisitor abstract class for processing testdata
before execution. This can be used as a base for implementing a pre-run
modifier that is taken into use with --prerunmodifier commandline option.

	ExecutionResult() factory method
for reading execution results from XML output files and
ResultVisitor abstract class to ease
further processing the results.
ResultVisitor can also be used as a base
for pre-Rebot modifier that is taken into use with --prerebotmodifier
commandline option.

	ResultWriter class for writing
reports, logs, XML outputs, and XUnit files. Can write results based on
XML outputs on the file system, as well as based on the result objects
returned by the ExecutionResult() or
an executed TestSuite.

All of the above names can be imported like:

from robot.api import ApiName

See documentations of the individual APIs for more details.

Tip

APIs related to the command line entry points are exposed directly
via the robot root package.

Submodules

robot.api.deco module

	
robot.api.deco.not_keyword(func)[source]

	Decorator to disable exposing functions or methods as keywords.

Examples:

@not_keyword
def not_exposed_as_keyword():
 # ...

def exposed_as_keyword():
 # ...

Alternatively the automatic keyword discovery can be disabled with
the library() decorator or by setting the ROBOT_AUTO_KEYWORDS
attribute to a false value.

New in Robot Framework 3.2.

	
robot.api.deco.keyword(name=None, tags=(), types=())[source]

	Decorator to set custom name, tags and argument types to keywords.

This decorator creates robot_name, robot_tags and robot_types
attributes on the decorated keyword function or method based on the
provided arguments. Robot Framework checks them to determine the keyword’s
name, tags, and argument types, respectively.

Name must be given as a string, tags as a list of strings, and types
either as a dictionary mapping argument names to types or as a list
of types mapped to arguments based on position. It is OK to specify types
only to some arguments, and setting types to None disables type
conversion altogether.

If the automatic keyword discovery has been disabled with the
library() decorator or by setting the ROBOT_AUTO_KEYWORDS
attribute to a false value, this decorator is needed to mark functions
or methods keywords.

Examples:

@keyword
def example():
 # ...

@keyword('Login as user "${user}" with password "${password}"',
 tags=['custom name', 'embedded arguments', 'tags'])
def login(user, password):
 # ...

@keyword(types={'length': int, 'case_insensitive': bool})
def types_as_dict(length, case_insensitive):
 # ...

@keyword(types=[int, bool])
def types_as_list(length, case_insensitive):
 # ...

@keyword(types=None])
def no_conversion(length, case_insensitive=False):
 # ...

	
robot.api.deco.library(scope=None, version=None, doc_format=None, listener=None, auto_keywords=False)[source]

	Class decorator to control keyword discovery and other library settings.

By default disables automatic keyword detection by setting class attribute
ROBOT_AUTO_KEYWORDS = False to the decorated library. In that mode
only methods decorated explicitly with the keyword() decorator become
keywords. If that is not desired, automatic keyword discovery can be
enabled by using auto_keywords=True.

Arguments scope, version, doc_format and listener set the
library scope, version, documentation format and listener by using class
attributes ROBOT_LIBRARY_SCOPE, ROBOT_LIBRARY_VERSION,
ROBOT_LIBRARY_DOC_FORMAT and ROBOT_LIBRARY_LISTENER, respectively.
These attributes are only set if the related arguments are given and they
override possible existing attributes in the decorated class.

Examples:

@library
class KeywordDiscovery:

 @keyword
 def do_something(self):
 # ...

 def not_keyword(self):
 # ...

@library(scope='GLOBAL', version='3.2')
class LibraryConfiguration:
 # ...

The @library decorator is new in Robot Framework 3.2.

robot.api.exceptions module

Exceptions that libraries can use for communicating failures and other events.

These exceptions can be imported also via the top level robot.api package like
from robot.api import SkipExecution.

This module and all exceptions are new in Robot Framework 4.0.

	
exception robot.api.exceptions.Failure(message, html=False)[source]

	Bases: exceptions.AssertionError

Report failed validation.

There is no practical difference in using this exception compared to using
the standard AssertionError. The main benefits are HTML support and that
the name of this exception is consistent with other exceptions in this module.

	Parameters

	
	message – Exception message.

	html – When True, message is considered to be HTML and not escaped.

	
ROBOT_SUPPRESS_NAME = True

	

	
args

	

	
message

	

	
exception robot.api.exceptions.ContinuableFailure(message, html=False)[source]

	Bases: robot.api.exceptions.Failure

Report failed validation but allow continuing execution.

	Parameters

	
	message – Exception message.

	html – When True, message is considered to be HTML and not escaped.

	
ROBOT_CONTINUE_ON_FAILURE = True

	

	
ROBOT_SUPPRESS_NAME = True

	

	
args

	

	
message

	

	
exception robot.api.exceptions.Error(message, html=False)[source]

	Bases: exceptions.RuntimeError

Report error in execution.

Failures related to the system not behaving as expected should typically be
reported using the Failure exception or the standard AssertionError.
This exception can be used, for example, if the keyword is used incorrectly.

There is no practical difference in using this exception compared to using
the standard RuntimeError. The main benefits are HTML support and that
the name of this exception is consistent with other exceptions in this module.

	Parameters

	
	message – Exception message.

	html – When True, message is considered to be HTML and not escaped.

	
ROBOT_SUPPRESS_NAME = True

	

	
args

	

	
message

	

	
exception robot.api.exceptions.FatalError(message, html=False)[source]

	Bases: robot.api.exceptions.Error

Report error that stops the whole execution.

	Parameters

	
	message – Exception message.

	html – When True, message is considered to be HTML and not escaped.

	
ROBOT_EXIT_ON_FAILURE = True

	

	
ROBOT_SUPPRESS_NAME = False

	

	
args

	

	
message

	

	
exception robot.api.exceptions.SkipExecution(message, html=False)[source]

	Bases: exceptions.Exception

Mark the executed test or task skipped.

	Parameters

	
	message – Exception message.

	html – When True, message is considered to be HTML and not escaped.

	
ROBOT_SKIP_EXECUTION = True

	

	
ROBOT_SUPPRESS_NAME = True

	

	
args

	

	
message

	

robot.api.logger module

Public logging API for test libraries.

This module provides a public API for writing messages to the log file
and the console. Test libraries can use this API like:

logger.info('My message')

instead of logging through the standard output like:

print('*INFO* My message')

In addition to a programmatic interface being cleaner to use, this API
has a benefit that the log messages have accurate timestamps.

If the logging methods are used when Robot Framework is not running,
the messages are redirected to the standard Python logging module
using logger named RobotFramework.

Log levels

It is possible to log messages using levels TRACE, DEBUG, INFO,
WARN and ERROR either using the write() function or, more
commonly, with the log level specific trace(), debug(),
info(), warn(), error() functions.

By default the trace and debug messages are not logged but that can be
changed with the --loglevel command line option. Warnings and errors are
automatically written also to the console and to the Test Execution Errors
section in the log file.

Logging HTML

All methods that are used for writing messages to the log file have an
optional html argument. If a message to be logged is supposed to be
shown as HTML, this argument should be set to True. Alternatively,
write() accepts a pseudo log level HTML.

Example

from robot.api import logger

def my_keyword(arg):
 logger.debug('Got argument %s.' % arg)
 do_something()
 logger.info('<i>This</i> is a boring example.', html=True)

	
robot.api.logger.write(msg, level='INFO', html=False)[source]

	Writes the message to the log file using the given level.

Valid log levels are TRACE, DEBUG, INFO (default), WARN, and
ERROR. Additionally it is possible to use HTML pseudo log level that
logs the message as HTML using the INFO level.

Instead of using this method, it is generally better to use the level
specific methods such as info and debug that have separate
html argument to control the message format.

	
robot.api.logger.trace(msg, html=False)[source]

	Writes the message to the log file using the TRACE level.

	
robot.api.logger.debug(msg, html=False)[source]

	Writes the message to the log file using the DEBUG level.

	
robot.api.logger.info(msg, html=False, also_console=False)[source]

	Writes the message to the log file using the INFO level.

If also_console argument is set to True, the message is
written both to the log file and to the console.

	
robot.api.logger.warn(msg, html=False)[source]

	Writes the message to the log file using the WARN level.

	
robot.api.logger.error(msg, html=False)[source]

	Writes the message to the log file using the ERROR level.

	
robot.api.logger.console(msg, newline=True, stream='stdout')[source]

	Writes the message to the console.

If the newline argument is True, a newline character is
automatically added to the message.

By default the message is written to the standard output stream.
Using the standard error stream is possibly by giving the stream
argument value 'stderr'.

robot.api.parsing module

Public API for parsing, inspecting and modifying test data.

Exposed API

The publicly exposed parsing entry points are the following:

	get_tokens(),
get_resource_tokens(), and
get_init_tokens()
functions for parsing data to tokens.

	Token class that contains all token types as
class attributes.

	get_model(),
get_resource_model(), and
get_init_model()
functions for parsing data to model represented as
an abstract syntax tree (AST).

	Model objects used by the AST model.

	ModelVisitor
to ease inspecting model and modifying data.

	ModelTransformer
for adding and removing nodes.

Note

This module is new in Robot Framework 4.0. In Robot Framework 3.2 functions
for getting tokens and model as well as the Token
class were exposed directly via the robot.api package, but other
parts of the parsing API were not publicly exposed. All code targeting
Robot Framework 4.0 or newer should use this module because parsing related
functions and classes will be removed from robot.api in the future.

Note

Parsing was totally rewritten in Robot Framework 3.2 and external
tools using the parsing APIs need to be updated. Depending on
the use case, it may be possible to use the higher level
TestSuiteBuilder() instead.

Parsing data to tokens

Data can be parsed to tokens by using
get_tokens(),
get_resource_tokens() or
get_init_tokens() functions depending on whether the data
represent a test case (or task) file, a resource file, or a suite
initialization file. In practice the difference between these functions is
what settings and sections are valid.

Typically the data is easier to inspect and modify by using the higher level
model discussed in the next section, but in some cases having just the tokens
can be enough. Tokens returned by the aforementioned functions are
Token instances and they have the token type, value,
and position easily available as their attributes. Tokens also have useful
string representation used by the example below:

from robot.api.parsing import get_tokens

path = 'example.robot'

for token in get_tokens(path):
 print(repr(token))

If the example.robot used by the above example would contain

*** Test Cases ***
Example
 Keyword argument

Second example
 Keyword xxx

*** Keywords ***
Keyword
 [Arguments] ${arg}
 Log ${arg}

then the beginning of the output got when running the earlier code would
look like this:

Token(TESTCASE_HEADER, '*** Test Cases ***', 1, 0)
Token(EOL, '\n', 1, 18)
Token(EOS, '', 1, 19)
Token(TESTCASE_NAME, 'Example', 2, 0)
Token(EOL, '\n', 2, 7)
Token(EOS, '', 2, 8)
Token(SEPARATOR, ' ', 3, 0)
Token(KEYWORD, 'Keyword', 3, 4)
Token(SEPARATOR, ' ', 3, 11)
Token(ARGUMENT, 'argument', 3, 15)
Token(EOL, '\n', 3, 23)
Token(EOS, '', 3, 24)
Token(EOL, '\n', 4, 0)
Token(EOS, '', 4, 1)

The output shows the token type, value, line number and column offset. When finding
tokens by their type, the constants in the Token class such
as Token.TESTCASE_NAME and Token.EOL should be used instead the values
of these constants like 'TESTCASE NAME' and 'EOL'. These values have
changed slightly in Robot Framework 4.0 and they may change in the future as well.

The EOL tokens denote end of a line and they include the newline character
and possible trailing spaces. The EOS tokens denote end of a logical
statement. Typically a single line forms a statement, but when the ...
syntax is used for continuation, a statement spans multiple lines. In
special cases a single line can also contain multiple statements.

Errors caused by unrecognized data such as non-existing section or setting names
are handled during the tokenizing phase. Such errors are reported using tokens
that have ERROR type and the actual error message in their error attribute.
Syntax errors such as empty FOR loops are only handled when building the higher
level model discussed below.

See the documentation of get_tokens() for details
about different ways how to specify the data to be parsed, how to control
should all tokens or only data tokens be returned, and should variables in
keyword arguments and elsewhere be tokenized or not.

Parsing data to model

Data can be parsed to a higher level model by using
get_model(),
get_resource_model(), or
get_init_model() functions depending on the type of
the parsed file same way as when parsing data to tokens.

The model is represented as an abstract syntax tree (AST) implemented on top
of Python’s standard ast.AST [https://docs.python.org/library/ast.html#ast.AST] class. To see how the model looks like, it is
possible to use the ast.dump() [https://docs.python.org/library/ast.html#ast.dump] function or the third-party astpretty [https://pypi.org/project/astpretty]
module:

import ast
import astpretty
from robot.api.parsing import get_model

model = get_model('example.robot')
print(ast.dump(model, include_attributes=True))
print('-' * 72)
astpretty.pprint(model)

Running this code with the example.robot file from the previous
section would produce so much output that it is not included here. If
you are going to work with Robot Framework’s AST, you are recommended to
try that on your own.

Model objects

The model is build from nodes that are based ast.AST [https://docs.python.org/library/ast.html#ast.AST] and further categorized
to blocks and statements. Blocks can contain other blocks and statements as
child nodes whereas statements only have tokens containing the actual data as
Token instances. Both statements and blocks expose
their position information via lineno, col_offset, end_lineno and
end_col_offset attributes and some nodes have also other special attributes
available.

Blocks:

	File (the root of the model)

	SettingSection

	VariableSection

	TestCaseSection

	KeywordSection

	CommentSection

	TestCase

	Keyword

	For

	If

Statements:

	SectionHeader

	LibraryImport

	ResourceImport

	VariablesImport

	Documentation

	Metadata

	ForceTags

	DefaultTags

	SuiteSetup

	SuiteTeardown

	TestSetup

	TestTeardown

	TestTemplate

	TestTimeout

	Variable

	TestCaseName

	KeywordName

	Setup

	Teardown

	Tags

	Template

	Timeout

	Arguments

	Return

	KeywordCall

	TemplateArguments

	ForHeader

	IfHeader

	ElseIfHeader

	ElseHeader

	End

	Comment

	Error

	EmptyLine

Inspecting model

The easiest way to inspect what data a model contains is implementing
ModelVisitor and creating
visit_NodeName to visit nodes with name NodeName as needed.
The following example illustrates how to find what tests a certain test
case file contains:

from robot.api.parsing import get_model, ModelVisitor

class TestNamePrinter(ModelVisitor):

 def visit_File(self, node):
 print(f"File '{node.source}' has following tests:")
 # Call `generic_visit` to visit also child nodes.
 self.generic_visit(node)

 def visit_TestCaseName(self, node):
 print(f"- {node.name} (on line {node.lineno})")

model = get_model('example.robot')
printer = TestNamePrinter()
printer.visit(model)

When the above code is run using the earlier example.robot, the
output is this:

File 'example.robot' has following tests:
- Example (on line 2)
- Second example (on line 5)

Handling errors in model

All nodes in the model have errors attribute that contains possible errors
the node has. These errors include syntax errors such as empty FOR loops or IF
without a condition as well as errors caused by unrecognized data such as
non-existing section or setting names.

Unrecognized data is handled already during the tokenizing phase. In the model
such data is represented as Error
nodes and their errors attribute contain error information got from the
underlying ERROR tokens. Syntax errors do not create
Error
nodes, but instead the model has normal nodes such as
If
with errors in their errors attribute.

A simple way to go through the model and see are there errors is using the
ModelVisitor
discussed in the previous section:

class ErrorReporter(ModelVisitor):

 # Implement `generic_visit` to visit all nodes.
 def generic_visit(self, node):
 if node.errors:
 print(f'Error on line {node.lineno}:')
 for error in node.errors:
 print(f'- {error}')
 ModelVisitor.generic_visit(self, node)

Modifying data

Existing data the model contains can be modified simply by modifying values of
the underlying tokens. If changes need to be saved, that is as easy as calling
the save() method of the root model object. When
just modifying token values, it is possible to still use
ModelVisitor
discussed in the above section. The next section discusses adding or removing
nodes and then
ModelTransformer
should be used instead.

Modifications to tokens obviously require finding the tokens to be modified.
The first step is finding nodes containing the tokens by implementing
needed visit_NodeName methods. Then the exact token or tokens
can be found using nodes’
get_token() or
get_tokens() methods.
If only token values are needed,
get_value() or
get_values() can be used as a shortcut.
First finding nodes and then the right tokens is illustrated by
this keyword renaming example:

from robot.api.parsing import get_model, ModelVisitor, Token

class KeywordRenamer(ModelVisitor):

 def __init__(self, old_name, new_name):
 self.old_name = self.normalize(old_name)
 self.new_name = new_name

 def normalize(self, name):
 return name.lower().replace(' ', '').replace('_', '')

 def visit_KeywordName(self, node):
 '''Rename keyword definitions.'''
 if self.normalize(node.name) == self.old_name:
 token = node.get_token(Token.KEYWORD_NAME)
 token.value = self.new_name

 def visit_KeywordCall(self, node):
 '''Rename keyword usages.'''
 if self.normalize(node.keyword) == self.old_name:
 token = node.get_token(Token.KEYWORD)
 token.value = self.new_name

model = get_model('example.robot')
renamer = KeywordRenamer('Keyword', 'New Name')
renamer.visit(model)
model.save()

If you run the above example using the earlier example.robot, you
can see that the Keyword keyword has been renamed to New Name. Notice
that a real keyword renamer needed to take into account also keywords used
with setups, teardowns and templates.

When token values are changed, column offset of the other tokens on same
line are likely to be wrong. This does not affect saving the model or other
typical usages, but if it is a problem then the caller needs to updated
offsets separately.

Adding and removing nodes

Bigger changes to the model are somewhat more complicated than just modifying
existing token values. When doing this kind of changes,
ModelTransformer
should be used instead of
ModelVisitor
that was discussed in the previous sections.

Removing nodes is relative easy and is accomplished by returning None
from visit_NodeName methods. Remember to return the original node,
or possibly a replacement node, from all of these methods when you do not
want a node to be removed.

Adding nodes requires constructing needed Model objects and adding them
to the model. The following example demonstrates both removing and adding nodes.
If you run it against the earlier example.robot, you see that
the first test gets a new keyword, the second test is removed, and
settings section with documentation is added.

from robot.api.parsing import (
 get_model, Documentation, EmptyLine, KeywordCall,
 ModelTransformer, SettingSection, SectionHeader, Token
)

class TestModifier(ModelTransformer):

 def visit_TestCase(self, node):
 # The matched `TestCase` node is a block with `header` and
 # `body` attributes. `header` is a statement with familiar
 # `get_token` and `get_value` methods for getting certain
 # tokens or their value.
 name = node.header.get_value(Token.TESTCASE_NAME)
 # Returning `None` drops the node altogether i.e. removes
 # this test.
 if name == 'Second example':
 return None
 # Construct new keyword call statement from tokens. See `visit_File`
 # below for an example creating statements using `from_params`.
 new_keyword = KeywordCall([
 Token(Token.SEPARATOR, ' '),
 Token(Token.KEYWORD, 'New Keyword'),
 Token(Token.SEPARATOR, ' '),
 Token(Token.ARGUMENT, 'xxx'),
 Token(Token.EOL)
])
 # Add the keyword call to test as the second item.
 node.body.insert(1, new_keyword)
 # No need to call `generic_visit` because we are not
 # modifying child nodes. The node itself must to be
 # returned to avoid dropping it.
 return node

 def visit_File(self, node):
 # Create settings section with documentation. Needed header and body
 # statements are created using `from_params` method. This is typically
 # more convenient than creating statements based on tokens like above.
 settings = SettingSection(
 header=SectionHeader.from_params(Token.SETTING_HEADER),
 body=[
 Documentation.from_params('This is a really\npowerful API!'),
 EmptyLine.from_params()
]
)
 # Add settings to the beginning of the file.
 node.sections.insert(0, settings)
 # Call `generic_visit` to visit also child nodes.
 return self.generic_visit(node)

model = get_model('example.robot')
TestModifier().visit(model)
model.save('modified.robot')

Executing model

It is possible to convert a parsed and possibly modified model into an
executable TestSuite structure by using its
from_model() class method. In this case
the get_model() function should be given the curdir
argument to get possible ${CURDIR} variable resolved correctly.

from robot.api import TestSuite
from robot.api.parsing import get_model

model = get_model('example.robot', curdir='/home/robot/example')
modify model as needed
suite = TestSuite.from_model(model)
suite.run()

For more details about executing the created
TestSuite object, see the documentation
of its run() method. Notice also
that if you do not need to modify the parsed model, it is easier to
get the executable suite by using the
from_file_system() class method.

robot.conf package

Implements settings for both test execution and output processing.

This package implements RobotSettings and
RebotSettings classes used internally by
the framework. There should be no need to use these classes externally.

This package can be considered relatively stable. Aforementioned classes
are likely to be rewritten at some point to be more convenient to use.
Instantiating them is not likely to change, though.

Submodules

robot.conf.gatherfailed module

	
class robot.conf.gatherfailed.GatherFailedTests[source]

	Bases: robot.model.visitor.SuiteVisitor

	
visit_test(test)[source]

	Implements traversing through tests.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
visit_keyword(kw)[source]

	Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
end_for(for_)

	Called when FOR loop ends. Default implementation does nothing.

	
end_for_iteration(iteration)

	Called when FOR loop iteration ends. Default implementation does nothing.

	
end_if(if_)

	Called when IF/ELSE structure ends. Default implementation does nothing.

	
end_if_branch(branch)

	Called when IF/ELSE branch ends. Default implementation does nothing.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_for(for_)

	Called when FOR loop starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_for_iteration(iteration)

	Called when FOR loop iteration starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if(if_)

	Called when IF/ELSE structure starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if_branch(branch)

	Called when IF/ELSE branch starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_for(for_)

	Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without
calling start_for() or end_for() nor visiting body.

	
visit_for_iteration(iteration)

	Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side
there are no iterations.

Can be overridden to allow modifying the passed in iteration without
calling start_for_iteration() or end_for_iteration() nor visiting
body.

	
visit_if(if_)

	Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches
are in its body and visited using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without
calling start_if() or end_if() nor visiting branches.

	
visit_if_branch(branch)

	Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without
calling start_if_branch() or end_if_branch() nor visiting body.

	
visit_message(msg)

	Implements visiting messages.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
class robot.conf.gatherfailed.GatherFailedSuites[source]

	Bases: robot.model.visitor.SuiteVisitor

	
start_suite(suite)[source]

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_test(test)[source]

	Implements traversing through tests.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
visit_keyword(kw)[source]

	Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
end_for(for_)

	Called when FOR loop ends. Default implementation does nothing.

	
end_for_iteration(iteration)

	Called when FOR loop iteration ends. Default implementation does nothing.

	
end_if(if_)

	Called when IF/ELSE structure ends. Default implementation does nothing.

	
end_if_branch(branch)

	Called when IF/ELSE branch ends. Default implementation does nothing.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_for(for_)

	Called when FOR loop starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_for_iteration(iteration)

	Called when FOR loop iteration starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if(if_)

	Called when IF/ELSE structure starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if_branch(branch)

	Called when IF/ELSE branch starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_for(for_)

	Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without
calling start_for() or end_for() nor visiting body.

	
visit_for_iteration(iteration)

	Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side
there are no iterations.

Can be overridden to allow modifying the passed in iteration without
calling start_for_iteration() or end_for_iteration() nor visiting
body.

	
visit_if(if_)

	Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches
are in its body and visited using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without
calling start_if() or end_if() nor visiting branches.

	
visit_if_branch(branch)

	Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without
calling start_if_branch() or end_if_branch() nor visiting body.

	
visit_message(msg)

	Implements visiting messages.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
robot.conf.gatherfailed.gather_failed_tests(output)[source]

	

	
robot.conf.gatherfailed.gather_failed_suites(output)[source]

	

robot.conf.settings module

	
class robot.conf.settings.RobotSettings(options=None, **extra_options)[source]

	Bases: robot.conf.settings._BaseSettings

	
get_rebot_settings()[source]

	

	
listeners

	

	
debug_file

	

	
suite_config

	

	
randomize_seed

	

	
randomize_suites

	

	
randomize_tests

	

	
dry_run

	

	
exit_on_failure

	

	
exit_on_error

	

	
skipped_tags

	

	
skip_on_failure

	

	
skip_teardown_on_exit

	

	
console_output_config

	

	
console_type

	

	
console_width

	

	
console_markers

	

	
max_error_lines

	

	
pre_run_modifiers

	

	
run_empty_suite

	

	
variables

	

	
variable_files

	

	
extension

	

	
console_colors

	

	
critical_tags

	

	
flatten_keywords

	

	
log

	

	
log_level

	

	
output

	

	
output_directory

	

	
pre_rebot_modifiers

	

	
remove_keywords

	

	
report

	

	
rpa

	

	
split_log

	

	
statistics_config

	

	
status_rc

	

	
xunit

	

	
class robot.conf.settings.RebotSettings(options=None, **extra_options)[source]

	Bases: robot.conf.settings._BaseSettings

	
suite_config

	

	
log_config

	

	
report_config

	

	
merge

	

	
console_output_config

	

	
console_colors

	

	
critical_tags

	

	
flatten_keywords

	

	
log

	

	
log_level

	

	
output

	

	
output_directory

	

	
pre_rebot_modifiers

	

	
process_empty_suite

	

	
remove_keywords

	

	
report

	

	
rpa

	

	
split_log

	

	
statistics_config

	

	
status_rc

	

	
xunit

	

	
expand_keywords

	

robot.htmldata package

Package for writing output files in HTML format.

This package is considered stable but it is not part of the public API.

Submodules

robot.htmldata.htmlfilewriter module

	
class robot.htmldata.htmlfilewriter.HtmlFileWriter(output, model_writer)

	Bases: object

	
write(template)

	

	
class robot.htmldata.htmlfilewriter.ModelWriter

	Bases: robot.htmldata.htmlfilewriter._Writer

	
handles(line)

	

	
write(line)

	

	
class robot.htmldata.htmlfilewriter.LineWriter(output)

	Bases: robot.htmldata.htmlfilewriter._Writer

	
handles(line)

	

	
write(line)

	

	
class robot.htmldata.htmlfilewriter.GeneratorWriter(html_writer)

	Bases: robot.htmldata.htmlfilewriter._Writer

	
write(line)

	

	
handles(line)

	

	
class robot.htmldata.htmlfilewriter.JsFileWriter(html_writer, base_dir)

	Bases: robot.htmldata.htmlfilewriter._InliningWriter

	
write(line)

	

	
handles(line)

	

	
class robot.htmldata.htmlfilewriter.CssFileWriter(html_writer, base_dir)

	Bases: robot.htmldata.htmlfilewriter._InliningWriter

	
write(line)

	

	
handles(line)

	

robot.htmldata.jartemplate module

robot.htmldata.jsonwriter module

	
class robot.htmldata.jsonwriter.JsonWriter(output, separator='')

	Bases: object

	
write_json(prefix, data, postfix=';\n', mapping=None, separator=True)

	

	
write(string, postfix=';\n', separator=True)

	

	
class robot.htmldata.jsonwriter.JsonDumper(output)

	Bases: object

	
dump(data, mapping=None)

	

	
class robot.htmldata.jsonwriter.StringDumper(jsondumper)

	Bases: robot.htmldata.jsonwriter._Dumper

	
dump(data, mapping)

	

	
handles(data, mapping)

	

	
class robot.htmldata.jsonwriter.IntegerDumper(jsondumper)

	Bases: robot.htmldata.jsonwriter._Dumper

	
dump(data, mapping)

	

	
handles(data, mapping)

	

	
class robot.htmldata.jsonwriter.DictDumper(jsondumper)

	Bases: robot.htmldata.jsonwriter._Dumper

	
dump(data, mapping)

	

	
handles(data, mapping)

	

	
class robot.htmldata.jsonwriter.TupleListDumper(jsondumper)

	Bases: robot.htmldata.jsonwriter._Dumper

	
dump(data, mapping)

	

	
handles(data, mapping)

	

	
class robot.htmldata.jsonwriter.MappingDumper(jsondumper)

	Bases: robot.htmldata.jsonwriter._Dumper

	
handles(data, mapping)

	

	
dump(data, mapping)

	

	
class robot.htmldata.jsonwriter.NoneDumper(jsondumper)

	Bases: robot.htmldata.jsonwriter._Dumper

	
handles(data, mapping)

	

	
dump(data, mapping)

	

robot.htmldata.normaltemplate module

	
class robot.htmldata.normaltemplate.HtmlTemplate(filename)

	Bases: object

robot.htmldata.template module

robot.libdocpkg package

Implements the Libdoc tool.

The command line entry point and programmatic interface for Libdoc
are provided by the separate robot.libdoc module.

This package is considered stable but it is not part of the public API.

Submodules

robot.libdocpkg.builder module

	
robot.libdocpkg.builder.JavaDocBuilder()

	

	
robot.libdocpkg.builder.LibraryDocumentation(library_or_resource, name=None, version=None, doc_format=None)

	

	
robot.libdocpkg.builder.DocumentationBuilder(library_or_resource)

	Create a documentation builder for the specified library or resource.

The argument can be a path to a library, a resource file or to a spec file
generated by Libdoc earlier. If the argument does not point to an existing file,
it is expected to be the name of the library to be imported. If a resource file
is to be imported from PYTHONPATH, then ResourceDocBuilder
must be used explicitly instead.

robot.libdocpkg.consoleviewer module

	
class robot.libdocpkg.consoleviewer.ConsoleViewer(libdoc)

	Bases: object

	
classmethod handles(command)

	

	
classmethod validate_command(command, args)

	

	
view(command, *args)

	

	
list(*patterns)

	

	
show(*names)

	

	
version()

	

	
class robot.libdocpkg.consoleviewer.KeywordMatcher(libdoc)

	Bases: object

	
search(patterns)

	

robot.libdocpkg.datatypes module

	
class robot.libdocpkg.datatypes.EnumType

	Bases: object

	
class robot.libdocpkg.datatypes.DataTypeCatalog

	Bases: object

	
enums

	

	
typed_dicts

	

	
update(types)

	

	
to_dictionary()

	

	
class robot.libdocpkg.datatypes.TypedDictDoc(name='', doc='', items=None, type='TypedDict')

	Bases: robot.utils.sortable.Sortable

	
classmethod from_TypedDict(typed_dict)

	

	
to_dictionary()

	

	
class robot.libdocpkg.datatypes.EnumDoc(name='', doc='', members=None, type='Enum')

	Bases: robot.utils.sortable.Sortable

	
classmethod from_Enum(enum_type)

	

	
to_dictionary()

	

robot.libdocpkg.htmlutils module

	
class robot.libdocpkg.htmlutils.DocFormatter(keywords, data_types, introduction, doc_format='ROBOT')

	Bases: object

	
html(doc, intro=False)

	

	
class robot.libdocpkg.htmlutils.DocToHtml(doc_format)

	Bases: object

	
class robot.libdocpkg.htmlutils.HtmlToText

	Bases: object

	
html_tags = {'b': '*', 'code': '``', 'div.*?': '', 'em': '_', 'i': '_', 'strong': '*'}

	

	
html_chars = {'&': '&', ''': "'", '>': '>', '<': '<', '"': '"', '<br */?>': '\n'}

	

	
get_shortdoc_from_html(doc)

	

	
html_to_plain_text(doc)

	

robot.libdocpkg.htmlwriter module

	
class robot.libdocpkg.htmlwriter.LibdocHtmlWriter

	Bases: object

	
write(libdoc, output)

	

	
class robot.libdocpkg.htmlwriter.LibdocModelWriter(output, libdoc)

	Bases: robot.htmldata.htmlfilewriter.ModelWriter

	
write(line)

	

	
handles(line)

	

robot.libdocpkg.java9builder module

robot.libdocpkg.javabuilder module

	
class robot.libdocpkg.javabuilder.JavaDocBuilder

	Bases: object

	
build(path)

	

	
robot.libdocpkg.javabuilder.ClassDoc(path)

	Process the given Java source file and return ClassDoc instance.

Processing is done using com.sun.tools.javadoc APIs. Returned object
implements com.sun.javadoc.ClassDoc interface:
http://docs.oracle.com/javase/7/docs/jdk/api/javadoc/doclet/

robot.libdocpkg.jsonbuilder module

	
class robot.libdocpkg.jsonbuilder.JsonDocBuilder

	Bases: object

	
build(path)

	

	
build_from_dict(spec)

	

robot.libdocpkg.jsonwriter module

	
class robot.libdocpkg.jsonwriter.LibdocJsonWriter

	Bases: object

	
write(libdoc, outfile)

	

robot.libdocpkg.model module

	
class robot.libdocpkg.model.LibraryDoc(name='', doc='', version='', type='LIBRARY', scope='TEST', doc_format='ROBOT', source=None, lineno=-1)

	Bases: object

	
doc

	

	
doc_format

	

	
inits

	

	
keywords

	

	
all_tags

	

	
save(output=None, format='HTML')

	

	
convert_docs_to_html()

	

	
to_dictionary()

	

	
to_json(indent=None)

	

	
class robot.libdocpkg.model.KeywordDoc(name='', args=(), doc='', shortdoc='', tags=(), source=None, lineno=-1, parent=None)

	Bases: robot.utils.sortable.Sortable

	
shortdoc

	

	
deprecated

	

	
generate_shortdoc()

	

	
to_dictionary()

	

robot.libdocpkg.output module

	
class robot.libdocpkg.output.LibdocOutput(output_path, format)

	Bases: object

robot.libdocpkg.robotbuilder module

	
class robot.libdocpkg.robotbuilder.LibraryDocBuilder

	Bases: object

	
build(library)

	

	
class robot.libdocpkg.robotbuilder.ResourceDocBuilder

	Bases: object

	
build(path)

	

	
class robot.libdocpkg.robotbuilder.KeywordDocBuilder(resource=False)

	Bases: object

	
build_keywords(lib)

	

	
build_keyword(kw)

	

robot.libdocpkg.specbuilder module

	
class robot.libdocpkg.specbuilder.SpecDocBuilder

	Bases: object

	
build(path)

	

robot.libdocpkg.writer module

	
robot.libdocpkg.writer.LibdocWriter(format=None)

	

robot.libdocpkg.xmlwriter module

	
class robot.libdocpkg.xmlwriter.LibdocXmlWriter

	Bases: object

	
write(libdoc, outfile)

	

robot.libraries package

Package hosting Robot Framework standard test libraries.

Libraries are mainly used externally in the test data, but they can be
also used by custom test libraries if there is a need. Especially
the BuiltIn library is often useful
when there is a need to interact with the framework.

Because libraries are documented using Robot Framework’s own documentation
syntax, the generated API docs are not that well formed. It is thus better
to find the generated library documentations, for example, via
the http://robotframework.org web site.

Submodules

robot.libraries.BuiltIn module

	
robot.libraries.BuiltIn.run_keyword_variant(resolve)

	

	
class robot.libraries.BuiltIn.BuiltIn

	Bases: robot.libraries.BuiltIn._Verify, robot.libraries.BuiltIn._Converter, robot.libraries.BuiltIn._Variables, robot.libraries.BuiltIn._RunKeyword, robot.libraries.BuiltIn._Control, robot.libraries.BuiltIn._Misc

An always available standard library with often needed keywords.

BuiltIn is Robot Framework’s standard library that provides a set
of generic keywords needed often. It is imported automatically and
thus always available. The provided keywords can be used, for example,
for verifications (e.g. Should Be Equal, Should Contain),
conversions (e.g. Convert To Integer) and for various other purposes
(e.g. Log, Sleep, Run Keyword If, Set Global Variable).

== Table of contents ==

%TOC%

= HTML error messages =

Many of the keywords accept an optional error message to use if the keyword
fails, and it is possible to use HTML in these messages by prefixing them
with *HTML*. See Fail keyword for a usage example. Notice that using
HTML in messages is not limited to BuiltIn library but works with any
error message.

= Evaluating expressions =

Many keywords, such as Evaluate, Run Keyword If and Should Be True,
accept an expression that is evaluated in Python.

== Evaluation namespace ==

Expressions are evaluated using Python’s
[http://docs.python.org/library/functions.html#eval|eval] function so
that all Python built-ins like len() and int() are available.
In addition to that, all unrecognized variables are considered to be
modules that are automatically imported. It is possible to use all
available Python modules, including the standard modules and the installed
third party modules.

Evaluate also allows configuring the execution namespace with a custom
namespace and with custom modules to be imported. The latter functionality
is useful in special cases where the automatic module import does not work
such as when using nested modules like rootmod.submod or list
comprehensions. See the documentation of the Evaluate keyword for mode
details.

NOTE: Automatic module import is a new feature in Robot Framework 3.2.
Earlier modules needed to be explicitly taken into use when using the
Evaluate keyword and other keywords only had access to sys and
os modules.

== Using variables ==

When a variable is used in the expressing using the normal ${variable}
syntax, its value is replaced before the expression is evaluated. This
means that the value used in the expression will be the string
representation of the variable value, not the variable value itself.
This is not a problem with numbers and other objects that have a string
representation that can be evaluated directly, but with other objects
the behavior depends on the string representation. Most importantly,
strings must always be quoted, and if they can contain newlines, they must
be triple quoted.

Actual variables values are also available in the evaluation namespace.
They can be accessed using special variable syntax without the curly
braces like $variable. These variables should never be quoted.

Using the $variable syntax slows down expression evaluation a little.
This should not typically matter, but should be taken into account if
complex expressions are evaluated often and there are strict time
constrains.

Notice that instead of creating complicated expressions, it is often better
to move the logic into a test library. That eases maintenance and can also
enhance execution speed.

= Boolean arguments =

Some keywords accept arguments that are handled as Boolean values true or
false. If such an argument is given as a string, it is considered false if
it is an empty string or equal to FALSE, NONE, NO, OFF or
0, case-insensitively. Keywords verifying something that allow dropping
actual and expected values from the possible error message also consider
string no values to be false. Other strings are considered true unless
the keyword documentation explicitly states otherwise, and other argument
types are tested using the same
[http://docs.python.org/library/stdtypes.html#truth|rules as in Python].

True examples:

False examples:

= Pattern matching =

Many keywords accepts arguments as either glob or regular expression
patterns.

== Glob patterns ==

Some keywords, for example Should Match, support so called
[http://en.wikipedia.org/wiki/Glob_(programming)|glob patterns] where:

Unlike with glob patterns normally, path separator characters / and
\ and the newline character \n are matches by the above
wildcards.

== Regular expressions ==

Some keywords, for example Should Match Regexp, support
[http://en.wikipedia.org/wiki/Regular_expression|regular expressions]
that are more powerful but also more complicated that glob patterns.
The regular expression support is implemented using Python’s
[http://docs.python.org/library/re.html|re module] and its documentation
should be consulted for more information about the syntax.

Because the backslash character (\) is an escape character in
Robot Framework test data, possible backslash characters in regular
expressions need to be escaped with another backslash like \\d\\w+.
Strings that may contain special characters but should be handled
as literal strings, can be escaped with the Regexp Escape keyword.

= Multiline string comparison =

Should Be Equal and Should Be Equal As Strings report the failures using
[http://en.wikipedia.org/wiki/Diff_utility#Unified_format|unified diff
format] if both strings have more than two lines.

Results in the following error message:

= String representations =

Several keywords log values explicitly (e.g. Log) or implicitly (e.g.
Should Be Equal when there are failures). By default keywords log values
using “human readable” string representation, which means that strings
like Hello and numbers like 42 are logged as-is. Most of the time
this is the desired behavior, but there are some problems as well:

	It is not possible to see difference between different objects that
have same string representation like string 42 and integer 42.
Should Be Equal and some other keywords add the type information to
the error message in these cases, though.

	Non-printable characters such as the null byte are not visible.

	Trailing whitespace is not visible.

	Different newlines (\r\n on Windows, \n elsewhere) cannot
be separated from each others.

	There are several Unicode characters that are different but look the
same. One example is the Latin a (\u0061) and the Cyrillic
а (\u0430). Error messages like a != а are
not very helpful.

	Some Unicode characters can be represented using
[https://en.wikipedia.org/wiki/Unicode_equivalence|different forms].
For example, ä can be represented either as a single code point
\u00e4 or using two code points \u0061 and \u0308 combined
together. Such forms are considered canonically equivalent, but strings
containing them are not considered equal when compared in Python. Error
messages like ä != ä are not that helpful either.

	Containers such as lists and dictionaries are formatted into a single
line making it hard to see individual items they contain.

To overcome the above problems, some keywords such as Log and
Should Be Equal have an optional formatter argument that can be
used to configure the string representation. The supported values are
str (default), repr, and ascii that work similarly as
[https://docs.python.org/library/functions.html|Python built-in functions]
with same names. More detailed semantics are explained below.

== str ==

Use the “human readable” string representation. Equivalent to using
str() in Python 3 and unicode() in Python 2. This is the default.

== repr ==

Use the “machine readable” string representation. Similar to using
repr() in Python, which means that strings like Hello are logged
like 'Hello', newlines and non-printable characters are escaped like
\n and \x00, and so on. Non-ASCII characters are shown as-is
like ä in Python 3 and in escaped format like \xe4 in Python 2.
Use ascii to always get the escaped format.

There are also some enhancements compared to the standard repr():
- Bigger lists, dictionaries and other containers are pretty-printed so

that there is one item per row.

	On Python 2 the u prefix is omitted with Unicode strings and
the b prefix is added to byte strings.

== ascii ==

Same as using ascii() in Python 3 or repr() in Python 2 where
ascii() does not exist. Similar to using repr explained above
but with the following differences:

	On Python 3 non-ASCII characters are escaped like \xe4 instead of
showing them as-is like ä. This makes it easier to see differences
between Unicode characters that look the same but are not equal. This
is how repr() works in Python 2.

	On Python 2 just uses the standard repr() meaning that Unicode
strings get the u prefix and no b prefix is added to byte
strings.

	Containers are not pretty-printed.

	
ROBOT_LIBRARY_SCOPE = 'GLOBAL'

	

	
ROBOT_LIBRARY_VERSION = '4.1.2'

	

	
call_method(object, method_name, *args, **kwargs)

	Calls the named method of the given object with the provided arguments.

The possible return value from the method is returned and can be
assigned to a variable. Keyword fails both if the object does not have
a method with the given name or if executing the method raises an
exception.

Possible equal signs in arguments must be escaped with a backslash
like \=.

	
catenate(*items)

	Catenates the given items together and returns the resulted string.

By default, items are catenated with spaces, but if the first item
contains the string SEPARATOR=<sep>, the separator <sep> is
used instead. Items are converted into strings when necessary.

	
comment(*messages)

	Displays the given messages in the log file as keyword arguments.

This keyword does nothing with the arguments it receives, but as they
are visible in the log, this keyword can be used to display simple
messages. Given arguments are ignored so thoroughly that they can even
contain non-existing variables. If you are interested about variable
values, you can use the Log or Log Many keywords.

	
continue_for_loop()

	Skips the current for loop iteration and continues from the next.

Skips the remaining keywords in the current for loop iteration and
continues from the next one. Can be used directly in a for loop or
in a keyword that the loop uses.

See Continue For Loop If to conditionally continue a for loop without
using Run Keyword If or other wrapper keywords.

	
continue_for_loop_if(condition)

	Skips the current for loop iteration if the condition is true.

A wrapper for Continue For Loop to continue a for loop based on
the given condition. The condition is evaluated using the same
semantics as with Should Be True keyword.

	
convert_to_binary(item, base=None, prefix=None, length=None)

	Converts the given item to a binary string.

The item, with an optional base, is first converted to an
integer using Convert To Integer internally. After that it
is converted to a binary number (base 2) represented as a
string such as 1011.

The returned value can contain an optional prefix and can be
required to be of minimum length (excluding the prefix and a
possible minus sign). If the value is initially shorter than
the required length, it is padded with zeros.

See also Convert To Integer, Convert To Octal and Convert To Hex.

	
convert_to_boolean(item)

	Converts the given item to Boolean true or false.

Handles strings True and False (case-insensitive) as expected,
otherwise returns item’s
[http://docs.python.org/library/stdtypes.html#truth|truth value]
using Python’s bool() method.

	
convert_to_bytes(input, input_type='text')

	Converts the given input to bytes according to the input_type.

Valid input types are listed below:

	text: Converts text to bytes character by character. All
characters with ordinal below 256 can be used and are converted to
bytes with same values. Many characters are easiest to represent
using escapes like \x00 or \xff. Supports both Unicode
strings and bytes.

	int: Converts integers separated by spaces to bytes. Similarly as
with Convert To Integer, it is possible to use binary, octal, or
hex values by prefixing the values with 0b, 0o, or 0x,
respectively.

	hex: Converts hexadecimal values to bytes. Single byte is always
two characters long (e.g. 01 or FF). Spaces are ignored and
can be used freely as a visual separator.

	bin: Converts binary values to bytes. Single byte is always eight
characters long (e.g. 00001010). Spaces are ignored and can be
used freely as a visual separator.

In addition to giving the input as a string, it is possible to use
lists or other iterables containing individual characters or numbers.
In that case numbers do not need to be padded to certain length and
they cannot contain extra spaces.

Use Encode String To Bytes in String library if you need to
convert text to bytes using a certain encoding.

	
convert_to_hex(item, base=None, prefix=None, length=None, lowercase=False)

	Converts the given item to a hexadecimal string.

The item, with an optional base, is first converted to an
integer using Convert To Integer internally. After that it
is converted to a hexadecimal number (base 16) represented as
a string such as FF0A.

The returned value can contain an optional prefix and can be
required to be of minimum length (excluding the prefix and a
possible minus sign). If the value is initially shorter than
the required length, it is padded with zeros.

By default the value is returned as an upper case string, but the
lowercase argument a true value (see Boolean arguments) turns
the value (but not the given prefix) to lower case.

See also Convert To Integer, Convert To Binary and Convert To Octal.

	
convert_to_integer(item, base=None)

	Converts the given item to an integer number.

If the given item is a string, it is by default expected to be an
integer in base 10. There are two ways to convert from other bases:

	Give base explicitly to the keyword as base argument.

	Prefix the given string with the base so that 0b means binary
(base 2), 0o means octal (base 8), and 0x means hex (base 16).
The prefix is considered only when base argument is not given and
may itself be prefixed with a plus or minus sign.

The syntax is case-insensitive and possible spaces are ignored.

See also Convert To Number, Convert To Binary, Convert To Octal,
Convert To Hex, and Convert To Bytes.

	
convert_to_number(item, precision=None)

	Converts the given item to a floating point number.

If the optional precision is positive or zero, the returned number
is rounded to that number of decimal digits. Negative precision means
that the number is rounded to the closest multiple of 10 to the power
of the absolute precision. If a number is equally close to a certain
precision, it is always rounded away from zero.

Notice that machines generally cannot store floating point numbers
accurately. This may cause surprises with these numbers in general
and also when they are rounded. For more information see, for example,
these resources:

	http://docs.python.org/tutorial/floatingpoint.html

	http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition

If you want to avoid possible problems with floating point numbers,
you can implement custom keywords using Python’s
[http://docs.python.org/library/decimal.html|decimal] or
[http://docs.python.org/library/fractions.html|fractions] modules.

If you need an integer number, use Convert To Integer instead.

	
convert_to_octal(item, base=None, prefix=None, length=None)

	Converts the given item to an octal string.

The item, with an optional base, is first converted to an
integer using Convert To Integer internally. After that it
is converted to an octal number (base 8) represented as a
string such as 775.

The returned value can contain an optional prefix and can be
required to be of minimum length (excluding the prefix and a
possible minus sign). If the value is initially shorter than
the required length, it is padded with zeros.

See also Convert To Integer, Convert To Binary and Convert To Hex.

	
convert_to_string(item)

	Converts the given item to a Unicode string.

Strings are also [http://www.macchiato.com/unicode/nfc-faq|
NFC normalized].

Use Encode String To Bytes and Decode Bytes To String keywords
in String library if you need to convert between Unicode and byte
strings using different encodings. Use Convert To Bytes if you just
want to create byte strings.

	
create_dictionary(*items)

	Creates and returns a dictionary based on the given items.

Items are typically given using the key=value syntax same way as
&{dictionary} variables are created in the Variable table. Both
keys and values can contain variables, and possible equal sign in key
can be escaped with a backslash like escaped\=key=value. It is
also possible to get items from existing dictionaries by simply using
them like &{dict}.

Alternatively items can be specified so that keys and values are given
separately. This and the key=value syntax can even be combined,
but separately given items must be first. If same key is used multiple
times, the last value has precedence.

The returned dictionary is ordered, and values with strings as keys
can also be accessed using a convenient dot-access syntax like
${dict.key}. Technically the returned dictionary is Robot
Framework’s own DotDict instance. If there is a need, it can be
converted into a regular Python dict instance by using the
Convert To Dictionary keyword from the Collections library.

	
create_list(*items)

	Returns a list containing given items.

The returned list can be assigned both to ${scalar} and @{list}
variables.

	
evaluate(expression, modules=None, namespace=None)

	Evaluates the given expression in Python and returns the result.

expression is evaluated in Python as explained in the
Evaluating expressions section.

modules argument can be used to specify a comma separated
list of Python modules to be imported and added to the evaluation
namespace.

namespace argument can be used to pass a custom evaluation
namespace as a dictionary. Possible modules are added to this
namespace.

Variables used like ${variable} are replaced in the expression
before evaluation. Variables are also available in the evaluation
namespace and can be accessed using the special $variable syntax
as explained in the Evaluating expressions section.

Starting from Robot Framework 3.2, modules used in the expression are
imported automatically. There are, however, two cases where they need to
be explicitly specified using the modules argument:

	When nested modules like rootmod.submod are implemented so that
the root module does not automatically import sub modules. This is
illustrated by the selenium.webdriver example below.

	When using a module in the expression part of a list comprehension.
This is illustrated by the json example below.

NOTE: Prior to Robot Framework 3.2 using modules=rootmod.submod
was not enough to make the root module itself available in the
evaluation namespace. It needed to be taken into use explicitly like
modules=rootmod, rootmod.submod.

	
exit_for_loop()

	Stops executing the enclosing for loop.

Exits the enclosing for loop and continues execution after it.
Can be used directly in a for loop or in a keyword that the loop uses.

See Exit For Loop If to conditionally exit a for loop without
using Run Keyword If or other wrapper keywords.

	
exit_for_loop_if(condition)

	Stops executing the enclosing for loop if the condition is true.

A wrapper for Exit For Loop to exit a for loop based on
the given condition. The condition is evaluated using the same
semantics as with Should Be True keyword.

	
fail(msg=None, *tags)

	Fails the test with the given message and optionally alters its tags.

The error message is specified using the msg argument.
It is possible to use HTML in the given error message, similarly
as with any other keyword accepting an error message, by prefixing
the error with *HTML*.

It is possible to modify tags of the current test case by passing tags
after the message. Tags starting with a hyphen (e.g. -regression)
are removed and others added. Tags are modified using Set Tags and
Remove Tags internally, and the semantics setting and removing them
are the same as with these keywords.

See Fatal Error if you need to stop the whole test execution.

	
fatal_error(msg=None)

	Stops the whole test execution.

The test or suite where this keyword is used fails with the provided
message, and subsequent tests fail with a canned message.
Possible teardowns will nevertheless be executed.

See Fail if you only want to stop one test case unconditionally.

	
get_count(container, item)

	Returns and logs how many times item is found from container.

This keyword works with Python strings and lists and all objects
that either have count method or can be converted to Python lists.

	
get_length(item)

	Returns and logs the length of the given item as an integer.

The item can be anything that has a length, for example, a string,
a list, or a mapping. The keyword first tries to get the length with
the Python function len, which calls the item’s __len__ method
internally. If that fails, the keyword tries to call the item’s
possible length and size methods directly. The final attempt is
trying to get the value of the item’s length attribute. If all
these attempts are unsuccessful, the keyword fails.

See also Length Should Be, Should Be Empty and Should Not Be
Empty.

	
get_library_instance(name=None, all=False)

	Returns the currently active instance of the specified test library.

This keyword makes it easy for test libraries to interact with
other test libraries that have state. This is illustrated by
the Python example below:

It is also possible to use this keyword in the test data and
pass the returned library instance to another keyword. If a
library is imported with a custom name, the name used to get
the instance must be that name and not the original library name.

If the optional argument all is given a true value, then a
dictionary mapping all library names to instances will be returned.

	
get_time(format='timestamp', time_='NOW')

	Returns the given time in the requested format.

NOTE: DateTime library contains much more flexible keywords for
getting the current date and time and for date and time handling in
general.

How time is returned is determined based on the given format
string as follows. Note that all checks are case-insensitive.

	If format contains the word epoch, the time is returned
in seconds after the UNIX epoch (1970-01-01 00:00:00 UTC).
The return value is always an integer.

	If format contains any of the words year, month,
day, hour, min, or sec, only the selected parts are
returned. The order of the returned parts is always the one
in the previous sentence and the order of words in format
is not significant. The parts are returned as zero-padded
strings (e.g. May -> 05).

	Otherwise (and by default) the time is returned as a
timestamp string in the format 2006-02-24 15:08:31.

By default this keyword returns the current local time, but
that can be altered using time argument as explained below.
Note that all checks involving strings are case-insensitive.

	If time is a number, or a string that can be converted to
a number, it is interpreted as seconds since the UNIX epoch.
This documentation was originally written about 1177654467
seconds after the epoch.

	If time is a timestamp, that time will be used. Valid
timestamp formats are YYYY-MM-DD hh:mm:ss and
YYYYMMDD hhmmss.

	If time is equal to NOW (default), the current local
time is used.

	If time is equal to UTC, the current time in
[http://en.wikipedia.org/wiki/Coordinated_Universal_Time|UTC]
is used.

	If time is in the format like NOW - 1 day or UTC + 1 hour
30 min, the current local/UTC time plus/minus the time
specified with the time string is used. The time string format
is described in an appendix of Robot Framework User Guide.

UTC time is 2006-03-29 12:06:21):

	
get_variable_value(name, default=None)

	Returns variable value or default if the variable does not exist.

The name of the variable can be given either as a normal variable name
(e.g. ${NAME}) or in escaped format (e.g. \${NAME}). Notice
that the former has some limitations explained in Set Suite Variable.

See Set Variable If for another keyword to set variables dynamically.

	
get_variables(no_decoration=False)

	Returns a dictionary containing all variables in the current scope.

Variables are returned as a special dictionary that allows accessing
variables in space, case, and underscore insensitive manner similarly
as accessing variables in the test data. This dictionary supports all
same operations as normal Python dictionaries and, for example,
Collections library can be used to access or modify it. Modifying the
returned dictionary has no effect on the variables available in the
current scope.

By default variables are returned with ${}, @{} or &{}
decoration based on variable types. Giving a true value (see Boolean
arguments) to the optional argument no_decoration will return
the variables without the decoration.

	
import_library(name, *args)

	Imports a library with the given name and optional arguments.

This functionality allows dynamic importing of libraries while tests
are running. That may be necessary, if the library itself is dynamic
and not yet available when test data is processed. In a normal case,
libraries should be imported using the Library setting in the Setting
section.

This keyword supports importing libraries both using library
names and physical paths. When paths are used, they must be
given in absolute format or found from
[http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#module-search-path|
search path]. Forward slashes can be used as path separators in all
operating systems.

It is possible to pass arguments to the imported library and also
named argument syntax works if the library supports it. WITH NAME
syntax can be used to give a custom name to the imported library.

	
import_resource(path)

	Imports a resource file with the given path.

Resources imported with this keyword are set into the test suite scope
similarly when importing them in the Setting table using the Resource
setting.

The given path must be absolute or found from
[http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pythonpath-jythonpath-and-ironpythonpath|
search path]. Forward slashes can be used as path separator regardless
the operating system.

	
import_variables(path, *args)

	Imports a variable file with the given path and optional arguments.

Variables imported with this keyword are set into the test suite scope
similarly when importing them in the Setting table using the Variables
setting. These variables override possible existing variables with
the same names. This functionality can thus be used to import new
variables, for example, for each test in a test suite.

The given path must be absolute or found from
[http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pythonpath-jythonpath-and-ironpythonpath|
search path]. Forward slashes can be used as path separator regardless
the operating system.

	
keyword_should_exist(name, msg=None)

	Fails unless the given keyword exists in the current scope.

Fails also if there are more than one keywords with the same name.
Works both with the short name (e.g. Log) and the full name
(e.g. BuiltIn.Log).

The default error message can be overridden with the msg argument.

See also Variable Should Exist.

	
length_should_be(item, length, msg=None)

	Verifies that the length of the given item is correct.

The length of the item is got using the Get Length keyword. The
default error message can be overridden with the msg argument.

	
log(message, level='INFO', html=False, console=False, repr=False, formatter='str')

	Logs the given message with the given level.

Valid levels are TRACE, DEBUG, INFO (default), HTML, WARN, and ERROR.
Messages below the current active log level are ignored. See
Set Log Level keyword and --loglevel command line option
for more details about setting the level.

Messages logged with the WARN or ERROR levels will be automatically
visible also in the console and in the Test Execution Errors section
in the log file.

If the html argument is given a true value (see Boolean
arguments), the message will be considered HTML and special characters
such as < are not escaped. For example, logging
 creates an image when html is true, but
otherwise the message is that exact string. An alternative to using
the html argument is using the HTML pseudo log level. It logs
the message as HTML using the INFO level.

If the console argument is true, the message will be written to
the console where test execution was started from in addition to
the log file. This keyword always uses the standard output stream
and adds a newline after the written message. Use Log To Console
instead if either of these is undesirable,

The formatter argument controls how to format the string
representation of the message. Possible values are str (default),
repr and ascii, and they work similarly to Python built-in
functions with same names. When using repr, bigger lists,
dictionaries and other containers are also pretty-printed so that
there is one item per row. For more details see String
representations.

The old way to control string representation was using the repr
argument, and repr=True is still equivalent to using
formatter=repr. The repr argument will be deprecated in the
future, though, and using formatter is thus recommended.

See Log Many if you want to log multiple messages in one go, and
Log To Console if you only want to write to the console.

	
log_many(*messages)

	Logs the given messages as separate entries using the INFO level.

Supports also logging list and dictionary variable items individually.

See Log and Log To Console keywords if you want to use alternative
log levels, use HTML, or log to the console.

	
log_to_console(message, stream='STDOUT', no_newline=False)

	Logs the given message to the console.

By default uses the standard output stream. Using the standard error
stream is possibly by giving the stream argument value STDERR
(case-insensitive).

By default appends a newline to the logged message. This can be
disabled by giving the no_newline argument a true value (see
Boolean arguments).

This keyword does not log the message to the normal log file. Use
Log keyword, possibly with argument console, if that is desired.

	
log_variables(level='INFO')

	Logs all variables in the current scope with given log level.

	
no_operation()

	Does absolutely nothing.

	
pass_execution(message, *tags)

	Skips rest of the current test, setup, or teardown with PASS status.

This keyword can be used anywhere in the test data, but the place where
used affects the behavior:

	When used in any setup or teardown (suite, test or keyword), passes
that setup or teardown. Possible keyword teardowns of the started
keywords are executed. Does not affect execution or statuses
otherwise.

	When used in a test outside setup or teardown, passes that particular
test case. Possible test and keyword teardowns are executed.

Possible continuable failures before this keyword is used, as well as
failures in executed teardowns, will fail the execution.

It is mandatory to give a message explaining why execution was passed.
By default the message is considered plain text, but starting it with
HTML allows using HTML formatting.

It is also possible to modify test tags passing tags after the message
similarly as with Fail keyword. Tags starting with a hyphen
(e.g. -regression) are removed and others added. Tags are modified
using Set Tags and Remove Tags internally, and the semantics
setting and removing them are the same as with these keywords.

This keyword is typically wrapped to some other keyword, such as
Run Keyword If, to pass based on a condition. The most common case
can be handled also with Pass Execution If:

Passing execution in the middle of a test, setup or teardown should be
used with care. In the worst case it leads to tests that skip all the
parts that could actually uncover problems in the tested application.
In cases where execution cannot continue do to external factors,
it is often safer to fail the test case and make it non-critical.

	
pass_execution_if(condition, message, *tags)

	Conditionally skips rest of the current test, setup, or teardown with PASS status.

A wrapper for Pass Execution to skip rest of the current test,
setup or teardown based the given condition. The condition is
evaluated similarly as with Should Be True keyword, and message
and *tags have same semantics as with Pass Execution.

	
regexp_escape(*patterns)

	Returns each argument string escaped for use as a regular expression.

This keyword can be used to escape strings to be used with
Should Match Regexp and Should Not Match Regexp keywords.

Escaping is done with Python’s re.escape() function.

	
reload_library(name_or_instance)

	Rechecks what keywords the specified library provides.

Can be called explicitly in the test data or by a library itself
when keywords it provides have changed.

The library can be specified by its name or as the active instance of
the library. The latter is especially useful if the library itself
calls this keyword as a method.

	
remove_tags(*tags)

	Removes given tags from the current test or all tests in a suite.

Tags can be given exactly or using a pattern with *, ? and
[chars] acting as wildcards. See the Glob patterns section
for more information.

This keyword can affect either one test case or all test cases in a
test suite similarly as Set Tags keyword.

The current tags are available as a built-in variable @{TEST TAGS}.

See Set Tags if you want to add certain tags and Fail if you want
to fail the test case after setting and/or removing tags.

	
repeat_keyword(repeat, name, *args)

	Executes the specified keyword multiple times.

name and args define the keyword that is executed similarly as
with Run Keyword. repeat specifies how many times (as a count) or
how long time (as a timeout) the keyword should be executed.

If repeat is given as count, it specifies how many times the
keyword should be executed. repeat can be given as an integer or
as a string that can be converted to an integer. If it is a string,
it can have postfix times or x (case and space insensitive)
to make the expression more explicit.

If repeat is given as timeout, it must be in Robot Framework’s
time format (e.g. 1 minute, 2 min 3 s). Using a number alone
(e.g. 1 or 1.5) does not work in this context.

If repeat is zero or negative, the keyword is not executed at
all. This keyword fails immediately if any of the execution
rounds fails.

	
replace_variables(text)

	Replaces variables in the given text with their current values.

If the text contains undefined variables, this keyword fails.
If the given text contains only a single variable, its value is
returned as-is and it can be any object. Otherwise this keyword
always returns a string.

The file template.txt contains Hello ${NAME}! and variable
${NAME} has the value Robot.

	
return_from_keyword(*return_values)

	Returns from the enclosing user keyword.

This keyword can be used to return from a user keyword with PASS status
without executing it fully. It is also possible to return values
similarly as with the [Return] setting. For more detailed information
about working with the return values, see the User Guide.

This keyword is typically wrapped to some other keyword, such as
Run Keyword If or Run Keyword If Test Passed, to return based
on a condition:

It is possible to use this keyword to return from a keyword also inside
a for loop. That, as well as returning values, is demonstrated by the
Find Index keyword in the following somewhat advanced example.
Notice that it is often a good idea to move this kind of complicated
logic into a test library.

The most common use case, returning based on an expression, can be
accomplished directly with Return From Keyword If. See also
Run Keyword And Return and Run Keyword And Return If.

	
return_from_keyword_if(condition, *return_values)

	Returns from the enclosing user keyword if condition is true.

A wrapper for Return From Keyword to return based on the given
condition. The condition is evaluated using the same semantics as
with Should Be True keyword.

Given the same example as in Return From Keyword, we can rewrite the
Find Index keyword as follows:

See also Run Keyword And Return and Run Keyword And Return If.

	
run_keyword(name, *args)

	Executes the given keyword with the given arguments.

Because the name of the keyword to execute is given as an argument, it
can be a variable and thus set dynamically, e.g. from a return value of
another keyword or from the command line.

	
run_keyword_and_continue_on_failure(name, *args)

	Runs the keyword and continues execution even if a failure occurs.

The keyword name and arguments work as with Run Keyword.

The execution is not continued if the failure is caused by invalid syntax,
timeout, or fatal exception.

	
run_keyword_and_expect_error(expected_error, name, *args)

	Runs the keyword and checks that the expected error occurred.

The keyword to execute and its arguments are specified using name
and *args exactly like with Run Keyword.

The expected error must be given in the same format as in Robot Framework
reports. By default it is interpreted as a glob pattern with *, ?
and [chars] as wildcards, but that can be changed by using various
prefixes explained in the table below. Prefixes are case-sensitive and
they must be separated from the actual message with a colon and an
optional space like PREFIX: Message or PREFIX:Message.

See the Pattern matching section for more information about glob
patterns and regular expressions.

If the expected error occurs, the error message is returned and it can
be further processed or tested if needed. If there is no error, or the
error does not match the expected error, this keyword fails.

Errors caused by invalid syntax, timeouts, or fatal exceptions are not
caught by this keyword.

	
run_keyword_and_ignore_error(name, *args)

	Runs the given keyword with the given arguments and ignores possible error.

This keyword returns two values, so that the first is either string
PASS or FAIL, depending on the status of the executed keyword.
The second value is either the return value of the keyword or the
received error message. See Run Keyword And Return Status If you are
only interested in the execution status.

The keyword name and arguments work as in Run Keyword. See
Run Keyword If for a usage example.

Errors caused by invalid syntax, timeouts, or fatal exceptions are not
caught by this keyword. Otherwise this keyword itself never fails.

	
run_keyword_and_return(name, *args)

	Runs the specified keyword and returns from the enclosing user keyword.

The keyword to execute is defined with name and *args exactly
like with Run Keyword. After running the keyword, returns from the
enclosing user keyword and passes possible return value from the
executed keyword further. Returning from a keyword has exactly same
semantics as with Return From Keyword.

Use Run Keyword And Return If if you want to run keyword and return
based on a condition.

	
run_keyword_and_return_if(condition, name, *args)

	Runs the specified keyword and returns from the enclosing user keyword.

A wrapper for Run Keyword And Return to run and return based on
the given condition. The condition is evaluated using the same
semantics as with Should Be True keyword.

Use Return From Keyword If if you want to return a certain value
based on a condition.

	
run_keyword_and_return_status(name, *args)

	Runs the given keyword with given arguments and returns the status as a Boolean value.

This keyword returns Boolean True if the keyword that is executed
succeeds and False if it fails. This is useful, for example, in
combination with Run Keyword If. If you are interested in the error
message or return value, use Run Keyword And Ignore Error instead.

The keyword name and arguments work as in Run Keyword.

Errors caused by invalid syntax, timeouts, or fatal exceptions are not
caught by this keyword. Otherwise this keyword itself never fails.

	
run_keyword_and_warn_on_failure(name, *args)

	Runs the specified keyword logs a warning if the keyword fails.

This keyword is similar to Run Keyword And Ignore Error but if the executed
keyword fails, the error message is logged as a warning to make it more
visible. Returns status and possible return value or error message exactly
like Run Keyword And Ignore Error does.

Errors caused by invalid syntax, timeouts, or fatal exceptions are not
caught by this keyword. Otherwise this keyword itself never fails.

New in Robot Framework 4.0.

	
run_keyword_if(condition, name, *args)

	Runs the given keyword with the given arguments, if condition is true.

NOTE: Robot Framework 4.0 introduced built-in IF/ELSE support and using
that is generally recommended over using this keyword.

The given condition is evaluated in Python as explained in
Evaluating expressions, and name and *args have same
semantics as with Run Keyword.

In this example, only either Some Action or Another Action is
executed, based on the status of My Keyword. Instead of Run Keyword
And Ignore Error you can also use Run Keyword And Return Status.

Variables used like ${variable}, as in the examples above, are
replaced in the expression before evaluation. Variables are also
available in the evaluation namespace and can be accessed using special
syntax $variable as explained in the Evaluating expressions
section.

This keyword supports also optional ELSE and ELSE IF branches. Both
of them are defined in *args and must use exactly format ELSE
or ELSE IF, respectively. ELSE branches must contain first the
name of the keyword to execute and then its possible arguments. ELSE
IF branches must first contain a condition, like the first argument
to this keyword, and then the keyword to execute and its possible
arguments. It is possible to have ELSE branch after ELSE IF and to
have multiple ELSE IF branches. Nested Run Keyword If usage is not
supported when using ELSE and/or ELSE IF branches.

Given previous example, if/else construct can also be created like this:

The return value of this keyword is the return value of the actually
executed keyword or Python None if no keyword was executed (i.e.
if condition was false). Hence, it is recommended to use ELSE
and/or ELSE IF branches to conditionally assign return values from
keyword to variables (see Set Variable If if you need to set fixed
values conditionally). This is illustrated by the example below:

In this example, ${var2} will be set to None if ${condition} is
false.

Notice that ELSE and ELSE IF control words must be used
explicitly and thus cannot come from variables. If you need to use
literal ELSE and ELSE IF strings as arguments, you can escape
them with a backslash like \ELSE and \ELSE IF.

Python’s [http://docs.python.org/library/os.html|os] and
[http://docs.python.org/library/sys.html|sys] modules are
automatically imported when evaluating the condition.
Attributes they contain can thus be used in the condition:

	
run_keyword_if_all_critical_tests_passed(name, *args)

	DEPRECATED. Use BuiltIn.Run Keyword If All Tests Passed instead.

	
run_keyword_if_all_tests_passed(name, *args)

	Runs the given keyword with the given arguments, if all tests passed.

This keyword can only be used in a suite teardown. Trying to use it
anywhere else results in an error.

Otherwise, this keyword works exactly like Run Keyword, see its
documentation for more details.

	
run_keyword_if_any_critical_tests_failed(name, *args)

	DEPRECATED. Use BuiltIn.Run Keyword If Any Tests Failed instead.

	
run_keyword_if_any_tests_failed(name, *args)

	Runs the given keyword with the given arguments, if one or more tests failed.

This keyword can only be used in a suite teardown. Trying to use it
anywhere else results in an error.

Otherwise, this keyword works exactly like Run Keyword, see its
documentation for more details.

	
run_keyword_if_test_failed(name, *args)

	Runs the given keyword with the given arguments, if the test failed.

This keyword can only be used in a test teardown. Trying to use it
anywhere else results in an error.

Otherwise, this keyword works exactly like Run Keyword, see its
documentation for more details.

	
run_keyword_if_test_passed(name, *args)

	Runs the given keyword with the given arguments, if the test passed.

This keyword can only be used in a test teardown. Trying to use it
anywhere else results in an error.

Otherwise, this keyword works exactly like Run Keyword, see its
documentation for more details.

	
run_keyword_if_timeout_occurred(name, *args)

	Runs the given keyword if either a test or a keyword timeout has occurred.

This keyword can only be used in a test teardown. Trying to use it
anywhere else results in an error.

Otherwise, this keyword works exactly like Run Keyword, see its
documentation for more details.

	
run_keyword_unless(condition, name, *args)

	Runs the given keyword with the given arguments if condition is false.

See Run Keyword If for more information and an example. Notice that
this keyword does not support ELSE or ELSE IF branches like
Run Keyword If does, though.

	
run_keywords(*keywords)

	Executes all the given keywords in a sequence.

This keyword is mainly useful in setups and teardowns when they need
to take care of multiple actions and creating a new higher level user
keyword would be an overkill.

By default all arguments are expected to be keywords to be executed.

Keywords can also be run with arguments using upper case AND as
a separator between keywords. The keywords are executed so that the
first argument is the first keyword and proceeding arguments until
the first AND are arguments to it. First argument after the first
AND is the second keyword and proceeding arguments until the next
AND are its arguments. And so on.

Notice that the AND control argument must be used explicitly and
cannot itself come from a variable. If you need to use literal AND
string as argument, you can either use variables or escape it with
a backslash like \AND.

	
set_global_variable(name, *values)

	Makes a variable available globally in all tests and suites.

Variables set with this keyword are globally available in all
subsequent test suites, test cases and user keywords. Also variables
in variable tables are overridden. Variables assigned locally based
on keyword return values or by using Set Test Variable and
Set Suite Variable override these variables in that scope, but
the global value is not changed in those cases.

In practice setting variables with this keyword has the same effect
as using command line options --variable and --variablefile.
Because this keyword can change variables everywhere, it should be
used with care.

See Set Suite Variable for more information and examples.

	
set_library_search_order(*search_order)

	Sets the resolution order to use when a name matches multiple keywords.

The library search order is used to resolve conflicts when a keyword
name in the test data matches multiple keywords. The first library
(or resource, see below) containing the keyword is selected and that
keyword implementation used. If the keyword is not found from any library
(or resource), test executing fails the same way as when the search
order is not set.

When this keyword is used, there is no need to use the long
LibraryName.Keyword Name notation. For example, instead of
having

you can have

This keyword can be used also to set the order of keywords in different
resource files. In this case resource names must be given without paths
or extensions like:

NOTE:
- The search order is valid only in the suite where this keywords is used.
- Keywords in resources always have higher priority than

keywords in libraries regardless the search order.

	The old order is returned and can be used to reset the search order later.

	Library and resource names in the search order are both case and space
insensitive.

	
set_local_variable(name, *values)

	Makes a variable available everywhere within the local scope.

Variables set with this keyword are available within the
local scope of the currently executed test case or in the local scope
of the keyword in which they are defined. For example, if you set a
variable in a user keyword, it is available only in that keyword. Other
test cases or keywords will not see variables set with this keyword.

This keyword is equivalent to a normal variable assignment based on a
keyword return value.

is equivalent with

This keyword will provide the option of setting local variables inside keywords
like Run Keyword If, Run Keyword And Return If, Run Keyword Unless
which until now was not possible by using Set Variable.

It will also be possible to use this keyword from external libraries
that want to set local variables.

New in Robot Framework 3.2.

	
set_log_level(level)

	Sets the log threshold to the specified level and returns the old level.

Messages below the level will not logged. The default logging level is
INFO, but it can be overridden with the command line option
--loglevel.

The available levels: TRACE, DEBUG, INFO (default), WARN, ERROR and NONE (no
logging).

	
set_suite_documentation(doc, append=False, top=False)

	Sets documentation for the current test suite.

By default the possible existing documentation is overwritten, but
this can be changed using the optional append argument similarly
as with Set Test Message keyword.

This keyword sets the documentation of the current suite by default.
If the optional top argument is given a true value (see Boolean
arguments), the documentation of the top level suite is altered
instead.

The documentation of the current suite is available as a built-in
variable ${SUITE DOCUMENTATION}.

	
set_suite_metadata(name, value, append=False, top=False)

	Sets metadata for the current test suite.

By default possible existing metadata values are overwritten, but
this can be changed using the optional append argument similarly
as with Set Test Message keyword.

This keyword sets the metadata of the current suite by default.
If the optional top argument is given a true value (see Boolean
arguments), the metadata of the top level suite is altered instead.

The metadata of the current suite is available as a built-in variable
${SUITE METADATA} in a Python dictionary. Notice that modifying this
variable directly has no effect on the actual metadata the suite has.

	
set_suite_variable(name, *values)

	Makes a variable available everywhere within the scope of the current suite.

Variables set with this keyword are available everywhere within the
scope of the currently executed test suite. Setting variables with this
keyword thus has the same effect as creating them using the Variable
table in the test data file or importing them from variable files.

Possible child test suites do not see variables set with this keyword
by default, but that can be controlled by using children=<option>
as the last argument. If the specified <option> given a true value
(see Boolean arguments), the variable is set also to the child
suites. Parent and sibling suites will never see variables set with
this keyword.

The name of the variable can be given either as a normal variable name
(e.g. ${NAME}) or in escaped format as \${NAME} or $NAME.
Variable value can be given using the same syntax as when variables
are created in the Variable table.

If a variable already exists within the new scope, its value will be
overwritten. Otherwise a new variable is created. If a variable already
exists within the current scope, the value can be left empty and the
variable within the new scope gets the value within the current scope.

To override an existing value with an empty value, use built-in
variables ${EMPTY}, @{EMPTY} or &{EMPTY}:

NOTE: If the variable has value which itself is a variable (escaped
or not), you must always use the escaped format to set the variable:

This limitation applies also to Set Test Variable, Set Global
Variable, Variable Should Exist, Variable Should Not Exist and
Get Variable Value keywords.

	
set_tags(*tags)

	Adds given tags for the current test or all tests in a suite.

When this keyword is used inside a test case, that test gets
the specified tags and other tests are not affected.

If this keyword is used in a suite setup, all test cases in
that suite, recursively, gets the given tags. It is a failure
to use this keyword in a suite teardown.

The current tags are available as a built-in variable @{TEST TAGS}.

See Remove Tags if you want to remove certain tags and Fail if
you want to fail the test case after setting and/or removing tags.

	
set_task_variable(name, *values)

	Makes a variable available everywhere within the scope of the current task.

This is an alias for Set Test Variable that is more applicable when
creating tasks, not tests.

	
set_test_documentation(doc, append=False)

	Sets documentation for the current test case.

By default the possible existing documentation is overwritten, but
this can be changed using the optional append argument similarly
as with Set Test Message keyword.

The current test documentation is available as a built-in variable
${TEST DOCUMENTATION}. This keyword can not be used in suite
setup or suite teardown.

	
set_test_message(message, append=False)

	Sets message for the current test case.

If the optional append argument is given a true value (see Boolean
arguments), the given message is added after the possible earlier
message by joining the messages with a space.

In test teardown this keyword can alter the possible failure message,
but otherwise failures override messages set by this keyword. Notice
that in teardown the message is available as a built-in variable
${TEST MESSAGE}.

It is possible to use HTML format in the message by starting the message
with *HTML*.

This keyword can not be used in suite setup or suite teardown.

	
set_test_variable(name, *values)

	Makes a variable available everywhere within the scope of the current test.

Variables set with this keyword are available everywhere within the
scope of the currently executed test case. For example, if you set a
variable in a user keyword, it is available both in the test case level
and also in all other user keywords used in the current test. Other
test cases will not see variables set with this keyword.
It is an error to call Set Test Variable outside the
scope of a test (e.g. in a Suite Setup or Teardown).

See Set Suite Variable for more information and examples.

	
set_variable(*values)

	Returns the given values which can then be assigned to a variables.

This keyword is mainly used for setting scalar variables.
Additionally it can be used for converting a scalar variable
containing a list to a list variable or to multiple scalar variables.
It is recommended to use Create List when creating new lists.

Variables created with this keyword are available only in the
scope where they are created. See Set Global Variable,
Set Test Variable and Set Suite Variable for information on how to
set variables so that they are available also in a larger scope.

	
set_variable_if(condition, *values)

	Sets variable based on the given condition.

The basic usage is giving a condition and two values. The
given condition is first evaluated the same way as with the
Should Be True keyword. If the condition is true, then the
first value is returned, and otherwise the second value is
returned. The second value can also be omitted, in which case
it has a default value None. This usage is illustrated in the
examples below, where ${rc} is assumed to be zero.

It is also possible to have ‘else if’ support by replacing the
second value with another condition, and having two new values
after it. If the first condition is not true, the second is
evaluated and one of the values after it is returned based on
its truth value. This can be continued by adding more
conditions without a limit.

Use Get Variable Value if you need to set variables
dynamically based on whether a variable exist or not.

	
should_be_empty(item, msg=None)

	Verifies that the given item is empty.

The length of the item is got using the Get Length keyword. The
default error message can be overridden with the msg argument.

	
should_be_equal(first, second, msg=None, values=True, ignore_case=False, formatter='str', strip_spaces=False, collapse_spaces=False)

	Fails if the given objects are unequal.

Optional msg, values and formatter arguments specify how
to construct the error message if this keyword fails:

	If msg is not given, the error message is <first> != <second>.

	If msg is given and values gets a true value (default),
the error message is <msg>: <first> != <second>.

	If msg is given and values gets a false value (see
Boolean arguments), the error message is simply <msg>.

	formatter controls how to format the values. Possible values are
str (default), repr and ascii, and they work similarly
as Python built-in functions with same names. See String
representations for more details.

If ignore_case is given a true value (see Boolean arguments) and
both arguments are strings, comparison is done case-insensitively.
If both arguments are multiline strings, this keyword uses
multiline string comparison.

If strip_spaces is given a true value (see Boolean arguments)
and both arguments are strings, the comparison is done without leading
and trailing spaces. If strip_spaces is given a string value
LEADING or TRAILING (case-insensitive), the comparison is done
without leading or trailing spaces, respectively.

If collapse_spaces is given a true value (see Boolean arguments) and both
arguments are strings, the comparison is done with all white spaces replaced by
a single space character.

strip_spaces is new in Robot Framework 4.0 and
collapse_spaces is new in Robot Framework 4.1.

	
should_be_equal_as_integers(first, second, msg=None, values=True, base=None)

	Fails if objects are unequal after converting them to integers.

See Convert To Integer for information how to convert integers from
other bases than 10 using base argument or 0b/0o/0x prefixes.

See Should Be Equal for an explanation on how to override the default
error message with msg and values.

	
should_be_equal_as_numbers(first, second, msg=None, values=True, precision=6)

	Fails if objects are unequal after converting them to real numbers.

The conversion is done with Convert To Number keyword using the
given precision.

As discussed in the documentation of Convert To Number, machines
generally cannot store floating point numbers accurately. Because of
this limitation, comparing floats for equality is problematic and
a correct approach to use depends on the context. This keyword uses
a very naive approach of rounding the numbers before comparing them,
which is both prone to rounding errors and does not work very well if
numbers are really big or small. For more information about comparing
floats, and ideas on how to implement your own context specific
comparison algorithm, see
http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/.

If you want to avoid possible problems with floating point numbers,
you can implement custom keywords using Python’s
[http://docs.python.org/library/decimal.html|decimal] or
[http://docs.python.org/library/fractions.html|fractions] modules.

See Should Not Be Equal As Numbers for a negative version of this
keyword and Should Be Equal for an explanation on how to override
the default error message with msg and values.

	
should_be_equal_as_strings(first, second, msg=None, values=True, ignore_case=False, strip_spaces=False, formatter='str', collapse_spaces=False)

	Fails if objects are unequal after converting them to strings.

See Should Be Equal for an explanation on how to override the default
error message with msg, values and formatter.

If ignore_case is given a true value (see Boolean arguments),
comparison is done case-insensitively. If both arguments are
multiline strings, this keyword uses multiline string comparison.

If strip_spaces is given a true value (see Boolean arguments)
and both arguments are strings, the comparison is done without leading
and trailing spaces. If strip_spaces is given a string value
LEADING or TRAILING (case-insensitive), the comparison is done
without leading or trailing spaces, respectively.

If collapse_spaces is given a true value (see Boolean arguments) and both
arguments are strings, the comparison is done with all white spaces replaced by
a single space character.

Strings are always [http://www.macchiato.com/unicode/nfc-faq| NFC normalized].

strip_spaces is new in Robot Framework 4.0
and collapse_spaces is new in Robot Framework 4.1.

	
should_be_true(condition, msg=None)

	Fails if the given condition is not true.

If condition is a string (e.g. ${rc} < 10), it is evaluated as
a Python expression as explained in Evaluating expressions and the
keyword status is decided based on the result. If a non-string item is
given, the status is got directly from its
[http://docs.python.org/library/stdtypes.html#truth|truth value].

The default error message (<condition> should be true) is not very
informative, but it can be overridden with the msg argument.

Variables used like ${variable}, as in the examples above, are
replaced in the expression before evaluation. Variables are also
available in the evaluation namespace, and can be accessed using
special $variable syntax as explained in the Evaluating
expressions section.

Should Be True automatically imports Python’s
[http://docs.python.org/library/os.html|os] and
[http://docs.python.org/library/sys.html|sys] modules that contain
several useful attributes:

	
should_contain(container, item, msg=None, values=True, ignore_case=False, strip_spaces=False, collapse_spaces=False)

	Fails if container does not contain item one or more times.

Works with strings, lists, and anything that supports Python’s in
operator.

See Should Be Equal for an explanation on how to override the default
error message with arguments msg and values.

If ignore_case is given a true value (see Boolean arguments) and
compared items are strings, it indicates that comparison should be
case-insensitive. If the container is a list-like object, string
items in it are compared case-insensitively.

If strip_spaces is given a true value (see Boolean arguments)
and both arguments are strings, the comparison is done without leading
and trailing spaces. If strip_spaces is given a string value
LEADING or TRAILING (case-insensitive), the comparison is done
without leading or trailing spaces, respectively.

If collapse_spaces is given a true value (see Boolean arguments) and both
arguments are strings, the comparison is done with all white spaces replaced by
a single space character.

strip_spaces is new in Robot Framework 4.0 and collapse_spaces is new
in Robot Framework 4.1.

	
should_contain_any(container, *items, **configuration)

	Fails if container does not contain any of the *items.

Works with strings, lists, and anything that supports Python’s in
operator.

Supports additional configuration parameters msg, values,
ignore_case and strip_spaces, and collapse_spaces
which have exactly the same semantics as arguments with same
names have with Should Contain. These arguments must always
be given using name=value syntax after all items.

Note that possible equal signs in items must be escaped with
a backslash (e.g. foo\=bar) to avoid them to be passed in
as **configuration.

	
should_contain_x_times(container, item, count, msg=None, ignore_case=False, strip_spaces=False, collapse_spaces=False)

	Fails if container does not contain item count times.

Works with strings, lists and all objects that Get Count works
with. The default error message can be overridden with msg and
the actual count is always logged.

If ignore_case is given a true value (see Boolean arguments) and
compared items are strings, it indicates that comparison should be
case-insensitive. If the container is a list-like object, string
items in it are compared case-insensitively.

If strip_spaces is given a true value (see Boolean arguments)
and both arguments are strings, the comparison is done without leading
and trailing spaces. If strip_spaces is given a string value
LEADING or TRAILING (case-insensitive), the comparison is done
without leading or trailing spaces, respectively.

If collapse_spaces is given a true value (see Boolean arguments) and both
arguments are strings, the comparison is done with all white spaces replaced by
a single space character.

strip_spaces is new in Robot Framework 4.0 and collapse_spaces is new
in Robot Framework 4.1.

	
should_end_with(str1, str2, msg=None, values=True, ignore_case=False, strip_spaces=False, collapse_spaces=False)

	Fails if the string str1 does not end with the string str2.

See Should Be Equal for an explanation on how to override the default
error message with msg and values, as well as for semantics
of the ignore_case, strip_spaces, and collapse_spaces options.

	
should_match(string, pattern, msg=None, values=True, ignore_case=False)

	Fails if the given string does not match the given pattern.

Pattern matching is similar as matching files in a shell with
*, ? and [chars] acting as wildcards. See the
Glob patterns section for more information.

If ignore_case is given a true value (see Boolean arguments) and
compared items are strings, it indicates that comparison should be
case-insensitive.

See Should Be Equal for an explanation on how to override the default
error message with msg and values.

	
should_match_regexp(string, pattern, msg=None, values=True)

	Fails if string does not match pattern as a regular expression.

See the Regular expressions section for more information about
regular expressions and how to use then in Robot Framework test data.

Notice that the given pattern does not need to match the whole string.
For example, the pattern ello matches the string Hello world!.
If a full match is needed, the ^ and $ characters can be used
to denote the beginning and end of the string, respectively.
For example, ^ello$ only matches the exact string ello.

Possible flags altering how the expression is parsed (e.g.
re.IGNORECASE, re.MULTILINE) must be embedded to the
pattern like (?im)pattern. The most useful flags are i
(case-insensitive), m (multiline mode), s (dotall mode)
and x (verbose).

If this keyword passes, it returns the portion of the string that
matched the pattern. Additionally, the possible captured groups are
returned.

See the Should Be Equal keyword for an explanation on how to override
the default error message with the msg and values arguments.

	
should_not_be_empty(item, msg=None)

	Verifies that the given item is not empty.

The length of the item is got using the Get Length keyword. The
default error message can be overridden with the msg argument.

	
should_not_be_equal(first, second, msg=None, values=True, ignore_case=False, strip_spaces=False, collapse_spaces=False)

	Fails if the given objects are equal.

See Should Be Equal for an explanation on how to override the default
error message with msg and values.

If ignore_case is given a true value (see Boolean arguments) and
both arguments are strings, comparison is done case-insensitively.

If strip_spaces is given a true value (see Boolean arguments)
and both arguments are strings, the comparison is done without leading
and trailing spaces. If strip_spaces is given a string value
LEADING or TRAILING (case-insensitive), the comparison is done
without leading or trailing spaces, respectively.

If collapse_spaces is given a true value (see Boolean arguments) and both
arguments are strings, the comparison is done with all white spaces replaced by
a single space character.

strip_spaces is new in Robot Framework 4.0 and collapse_spaces is new
in Robot Framework 4.1.

	
should_not_be_equal_as_integers(first, second, msg=None, values=True, base=None)

	Fails if objects are equal after converting them to integers.

See Convert To Integer for information how to convert integers from
other bases than 10 using base argument or 0b/0o/0x prefixes.

See Should Be Equal for an explanation on how to override the default
error message with msg and values.

See Should Be Equal As Integers for some usage examples.

	
should_not_be_equal_as_numbers(first, second, msg=None, values=True, precision=6)

	Fails if objects are equal after converting them to real numbers.

The conversion is done with Convert To Number keyword using the
given precision.

See Should Be Equal As Numbers for examples on how to use
precision and why it does not always work as expected. See also
Should Be Equal for an explanation on how to override the default
error message with msg and values.

	
should_not_be_equal_as_strings(first, second, msg=None, values=True, ignore_case=False, strip_spaces=False, collapse_spaces=False)

	Fails if objects are equal after converting them to strings.

See Should Be Equal for an explanation on how to override the default
error message with msg and values.

If ignore_case is given a true value (see Boolean arguments),
comparison is done case-insensitively.

If strip_spaces is given a true value (see Boolean arguments)
and both arguments are strings, the comparison is done without leading
and trailing spaces. If strip_spaces is given a string value
LEADING or TRAILING (case-insensitive), the comparison is done
without leading or trailing spaces, respectively.

If collapse_spaces is given a true value (see Boolean arguments) and both
arguments are strings, the comparison is done with all white spaces replaced by
a single space character.

Strings are always [http://www.macchiato.com/unicode/nfc-faq|
NFC normalized].

strip_spaces is new in Robot Framework 4.0 and collapse_spaces is new
in Robot Framework 4.1.

	
should_not_be_true(condition, msg=None)

	Fails if the given condition is true.

See Should Be True for details about how condition is evaluated
and how msg can be used to override the default error message.

	
should_not_contain(container, item, msg=None, values=True, ignore_case=False, strip_spaces=False, collapse_spaces=False)

	Fails if container contains item one or more times.

Works with strings, lists, and anything that supports Python’s in
operator.

See Should Be Equal for an explanation on how to override the default
error message with arguments msg and values. ignore_case
has exactly the same semantics as with Should Contain.

If strip_spaces is given a true value (see Boolean arguments)
and both arguments are strings, the comparison is done without leading
and trailing spaces. If strip_spaces is given a string value
LEADING or TRAILING (case-insensitive), the comparison is done
without leading or trailing spaces, respectively.

If collapse_spaces is given a true value (see Boolean arguments) and both
arguments are strings, the comparison is done with all white spaces replaced by
a single space character.

strip_spaces is new in Robot Framework 4.0 and collapse_spaces is new
in Robot Framework 4.1.

	
should_not_contain_any(container, *items, **configuration)

	Fails if container contains one or more of the *items.

Works with strings, lists, and anything that supports Python’s in
operator.

Supports additional configuration parameters msg, values,
ignore_case and strip_spaces, and collapse_spaces which have exactly
the same semantics as arguments with same names have with Should Contain.
These arguments must always be given using name=value syntax after all items.

Note that possible equal signs in items must be escaped with
a backslash (e.g. foo\=bar) to avoid them to be passed in
as **configuration.

	
should_not_end_with(str1, str2, msg=None, values=True, ignore_case=False, strip_spaces=False, collapse_spaces=False)

	Fails if the string str1 ends with the string str2.

See Should Be Equal for an explanation on how to override the default
error message with msg and values, as well as for semantics
of the ignore_case, strip_spaces, and collapse_spaces options.

	
should_not_match(string, pattern, msg=None, values=True, ignore_case=False)

	Fails if the given string matches the given pattern.

Pattern matching is similar as matching files in a shell with
*, ? and [chars] acting as wildcards. See the
Glob patterns section for more information.

If ignore_case is given a true value (see Boolean arguments),
the comparison is case-insensitive.

See Should Be Equal for an explanation on how to override the default
error message with msg and ``values`.

	
should_not_match_regexp(string, pattern, msg=None, values=True)

	Fails if string matches pattern as a regular expression.

See Should Match Regexp for more information about arguments.

	
should_not_start_with(str1, str2, msg=None, values=True, ignore_case=False, strip_spaces=False, collapse_spaces=False)

	Fails if the string str1 starts with the string str2.

See Should Be Equal for an explanation on how to override the default
error message with msg and values, as well as for semantics
of the ignore_case, strip_spaces, and collapse_spaces options.

	
should_start_with(str1, str2, msg=None, values=True, ignore_case=False, strip_spaces=False, collapse_spaces=False)

	Fails if the string str1 does not start with the string str2.

See Should Be Equal for an explanation on how to override the default
error message with msg and values, as well as for semantics
of the ignore_case, strip_spaces, and collapse_spaces options.

	
skip(msg='Skipped with Skip keyword.')

	Skips the rest of the current test.

Skips the remaining keywords in the current test and sets the given
message to the test. If the test has teardown, it will be executed.

	
skip_if(condition, msg=None)

	Skips the rest of the current test if the condition is True.

Skips the remaining keywords in the current test and sets the given
message to the test. If msg is not given, the condition will
be used as the message. If the test has teardown, it will be executed.

If the condition evaluates to False, does nothing.

	
sleep(time_, reason=None)

	Pauses the test executed for the given time.

time may be either a number or a time string. Time strings are in
a format such as 1 day 2 hours 3 minutes 4 seconds 5milliseconds or
1d 2h 3m 4s 5ms, and they are fully explained in an appendix of
Robot Framework User Guide. Optional reason can be used to explain why
sleeping is necessary. Both the time slept and the reason are logged.

	
variable_should_exist(name, msg=None)

	Fails unless the given variable exists within the current scope.

The name of the variable can be given either as a normal variable name
(e.g. ${NAME}) or in escaped format (e.g. \${NAME}). Notice
that the former has some limitations explained in Set Suite Variable.

The default error message can be overridden with the msg argument.

See also Variable Should Not Exist and Keyword Should Exist.

	
variable_should_not_exist(name, msg=None)

	Fails if the given variable exists within the current scope.

The name of the variable can be given either as a normal variable name
(e.g. ${NAME}) or in escaped format (e.g. \${NAME}). Notice
that the former has some limitations explained in Set Suite Variable.

The default error message can be overridden with the msg argument.

See also Variable Should Exist and Keyword Should Exist.

	
wait_until_keyword_succeeds(retry, retry_interval, name, *args)

	Runs the specified keyword and retries if it fails.

name and args define the keyword that is executed similarly
as with Run Keyword. How long to retry running the keyword is
defined using retry argument either as timeout or count.
retry_interval is the time to wait between execution attempts.

If retry is given as timeout, it must be in Robot Framework’s
time format (e.g. 1 minute, 2 min 3 s, 4.5) that is
explained in an appendix of Robot Framework User Guide. If it is
given as count, it must have times or x postfix (e.g.
5 times, 10 x). retry_interval must always be given in
Robot Framework’s time format.

By default retry_interval is the time to wait _after_ a keyword has
failed. For example, if the first run takes 2 seconds and the retry
interval is 3 seconds, the second run starts 5 seconds after the first
run started. If retry_interval start with prefix strict:, the
execution time of the previous keyword is subtracted from the retry time.
With the earlier example the second run would thus start 3 seconds after
the first run started. A warning is logged if keyword execution time is
longer than a strict interval.

If the keyword does not succeed regardless of retries, this keyword
fails. If the executed keyword passes, its return value is returned.

All normal failures are caught by this keyword. Errors caused by
invalid syntax, test or keyword timeouts, or fatal exceptions (caused
e.g. by Fatal Error) are not caught.

Running the same keyword multiple times inside this keyword can create
lots of output and considerably increase the size of the generated
output files. It is possible to remove unnecessary keywords from
the outputs using --RemoveKeywords WUKS command line option.

Support for “strict” retry interval is new in Robot Framework 4.1.

	
exception robot.libraries.BuiltIn.RobotNotRunningError

	Bases: exceptions.AttributeError

Used when something cannot be done because Robot is not running.

Based on AttributeError to be backwards compatible with RF < 2.8.5.
May later be based directly on Exception, so new code should except
this exception explicitly.

	
args

	

	
message

	

	
robot.libraries.BuiltIn.register_run_keyword(library, keyword, args_to_process=None, deprecation_warning=True)

	Tell Robot Framework that this keyword runs other keywords internally.

NOTE: This API will change in the future. For more information see
https://github.com/robotframework/robotframework/issues/2190. Use with
deprecation_warning=False to avoid related deprecation warnings.

	Why is this method needed

Keywords running other keywords internally using Run Keyword or its variants
like Run Keyword If need some special handling by the framework. This includes
not processing arguments (e.g. variables in them) twice, special handling of
timeouts, and so on.

	How to use this method

library is the name of the library where the registered keyword is implemented.

keyword is the name of the keyword. With Python 2 it is possible to pass also
the function or method implementing the keyword.

args_to_process` defines how many of the arguments to the registered keyword must
be processed normally.

	Examples

from robot.libraries.BuiltIn import BuiltIn, register_run_keyword

	def my_run_keyword(name, *args):

	# do something
return BuiltIn().run_keyword(name, *args)

register_run_keyword(__name__, ‘My Run Keyword’, 1)

from robot.libraries.BuiltIn import BuiltIn, register_run_keyword

	class MyLibrary:

	
	def my_run_keyword_if(self, expression, name, *args):

	# do something
return BuiltIn().run_keyword_if(expression, name, *args)

register_run_keyword(‘MyLibrary’, ‘my_run_keyword_if’, 2)

robot.libraries.Collections module

	
class robot.libraries.Collections.NotSet

	Bases: object

	
class robot.libraries.Collections.Collections

	Bases: robot.libraries.Collections._List, robot.libraries.Collections._Dictionary

A test library providing keywords for handling lists and dictionaries.

Collections is Robot Framework’s standard library that provides a
set of keywords for handling Python lists and dictionaries. This
library has keywords, for example, for modifying and getting
values from lists and dictionaries (e.g. Append To List, Get
From Dictionary) and for verifying their contents (e.g. Lists
Should Be Equal, Dictionary Should Contain Value).

== Table of contents ==

%TOC%

= Related keywords in BuiltIn =

Following keywords in the BuiltIn library can also be used with
lists and dictionaries:

= Using with list-like and dictionary-like objects =

List keywords that do not alter the given list can also be used
with tuples, and to some extend also with other iterables.
Convert To List can be used to convert tuples and other iterables
to Python list objects.

Similarly dictionary keywords can, for most parts, be used with other
mappings. Convert To Dictionary can be used if real Python dict
objects are needed.

= Boolean arguments =

Some keywords accept arguments that are handled as Boolean values true or
false. If such an argument is given as a string, it is considered false if
it is an empty string or equal to FALSE, NONE, NO, OFF or
0, case-insensitively. Keywords verifying something that allow dropping
actual and expected values from the possible error message also consider
string no values to be false. Other strings are considered true
regardless their value, and other argument types are tested using the same
[http://docs.python.org/library/stdtypes.html#truth|rules as in Python].

True examples:

False examples:

Considering OFF and 0 false is new in Robot Framework 3.1.

= Data in examples =

List related keywords use variables in format ${Lx} in their examples.
They mean lists with as many alphabetic characters as specified by x.
For example, ${L1} means ['a'] and ${L3} means
['a', 'b', 'c'].

Dictionary keywords use similar ${Dx} variables. For example, ${D1}
means {'a': 1} and ${D3} means {'a': 1, 'b': 2, 'c': 3}.

	
ROBOT_LIBRARY_SCOPE = 'GLOBAL'

	

	
ROBOT_LIBRARY_VERSION = '4.1.2'

	

	
should_contain_match(list, pattern, msg=None, case_insensitive=False, whitespace_insensitive=False)

	Fails if pattern is not found in list.

By default, pattern matching is similar to matching files in a shell
and is case-sensitive and whitespace-sensitive. In the pattern syntax,
* matches to anything and ? matches to any single character. You
can also prepend glob= to your pattern to explicitly use this pattern
matching behavior.

If you prepend regexp= to your pattern, your pattern will be used
according to the Python
[http://docs.python.org/library/re.html|re module] regular expression
syntax. Important note: Backslashes are an escape character, and must
be escaped with another backslash (e.g. regexp=\\d{6} to search for
\d{6}). See BuiltIn.Should Match Regexp for more details.

If case_insensitive is given a true value (see Boolean arguments),
the pattern matching will ignore case.

If whitespace_insensitive is given a true value (see Boolean
arguments), the pattern matching will ignore whitespace.

Non-string values in lists are ignored when matching patterns.

Use the msg argument to override the default error message.

See also Should Not Contain Match.

	
should_not_contain_match(list, pattern, msg=None, case_insensitive=False, whitespace_insensitive=False)

	Fails if pattern is found in list.

Exact opposite of Should Contain Match keyword. See that keyword
for information about arguments and usage in general.

	
get_matches(list, pattern, case_insensitive=False, whitespace_insensitive=False)

	Returns a list of matches to pattern in list.

For more information on pattern, case_insensitive, and
whitespace_insensitive, see Should Contain Match.

	
get_match_count(list, pattern, case_insensitive=False, whitespace_insensitive=False)

	Returns the count of matches to pattern in list.

For more information on pattern, case_insensitive, and
whitespace_insensitive, see Should Contain Match.

	
append_to_list(list_, *values)

	Adds values to the end of list.

	
combine_lists(*lists)

	Combines the given lists together and returns the result.

The given lists are not altered by this keyword.

	
convert_to_dictionary(item)

	Converts the given item to a Python dict type.

Mainly useful for converting other mappings to normal dictionaries.
This includes converting Robot Framework’s own DotDict instances
that it uses if variables are created using the &{var} syntax.

Use Create Dictionary from the BuiltIn library for constructing new
dictionaries.

	
convert_to_list(item)

	Converts the given item to a Python list type.

Mainly useful for converting tuples and other iterable to lists.
Use Create List from the BuiltIn library for constructing new lists.

	
copy_dictionary(dictionary, deepcopy=False)

	Returns a copy of the given dictionary.

The deepcopy argument controls should the returned dictionary be
a [https://docs.python.org/library/copy.html|shallow or deep copy].
By default returns a shallow copy, but that can be changed by giving
deepcopy a true value (see Boolean arguments). This is a new
option in Robot Framework 3.1.2. Earlier versions always returned
shallow copies.

The given dictionary is never altered by this keyword.

	
copy_list(list_, deepcopy=False)

	Returns a copy of the given list.

If the optional deepcopy is given a true value, the returned
list is a deep copy. New option in Robot Framework 3.1.2.

The given list is never altered by this keyword.

	
count_values_in_list(list_, value, start=0, end=None)

	Returns the number of occurrences of the given value in list.

The search can be narrowed to the selected sublist by the start and
end indexes having the same semantics as with Get Slice From List
keyword. The given list is never altered by this keyword.

	
dictionaries_should_be_equal(dict1, dict2, msg=None, values=True)

	Fails if the given dictionaries are not equal.

First the equality of dictionaries’ keys is checked and after that all
the key value pairs. If there are differences between the values, those
are listed in the error message. The types of the dictionaries do not
need to be same.

See Lists Should Be Equal for more information about configuring
the error message with msg and values arguments.

	
dictionary_should_contain_item(dictionary, key, value, msg=None)

	An item of key / value must be found in a dictionary.

Value is converted to unicode for comparison.

Use the msg argument to override the default error message.

	
dictionary_should_contain_key(dictionary, key, msg=None)

	Fails if key is not found from dictionary.

Use the msg argument to override the default error message.

	
dictionary_should_contain_sub_dictionary(dict1, dict2, msg=None, values=True)

	Fails unless all items in dict2 are found from dict1.

See Lists Should Be Equal for more information about configuring
the error message with msg and values arguments.

	
dictionary_should_contain_value(dictionary, value, msg=None)

	Fails if value is not found from dictionary.

Use the msg argument to override the default error message.

	
dictionary_should_not_contain_key(dictionary, key, msg=None)

	Fails if key is found from dictionary.

Use the msg argument to override the default error message.

	
dictionary_should_not_contain_value(dictionary, value, msg=None)

	Fails if value is found from dictionary.

Use the msg argument to override the default error message.

	
get_dictionary_items(dictionary, sort_keys=True)

	Returns items of the given dictionary as a list.

Uses Get Dictionary Keys to get keys and then returns corresponding
items. By default keys are sorted and items returned in that order,
but this can be changed by giving sort_keys a false value (see
Boolean arguments). Notice that with Python 3.5 and earlier
dictionary order is undefined unless using ordered dictionaries.

Items are returned as a flat list so that first item is a key,
second item is a corresponding value, third item is the second key,
and so on.

The given dictionary is never altered by this keyword.

sort_keys is a new option in Robot Framework 3.1.2. Earlier items
were always sorted based on keys.

	
get_dictionary_keys(dictionary, sort_keys=True)

	Returns keys of the given dictionary as a list.

By default keys are returned in sorted order (assuming they are
sortable), but they can be returned in the original order by giving
sort_keys a false value (see Boolean arguments). Notice that
with Python 3.5 and earlier dictionary order is undefined unless using
ordered dictionaries.

The given dictionary is never altered by this keyword.

sort_keys is a new option in Robot Framework 3.1.2. Earlier keys
were always sorted.

	
get_dictionary_values(dictionary, sort_keys=True)

	Returns values of the given dictionary as a list.

Uses Get Dictionary Keys to get keys and then returns corresponding
values. By default keys are sorted and values returned in that order,
but this can be changed by giving sort_keys a false value (see
Boolean arguments). Notice that with Python 3.5 and earlier
dictionary order is undefined unless using ordered dictionaries.

The given dictionary is never altered by this keyword.

sort_keys is a new option in Robot Framework 3.1.2. Earlier values
were always sorted based on keys.

	
get_from_dictionary(dictionary, key)

	Returns a value from the given dictionary based on the given key.

If the given key cannot be found from the dictionary, this
keyword fails.

The given dictionary is never altered by this keyword.

	
get_from_list(list_, index)

	Returns the value specified with an index from list.

The given list is never altered by this keyword.

Index 0 means the first position, 1 the second, and so on.
Similarly, -1 is the last position, -2 the second last, and so on.
Using an index that does not exist on the list causes an error.
The index can be either an integer or a string that can be converted
to an integer.

	
get_index_from_list(list_, value, start=0, end=None)

	Returns the index of the first occurrence of the value on the list.

The search can be narrowed to the selected sublist by the start and
end indexes having the same semantics as with Get Slice From List
keyword. In case the value is not found, -1 is returned. The given list
is never altered by this keyword.

	
get_slice_from_list(list_, start=0, end=None)

	Returns a slice of the given list between start and end indexes.

The given list is never altered by this keyword.

If both start and end are given, a sublist containing values
from start to end is returned. This is the same as
list[start:end] in Python. To get all items from the beginning,
use 0 as the start value, and to get all items until and including
the end, use None (default) as the end value.

Using start or end not found on the list is the same as using
the largest (or smallest) available index.

	
insert_into_list(list_, index, value)

	Inserts value into list to the position specified with index.

Index 0 adds the value into the first position, 1 to the second,
and so on. Inserting from right works with negative indices so that
-1 is the second last position, -2 third last, and so on. Use
Append To List to add items to the end of the list.

If the absolute value of the index is greater than
the length of the list, the value is added at the end
(positive index) or the beginning (negative index). An index
can be given either as an integer or a string that can be
converted to an integer.

	
keep_in_dictionary(dictionary, *keys)

	Keeps the given keys in the dictionary and removes all other.

If the given key cannot be found from the dictionary, it
is ignored.

	
list_should_contain_sub_list(list1, list2, msg=None, values=True)

	Fails if not all of the elements in list2 are found in list1.

The order of values and the number of values are not taken into
account.

See Lists Should Be Equal for more information about configuring
the error message with msg and values arguments.

	
list_should_contain_value(list_, value, msg=None)

	Fails if the value is not found from list.

Use the msg argument to override the default error message.

	
list_should_not_contain_duplicates(list_, msg=None)

	Fails if any element in the list is found from it more than once.

The default error message lists all the elements that were found
from the list multiple times, but it can be overridden by giving
a custom msg. All multiple times found items and their counts are
also logged.

This keyword works with all iterables that can be converted to a list.
The original iterable is never altered.

	
list_should_not_contain_value(list_, value, msg=None)

	Fails if the value is found from list.

Use the msg argument to override the default error message.

	
lists_should_be_equal(list1, list2, msg=None, values=True, names=None, ignore_order=False)

	Fails if given lists are unequal.

The keyword first verifies that the lists have equal lengths, and then
it checks are all their values equal. Possible differences between the
values are listed in the default error message like Index 4: ABC !=
Abc. The types of the lists do not need to be the same. For example,
Python tuple and list with same content are considered equal.

The error message can be configured using msg and values
arguments:
- If msg is not given, the default error message is used.
- If msg is given and values gets a value considered true

(see Boolean arguments), the error message starts with the given
msg followed by a newline and the default message.

	If msg is given and values is not given a true value,
the error message is just the given msg.

The optional names argument can be used for naming the indices
shown in the default error message. It can either be a list of names
matching the indices in the lists or a dictionary where keys are
indices that need to be named. It is not necessary to name all of
the indices. When using a dictionary, keys can be either integers
or strings that can be converted to integers.

If the items in index 2 would differ in the above examples, the error
message would contain a row like Index 2 (email): name@foo.com !=
name@bar.com.

The optional ignore_order argument can be used to ignore the order
of the elements in the lists. Using it requires items to be sortable.
This is new in Robot Framework 3.2.

	
log_dictionary(dictionary, level='INFO')

	Logs the size and contents of the dictionary using given level.

Valid levels are TRACE, DEBUG, INFO (default), and WARN.

If you only want to log the size, use keyword Get Length from
the BuiltIn library.

	
log_list(list_, level='INFO')

	Logs the length and contents of the list using given level.

Valid levels are TRACE, DEBUG, INFO (default), and WARN.

If you only want to the length, use keyword Get Length from
the BuiltIn library.

	
pop_from_dictionary(dictionary, key, default=)

	Pops the given key from the dictionary and returns its value.

By default the keyword fails if the given key cannot be found from
the dictionary. If optional default value is given, it will be
returned instead of failing.

	
remove_duplicates(list_)

	Returns a list without duplicates based on the given list.

Creates and returns a new list that contains all items in the given
list so that one item can appear only once. Order of the items in
the new list is the same as in the original except for missing
duplicates. Number of the removed duplicates is logged.

	
remove_from_dictionary(dictionary, *keys)

	Removes the given keys from the dictionary.

If the given key cannot be found from the dictionary, it
is ignored.

	
remove_from_list(list_, index)

	Removes and returns the value specified with an index from list.

Index 0 means the first position, 1 the second and so on.
Similarly, -1 is the last position, -2 the second last, and so on.
Using an index that does not exist on the list causes an error.
The index can be either an integer or a string that can be converted
to an integer.

	
remove_values_from_list(list_, *values)

	Removes all occurrences of given values from list.

It is not an error if a value does not exist in the list at all.

	
reverse_list(list_)

	Reverses the given list in place.

Note that the given list is changed and nothing is returned. Use
Copy List first, if you need to keep also the original order.

	
set_list_value(list_, index, value)

	Sets the value of list specified by index to the given value.

Index 0 means the first position, 1 the second and so on.
Similarly, -1 is the last position, -2 second last, and so on.
Using an index that does not exist on the list causes an error.
The index can be either an integer or a string that can be converted to
an integer.

	
set_to_dictionary(dictionary, *key_value_pairs, **items)

	Adds the given key_value_pairs and items to the dictionary.

Giving items as key_value_pairs means giving keys and values
as separate arguments:

The latter syntax is typically more convenient to use, but it has
a limitation that keys must be strings.

If given keys already exist in the dictionary, their values are updated.

	
sort_list(list_)

	Sorts the given list in place.

Sorting fails if items in the list are not comparable with each others.
On Python 2 most objects are comparable, but on Python 3 comparing,
for example, strings with numbers is not possible.

Note that the given list is changed and nothing is returned. Use
Copy List first, if you need to keep also the original order.

robot.libraries.DateTime module

A test library for handling date and time values.

DateTime is a Robot Framework standard library that supports creating and
converting date and time values (e.g. Get Current Date, Convert Time),
as well as doing simple calculations with them (e.g. Subtract Time From Date,
Add Time To Time). It supports dates and times in various formats, and can
also be used by other libraries programmatically.

== Table of contents ==

%TOC%

= Terminology =

In the context of this library, date and time generally have following
meanings:

	
	date: An entity with both date and time components but without any

	timezone information. For example, 2014-06-11 10:07:42.

	time: A time interval. For example, 1 hour 20 minutes or 01:20:00.

This terminology differs from what Python’s standard
[http://docs.python.org/library/datetime.html|datetime] module uses.
Basically its
[http://docs.python.org/library/datetime.html#datetime-objects|datetime] and
[http://docs.python.org/library/datetime.html#timedelta-objects|timedelta]
objects match date and time as defined by this library.

= Date formats =

Dates can given to and received from keywords in timestamp, custom
timestamp, Python datetime and epoch time formats. These formats are
discussed thoroughly in subsequent sections.

Input format is determined automatically based on the given date except when
using custom timestamps, in which case it needs to be given using
date_format argument. Default result format is timestamp, but it can
be overridden using result_format argument.

== Timestamp ==

If a date is given as a string, it is always considered to be a timestamp.
If no custom formatting is given using date_format argument, the timestamp
is expected to be in [http://en.wikipedia.org/wiki/ISO_8601|ISO 8601] like
format YYYY-MM-DD hh:mm:ss.mil, where any non-digit character can be used
as a separator or separators can be omitted altogether. Additionally,
only the date part is mandatory, all possibly missing time components are
considered to be zeros.

Dates can also be returned in the same YYYY-MM-DD hh:mm:ss.mil format by
using timestamp value with result_format argument. This is also the
default format that keywords returning dates use. Milliseconds can be excluded
using exclude_millis as explained in Millisecond handling section.

== Custom timestamp ==

It is possible to use custom timestamps in both input and output.
The custom format is same as accepted by Python’s
[http://docs.python.org/library/datetime.html#strftime-strptime-behavior|
datetime.strptime] function. For example, the default timestamp discussed
in the previous section would match %Y-%m-%d %H:%M:%S.%f.

When using a custom timestamp in input, it must be specified using
date_format argument. The actual input value must be a string that matches
the specified format exactly. When using a custom timestamp in output, it must
be given using result_format argument.

Notice that locale aware directives like %b do not work correctly with
Jython on non-English locales: http://bugs.jython.org/issue2285

== Python datetime ==

Python’s standard
[http://docs.python.org/library/datetime.html#datetime-objects|datetime]
objects can be used both in input and output. In input they are recognized
automatically, and in output it is possible to get them by giving datetime
value to result_format argument.

One nice benefit with datetime objects is that they have different time
components available as attributes that can be easily accessed using the
extended variable syntax.

== Epoch time ==

Epoch time is the time in seconds since the
[http://en.wikipedia.org/wiki/Unix_time|UNIX epoch] i.e. 00:00:00.000 (UTC)
1 January 1970. To give a date in epoch time, it must be given as a number
(integer or float), not as a string. To return a date in epoch time,
it is possible to use epoch value with result_format argument.
Epoch time is returned as a floating point number.

Notice that epoch time itself is independent on timezones and thus same
around the world at a certain time. What local time a certain epoch time
matches obviously then depends on the timezone. For example, examples below
were tested in Finland but verifications would fail on other timezones.

== Earliest supported date ==

The earliest date that is supported depends on the date format and to some
extent on the platform:

	Timestamps support year 1900 and above.

	Python datetime objects support year 1 and above.

	Epoch time supports 1970 and above on Windows with Python and IronPython.

	On other platforms epoch time supports 1900 and above or even earlier.

= Time formats =

Similarly as dates, times can be given to and received from keywords in
various different formats. Supported formats are number, time string
(verbose and compact), timer string and Python timedelta.

Input format for time is always determined automatically based on the input.
Result format is number by default, but it can be customised using
result_format argument.

== Number ==

Time given as a number is interpreted to be seconds. It can be given
either as an integer or a float, or it can be a string that can be converted
to a number.

To return a time as a number, result_format argument must have value
number, which is also the default. Returned number is always a float.

== Time string ==

Time strings are strings in format like 1 minute 42 seconds or 1min 42s.
The basic idea of this format is having first a number and then a text
specifying what time that number represents. Numbers can be either
integers or floating point numbers, the whole format is case and space
insensitive, and it is possible to add a minus prefix to specify negative
times. The available time specifiers are:

	days, day, d

	hours, hour, h

	minutes, minute, mins, min, m

	seconds, second, secs, sec, s

	milliseconds, millisecond, millis, ms

When returning a time string, it is possible to select between verbose
and compact representations using result_format argument. The verbose
format uses long specifiers day, hour, minute, second and
millisecond, and adds s at the end when needed. The compact format uses
shorter specifiers d, h, min, s and ms, and even drops
the space between the number and the specifier.

== Timer string ==

Timer string is a string given in timer like format hh:mm:ss.mil. In this
format both hour and millisecond parts are optional, leading and trailing
zeros can be left out when they are not meaningful, and negative times can
be represented by adding a minus prefix.

To return a time as timer string, result_format argument must be given
value timer. Timer strings are by default returned in full hh:mm:ss.mil
format, but milliseconds can be excluded using exclude_millis as explained
in Millisecond handling section.

== Python timedelta ==

Python’s standard
[http://docs.python.org/library/datetime.html#datetime.timedelta|timedelta]
objects are also supported both in input and in output. In input they are
recognized automatically, and in output it is possible to receive them by
giving timedelta value to result_format argument.

= Millisecond handling =

This library handles dates and times internally using the precision of the
given input. With timestamp, time string, and timer string result
formats seconds are, however, rounded to millisecond accuracy. Milliseconds
may also be included even if there would be none.

All keywords returning dates or times have an option to leave milliseconds out
by giving a true value to exclude_millis argument. If the argument is given
as a string, it is considered true unless it is empty or case-insensitively
equal to false, none or no. Other argument types are tested using
same [http://docs.python.org/library/stdtypes.html#truth|rules as in
Python].

When milliseconds are excluded, seconds in returned dates and times are
rounded to the nearest full second. With timestamp and timer string
result formats, milliseconds will also be removed from the returned string
altogether.

= Programmatic usage =

In addition to be used as normal library, this library is intended to
provide a stable API for other libraries to use if they want to support
same date and time formats as this library. All the provided keywords
are available as functions that can be easily imported:

Additionally helper classes Date and Time can be used directly:

	
robot.libraries.DateTime.get_current_date(time_zone='local', increment=0, result_format='timestamp', exclude_millis=False)

	Returns current local or UTC time with an optional increment.

Arguments:
- time_zone: Get the current time on this time zone. Currently only

local (default) and UTC are supported.

	
	increment: Optional time increment to add to the returned date in

	one of the supported time formats. Can be negative.

	result_format: Format of the returned date (see date formats).

	
	exclude_millis: When set to any true value, rounds and drops

	milliseconds as explained in millisecond handling.

	
robot.libraries.DateTime.convert_date(date, result_format='timestamp', exclude_millis=False, date_format=None)

	Converts between supported date formats.

Arguments:
- date: Date in one of the supported date formats.
- result_format: Format of the returned date.
- exclude_millis: When set to any true value, rounds and drops

milliseconds as explained in millisecond handling.

	date_format: Specifies possible custom timestamp format.

	
robot.libraries.DateTime.convert_time(time, result_format='number', exclude_millis=False)

	Converts between supported time formats.

Arguments:
- time: Time in one of the supported time formats.
- result_format: Format of the returned time.
- exclude_millis: When set to any true value, rounds and drops

milliseconds as explained in millisecond handling.

	
robot.libraries.DateTime.subtract_date_from_date(date1, date2, result_format='number', exclude_millis=False, date1_format=None, date2_format=None)

	Subtracts date from another date and returns time between.

Arguments:
- date1: Date to subtract another date from in one of the

supported date formats.

	
	date2: Date that is subtracted in one of the supported

	date formats.

	result_format: Format of the returned time (see time formats).

	
	exclude_millis: When set to any true value, rounds and drops

	milliseconds as explained in millisecond handling.

	date1_format: Possible custom timestamp format of date1.

	date2_format: Possible custom timestamp format of date2.

Examples:

	
robot.libraries.DateTime.add_time_to_date(date, time, result_format='timestamp', exclude_millis=False, date_format=None)

	Adds time to date and returns the resulting date.

Arguments:
- date: Date to add time to in one of the supported

date formats.

	
	time: Time that is added in one of the supported

	time formats.

	result_format: Format of the returned date.

	
	exclude_millis: When set to any true value, rounds and drops

	milliseconds as explained in millisecond handling.

	date_format: Possible custom timestamp format of date.

	
robot.libraries.DateTime.subtract_time_from_date(date, time, result_format='timestamp', exclude_millis=False, date_format=None)

	Subtracts time from date and returns the resulting date.

Arguments:
- date: Date to subtract time from in one of the supported

date formats.

	
	time: Time that is subtracted in one of the supported

	time formats.

	result_format: Format of the returned date.

	
	exclude_millis: When set to any true value, rounds and drops

	milliseconds as explained in millisecond handling.

	date_format: Possible custom timestamp format of date.

	
robot.libraries.DateTime.add_time_to_time(time1, time2, result_format='number', exclude_millis=False)

	Adds time to another time and returns the resulting time.

Arguments:
- time1: First time in one of the supported time formats.
- time2: Second time in one of the supported time formats.
- result_format: Format of the returned time.
- exclude_millis: When set to any true value, rounds and drops

milliseconds as explained in millisecond handling.

	
robot.libraries.DateTime.subtract_time_from_time(time1, time2, result_format='number', exclude_millis=False)

	Subtracts time from another time and returns the resulting time.

Arguments:
- time1: Time to subtract another time from in one of

the supported time formats.

	time2: Time to subtract in one of the supported time formats.

	result_format: Format of the returned time.

	
	exclude_millis: When set to any true value, rounds and drops

	milliseconds as explained in millisecond handling.

robot.libraries.Dialogs module

A test library providing dialogs for interacting with users.

Dialogs is Robot Framework’s standard library that provides means
for pausing the test execution and getting input from users. The
dialogs are slightly different depending on whether tests are run on
Python, IronPython or Jython but they provide the same functionality.

Long lines in the provided messages are wrapped automatically. If you want
to wrap lines manually, you can add newlines using the \n character
sequence.

The library has a known limitation that it cannot be used with timeouts
on Python.

	
robot.libraries.Dialogs.pause_execution(message='Test execution paused. Press OK to continue.')

	Pauses test execution until user clicks Ok button.

message is the message shown in the dialog.

	
robot.libraries.Dialogs.execute_manual_step(message, default_error='')

	Pauses test execution until user sets the keyword status.

User can press either PASS or FAIL button. In the latter case execution
fails and an additional dialog is opened for defining the error message.

message is the instruction shown in the initial dialog and
default_error is the default value shown in the possible error message
dialog.

	
robot.libraries.Dialogs.get_value_from_user(message, default_value='', hidden=False)

	Pauses test execution and asks user to input a value.

Value typed by the user, or the possible default value, is returned.
Returning an empty value is fine, but pressing Cancel fails the keyword.

message is the instruction shown in the dialog and default_value is
the possible default value shown in the input field.

If hidden is given a true value, the value typed by the user is hidden.
hidden is considered true if it is a non-empty string not equal to
false, none or no, case-insensitively. If it is not a string,
its truth value is got directly using same
[http://docs.python.org/library/stdtypes.html#truth|rules as in Python].

	
robot.libraries.Dialogs.get_selection_from_user(message, *values)

	Pauses test execution and asks user to select a value.

The selected value is returned. Pressing Cancel fails the keyword.

message is the instruction shown in the dialog and values are
the options given to the user.

	
robot.libraries.Dialogs.get_selections_from_user(message, *values)

	Pauses test execution and asks user to select multiple values.

The selected values are returned as a list. Selecting no values is OK
and in that case the returned list is empty. Pressing Cancel fails
the keyword.

message is the instruction shown in the dialog and values are
the options given to the user.

New in Robot Framework 3.1.

robot.libraries.Easter module

	
robot.libraries.Easter.none_shall_pass(who)

	

robot.libraries.OperatingSystem module

	
class robot.libraries.OperatingSystem.OperatingSystem

	Bases: object

A test library providing keywords for OS related tasks.

OperatingSystem is Robot Framework’s standard library that
enables various operating system related tasks to be performed in
the system where Robot Framework is running. It can, among other
things, execute commands (e.g. Run), create and remove files and
directories (e.g. Create File, Remove Directory), check
whether files or directories exists or contain something
(e.g. File Should Exist, Directory Should Be Empty) and
manipulate environment variables (e.g. Set Environment Variable).

== Table of contents ==

%TOC%

= Path separators =

Because Robot Framework uses the backslash (\) as an escape character
in the test data, using a literal backslash requires duplicating it like
in c:\\path\\file.txt. That can be inconvenient especially with
longer Windows paths, and thus all keywords expecting paths as arguments
convert forward slashes to backslashes automatically on Windows. This also
means that paths like ${CURDIR}/path/file.txt are operating system
independent.

Notice that the automatic path separator conversion does not work if
the path is only a part of an argument like with Run and Start Process
keywords. In these cases the built-in variable ${/} that contains
\ or /, depending on the operating system, can be used instead.

= Pattern matching =

Some keywords allow their arguments to be specified as
[http://en.wikipedia.org/wiki/Glob_(programming)|glob patterns] where:

Unless otherwise noted, matching is case-insensitive on
case-insensitive operating systems such as Windows.

= Tilde expansion =

Paths beginning with ~ or ~username are expanded to the current or
specified user’s home directory, respectively. The resulting path is
operating system dependent, but typically e.g. ~/robot is expanded to
C:\Users\<user>\robot on Windows and /home/<user>/robot on
Unixes.

The ~username form does not work on Jython.

= Boolean arguments =

Some keywords accept arguments that are handled as Boolean values true or
false. If such an argument is given as a string, it is considered false if
it is an empty string or equal to FALSE, NONE, NO, OFF or
0, case-insensitively. Other strings are considered true regardless
their value, and other argument types are tested using the same
[http://docs.python.org/library/stdtypes.html#truth|rules as in Python].

True examples:

False examples:

Considering OFF` and 0 false is new in Robot Framework 3.1.

= Example =

	
ROBOT_LIBRARY_SCOPE = 'GLOBAL'

	

	
ROBOT_LIBRARY_VERSION = '4.1.2'

	

	
run(command)

	Runs the given command in the system and returns the output.

The execution status of the command is not checked by this
keyword, and it must be done separately based on the returned
output. If the execution return code is needed, either Run
And Return RC or Run And Return RC And Output can be used.

The standard error stream is automatically redirected to the standard
output stream by adding 2>&1 after the executed command. This
automatic redirection is done only when the executed command does not
contain additional output redirections. You can thus freely forward
the standard error somewhere else, for example, like
my_command 2>stderr.txt.

The returned output contains everything written into the standard
output or error streams by the command (unless either of them
is redirected explicitly). Many commands add an extra newline
(\n) after the output to make it easier to read in the
console. To ease processing the returned output, this possible
trailing newline is stripped by this keyword.

TIP: Run Process keyword provided by the
[http://robotframework.org/robotframework/latest/libraries/Process.html|
Process library] supports better process configuration and is generally
recommended as a replacement for this keyword.

	
run_and_return_rc(command)

	Runs the given command in the system and returns the return code.

The return code (RC) is returned as a positive integer in
range from 0 to 255 as returned by the executed command. On
some operating systems (notable Windows) original return codes
can be something else, but this keyword always maps them to
the 0-255 range. Since the RC is an integer, it must be
checked e.g. with the keyword Should Be Equal As Integers
instead of Should Be Equal (both are built-in keywords).

See Run and Run And Return RC And Output if you need to get the
output of the executed command.

TIP: Run Process keyword provided by the
[http://robotframework.org/robotframework/latest/libraries/Process.html|
Process library] supports better process configuration and is generally
recommended as a replacement for this keyword.

	
run_and_return_rc_and_output(command)

	Runs the given command in the system and returns the RC and output.

The return code (RC) is returned similarly as with Run And Return RC
and the output similarly as with Run.

TIP: Run Process keyword provided by the
[http://robotframework.org/robotframework/latest/libraries/Process.html|
Process library] supports better process configuration and is generally
recommended as a replacement for this keyword.

	
get_file(path, encoding='UTF-8', encoding_errors='strict')

	Returns the contents of a specified file.

This keyword reads the specified file and returns the contents.
Line breaks in content are converted to platform independent form.
See also Get Binary File.

encoding defines the encoding of the file. The default value is
UTF-8, which means that UTF-8 and ASCII encoded files are read
correctly. In addition to the encodings supported by the underlying
Python implementation, the following special encoding values can be
used:

	SYSTEM: Use the default system encoding.

	CONSOLE: Use the console encoding. Outside Windows this is same
as the system encoding.

encoding_errors argument controls what to do if decoding some bytes
fails. All values accepted by decode method in Python are valid, but
in practice the following values are most useful:

	strict: Fail if characters cannot be decoded (default).

	ignore: Ignore characters that cannot be decoded.

	replace: Replace characters that cannot be decoded with
a replacement character.

	
get_binary_file(path)

	Returns the contents of a specified file.

This keyword reads the specified file and returns the contents as is.
See also Get File.

	
grep_file(path, pattern, encoding='UTF-8', encoding_errors='strict')

	Returns the lines of the specified file that match the pattern.

This keyword reads a file from the file system using the defined
path, encoding and encoding_errors similarly as Get File.
A difference is that only the lines that match the given pattern are
returned. Lines are returned as a single string catenated back together
with newlines and the number of matched lines is automatically logged.
Possible trailing newline is never returned.

A line matches if it contains the pattern anywhere in it and
it does not need to match the pattern fully. The pattern
matching syntax is explained in introduction, and in this
case matching is case-sensitive.

If more complex pattern matching is needed, it is possible to use
Get File in combination with String library keywords like Get
Lines Matching Regexp.

This keyword supports special SYSTEM and CONSOLE encodings that
Get File supports only with Robot Framework 4.0 and newer. When using
Python 3, it is possible to use ${NONE} instead of SYSTEM with
earlier versions.

	
log_file(path, encoding='UTF-8', encoding_errors='strict')

	Wrapper for Get File that also logs the returned file.

The file is logged with the INFO level. If you want something else,
just use Get File and the built-in keyword Log with the desired
level.

See Get File for more information about encoding and
encoding_errors arguments.

	
should_exist(path, msg=None)

	Fails unless the given path (file or directory) exists.

The path can be given as an exact path or as a glob pattern.
The pattern matching syntax is explained in introduction.
The default error message can be overridden with the msg argument.

	
should_not_exist(path, msg=None)

	Fails if the given path (file or directory) exists.

The path can be given as an exact path or as a glob pattern.
The pattern matching syntax is explained in introduction.
The default error message can be overridden with the msg argument.

	
file_should_exist(path, msg=None)

	Fails unless the given path points to an existing file.

The path can be given as an exact path or as a glob pattern.
The pattern matching syntax is explained in introduction.
The default error message can be overridden with the msg argument.

	
file_should_not_exist(path, msg=None)

	Fails if the given path points to an existing file.

The path can be given as an exact path or as a glob pattern.
The pattern matching syntax is explained in introduction.
The default error message can be overridden with the msg argument.

	
directory_should_exist(path, msg=None)

	Fails unless the given path points to an existing directory.

The path can be given as an exact path or as a glob pattern.
The pattern matching syntax is explained in introduction.
The default error message can be overridden with the msg argument.

	
directory_should_not_exist(path, msg=None)

	Fails if the given path points to an existing file.

The path can be given as an exact path or as a glob pattern.
The pattern matching syntax is explained in introduction.
The default error message can be overridden with the msg argument.

	
wait_until_removed(path, timeout='1 minute')

	Waits until the given file or directory is removed.

The path can be given as an exact path or as a glob pattern.
The pattern matching syntax is explained in introduction.
If the path is a pattern, the keyword waits until all matching
items are removed.

The optional timeout can be used to control the maximum time of
waiting. The timeout is given as a timeout string, e.g. in a format
15 seconds, 1min 10s or just 10. The time string format is
described in an appendix of Robot Framework User Guide.

If the timeout is negative, the keyword is never timed-out. The keyword
returns immediately, if the path does not exist in the first place.

	
wait_until_created(path, timeout='1 minute')

	Waits until the given file or directory is created.

The path can be given as an exact path or as a glob pattern.
The pattern matching syntax is explained in introduction.
If the path is a pattern, the keyword returns when an item matching
it is created.

The optional timeout can be used to control the maximum time of
waiting. The timeout is given as a timeout string, e.g. in a format
15 seconds, 1min 10s or just 10. The time string format is
described in an appendix of Robot Framework User Guide.

If the timeout is negative, the keyword is never timed-out. The keyword
returns immediately, if the path already exists.

	
directory_should_be_empty(path, msg=None)

	Fails unless the specified directory is empty.

The default error message can be overridden with the msg argument.

	
directory_should_not_be_empty(path, msg=None)

	Fails if the specified directory is empty.

The default error message can be overridden with the msg argument.

	
file_should_be_empty(path, msg=None)

	Fails unless the specified file is empty.

The default error message can be overridden with the msg argument.

	
file_should_not_be_empty(path, msg=None)

	Fails if the specified directory is empty.

The default error message can be overridden with the msg argument.

	
create_file(path, content='', encoding='UTF-8')

	Creates a file with the given content and encoding.

If the directory where the file is created does not exist, it is
automatically created along with possible missing intermediate
directories. Possible existing file is overwritten.

On Windows newline characters (\n) in content are automatically
converted to Windows native newline sequence (\r\n).

See Get File for more information about possible encoding values,
including special values SYSTEM and CONSOLE.

Use Append To File if you want to append to an existing file
and Create Binary File if you need to write bytes without encoding.
File Should Not Exist can be used to avoid overwriting existing
files.

Automatically converting \n to \r\n on Windows is new in
Robot Framework 3.1.

	
create_binary_file(path, content)

	Creates a binary file with the given content.

If content is given as a Unicode string, it is first converted to bytes
character by character. All characters with ordinal below 256 can be
used and are converted to bytes with same values. Using characters
with higher ordinal is an error.

Byte strings, and possible other types, are written to the file as is.

If the directory for the file does not exist, it is created, along
with missing intermediate directories.

Use Create File if you want to create a text file using a certain
encoding. File Should Not Exist can be used to avoid overwriting
existing files.

	
append_to_file(path, content, encoding='UTF-8')

	Appends the given content to the specified file.

If the file exists, the given text is written to its end. If the file
does not exist, it is created.

Other than not overwriting possible existing files, this keyword works
exactly like Create File. See its documentation for more details
about the usage.

Note that special encodings SYSTEM and CONSOLE only work
with this keyword starting from Robot Framework 3.1.2.

	
remove_file(path)

	Removes a file with the given path.

Passes if the file does not exist, but fails if the path does
not point to a regular file (e.g. it points to a directory).

The path can be given as an exact path or as a glob pattern.
The pattern matching syntax is explained in introduction.
If the path is a pattern, all files matching it are removed.

	
remove_files(*paths)

	Uses Remove File to remove multiple files one-by-one.

	
empty_directory(path)

	Deletes all the content from the given directory.

Deletes both files and sub-directories, but the specified directory
itself if not removed. Use Remove Directory if you want to remove
the whole directory.

	
create_directory(path)

	Creates the specified directory.

Also possible intermediate directories are created. Passes if the
directory already exists, but fails if the path exists and is not
a directory.

	
remove_directory(path, recursive=False)

	Removes the directory pointed to by the given path.

If the second argument recursive is given a true value (see
Boolean arguments), the directory is removed recursively. Otherwise
removing fails if the directory is not empty.

If the directory pointed to by the path does not exist, the keyword
passes, but it fails, if the path points to a file.

	
copy_file(source, destination)

	Copies the source file into the destination.

Source must be a path to an existing file or a glob pattern (see
Pattern matching) that matches exactly one file. How the
destination is interpreted is explained below.

1) If the destination is an existing file, the source file is copied
over it.

2) If the destination is an existing directory, the source file is
copied into it. A possible file with the same name as the source is
overwritten.

3) If the destination does not exist and it ends with a path
separator (/ or \), it is considered a directory. That
directory is created and a source file copied into it.
Possible missing intermediate directories are also created.

4) If the destination does not exist and it does not end with a path
separator, it is considered a file. If the path to the file does not
exist, it is created.

The resulting destination path is returned.

See also Copy Files, Move File, and Move Files.

	
move_file(source, destination)

	Moves the source file into the destination.

Arguments have exactly same semantics as with Copy File keyword.
Destination file path is returned.

If the source and destination are on the same filesystem, rename
operation is used. Otherwise file is copied to the destination
filesystem and then removed from the original filesystem.

See also Move Files, Copy File, and Copy Files.

	
copy_files(*sources_and_destination)

	Copies specified files to the target directory.

Source files can be given as exact paths and as glob patterns (see
Pattern matching). At least one source must be given, but it is
not an error if it is a pattern that does not match anything.

Last argument must be the destination directory. If the destination
does not exist, it will be created.

See also Copy File, Move File, and Move Files.

	
move_files(*sources_and_destination)

	Moves specified files to the target directory.

Arguments have exactly same semantics as with Copy Files keyword.

See also Move File, Copy File, and Copy Files.

	
copy_directory(source, destination)

	Copies the source directory into the destination.

If the destination exists, the source is copied under it. Otherwise
the destination directory and the possible missing intermediate
directories are created.

	
move_directory(source, destination)

	Moves the source directory into a destination.

Uses Copy Directory keyword internally, and source and
destination arguments have exactly same semantics as with
that keyword.

	
get_environment_variable(name, default=None)

	Returns the value of an environment variable with the given name.

If no such environment variable is set, returns the default value, if
given. Otherwise fails the test case.

Returned variables are automatically decoded to Unicode using
the system encoding.

Note that you can also access environment variables directly using
the variable syntax %{ENV_VAR_NAME}.

	
set_environment_variable(name, value)

	Sets an environment variable to a specified value.

Values are converted to strings automatically. Set variables are
automatically encoded using the system encoding.

	
append_to_environment_variable(name, *values, **config)

	Appends given values to environment variable name.

If the environment variable already exists, values are added after it,
and otherwise a new environment variable is created.

Values are, by default, joined together using the operating system
path separator (; on Windows, : elsewhere). This can be changed
by giving a separator after the values like separator=value. No
other configuration parameters are accepted.

	
remove_environment_variable(*names)

	Deletes the specified environment variable.

Does nothing if the environment variable is not set.

It is possible to remove multiple variables by passing them to this
keyword as separate arguments.

	
environment_variable_should_be_set(name, msg=None)

	Fails if the specified environment variable is not set.

The default error message can be overridden with the msg argument.

	
environment_variable_should_not_be_set(name, msg=None)

	Fails if the specified environment variable is set.

The default error message can be overridden with the msg argument.

	
get_environment_variables()

	Returns currently available environment variables as a dictionary.

Both keys and values are decoded to Unicode using the system encoding.
Altering the returned dictionary has no effect on the actual environment
variables.

	
log_environment_variables(level='INFO')

	Logs all environment variables using the given log level.

Environment variables are also returned the same way as with
Get Environment Variables keyword.

	
join_path(base, *parts)

	Joins the given path part(s) to the given base path.

The path separator (/ or \) is inserted when needed and
the possible absolute paths handled as expected. The resulted
path is also normalized.

	${path} = ‘my/path’

	${p2} = ‘my/path’

	${p3} = ‘my/path/my/file.txt’

	${p4} = ‘/path’

	${p5} = ‘/my/path2’

	
join_paths(base, *paths)

	Joins given paths with base and returns resulted paths.

See Join Path for more information.

	@{p1} = [‘base/example’, ‘base/other’]

	@{p2} = [‘/example’, ‘/my/base/other’]

	@{p3} = [‘my/base/example/path’, ‘my/base/other’, ‘my/base/one/more’]

	
normalize_path(path, case_normalize=False)

	Normalizes the given path.

	Collapses redundant separators and up-level references.

	Converts / to \ on Windows.

	Replaces initial ~ or ~user by that user’s home directory.
The latter is not supported on Jython.

	If case_normalize is given a true value (see Boolean arguments)
on Windows, converts the path to all lowercase. New in Robot
Framework 3.1.

	${path1} = ‘abc’

	${path2} = ‘def’

	${path3} = ‘abc/def/ghi’

	${path4} = ‘/home/robot/stuff’

On Windows result would use \ instead of / and home directory
would be different.

	
split_path(path)

	Splits the given path from the last path separator (/ or \).

The given path is first normalized (e.g. a possible trailing
path separator is removed, special directories .. and .
removed). The parts that are split are returned as separate
components.

	${path1} = ‘abc’ & ${dir} = ‘def’

	${path2} = ‘abc/def’ & ${file} = ‘ghi.txt’

	${path3} = ‘def’ & ${d2} = ‘ghi’

	
split_extension(path)

	Splits the extension from the given path.

The given path is first normalized (e.g. possible trailing
path separators removed, special directories .. and .
removed). The base path and extension are returned as separate
components so that the dot used as an extension separator is
removed. If the path contains no extension, an empty string is
returned for it. Possible leading and trailing dots in the file
name are never considered to be extension separators.

	${path} = ‘file’ & ${ext} = ‘extension’

	${p2} = ‘path/file’ & ${e2} = ‘ext’

	${p3} = ‘path/file’ & ${e3} = ‘’

	${p4} = ‘p2/file’ & ${e4} = ‘ext’

	${p5} = ‘path/.file’ & ${e5} = ‘ext’

	${p6} = ‘path/.file’ & ${e6} = ‘’

	
get_modified_time(path, format='timestamp')

	Returns the last modification time of a file or directory.

How time is returned is determined based on the given format
string as follows. Note that all checks are case-insensitive.
Returned time is also automatically logged.

	If format contains the word epoch, the time is returned
in seconds after the UNIX epoch. The return value is always
an integer.

	If format contains any of the words year, month,
day, hour, min or sec, only the selected parts are
returned. The order of the returned parts is always the one
in the previous sentence and the order of the words in
format is not significant. The parts are returned as
zero-padded strings (e.g. May -> 05).

	Otherwise, and by default, the time is returned as a
timestamp string in the format 2006-02-24 15:08:31.

2006-03-29 15:06:21):
- ${time} = ‘2006-03-29 15:06:21’
- ${secs} = 1143637581
- ${year} = ‘2006’
- ${y} = ‘2006’ & ${d} = ‘29’
- @{time} = [‘2006’, ‘03’, ‘29’, ‘15’, ‘06’, ‘21’]

	
set_modified_time(path, mtime)

	Sets the file modification and access times.

Changes the modification and access times of the given file to
the value determined by mtime. The time can be given in
different formats described below. Note that all checks
involving strings are case-insensitive. Modified time can only
be set to regular files.

	If mtime is a number, or a string that can be converted
to a number, it is interpreted as seconds since the UNIX
epoch (1970-01-01 00:00:00 UTC). This documentation was
originally written about 1177654467 seconds after the epoch.

	If mtime is a timestamp, that time will be used. Valid
timestamp formats are YYYY-MM-DD hh:mm:ss and
YYYYMMDD hhmmss.

	If mtime is equal to NOW, the current local time is used.

	If mtime is equal to UTC, the current time in
[http://en.wikipedia.org/wiki/Coordinated_Universal_Time|UTC]
is used.

	If mtime is in the format like NOW - 1 day or UTC + 1
hour 30 min, the current local/UTC time plus/minus the time
specified with the time string is used. The time string format
is described in an appendix of Robot Framework User Guide.

	
get_file_size(path)

	Returns and logs file size as an integer in bytes.

	
list_directory(path, pattern=None, absolute=False)

	Returns and logs items in a directory, optionally filtered with pattern.

File and directory names are returned in case-sensitive alphabetical
order, e.g. ['A Name', 'Second', 'a lower case name', 'one more'].
Implicit directories . and .. are not returned. The returned
items are automatically logged.

File and directory names are returned relative to the given path
(e.g. 'file.txt') by default. If you want them be returned in
absolute format (e.g. '/home/robot/file.txt'), give the absolute
argument a true value (see Boolean arguments).

If pattern is given, only items matching it are returned. The pattern
matching syntax is explained in introduction, and in this case
matching is case-sensitive.

	
list_files_in_directory(path, pattern=None, absolute=False)

	Wrapper for List Directory that returns only files.

	
list_directories_in_directory(path, pattern=None, absolute=False)

	Wrapper for List Directory that returns only directories.

	
count_items_in_directory(path, pattern=None)

	Returns and logs the number of all items in the given directory.

The argument pattern has the same semantics as with List Directory
keyword. The count is returned as an integer, so it must be checked e.g.
with the built-in keyword Should Be Equal As Integers.

	
count_files_in_directory(path, pattern=None)

	Wrapper for Count Items In Directory returning only file count.

	
count_directories_in_directory(path, pattern=None)

	Wrapper for Count Items In Directory returning only directory count.

	
touch(path)

	Emulates the UNIX touch command.

Creates a file, if it does not exist. Otherwise changes its access and
modification times to the current time.

Fails if used with the directories or the parent directory of the given
file does not exist.

robot.libraries.Process module

	
class robot.libraries.Process.Process

	Bases: object

Robot Framework test library for running processes.

This library utilizes Python’s
[http://docs.python.org/library/subprocess.html|subprocess]
module and its
[http://docs.python.org/library/subprocess.html#popen-constructor|Popen]
class.

The library has following main usages:

	Running processes in system and waiting for their completion using
Run Process keyword.

	Starting processes on background using Start Process.

	Waiting started process to complete using Wait For Process or
stopping them with Terminate Process or Terminate All Processes.

== Table of contents ==

%TOC%

= Specifying command and arguments =

Both Run Process and Start Process accept the command to execute and
all arguments passed to the command as separate arguments. This makes usage
convenient and also allows these keywords to automatically escape possible
spaces and other special characters in commands and arguments. Notice that
if a command accepts options that themselves accept values, these options
and their values must be given as separate arguments.

When running processes in shell, it is also possible to give the whole
command to execute as a single string. The command can then contain
multiple commands to be run together. When using this approach, the caller
is responsible on escaping.

Possible non-string arguments are converted to strings automatically.

= Process configuration =

Run Process and Start Process keywords can be configured using
optional **configuration keyword arguments. Configuration arguments
must be given after other arguments passed to these keywords and must
use syntax like name=value. Available configuration arguments are
listed below and discussed further in sections afterwards.

Note that because **configuration is passed using name=value syntax,
possible equal signs in other arguments passed to Run Process and
Start Process must be escaped with a backslash like name\=value.
See Run Process for an example.

== Running processes in shell ==

The shell argument specifies whether to run the process in a shell or
not. By default shell is not used, which means that shell specific commands,
like copy and dir on Windows, are not available. You can, however,
run shell scripts and batch files without using a shell.

Giving the shell argument any non-false value, such as shell=True,
changes the program to be executed in a shell. It allows using the shell
capabilities, but can also make the process invocation operating system
dependent. Having a shell between the actually started process and this
library can also interfere communication with the process such as stopping
it and reading its outputs. Because of these problems, it is recommended
to use the shell only when absolutely necessary.

When using a shell it is possible to give the whole command to execute
as a single string. See Specifying command and arguments section for
examples and more details in general.

== Current working directory ==

By default the child process will be executed in the same directory
as the parent process, the process running tests, is executed. This
can be changed by giving an alternative location using the cwd argument.
Forward slashes in the given path are automatically converted to
backslashes on Windows.

Standard output and error streams, when redirected to files,
are also relative to the current working directory possibly set using
the cwd argument.

== Environment variables ==

By default the child process will get a copy of the parent process’s
environment variables. The env argument can be used to give the
child a custom environment as a Python dictionary. If there is a need
to specify only certain environment variable, it is possible to use the
env:<name>=<value> format to set or override only that named variables.
It is also possible to use these two approaches together.

== Standard output and error streams ==

By default processes are run so that their standard output and standard
error streams are kept in the memory. This works fine normally,
but if there is a lot of output, the output buffers may get full and
the program can hang. Additionally on Jython, everything written to
these in-memory buffers can be lost if the process is terminated.

To avoid the above mentioned problems, it is possible to use stdout
and stderr arguments to specify files on the file system where to
redirect the outputs. This can also be useful if other processes or
other keywords need to read or manipulate the outputs somehow.

Given stdout and stderr paths are relative to the current working
directory. Forward slashes in the given paths are automatically converted
to backslashes on Windows.

As a special feature, it is possible to redirect the standard error to
the standard output by using stderr=STDOUT.

Regardless are outputs redirected to files or not, they are accessible
through the result object returned when the process ends. Commands are
expected to write outputs using the console encoding, but output encoding
can be configured using the output_encoding argument if needed.

If you are not interested in outputs at all, you can explicitly ignore them
by using a special value DEVNULL both with stdout and stderr. For
example, stdout=DEVNULL is the same as redirecting output on console
with > /dev/null on UNIX-like operating systems or > NUL on Windows.
This way the process will not hang even if there would be a lot of output,
but naturally output is not available after execution either.

Support for the special value DEVNULL is new in Robot Framework 3.2.

Note that the created output files are not automatically removed after
the test run. The user is responsible to remove them if needed.

== Standard input stream ==

The stdin argument makes it possible to pass information to the standard
input stream of the started process. How its value is interpreted is
explained in the table below.

Values PIPE and NONE are internally mapped directly to
subprocess.PIPE and None, respectively, when calling
[https://docs.python.org/3/library/subprocess.html#subprocess.Popen|subprocess.Popen].
The default behavior may change from PIPE to NONE in future
releases. If you depend on the PIPE behavior, it is a good idea to use
it explicitly.

The support to configure stdin is new in Robot Framework 4.1.2.

== Output encoding ==

Executed commands are, by default, expected to write outputs to the
standard output and error streams using the encoding used by the
system console. If the command uses some other encoding, that can be
configured using the output_encoding argument. This is especially
useful on Windows where the console uses a different encoding than rest
of the system, and many commands use the general system encoding instead
of the console encoding.

The value used with the output_encoding argument must be a valid
encoding and must match the encoding actually used by the command. As a
convenience, it is possible to use strings CONSOLE and SYSTEM
to specify that the console or system encoding is used, respectively.
If produced outputs use different encoding then configured, values got
through the result object will be invalid.

== Alias ==

A custom name given to the process that can be used when selecting the
active process.

= Active process =

The test library keeps record which of the started processes is currently
active. By default it is latest process started with Start Process,
but Switch Process can be used to select a different one. Using
Run Process does not affect the active process.

The keywords that operate on started processes will use the active process
by default, but it is possible to explicitly select a different process
using the handle argument. The handle can be the identifier returned by
Start Process or an alias explicitly given to Start Process or
Run Process.

= Result object =

Run Process, Wait For Process and Terminate Process keywords return a
result object that contains information about the process execution as its
attributes. The same result object, or some of its attributes, can also
be get using Get Process Result keyword. Attributes available in the
object are documented in the table below.

= Boolean arguments =

Some keywords accept arguments that are handled as Boolean values true or
false. If such an argument is given as a string, it is considered false if
it is an empty string or equal to FALSE, NONE, NO, OFF or
0, case-insensitively. Other strings are considered true regardless
their value, and other argument types are tested using the same
[http://docs.python.org/library/stdtypes.html#truth|rules as in Python].

True examples:

False examples:

Considering OFF and 0 false is new in Robot Framework 3.1.

= Example =

	
ROBOT_LIBRARY_SCOPE = 'GLOBAL'

	

	
ROBOT_LIBRARY_VERSION = '4.1.2'

	

	
TERMINATE_TIMEOUT = 30

	

	
KILL_TIMEOUT = 10

	

	
run_process(command, *arguments, **configuration)

	Runs a process and waits for it to complete.

command and *arguments specify the command to execute and
arguments passed to it. See Specifying command and arguments for
more details.

**configuration contains additional configuration related to
starting processes and waiting for them to finish. See Process
configuration for more details about configuration related to starting
processes. Configuration related to waiting for processes consists of
timeout and on_timeout arguments that have same semantics as
with Wait For Process keyword. By default there is no timeout, and
if timeout is defined the default action on timeout is terminate.

Returns a result object containing information about the execution.

Note that possible equal signs in *arguments must be escaped
with a backslash (e.g. name\=value) to avoid them to be passed in
as **configuration.

This keyword does not change the active process.

	
start_process(command, *arguments, **configuration)

	Starts a new process on background.

See Specifying command and arguments and Process configuration
for more information about the arguments, and Run Process keyword
for related examples.

Makes the started process new active process. Returns an identifier
that can be used as a handle to activate the started process if needed.

Processes are started so that they create a new process group. This
allows sending signals to and terminating also possible child
processes. This is not supported on Jython.

	
is_process_running(handle=None)

	Checks is the process running or not.

If handle is not given, uses the current active process.

Returns True if the process is still running and False otherwise.

	
process_should_be_running(handle=None, error_message='Process is not running.')

	Verifies that the process is running.

If handle is not given, uses the current active process.

Fails if the process has stopped.

	
process_should_be_stopped(handle=None, error_message='Process is running.')

	Verifies that the process is not running.

If handle is not given, uses the current active process.

Fails if the process is still running.

	
wait_for_process(handle=None, timeout=None, on_timeout='continue')

	Waits for the process to complete or to reach the given timeout.

The process to wait for must have been started earlier with
Start Process. If handle is not given, uses the current
active process.

timeout defines the maximum time to wait for the process. It can be
given in
[http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#time-format|
various time formats] supported by Robot Framework, for example, 42,
42 s, or 1 minute 30 seconds. The timeout is ignored if it is
Python None (default), string NONE (case-insensitively), zero,
or negative.

on_timeout defines what to do if the timeout occurs. Possible values
and corresponding actions are explained in the table below. Notice
that reaching the timeout never fails the test.

See Terminate Process keyword for more details how processes are
terminated and killed.

If the process ends before the timeout or it is terminated or killed,
this keyword returns a result object containing information about
the execution. If the process is left running, Python None is
returned instead.

Ignoring timeout if it is string NONE, zero, or negative is new
in Robot Framework 3.2.

	
terminate_process(handle=None, kill=False)

	Stops the process gracefully or forcefully.

If handle is not given, uses the current active process.

By default first tries to stop the process gracefully. If the process
does not stop in 30 seconds, or kill argument is given a true value,
(see Boolean arguments) kills the process forcefully. Stops also all
the child processes of the originally started process.

Waits for the process to stop after terminating it. Returns a result
object containing information about the execution similarly as Wait
For Process.

On Unix-like machines graceful termination is done using TERM (15)
signal and killing using KILL (9). Use Send Signal To Process
instead if you just want to send either of these signals without
waiting for the process to stop.

On Windows graceful termination is done using CTRL_BREAK_EVENT
event and killing using Win32 API function TerminateProcess().

Limitations:
- Graceful termination is not supported on Windows when using Jython.

Process is killed instead.

	Stopping the whole process group is not supported when using Jython.

	On Windows forceful kill only stops the main process, not possible
child processes.

	
terminate_all_processes(kill=False)

	Terminates all still running processes started by this library.

This keyword can be used in suite teardown or elsewhere to make
sure that all processes are stopped,

By default tries to terminate processes gracefully, but can be
configured to forcefully kill them immediately. See Terminate Process
that this keyword uses internally for more details.

	
send_signal_to_process(signal, handle=None, group=False)

	Sends the given signal to the specified process.

If handle is not given, uses the current active process.

Signal can be specified either as an integer as a signal name. In the
latter case it is possible to give the name both with or without SIG
prefix, but names are case-sensitive. For example, all the examples
below send signal INT (2):

This keyword is only supported on Unix-like machines, not on Windows.
What signals are supported depends on the system. For a list of
existing signals on your system, see the Unix man pages related to
signal handling (typically man signal or man 7 signal).

By default sends the signal only to the parent process, not to possible
child processes started by it. Notice that when running processes in
shell, the shell is the parent process and it depends on the system
does the shell propagate the signal to the actual started process.

To send the signal to the whole process group, group argument can
be set to any true value (see Boolean arguments). This is not
supported by Jython, however.

	
get_process_id(handle=None)

	Returns the process ID (pid) of the process as an integer.

If handle is not given, uses the current active process.

Notice that the pid is not the same as the handle returned by
Start Process that is used internally by this library.

	
get_process_object(handle=None)

	Return the underlying subprocess.Popen object.

If handle is not given, uses the current active process.

	
get_process_result(handle=None, rc=False, stdout=False, stderr=False, stdout_path=False, stderr_path=False)

	Returns the specified result object or some of its attributes.

The given handle specifies the process whose results should be
returned. If no handle is given, results of the current active
process are returned. In either case, the process must have been
finishes before this keyword can be used. In practice this means
that processes started with Start Process must be finished either
with Wait For Process or Terminate Process before using this
keyword.

If no other arguments than the optional handle are given, a whole
result object is returned. If one or more of the other arguments
are given any true value, only the specified attributes of the
result object are returned. These attributes are always returned
in the same order as arguments are specified in the keyword signature.
See Boolean arguments section for more details about true and false
values.

Although getting results of a previously executed process can be handy
in general, the main use case for this keyword is returning results
over the remote library interface. The remote interface does not
support returning the whole result object, but individual attributes
can be returned without problems.

	
switch_process(handle)

	Makes the specified process the current active process.

The handle can be an identifier returned by Start Process or
the alias given to it explicitly.

	
split_command_line(args, escaping=False)

	Splits command line string into a list of arguments.

String is split from spaces, but argument surrounded in quotes may
contain spaces in them. If escaping is given a true value, then
backslash is treated as an escape character. It can escape unquoted
spaces, quotes inside quotes, and so on, but it also requires using
double backslashes when using Windows paths.

	
join_command_line(*args)

	Joins arguments into one command line string.

In resulting command line string arguments are delimited with a space,
arguments containing spaces are surrounded with quotes, and possible
quotes are escaped with a backslash.

If this keyword is given only one argument and that is a list like
object, then the values of that list are joined instead.

	
class robot.libraries.Process.ExecutionResult(process, stdout, stderr, stdin=None, rc=None, output_encoding=None)

	Bases: object

	
stdout

	

	
stderr

	

	
close_streams()

	

	
class robot.libraries.Process.ProcessConfiguration(cwd=None, shell=False, stdout=None, stderr=None, stdin='PIPE', output_encoding='CONSOLE', alias=None, env=None, **rest)

	Bases: object

	
get_command(command, arguments)

	

	
popen_config

	

	
result_config

	

robot.libraries.Remote module

	
class robot.libraries.Remote.Remote(uri='http://127.0.0.1:8270', timeout=None)

	Bases: object

Connects to a remote server at uri.

Optional timeout can be used to specify a timeout to wait when
initially connecting to the server and if a connection accidentally
closes. Timeout can be given as seconds (e.g. 60) or using
Robot Framework time format (e.g. 60s, 2 minutes 10 seconds).

The default timeout is typically several minutes, but it depends on
the operating system and its configuration. Notice that setting
a timeout that is shorter than keyword execution time will interrupt
the keyword.

Timeouts do not work with IronPython.

	
ROBOT_LIBRARY_SCOPE = 'TEST SUITE'

	

	
get_keyword_names()

	

	
get_keyword_arguments(name)

	

	
get_keyword_types(name)

	

	
get_keyword_tags(name)

	

	
get_keyword_documentation(name)

	

	
run_keyword(name, args, kwargs)

	

	
class robot.libraries.Remote.ArgumentCoercer

	Bases: object

	
binary = <_sre.SRE_Pattern object>

	

	
non_ascii = <_sre.SRE_Pattern object>

	

	
coerce(argument)

	

	
class robot.libraries.Remote.RemoteResult(result)

	Bases: object

	
class robot.libraries.Remote.XmlRpcRemoteClient(uri, timeout=None)

	Bases: object

	
get_library_information()

	

	
get_keyword_names()

	

	
get_keyword_arguments(name)

	

	
get_keyword_types(name)

	

	
get_keyword_tags(name)

	

	
get_keyword_documentation(name)

	

	
run_keyword(name, args, kwargs)

	

	
class robot.libraries.Remote.TimeoutHTTPTransport(use_datetime=0, timeout=None)

	Bases: xmlrpclib.Transport

	
make_connection(host)

	

	
accept_gzip_encoding = True

	

	
close()

	

	
encode_threshold = None

	

	
get_host_info(host)

	

	
getparser()

	

	
parse_response(response)

	

	
request(host, handler, request_body, verbose=0)

	

	
send_content(connection, request_body)

	

	
send_host(connection, host)

	

	
send_request(connection, handler, request_body)

	

	
send_user_agent(connection)

	

	
single_request(host, handler, request_body, verbose=0)

	

	
user_agent = 'xmlrpclib.py/1.0.1 (by www.pythonware.com)'

	

	
class robot.libraries.Remote.TimeoutHTTPSTransport(use_datetime=0, timeout=None)

	Bases: robot.libraries.Remote.TimeoutHTTPTransport

	
accept_gzip_encoding = True

	

	
close()

	

	
encode_threshold = None

	

	
get_host_info(host)

	

	
getparser()

	

	
make_connection(host)

	

	
parse_response(response)

	

	
request(host, handler, request_body, verbose=0)

	

	
send_content(connection, request_body)

	

	
send_host(connection, host)

	

	
send_request(connection, handler, request_body)

	

	
send_user_agent(connection)

	

	
single_request(host, handler, request_body, verbose=0)

	

	
user_agent = 'xmlrpclib.py/1.0.1 (by www.pythonware.com)'

	

robot.libraries.Reserved module

	
class robot.libraries.Reserved.Reserved

	Bases: object

	
ROBOT_LIBRARY_SCOPE = 'GLOBAL'

	

robot.libraries.Screenshot module

	
class robot.libraries.Screenshot.Screenshot(screenshot_directory=None, screenshot_module=None)

	Bases: object

Test library for taking screenshots on the machine where tests are run.

Notice that successfully taking screenshots requires tests to be run with
a physical or virtual display.

== Table of contents ==

%TOC%

= Using with Python =

How screenshots are taken when using Python depends on the operating
system. On OSX screenshots are taken using the built-in screencapture
utility. On other operating systems you need to have one of the following
tools or Python modules installed. You can specify the tool/module to use
when importing the library. If no tool or module is specified, the first
one found will be used.

	wxPython :: http://wxpython.org :: Required also by RIDE so many Robot
Framework users already have this module installed.

	PyGTK :: http://pygtk.org :: This module is available by default on most
Linux distributions.

	Pillow :: http://python-pillow.github.io ::
Only works on Windows. Also the original PIL package is supported.

	Scrot :: http://en.wikipedia.org/wiki/Scrot :: Not used on Windows.
Install with apt-get install scrot or similar.

= Using with Jython and IronPython =

With Jython and IronPython this library uses APIs provided by JVM and .NET
platforms, respectively. These APIs are always available and thus no
external modules are needed.

= Where screenshots are saved =

By default screenshots are saved into the same directory where the Robot
Framework log file is written. If no log is created, screenshots are saved
into the directory where the XML output file is written.

It is possible to specify a custom location for screenshots using
screenshot_directory argument when importing the library and
using Set Screenshot Directory keyword during execution. It is also
possible to save screenshots using an absolute path.

= ScreenCapLibrary =

[https://github.com/mihaiparvu/ScreenCapLibrary|ScreenCapLibrary] is an
external Robot Framework library that can be used as an alternative,
which additionally provides support for multiple formats, adjusting the
quality, using GIFs and video capturing.

Configure where screenshots are saved.

If screenshot_directory is not given, screenshots are saved into
same directory as the log file. The directory can also be set using
Set Screenshot Directory keyword.

screenshot_module specifies the module or tool to use when using
this library on Python outside OSX. Possible values are wxPython,
PyGTK, PIL and scrot, case-insensitively. If no value is
given, the first module/tool found is used in that order. See Using
with Python for more information.

	
ROBOT_LIBRARY_SCOPE = 'TEST SUITE'

	

	
ROBOT_LIBRARY_VERSION = '4.1.2'

	

	
set_screenshot_directory(path)

	Sets the directory where screenshots are saved.

It is possible to use / as a path separator in all operating
systems. Path to the old directory is returned.

The directory can also be set in importing.

	
take_screenshot(name='screenshot', width='800px')

	Takes a screenshot in JPEG format and embeds it into the log file.

Name of the file where the screenshot is stored is derived from the
given name. If the name ends with extension .jpg or
.jpeg, the screenshot will be stored with that exact name.
Otherwise a unique name is created by adding an underscore, a running
index and an extension to the name.

The name will be interpreted to be relative to the directory where
the log file is written. It is also possible to use absolute paths.
Using / as a path separator works in all operating systems.

width specifies the size of the screenshot in the log file.

The path where the screenshot is saved is returned.

	
take_screenshot_without_embedding(name='screenshot')

	Takes a screenshot and links it from the log file.

This keyword is otherwise identical to Take Screenshot but the saved
screenshot is not embedded into the log file. The screenshot is linked
so it is nevertheless easily available.

	
class robot.libraries.Screenshot.ScreenshotTaker(module_name=None)

	Bases: object

	
test(path=None)

	

robot.libraries.String module

	
class robot.libraries.String.String

	Bases: object

A test library for string manipulation and verification.

String is Robot Framework’s standard library for manipulating
strings (e.g. Replace String Using Regexp, Split To Lines) and
verifying their contents (e.g. Should Be String).

Following keywords from BuiltIn library can also be used with strings:

	Catenate

	Get Length

	Length Should Be

	Should (Not) Be Empty

	Should (Not) Be Equal (As Strings/Integers/Numbers)

	Should (Not) Match (Regexp)

	Should (Not) Contain

	Should (Not) Start With

	Should (Not) End With

	Convert To String

	Convert To Bytes

	
ROBOT_LIBRARY_SCOPE = 'GLOBAL'

	

	
ROBOT_LIBRARY_VERSION = '4.1.2'

	

	
convert_to_lower_case(string)

	Converts string to lower case.

Uses Python’s standard
[https://docs.python.org/library/stdtypes.html#str.lower|lower()]
method.

	
convert_to_upper_case(string)

	Converts string to upper case.

Uses Python’s standard
[https://docs.python.org/library/stdtypes.html#str.upper|upper()]
method.

	
convert_to_title_case(string, exclude=None)

	Converts string to title case.

Uses the following algorithm:

	Split the string to words from whitespace characters (spaces,
newlines, etc.).

	Exclude words that are not all lower case. This preserves,
for example, “OK” and “iPhone”.

	Exclude also words listed in the optional exclude argument.

	Title case the first alphabetical character of each word that has
not been excluded.

	Join all words together so that original whitespace is preserved.

Explicitly excluded words can be given as a list or as a string with
words separated by a comma and an optional space. Excluded words are
actually considered to be regular expression patterns, so it is
possible to use something like “example[.!?]?” to match the word
“example” on it own and also if followed by “.”, “!” or “?”.
See BuiltIn.Should Match Regexp for more information about Python
regular expression syntax in general and how to use it in Robot
Framework test data in particular.

The reason this keyword does not use Python’s standard
[https://docs.python.org/library/stdtypes.html#str.title|title()]
method is that it can yield undesired results, for example, if
strings contain upper case letters or special characters like
apostrophes. It would, for example, convert “it’s an OK iPhone”
to “It’S An Ok Iphone”.

New in Robot Framework 3.2.

	
encode_string_to_bytes(string, encoding, errors='strict')

	Encodes the given Unicode string to bytes using the given encoding.

errors argument controls what to do if encoding some characters fails.
All values accepted by encode method in Python are valid, but in
practice the following values are most useful:

	strict: fail if characters cannot be encoded (default)

	ignore: ignore characters that cannot be encoded

	replace: replace characters that cannot be encoded with
a replacement character

Use Convert To Bytes in BuiltIn if you want to create bytes based
on character or integer sequences. Use Decode Bytes To String if you
need to convert byte strings to Unicode strings and Convert To String
in BuiltIn if you need to convert arbitrary objects to Unicode.

	
decode_bytes_to_string(bytes, encoding, errors='strict')

	Decodes the given bytes to a Unicode string using the given encoding.

errors argument controls what to do if decoding some bytes fails.
All values accepted by decode method in Python are valid, but in
practice the following values are most useful:

	strict: fail if characters cannot be decoded (default)

	ignore: ignore characters that cannot be decoded

	replace: replace characters that cannot be decoded with
a replacement character

Use Encode String To Bytes if you need to convert Unicode strings to
byte strings, and Convert To String in BuiltIn if you need to
convert arbitrary objects to Unicode strings.

	
format_string(template, *positional, **named)

	Formats a template using the given positional and named arguments.

The template can be either be a string or an absolute path to
an existing file. In the latter case the file is read and its contents
are used as the template. If the template file contains non-ASCII
characters, it must be encoded using UTF-8.

The template is formatted using Python’s
[https://docs.python.org/library/string.html#format-string-syntax|format
string syntax]. Placeholders are marked using {} with possible
field name and format specification inside. Literal curly braces
can be inserted by doubling them like {{ and }}.

New in Robot Framework 3.1.

	
get_line_count(string)

	Returns and logs the number of lines in the given string.

	
split_to_lines(string, start=0, end=None)

	Splits the given string to lines.

It is possible to get only a selection of lines from start
to end so that start index is inclusive and end is
exclusive. Line numbering starts from 0, and it is possible to
use negative indices to refer to lines from the end.

Lines are returned without the newlines. The number of
returned lines is automatically logged.

Use Get Line if you only need to get a single line.

	
get_line(string, line_number)

	Returns the specified line from the given string.

Line numbering starts from 0 and it is possible to use
negative indices to refer to lines from the end. The line is
returned without the newline character.

Use Split To Lines if all lines are needed.

	
get_lines_containing_string(string, pattern, case_insensitive=False)

	Returns lines of the given string that contain the pattern.

The pattern is always considered to be a normal string, not a glob
or regexp pattern. A line matches if the pattern is found anywhere
on it.

The match is case-sensitive by default, but giving case_insensitive
a true value makes it case-insensitive. The value is considered true
if it is a non-empty string that is not equal to false, none or
no. If the value is not a string, its truth value is got directly
in Python.

Lines are returned as one string catenated back together with
newlines. Possible trailing newline is never returned. The
number of matching lines is automatically logged.

See Get Lines Matching Pattern and Get Lines Matching Regexp
if you need more complex pattern matching.

	
get_lines_matching_pattern(string, pattern, case_insensitive=False)

	Returns lines of the given string that match the pattern.

The pattern is a _glob pattern_ where:

A line matches only if it matches the pattern fully.

The match is case-sensitive by default, but giving case_insensitive
a true value makes it case-insensitive. The value is considered true
if it is a non-empty string that is not equal to false, none or
no. If the value is not a string, its truth value is got directly
in Python.

Lines are returned as one string catenated back together with
newlines. Possible trailing newline is never returned. The
number of matching lines is automatically logged.

See Get Lines Matching Regexp if you need more complex
patterns and Get Lines Containing String if searching
literal strings is enough.

	
get_lines_matching_regexp(string, pattern, partial_match=False)

	Returns lines of the given string that match the regexp pattern.

See BuiltIn.Should Match Regexp for more information about
Python regular expression syntax in general and how to use it
in Robot Framework test data in particular.

By default lines match only if they match the pattern fully, but
partial matching can be enabled by giving the partial_match
argument a true value. The value is considered true
if it is a non-empty string that is not equal to false, none or
no. If the value is not a string, its truth value is got directly
in Python.

If the pattern is empty, it matches only empty lines by default.
When partial matching is enabled, empty pattern matches all lines.

Notice that to make the match case-insensitive, you need to prefix
the pattern with case-insensitive flag (?i).

Lines are returned as one string concatenated back together with
newlines. Possible trailing newline is never returned. The
number of matching lines is automatically logged.

See Get Lines Matching Pattern and Get Lines Containing
String if you do not need full regular expression powers (and
complexity).

	
get_regexp_matches(string, pattern, *groups)

	Returns a list of all non-overlapping matches in the given string.

string is the string to find matches from and pattern is the
regular expression. See BuiltIn.Should Match Regexp for more
information about Python regular expression syntax in general and how
to use it in Robot Framework test data in particular.

If no groups are used, the returned list contains full matches. If one
group is used, the list contains only contents of that group. If
multiple groups are used, the list contains tuples that contain
individual group contents. All groups can be given as indexes (starting
from 1) and named groups also as names.

	
replace_string(string, search_for, replace_with, count=-1)

	Replaces search_for in the given string with replace_with.

search_for is used as a literal string. See Replace String
Using Regexp if more powerful pattern matching is needed.
If you need to just remove a string see Remove String.

If the optional argument count is given, only that many
occurrences from left are replaced. Negative count means
that all occurrences are replaced (default behaviour) and zero
means that nothing is done.

A modified version of the string is returned and the original
string is not altered.

	
replace_string_using_regexp(string, pattern, replace_with, count=-1)

	Replaces pattern in the given string with replace_with.

This keyword is otherwise identical to Replace String, but
the pattern to search for is considered to be a regular
expression. See BuiltIn.Should Match Regexp for more
information about Python regular expression syntax in general
and how to use it in Robot Framework test data in particular.

If you need to just remove a string see Remove String Using Regexp.

	
remove_string(string, *removables)

	Removes all removables from the given string.

removables are used as literal strings. Each removable will be
matched to a temporary string from which preceding removables have
been already removed. See second example below.

Use Remove String Using Regexp if more powerful pattern matching is
needed. If only a certain number of matches should be removed,
Replace String or Replace String Using Regexp can be used.

A modified version of the string is returned and the original
string is not altered.

	
remove_string_using_regexp(string, *patterns)

	Removes patterns from the given string.

This keyword is otherwise identical to Remove String, but
the patterns to search for are considered to be a regular
expression. See Replace String Using Regexp for more information
about the regular expression syntax. That keyword can also be
used if there is a need to remove only a certain number of
occurrences.

	
split_string(string, separator=None, max_split=-1)

	Splits the string using separator as a delimiter string.

If a separator is not given, any whitespace string is a
separator. In that case also possible consecutive whitespace
as well as leading and trailing whitespace is ignored.

Split words are returned as a list. If the optional
max_split is given, at most max_split splits are done, and
the returned list will have maximum max_split + 1 elements.

See Split String From Right if you want to start splitting
from right, and Fetch From Left and Fetch From Right if
you only want to get first/last part of the string.

	
split_string_from_right(string, separator=None, max_split=-1)

	Splits the string using separator starting from right.

Same as Split String, but splitting is started from right. This has
an effect only when max_split is given.

	
split_string_to_characters(string)

	Splits the given string to characters.

	
fetch_from_left(string, marker)

	Returns contents of the string before the first occurrence of marker.

If the marker is not found, whole string is returned.

See also Fetch From Right, Split String and Split String
From Right.

	
fetch_from_right(string, marker)

	Returns contents of the string after the last occurrence of marker.

If the marker is not found, whole string is returned.

See also Fetch From Left, Split String and Split String
From Right.

	
generate_random_string(length=8, chars='[LETTERS][NUMBERS]')

	Generates a string with a desired length from the given chars.

The population sequence chars contains the characters to use
when generating the random string. It can contain any
characters, and it is possible to use special markers
explained in the table below:

	
get_substring(string, start, end=None)

	Returns a substring from start index to end index.

The start index is inclusive and end is exclusive.
Indexing starts from 0, and it is possible to use
negative indices to refer to characters from the end.

	
strip_string(string, mode='both', characters=None)

	Remove leading and/or trailing whitespaces from the given string.

mode is either left to remove leading characters, right to
remove trailing characters, both (default) to remove the
characters from both sides of the string or none to return the
unmodified string.

If the optional characters is given, it must be a string and the
characters in the string will be stripped in the string. Please note,
that this is not a substring to be removed but a list of characters,
see the example below.

	
should_be_string(item, msg=None)

	Fails if the given item is not a string.

With Python 2, except with IronPython, this keyword passes regardless
is the item a Unicode string or a byte string. Use Should Be
Unicode String or Should Be Byte String if you want to restrict
the string type. Notice that with Python 2, except with IronPython,
'string' creates a byte string and u'unicode' must be used to
create a Unicode string.

With Python 3 and IronPython, this keyword passes if the string is
a Unicode string but fails if it is bytes. Notice that with both
Python 3 and IronPython, 'string' creates a Unicode string, and
b'bytes' must be used to create a byte string.

The default error message can be overridden with the optional
msg argument.

	
should_not_be_string(item, msg=None)

	Fails if the given item is a string.

See Should Be String for more details about Unicode strings and byte
strings.

The default error message can be overridden with the optional
msg argument.

	
should_be_unicode_string(item, msg=None)

	Fails if the given item is not a Unicode string.

Use Should Be Byte String if you want to verify the item is a
byte string, or Should Be String if both Unicode and byte strings
are fine. See Should Be String for more details about Unicode
strings and byte strings.

The default error message can be overridden with the optional
msg argument.

	
should_be_byte_string(item, msg=None)

	Fails if the given item is not a byte string.

Use Should Be Unicode String if you want to verify the item is a
Unicode string, or Should Be String if both Unicode and byte strings
are fine. See Should Be String for more details about Unicode strings
and byte strings.

The default error message can be overridden with the optional
msg argument.

	
should_be_lower_case(string, msg=None)

	Fails if the given string is not in lower case.

For example, 'string' and 'with specials!' would pass, and
'String', '' and ' ' would fail.

The default error message can be overridden with the optional
msg argument.

See also Should Be Upper Case and Should Be Title Case.

	
should_be_upper_case(string, msg=None)

	Fails if the given string is not in upper case.

For example, 'STRING' and 'WITH SPECIALS!' would pass, and
'String', '' and ' ' would fail.

The default error message can be overridden with the optional
msg argument.

See also Should Be Title Case and Should Be Lower Case.

	
should_be_title_case(string, msg=None, exclude=None)

	Fails if given string is not title.

string is a title cased string if there is at least one upper case
letter in each word.

For example, 'This Is Title' and 'OK, Give Me My iPhone'
would pass. 'all words lower' and 'Word In lower' would fail.

This logic changed in Robot Framework 4.0 to be compatible with
Convert to Title Case. See Convert to Title Case for title case
algorithm and reasoning.

The default error message can be overridden with the optional
msg argument.

Words can be explicitly excluded with the optional exclude argument.

Explicitly excluded words can be given as a list or as a string with
words separated by a comma and an optional space. Excluded words are
actually considered to be regular expression patterns, so it is
possible to use something like “example[.!?]?” to match the word
“example” on it own and also if followed by “.”, “!” or “?”.
See BuiltIn.Should Match Regexp for more information about Python
regular expression syntax in general and how to use it in Robot
Framework test data in particular.

See also Should Be Upper Case and Should Be Lower Case.

robot.libraries.Telnet module

	
class robot.libraries.Telnet.Telnet(timeout='3 seconds', newline='CRLF', prompt=None, prompt_is_regexp=False, encoding='UTF-8', encoding_errors='ignore', default_log_level='INFO', window_size=None, environ_user=None, terminal_emulation=False, terminal_type=None, telnetlib_log_level='TRACE', connection_timeout=None)

	Bases: object

A test library providing communication over Telnet connections.

Telnet is Robot Framework’s standard library that makes it possible to
connect to Telnet servers and execute commands on the opened connections.

== Table of contents ==

%TOC%

= Connections =

The first step of using Telnet is opening a connection with Open
Connection keyword. Typically the next step is logging in with Login
keyword, and in the end the opened connection can be closed with Close
Connection.

It is possible to open multiple connections and switch the active one
using Switch Connection. Close All Connections can be used to close
all the connections, which is especially useful in suite teardowns to
guarantee that all connections are always closed.

= Writing and reading =

After opening a connection and possibly logging in, commands can be
executed or text written to the connection for other reasons using Write
and Write Bare keywords. The main difference between these two is that
the former adds a [#Configuration|configurable newline] after the text
automatically.

After writing something to the connection, the resulting output can be
read using Read, Read Until, Read Until Regexp, and Read Until
Prompt keywords. Which one to use depends on the context, but the latest
one is often the most convenient.

As a convenience when running a command, it is possible to use Execute
Command that simply uses Write and Read Until Prompt internally.
Write Until Expected Output is useful if you need to wait until writing
something produces a desired output.

Written and read text is automatically encoded/decoded using a
[#Configuration|configured encoding].

The ANSI escape codes, like cursor movement and color codes, are
normally returned as part of the read operation. If an escape code occurs
in middle of a search pattern it may also prevent finding the searched
string. Terminal emulation can be used to process these
escape codes as they would be if a real terminal would be in use.

= Configuration =

Many aspects related the connections can be easily configured either
globally or per connection basis. Global configuration is done when
[#Importing|library is imported], and these values can be overridden per
connection by Open Connection or with setting specific keywords
Set Timeout, Set Newline, Set Prompt, Set Encoding,
Set Default Log Level and Set Telnetlib Log Level.

Values of environ_user, window_size, terminal_emulation, and
terminal_type can not be changed after opening the connection.

== Timeout ==

Timeout defines how long is the maximum time to wait when reading
output. It is used internally by Read Until, Read Until Regexp,
Read Until Prompt, and Login keywords. The default value is 3 seconds.

== Connection Timeout ==

Connection Timeout defines how long is the maximum time to wait when
opening the telnet connection. It is used internally by Open Connection.
The default value is the system global default timeout.

== Newline ==

Newline defines which line separator Write keyword should use. The
default value is CRLF that is typically used by Telnet connections.

Newline can be given either in escaped format using \n and \r or
with special LF and CR syntax.

== Prompt ==

Often the easiest way to read the output of a command is reading all
the output until the next prompt with Read Until Prompt. It also makes
it easier, and faster, to verify did Login succeed.

Prompt can be specified either as a normal string or a regular expression.
The latter is especially useful if the prompt changes as a result of
the executed commands. Prompt can be set to be a regular expression
by giving prompt_is_regexp argument a true value (see Boolean
arguments).

== Encoding ==

To ease handling text containing non-ASCII characters, all written text is
encoded and read text decoded by default. The default encoding is UTF-8
that works also with ASCII. Encoding can be disabled by using a special
encoding value NONE. This is mainly useful if you need to get the bytes
received from the connection as-is.

Notice that when writing to the connection, only Unicode strings are
encoded using the defined encoding. Byte strings are expected to be already
encoded correctly. Notice also that normal text in test data is passed to
the library as Unicode and you need to use variables to use bytes.

It is also possible to configure the error handler to use if encoding or
decoding characters fails. Accepted values are the same that encode/decode
functions in Python strings accept. In practice the following values are
the most useful:

	ignore: ignore characters that cannot be encoded (default)

	strict: fail if characters cannot be encoded

	replace: replace characters that cannot be encoded with a replacement
character

== Default log level ==

Default log level specifies the log level keywords use for logging unless
they are given an explicit log level. The default value is INFO, and
changing it, for example, to DEBUG can be a good idea if there is lot
of unnecessary output that makes log files big.

== Terminal type ==

By default the Telnet library does not negotiate any specific terminal type
with the server. If a specific terminal type, for example vt100, is
desired, the terminal type can be configured in importing and with
Open Connection.

== Window size ==

Window size for negotiation with the server can be configured when
importing the library and with Open Connection.

== USER environment variable ==

Telnet protocol allows the USER environment variable to be sent when
connecting to the server. On some servers it may happen that there is no
login prompt, and on those cases this configuration option will allow still
to define the desired username. The option environ_user can be used in
importing and with Open Connection.

= Terminal emulation =

Telnet library supports terminal
emulation with [http://pyte.readthedocs.io|Pyte]. Terminal emulation
will process the output in a virtual screen. This means that ANSI escape
codes, like cursor movements, and also control characters, like
carriage returns and backspaces, have the same effect on the result as they
would have on a normal terminal screen. For example the sequence
acdc\x1b[3Dbba will result in output abba.

Terminal emulation is taken into use by giving terminal_emulation
argument a true value (see Boolean arguments) either in the library
initialization or with Open Connection.

As Pyte approximates vt-style terminal, you may also want to set the
terminal type as vt100. We also recommend that you increase the window
size, as the terminal emulation will break all lines that are longer than
the window row length.

When terminal emulation is used, the newline and encoding can not be
changed anymore after opening the connection.

As a prerequisite for using terminal emulation, you need to have Pyte
installed. Due to backwards incompatible changes in Pyte, different
Robot Framework versions support different Pyte versions:

	Pyte 0.6 and newer are supported by Robot Framework 3.0.3.
Latest Pyte version can be installed (or upgraded) with
pip install --upgrade pyte.

	Pyte 0.5.2 and older are supported by Robot Framework 3.0.2 and earlier.
Pyte 0.5.2 can be installed with pip install pyte==0.5.2.

= Logging =

All keywords that read something log the output. These keywords take the
log level to use as an optional argument, and if no log level is specified
they use the [#Configuration|configured] default value.

The valid log levels to use are TRACE, DEBUG, INFO (default),
and WARN. Levels below INFO are not shown in log files by default
whereas warnings are shown more prominently.

The [http://docs.python.org/library/telnetlib.html|telnetlib module]
used by this library has a custom logging system for logging content it
sends and receives. By default these messages are written using TRACE
level, but the level is configurable with the telnetlib_log_level
option either in the library initialization, to the Open Connection
or by using the Set Telnetlib Log Level keyword to the active
connection. Special level NONE con be used to disable the logging
altogether.

= Time string format =

Timeouts and other times used must be given as a time string using format
like 15 seconds or 1min 10s. If the timeout is given as just
a number, for example, 10 or 1.5, it is considered to be seconds.
The time string format is described in more detail in an appendix of
[http://robotframework.org/robotframework/#user-guide|Robot Framework User Guide].

= Boolean arguments =

Some keywords accept arguments that are handled as Boolean values true or
false. If such an argument is given as a string, it is considered false if
it is an empty string or equal to FALSE, NONE, NO, OFF or
0, case-insensitively. Other strings are considered true regardless
their value, and other argument types are tested using the same
[http://docs.python.org/library/stdtypes.html#truth|rules as in Python].

True examples:

False examples:

Considering string NONE false is new in Robot Framework 3.0.3 and
considering also OFF and 0 false is new in Robot Framework 3.1.

Telnet library can be imported with optional configuration parameters.

Configuration parameters are used as default values when new
connections are opened with Open Connection keyword. They can also be
overridden after opening the connection using the Set … keywords.
See these keywords as well as Configuration, Terminal emulation and
Logging sections above for more information about these parameters
and their possible values.

See Time string format and Boolean arguments sections for
information about using arguments accepting times and Boolean values,
respectively.

	
ROBOT_LIBRARY_SCOPE = 'TEST_SUITE'

	

	
ROBOT_LIBRARY_VERSION = '4.1.2'

	

	
get_keyword_names()

	

	
open_connection(host, alias=None, port=23, timeout=None, newline=None, prompt=None, prompt_is_regexp=False, encoding=None, encoding_errors=None, default_log_level=None, window_size=None, environ_user=None, terminal_emulation=None, terminal_type=None, telnetlib_log_level=None, connection_timeout=None)

	Opens a new Telnet connection to the given host and port.

The timeout, newline, prompt, prompt_is_regexp,
encoding, default_log_level, window_size, environ_user,
terminal_emulation, terminal_type and telnetlib_log_level
arguments get default values when the library is [#Importing|imported].
Setting them here overrides those values for the opened connection.
See Configuration, Terminal emulation and Logging sections for
more information about these parameters and their possible values.

Possible already opened connections are cached and it is possible to
switch back to them using Switch Connection keyword. It is possible to
switch either using explicitly given alias or using index returned
by this keyword. Indexing starts from 1 and is reset back to it by
Close All Connections keyword.

	
switch_connection(index_or_alias)

	Switches between active connections using an index or an alias.

Aliases can be given to Open Connection keyword which also always
returns the connection index.

This keyword returns the index of previous active connection.

The example above expects that there were no other open
connections when opening the first one, because it used index
1 when switching to the connection later. If you are not
sure about that, you can store the index into a variable as
shown below.

	
close_all_connections()

	Closes all open connections and empties the connection cache.

If multiple connections are opened, this keyword should be used in
a test or suite teardown to make sure that all connections are closed.
It is not an error is some of the connections have already been closed
by Close Connection.

After this keyword, new indexes returned by Open Connection
keyword are reset to 1.

	
class robot.libraries.Telnet.TelnetConnection(host=None, port=23, timeout=3.0, newline='CRLF', prompt=None, prompt_is_regexp=False, encoding='UTF-8', encoding_errors='ignore', default_log_level='INFO', window_size=None, environ_user=None, terminal_emulation=False, terminal_type=None, telnetlib_log_level='TRACE', connection_timeout=None)

	Bases: telnetlib.Telnet

	
NEW_ENVIRON_IS = '\x00'

	

	
NEW_ENVIRON_VAR = '\x00'

	

	
NEW_ENVIRON_VALUE = '\x01'

	

	
INTERNAL_UPDATE_FREQUENCY = 0.03

	

	
set_timeout(timeout)

	Sets the timeout used for waiting output in the current connection.

Read operations that expect some output to appear (Read Until, Read
Until Regexp, Read Until Prompt, Login) use this timeout and fail
if the expected output does not appear before this timeout expires.

The timeout must be given in time string format. The old timeout
is returned and can be used to restore the timeout later.

See Configuration section for more information about global and
connection specific configuration.

	
set_newline(newline)

	Sets the newline used by Write keyword in the current connection.

The old newline is returned and can be used to restore the newline later.
See Set Timeout for a similar example.

If terminal emulation is used, the newline can not be changed on an open
connection.

See Configuration section for more information about global and
connection specific configuration.

	
set_prompt(prompt, prompt_is_regexp=False)

	Sets the prompt used by Read Until Prompt and Login in the current connection.

If prompt_is_regexp is given a true value (see Boolean arguments),
the given prompt is considered to be a regular expression.

The old prompt is returned and can be used to restore the prompt later.

See the documentation of
[http://docs.python.org/library/re.html|Python re module]
for more information about the supported regular expression syntax.
Notice that possible backslashes need to be escaped in Robot Framework
test data.

See Configuration section for more information about global and
connection specific configuration.

	
set_encoding(encoding=None, errors=None)

	Sets the encoding to use for writing and reading in the current connection.

The given encoding specifies the encoding to use when written/read
text is encoded/decoded, and errors specifies the error handler to
use if encoding/decoding fails. Either of these can be omitted and in
that case the old value is not affected. Use string NONE to disable
encoding altogether.

See Configuration section for more information about encoding and
error handlers, as well as global and connection specific configuration
in general.

The old values are returned and can be used to restore the encoding
and the error handler later. See Set Prompt for a similar example.

If terminal emulation is used, the encoding can not be changed on an open
connection.

	
set_telnetlib_log_level(level)

	Sets the log level used for logging in the underlying telnetlib.

Note that telnetlib can be very noisy thus using the level NONE
can shutdown the messages generated by this library.

	
set_default_log_level(level)

	Sets the default log level used for logging in the current connection.

The old default log level is returned and can be used to restore the
log level later.

See Configuration section for more information about global and
connection specific configuration.

	
close_connection(loglevel=None)

	Closes the current Telnet connection.

Remaining output in the connection is read, logged, and returned.
It is not an error to close an already closed connection.

Use Close All Connections if you want to make sure all opened
connections are closed.

See Logging section for more information about log levels.

	
login(username, password, login_prompt='login: ', password_prompt='Password: ', login_timeout='1 second', login_incorrect='Login incorrect')

	Logs in to the Telnet server with the given user information.

This keyword reads from the connection until the login_prompt is
encountered and then types the given username. Then it reads until
the password_prompt and types the given password. In both cases
a newline is appended automatically and the connection specific
timeout used when waiting for outputs.

How logging status is verified depends on whether a prompt is set for
this connection or not:

1) If the prompt is set, this keyword reads the output until the prompt
is found using the normal timeout. If no prompt is found, login is
considered failed and also this keyword fails. Note that in this case
both login_timeout and login_incorrect arguments are ignored.

2) If the prompt is not set, this keywords sleeps until login_timeout
and then reads all the output available on the connection. If the
output contains login_incorrect text, login is considered failed
and also this keyword fails.

See Configuration section for more information about setting
newline, timeout, and prompt.

	
write(text, loglevel=None)

	Writes the given text plus a newline into the connection.

The newline character sequence to use can be [#Configuration|configured]
both globally and per connection basis. The default value is CRLF.

This keyword consumes the written text, until the added newline, from
the output and logs and returns it. The given text itself must not
contain newlines. Use Write Bare instead if either of these features
causes a problem.

Note: This keyword does not return the possible output of the executed
command. To get the output, one of the Read … keywords must be
used. See Writing and reading section for more details.

See Logging section for more information about log levels.

	
write_bare(text)

	Writes the given text, and nothing else, into the connection.

This keyword does not append a newline nor consume the written text.
Use Write if these features are needed.

	
write_until_expected_output(text, expected, timeout, retry_interval, loglevel=None)

	Writes the given text repeatedly, until expected appears in the output.

text is written without appending a newline and it is consumed from
the output before trying to find expected. If expected does not
appear in the output within timeout, this keyword fails.

retry_interval defines the time to wait expected to appear before
writing the text again. Consuming the written text is subject to
the normal [#Configuration|configured timeout].

Both timeout and retry_interval must be given in time string
format. See Logging section for more information about log levels.

The above example writes command ps -ef | grep myprocess\r\n until
myprocess appears in the output. The command is written every 0.5
seconds and the keyword fails if myprocess does not appear in
the output in 5 seconds.

	
write_control_character(character)

	Writes the given control character into the connection.

The control character is prepended with an IAC (interpret as command)
character.

The following control character names are supported: BRK, IP, AO, AYT,
EC, EL, NOP. Additionally, you can use arbitrary numbers to send any
control character.

	
read(loglevel=None)

	Reads everything that is currently available in the output.

Read output is both returned and logged. See Logging section for more
information about log levels.

	
read_until(expected, loglevel=None)

	Reads output until expected text is encountered.

Text up to and including the match is returned and logged. If no match
is found, this keyword fails. How much to wait for the output depends
on the [#Configuration|configured timeout].

See Logging section for more information about log levels. Use
Read Until Regexp if more complex matching is needed.

	
read_until_regexp(*expected)

	Reads output until any of the expected regular expressions match.

This keyword accepts any number of regular expressions patterns or
compiled Python regular expression objects as arguments. Text up to
and including the first match to any of the regular expressions is
returned and logged. If no match is found, this keyword fails. How much
to wait for the output depends on the [#Configuration|configured timeout].

If the last given argument is a [#Logging|valid log level], it is used
as loglevel similarly as with Read Until keyword.

See the documentation of
[http://docs.python.org/library/re.html|Python re module]
for more information about the supported regular expression syntax.
Notice that possible backslashes need to be escaped in Robot Framework
test data.

	
read_until_prompt(loglevel=None, strip_prompt=False)

	Reads output until the prompt is encountered.

This keyword requires the prompt to be [#Configuration|configured]
either in importing or with Open Connection or Set Prompt keyword.

By default, text up to and including the prompt is returned and logged.
If no prompt is found, this keyword fails. How much to wait for the
output depends on the [#Configuration|configured timeout].

If you want to exclude the prompt from the returned output, set
strip_prompt to a true value (see Boolean arguments). If your
prompt is a regular expression, make sure that the expression spans the
whole prompt, because only the part of the output that matches the
regular expression is stripped away.

See Logging section for more information about log levels.

	
execute_command(command, loglevel=None, strip_prompt=False)

	Executes the given command and reads, logs, and returns everything until the prompt.

This keyword requires the prompt to be [#Configuration|configured]
either in importing or with Open Connection or Set Prompt keyword.

This is a convenience keyword that uses Write and Read Until Prompt
internally. Following two examples are thus functionally identical:

See Logging section for more information about log levels and Read
Until Prompt for more information about the strip_prompt parameter.

	
msg(msg, *args)

	

	
close()

	Close the connection.

	
expect(list, timeout=None)

	Read until one from a list of a regular expressions matches.

The first argument is a list of regular expressions, either
compiled (re.RegexObject instances) or uncompiled (strings).
The optional second argument is a timeout, in seconds; default
is no timeout.

Return a tuple of three items: the index in the list of the
first regular expression that matches; the match object
returned; and the text read up till and including the match.

If EOF is read and no text was read, raise EOFError.
Otherwise, when nothing matches, return (-1, None, text) where
text is the text received so far (may be the empty string if a
timeout happened).

If a regular expression ends with a greedy match (e.g. ‘.*’)
or if more than one expression can match the same input, the
results are undeterministic, and may depend on the I/O timing.

	
fileno()

	Return the fileno() of the socket object used internally.

	
fill_rawq()

	Fill raw queue from exactly one recv() system call.

Block if no data is immediately available. Set self.eof when
connection is closed.

	
get_socket()

	Return the socket object used internally.

	
interact()

	Interaction function, emulates a very dumb telnet client.

	
listener()

	Helper for mt_interact() – this executes in the other thread.

	
mt_interact()

	Multithreaded version of interact().

	
open(host, port=0, timeout=<object object>)

	Connect to a host.

The optional second argument is the port number, which
defaults to the standard telnet port (23).

Don’t try to reopen an already connected instance.

	
process_rawq()

	Transfer from raw queue to cooked queue.

Set self.eof when connection is closed. Don’t block unless in
the midst of an IAC sequence.

	
rawq_getchar()

	Get next char from raw queue.

Block if no data is immediately available. Raise EOFError
when connection is closed.

	
read_all()

	Read all data until EOF; block until connection closed.

	
read_eager()

	Read readily available data.

Raise EOFError if connection closed and no cooked data
available. Return ‘’ if no cooked data available otherwise.
Don’t block unless in the midst of an IAC sequence.

	
read_lazy()

	Process and return data that’s already in the queues (lazy).

Raise EOFError if connection closed and no data available.
Return ‘’ if no cooked data available otherwise. Don’t block
unless in the midst of an IAC sequence.

	
read_sb_data()

	Return any data available in the SB … SE queue.

Return ‘’ if no SB … SE available. Should only be called
after seeing a SB or SE command. When a new SB command is
found, old unread SB data will be discarded. Don’t block.

	
read_some()

	Read at least one byte of cooked data unless EOF is hit.

Return ‘’ if EOF is hit. Block if no data is immediately
available.

	
read_very_eager()

	Read everything that’s possible without blocking in I/O (eager).

Raise EOFError if connection closed and no cooked data
available. Return ‘’ if no cooked data available otherwise.
Don’t block unless in the midst of an IAC sequence.

	
read_very_lazy()

	Return any data available in the cooked queue (very lazy).

Raise EOFError if connection closed and no data available.
Return ‘’ if no cooked data available otherwise. Don’t block.

	
set_debuglevel(debuglevel)

	Set the debug level.

The higher it is, the more debug output you get (on sys.stdout).

	
set_option_negotiation_callback(callback)

	Provide a callback function called after each receipt of a telnet option.

	
sock_avail()

	Test whether data is available on the socket.

	
class robot.libraries.Telnet.TerminalEmulator(window_size=None, newline='rn')

	Bases: object

	
current_output

	

	
feed(text)

	

	
read()

	

	
read_until(expected)

	

	
read_until_regexp(regexp_list)

	

	
exception robot.libraries.Telnet.NoMatchError(expected, timeout, output=None)

	Bases: exceptions.AssertionError

	
ROBOT_SUPPRESS_NAME = True

	

	
args

	

	
message

	

robot.libraries.XML module

	
class robot.libraries.XML.XML(use_lxml=False)

	Bases: object

Robot Framework test library for verifying and modifying XML documents.

As the name implies, _XML_ is a test library for verifying contents of XML
files. In practice it is a pretty thin wrapper on top of Python’s
[http://docs.python.org/library/xml.etree.elementtree.html|ElementTree XML API].

The library has the following main usages:

	Parsing an XML file, or a string containing XML, into an XML element
structure and finding certain elements from it for for further analysis
(e.g. Parse XML and Get Element keywords).

	Getting text or attributes of elements
(e.g. Get Element Text and Get Element Attribute).

	Directly verifying text, attributes, or whole elements
(e.g Element Text Should Be and Elements Should Be Equal).

	Modifying XML and saving it (e.g. Set Element Text, Add Element
and Save XML).

== Table of contents ==

%TOC%

= Parsing XML =

XML can be parsed into an element structure using Parse XML keyword.
The XML to be parsed can be specified using a path to an XML file or as
a string or bytes that contain XML directly. The keyword returns the root
element of the structure, which then contains other elements as its
children and their children. Possible comments and processing instructions
in the source XML are removed.

XML is not validated during parsing even if has a schema defined. How
possible doctype elements are handled otherwise depends on the used XML
module and on the platform. The standard ElementTree strips doctypes
altogether but when using lxml they are preserved when XML is saved.

The element structure returned by Parse XML, as well as elements
returned by keywords such as Get Element, can be used as the source
argument with other keywords. In addition to an already parsed XML
structure, other keywords also accept paths to XML files and strings
containing XML similarly as Parse XML. Notice that keywords that modify
XML do not write those changes back to disk even if the source would be
given as a path to a file. Changes must always saved explicitly using
Save XML keyword.

When the source is given as a path to a file, the forward slash character
(/) can be used as the path separator regardless the operating system.
On Windows also the backslash works, but it the test data it needs to be
escaped by doubling it (\\). Using the built-in variable ${/}
naturally works too.

Note: Support for XML as bytes is new in Robot Framework 3.2.

= Using lxml =

By default this library uses Python’s standard
[http://docs.python.org/library/xml.etree.elementtree.html|ElementTree]
module for parsing XML, but it can be configured to use
[http://lxml.de|lxml] module instead when importing the library.
The resulting element structure has same API regardless which module
is used for parsing.

The main benefits of using lxml is that it supports richer xpath syntax
than the standard ElementTree and enables using Evaluate Xpath keyword.
It also preserves the doctype and possible namespace prefixes saving XML.

= Example =

The following simple example demonstrates parsing XML and verifying its
contents both using keywords in this library and in _BuiltIn_ and
Collections libraries. How to use xpath expressions to find elements
and what attributes the returned elements contain are discussed, with
more examples, in Finding elements with xpath and Element attributes
sections.

In this example, as well as in many other examples in this documentation,
${XML} refers to the following example XML document. In practice
${XML} could either be a path to an XML file or it could contain the XML
itself.

Notice that in the example three last lines are equivalent. Which one to
use in practice depends on which other elements you need to get or verify.
If you only need to do one verification, using the last line alone would
suffice. If more verifications are needed, parsing the XML with Parse XML
only once would be more efficient.

= Finding elements with xpath =

ElementTree, and thus also this library, supports finding elements using
xpath expressions. ElementTree does not, however, support the full xpath
standard. The supported xpath syntax is explained below and
[https://docs.python.org/library/xml.etree.elementtree.html#xpath-support|
ElementTree documentation] provides more details. In the examples
${XML} refers to the same XML structure as in the earlier example.

If lxml support is enabled when importing the library, the whole
[http://www.w3.org/TR/xpath/|xpath 1.0 standard] is supported.
That includes everything listed below but also lot of other useful
constructs.

== Tag names ==

When just a single tag name is used, xpath matches all direct child
elements that have that tag name.

== Paths ==

Paths are created by combining tag names with a forward slash (/). For
example, parent/child matches all child elements under parent
element. Notice that if there are multiple parent elements that all
have child elements, parent/child xpath will match all these
child elements.

== Wildcards ==

An asterisk (*) can be used in paths instead of a tag name to denote
any element.

== Current element ==

The current element is denoted with a dot (.). Normally the current
element is implicit and does not need to be included in the xpath.

== Parent element ==

The parent element of another element is denoted with two dots (..).
Notice that it is not possible to refer to the parent of the current
element.

== Search all sub elements ==

Two forward slashes (//) mean that all sub elements, not only the
direct children, are searched. If the search is started from the current
element, an explicit dot is required.

== Predicates ==

Predicates allow selecting elements using also other criteria than tag
names, for example, attributes or position. They are specified after the
normal tag name or path using syntax path[predicate]. The path can have
wildcards and other special syntax explained earlier. What predicates
the standard ElementTree supports is explained in the table below.

Predicates can also be stacked like path[predicate1][predicate2].
A limitation is that possible position predicate must always be first.

= Element attributes =

All keywords returning elements, such as Parse XML, and Get Element,
return ElementTree’s
[http://docs.python.org/library/xml.etree.elementtree.html#element-objects|Element objects].
These elements can be used as inputs for other keywords, but they also
contain several useful attributes that can be accessed directly using
the extended variable syntax.

The attributes that are both useful and convenient to use in the test
data are explained below. Also other attributes, including methods, can
be accessed, but that is typically better to do in custom libraries than
directly in the test data.

The examples use the same ${XML} structure as the earlier examples.

== tag ==

The tag of the element.

== text ==

The text that the element contains or Python None if the element has no
text. Notice that the text _does not_ contain texts of possible child
elements nor text after or between children. Notice also that in XML
whitespace is significant, so the text contains also possible indentation
and newlines. To get also text of the possible children, optionally
whitespace normalized, use Get Element Text keyword.

== tail ==

The text after the element before the next opening or closing tag. Python
None if the element has no tail. Similarly as with text, also
tail contains possible indentation and newlines.

== attrib ==

A Python dictionary containing attributes of the element.

= Handling XML namespaces =

ElementTree and lxml handle possible namespaces in XML documents by adding
the namespace URI to tag names in so called Clark Notation. That is
inconvenient especially with xpaths, and by default this library strips
those namespaces away and moves them to xmlns attribute instead. That
can be avoided by passing keep_clark_notation argument to Parse XML
keyword. Alternatively Parse XML supports stripping namespace information
altogether by using strip_namespaces argument. The pros and cons of
different approaches are discussed in more detail below.

== How ElementTree handles namespaces ==

If an XML document has namespaces, ElementTree adds namespace information
to tag names in [http://www.jclark.com/xml/xmlns.htm|Clark Notation]
(e.g. {http://ns.uri}tag) and removes original xmlns attributes.
This is done both with default namespaces and with namespaces with a prefix.
How it works in practice is illustrated by the following example, where
${NS} variable contains this XML document:

As you can see, including the namespace URI in tag names makes xpaths
really long and complex.

If you save the XML, ElementTree moves namespace information back to
xmlns attributes. Unfortunately it does not restore the original
prefixes:

The resulting output is semantically same as the original, but mangling
prefixes like this may still not be desirable. Notice also that the actual
output depends slightly on ElementTree version.

== Default namespace handling ==

Because the way ElementTree handles namespaces makes xpaths so complicated,
this library, by default, strips namespaces from tag names and moves that
information back to xmlns attributes. How this works in practice is
shown by the example below, where ${NS} variable contains the same XML
document as in the previous example.

Now that tags do not contain namespace information, xpaths are simple again.

A minor limitation of this approach is that namespace prefixes are lost.
As a result the saved output is not exactly same as the original one in
this case either:

Also this output is semantically same as the original. If the original XML
had only default namespaces, the output would also look identical.

== Namespaces when using lxml ==

This library handles namespaces same way both when using lxml and when
not using it. There are, however, differences how lxml internally handles
namespaces compared to the standard ElementTree. The main difference is
that lxml stores information about namespace prefixes and they are thus
preserved if XML is saved. Another visible difference is that lxml includes
namespace information in child elements got with Get Element if the
parent element has namespaces.

== Stripping namespaces altogether ==

Because namespaces often add unnecessary complexity, Parse XML supports
stripping them altogether by using strip_namespaces=True. When this
option is enabled, namespaces are not shown anywhere nor are they included
if XML is saved.

== Attribute namespaces ==

Attributes in XML documents are, by default, in the same namespaces as
the element they belong to. It is possible to use different namespaces
by using prefixes, but this is pretty rare.

If an attribute has a namespace prefix, ElementTree will replace it with
Clark Notation the same way it handles elements. Because stripping
namespaces from attributes could cause attribute conflicts, this library
does not handle attribute namespaces at all. Thus the following example
works the same way regardless how namespaces are handled.

= Boolean arguments =

Some keywords accept arguments that are handled as Boolean values true or
false. If such an argument is given as a string, it is considered false if
it is an empty string or equal to FALSE, NONE, NO, OFF or
0, case-insensitively. Other strings are considered true regardless
their value, and other argument types are tested using the same
[http://docs.python.org/library/stdtypes.html#truth|rules as in Python].

True examples:

False examples:

Considering OFF and 0 false is new in Robot Framework 3.1.

== Pattern matching ==

Some keywords, for example Elements Should Match, support so called
[http://en.wikipedia.org/wiki/Glob_(programming)|glob patterns] where:

Unlike with glob patterns normally, path separator characters / and
\ and the newline character \n are matches by the above
wildcards.

Support for brackets like [abc] and [!a-z] is new in
Robot Framework 3.1

Import library with optionally lxml mode enabled.

By default this library uses Python’s standard
[http://docs.python.org/library/xml.etree.elementtree.html|ElementTree]
module for parsing XML. If use_lxml argument is given a true value
(see Boolean arguments), the library will use [http://lxml.de|lxml]
module instead. See Using lxml section for benefits provided by lxml.

Using lxml requires that the lxml module is installed on the system.
If lxml mode is enabled but the module is not installed, this library
will emit a warning and revert back to using the standard ElementTree.

	
ROBOT_LIBRARY_SCOPE = 'GLOBAL'

	

	
ROBOT_LIBRARY_VERSION = '4.1.2'

	

	
parse_xml(source, keep_clark_notation=False, strip_namespaces=False)

	Parses the given XML file or string into an element structure.

The source can either be a path to an XML file or a string
containing XML. In both cases the XML is parsed into ElementTree
[http://docs.python.org/library/xml.etree.elementtree.html#element-objects|element structure]
and the root element is returned. Possible comments and processing
instructions in the source XML are removed.

As discussed in Handling XML namespaces section, this keyword, by
default, removes namespace information ElementTree has added to tag
names and moves it into xmlns attributes. This typically eases
handling XML documents with namespaces considerably. If you do not
want that to happen, or want to avoid the small overhead of going
through the element structure when your XML does not have namespaces,
you can disable this feature by giving keep_clark_notation argument
a true value (see Boolean arguments).

If you want to strip namespace information altogether so that it is
not included even if XML is saved, you can give a true value to
strip_namespaces argument.

Use Get Element keyword if you want to get a certain element and not
the whole structure. See Parsing XML section for more details and
examples.

	
get_element(source, xpath='.')

	Returns an element in the source matching the xpath.

The source can be a path to an XML file, a string containing XML, or
an already parsed XML element. The xpath specifies which element to
find. See the introduction for more details about both the possible
sources and the supported xpath syntax.

The keyword fails if more, or less, than one element matches the
xpath. Use Get Elements if you want all matching elements to be
returned.

Parse XML is recommended for parsing XML when the whole structure
is needed. It must be used if there is a need to configure how XML
namespaces are handled.

Many other keywords use this keyword internally, and keywords modifying
XML are typically documented to both to modify the given source and
to return it. Modifying the source does not apply if the source is
given as a string. The XML structure parsed based on the string and
then modified is nevertheless returned.

	
get_elements(source, xpath)

	Returns a list of elements in the source matching the xpath.

The source can be a path to an XML file, a string containing XML, or
an already parsed XML element. The xpath specifies which element to
find. See the introduction for more details.

Elements matching the xpath are returned as a list. If no elements
match, an empty list is returned. Use Get Element if you want to get
exactly one match.

	
get_child_elements(source, xpath='.')

	Returns the child elements of the specified element as a list.

The element whose children to return is specified using source and
xpath. They have exactly the same semantics as with Get Element
keyword.

All the direct child elements of the specified element are returned.
If the element has no children, an empty list is returned.

	
get_element_count(source, xpath='.')

	Returns and logs how many elements the given xpath matches.

Arguments source and xpath have exactly the same semantics as
with Get Elements keyword that this keyword uses internally.

See also Element Should Exist and Element Should Not Exist.

	
element_should_exist(source, xpath='.', message=None)

	Verifies that one or more element match the given xpath.

Arguments source and xpath have exactly the same semantics as
with Get Elements keyword. Keyword passes if the xpath matches
one or more elements in the source. The default error message can
be overridden with the message argument.

See also Element Should Not Exist as well as Get Element Count
that this keyword uses internally.

	
element_should_not_exist(source, xpath='.', message=None)

	Verifies that no element match the given xpath.

Arguments source and xpath have exactly the same semantics as
with Get Elements keyword. Keyword fails if the xpath matches any
element in the source. The default error message can be overridden
with the message argument.

See also Element Should Exist as well as Get Element Count
that this keyword uses internally.

	
get_element_text(source, xpath='.', normalize_whitespace=False)

	Returns all text of the element, possibly whitespace normalized.

The element whose text to return is specified using source and
xpath. They have exactly the same semantics as with Get Element
keyword.

This keyword returns all the text of the specified element, including
all the text its children and grandchildren contain. If the element
has no text, an empty string is returned. The returned text is thus not
always the same as the text attribute of the element.

By default all whitespace, including newlines and indentation, inside
the element is returned as-is. If normalize_whitespace is given
a true value (see Boolean arguments), then leading and trailing
whitespace is stripped, newlines and tabs converted to spaces, and
multiple spaces collapsed into one. This is especially useful when
dealing with HTML data.

See also Get Elements Texts, Element Text Should Be and
Element Text Should Match.

	
get_elements_texts(source, xpath, normalize_whitespace=False)

	Returns text of all elements matching xpath as a list.

The elements whose text to return is specified using source and
xpath. They have exactly the same semantics as with Get Elements
keyword.

The text of the matched elements is returned using the same logic
as with Get Element Text. This includes optional whitespace
normalization using the normalize_whitespace option.

	
element_text_should_be(source, expected, xpath='.', normalize_whitespace=False, message=None)

	Verifies that the text of the specified element is expected.

The element whose text is verified is specified using source and
xpath. They have exactly the same semantics as with Get Element
keyword.

The text to verify is got from the specified element using the same
logic as with Get Element Text. This includes optional whitespace
normalization using the normalize_whitespace option.

The keyword passes if the text of the element is equal to the
expected value, and otherwise it fails. The default error message
can be overridden with the message argument. Use Element Text
Should Match to verify the text against a pattern instead of an exact
value.

	
element_text_should_match(source, pattern, xpath='.', normalize_whitespace=False, message=None)

	Verifies that the text of the specified element matches expected.

This keyword works exactly like Element Text Should Be except that
the expected value can be given as a pattern that the text of the
element must match.

Pattern matching is similar as matching files in a shell with
*, ? and [chars] acting as wildcards. See the
Pattern matching section for more information.

	
get_element_attribute(source, name, xpath='.', default=None)

	Returns the named attribute of the specified element.

The element whose attribute to return is specified using source and
xpath. They have exactly the same semantics as with Get Element
keyword.

The value of the attribute name of the specified element is returned.
If the element does not have such element, the default value is
returned instead.

See also Get Element Attributes, Element Attribute Should Be,
Element Attribute Should Match and Element Should Not Have Attribute.

	
get_element_attributes(source, xpath='.')

	Returns all attributes of the specified element.

The element whose attributes to return is specified using source and
xpath. They have exactly the same semantics as with Get Element
keyword.

Attributes are returned as a Python dictionary. It is a copy of the
original attributes so modifying it has no effect on the XML structure.

Use Get Element Attribute to get the value of a single attribute.

	
element_attribute_should_be(source, name, expected, xpath='.', message=None)

	Verifies that the specified attribute is expected.

The element whose attribute is verified is specified using source
and xpath. They have exactly the same semantics as with
Get Element keyword.

The keyword passes if the attribute name of the element is equal to
the expected value, and otherwise it fails. The default error
message can be overridden with the message argument.

To test that the element does not have a certain attribute, Python
None (i.e. variable ${NONE}) can be used as the expected value.
A cleaner alternative is using Element Should Not Have Attribute.

See also Element Attribute Should Match and Get Element Attribute.

	
element_attribute_should_match(source, name, pattern, xpath='.', message=None)

	Verifies that the specified attribute matches expected.

This keyword works exactly like Element Attribute Should Be except
that the expected value can be given as a pattern that the attribute of
the element must match.

Pattern matching is similar as matching files in a shell with
*, ? and [chars] acting as wildcards. See the
Pattern matching section for more information.

	
element_should_not_have_attribute(source, name, xpath='.', message=None)

	Verifies that the specified element does not have attribute name.

The element whose attribute is verified is specified using source
and xpath. They have exactly the same semantics as with
Get Element keyword.

The keyword fails if the specified element has attribute name. The
default error message can be overridden with the message argument.

See also Get Element Attribute, Get Element Attributes,
Element Text Should Be and Element Text Should Match.

	
elements_should_be_equal(source, expected, exclude_children=False, normalize_whitespace=False)

	Verifies that the given source element is equal to expected.

Both source and expected can be given as a path to an XML file,
as a string containing XML, or as an already parsed XML element
structure. See introduction for more information about parsing XML in
general.

The keyword passes if the source element and expected element
are equal. This includes testing the tag names, texts, and attributes
of the elements. By default also child elements are verified the same
way, but this can be disabled by setting exclude_children to a
true value (see Boolean arguments).

All texts inside the given elements are verified, but possible text
outside them is not. By default texts must match exactly, but setting
normalize_whitespace to a true value makes text verification
independent on newlines, tabs, and the amount of spaces. For more
details about handling text see Get Element Text keyword and
discussion about elements’ text and tail attributes in the
introduction.

The last example may look a bit strange because the <p> element
only has text Text with. The reason is that rest of the text
inside <p> actually belongs to the child elements. This includes
the . at the end that is the tail text of the <i> element.

See also Elements Should Match.

	
elements_should_match(source, expected, exclude_children=False, normalize_whitespace=False)

	Verifies that the given source element matches expected.

This keyword works exactly like Elements Should Be Equal except that
texts and attribute values in the expected value can be given as
patterns.

Pattern matching is similar as matching files in a shell with
*, ? and [chars] acting as wildcards. See the
Pattern matching section for more information.

See Elements Should Be Equal for more examples.

	
set_element_tag(source, tag, xpath='.')

	Sets the tag of the specified element.

The element whose tag to set is specified using source and
xpath. They have exactly the same semantics as with Get Element
keyword. The resulting XML structure is returned, and if the source
is an already parsed XML structure, it is also modified in place.

Can only set the tag of a single element. Use Set Elements Tag to set
the tag of multiple elements in one call.

	
set_elements_tag(source, tag, xpath='.')

	Sets the tag of the specified elements.

Like Set Element Tag but sets the tag of all elements matching
the given xpath.

	
set_element_text(source, text=None, tail=None, xpath='.')

	Sets text and/or tail text of the specified element.

The element whose text to set is specified using source and
xpath. They have exactly the same semantics as with Get Element
keyword. The resulting XML structure is returned, and if the source
is an already parsed XML structure, it is also modified in place.

Element’s text and tail text are changed only if new text and/or
tail values are given. See Element attributes section for more
information about text and tail in general.

Can only set the text/tail of a single element. Use Set Elements Text
to set the text/tail of multiple elements in one call.

	
set_elements_text(source, text=None, tail=None, xpath='.')

	Sets text and/or tail text of the specified elements.

Like Set Element Text but sets the text or tail of all elements
matching the given xpath.

	
set_element_attribute(source, name, value, xpath='.')

	Sets attribute name of the specified element to value.

The element whose attribute to set is specified using source and
xpath. They have exactly the same semantics as with Get Element
keyword. The resulting XML structure is returned, and if the source
is an already parsed XML structure, it is also modified in place.

It is possible to both set new attributes and to overwrite existing.
Use Remove Element Attribute or Remove Element Attributes for
removing them.

Can only set an attribute of a single element. Use Set Elements
Attribute to set an attribute of multiple elements in one call.

	
set_elements_attribute(source, name, value, xpath='.')

	Sets attribute name of the specified elements to value.

Like Set Element Attribute but sets the attribute of all elements
matching the given xpath.

	
remove_element_attribute(source, name, xpath='.')

	Removes attribute name from the specified element.

The element whose attribute to remove is specified using source and
xpath. They have exactly the same semantics as with Get Element
keyword. The resulting XML structure is returned, and if the source
is an already parsed XML structure, it is also modified in place.

It is not a failure to remove a non-existing attribute. Use Remove
Element Attributes to remove all attributes and Set Element Attribute
to set them.

Can only remove an attribute from a single element. Use Remove Elements
Attribute to remove an attribute of multiple elements in one call.

	
remove_elements_attribute(source, name, xpath='.')

	Removes attribute name from the specified elements.

Like Remove Element Attribute but removes the attribute of all
elements matching the given xpath.

	
remove_element_attributes(source, xpath='.')

	Removes all attributes from the specified element.

The element whose attributes to remove is specified using source and
xpath. They have exactly the same semantics as with Get Element
keyword. The resulting XML structure is returned, and if the source
is an already parsed XML structure, it is also modified in place.

Use Remove Element Attribute to remove a single attribute and
Set Element Attribute to set them.

Can only remove attributes from a single element. Use Remove Elements
Attributes to remove all attributes of multiple elements in one call.

	
remove_elements_attributes(source, xpath='.')

	Removes all attributes from the specified elements.

Like Remove Element Attributes but removes all attributes of all
elements matching the given xpath.

	
add_element(source, element, index=None, xpath='.')

	Adds a child element to the specified element.

The element to whom to add the new element is specified using source
and xpath. They have exactly the same semantics as with Get Element
keyword. The resulting XML structure is returned, and if the source
is an already parsed XML structure, it is also modified in place.

The element to add can be specified as a path to an XML file or
as a string containing XML, or it can be an already parsed XML element.
The element is copied before adding so modifying either the original
or the added element has no effect on the other
.
The element is added as the last child by default, but a custom index
can be used to alter the position. Indices start from zero (0 = first
position, 1 = second position, etc.), and negative numbers refer to
positions at the end (-1 = second last position, -2 = third last, etc.).

Use Remove Element or Remove Elements to remove elements.

	
remove_element(source, xpath='', remove_tail=False)

	Removes the element matching xpath from the source structure.

The element to remove from the source is specified with xpath
using the same semantics as with Get Element keyword. The resulting
XML structure is returned, and if the source is an already parsed
XML structure, it is also modified in place.

The keyword fails if xpath does not match exactly one element.
Use Remove Elements to remove all matched elements.

Element’s tail text is not removed by default, but that can be changed
by giving remove_tail a true value (see Boolean arguments). See
Element attributes section for more information about tail in
general.

	
remove_elements(source, xpath='', remove_tail=False)

	Removes all elements matching xpath from the source structure.

The elements to remove from the source are specified with xpath
using the same semantics as with Get Elements keyword. The resulting
XML structure is returned, and if the source is an already parsed
XML structure, it is also modified in place.

It is not a failure if xpath matches no elements. Use Remove
Element to remove exactly one element.

Element’s tail text is not removed by default, but that can be changed
by using remove_tail argument similarly as with Remove Element.

	
clear_element(source, xpath='.', clear_tail=False)

	Clears the contents of the specified element.

The element to clear is specified using source and xpath. They
have exactly the same semantics as with Get Element keyword.
The resulting XML structure is returned, and if the source is
an already parsed XML structure, it is also modified in place.

Clearing the element means removing its text, attributes, and children.
Element’s tail text is not removed by default, but that can be changed
by giving clear_tail a true value (see Boolean arguments). See
Element attributes section for more information about tail in
general.

Use Remove Element to remove the whole element.

	
copy_element(source, xpath='.')

	Returns a copy of the specified element.

The element to copy is specified using source and xpath. They
have exactly the same semantics as with Get Element keyword.

If the copy or the original element is modified afterwards, the changes
have no effect on the other.

	
element_to_string(source, xpath='.', encoding=None)

	Returns the string representation of the specified element.

The element to convert to a string is specified using source and
xpath. They have exactly the same semantics as with Get Element
keyword.

By default the string is returned as Unicode. If encoding argument
is given any value, the string is returned as bytes in the specified
encoding. The resulting string never contains the XML declaration.

See also Log Element and Save XML.

	
log_element(source, level='INFO', xpath='.')

	Logs the string representation of the specified element.

The element specified with source and xpath is first converted
into a string using Element To String keyword internally. The
resulting string is then logged using the given level.

The logged string is also returned.

	
save_xml(source, path, encoding='UTF-8')

	Saves the given element to the specified file.

The element to save is specified with source using the same
semantics as with Get Element keyword.

The file where the element is saved is denoted with path and the
encoding to use with encoding. The resulting file always contains
the XML declaration.

The resulting XML file may not be exactly the same as the original:
- Comments and processing instructions are always stripped.
- Possible doctype and namespace prefixes are only preserved when

using lxml.

	Other small differences are possible depending on the ElementTree
or lxml version.

Use Element To String if you just need a string representation of
the element.

	
evaluate_xpath(source, expression, context='.')

	Evaluates the given xpath expression and returns results.

The element in which context the expression is executed is specified
using source and context arguments. They have exactly the same
semantics as source and xpath arguments have with Get Element
keyword.

The xpath expression to evaluate is given as expression argument.
The result of the evaluation is returned as-is.

This keyword works only if lxml mode is taken into use when importing
the library.

	
class robot.libraries.XML.NameSpaceStripper(etree, lxml_etree=False)

	Bases: object

	
strip(elem, preserve=True, current_ns=None, top=True)

	

	
unstrip(elem, current_ns=None, copied=False)

	

	
class robot.libraries.XML.ElementFinder(etree, modern=True, lxml=False)

	Bases: object

	
find_all(elem, xpath)

	

	
class robot.libraries.XML.ElementComparator(comparator, normalizer=None, exclude_children=False)

	Bases: object

	
compare(actual, expected, location=None)

	

	
class robot.libraries.XML.Location(path, is_root=True)

	Bases: object

	
child(tag)

	

robot.libraries.dialogs_ipy module

robot.libraries.dialogs_jy module

robot.libraries.dialogs_py module

	
class robot.libraries.dialogs_py.MessageDialog(message, value=None, **extra)

	Bases: robot.libraries.dialogs_py._TkDialog

	
after(ms, func=None, *args)

	Call function once after given time.

MS specifies the time in milliseconds. FUNC gives the
function which shall be called. Additional parameters
are given as parameters to the function call. Return
identifier to cancel scheduling with after_cancel.

	
after_cancel(id)

	Cancel scheduling of function identified with ID.

Identifier returned by after or after_idle must be
given as first parameter.

	
after_idle(func, *args)

	Call FUNC once if the Tcl main loop has no event to
process.

Return an identifier to cancel the scheduling with
after_cancel.

	
aspect(minNumer=None, minDenom=None, maxNumer=None, maxDenom=None)

	Instruct the window manager to set the aspect ratio (width/height)
of this widget to be between MINNUMER/MINDENOM and MAXNUMER/MAXDENOM. Return a tuple
of the actual values if no argument is given.

	
attributes(*args)

	This subcommand returns or sets platform specific attributes

The first form returns a list of the platform specific flags and
their values. The second form returns the value for the specific
option. The third form sets one or more of the values. The values
are as follows:

On Windows, -disabled gets or sets whether the window is in a
disabled state. -toolwindow gets or sets the style of the window
to toolwindow (as defined in the MSDN). -topmost gets or sets
whether this is a topmost window (displays above all other
windows).

On Macintosh, XXXXX

On Unix, there are currently no special attribute values.

	
bbox(column=None, row=None, col2=None, row2=None)

	Return a tuple of integer coordinates for the bounding
box of this widget controlled by the geometry manager grid.

If COLUMN, ROW is given the bounding box applies from
the cell with row and column 0 to the specified
cell. If COL2 and ROW2 are given the bounding box
starts at that cell.

The returned integers specify the offset of the upper left
corner in the master widget and the width and height.

	
bell(displayof=0)

	Ring a display’s bell.

	
bind(sequence=None, func=None, add=None)

	Bind to this widget at event SEQUENCE a call to function FUNC.

SEQUENCE is a string of concatenated event
patterns. An event pattern is of the form
<MODIFIER-MODIFIER-TYPE-DETAIL> where MODIFIER is one
of Control, Mod2, M2, Shift, Mod3, M3, Lock, Mod4, M4,
Button1, B1, Mod5, M5 Button2, B2, Meta, M, Button3,
B3, Alt, Button4, B4, Double, Button5, B5 Triple,
Mod1, M1. TYPE is one of Activate, Enter, Map,
ButtonPress, Button, Expose, Motion, ButtonRelease
FocusIn, MouseWheel, Circulate, FocusOut, Property,
Colormap, Gravity Reparent, Configure, KeyPress, Key,
Unmap, Deactivate, KeyRelease Visibility, Destroy,
Leave and DETAIL is the button number for ButtonPress,
ButtonRelease and DETAIL is the Keysym for KeyPress and
KeyRelease. Examples are
<Control-Button-1> for pressing Control and mouse button 1 or
<Alt-A> for pressing A and the Alt key (KeyPress can be omitted).
An event pattern can also be a virtual event of the form
<<AString>> where AString can be arbitrary. This
event can be generated by event_generate.
If events are concatenated they must appear shortly
after each other.

FUNC will be called if the event sequence occurs with an
instance of Event as argument. If the return value of FUNC is
“break” no further bound function is invoked.

An additional boolean parameter ADD specifies whether FUNC will
be called additionally to the other bound function or whether
it will replace the previous function.

Bind will return an identifier to allow deletion of the bound function with
unbind without memory leak.

If FUNC or SEQUENCE is omitted the bound function or list
of bound events are returned.

	
bind_all(sequence=None, func=None, add=None)

	Bind to all widgets at an event SEQUENCE a call to function FUNC.
An additional boolean parameter ADD specifies whether FUNC will
be called additionally to the other bound function or whether
it will replace the previous function. See bind for the return value.

	
bind_class(className, sequence=None, func=None, add=None)

	Bind to widgets with bindtag CLASSNAME at event
SEQUENCE a call of function FUNC. An additional
boolean parameter ADD specifies whether FUNC will be
called additionally to the other bound function or
whether it will replace the previous function. See bind for
the return value.

	
bindtags(tagList=None)

	Set or get the list of bindtags for this widget.

With no argument return the list of all bindtags associated with
this widget. With a list of strings as argument the bindtags are
set to this list. The bindtags determine in which order events are
processed (see bind).

	
cget(key)

	Return the resource value for a KEY given as string.

	
client(name=None)

	Store NAME in WM_CLIENT_MACHINE property of this widget. Return
current value.

	
clipboard_append(string, **kw)

	Append STRING to the Tk clipboard.

A widget specified at the optional displayof keyword
argument specifies the target display. The clipboard
can be retrieved with selection_get.

	
clipboard_clear(**kw)

	Clear the data in the Tk clipboard.

A widget specified for the optional displayof keyword
argument specifies the target display.

	
clipboard_get(**kw)

	Retrieve data from the clipboard on window’s display.

The window keyword defaults to the root window of the Tkinter
application.

The type keyword specifies the form in which the data is
to be returned and should be an atom name such as STRING
or FILE_NAME. Type defaults to STRING, except on X11, where the default
is to try UTF8_STRING and fall back to STRING.

This command is equivalent to:

selection_get(CLIPBOARD)

	
colormapwindows(*wlist)

	Store list of window names (WLIST) into WM_COLORMAPWINDOWS property
of this widget. This list contains windows whose colormaps differ from their
parents. Return current list of widgets if WLIST is empty.

	
colormodel(value=None)

	Useless. Not implemented in Tk.

	
columnconfigure(index, cnf={}, **kw)

	Configure column INDEX of a grid.

Valid resources are minsize (minimum size of the column),
weight (how much does additional space propagate to this column)
and pad (how much space to let additionally).

	
command(value=None)

	Store VALUE in WM_COMMAND property. It is the command
which shall be used to invoke the application. Return current
command if VALUE is None.

	
config(cnf=None, **kw)

	Configure resources of a widget.

The values for resources are specified as keyword
arguments. To get an overview about
the allowed keyword arguments call the method keys.

	
configure(cnf=None, **kw)

	Configure resources of a widget.

The values for resources are specified as keyword
arguments. To get an overview about
the allowed keyword arguments call the method keys.

	
deiconify()

	Deiconify this widget. If it was never mapped it will not be mapped.
On Windows it will raise this widget and give it the focus.

	
deletecommand(name)

	Internal function.

Delete the Tcl command provided in NAME.

	
destroy()

	Destroy this and all descendants widgets.

	
event_add(virtual, *sequences)

	Bind a virtual event VIRTUAL (of the form <<Name>>)
to an event SEQUENCE such that the virtual event is triggered
whenever SEQUENCE occurs.

	
event_delete(virtual, *sequences)

	Unbind a virtual event VIRTUAL from SEQUENCE.

	
event_generate(sequence, **kw)

	Generate an event SEQUENCE. Additional
keyword arguments specify parameter of the event
(e.g. x, y, rootx, rooty).

	
event_info(virtual=None)

	Return a list of all virtual events or the information
about the SEQUENCE bound to the virtual event VIRTUAL.

	
focus()

	Direct input focus to this widget.

If the application currently does not have the focus
this widget will get the focus if the application gets
the focus through the window manager.

	
focus_displayof()

	Return the widget which has currently the focus on the
display where this widget is located.

Return None if the application does not have the focus.

	
focus_force()

	Direct input focus to this widget even if the
application does not have the focus. Use with
caution!

	
focus_get()

	Return the widget which has currently the focus in the
application.

Use focus_displayof to allow working with several
displays. Return None if application does not have
the focus.

	
focus_lastfor()

	Return the widget which would have the focus if top level
for this widget gets the focus from the window manager.

	
focus_set()

	Direct input focus to this widget.

If the application currently does not have the focus
this widget will get the focus if the application gets
the focus through the window manager.

	
focusmodel(model=None)

	Set focus model to MODEL. “active” means that this widget will claim
the focus itself, “passive” means that the window manager shall give
the focus. Return current focus model if MODEL is None.

	
frame()

	Return identifier for decorative frame of this widget if present.

	
geometry(newGeometry=None)

	Set geometry to NEWGEOMETRY of the form =widthxheight+x+y. Return
current value if None is given.

	
getboolean(s)

	Return a boolean value for Tcl boolean values true and false given as parameter.

	
getdouble

	alias of __builtin__.float

	
getint

	alias of __builtin__.int

	
getvar(name='PY_VAR')

	Return value of Tcl variable NAME.

	
grab_current()

	Return widget which has currently the grab in this application
or None.

	
grab_release()

	Release grab for this widget if currently set.

	
grab_set(timeout=30)

	

	
grab_set_global()

	Set global grab for this widget.

A global grab directs all events to this and
descendant widgets on the display. Use with caution -
other applications do not get events anymore.

	
grab_status()

	Return None, “local” or “global” if this widget has
no, a local or a global grab.

	
grid(baseWidth=None, baseHeight=None, widthInc=None, heightInc=None)

	Instruct the window manager that this widget shall only be
resized on grid boundaries. WIDTHINC and HEIGHTINC are the width and
height of a grid unit in pixels. BASEWIDTH and BASEHEIGHT are the
number of grid units requested in Tk_GeometryRequest.

	
grid_bbox(column=None, row=None, col2=None, row2=None)

	Return a tuple of integer coordinates for the bounding
box of this widget controlled by the geometry manager grid.

If COLUMN, ROW is given the bounding box applies from
the cell with row and column 0 to the specified
cell. If COL2 and ROW2 are given the bounding box
starts at that cell.

The returned integers specify the offset of the upper left
corner in the master widget and the width and height.

	
grid_columnconfigure(index, cnf={}, **kw)

	Configure column INDEX of a grid.

Valid resources are minsize (minimum size of the column),
weight (how much does additional space propagate to this column)
and pad (how much space to let additionally).

	
grid_location(x, y)

	Return a tuple of column and row which identify the cell
at which the pixel at position X and Y inside the master
widget is located.

	
grid_propagate(flag=['_noarg_'])

	Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information
of the slaves will determine the size of this widget. If no argument
is given, the current setting will be returned.

	
grid_rowconfigure(index, cnf={}, **kw)

	Configure row INDEX of a grid.

Valid resources are minsize (minimum size of the row),
weight (how much does additional space propagate to this row)
and pad (how much space to let additionally).

	
grid_size()

	Return a tuple of the number of column and rows in the grid.

	
grid_slaves(row=None, column=None)

	Return a list of all slaves of this widget
in its packing order.

	
group(pathName=None)

	Set the group leader widgets for related widgets to PATHNAME. Return
the group leader of this widget if None is given.

	
iconbitmap(bitmap=None, default=None)

	Set bitmap for the iconified widget to BITMAP. Return
the bitmap if None is given.

Under Windows, the DEFAULT parameter can be used to set the icon
for the widget and any descendents that don’t have an icon set
explicitly. DEFAULT can be the relative path to a .ico file
(example: root.iconbitmap(default=’myicon.ico’)). See Tk
documentation for more information.

	
iconify()

	Display widget as icon.

	
iconmask(bitmap=None)

	Set mask for the icon bitmap of this widget. Return the
mask if None is given.

	
iconname(newName=None)

	Set the name of the icon for this widget. Return the name if
None is given.

	
iconposition(x=None, y=None)

	Set the position of the icon of this widget to X and Y. Return
a tuple of the current values of X and X if None is given.

	
iconwindow(pathName=None)

	Set widget PATHNAME to be displayed instead of icon. Return the current
value if None is given.

	
image_names()

	Return a list of all existing image names.

	
image_types()

	Return a list of all available image types (e.g. photo bitmap).

	
keys()

	Return a list of all resource names of this widget.

	
lift(aboveThis=None)

	Raise this widget in the stacking order.

	
lower(belowThis=None)

	Lower this widget in the stacking order.

	
mainloop(n=0)

	Call the mainloop of Tk.

	
maxsize(width=None, height=None)

	Set max WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
minsize(width=None, height=None)

	Set min WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
nametowidget(name)

	Return the Tkinter instance of a widget identified by
its Tcl name NAME.

	
option_add(pattern, value, priority=None)

	Set a VALUE (second parameter) for an option
PATTERN (first parameter).

An optional third parameter gives the numeric priority
(defaults to 80).

	
option_clear()

	Clear the option database.

It will be reloaded if option_add is called.

	
option_get(name, className)

	Return the value for an option NAME for this widget
with CLASSNAME.

Values with higher priority override lower values.

	
option_readfile(fileName, priority=None)

	Read file FILENAME into the option database.

An optional second parameter gives the numeric
priority.

	
overrideredirect(boolean=None)

	Instruct the window manager to ignore this widget
if BOOLEAN is given with 1. Return the current value if None
is given.

	
pack_propagate(flag=['_noarg_'])

	Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information
of the slaves will determine the size of this widget. If no argument
is given the current setting will be returned.

	
pack_slaves()

	Return a list of all slaves of this widget
in its packing order.

	
place_slaves()

	Return a list of all slaves of this widget
in its packing order.

	
positionfrom(who=None)

	Instruct the window manager that the position of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
propagate(flag=['_noarg_'])

	Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information
of the slaves will determine the size of this widget. If no argument
is given the current setting will be returned.

	
protocol(name=None, func=None)

	Bind function FUNC to command NAME for this widget.
Return the function bound to NAME if None is given. NAME could be
e.g. “WM_SAVE_YOURSELF” or “WM_DELETE_WINDOW”.

	
quit()

	Quit the Tcl interpreter. All widgets will be destroyed.

	
register(func, subst=None, needcleanup=1)

	Return a newly created Tcl function. If this
function is called, the Python function FUNC will
be executed. An optional function SUBST can
be given which will be executed before FUNC.

	
resizable(width=None, height=None)

	Instruct the window manager whether this width can be resized
in WIDTH or HEIGHT. Both values are boolean values.

	
rowconfigure(index, cnf={}, **kw)

	Configure row INDEX of a grid.

Valid resources are minsize (minimum size of the row),
weight (how much does additional space propagate to this row)
and pad (how much space to let additionally).

	
selection_clear(**kw)

	Clear the current X selection.

	
selection_get(**kw)

	Return the contents of the current X selection.

A keyword parameter selection specifies the name of
the selection and defaults to PRIMARY. A keyword
parameter displayof specifies a widget on the display
to use. A keyword parameter type specifies the form of data to be
fetched, defaulting to STRING except on X11, where UTF8_STRING is tried
before STRING.

	
selection_handle(command, **kw)

	Specify a function COMMAND to call if the X
selection owned by this widget is queried by another
application.

This function must return the contents of the
selection. The function will be called with the
arguments OFFSET and LENGTH which allows the chunking
of very long selections. The following keyword
parameters can be provided:
selection - name of the selection (default PRIMARY),
type - type of the selection (e.g. STRING, FILE_NAME).

	
selection_own(**kw)

	Become owner of X selection.

A keyword parameter selection specifies the name of
the selection (default PRIMARY).

	
selection_own_get(**kw)

	Return owner of X selection.

The following keyword parameter can
be provided:
selection - name of the selection (default PRIMARY),
type - type of the selection (e.g. STRING, FILE_NAME).

	
send(interp, cmd, *args)

	Send Tcl command CMD to different interpreter INTERP to be executed.

	
setvar(name='PY_VAR', value='1')

	Set Tcl variable NAME to VALUE.

	
show()

	

	
size()

	Return a tuple of the number of column and rows in the grid.

	
sizefrom(who=None)

	Instruct the window manager that the size of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
slaves()

	Return a list of all slaves of this widget
in its packing order.

	
state(newstate=None)

	Query or set the state of this widget as one of normal, icon,
iconic (see wm_iconwindow), withdrawn, or zoomed (Windows only).

	
title(string=None)

	Set the title of this widget.

	
tk_bisque()

	Change the color scheme to light brown as used in Tk 3.6 and before.

	
tk_focusFollowsMouse()

	The widget under mouse will get automatically focus. Can not
be disabled easily.

	
tk_focusNext()

	Return the next widget in the focus order which follows
widget which has currently the focus.

The focus order first goes to the next child, then to
the children of the child recursively and then to the
next sibling which is higher in the stacking order. A
widget is omitted if it has the takefocus resource set
to 0.

	
tk_focusPrev()

	Return previous widget in the focus order. See tk_focusNext for details.

	
tk_menuBar(*args)

	Do not use. Needed in Tk 3.6 and earlier.

	
tk_setPalette(*args, **kw)

	Set a new color scheme for all widget elements.

A single color as argument will cause that all colors of Tk
widget elements are derived from this.
Alternatively several keyword parameters and its associated
colors can be given. The following keywords are valid:
activeBackground, foreground, selectColor,
activeForeground, highlightBackground, selectBackground,
background, highlightColor, selectForeground,
disabledForeground, insertBackground, troughColor.

	
tk_strictMotif(boolean=None)

	Set Tcl internal variable, whether the look and feel
should adhere to Motif.

A parameter of 1 means adhere to Motif (e.g. no color
change if mouse passes over slider).
Returns the set value.

	
tkraise(aboveThis=None)

	Raise this widget in the stacking order.

	
transient(master=None)

	Instruct the window manager that this widget is transient
with regard to widget MASTER.

	
unbind(sequence, funcid=None)

	Unbind for this widget for event SEQUENCE the
function identified with FUNCID.

	
unbind_all(sequence)

	Unbind for all widgets for event SEQUENCE all functions.

	
unbind_class(className, sequence)

	Unbind for all widgets with bindtag CLASSNAME for event SEQUENCE
all functions.

	
update()

	Enter event loop until all pending events have been processed by Tcl.

	
update_idletasks()

	Enter event loop until all idle callbacks have been called. This
will update the display of windows but not process events caused by
the user.

	
wait_variable(name='PY_VAR')

	Wait until the variable is modified.

A parameter of type IntVar, StringVar, DoubleVar or
BooleanVar must be given.

	
wait_visibility(window=None)

	Wait until the visibility of a WIDGET changes
(e.g. it appears).

If no parameter is given self is used.

	
wait_window(window=None)

	Wait until a WIDGET is destroyed.

If no parameter is given self is used.

	
waitvar(name='PY_VAR')

	Wait until the variable is modified.

A parameter of type IntVar, StringVar, DoubleVar or
BooleanVar must be given.

	
winfo_atom(name, displayof=0)

	Return integer which represents atom NAME.

	
winfo_atomname(id, displayof=0)

	Return name of atom with identifier ID.

	
winfo_cells()

	Return number of cells in the colormap for this widget.

	
winfo_children()

	Return a list of all widgets which are children of this widget.

	
winfo_class()

	Return window class name of this widget.

	
winfo_colormapfull()

	Return true if at the last color request the colormap was full.

	
winfo_containing(rootX, rootY, displayof=0)

	Return the widget which is at the root coordinates ROOTX, ROOTY.

	
winfo_depth()

	Return the number of bits per pixel.

	
winfo_exists()

	Return true if this widget exists.

	
winfo_fpixels(number)

	Return the number of pixels for the given distance NUMBER
(e.g. “3c”) as float.

	
winfo_geometry()

	Return geometry string for this widget in the form “widthxheight+X+Y”.

	
winfo_height()

	Return height of this widget.

	
winfo_id()

	Return identifier ID for this widget.

	
winfo_interps(displayof=0)

	Return the name of all Tcl interpreters for this display.

	
winfo_ismapped()

	Return true if this widget is mapped.

	
winfo_manager()

	Return the window manager name for this widget.

	
winfo_name()

	Return the name of this widget.

	
winfo_parent()

	Return the name of the parent of this widget.

	
winfo_pathname(id, displayof=0)

	Return the pathname of the widget given by ID.

	
winfo_pixels(number)

	Rounded integer value of winfo_fpixels.

	
winfo_pointerx()

	Return the x coordinate of the pointer on the root window.

	
winfo_pointerxy()

	Return a tuple of x and y coordinates of the pointer on the root window.

	
winfo_pointery()

	Return the y coordinate of the pointer on the root window.

	
winfo_reqheight()

	Return requested height of this widget.

	
winfo_reqwidth()

	Return requested width of this widget.

	
winfo_rgb(color)

	Return tuple of decimal values for red, green, blue for
COLOR in this widget.

	
winfo_rootx()

	Return x coordinate of upper left corner of this widget on the
root window.

	
winfo_rooty()

	Return y coordinate of upper left corner of this widget on the
root window.

	
winfo_screen()

	Return the screen name of this widget.

	
winfo_screencells()

	Return the number of the cells in the colormap of the screen
of this widget.

	
winfo_screendepth()

	Return the number of bits per pixel of the root window of the
screen of this widget.

	
winfo_screenheight()

	Return the number of pixels of the height of the screen of this widget
in pixel.

	
winfo_screenmmheight()

	Return the number of pixels of the height of the screen of
this widget in mm.

	
winfo_screenmmwidth()

	Return the number of pixels of the width of the screen of
this widget in mm.

	
winfo_screenvisual()

	Return one of the strings directcolor, grayscale, pseudocolor,
staticcolor, staticgray, or truecolor for the default
colormodel of this screen.

	
winfo_screenwidth()

	Return the number of pixels of the width of the screen of
this widget in pixel.

	
winfo_server()

	Return information of the X-Server of the screen of this widget in
the form “XmajorRminor vendor vendorVersion”.

	
winfo_toplevel()

	Return the toplevel widget of this widget.

	
winfo_viewable()

	Return true if the widget and all its higher ancestors are mapped.

	
winfo_visual()

	Return one of the strings directcolor, grayscale, pseudocolor,
staticcolor, staticgray, or truecolor for the
colormodel of this widget.

	
winfo_visualid()

	Return the X identifier for the visual for this widget.

	
winfo_visualsavailable(includeids=0)

	Return a list of all visuals available for the screen
of this widget.

Each item in the list consists of a visual name (see winfo_visual), a
depth and if INCLUDEIDS=1 is given also the X identifier.

	
winfo_vrootheight()

	Return the height of the virtual root window associated with this
widget in pixels. If there is no virtual root window return the
height of the screen.

	
winfo_vrootwidth()

	Return the width of the virtual root window associated with this
widget in pixel. If there is no virtual root window return the
width of the screen.

	
winfo_vrootx()

	Return the x offset of the virtual root relative to the root
window of the screen of this widget.

	
winfo_vrooty()

	Return the y offset of the virtual root relative to the root
window of the screen of this widget.

	
winfo_width()

	Return the width of this widget.

	
winfo_x()

	Return the x coordinate of the upper left corner of this widget
in the parent.

	
winfo_y()

	Return the y coordinate of the upper left corner of this widget
in the parent.

	
withdraw()

	Withdraw this widget from the screen such that it is unmapped
and forgotten by the window manager. Re-draw it with wm_deiconify.

	
wm_aspect(minNumer=None, minDenom=None, maxNumer=None, maxDenom=None)

	Instruct the window manager to set the aspect ratio (width/height)
of this widget to be between MINNUMER/MINDENOM and MAXNUMER/MAXDENOM. Return a tuple
of the actual values if no argument is given.

	
wm_attributes(*args)

	This subcommand returns or sets platform specific attributes

The first form returns a list of the platform specific flags and
their values. The second form returns the value for the specific
option. The third form sets one or more of the values. The values
are as follows:

On Windows, -disabled gets or sets whether the window is in a
disabled state. -toolwindow gets or sets the style of the window
to toolwindow (as defined in the MSDN). -topmost gets or sets
whether this is a topmost window (displays above all other
windows).

On Macintosh, XXXXX

On Unix, there are currently no special attribute values.

	
wm_client(name=None)

	Store NAME in WM_CLIENT_MACHINE property of this widget. Return
current value.

	
wm_colormapwindows(*wlist)

	Store list of window names (WLIST) into WM_COLORMAPWINDOWS property
of this widget. This list contains windows whose colormaps differ from their
parents. Return current list of widgets if WLIST is empty.

	
wm_command(value=None)

	Store VALUE in WM_COMMAND property. It is the command
which shall be used to invoke the application. Return current
command if VALUE is None.

	
wm_deiconify()

	Deiconify this widget. If it was never mapped it will not be mapped.
On Windows it will raise this widget and give it the focus.

	
wm_focusmodel(model=None)

	Set focus model to MODEL. “active” means that this widget will claim
the focus itself, “passive” means that the window manager shall give
the focus. Return current focus model if MODEL is None.

	
wm_frame()

	Return identifier for decorative frame of this widget if present.

	
wm_geometry(newGeometry=None)

	Set geometry to NEWGEOMETRY of the form =widthxheight+x+y. Return
current value if None is given.

	
wm_grid(baseWidth=None, baseHeight=None, widthInc=None, heightInc=None)

	Instruct the window manager that this widget shall only be
resized on grid boundaries. WIDTHINC and HEIGHTINC are the width and
height of a grid unit in pixels. BASEWIDTH and BASEHEIGHT are the
number of grid units requested in Tk_GeometryRequest.

	
wm_group(pathName=None)

	Set the group leader widgets for related widgets to PATHNAME. Return
the group leader of this widget if None is given.

	
wm_iconbitmap(bitmap=None, default=None)

	Set bitmap for the iconified widget to BITMAP. Return
the bitmap if None is given.

Under Windows, the DEFAULT parameter can be used to set the icon
for the widget and any descendents that don’t have an icon set
explicitly. DEFAULT can be the relative path to a .ico file
(example: root.iconbitmap(default=’myicon.ico’)). See Tk
documentation for more information.

	
wm_iconify()

	Display widget as icon.

	
wm_iconmask(bitmap=None)

	Set mask for the icon bitmap of this widget. Return the
mask if None is given.

	
wm_iconname(newName=None)

	Set the name of the icon for this widget. Return the name if
None is given.

	
wm_iconposition(x=None, y=None)

	Set the position of the icon of this widget to X and Y. Return
a tuple of the current values of X and X if None is given.

	
wm_iconwindow(pathName=None)

	Set widget PATHNAME to be displayed instead of icon. Return the current
value if None is given.

	
wm_maxsize(width=None, height=None)

	Set max WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
wm_minsize(width=None, height=None)

	Set min WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
wm_overrideredirect(boolean=None)

	Instruct the window manager to ignore this widget
if BOOLEAN is given with 1. Return the current value if None
is given.

	
wm_positionfrom(who=None)

	Instruct the window manager that the position of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
wm_protocol(name=None, func=None)

	Bind function FUNC to command NAME for this widget.
Return the function bound to NAME if None is given. NAME could be
e.g. “WM_SAVE_YOURSELF” or “WM_DELETE_WINDOW”.

	
wm_resizable(width=None, height=None)

	Instruct the window manager whether this width can be resized
in WIDTH or HEIGHT. Both values are boolean values.

	
wm_sizefrom(who=None)

	Instruct the window manager that the size of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
wm_state(newstate=None)

	Query or set the state of this widget as one of normal, icon,
iconic (see wm_iconwindow), withdrawn, or zoomed (Windows only).

	
wm_title(string=None)

	Set the title of this widget.

	
wm_transient(master=None)

	Instruct the window manager that this widget is transient
with regard to widget MASTER.

	
wm_withdraw()

	Withdraw this widget from the screen such that it is unmapped
and forgotten by the window manager. Re-draw it with wm_deiconify.

	
class robot.libraries.dialogs_py.InputDialog(message, default='', hidden=False)

	Bases: robot.libraries.dialogs_py._TkDialog

	
after(ms, func=None, *args)

	Call function once after given time.

MS specifies the time in milliseconds. FUNC gives the
function which shall be called. Additional parameters
are given as parameters to the function call. Return
identifier to cancel scheduling with after_cancel.

	
after_cancel(id)

	Cancel scheduling of function identified with ID.

Identifier returned by after or after_idle must be
given as first parameter.

	
after_idle(func, *args)

	Call FUNC once if the Tcl main loop has no event to
process.

Return an identifier to cancel the scheduling with
after_cancel.

	
aspect(minNumer=None, minDenom=None, maxNumer=None, maxDenom=None)

	Instruct the window manager to set the aspect ratio (width/height)
of this widget to be between MINNUMER/MINDENOM and MAXNUMER/MAXDENOM. Return a tuple
of the actual values if no argument is given.

	
attributes(*args)

	This subcommand returns or sets platform specific attributes

The first form returns a list of the platform specific flags and
their values. The second form returns the value for the specific
option. The third form sets one or more of the values. The values
are as follows:

On Windows, -disabled gets or sets whether the window is in a
disabled state. -toolwindow gets or sets the style of the window
to toolwindow (as defined in the MSDN). -topmost gets or sets
whether this is a topmost window (displays above all other
windows).

On Macintosh, XXXXX

On Unix, there are currently no special attribute values.

	
bbox(column=None, row=None, col2=None, row2=None)

	Return a tuple of integer coordinates for the bounding
box of this widget controlled by the geometry manager grid.

If COLUMN, ROW is given the bounding box applies from
the cell with row and column 0 to the specified
cell. If COL2 and ROW2 are given the bounding box
starts at that cell.

The returned integers specify the offset of the upper left
corner in the master widget and the width and height.

	
bell(displayof=0)

	Ring a display’s bell.

	
bind(sequence=None, func=None, add=None)

	Bind to this widget at event SEQUENCE a call to function FUNC.

SEQUENCE is a string of concatenated event
patterns. An event pattern is of the form
<MODIFIER-MODIFIER-TYPE-DETAIL> where MODIFIER is one
of Control, Mod2, M2, Shift, Mod3, M3, Lock, Mod4, M4,
Button1, B1, Mod5, M5 Button2, B2, Meta, M, Button3,
B3, Alt, Button4, B4, Double, Button5, B5 Triple,
Mod1, M1. TYPE is one of Activate, Enter, Map,
ButtonPress, Button, Expose, Motion, ButtonRelease
FocusIn, MouseWheel, Circulate, FocusOut, Property,
Colormap, Gravity Reparent, Configure, KeyPress, Key,
Unmap, Deactivate, KeyRelease Visibility, Destroy,
Leave and DETAIL is the button number for ButtonPress,
ButtonRelease and DETAIL is the Keysym for KeyPress and
KeyRelease. Examples are
<Control-Button-1> for pressing Control and mouse button 1 or
<Alt-A> for pressing A and the Alt key (KeyPress can be omitted).
An event pattern can also be a virtual event of the form
<<AString>> where AString can be arbitrary. This
event can be generated by event_generate.
If events are concatenated they must appear shortly
after each other.

FUNC will be called if the event sequence occurs with an
instance of Event as argument. If the return value of FUNC is
“break” no further bound function is invoked.

An additional boolean parameter ADD specifies whether FUNC will
be called additionally to the other bound function or whether
it will replace the previous function.

Bind will return an identifier to allow deletion of the bound function with
unbind without memory leak.

If FUNC or SEQUENCE is omitted the bound function or list
of bound events are returned.

	
bind_all(sequence=None, func=None, add=None)

	Bind to all widgets at an event SEQUENCE a call to function FUNC.
An additional boolean parameter ADD specifies whether FUNC will
be called additionally to the other bound function or whether
it will replace the previous function. See bind for the return value.

	
bind_class(className, sequence=None, func=None, add=None)

	Bind to widgets with bindtag CLASSNAME at event
SEQUENCE a call of function FUNC. An additional
boolean parameter ADD specifies whether FUNC will be
called additionally to the other bound function or
whether it will replace the previous function. See bind for
the return value.

	
bindtags(tagList=None)

	Set or get the list of bindtags for this widget.

With no argument return the list of all bindtags associated with
this widget. With a list of strings as argument the bindtags are
set to this list. The bindtags determine in which order events are
processed (see bind).

	
cget(key)

	Return the resource value for a KEY given as string.

	
client(name=None)

	Store NAME in WM_CLIENT_MACHINE property of this widget. Return
current value.

	
clipboard_append(string, **kw)

	Append STRING to the Tk clipboard.

A widget specified at the optional displayof keyword
argument specifies the target display. The clipboard
can be retrieved with selection_get.

	
clipboard_clear(**kw)

	Clear the data in the Tk clipboard.

A widget specified for the optional displayof keyword
argument specifies the target display.

	
clipboard_get(**kw)

	Retrieve data from the clipboard on window’s display.

The window keyword defaults to the root window of the Tkinter
application.

The type keyword specifies the form in which the data is
to be returned and should be an atom name such as STRING
or FILE_NAME. Type defaults to STRING, except on X11, where the default
is to try UTF8_STRING and fall back to STRING.

This command is equivalent to:

selection_get(CLIPBOARD)

	
colormapwindows(*wlist)

	Store list of window names (WLIST) into WM_COLORMAPWINDOWS property
of this widget. This list contains windows whose colormaps differ from their
parents. Return current list of widgets if WLIST is empty.

	
colormodel(value=None)

	Useless. Not implemented in Tk.

	
columnconfigure(index, cnf={}, **kw)

	Configure column INDEX of a grid.

Valid resources are minsize (minimum size of the column),
weight (how much does additional space propagate to this column)
and pad (how much space to let additionally).

	
command(value=None)

	Store VALUE in WM_COMMAND property. It is the command
which shall be used to invoke the application. Return current
command if VALUE is None.

	
config(cnf=None, **kw)

	Configure resources of a widget.

The values for resources are specified as keyword
arguments. To get an overview about
the allowed keyword arguments call the method keys.

	
configure(cnf=None, **kw)

	Configure resources of a widget.

The values for resources are specified as keyword
arguments. To get an overview about
the allowed keyword arguments call the method keys.

	
deiconify()

	Deiconify this widget. If it was never mapped it will not be mapped.
On Windows it will raise this widget and give it the focus.

	
deletecommand(name)

	Internal function.

Delete the Tcl command provided in NAME.

	
destroy()

	Destroy this and all descendants widgets.

	
event_add(virtual, *sequences)

	Bind a virtual event VIRTUAL (of the form <<Name>>)
to an event SEQUENCE such that the virtual event is triggered
whenever SEQUENCE occurs.

	
event_delete(virtual, *sequences)

	Unbind a virtual event VIRTUAL from SEQUENCE.

	
event_generate(sequence, **kw)

	Generate an event SEQUENCE. Additional
keyword arguments specify parameter of the event
(e.g. x, y, rootx, rooty).

	
event_info(virtual=None)

	Return a list of all virtual events or the information
about the SEQUENCE bound to the virtual event VIRTUAL.

	
focus()

	Direct input focus to this widget.

If the application currently does not have the focus
this widget will get the focus if the application gets
the focus through the window manager.

	
focus_displayof()

	Return the widget which has currently the focus on the
display where this widget is located.

Return None if the application does not have the focus.

	
focus_force()

	Direct input focus to this widget even if the
application does not have the focus. Use with
caution!

	
focus_get()

	Return the widget which has currently the focus in the
application.

Use focus_displayof to allow working with several
displays. Return None if application does not have
the focus.

	
focus_lastfor()

	Return the widget which would have the focus if top level
for this widget gets the focus from the window manager.

	
focus_set()

	Direct input focus to this widget.

If the application currently does not have the focus
this widget will get the focus if the application gets
the focus through the window manager.

	
focusmodel(model=None)

	Set focus model to MODEL. “active” means that this widget will claim
the focus itself, “passive” means that the window manager shall give
the focus. Return current focus model if MODEL is None.

	
frame()

	Return identifier for decorative frame of this widget if present.

	
geometry(newGeometry=None)

	Set geometry to NEWGEOMETRY of the form =widthxheight+x+y. Return
current value if None is given.

	
getboolean(s)

	Return a boolean value for Tcl boolean values true and false given as parameter.

	
getdouble

	alias of __builtin__.float

	
getint

	alias of __builtin__.int

	
getvar(name='PY_VAR')

	Return value of Tcl variable NAME.

	
grab_current()

	Return widget which has currently the grab in this application
or None.

	
grab_release()

	Release grab for this widget if currently set.

	
grab_set(timeout=30)

	

	
grab_set_global()

	Set global grab for this widget.

A global grab directs all events to this and
descendant widgets on the display. Use with caution -
other applications do not get events anymore.

	
grab_status()

	Return None, “local” or “global” if this widget has
no, a local or a global grab.

	
grid(baseWidth=None, baseHeight=None, widthInc=None, heightInc=None)

	Instruct the window manager that this widget shall only be
resized on grid boundaries. WIDTHINC and HEIGHTINC are the width and
height of a grid unit in pixels. BASEWIDTH and BASEHEIGHT are the
number of grid units requested in Tk_GeometryRequest.

	
grid_bbox(column=None, row=None, col2=None, row2=None)

	Return a tuple of integer coordinates for the bounding
box of this widget controlled by the geometry manager grid.

If COLUMN, ROW is given the bounding box applies from
the cell with row and column 0 to the specified
cell. If COL2 and ROW2 are given the bounding box
starts at that cell.

The returned integers specify the offset of the upper left
corner in the master widget and the width and height.

	
grid_columnconfigure(index, cnf={}, **kw)

	Configure column INDEX of a grid.

Valid resources are minsize (minimum size of the column),
weight (how much does additional space propagate to this column)
and pad (how much space to let additionally).

	
grid_location(x, y)

	Return a tuple of column and row which identify the cell
at which the pixel at position X and Y inside the master
widget is located.

	
grid_propagate(flag=['_noarg_'])

	Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information
of the slaves will determine the size of this widget. If no argument
is given, the current setting will be returned.

	
grid_rowconfigure(index, cnf={}, **kw)

	Configure row INDEX of a grid.

Valid resources are minsize (minimum size of the row),
weight (how much does additional space propagate to this row)
and pad (how much space to let additionally).

	
grid_size()

	Return a tuple of the number of column and rows in the grid.

	
grid_slaves(row=None, column=None)

	Return a list of all slaves of this widget
in its packing order.

	
group(pathName=None)

	Set the group leader widgets for related widgets to PATHNAME. Return
the group leader of this widget if None is given.

	
iconbitmap(bitmap=None, default=None)

	Set bitmap for the iconified widget to BITMAP. Return
the bitmap if None is given.

Under Windows, the DEFAULT parameter can be used to set the icon
for the widget and any descendents that don’t have an icon set
explicitly. DEFAULT can be the relative path to a .ico file
(example: root.iconbitmap(default=’myicon.ico’)). See Tk
documentation for more information.

	
iconify()

	Display widget as icon.

	
iconmask(bitmap=None)

	Set mask for the icon bitmap of this widget. Return the
mask if None is given.

	
iconname(newName=None)

	Set the name of the icon for this widget. Return the name if
None is given.

	
iconposition(x=None, y=None)

	Set the position of the icon of this widget to X and Y. Return
a tuple of the current values of X and X if None is given.

	
iconwindow(pathName=None)

	Set widget PATHNAME to be displayed instead of icon. Return the current
value if None is given.

	
image_names()

	Return a list of all existing image names.

	
image_types()

	Return a list of all available image types (e.g. photo bitmap).

	
keys()

	Return a list of all resource names of this widget.

	
lift(aboveThis=None)

	Raise this widget in the stacking order.

	
lower(belowThis=None)

	Lower this widget in the stacking order.

	
mainloop(n=0)

	Call the mainloop of Tk.

	
maxsize(width=None, height=None)

	Set max WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
minsize(width=None, height=None)

	Set min WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
nametowidget(name)

	Return the Tkinter instance of a widget identified by
its Tcl name NAME.

	
option_add(pattern, value, priority=None)

	Set a VALUE (second parameter) for an option
PATTERN (first parameter).

An optional third parameter gives the numeric priority
(defaults to 80).

	
option_clear()

	Clear the option database.

It will be reloaded if option_add is called.

	
option_get(name, className)

	Return the value for an option NAME for this widget
with CLASSNAME.

Values with higher priority override lower values.

	
option_readfile(fileName, priority=None)

	Read file FILENAME into the option database.

An optional second parameter gives the numeric
priority.

	
overrideredirect(boolean=None)

	Instruct the window manager to ignore this widget
if BOOLEAN is given with 1. Return the current value if None
is given.

	
pack_propagate(flag=['_noarg_'])

	Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information
of the slaves will determine the size of this widget. If no argument
is given the current setting will be returned.

	
pack_slaves()

	Return a list of all slaves of this widget
in its packing order.

	
place_slaves()

	Return a list of all slaves of this widget
in its packing order.

	
positionfrom(who=None)

	Instruct the window manager that the position of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
propagate(flag=['_noarg_'])

	Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information
of the slaves will determine the size of this widget. If no argument
is given the current setting will be returned.

	
protocol(name=None, func=None)

	Bind function FUNC to command NAME for this widget.
Return the function bound to NAME if None is given. NAME could be
e.g. “WM_SAVE_YOURSELF” or “WM_DELETE_WINDOW”.

	
quit()

	Quit the Tcl interpreter. All widgets will be destroyed.

	
register(func, subst=None, needcleanup=1)

	Return a newly created Tcl function. If this
function is called, the Python function FUNC will
be executed. An optional function SUBST can
be given which will be executed before FUNC.

	
resizable(width=None, height=None)

	Instruct the window manager whether this width can be resized
in WIDTH or HEIGHT. Both values are boolean values.

	
rowconfigure(index, cnf={}, **kw)

	Configure row INDEX of a grid.

Valid resources are minsize (minimum size of the row),
weight (how much does additional space propagate to this row)
and pad (how much space to let additionally).

	
selection_clear(**kw)

	Clear the current X selection.

	
selection_get(**kw)

	Return the contents of the current X selection.

A keyword parameter selection specifies the name of
the selection and defaults to PRIMARY. A keyword
parameter displayof specifies a widget on the display
to use. A keyword parameter type specifies the form of data to be
fetched, defaulting to STRING except on X11, where UTF8_STRING is tried
before STRING.

	
selection_handle(command, **kw)

	Specify a function COMMAND to call if the X
selection owned by this widget is queried by another
application.

This function must return the contents of the
selection. The function will be called with the
arguments OFFSET and LENGTH which allows the chunking
of very long selections. The following keyword
parameters can be provided:
selection - name of the selection (default PRIMARY),
type - type of the selection (e.g. STRING, FILE_NAME).

	
selection_own(**kw)

	Become owner of X selection.

A keyword parameter selection specifies the name of
the selection (default PRIMARY).

	
selection_own_get(**kw)

	Return owner of X selection.

The following keyword parameter can
be provided:
selection - name of the selection (default PRIMARY),
type - type of the selection (e.g. STRING, FILE_NAME).

	
send(interp, cmd, *args)

	Send Tcl command CMD to different interpreter INTERP to be executed.

	
setvar(name='PY_VAR', value='1')

	Set Tcl variable NAME to VALUE.

	
show()

	

	
size()

	Return a tuple of the number of column and rows in the grid.

	
sizefrom(who=None)

	Instruct the window manager that the size of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
slaves()

	Return a list of all slaves of this widget
in its packing order.

	
state(newstate=None)

	Query or set the state of this widget as one of normal, icon,
iconic (see wm_iconwindow), withdrawn, or zoomed (Windows only).

	
title(string=None)

	Set the title of this widget.

	
tk_bisque()

	Change the color scheme to light brown as used in Tk 3.6 and before.

	
tk_focusFollowsMouse()

	The widget under mouse will get automatically focus. Can not
be disabled easily.

	
tk_focusNext()

	Return the next widget in the focus order which follows
widget which has currently the focus.

The focus order first goes to the next child, then to
the children of the child recursively and then to the
next sibling which is higher in the stacking order. A
widget is omitted if it has the takefocus resource set
to 0.

	
tk_focusPrev()

	Return previous widget in the focus order. See tk_focusNext for details.

	
tk_menuBar(*args)

	Do not use. Needed in Tk 3.6 and earlier.

	
tk_setPalette(*args, **kw)

	Set a new color scheme for all widget elements.

A single color as argument will cause that all colors of Tk
widget elements are derived from this.
Alternatively several keyword parameters and its associated
colors can be given. The following keywords are valid:
activeBackground, foreground, selectColor,
activeForeground, highlightBackground, selectBackground,
background, highlightColor, selectForeground,
disabledForeground, insertBackground, troughColor.

	
tk_strictMotif(boolean=None)

	Set Tcl internal variable, whether the look and feel
should adhere to Motif.

A parameter of 1 means adhere to Motif (e.g. no color
change if mouse passes over slider).
Returns the set value.

	
tkraise(aboveThis=None)

	Raise this widget in the stacking order.

	
transient(master=None)

	Instruct the window manager that this widget is transient
with regard to widget MASTER.

	
unbind(sequence, funcid=None)

	Unbind for this widget for event SEQUENCE the
function identified with FUNCID.

	
unbind_all(sequence)

	Unbind for all widgets for event SEQUENCE all functions.

	
unbind_class(className, sequence)

	Unbind for all widgets with bindtag CLASSNAME for event SEQUENCE
all functions.

	
update()

	Enter event loop until all pending events have been processed by Tcl.

	
update_idletasks()

	Enter event loop until all idle callbacks have been called. This
will update the display of windows but not process events caused by
the user.

	
wait_variable(name='PY_VAR')

	Wait until the variable is modified.

A parameter of type IntVar, StringVar, DoubleVar or
BooleanVar must be given.

	
wait_visibility(window=None)

	Wait until the visibility of a WIDGET changes
(e.g. it appears).

If no parameter is given self is used.

	
wait_window(window=None)

	Wait until a WIDGET is destroyed.

If no parameter is given self is used.

	
waitvar(name='PY_VAR')

	Wait until the variable is modified.

A parameter of type IntVar, StringVar, DoubleVar or
BooleanVar must be given.

	
winfo_atom(name, displayof=0)

	Return integer which represents atom NAME.

	
winfo_atomname(id, displayof=0)

	Return name of atom with identifier ID.

	
winfo_cells()

	Return number of cells in the colormap for this widget.

	
winfo_children()

	Return a list of all widgets which are children of this widget.

	
winfo_class()

	Return window class name of this widget.

	
winfo_colormapfull()

	Return true if at the last color request the colormap was full.

	
winfo_containing(rootX, rootY, displayof=0)

	Return the widget which is at the root coordinates ROOTX, ROOTY.

	
winfo_depth()

	Return the number of bits per pixel.

	
winfo_exists()

	Return true if this widget exists.

	
winfo_fpixels(number)

	Return the number of pixels for the given distance NUMBER
(e.g. “3c”) as float.

	
winfo_geometry()

	Return geometry string for this widget in the form “widthxheight+X+Y”.

	
winfo_height()

	Return height of this widget.

	
winfo_id()

	Return identifier ID for this widget.

	
winfo_interps(displayof=0)

	Return the name of all Tcl interpreters for this display.

	
winfo_ismapped()

	Return true if this widget is mapped.

	
winfo_manager()

	Return the window manager name for this widget.

	
winfo_name()

	Return the name of this widget.

	
winfo_parent()

	Return the name of the parent of this widget.

	
winfo_pathname(id, displayof=0)

	Return the pathname of the widget given by ID.

	
winfo_pixels(number)

	Rounded integer value of winfo_fpixels.

	
winfo_pointerx()

	Return the x coordinate of the pointer on the root window.

	
winfo_pointerxy()

	Return a tuple of x and y coordinates of the pointer on the root window.

	
winfo_pointery()

	Return the y coordinate of the pointer on the root window.

	
winfo_reqheight()

	Return requested height of this widget.

	
winfo_reqwidth()

	Return requested width of this widget.

	
winfo_rgb(color)

	Return tuple of decimal values for red, green, blue for
COLOR in this widget.

	
winfo_rootx()

	Return x coordinate of upper left corner of this widget on the
root window.

	
winfo_rooty()

	Return y coordinate of upper left corner of this widget on the
root window.

	
winfo_screen()

	Return the screen name of this widget.

	
winfo_screencells()

	Return the number of the cells in the colormap of the screen
of this widget.

	
winfo_screendepth()

	Return the number of bits per pixel of the root window of the
screen of this widget.

	
winfo_screenheight()

	Return the number of pixels of the height of the screen of this widget
in pixel.

	
winfo_screenmmheight()

	Return the number of pixels of the height of the screen of
this widget in mm.

	
winfo_screenmmwidth()

	Return the number of pixels of the width of the screen of
this widget in mm.

	
winfo_screenvisual()

	Return one of the strings directcolor, grayscale, pseudocolor,
staticcolor, staticgray, or truecolor for the default
colormodel of this screen.

	
winfo_screenwidth()

	Return the number of pixels of the width of the screen of
this widget in pixel.

	
winfo_server()

	Return information of the X-Server of the screen of this widget in
the form “XmajorRminor vendor vendorVersion”.

	
winfo_toplevel()

	Return the toplevel widget of this widget.

	
winfo_viewable()

	Return true if the widget and all its higher ancestors are mapped.

	
winfo_visual()

	Return one of the strings directcolor, grayscale, pseudocolor,
staticcolor, staticgray, or truecolor for the
colormodel of this widget.

	
winfo_visualid()

	Return the X identifier for the visual for this widget.

	
winfo_visualsavailable(includeids=0)

	Return a list of all visuals available for the screen
of this widget.

Each item in the list consists of a visual name (see winfo_visual), a
depth and if INCLUDEIDS=1 is given also the X identifier.

	
winfo_vrootheight()

	Return the height of the virtual root window associated with this
widget in pixels. If there is no virtual root window return the
height of the screen.

	
winfo_vrootwidth()

	Return the width of the virtual root window associated with this
widget in pixel. If there is no virtual root window return the
width of the screen.

	
winfo_vrootx()

	Return the x offset of the virtual root relative to the root
window of the screen of this widget.

	
winfo_vrooty()

	Return the y offset of the virtual root relative to the root
window of the screen of this widget.

	
winfo_width()

	Return the width of this widget.

	
winfo_x()

	Return the x coordinate of the upper left corner of this widget
in the parent.

	
winfo_y()

	Return the y coordinate of the upper left corner of this widget
in the parent.

	
withdraw()

	Withdraw this widget from the screen such that it is unmapped
and forgotten by the window manager. Re-draw it with wm_deiconify.

	
wm_aspect(minNumer=None, minDenom=None, maxNumer=None, maxDenom=None)

	Instruct the window manager to set the aspect ratio (width/height)
of this widget to be between MINNUMER/MINDENOM and MAXNUMER/MAXDENOM. Return a tuple
of the actual values if no argument is given.

	
wm_attributes(*args)

	This subcommand returns or sets platform specific attributes

The first form returns a list of the platform specific flags and
their values. The second form returns the value for the specific
option. The third form sets one or more of the values. The values
are as follows:

On Windows, -disabled gets or sets whether the window is in a
disabled state. -toolwindow gets or sets the style of the window
to toolwindow (as defined in the MSDN). -topmost gets or sets
whether this is a topmost window (displays above all other
windows).

On Macintosh, XXXXX

On Unix, there are currently no special attribute values.

	
wm_client(name=None)

	Store NAME in WM_CLIENT_MACHINE property of this widget. Return
current value.

	
wm_colormapwindows(*wlist)

	Store list of window names (WLIST) into WM_COLORMAPWINDOWS property
of this widget. This list contains windows whose colormaps differ from their
parents. Return current list of widgets if WLIST is empty.

	
wm_command(value=None)

	Store VALUE in WM_COMMAND property. It is the command
which shall be used to invoke the application. Return current
command if VALUE is None.

	
wm_deiconify()

	Deiconify this widget. If it was never mapped it will not be mapped.
On Windows it will raise this widget and give it the focus.

	
wm_focusmodel(model=None)

	Set focus model to MODEL. “active” means that this widget will claim
the focus itself, “passive” means that the window manager shall give
the focus. Return current focus model if MODEL is None.

	
wm_frame()

	Return identifier for decorative frame of this widget if present.

	
wm_geometry(newGeometry=None)

	Set geometry to NEWGEOMETRY of the form =widthxheight+x+y. Return
current value if None is given.

	
wm_grid(baseWidth=None, baseHeight=None, widthInc=None, heightInc=None)

	Instruct the window manager that this widget shall only be
resized on grid boundaries. WIDTHINC and HEIGHTINC are the width and
height of a grid unit in pixels. BASEWIDTH and BASEHEIGHT are the
number of grid units requested in Tk_GeometryRequest.

	
wm_group(pathName=None)

	Set the group leader widgets for related widgets to PATHNAME. Return
the group leader of this widget if None is given.

	
wm_iconbitmap(bitmap=None, default=None)

	Set bitmap for the iconified widget to BITMAP. Return
the bitmap if None is given.

Under Windows, the DEFAULT parameter can be used to set the icon
for the widget and any descendents that don’t have an icon set
explicitly. DEFAULT can be the relative path to a .ico file
(example: root.iconbitmap(default=’myicon.ico’)). See Tk
documentation for more information.

	
wm_iconify()

	Display widget as icon.

	
wm_iconmask(bitmap=None)

	Set mask for the icon bitmap of this widget. Return the
mask if None is given.

	
wm_iconname(newName=None)

	Set the name of the icon for this widget. Return the name if
None is given.

	
wm_iconposition(x=None, y=None)

	Set the position of the icon of this widget to X and Y. Return
a tuple of the current values of X and X if None is given.

	
wm_iconwindow(pathName=None)

	Set widget PATHNAME to be displayed instead of icon. Return the current
value if None is given.

	
wm_maxsize(width=None, height=None)

	Set max WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
wm_minsize(width=None, height=None)

	Set min WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
wm_overrideredirect(boolean=None)

	Instruct the window manager to ignore this widget
if BOOLEAN is given with 1. Return the current value if None
is given.

	
wm_positionfrom(who=None)

	Instruct the window manager that the position of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
wm_protocol(name=None, func=None)

	Bind function FUNC to command NAME for this widget.
Return the function bound to NAME if None is given. NAME could be
e.g. “WM_SAVE_YOURSELF” or “WM_DELETE_WINDOW”.

	
wm_resizable(width=None, height=None)

	Instruct the window manager whether this width can be resized
in WIDTH or HEIGHT. Both values are boolean values.

	
wm_sizefrom(who=None)

	Instruct the window manager that the size of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
wm_state(newstate=None)

	Query or set the state of this widget as one of normal, icon,
iconic (see wm_iconwindow), withdrawn, or zoomed (Windows only).

	
wm_title(string=None)

	Set the title of this widget.

	
wm_transient(master=None)

	Instruct the window manager that this widget is transient
with regard to widget MASTER.

	
wm_withdraw()

	Withdraw this widget from the screen such that it is unmapped
and forgotten by the window manager. Re-draw it with wm_deiconify.

	
class robot.libraries.dialogs_py.SelectionDialog(message, values)

	Bases: robot.libraries.dialogs_py._TkDialog

	
after(ms, func=None, *args)

	Call function once after given time.

MS specifies the time in milliseconds. FUNC gives the
function which shall be called. Additional parameters
are given as parameters to the function call. Return
identifier to cancel scheduling with after_cancel.

	
after_cancel(id)

	Cancel scheduling of function identified with ID.

Identifier returned by after or after_idle must be
given as first parameter.

	
after_idle(func, *args)

	Call FUNC once if the Tcl main loop has no event to
process.

Return an identifier to cancel the scheduling with
after_cancel.

	
aspect(minNumer=None, minDenom=None, maxNumer=None, maxDenom=None)

	Instruct the window manager to set the aspect ratio (width/height)
of this widget to be between MINNUMER/MINDENOM and MAXNUMER/MAXDENOM. Return a tuple
of the actual values if no argument is given.

	
attributes(*args)

	This subcommand returns or sets platform specific attributes

The first form returns a list of the platform specific flags and
their values. The second form returns the value for the specific
option. The third form sets one or more of the values. The values
are as follows:

On Windows, -disabled gets or sets whether the window is in a
disabled state. -toolwindow gets or sets the style of the window
to toolwindow (as defined in the MSDN). -topmost gets or sets
whether this is a topmost window (displays above all other
windows).

On Macintosh, XXXXX

On Unix, there are currently no special attribute values.

	
bbox(column=None, row=None, col2=None, row2=None)

	Return a tuple of integer coordinates for the bounding
box of this widget controlled by the geometry manager grid.

If COLUMN, ROW is given the bounding box applies from
the cell with row and column 0 to the specified
cell. If COL2 and ROW2 are given the bounding box
starts at that cell.

The returned integers specify the offset of the upper left
corner in the master widget and the width and height.

	
bell(displayof=0)

	Ring a display’s bell.

	
bind(sequence=None, func=None, add=None)

	Bind to this widget at event SEQUENCE a call to function FUNC.

SEQUENCE is a string of concatenated event
patterns. An event pattern is of the form
<MODIFIER-MODIFIER-TYPE-DETAIL> where MODIFIER is one
of Control, Mod2, M2, Shift, Mod3, M3, Lock, Mod4, M4,
Button1, B1, Mod5, M5 Button2, B2, Meta, M, Button3,
B3, Alt, Button4, B4, Double, Button5, B5 Triple,
Mod1, M1. TYPE is one of Activate, Enter, Map,
ButtonPress, Button, Expose, Motion, ButtonRelease
FocusIn, MouseWheel, Circulate, FocusOut, Property,
Colormap, Gravity Reparent, Configure, KeyPress, Key,
Unmap, Deactivate, KeyRelease Visibility, Destroy,
Leave and DETAIL is the button number for ButtonPress,
ButtonRelease and DETAIL is the Keysym for KeyPress and
KeyRelease. Examples are
<Control-Button-1> for pressing Control and mouse button 1 or
<Alt-A> for pressing A and the Alt key (KeyPress can be omitted).
An event pattern can also be a virtual event of the form
<<AString>> where AString can be arbitrary. This
event can be generated by event_generate.
If events are concatenated they must appear shortly
after each other.

FUNC will be called if the event sequence occurs with an
instance of Event as argument. If the return value of FUNC is
“break” no further bound function is invoked.

An additional boolean parameter ADD specifies whether FUNC will
be called additionally to the other bound function or whether
it will replace the previous function.

Bind will return an identifier to allow deletion of the bound function with
unbind without memory leak.

If FUNC or SEQUENCE is omitted the bound function or list
of bound events are returned.

	
bind_all(sequence=None, func=None, add=None)

	Bind to all widgets at an event SEQUENCE a call to function FUNC.
An additional boolean parameter ADD specifies whether FUNC will
be called additionally to the other bound function or whether
it will replace the previous function. See bind for the return value.

	
bind_class(className, sequence=None, func=None, add=None)

	Bind to widgets with bindtag CLASSNAME at event
SEQUENCE a call of function FUNC. An additional
boolean parameter ADD specifies whether FUNC will be
called additionally to the other bound function or
whether it will replace the previous function. See bind for
the return value.

	
bindtags(tagList=None)

	Set or get the list of bindtags for this widget.

With no argument return the list of all bindtags associated with
this widget. With a list of strings as argument the bindtags are
set to this list. The bindtags determine in which order events are
processed (see bind).

	
cget(key)

	Return the resource value for a KEY given as string.

	
client(name=None)

	Store NAME in WM_CLIENT_MACHINE property of this widget. Return
current value.

	
clipboard_append(string, **kw)

	Append STRING to the Tk clipboard.

A widget specified at the optional displayof keyword
argument specifies the target display. The clipboard
can be retrieved with selection_get.

	
clipboard_clear(**kw)

	Clear the data in the Tk clipboard.

A widget specified for the optional displayof keyword
argument specifies the target display.

	
clipboard_get(**kw)

	Retrieve data from the clipboard on window’s display.

The window keyword defaults to the root window of the Tkinter
application.

The type keyword specifies the form in which the data is
to be returned and should be an atom name such as STRING
or FILE_NAME. Type defaults to STRING, except on X11, where the default
is to try UTF8_STRING and fall back to STRING.

This command is equivalent to:

selection_get(CLIPBOARD)

	
colormapwindows(*wlist)

	Store list of window names (WLIST) into WM_COLORMAPWINDOWS property
of this widget. This list contains windows whose colormaps differ from their
parents. Return current list of widgets if WLIST is empty.

	
colormodel(value=None)

	Useless. Not implemented in Tk.

	
columnconfigure(index, cnf={}, **kw)

	Configure column INDEX of a grid.

Valid resources are minsize (minimum size of the column),
weight (how much does additional space propagate to this column)
and pad (how much space to let additionally).

	
command(value=None)

	Store VALUE in WM_COMMAND property. It is the command
which shall be used to invoke the application. Return current
command if VALUE is None.

	
config(cnf=None, **kw)

	Configure resources of a widget.

The values for resources are specified as keyword
arguments. To get an overview about
the allowed keyword arguments call the method keys.

	
configure(cnf=None, **kw)

	Configure resources of a widget.

The values for resources are specified as keyword
arguments. To get an overview about
the allowed keyword arguments call the method keys.

	
deiconify()

	Deiconify this widget. If it was never mapped it will not be mapped.
On Windows it will raise this widget and give it the focus.

	
deletecommand(name)

	Internal function.

Delete the Tcl command provided in NAME.

	
destroy()

	Destroy this and all descendants widgets.

	
event_add(virtual, *sequences)

	Bind a virtual event VIRTUAL (of the form <<Name>>)
to an event SEQUENCE such that the virtual event is triggered
whenever SEQUENCE occurs.

	
event_delete(virtual, *sequences)

	Unbind a virtual event VIRTUAL from SEQUENCE.

	
event_generate(sequence, **kw)

	Generate an event SEQUENCE. Additional
keyword arguments specify parameter of the event
(e.g. x, y, rootx, rooty).

	
event_info(virtual=None)

	Return a list of all virtual events or the information
about the SEQUENCE bound to the virtual event VIRTUAL.

	
focus()

	Direct input focus to this widget.

If the application currently does not have the focus
this widget will get the focus if the application gets
the focus through the window manager.

	
focus_displayof()

	Return the widget which has currently the focus on the
display where this widget is located.

Return None if the application does not have the focus.

	
focus_force()

	Direct input focus to this widget even if the
application does not have the focus. Use with
caution!

	
focus_get()

	Return the widget which has currently the focus in the
application.

Use focus_displayof to allow working with several
displays. Return None if application does not have
the focus.

	
focus_lastfor()

	Return the widget which would have the focus if top level
for this widget gets the focus from the window manager.

	
focus_set()

	Direct input focus to this widget.

If the application currently does not have the focus
this widget will get the focus if the application gets
the focus through the window manager.

	
focusmodel(model=None)

	Set focus model to MODEL. “active” means that this widget will claim
the focus itself, “passive” means that the window manager shall give
the focus. Return current focus model if MODEL is None.

	
frame()

	Return identifier for decorative frame of this widget if present.

	
geometry(newGeometry=None)

	Set geometry to NEWGEOMETRY of the form =widthxheight+x+y. Return
current value if None is given.

	
getboolean(s)

	Return a boolean value for Tcl boolean values true and false given as parameter.

	
getdouble

	alias of __builtin__.float

	
getint

	alias of __builtin__.int

	
getvar(name='PY_VAR')

	Return value of Tcl variable NAME.

	
grab_current()

	Return widget which has currently the grab in this application
or None.

	
grab_release()

	Release grab for this widget if currently set.

	
grab_set(timeout=30)

	

	
grab_set_global()

	Set global grab for this widget.

A global grab directs all events to this and
descendant widgets on the display. Use with caution -
other applications do not get events anymore.

	
grab_status()

	Return None, “local” or “global” if this widget has
no, a local or a global grab.

	
grid(baseWidth=None, baseHeight=None, widthInc=None, heightInc=None)

	Instruct the window manager that this widget shall only be
resized on grid boundaries. WIDTHINC and HEIGHTINC are the width and
height of a grid unit in pixels. BASEWIDTH and BASEHEIGHT are the
number of grid units requested in Tk_GeometryRequest.

	
grid_bbox(column=None, row=None, col2=None, row2=None)

	Return a tuple of integer coordinates for the bounding
box of this widget controlled by the geometry manager grid.

If COLUMN, ROW is given the bounding box applies from
the cell with row and column 0 to the specified
cell. If COL2 and ROW2 are given the bounding box
starts at that cell.

The returned integers specify the offset of the upper left
corner in the master widget and the width and height.

	
grid_columnconfigure(index, cnf={}, **kw)

	Configure column INDEX of a grid.

Valid resources are minsize (minimum size of the column),
weight (how much does additional space propagate to this column)
and pad (how much space to let additionally).

	
grid_location(x, y)

	Return a tuple of column and row which identify the cell
at which the pixel at position X and Y inside the master
widget is located.

	
grid_propagate(flag=['_noarg_'])

	Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information
of the slaves will determine the size of this widget. If no argument
is given, the current setting will be returned.

	
grid_rowconfigure(index, cnf={}, **kw)

	Configure row INDEX of a grid.

Valid resources are minsize (minimum size of the row),
weight (how much does additional space propagate to this row)
and pad (how much space to let additionally).

	
grid_size()

	Return a tuple of the number of column and rows in the grid.

	
grid_slaves(row=None, column=None)

	Return a list of all slaves of this widget
in its packing order.

	
group(pathName=None)

	Set the group leader widgets for related widgets to PATHNAME. Return
the group leader of this widget if None is given.

	
iconbitmap(bitmap=None, default=None)

	Set bitmap for the iconified widget to BITMAP. Return
the bitmap if None is given.

Under Windows, the DEFAULT parameter can be used to set the icon
for the widget and any descendents that don’t have an icon set
explicitly. DEFAULT can be the relative path to a .ico file
(example: root.iconbitmap(default=’myicon.ico’)). See Tk
documentation for more information.

	
iconify()

	Display widget as icon.

	
iconmask(bitmap=None)

	Set mask for the icon bitmap of this widget. Return the
mask if None is given.

	
iconname(newName=None)

	Set the name of the icon for this widget. Return the name if
None is given.

	
iconposition(x=None, y=None)

	Set the position of the icon of this widget to X and Y. Return
a tuple of the current values of X and X if None is given.

	
iconwindow(pathName=None)

	Set widget PATHNAME to be displayed instead of icon. Return the current
value if None is given.

	
image_names()

	Return a list of all existing image names.

	
image_types()

	Return a list of all available image types (e.g. photo bitmap).

	
keys()

	Return a list of all resource names of this widget.

	
lift(aboveThis=None)

	Raise this widget in the stacking order.

	
lower(belowThis=None)

	Lower this widget in the stacking order.

	
mainloop(n=0)

	Call the mainloop of Tk.

	
maxsize(width=None, height=None)

	Set max WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
minsize(width=None, height=None)

	Set min WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
nametowidget(name)

	Return the Tkinter instance of a widget identified by
its Tcl name NAME.

	
option_add(pattern, value, priority=None)

	Set a VALUE (second parameter) for an option
PATTERN (first parameter).

An optional third parameter gives the numeric priority
(defaults to 80).

	
option_clear()

	Clear the option database.

It will be reloaded if option_add is called.

	
option_get(name, className)

	Return the value for an option NAME for this widget
with CLASSNAME.

Values with higher priority override lower values.

	
option_readfile(fileName, priority=None)

	Read file FILENAME into the option database.

An optional second parameter gives the numeric
priority.

	
overrideredirect(boolean=None)

	Instruct the window manager to ignore this widget
if BOOLEAN is given with 1. Return the current value if None
is given.

	
pack_propagate(flag=['_noarg_'])

	Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information
of the slaves will determine the size of this widget. If no argument
is given the current setting will be returned.

	
pack_slaves()

	Return a list of all slaves of this widget
in its packing order.

	
place_slaves()

	Return a list of all slaves of this widget
in its packing order.

	
positionfrom(who=None)

	Instruct the window manager that the position of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
propagate(flag=['_noarg_'])

	Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information
of the slaves will determine the size of this widget. If no argument
is given the current setting will be returned.

	
protocol(name=None, func=None)

	Bind function FUNC to command NAME for this widget.
Return the function bound to NAME if None is given. NAME could be
e.g. “WM_SAVE_YOURSELF” or “WM_DELETE_WINDOW”.

	
quit()

	Quit the Tcl interpreter. All widgets will be destroyed.

	
register(func, subst=None, needcleanup=1)

	Return a newly created Tcl function. If this
function is called, the Python function FUNC will
be executed. An optional function SUBST can
be given which will be executed before FUNC.

	
resizable(width=None, height=None)

	Instruct the window manager whether this width can be resized
in WIDTH or HEIGHT. Both values are boolean values.

	
rowconfigure(index, cnf={}, **kw)

	Configure row INDEX of a grid.

Valid resources are minsize (minimum size of the row),
weight (how much does additional space propagate to this row)
and pad (how much space to let additionally).

	
selection_clear(**kw)

	Clear the current X selection.

	
selection_get(**kw)

	Return the contents of the current X selection.

A keyword parameter selection specifies the name of
the selection and defaults to PRIMARY. A keyword
parameter displayof specifies a widget on the display
to use. A keyword parameter type specifies the form of data to be
fetched, defaulting to STRING except on X11, where UTF8_STRING is tried
before STRING.

	
selection_handle(command, **kw)

	Specify a function COMMAND to call if the X
selection owned by this widget is queried by another
application.

This function must return the contents of the
selection. The function will be called with the
arguments OFFSET and LENGTH which allows the chunking
of very long selections. The following keyword
parameters can be provided:
selection - name of the selection (default PRIMARY),
type - type of the selection (e.g. STRING, FILE_NAME).

	
selection_own(**kw)

	Become owner of X selection.

A keyword parameter selection specifies the name of
the selection (default PRIMARY).

	
selection_own_get(**kw)

	Return owner of X selection.

The following keyword parameter can
be provided:
selection - name of the selection (default PRIMARY),
type - type of the selection (e.g. STRING, FILE_NAME).

	
send(interp, cmd, *args)

	Send Tcl command CMD to different interpreter INTERP to be executed.

	
setvar(name='PY_VAR', value='1')

	Set Tcl variable NAME to VALUE.

	
show()

	

	
size()

	Return a tuple of the number of column and rows in the grid.

	
sizefrom(who=None)

	Instruct the window manager that the size of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
slaves()

	Return a list of all slaves of this widget
in its packing order.

	
state(newstate=None)

	Query or set the state of this widget as one of normal, icon,
iconic (see wm_iconwindow), withdrawn, or zoomed (Windows only).

	
title(string=None)

	Set the title of this widget.

	
tk_bisque()

	Change the color scheme to light brown as used in Tk 3.6 and before.

	
tk_focusFollowsMouse()

	The widget under mouse will get automatically focus. Can not
be disabled easily.

	
tk_focusNext()

	Return the next widget in the focus order which follows
widget which has currently the focus.

The focus order first goes to the next child, then to
the children of the child recursively and then to the
next sibling which is higher in the stacking order. A
widget is omitted if it has the takefocus resource set
to 0.

	
tk_focusPrev()

	Return previous widget in the focus order. See tk_focusNext for details.

	
tk_menuBar(*args)

	Do not use. Needed in Tk 3.6 and earlier.

	
tk_setPalette(*args, **kw)

	Set a new color scheme for all widget elements.

A single color as argument will cause that all colors of Tk
widget elements are derived from this.
Alternatively several keyword parameters and its associated
colors can be given. The following keywords are valid:
activeBackground, foreground, selectColor,
activeForeground, highlightBackground, selectBackground,
background, highlightColor, selectForeground,
disabledForeground, insertBackground, troughColor.

	
tk_strictMotif(boolean=None)

	Set Tcl internal variable, whether the look and feel
should adhere to Motif.

A parameter of 1 means adhere to Motif (e.g. no color
change if mouse passes over slider).
Returns the set value.

	
tkraise(aboveThis=None)

	Raise this widget in the stacking order.

	
transient(master=None)

	Instruct the window manager that this widget is transient
with regard to widget MASTER.

	
unbind(sequence, funcid=None)

	Unbind for this widget for event SEQUENCE the
function identified with FUNCID.

	
unbind_all(sequence)

	Unbind for all widgets for event SEQUENCE all functions.

	
unbind_class(className, sequence)

	Unbind for all widgets with bindtag CLASSNAME for event SEQUENCE
all functions.

	
update()

	Enter event loop until all pending events have been processed by Tcl.

	
update_idletasks()

	Enter event loop until all idle callbacks have been called. This
will update the display of windows but not process events caused by
the user.

	
wait_variable(name='PY_VAR')

	Wait until the variable is modified.

A parameter of type IntVar, StringVar, DoubleVar or
BooleanVar must be given.

	
wait_visibility(window=None)

	Wait until the visibility of a WIDGET changes
(e.g. it appears).

If no parameter is given self is used.

	
wait_window(window=None)

	Wait until a WIDGET is destroyed.

If no parameter is given self is used.

	
waitvar(name='PY_VAR')

	Wait until the variable is modified.

A parameter of type IntVar, StringVar, DoubleVar or
BooleanVar must be given.

	
winfo_atom(name, displayof=0)

	Return integer which represents atom NAME.

	
winfo_atomname(id, displayof=0)

	Return name of atom with identifier ID.

	
winfo_cells()

	Return number of cells in the colormap for this widget.

	
winfo_children()

	Return a list of all widgets which are children of this widget.

	
winfo_class()

	Return window class name of this widget.

	
winfo_colormapfull()

	Return true if at the last color request the colormap was full.

	
winfo_containing(rootX, rootY, displayof=0)

	Return the widget which is at the root coordinates ROOTX, ROOTY.

	
winfo_depth()

	Return the number of bits per pixel.

	
winfo_exists()

	Return true if this widget exists.

	
winfo_fpixels(number)

	Return the number of pixels for the given distance NUMBER
(e.g. “3c”) as float.

	
winfo_geometry()

	Return geometry string for this widget in the form “widthxheight+X+Y”.

	
winfo_height()

	Return height of this widget.

	
winfo_id()

	Return identifier ID for this widget.

	
winfo_interps(displayof=0)

	Return the name of all Tcl interpreters for this display.

	
winfo_ismapped()

	Return true if this widget is mapped.

	
winfo_manager()

	Return the window manager name for this widget.

	
winfo_name()

	Return the name of this widget.

	
winfo_parent()

	Return the name of the parent of this widget.

	
winfo_pathname(id, displayof=0)

	Return the pathname of the widget given by ID.

	
winfo_pixels(number)

	Rounded integer value of winfo_fpixels.

	
winfo_pointerx()

	Return the x coordinate of the pointer on the root window.

	
winfo_pointerxy()

	Return a tuple of x and y coordinates of the pointer on the root window.

	
winfo_pointery()

	Return the y coordinate of the pointer on the root window.

	
winfo_reqheight()

	Return requested height of this widget.

	
winfo_reqwidth()

	Return requested width of this widget.

	
winfo_rgb(color)

	Return tuple of decimal values for red, green, blue for
COLOR in this widget.

	
winfo_rootx()

	Return x coordinate of upper left corner of this widget on the
root window.

	
winfo_rooty()

	Return y coordinate of upper left corner of this widget on the
root window.

	
winfo_screen()

	Return the screen name of this widget.

	
winfo_screencells()

	Return the number of the cells in the colormap of the screen
of this widget.

	
winfo_screendepth()

	Return the number of bits per pixel of the root window of the
screen of this widget.

	
winfo_screenheight()

	Return the number of pixels of the height of the screen of this widget
in pixel.

	
winfo_screenmmheight()

	Return the number of pixels of the height of the screen of
this widget in mm.

	
winfo_screenmmwidth()

	Return the number of pixels of the width of the screen of
this widget in mm.

	
winfo_screenvisual()

	Return one of the strings directcolor, grayscale, pseudocolor,
staticcolor, staticgray, or truecolor for the default
colormodel of this screen.

	
winfo_screenwidth()

	Return the number of pixels of the width of the screen of
this widget in pixel.

	
winfo_server()

	Return information of the X-Server of the screen of this widget in
the form “XmajorRminor vendor vendorVersion”.

	
winfo_toplevel()

	Return the toplevel widget of this widget.

	
winfo_viewable()

	Return true if the widget and all its higher ancestors are mapped.

	
winfo_visual()

	Return one of the strings directcolor, grayscale, pseudocolor,
staticcolor, staticgray, or truecolor for the
colormodel of this widget.

	
winfo_visualid()

	Return the X identifier for the visual for this widget.

	
winfo_visualsavailable(includeids=0)

	Return a list of all visuals available for the screen
of this widget.

Each item in the list consists of a visual name (see winfo_visual), a
depth and if INCLUDEIDS=1 is given also the X identifier.

	
winfo_vrootheight()

	Return the height of the virtual root window associated with this
widget in pixels. If there is no virtual root window return the
height of the screen.

	
winfo_vrootwidth()

	Return the width of the virtual root window associated with this
widget in pixel. If there is no virtual root window return the
width of the screen.

	
winfo_vrootx()

	Return the x offset of the virtual root relative to the root
window of the screen of this widget.

	
winfo_vrooty()

	Return the y offset of the virtual root relative to the root
window of the screen of this widget.

	
winfo_width()

	Return the width of this widget.

	
winfo_x()

	Return the x coordinate of the upper left corner of this widget
in the parent.

	
winfo_y()

	Return the y coordinate of the upper left corner of this widget
in the parent.

	
withdraw()

	Withdraw this widget from the screen such that it is unmapped
and forgotten by the window manager. Re-draw it with wm_deiconify.

	
wm_aspect(minNumer=None, minDenom=None, maxNumer=None, maxDenom=None)

	Instruct the window manager to set the aspect ratio (width/height)
of this widget to be between MINNUMER/MINDENOM and MAXNUMER/MAXDENOM. Return a tuple
of the actual values if no argument is given.

	
wm_attributes(*args)

	This subcommand returns or sets platform specific attributes

The first form returns a list of the platform specific flags and
their values. The second form returns the value for the specific
option. The third form sets one or more of the values. The values
are as follows:

On Windows, -disabled gets or sets whether the window is in a
disabled state. -toolwindow gets or sets the style of the window
to toolwindow (as defined in the MSDN). -topmost gets or sets
whether this is a topmost window (displays above all other
windows).

On Macintosh, XXXXX

On Unix, there are currently no special attribute values.

	
wm_client(name=None)

	Store NAME in WM_CLIENT_MACHINE property of this widget. Return
current value.

	
wm_colormapwindows(*wlist)

	Store list of window names (WLIST) into WM_COLORMAPWINDOWS property
of this widget. This list contains windows whose colormaps differ from their
parents. Return current list of widgets if WLIST is empty.

	
wm_command(value=None)

	Store VALUE in WM_COMMAND property. It is the command
which shall be used to invoke the application. Return current
command if VALUE is None.

	
wm_deiconify()

	Deiconify this widget. If it was never mapped it will not be mapped.
On Windows it will raise this widget and give it the focus.

	
wm_focusmodel(model=None)

	Set focus model to MODEL. “active” means that this widget will claim
the focus itself, “passive” means that the window manager shall give
the focus. Return current focus model if MODEL is None.

	
wm_frame()

	Return identifier for decorative frame of this widget if present.

	
wm_geometry(newGeometry=None)

	Set geometry to NEWGEOMETRY of the form =widthxheight+x+y. Return
current value if None is given.

	
wm_grid(baseWidth=None, baseHeight=None, widthInc=None, heightInc=None)

	Instruct the window manager that this widget shall only be
resized on grid boundaries. WIDTHINC and HEIGHTINC are the width and
height of a grid unit in pixels. BASEWIDTH and BASEHEIGHT are the
number of grid units requested in Tk_GeometryRequest.

	
wm_group(pathName=None)

	Set the group leader widgets for related widgets to PATHNAME. Return
the group leader of this widget if None is given.

	
wm_iconbitmap(bitmap=None, default=None)

	Set bitmap for the iconified widget to BITMAP. Return
the bitmap if None is given.

Under Windows, the DEFAULT parameter can be used to set the icon
for the widget and any descendents that don’t have an icon set
explicitly. DEFAULT can be the relative path to a .ico file
(example: root.iconbitmap(default=’myicon.ico’)). See Tk
documentation for more information.

	
wm_iconify()

	Display widget as icon.

	
wm_iconmask(bitmap=None)

	Set mask for the icon bitmap of this widget. Return the
mask if None is given.

	
wm_iconname(newName=None)

	Set the name of the icon for this widget. Return the name if
None is given.

	
wm_iconposition(x=None, y=None)

	Set the position of the icon of this widget to X and Y. Return
a tuple of the current values of X and X if None is given.

	
wm_iconwindow(pathName=None)

	Set widget PATHNAME to be displayed instead of icon. Return the current
value if None is given.

	
wm_maxsize(width=None, height=None)

	Set max WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
wm_minsize(width=None, height=None)

	Set min WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
wm_overrideredirect(boolean=None)

	Instruct the window manager to ignore this widget
if BOOLEAN is given with 1. Return the current value if None
is given.

	
wm_positionfrom(who=None)

	Instruct the window manager that the position of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
wm_protocol(name=None, func=None)

	Bind function FUNC to command NAME for this widget.
Return the function bound to NAME if None is given. NAME could be
e.g. “WM_SAVE_YOURSELF” or “WM_DELETE_WINDOW”.

	
wm_resizable(width=None, height=None)

	Instruct the window manager whether this width can be resized
in WIDTH or HEIGHT. Both values are boolean values.

	
wm_sizefrom(who=None)

	Instruct the window manager that the size of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
wm_state(newstate=None)

	Query or set the state of this widget as one of normal, icon,
iconic (see wm_iconwindow), withdrawn, or zoomed (Windows only).

	
wm_title(string=None)

	Set the title of this widget.

	
wm_transient(master=None)

	Instruct the window manager that this widget is transient
with regard to widget MASTER.

	
wm_withdraw()

	Withdraw this widget from the screen such that it is unmapped
and forgotten by the window manager. Re-draw it with wm_deiconify.

	
class robot.libraries.dialogs_py.MultipleSelectionDialog(message, values)

	Bases: robot.libraries.dialogs_py._TkDialog

	
after(ms, func=None, *args)

	Call function once after given time.

MS specifies the time in milliseconds. FUNC gives the
function which shall be called. Additional parameters
are given as parameters to the function call. Return
identifier to cancel scheduling with after_cancel.

	
after_cancel(id)

	Cancel scheduling of function identified with ID.

Identifier returned by after or after_idle must be
given as first parameter.

	
after_idle(func, *args)

	Call FUNC once if the Tcl main loop has no event to
process.

Return an identifier to cancel the scheduling with
after_cancel.

	
aspect(minNumer=None, minDenom=None, maxNumer=None, maxDenom=None)

	Instruct the window manager to set the aspect ratio (width/height)
of this widget to be between MINNUMER/MINDENOM and MAXNUMER/MAXDENOM. Return a tuple
of the actual values if no argument is given.

	
attributes(*args)

	This subcommand returns or sets platform specific attributes

The first form returns a list of the platform specific flags and
their values. The second form returns the value for the specific
option. The third form sets one or more of the values. The values
are as follows:

On Windows, -disabled gets or sets whether the window is in a
disabled state. -toolwindow gets or sets the style of the window
to toolwindow (as defined in the MSDN). -topmost gets or sets
whether this is a topmost window (displays above all other
windows).

On Macintosh, XXXXX

On Unix, there are currently no special attribute values.

	
bbox(column=None, row=None, col2=None, row2=None)

	Return a tuple of integer coordinates for the bounding
box of this widget controlled by the geometry manager grid.

If COLUMN, ROW is given the bounding box applies from
the cell with row and column 0 to the specified
cell. If COL2 and ROW2 are given the bounding box
starts at that cell.

The returned integers specify the offset of the upper left
corner in the master widget and the width and height.

	
bell(displayof=0)

	Ring a display’s bell.

	
bind(sequence=None, func=None, add=None)

	Bind to this widget at event SEQUENCE a call to function FUNC.

SEQUENCE is a string of concatenated event
patterns. An event pattern is of the form
<MODIFIER-MODIFIER-TYPE-DETAIL> where MODIFIER is one
of Control, Mod2, M2, Shift, Mod3, M3, Lock, Mod4, M4,
Button1, B1, Mod5, M5 Button2, B2, Meta, M, Button3,
B3, Alt, Button4, B4, Double, Button5, B5 Triple,
Mod1, M1. TYPE is one of Activate, Enter, Map,
ButtonPress, Button, Expose, Motion, ButtonRelease
FocusIn, MouseWheel, Circulate, FocusOut, Property,
Colormap, Gravity Reparent, Configure, KeyPress, Key,
Unmap, Deactivate, KeyRelease Visibility, Destroy,
Leave and DETAIL is the button number for ButtonPress,
ButtonRelease and DETAIL is the Keysym for KeyPress and
KeyRelease. Examples are
<Control-Button-1> for pressing Control and mouse button 1 or
<Alt-A> for pressing A and the Alt key (KeyPress can be omitted).
An event pattern can also be a virtual event of the form
<<AString>> where AString can be arbitrary. This
event can be generated by event_generate.
If events are concatenated they must appear shortly
after each other.

FUNC will be called if the event sequence occurs with an
instance of Event as argument. If the return value of FUNC is
“break” no further bound function is invoked.

An additional boolean parameter ADD specifies whether FUNC will
be called additionally to the other bound function or whether
it will replace the previous function.

Bind will return an identifier to allow deletion of the bound function with
unbind without memory leak.

If FUNC or SEQUENCE is omitted the bound function or list
of bound events are returned.

	
bind_all(sequence=None, func=None, add=None)

	Bind to all widgets at an event SEQUENCE a call to function FUNC.
An additional boolean parameter ADD specifies whether FUNC will
be called additionally to the other bound function or whether
it will replace the previous function. See bind for the return value.

	
bind_class(className, sequence=None, func=None, add=None)

	Bind to widgets with bindtag CLASSNAME at event
SEQUENCE a call of function FUNC. An additional
boolean parameter ADD specifies whether FUNC will be
called additionally to the other bound function or
whether it will replace the previous function. See bind for
the return value.

	
bindtags(tagList=None)

	Set or get the list of bindtags for this widget.

With no argument return the list of all bindtags associated with
this widget. With a list of strings as argument the bindtags are
set to this list. The bindtags determine in which order events are
processed (see bind).

	
cget(key)

	Return the resource value for a KEY given as string.

	
client(name=None)

	Store NAME in WM_CLIENT_MACHINE property of this widget. Return
current value.

	
clipboard_append(string, **kw)

	Append STRING to the Tk clipboard.

A widget specified at the optional displayof keyword
argument specifies the target display. The clipboard
can be retrieved with selection_get.

	
clipboard_clear(**kw)

	Clear the data in the Tk clipboard.

A widget specified for the optional displayof keyword
argument specifies the target display.

	
clipboard_get(**kw)

	Retrieve data from the clipboard on window’s display.

The window keyword defaults to the root window of the Tkinter
application.

The type keyword specifies the form in which the data is
to be returned and should be an atom name such as STRING
or FILE_NAME. Type defaults to STRING, except on X11, where the default
is to try UTF8_STRING and fall back to STRING.

This command is equivalent to:

selection_get(CLIPBOARD)

	
colormapwindows(*wlist)

	Store list of window names (WLIST) into WM_COLORMAPWINDOWS property
of this widget. This list contains windows whose colormaps differ from their
parents. Return current list of widgets if WLIST is empty.

	
colormodel(value=None)

	Useless. Not implemented in Tk.

	
columnconfigure(index, cnf={}, **kw)

	Configure column INDEX of a grid.

Valid resources are minsize (minimum size of the column),
weight (how much does additional space propagate to this column)
and pad (how much space to let additionally).

	
command(value=None)

	Store VALUE in WM_COMMAND property. It is the command
which shall be used to invoke the application. Return current
command if VALUE is None.

	
config(cnf=None, **kw)

	Configure resources of a widget.

The values for resources are specified as keyword
arguments. To get an overview about
the allowed keyword arguments call the method keys.

	
configure(cnf=None, **kw)

	Configure resources of a widget.

The values for resources are specified as keyword
arguments. To get an overview about
the allowed keyword arguments call the method keys.

	
deiconify()

	Deiconify this widget. If it was never mapped it will not be mapped.
On Windows it will raise this widget and give it the focus.

	
deletecommand(name)

	Internal function.

Delete the Tcl command provided in NAME.

	
destroy()

	Destroy this and all descendants widgets.

	
event_add(virtual, *sequences)

	Bind a virtual event VIRTUAL (of the form <<Name>>)
to an event SEQUENCE such that the virtual event is triggered
whenever SEQUENCE occurs.

	
event_delete(virtual, *sequences)

	Unbind a virtual event VIRTUAL from SEQUENCE.

	
event_generate(sequence, **kw)

	Generate an event SEQUENCE. Additional
keyword arguments specify parameter of the event
(e.g. x, y, rootx, rooty).

	
event_info(virtual=None)

	Return a list of all virtual events or the information
about the SEQUENCE bound to the virtual event VIRTUAL.

	
focus()

	Direct input focus to this widget.

If the application currently does not have the focus
this widget will get the focus if the application gets
the focus through the window manager.

	
focus_displayof()

	Return the widget which has currently the focus on the
display where this widget is located.

Return None if the application does not have the focus.

	
focus_force()

	Direct input focus to this widget even if the
application does not have the focus. Use with
caution!

	
focus_get()

	Return the widget which has currently the focus in the
application.

Use focus_displayof to allow working with several
displays. Return None if application does not have
the focus.

	
focus_lastfor()

	Return the widget which would have the focus if top level
for this widget gets the focus from the window manager.

	
focus_set()

	Direct input focus to this widget.

If the application currently does not have the focus
this widget will get the focus if the application gets
the focus through the window manager.

	
focusmodel(model=None)

	Set focus model to MODEL. “active” means that this widget will claim
the focus itself, “passive” means that the window manager shall give
the focus. Return current focus model if MODEL is None.

	
frame()

	Return identifier for decorative frame of this widget if present.

	
geometry(newGeometry=None)

	Set geometry to NEWGEOMETRY of the form =widthxheight+x+y. Return
current value if None is given.

	
getboolean(s)

	Return a boolean value for Tcl boolean values true and false given as parameter.

	
getdouble

	alias of __builtin__.float

	
getint

	alias of __builtin__.int

	
getvar(name='PY_VAR')

	Return value of Tcl variable NAME.

	
grab_current()

	Return widget which has currently the grab in this application
or None.

	
grab_release()

	Release grab for this widget if currently set.

	
grab_set(timeout=30)

	

	
grab_set_global()

	Set global grab for this widget.

A global grab directs all events to this and
descendant widgets on the display. Use with caution -
other applications do not get events anymore.

	
grab_status()

	Return None, “local” or “global” if this widget has
no, a local or a global grab.

	
grid(baseWidth=None, baseHeight=None, widthInc=None, heightInc=None)

	Instruct the window manager that this widget shall only be
resized on grid boundaries. WIDTHINC and HEIGHTINC are the width and
height of a grid unit in pixels. BASEWIDTH and BASEHEIGHT are the
number of grid units requested in Tk_GeometryRequest.

	
grid_bbox(column=None, row=None, col2=None, row2=None)

	Return a tuple of integer coordinates for the bounding
box of this widget controlled by the geometry manager grid.

If COLUMN, ROW is given the bounding box applies from
the cell with row and column 0 to the specified
cell. If COL2 and ROW2 are given the bounding box
starts at that cell.

The returned integers specify the offset of the upper left
corner in the master widget and the width and height.

	
grid_columnconfigure(index, cnf={}, **kw)

	Configure column INDEX of a grid.

Valid resources are minsize (minimum size of the column),
weight (how much does additional space propagate to this column)
and pad (how much space to let additionally).

	
grid_location(x, y)

	Return a tuple of column and row which identify the cell
at which the pixel at position X and Y inside the master
widget is located.

	
grid_propagate(flag=['_noarg_'])

	Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information
of the slaves will determine the size of this widget. If no argument
is given, the current setting will be returned.

	
grid_rowconfigure(index, cnf={}, **kw)

	Configure row INDEX of a grid.

Valid resources are minsize (minimum size of the row),
weight (how much does additional space propagate to this row)
and pad (how much space to let additionally).

	
grid_size()

	Return a tuple of the number of column and rows in the grid.

	
grid_slaves(row=None, column=None)

	Return a list of all slaves of this widget
in its packing order.

	
group(pathName=None)

	Set the group leader widgets for related widgets to PATHNAME. Return
the group leader of this widget if None is given.

	
iconbitmap(bitmap=None, default=None)

	Set bitmap for the iconified widget to BITMAP. Return
the bitmap if None is given.

Under Windows, the DEFAULT parameter can be used to set the icon
for the widget and any descendents that don’t have an icon set
explicitly. DEFAULT can be the relative path to a .ico file
(example: root.iconbitmap(default=’myicon.ico’)). See Tk
documentation for more information.

	
iconify()

	Display widget as icon.

	
iconmask(bitmap=None)

	Set mask for the icon bitmap of this widget. Return the
mask if None is given.

	
iconname(newName=None)

	Set the name of the icon for this widget. Return the name if
None is given.

	
iconposition(x=None, y=None)

	Set the position of the icon of this widget to X and Y. Return
a tuple of the current values of X and X if None is given.

	
iconwindow(pathName=None)

	Set widget PATHNAME to be displayed instead of icon. Return the current
value if None is given.

	
image_names()

	Return a list of all existing image names.

	
image_types()

	Return a list of all available image types (e.g. photo bitmap).

	
keys()

	Return a list of all resource names of this widget.

	
lift(aboveThis=None)

	Raise this widget in the stacking order.

	
lower(belowThis=None)

	Lower this widget in the stacking order.

	
mainloop(n=0)

	Call the mainloop of Tk.

	
maxsize(width=None, height=None)

	Set max WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
minsize(width=None, height=None)

	Set min WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
nametowidget(name)

	Return the Tkinter instance of a widget identified by
its Tcl name NAME.

	
option_add(pattern, value, priority=None)

	Set a VALUE (second parameter) for an option
PATTERN (first parameter).

An optional third parameter gives the numeric priority
(defaults to 80).

	
option_clear()

	Clear the option database.

It will be reloaded if option_add is called.

	
option_get(name, className)

	Return the value for an option NAME for this widget
with CLASSNAME.

Values with higher priority override lower values.

	
option_readfile(fileName, priority=None)

	Read file FILENAME into the option database.

An optional second parameter gives the numeric
priority.

	
overrideredirect(boolean=None)

	Instruct the window manager to ignore this widget
if BOOLEAN is given with 1. Return the current value if None
is given.

	
pack_propagate(flag=['_noarg_'])

	Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information
of the slaves will determine the size of this widget. If no argument
is given the current setting will be returned.

	
pack_slaves()

	Return a list of all slaves of this widget
in its packing order.

	
place_slaves()

	Return a list of all slaves of this widget
in its packing order.

	
positionfrom(who=None)

	Instruct the window manager that the position of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
propagate(flag=['_noarg_'])

	Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information
of the slaves will determine the size of this widget. If no argument
is given the current setting will be returned.

	
protocol(name=None, func=None)

	Bind function FUNC to command NAME for this widget.
Return the function bound to NAME if None is given. NAME could be
e.g. “WM_SAVE_YOURSELF” or “WM_DELETE_WINDOW”.

	
quit()

	Quit the Tcl interpreter. All widgets will be destroyed.

	
register(func, subst=None, needcleanup=1)

	Return a newly created Tcl function. If this
function is called, the Python function FUNC will
be executed. An optional function SUBST can
be given which will be executed before FUNC.

	
resizable(width=None, height=None)

	Instruct the window manager whether this width can be resized
in WIDTH or HEIGHT. Both values are boolean values.

	
rowconfigure(index, cnf={}, **kw)

	Configure row INDEX of a grid.

Valid resources are minsize (minimum size of the row),
weight (how much does additional space propagate to this row)
and pad (how much space to let additionally).

	
selection_clear(**kw)

	Clear the current X selection.

	
selection_get(**kw)

	Return the contents of the current X selection.

A keyword parameter selection specifies the name of
the selection and defaults to PRIMARY. A keyword
parameter displayof specifies a widget on the display
to use. A keyword parameter type specifies the form of data to be
fetched, defaulting to STRING except on X11, where UTF8_STRING is tried
before STRING.

	
selection_handle(command, **kw)

	Specify a function COMMAND to call if the X
selection owned by this widget is queried by another
application.

This function must return the contents of the
selection. The function will be called with the
arguments OFFSET and LENGTH which allows the chunking
of very long selections. The following keyword
parameters can be provided:
selection - name of the selection (default PRIMARY),
type - type of the selection (e.g. STRING, FILE_NAME).

	
selection_own(**kw)

	Become owner of X selection.

A keyword parameter selection specifies the name of
the selection (default PRIMARY).

	
selection_own_get(**kw)

	Return owner of X selection.

The following keyword parameter can
be provided:
selection - name of the selection (default PRIMARY),
type - type of the selection (e.g. STRING, FILE_NAME).

	
send(interp, cmd, *args)

	Send Tcl command CMD to different interpreter INTERP to be executed.

	
setvar(name='PY_VAR', value='1')

	Set Tcl variable NAME to VALUE.

	
show()

	

	
size()

	Return a tuple of the number of column and rows in the grid.

	
sizefrom(who=None)

	Instruct the window manager that the size of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
slaves()

	Return a list of all slaves of this widget
in its packing order.

	
state(newstate=None)

	Query or set the state of this widget as one of normal, icon,
iconic (see wm_iconwindow), withdrawn, or zoomed (Windows only).

	
title(string=None)

	Set the title of this widget.

	
tk_bisque()

	Change the color scheme to light brown as used in Tk 3.6 and before.

	
tk_focusFollowsMouse()

	The widget under mouse will get automatically focus. Can not
be disabled easily.

	
tk_focusNext()

	Return the next widget in the focus order which follows
widget which has currently the focus.

The focus order first goes to the next child, then to
the children of the child recursively and then to the
next sibling which is higher in the stacking order. A
widget is omitted if it has the takefocus resource set
to 0.

	
tk_focusPrev()

	Return previous widget in the focus order. See tk_focusNext for details.

	
tk_menuBar(*args)

	Do not use. Needed in Tk 3.6 and earlier.

	
tk_setPalette(*args, **kw)

	Set a new color scheme for all widget elements.

A single color as argument will cause that all colors of Tk
widget elements are derived from this.
Alternatively several keyword parameters and its associated
colors can be given. The following keywords are valid:
activeBackground, foreground, selectColor,
activeForeground, highlightBackground, selectBackground,
background, highlightColor, selectForeground,
disabledForeground, insertBackground, troughColor.

	
tk_strictMotif(boolean=None)

	Set Tcl internal variable, whether the look and feel
should adhere to Motif.

A parameter of 1 means adhere to Motif (e.g. no color
change if mouse passes over slider).
Returns the set value.

	
tkraise(aboveThis=None)

	Raise this widget in the stacking order.

	
transient(master=None)

	Instruct the window manager that this widget is transient
with regard to widget MASTER.

	
unbind(sequence, funcid=None)

	Unbind for this widget for event SEQUENCE the
function identified with FUNCID.

	
unbind_all(sequence)

	Unbind for all widgets for event SEQUENCE all functions.

	
unbind_class(className, sequence)

	Unbind for all widgets with bindtag CLASSNAME for event SEQUENCE
all functions.

	
update()

	Enter event loop until all pending events have been processed by Tcl.

	
update_idletasks()

	Enter event loop until all idle callbacks have been called. This
will update the display of windows but not process events caused by
the user.

	
wait_variable(name='PY_VAR')

	Wait until the variable is modified.

A parameter of type IntVar, StringVar, DoubleVar or
BooleanVar must be given.

	
wait_visibility(window=None)

	Wait until the visibility of a WIDGET changes
(e.g. it appears).

If no parameter is given self is used.

	
wait_window(window=None)

	Wait until a WIDGET is destroyed.

If no parameter is given self is used.

	
waitvar(name='PY_VAR')

	Wait until the variable is modified.

A parameter of type IntVar, StringVar, DoubleVar or
BooleanVar must be given.

	
winfo_atom(name, displayof=0)

	Return integer which represents atom NAME.

	
winfo_atomname(id, displayof=0)

	Return name of atom with identifier ID.

	
winfo_cells()

	Return number of cells in the colormap for this widget.

	
winfo_children()

	Return a list of all widgets which are children of this widget.

	
winfo_class()

	Return window class name of this widget.

	
winfo_colormapfull()

	Return true if at the last color request the colormap was full.

	
winfo_containing(rootX, rootY, displayof=0)

	Return the widget which is at the root coordinates ROOTX, ROOTY.

	
winfo_depth()

	Return the number of bits per pixel.

	
winfo_exists()

	Return true if this widget exists.

	
winfo_fpixels(number)

	Return the number of pixels for the given distance NUMBER
(e.g. “3c”) as float.

	
winfo_geometry()

	Return geometry string for this widget in the form “widthxheight+X+Y”.

	
winfo_height()

	Return height of this widget.

	
winfo_id()

	Return identifier ID for this widget.

	
winfo_interps(displayof=0)

	Return the name of all Tcl interpreters for this display.

	
winfo_ismapped()

	Return true if this widget is mapped.

	
winfo_manager()

	Return the window manager name for this widget.

	
winfo_name()

	Return the name of this widget.

	
winfo_parent()

	Return the name of the parent of this widget.

	
winfo_pathname(id, displayof=0)

	Return the pathname of the widget given by ID.

	
winfo_pixels(number)

	Rounded integer value of winfo_fpixels.

	
winfo_pointerx()

	Return the x coordinate of the pointer on the root window.

	
winfo_pointerxy()

	Return a tuple of x and y coordinates of the pointer on the root window.

	
winfo_pointery()

	Return the y coordinate of the pointer on the root window.

	
winfo_reqheight()

	Return requested height of this widget.

	
winfo_reqwidth()

	Return requested width of this widget.

	
winfo_rgb(color)

	Return tuple of decimal values for red, green, blue for
COLOR in this widget.

	
winfo_rootx()

	Return x coordinate of upper left corner of this widget on the
root window.

	
winfo_rooty()

	Return y coordinate of upper left corner of this widget on the
root window.

	
winfo_screen()

	Return the screen name of this widget.

	
winfo_screencells()

	Return the number of the cells in the colormap of the screen
of this widget.

	
winfo_screendepth()

	Return the number of bits per pixel of the root window of the
screen of this widget.

	
winfo_screenheight()

	Return the number of pixels of the height of the screen of this widget
in pixel.

	
winfo_screenmmheight()

	Return the number of pixels of the height of the screen of
this widget in mm.

	
winfo_screenmmwidth()

	Return the number of pixels of the width of the screen of
this widget in mm.

	
winfo_screenvisual()

	Return one of the strings directcolor, grayscale, pseudocolor,
staticcolor, staticgray, or truecolor for the default
colormodel of this screen.

	
winfo_screenwidth()

	Return the number of pixels of the width of the screen of
this widget in pixel.

	
winfo_server()

	Return information of the X-Server of the screen of this widget in
the form “XmajorRminor vendor vendorVersion”.

	
winfo_toplevel()

	Return the toplevel widget of this widget.

	
winfo_viewable()

	Return true if the widget and all its higher ancestors are mapped.

	
winfo_visual()

	Return one of the strings directcolor, grayscale, pseudocolor,
staticcolor, staticgray, or truecolor for the
colormodel of this widget.

	
winfo_visualid()

	Return the X identifier for the visual for this widget.

	
winfo_visualsavailable(includeids=0)

	Return a list of all visuals available for the screen
of this widget.

Each item in the list consists of a visual name (see winfo_visual), a
depth and if INCLUDEIDS=1 is given also the X identifier.

	
winfo_vrootheight()

	Return the height of the virtual root window associated with this
widget in pixels. If there is no virtual root window return the
height of the screen.

	
winfo_vrootwidth()

	Return the width of the virtual root window associated with this
widget in pixel. If there is no virtual root window return the
width of the screen.

	
winfo_vrootx()

	Return the x offset of the virtual root relative to the root
window of the screen of this widget.

	
winfo_vrooty()

	Return the y offset of the virtual root relative to the root
window of the screen of this widget.

	
winfo_width()

	Return the width of this widget.

	
winfo_x()

	Return the x coordinate of the upper left corner of this widget
in the parent.

	
winfo_y()

	Return the y coordinate of the upper left corner of this widget
in the parent.

	
withdraw()

	Withdraw this widget from the screen such that it is unmapped
and forgotten by the window manager. Re-draw it with wm_deiconify.

	
wm_aspect(minNumer=None, minDenom=None, maxNumer=None, maxDenom=None)

	Instruct the window manager to set the aspect ratio (width/height)
of this widget to be between MINNUMER/MINDENOM and MAXNUMER/MAXDENOM. Return a tuple
of the actual values if no argument is given.

	
wm_attributes(*args)

	This subcommand returns or sets platform specific attributes

The first form returns a list of the platform specific flags and
their values. The second form returns the value for the specific
option. The third form sets one or more of the values. The values
are as follows:

On Windows, -disabled gets or sets whether the window is in a
disabled state. -toolwindow gets or sets the style of the window
to toolwindow (as defined in the MSDN). -topmost gets or sets
whether this is a topmost window (displays above all other
windows).

On Macintosh, XXXXX

On Unix, there are currently no special attribute values.

	
wm_client(name=None)

	Store NAME in WM_CLIENT_MACHINE property of this widget. Return
current value.

	
wm_colormapwindows(*wlist)

	Store list of window names (WLIST) into WM_COLORMAPWINDOWS property
of this widget. This list contains windows whose colormaps differ from their
parents. Return current list of widgets if WLIST is empty.

	
wm_command(value=None)

	Store VALUE in WM_COMMAND property. It is the command
which shall be used to invoke the application. Return current
command if VALUE is None.

	
wm_deiconify()

	Deiconify this widget. If it was never mapped it will not be mapped.
On Windows it will raise this widget and give it the focus.

	
wm_focusmodel(model=None)

	Set focus model to MODEL. “active” means that this widget will claim
the focus itself, “passive” means that the window manager shall give
the focus. Return current focus model if MODEL is None.

	
wm_frame()

	Return identifier for decorative frame of this widget if present.

	
wm_geometry(newGeometry=None)

	Set geometry to NEWGEOMETRY of the form =widthxheight+x+y. Return
current value if None is given.

	
wm_grid(baseWidth=None, baseHeight=None, widthInc=None, heightInc=None)

	Instruct the window manager that this widget shall only be
resized on grid boundaries. WIDTHINC and HEIGHTINC are the width and
height of a grid unit in pixels. BASEWIDTH and BASEHEIGHT are the
number of grid units requested in Tk_GeometryRequest.

	
wm_group(pathName=None)

	Set the group leader widgets for related widgets to PATHNAME. Return
the group leader of this widget if None is given.

	
wm_iconbitmap(bitmap=None, default=None)

	Set bitmap for the iconified widget to BITMAP. Return
the bitmap if None is given.

Under Windows, the DEFAULT parameter can be used to set the icon
for the widget and any descendents that don’t have an icon set
explicitly. DEFAULT can be the relative path to a .ico file
(example: root.iconbitmap(default=’myicon.ico’)). See Tk
documentation for more information.

	
wm_iconify()

	Display widget as icon.

	
wm_iconmask(bitmap=None)

	Set mask for the icon bitmap of this widget. Return the
mask if None is given.

	
wm_iconname(newName=None)

	Set the name of the icon for this widget. Return the name if
None is given.

	
wm_iconposition(x=None, y=None)

	Set the position of the icon of this widget to X and Y. Return
a tuple of the current values of X and X if None is given.

	
wm_iconwindow(pathName=None)

	Set widget PATHNAME to be displayed instead of icon. Return the current
value if None is given.

	
wm_maxsize(width=None, height=None)

	Set max WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
wm_minsize(width=None, height=None)

	Set min WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
wm_overrideredirect(boolean=None)

	Instruct the window manager to ignore this widget
if BOOLEAN is given with 1. Return the current value if None
is given.

	
wm_positionfrom(who=None)

	Instruct the window manager that the position of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
wm_protocol(name=None, func=None)

	Bind function FUNC to command NAME for this widget.
Return the function bound to NAME if None is given. NAME could be
e.g. “WM_SAVE_YOURSELF” or “WM_DELETE_WINDOW”.

	
wm_resizable(width=None, height=None)

	Instruct the window manager whether this width can be resized
in WIDTH or HEIGHT. Both values are boolean values.

	
wm_sizefrom(who=None)

	Instruct the window manager that the size of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
wm_state(newstate=None)

	Query or set the state of this widget as one of normal, icon,
iconic (see wm_iconwindow), withdrawn, or zoomed (Windows only).

	
wm_title(string=None)

	Set the title of this widget.

	
wm_transient(master=None)

	Instruct the window manager that this widget is transient
with regard to widget MASTER.

	
wm_withdraw()

	Withdraw this widget from the screen such that it is unmapped
and forgotten by the window manager. Re-draw it with wm_deiconify.

	
class robot.libraries.dialogs_py.PassFailDialog(message, value=None, **extra)

	Bases: robot.libraries.dialogs_py._TkDialog

	
after(ms, func=None, *args)

	Call function once after given time.

MS specifies the time in milliseconds. FUNC gives the
function which shall be called. Additional parameters
are given as parameters to the function call. Return
identifier to cancel scheduling with after_cancel.

	
after_cancel(id)

	Cancel scheduling of function identified with ID.

Identifier returned by after or after_idle must be
given as first parameter.

	
after_idle(func, *args)

	Call FUNC once if the Tcl main loop has no event to
process.

Return an identifier to cancel the scheduling with
after_cancel.

	
aspect(minNumer=None, minDenom=None, maxNumer=None, maxDenom=None)

	Instruct the window manager to set the aspect ratio (width/height)
of this widget to be between MINNUMER/MINDENOM and MAXNUMER/MAXDENOM. Return a tuple
of the actual values if no argument is given.

	
attributes(*args)

	This subcommand returns or sets platform specific attributes

The first form returns a list of the platform specific flags and
their values. The second form returns the value for the specific
option. The third form sets one or more of the values. The values
are as follows:

On Windows, -disabled gets or sets whether the window is in a
disabled state. -toolwindow gets or sets the style of the window
to toolwindow (as defined in the MSDN). -topmost gets or sets
whether this is a topmost window (displays above all other
windows).

On Macintosh, XXXXX

On Unix, there are currently no special attribute values.

	
bbox(column=None, row=None, col2=None, row2=None)

	Return a tuple of integer coordinates for the bounding
box of this widget controlled by the geometry manager grid.

If COLUMN, ROW is given the bounding box applies from
the cell with row and column 0 to the specified
cell. If COL2 and ROW2 are given the bounding box
starts at that cell.

The returned integers specify the offset of the upper left
corner in the master widget and the width and height.

	
bell(displayof=0)

	Ring a display’s bell.

	
bind(sequence=None, func=None, add=None)

	Bind to this widget at event SEQUENCE a call to function FUNC.

SEQUENCE is a string of concatenated event
patterns. An event pattern is of the form
<MODIFIER-MODIFIER-TYPE-DETAIL> where MODIFIER is one
of Control, Mod2, M2, Shift, Mod3, M3, Lock, Mod4, M4,
Button1, B1, Mod5, M5 Button2, B2, Meta, M, Button3,
B3, Alt, Button4, B4, Double, Button5, B5 Triple,
Mod1, M1. TYPE is one of Activate, Enter, Map,
ButtonPress, Button, Expose, Motion, ButtonRelease
FocusIn, MouseWheel, Circulate, FocusOut, Property,
Colormap, Gravity Reparent, Configure, KeyPress, Key,
Unmap, Deactivate, KeyRelease Visibility, Destroy,
Leave and DETAIL is the button number for ButtonPress,
ButtonRelease and DETAIL is the Keysym for KeyPress and
KeyRelease. Examples are
<Control-Button-1> for pressing Control and mouse button 1 or
<Alt-A> for pressing A and the Alt key (KeyPress can be omitted).
An event pattern can also be a virtual event of the form
<<AString>> where AString can be arbitrary. This
event can be generated by event_generate.
If events are concatenated they must appear shortly
after each other.

FUNC will be called if the event sequence occurs with an
instance of Event as argument. If the return value of FUNC is
“break” no further bound function is invoked.

An additional boolean parameter ADD specifies whether FUNC will
be called additionally to the other bound function or whether
it will replace the previous function.

Bind will return an identifier to allow deletion of the bound function with
unbind without memory leak.

If FUNC or SEQUENCE is omitted the bound function or list
of bound events are returned.

	
bind_all(sequence=None, func=None, add=None)

	Bind to all widgets at an event SEQUENCE a call to function FUNC.
An additional boolean parameter ADD specifies whether FUNC will
be called additionally to the other bound function or whether
it will replace the previous function. See bind for the return value.

	
bind_class(className, sequence=None, func=None, add=None)

	Bind to widgets with bindtag CLASSNAME at event
SEQUENCE a call of function FUNC. An additional
boolean parameter ADD specifies whether FUNC will be
called additionally to the other bound function or
whether it will replace the previous function. See bind for
the return value.

	
bindtags(tagList=None)

	Set or get the list of bindtags for this widget.

With no argument return the list of all bindtags associated with
this widget. With a list of strings as argument the bindtags are
set to this list. The bindtags determine in which order events are
processed (see bind).

	
cget(key)

	Return the resource value for a KEY given as string.

	
client(name=None)

	Store NAME in WM_CLIENT_MACHINE property of this widget. Return
current value.

	
clipboard_append(string, **kw)

	Append STRING to the Tk clipboard.

A widget specified at the optional displayof keyword
argument specifies the target display. The clipboard
can be retrieved with selection_get.

	
clipboard_clear(**kw)

	Clear the data in the Tk clipboard.

A widget specified for the optional displayof keyword
argument specifies the target display.

	
clipboard_get(**kw)

	Retrieve data from the clipboard on window’s display.

The window keyword defaults to the root window of the Tkinter
application.

The type keyword specifies the form in which the data is
to be returned and should be an atom name such as STRING
or FILE_NAME. Type defaults to STRING, except on X11, where the default
is to try UTF8_STRING and fall back to STRING.

This command is equivalent to:

selection_get(CLIPBOARD)

	
colormapwindows(*wlist)

	Store list of window names (WLIST) into WM_COLORMAPWINDOWS property
of this widget. This list contains windows whose colormaps differ from their
parents. Return current list of widgets if WLIST is empty.

	
colormodel(value=None)

	Useless. Not implemented in Tk.

	
columnconfigure(index, cnf={}, **kw)

	Configure column INDEX of a grid.

Valid resources are minsize (minimum size of the column),
weight (how much does additional space propagate to this column)
and pad (how much space to let additionally).

	
command(value=None)

	Store VALUE in WM_COMMAND property. It is the command
which shall be used to invoke the application. Return current
command if VALUE is None.

	
config(cnf=None, **kw)

	Configure resources of a widget.

The values for resources are specified as keyword
arguments. To get an overview about
the allowed keyword arguments call the method keys.

	
configure(cnf=None, **kw)

	Configure resources of a widget.

The values for resources are specified as keyword
arguments. To get an overview about
the allowed keyword arguments call the method keys.

	
deiconify()

	Deiconify this widget. If it was never mapped it will not be mapped.
On Windows it will raise this widget and give it the focus.

	
deletecommand(name)

	Internal function.

Delete the Tcl command provided in NAME.

	
destroy()

	Destroy this and all descendants widgets.

	
event_add(virtual, *sequences)

	Bind a virtual event VIRTUAL (of the form <<Name>>)
to an event SEQUENCE such that the virtual event is triggered
whenever SEQUENCE occurs.

	
event_delete(virtual, *sequences)

	Unbind a virtual event VIRTUAL from SEQUENCE.

	
event_generate(sequence, **kw)

	Generate an event SEQUENCE. Additional
keyword arguments specify parameter of the event
(e.g. x, y, rootx, rooty).

	
event_info(virtual=None)

	Return a list of all virtual events or the information
about the SEQUENCE bound to the virtual event VIRTUAL.

	
focus()

	Direct input focus to this widget.

If the application currently does not have the focus
this widget will get the focus if the application gets
the focus through the window manager.

	
focus_displayof()

	Return the widget which has currently the focus on the
display where this widget is located.

Return None if the application does not have the focus.

	
focus_force()

	Direct input focus to this widget even if the
application does not have the focus. Use with
caution!

	
focus_get()

	Return the widget which has currently the focus in the
application.

Use focus_displayof to allow working with several
displays. Return None if application does not have
the focus.

	
focus_lastfor()

	Return the widget which would have the focus if top level
for this widget gets the focus from the window manager.

	
focus_set()

	Direct input focus to this widget.

If the application currently does not have the focus
this widget will get the focus if the application gets
the focus through the window manager.

	
focusmodel(model=None)

	Set focus model to MODEL. “active” means that this widget will claim
the focus itself, “passive” means that the window manager shall give
the focus. Return current focus model if MODEL is None.

	
frame()

	Return identifier for decorative frame of this widget if present.

	
geometry(newGeometry=None)

	Set geometry to NEWGEOMETRY of the form =widthxheight+x+y. Return
current value if None is given.

	
getboolean(s)

	Return a boolean value for Tcl boolean values true and false given as parameter.

	
getdouble

	alias of __builtin__.float

	
getint

	alias of __builtin__.int

	
getvar(name='PY_VAR')

	Return value of Tcl variable NAME.

	
grab_current()

	Return widget which has currently the grab in this application
or None.

	
grab_release()

	Release grab for this widget if currently set.

	
grab_set(timeout=30)

	

	
grab_set_global()

	Set global grab for this widget.

A global grab directs all events to this and
descendant widgets on the display. Use with caution -
other applications do not get events anymore.

	
grab_status()

	Return None, “local” or “global” if this widget has
no, a local or a global grab.

	
grid(baseWidth=None, baseHeight=None, widthInc=None, heightInc=None)

	Instruct the window manager that this widget shall only be
resized on grid boundaries. WIDTHINC and HEIGHTINC are the width and
height of a grid unit in pixels. BASEWIDTH and BASEHEIGHT are the
number of grid units requested in Tk_GeometryRequest.

	
grid_bbox(column=None, row=None, col2=None, row2=None)

	Return a tuple of integer coordinates for the bounding
box of this widget controlled by the geometry manager grid.

If COLUMN, ROW is given the bounding box applies from
the cell with row and column 0 to the specified
cell. If COL2 and ROW2 are given the bounding box
starts at that cell.

The returned integers specify the offset of the upper left
corner in the master widget and the width and height.

	
grid_columnconfigure(index, cnf={}, **kw)

	Configure column INDEX of a grid.

Valid resources are minsize (minimum size of the column),
weight (how much does additional space propagate to this column)
and pad (how much space to let additionally).

	
grid_location(x, y)

	Return a tuple of column and row which identify the cell
at which the pixel at position X and Y inside the master
widget is located.

	
grid_propagate(flag=['_noarg_'])

	Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information
of the slaves will determine the size of this widget. If no argument
is given, the current setting will be returned.

	
grid_rowconfigure(index, cnf={}, **kw)

	Configure row INDEX of a grid.

Valid resources are minsize (minimum size of the row),
weight (how much does additional space propagate to this row)
and pad (how much space to let additionally).

	
grid_size()

	Return a tuple of the number of column and rows in the grid.

	
grid_slaves(row=None, column=None)

	Return a list of all slaves of this widget
in its packing order.

	
group(pathName=None)

	Set the group leader widgets for related widgets to PATHNAME. Return
the group leader of this widget if None is given.

	
iconbitmap(bitmap=None, default=None)

	Set bitmap for the iconified widget to BITMAP. Return
the bitmap if None is given.

Under Windows, the DEFAULT parameter can be used to set the icon
for the widget and any descendents that don’t have an icon set
explicitly. DEFAULT can be the relative path to a .ico file
(example: root.iconbitmap(default=’myicon.ico’)). See Tk
documentation for more information.

	
iconify()

	Display widget as icon.

	
iconmask(bitmap=None)

	Set mask for the icon bitmap of this widget. Return the
mask if None is given.

	
iconname(newName=None)

	Set the name of the icon for this widget. Return the name if
None is given.

	
iconposition(x=None, y=None)

	Set the position of the icon of this widget to X and Y. Return
a tuple of the current values of X and X if None is given.

	
iconwindow(pathName=None)

	Set widget PATHNAME to be displayed instead of icon. Return the current
value if None is given.

	
image_names()

	Return a list of all existing image names.

	
image_types()

	Return a list of all available image types (e.g. photo bitmap).

	
keys()

	Return a list of all resource names of this widget.

	
lift(aboveThis=None)

	Raise this widget in the stacking order.

	
lower(belowThis=None)

	Lower this widget in the stacking order.

	
mainloop(n=0)

	Call the mainloop of Tk.

	
maxsize(width=None, height=None)

	Set max WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
minsize(width=None, height=None)

	Set min WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
nametowidget(name)

	Return the Tkinter instance of a widget identified by
its Tcl name NAME.

	
option_add(pattern, value, priority=None)

	Set a VALUE (second parameter) for an option
PATTERN (first parameter).

An optional third parameter gives the numeric priority
(defaults to 80).

	
option_clear()

	Clear the option database.

It will be reloaded if option_add is called.

	
option_get(name, className)

	Return the value for an option NAME for this widget
with CLASSNAME.

Values with higher priority override lower values.

	
option_readfile(fileName, priority=None)

	Read file FILENAME into the option database.

An optional second parameter gives the numeric
priority.

	
overrideredirect(boolean=None)

	Instruct the window manager to ignore this widget
if BOOLEAN is given with 1. Return the current value if None
is given.

	
pack_propagate(flag=['_noarg_'])

	Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information
of the slaves will determine the size of this widget. If no argument
is given the current setting will be returned.

	
pack_slaves()

	Return a list of all slaves of this widget
in its packing order.

	
place_slaves()

	Return a list of all slaves of this widget
in its packing order.

	
positionfrom(who=None)

	Instruct the window manager that the position of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
propagate(flag=['_noarg_'])

	Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information
of the slaves will determine the size of this widget. If no argument
is given the current setting will be returned.

	
protocol(name=None, func=None)

	Bind function FUNC to command NAME for this widget.
Return the function bound to NAME if None is given. NAME could be
e.g. “WM_SAVE_YOURSELF” or “WM_DELETE_WINDOW”.

	
quit()

	Quit the Tcl interpreter. All widgets will be destroyed.

	
register(func, subst=None, needcleanup=1)

	Return a newly created Tcl function. If this
function is called, the Python function FUNC will
be executed. An optional function SUBST can
be given which will be executed before FUNC.

	
resizable(width=None, height=None)

	Instruct the window manager whether this width can be resized
in WIDTH or HEIGHT. Both values are boolean values.

	
rowconfigure(index, cnf={}, **kw)

	Configure row INDEX of a grid.

Valid resources are minsize (minimum size of the row),
weight (how much does additional space propagate to this row)
and pad (how much space to let additionally).

	
selection_clear(**kw)

	Clear the current X selection.

	
selection_get(**kw)

	Return the contents of the current X selection.

A keyword parameter selection specifies the name of
the selection and defaults to PRIMARY. A keyword
parameter displayof specifies a widget on the display
to use. A keyword parameter type specifies the form of data to be
fetched, defaulting to STRING except on X11, where UTF8_STRING is tried
before STRING.

	
selection_handle(command, **kw)

	Specify a function COMMAND to call if the X
selection owned by this widget is queried by another
application.

This function must return the contents of the
selection. The function will be called with the
arguments OFFSET and LENGTH which allows the chunking
of very long selections. The following keyword
parameters can be provided:
selection - name of the selection (default PRIMARY),
type - type of the selection (e.g. STRING, FILE_NAME).

	
selection_own(**kw)

	Become owner of X selection.

A keyword parameter selection specifies the name of
the selection (default PRIMARY).

	
selection_own_get(**kw)

	Return owner of X selection.

The following keyword parameter can
be provided:
selection - name of the selection (default PRIMARY),
type - type of the selection (e.g. STRING, FILE_NAME).

	
send(interp, cmd, *args)

	Send Tcl command CMD to different interpreter INTERP to be executed.

	
setvar(name='PY_VAR', value='1')

	Set Tcl variable NAME to VALUE.

	
show()

	

	
size()

	Return a tuple of the number of column and rows in the grid.

	
sizefrom(who=None)

	Instruct the window manager that the size of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
slaves()

	Return a list of all slaves of this widget
in its packing order.

	
state(newstate=None)

	Query or set the state of this widget as one of normal, icon,
iconic (see wm_iconwindow), withdrawn, or zoomed (Windows only).

	
title(string=None)

	Set the title of this widget.

	
tk_bisque()

	Change the color scheme to light brown as used in Tk 3.6 and before.

	
tk_focusFollowsMouse()

	The widget under mouse will get automatically focus. Can not
be disabled easily.

	
tk_focusNext()

	Return the next widget in the focus order which follows
widget which has currently the focus.

The focus order first goes to the next child, then to
the children of the child recursively and then to the
next sibling which is higher in the stacking order. A
widget is omitted if it has the takefocus resource set
to 0.

	
tk_focusPrev()

	Return previous widget in the focus order. See tk_focusNext for details.

	
tk_menuBar(*args)

	Do not use. Needed in Tk 3.6 and earlier.

	
tk_setPalette(*args, **kw)

	Set a new color scheme for all widget elements.

A single color as argument will cause that all colors of Tk
widget elements are derived from this.
Alternatively several keyword parameters and its associated
colors can be given. The following keywords are valid:
activeBackground, foreground, selectColor,
activeForeground, highlightBackground, selectBackground,
background, highlightColor, selectForeground,
disabledForeground, insertBackground, troughColor.

	
tk_strictMotif(boolean=None)

	Set Tcl internal variable, whether the look and feel
should adhere to Motif.

A parameter of 1 means adhere to Motif (e.g. no color
change if mouse passes over slider).
Returns the set value.

	
tkraise(aboveThis=None)

	Raise this widget in the stacking order.

	
transient(master=None)

	Instruct the window manager that this widget is transient
with regard to widget MASTER.

	
unbind(sequence, funcid=None)

	Unbind for this widget for event SEQUENCE the
function identified with FUNCID.

	
unbind_all(sequence)

	Unbind for all widgets for event SEQUENCE all functions.

	
unbind_class(className, sequence)

	Unbind for all widgets with bindtag CLASSNAME for event SEQUENCE
all functions.

	
update()

	Enter event loop until all pending events have been processed by Tcl.

	
update_idletasks()

	Enter event loop until all idle callbacks have been called. This
will update the display of windows but not process events caused by
the user.

	
wait_variable(name='PY_VAR')

	Wait until the variable is modified.

A parameter of type IntVar, StringVar, DoubleVar or
BooleanVar must be given.

	
wait_visibility(window=None)

	Wait until the visibility of a WIDGET changes
(e.g. it appears).

If no parameter is given self is used.

	
wait_window(window=None)

	Wait until a WIDGET is destroyed.

If no parameter is given self is used.

	
waitvar(name='PY_VAR')

	Wait until the variable is modified.

A parameter of type IntVar, StringVar, DoubleVar or
BooleanVar must be given.

	
winfo_atom(name, displayof=0)

	Return integer which represents atom NAME.

	
winfo_atomname(id, displayof=0)

	Return name of atom with identifier ID.

	
winfo_cells()

	Return number of cells in the colormap for this widget.

	
winfo_children()

	Return a list of all widgets which are children of this widget.

	
winfo_class()

	Return window class name of this widget.

	
winfo_colormapfull()

	Return true if at the last color request the colormap was full.

	
winfo_containing(rootX, rootY, displayof=0)

	Return the widget which is at the root coordinates ROOTX, ROOTY.

	
winfo_depth()

	Return the number of bits per pixel.

	
winfo_exists()

	Return true if this widget exists.

	
winfo_fpixels(number)

	Return the number of pixels for the given distance NUMBER
(e.g. “3c”) as float.

	
winfo_geometry()

	Return geometry string for this widget in the form “widthxheight+X+Y”.

	
winfo_height()

	Return height of this widget.

	
winfo_id()

	Return identifier ID for this widget.

	
winfo_interps(displayof=0)

	Return the name of all Tcl interpreters for this display.

	
winfo_ismapped()

	Return true if this widget is mapped.

	
winfo_manager()

	Return the window manager name for this widget.

	
winfo_name()

	Return the name of this widget.

	
winfo_parent()

	Return the name of the parent of this widget.

	
winfo_pathname(id, displayof=0)

	Return the pathname of the widget given by ID.

	
winfo_pixels(number)

	Rounded integer value of winfo_fpixels.

	
winfo_pointerx()

	Return the x coordinate of the pointer on the root window.

	
winfo_pointerxy()

	Return a tuple of x and y coordinates of the pointer on the root window.

	
winfo_pointery()

	Return the y coordinate of the pointer on the root window.

	
winfo_reqheight()

	Return requested height of this widget.

	
winfo_reqwidth()

	Return requested width of this widget.

	
winfo_rgb(color)

	Return tuple of decimal values for red, green, blue for
COLOR in this widget.

	
winfo_rootx()

	Return x coordinate of upper left corner of this widget on the
root window.

	
winfo_rooty()

	Return y coordinate of upper left corner of this widget on the
root window.

	
winfo_screen()

	Return the screen name of this widget.

	
winfo_screencells()

	Return the number of the cells in the colormap of the screen
of this widget.

	
winfo_screendepth()

	Return the number of bits per pixel of the root window of the
screen of this widget.

	
winfo_screenheight()

	Return the number of pixels of the height of the screen of this widget
in pixel.

	
winfo_screenmmheight()

	Return the number of pixels of the height of the screen of
this widget in mm.

	
winfo_screenmmwidth()

	Return the number of pixels of the width of the screen of
this widget in mm.

	
winfo_screenvisual()

	Return one of the strings directcolor, grayscale, pseudocolor,
staticcolor, staticgray, or truecolor for the default
colormodel of this screen.

	
winfo_screenwidth()

	Return the number of pixels of the width of the screen of
this widget in pixel.

	
winfo_server()

	Return information of the X-Server of the screen of this widget in
the form “XmajorRminor vendor vendorVersion”.

	
winfo_toplevel()

	Return the toplevel widget of this widget.

	
winfo_viewable()

	Return true if the widget and all its higher ancestors are mapped.

	
winfo_visual()

	Return one of the strings directcolor, grayscale, pseudocolor,
staticcolor, staticgray, or truecolor for the
colormodel of this widget.

	
winfo_visualid()

	Return the X identifier for the visual for this widget.

	
winfo_visualsavailable(includeids=0)

	Return a list of all visuals available for the screen
of this widget.

Each item in the list consists of a visual name (see winfo_visual), a
depth and if INCLUDEIDS=1 is given also the X identifier.

	
winfo_vrootheight()

	Return the height of the virtual root window associated with this
widget in pixels. If there is no virtual root window return the
height of the screen.

	
winfo_vrootwidth()

	Return the width of the virtual root window associated with this
widget in pixel. If there is no virtual root window return the
width of the screen.

	
winfo_vrootx()

	Return the x offset of the virtual root relative to the root
window of the screen of this widget.

	
winfo_vrooty()

	Return the y offset of the virtual root relative to the root
window of the screen of this widget.

	
winfo_width()

	Return the width of this widget.

	
winfo_x()

	Return the x coordinate of the upper left corner of this widget
in the parent.

	
winfo_y()

	Return the y coordinate of the upper left corner of this widget
in the parent.

	
withdraw()

	Withdraw this widget from the screen such that it is unmapped
and forgotten by the window manager. Re-draw it with wm_deiconify.

	
wm_aspect(minNumer=None, minDenom=None, maxNumer=None, maxDenom=None)

	Instruct the window manager to set the aspect ratio (width/height)
of this widget to be between MINNUMER/MINDENOM and MAXNUMER/MAXDENOM. Return a tuple
of the actual values if no argument is given.

	
wm_attributes(*args)

	This subcommand returns or sets platform specific attributes

The first form returns a list of the platform specific flags and
their values. The second form returns the value for the specific
option. The third form sets one or more of the values. The values
are as follows:

On Windows, -disabled gets or sets whether the window is in a
disabled state. -toolwindow gets or sets the style of the window
to toolwindow (as defined in the MSDN). -topmost gets or sets
whether this is a topmost window (displays above all other
windows).

On Macintosh, XXXXX

On Unix, there are currently no special attribute values.

	
wm_client(name=None)

	Store NAME in WM_CLIENT_MACHINE property of this widget. Return
current value.

	
wm_colormapwindows(*wlist)

	Store list of window names (WLIST) into WM_COLORMAPWINDOWS property
of this widget. This list contains windows whose colormaps differ from their
parents. Return current list of widgets if WLIST is empty.

	
wm_command(value=None)

	Store VALUE in WM_COMMAND property. It is the command
which shall be used to invoke the application. Return current
command if VALUE is None.

	
wm_deiconify()

	Deiconify this widget. If it was never mapped it will not be mapped.
On Windows it will raise this widget and give it the focus.

	
wm_focusmodel(model=None)

	Set focus model to MODEL. “active” means that this widget will claim
the focus itself, “passive” means that the window manager shall give
the focus. Return current focus model if MODEL is None.

	
wm_frame()

	Return identifier for decorative frame of this widget if present.

	
wm_geometry(newGeometry=None)

	Set geometry to NEWGEOMETRY of the form =widthxheight+x+y. Return
current value if None is given.

	
wm_grid(baseWidth=None, baseHeight=None, widthInc=None, heightInc=None)

	Instruct the window manager that this widget shall only be
resized on grid boundaries. WIDTHINC and HEIGHTINC are the width and
height of a grid unit in pixels. BASEWIDTH and BASEHEIGHT are the
number of grid units requested in Tk_GeometryRequest.

	
wm_group(pathName=None)

	Set the group leader widgets for related widgets to PATHNAME. Return
the group leader of this widget if None is given.

	
wm_iconbitmap(bitmap=None, default=None)

	Set bitmap for the iconified widget to BITMAP. Return
the bitmap if None is given.

Under Windows, the DEFAULT parameter can be used to set the icon
for the widget and any descendents that don’t have an icon set
explicitly. DEFAULT can be the relative path to a .ico file
(example: root.iconbitmap(default=’myicon.ico’)). See Tk
documentation for more information.

	
wm_iconify()

	Display widget as icon.

	
wm_iconmask(bitmap=None)

	Set mask for the icon bitmap of this widget. Return the
mask if None is given.

	
wm_iconname(newName=None)

	Set the name of the icon for this widget. Return the name if
None is given.

	
wm_iconposition(x=None, y=None)

	Set the position of the icon of this widget to X and Y. Return
a tuple of the current values of X and X if None is given.

	
wm_iconwindow(pathName=None)

	Set widget PATHNAME to be displayed instead of icon. Return the current
value if None is given.

	
wm_maxsize(width=None, height=None)

	Set max WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
wm_minsize(width=None, height=None)

	Set min WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
wm_overrideredirect(boolean=None)

	Instruct the window manager to ignore this widget
if BOOLEAN is given with 1. Return the current value if None
is given.

	
wm_positionfrom(who=None)

	Instruct the window manager that the position of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
wm_protocol(name=None, func=None)

	Bind function FUNC to command NAME for this widget.
Return the function bound to NAME if None is given. NAME could be
e.g. “WM_SAVE_YOURSELF” or “WM_DELETE_WINDOW”.

	
wm_resizable(width=None, height=None)

	Instruct the window manager whether this width can be resized
in WIDTH or HEIGHT. Both values are boolean values.

	
wm_sizefrom(who=None)

	Instruct the window manager that the size of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
wm_state(newstate=None)

	Query or set the state of this widget as one of normal, icon,
iconic (see wm_iconwindow), withdrawn, or zoomed (Windows only).

	
wm_title(string=None)

	Set the title of this widget.

	
wm_transient(master=None)

	Instruct the window manager that this widget is transient
with regard to widget MASTER.

	
wm_withdraw()

	Withdraw this widget from the screen such that it is unmapped
and forgotten by the window manager. Re-draw it with wm_deiconify.

robot.model package

Package with generic, reusable and extensible model classes.

This package contains, for example, TestSuite,
TestCase, Keyword
and SuiteVisitor base classes.
These classes are extended both by execution
and result related model objects and used also
elsewhere.

This package is considered stable.

Submodules

robot.model.body module

	
class robot.model.body.BodyItem[source]

	Bases: robot.model.modelobject.ModelObject

	
KEYWORD = 'KEYWORD'

	

	
SETUP = 'SETUP'

	

	
TEARDOWN = 'TEARDOWN'

	

	
FOR = 'FOR'

	

	
FOR_ITERATION = 'FOR ITERATION'

	

	
IF_ELSE_ROOT = 'IF/ELSE ROOT'

	

	
IF = 'IF'

	

	
ELSE_IF = 'ELSE IF'

	

	
ELSE = 'ELSE'

	

	
MESSAGE = 'MESSAGE'

	

	
type = None

	

	
id

	Item id in format like s1-t3-k1.

See TestSuite.id for
more information.

	
config(**attributes)

	Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting
obj.name = 'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

	
copy(**attributes)

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
deepcopy(**attributes)

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
parent

	

	
repr_args = ()

	

	
class robot.model.body.Body(parent=None, items=None)[source]

	Bases: robot.model.itemlist.ItemList

A list-like object representing body of a suite, a test or a keyword.

Body contains the keywords and other structures such as for loops.

	
keyword_class

	alias of robot.model.keyword.Keyword

	
for_class

	alias of robot.model.control.For

	
if_class

	alias of robot.model.control.If

	
classmethod register(item_class)[source]

	

	
create

	

	
create_keyword(*args, **kwargs)[source]

	

	
create_for(*args, **kwargs)[source]

	

	
create_if(*args, **kwargs)[source]

	

	
filter(keywords=None, fors=None, ifs=None, predicate=None)[source]

	Filter body items based on type and/or custom predicate.

To include or exclude items based on types, give matching arguments
True or False values. For example, to include only keywords, use
body.filter(keywords=True) and to exclude FOR and IF constructs use
body.filter(fors=False, ifs=False). Including and excluding by types
at the same time is not supported.

Custom predicate is a calleble getting each body item as an argument
that must return True/False depending on should the item be included
or not.

Selected items are returned as a list and the original body is not modified.

	
append(item)

	

	
clear()

	

	
count(item)

	

	
extend(items)

	

	
index(item, *start_and_end)

	

	
insert(index, item)

	

	
pop(*index)

	

	
remove(item)

	

	
reverse()

	

	
sort()

	

	
visit(visitor)

	

	
class robot.model.body.IfBranches(parent=None, items=None)[source]

	Bases: robot.model.body.Body

	
if_branch_class

	alias of robot.model.control.IfBranch

	
keyword_class = None

	

	
for_class = None

	

	
if_class = None

	

	
create_branch(*args, **kwargs)[source]

	

	
append(item)

	

	
clear()

	

	
count(item)

	

	
create

	

	
create_for(*args, **kwargs)

	

	
create_if(*args, **kwargs)

	

	
create_keyword(*args, **kwargs)

	

	
extend(items)

	

	
filter(keywords=None, fors=None, ifs=None, predicate=None)

	Filter body items based on type and/or custom predicate.

To include or exclude items based on types, give matching arguments
True or False values. For example, to include only keywords, use
body.filter(keywords=True) and to exclude FOR and IF constructs use
body.filter(fors=False, ifs=False). Including and excluding by types
at the same time is not supported.

Custom predicate is a calleble getting each body item as an argument
that must return True/False depending on should the item be included
or not.

Selected items are returned as a list and the original body is not modified.

	
index(item, *start_and_end)

	

	
insert(index, item)

	

	
pop(*index)

	

	
classmethod register(item_class)

	

	
remove(item)

	

	
reverse()

	

	
sort()

	

	
visit(visitor)

	

robot.model.configurer module

	
class robot.model.configurer.SuiteConfigurer(name=None, doc=None, metadata=None, set_tags=None, include_tags=None, exclude_tags=None, include_suites=None, include_tests=None, empty_suite_ok=False)[source]

	Bases: robot.model.visitor.SuiteVisitor

	
add_tags

	

	
remove_tags

	

	
visit_suite(suite)[source]

	Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
end_for(for_)

	Called when FOR loop ends. Default implementation does nothing.

	
end_for_iteration(iteration)

	Called when FOR loop iteration ends. Default implementation does nothing.

	
end_if(if_)

	Called when IF/ELSE structure ends. Default implementation does nothing.

	
end_if_branch(branch)

	Called when IF/ELSE branch ends. Default implementation does nothing.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_for(for_)

	Called when FOR loop starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_for_iteration(iteration)

	Called when FOR loop iteration starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if(if_)

	Called when IF/ELSE structure starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if_branch(branch)

	Called when IF/ELSE branch starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_for(for_)

	Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without
calling start_for() or end_for() nor visiting body.

	
visit_for_iteration(iteration)

	Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side
there are no iterations.

Can be overridden to allow modifying the passed in iteration without
calling start_for_iteration() or end_for_iteration() nor visiting
body.

	
visit_if(if_)

	Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches
are in its body and visited using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without
calling start_if() or end_if() nor visiting branches.

	
visit_if_branch(branch)

	Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without
calling start_if_branch() or end_if_branch() nor visiting body.

	
visit_keyword(kw)

	Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
visit_message(msg)

	Implements visiting messages.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_test(test)

	Implements traversing through tests.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

robot.model.control module

	
class robot.model.control.For(variables=(), flavor='IN', values=(), parent=None)[source]

	Bases: robot.model.body.BodyItem

	
type = 'FOR'

	

	
body_class

	alias of robot.model.body.Body

	
repr_args = ('variables', 'flavor', 'values')

	

	
variables

	

	
flavor

	

	
values

	

	
parent

	

	
body

	

	
keywords

	Deprecated since Robot Framework 4.0. Use body instead.

	
visit(visitor)[source]

	

	
ELSE = 'ELSE'

	

	
ELSE_IF = 'ELSE IF'

	

	
FOR = 'FOR'

	

	
FOR_ITERATION = 'FOR ITERATION'

	

	
IF = 'IF'

	

	
IF_ELSE_ROOT = 'IF/ELSE ROOT'

	

	
KEYWORD = 'KEYWORD'

	

	
MESSAGE = 'MESSAGE'

	

	
SETUP = 'SETUP'

	

	
TEARDOWN = 'TEARDOWN'

	

	
config(**attributes)

	Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting
obj.name = 'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

	
copy(**attributes)

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
deepcopy(**attributes)

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
id

	Item id in format like s1-t3-k1.

See TestSuite.id for
more information.

	
class robot.model.control.If(parent=None)[source]

	Bases: robot.model.body.BodyItem

IF/ELSE structure root. Branches are stored in body.

	
type = 'IF/ELSE ROOT'

	

	
body_class

	alias of robot.model.body.IfBranches

	
parent

	

	
body

	

	
id

	Root IF/ELSE id is always None.

	
visit(visitor)[source]

	

	
ELSE = 'ELSE'

	

	
ELSE_IF = 'ELSE IF'

	

	
FOR = 'FOR'

	

	
FOR_ITERATION = 'FOR ITERATION'

	

	
IF = 'IF'

	

	
IF_ELSE_ROOT = 'IF/ELSE ROOT'

	

	
KEYWORD = 'KEYWORD'

	

	
MESSAGE = 'MESSAGE'

	

	
SETUP = 'SETUP'

	

	
TEARDOWN = 'TEARDOWN'

	

	
config(**attributes)

	Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting
obj.name = 'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

	
copy(**attributes)

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
deepcopy(**attributes)

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
repr_args = ()

	

	
class robot.model.control.IfBranch(type='IF', condition=None, parent=None)[source]

	Bases: robot.model.body.BodyItem

	
body_class

	alias of robot.model.body.Body

	
repr_args = ('type', 'condition')

	

	
type

	

	
condition

	

	
parent

	

	
ELSE = 'ELSE'

	

	
ELSE_IF = 'ELSE IF'

	

	
FOR = 'FOR'

	

	
FOR_ITERATION = 'FOR ITERATION'

	

	
IF = 'IF'

	

	
IF_ELSE_ROOT = 'IF/ELSE ROOT'

	

	
KEYWORD = 'KEYWORD'

	

	
MESSAGE = 'MESSAGE'

	

	
SETUP = 'SETUP'

	

	
TEARDOWN = 'TEARDOWN'

	

	
body

	

	
config(**attributes)

	Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting
obj.name = 'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

	
copy(**attributes)

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
deepcopy(**attributes)

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
id

	Branch id omits the root IF/ELSE object from the parent id part.

	
visit(visitor)[source]

	

robot.model.filter module

	
class robot.model.filter.EmptySuiteRemover(preserve_direct_children=False)[source]

	Bases: robot.model.visitor.SuiteVisitor

	
end_suite(suite)[source]

	Called when suite ends. Default implementation does nothing.

	
visit_test(test)[source]

	Implements traversing through tests.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
visit_keyword(kw)[source]

	Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
end_for(for_)

	Called when FOR loop ends. Default implementation does nothing.

	
end_for_iteration(iteration)

	Called when FOR loop iteration ends. Default implementation does nothing.

	
end_if(if_)

	Called when IF/ELSE structure ends. Default implementation does nothing.

	
end_if_branch(branch)

	Called when IF/ELSE branch ends. Default implementation does nothing.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_for(for_)

	Called when FOR loop starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_for_iteration(iteration)

	Called when FOR loop iteration starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if(if_)

	Called when IF/ELSE structure starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if_branch(branch)

	Called when IF/ELSE branch starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_for(for_)

	Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without
calling start_for() or end_for() nor visiting body.

	
visit_for_iteration(iteration)

	Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side
there are no iterations.

Can be overridden to allow modifying the passed in iteration without
calling start_for_iteration() or end_for_iteration() nor visiting
body.

	
visit_if(if_)

	Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches
are in its body and visited using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without
calling start_if() or end_if() nor visiting branches.

	
visit_if_branch(branch)

	Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without
calling start_if_branch() or end_if_branch() nor visiting body.

	
visit_message(msg)

	Implements visiting messages.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
class robot.model.filter.Filter(include_suites=None, include_tests=None, include_tags=None, exclude_tags=None)[source]

	Bases: robot.model.filter.EmptySuiteRemover

	
include_suites

	

	
include_tests

	

	
include_tags

	

	
exclude_tags

	

	
start_suite(suite)[source]

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_for(for_)

	Called when FOR loop ends. Default implementation does nothing.

	
end_for_iteration(iteration)

	Called when FOR loop iteration ends. Default implementation does nothing.

	
end_if(if_)

	Called when IF/ELSE structure ends. Default implementation does nothing.

	
end_if_branch(branch)

	Called when IF/ELSE branch ends. Default implementation does nothing.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_for(for_)

	Called when FOR loop starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_for_iteration(iteration)

	Called when FOR loop iteration starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if(if_)

	Called when IF/ELSE structure starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if_branch(branch)

	Called when IF/ELSE branch starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_for(for_)

	Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without
calling start_for() or end_for() nor visiting body.

	
visit_for_iteration(iteration)

	Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side
there are no iterations.

Can be overridden to allow modifying the passed in iteration without
calling start_for_iteration() or end_for_iteration() nor visiting
body.

	
visit_if(if_)

	Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches
are in its body and visited using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without
calling start_if() or end_if() nor visiting branches.

	
visit_if_branch(branch)

	Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without
calling start_if_branch() or end_if_branch() nor visiting body.

	
visit_keyword(kw)

	Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
visit_message(msg)

	Implements visiting messages.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
visit_test(test)

	Implements traversing through tests.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

robot.model.fixture module

	
robot.model.fixture.create_fixture(fixture, parent, type)[source]

	

robot.model.itemlist module

	
class robot.model.itemlist.ItemList(item_class, common_attrs=None, items=None)[source]

	Bases: object

	
create(*args, **kwargs)[source]

	

	
append(item)[source]

	

	
extend(items)[source]

	

	
insert(index, item)[source]

	

	
pop(*index)[source]

	

	
remove(item)[source]

	

	
index(item, *start_and_end)[source]

	

	
clear()[source]

	

	
visit(visitor)[source]

	

	
count(item)[source]

	

	
sort()[source]

	

	
reverse()[source]

	

robot.model.keyword module

	
class robot.model.keyword.Keyword(name='', doc='', args=(), assign=(), tags=(), timeout=None, type='KEYWORD', parent=None)[source]

	Bases: robot.model.body.BodyItem

Base model for a single keyword.

Extended by robot.running.model.Keyword and
robot.result.model.Keyword.

	
repr_args = ('name', 'args', 'assign')

	

	
doc

	

	
args

	

	
assign

	

	
timeout

	

	
type

	

	
parent

	

	
name

	

	
teardown

	Keyword teardown as a Keyword object.

Teardown can be modified by setting attributes directly:

keyword.teardown.name = 'Example'
keyword.teardown.args = ('First', 'Second')

Alternatively the config() method can be used to set multiple
attributes in one call:

keyword.teardown.config(name='Example', args=('First', 'Second'))

The easiest way to reset the whole teardown is setting it to None.
It will automatically recreate the underlying Keyword object:

keyword.teardown = None

This attribute is a Keyword object also when a keyword has no teardown
but in that case its truth value is False. If there is a need to just
check does a keyword have a teardown, using the has_teardown
attribute avoids creating the Keyword object and is thus more memory
efficient.

New in Robot Framework 4.0. Earlier teardown was accessed like
keyword.keywords.teardown. has_teardown is new in Robot
Framework 4.1.2.

	
has_teardown

	Check does a keyword have a teardown without creating a teardown object.

A difference between using if kw.has_teardown: and if kw.teardown:
is that accessing the teardown attribute creates a Keyword
object representing a teardown even when the keyword actually does not
have one. This typically does not matter, but with bigger suite structures
having lot of keywords it can have a considerable effect on memory usage.

New in Robot Framework 4.1.2.

	
tags

	Keyword tags as a Tags object.

	
visit(visitor)[source]

	Visitor interface entry-point.

	
ELSE = 'ELSE'

	

	
ELSE_IF = 'ELSE IF'

	

	
FOR = 'FOR'

	

	
FOR_ITERATION = 'FOR ITERATION'

	

	
IF = 'IF'

	

	
IF_ELSE_ROOT = 'IF/ELSE ROOT'

	

	
KEYWORD = 'KEYWORD'

	

	
MESSAGE = 'MESSAGE'

	

	
SETUP = 'SETUP'

	

	
TEARDOWN = 'TEARDOWN'

	

	
config(**attributes)

	Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting
obj.name = 'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

	
copy(**attributes)

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
deepcopy(**attributes)

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
id

	Item id in format like s1-t3-k1.

See TestSuite.id for
more information.

	
class robot.model.keyword.Keywords(parent=None, keywords=None)[source]

	Bases: robot.model.itemlist.ItemList

A list-like object representing keywords in a suite, a test or a keyword.

Read-only and deprecated since Robot Framework 4.0.

	
deprecation_message = "'keywords' attribute is read-only and deprecated since Robot Framework 4.0. Use 'body', 'setup' or 'teardown' instead."

	

	
setup

	

	
create_setup(*args, **kwargs)[source]

	

	
teardown

	

	
create_teardown(*args, **kwargs)[source]

	

	
all

	Iterates over all keywords, including setup and teardown.

	
normal

	Iterates over normal keywords, omitting setup and teardown.

	
create(*args, **kwargs)[source]

	

	
append(item)[source]

	

	
extend(items)[source]

	

	
insert(index, item)[source]

	

	
pop(*index)[source]

	

	
remove(item)[source]

	

	
clear()[source]

	

	
count(item)

	

	
index(item, *start_and_end)

	

	
visit(visitor)

	

	
sort()[source]

	

	
reverse()[source]

	

	
classmethod raise_deprecation_error()[source]

	

robot.model.message module

	
class robot.model.message.Message(message='', level='INFO', html=False, timestamp=None, parent=None)[source]

	Bases: robot.model.body.BodyItem

A message created during the test execution.

Can be a log message triggered by a keyword, or a warning or an error
that occurred during parsing or test execution.

	
type = 'MESSAGE'

	

	
repr_args = ('message', 'level')

	

	
message

	The message content as a string.

	
level

	Severity of the message. Either TRACE, DEBUG, INFO,
WARN, ERROR, FAIL or ``SKIP`. The last two are only used
with keyword failure messages.

	
html

	True if the content is in HTML, False otherwise.

	
timestamp

	Timestamp in format %Y%m%d %H:%M:%S.%f.

	
parent

	The object this message was triggered by.

	
html_message

	Returns the message content as HTML.

	
id

	

	
visit(visitor)[source]

	Visitor interface entry-point.

	
ELSE = 'ELSE'

	

	
ELSE_IF = 'ELSE IF'

	

	
FOR = 'FOR'

	

	
FOR_ITERATION = 'FOR ITERATION'

	

	
IF = 'IF'

	

	
IF_ELSE_ROOT = 'IF/ELSE ROOT'

	

	
KEYWORD = 'KEYWORD'

	

	
MESSAGE = 'MESSAGE'

	

	
SETUP = 'SETUP'

	

	
TEARDOWN = 'TEARDOWN'

	

	
config(**attributes)

	Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting
obj.name = 'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

	
copy(**attributes)

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
deepcopy(**attributes)

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
class robot.model.message.Messages(message_class=<class 'robot.model.message.Message'>, parent=None, messages=None)[source]

	Bases: robot.model.itemlist.ItemList

	
append(item)

	

	
clear()

	

	
count(item)

	

	
create(*args, **kwargs)

	

	
extend(items)

	

	
index(item, *start_and_end)

	

	
insert(index, item)

	

	
pop(*index)

	

	
remove(item)

	

	
reverse()

	

	
sort()

	

	
visit(visitor)

	

robot.model.metadata module

	
class robot.model.metadata.Metadata(initial=None)[source]

	Bases: robot.utils.normalizing.NormalizedDict

	
clear() → None. Remove all items from D.

	

	
copy()

	

	
get(k[, d]) → D[k] if k in D, else d. d defaults to None.

	

	
items() → list of D's (key, value) pairs, as 2-tuples

	

	
iteritems() → an iterator over the (key, value) items of D

	

	
iterkeys() → an iterator over the keys of D

	

	
itervalues() → an iterator over the values of D

	

	
keys() → list of D's keys

	

	
pop(k[, d]) → v, remove specified key and return the corresponding value.

	If key is not found, d is returned if given, otherwise KeyError is raised.

	
popitem() → (k, v), remove and return some (key, value) pair

	as a 2-tuple; but raise KeyError if D is empty.

	
setdefault(k[, d]) → D.get(k,d), also set D[k]=d if k not in D

	

	
update([E,]**F) → None. Update D from mapping/iterable E and F.

	If E present and has a .keys() method, does: for k in E: D[k] = E[k]
If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v
In either case, this is followed by: for k, v in F.items(): D[k] = v

	
values() → list of D's values

	

robot.model.modelobject module

	
class robot.model.modelobject.ModelObject[source]

	Bases: object

	
repr_args = ()

	

	
config(**attributes)[source]

	Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting
obj.name = 'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

	
copy(**attributes)[source]

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
deepcopy(**attributes)[source]

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

robot.model.modifier module

	
class robot.model.modifier.ModelModifier(visitors, empty_suite_ok, logger)[source]

	Bases: robot.model.visitor.SuiteVisitor

	
visit_suite(suite)[source]

	Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
end_for(for_)

	Called when FOR loop ends. Default implementation does nothing.

	
end_for_iteration(iteration)

	Called when FOR loop iteration ends. Default implementation does nothing.

	
end_if(if_)

	Called when IF/ELSE structure ends. Default implementation does nothing.

	
end_if_branch(branch)

	Called when IF/ELSE branch ends. Default implementation does nothing.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_for(for_)

	Called when FOR loop starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_for_iteration(iteration)

	Called when FOR loop iteration starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if(if_)

	Called when IF/ELSE structure starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if_branch(branch)

	Called when IF/ELSE branch starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_for(for_)

	Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without
calling start_for() or end_for() nor visiting body.

	
visit_for_iteration(iteration)

	Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side
there are no iterations.

Can be overridden to allow modifying the passed in iteration without
calling start_for_iteration() or end_for_iteration() nor visiting
body.

	
visit_if(if_)

	Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches
are in its body and visited using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without
calling start_if() or end_if() nor visiting branches.

	
visit_if_branch(branch)

	Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without
calling start_if_branch() or end_if_branch() nor visiting body.

	
visit_keyword(kw)

	Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
visit_message(msg)

	Implements visiting messages.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_test(test)

	Implements traversing through tests.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

robot.model.namepatterns module

	
class robot.model.namepatterns.SuiteNamePatterns(patterns=None)[source]

	Bases: robot.model.namepatterns._NamePatterns

	
match(name, longname=None)

	

	
class robot.model.namepatterns.TestNamePatterns(patterns=None)[source]

	Bases: robot.model.namepatterns._NamePatterns

	
match(name, longname=None)

	

robot.model.statistics module

	
class robot.model.statistics.Statistics(suite, suite_stat_level=-1, tag_stat_include=None, tag_stat_exclude=None, tag_stat_combine=None, tag_doc=None, tag_stat_link=None, rpa=False)[source]

	Bases: object

Container for total, suite and tag statistics.

Accepted parameters have the same semantics as the matching command line
options.

	
total = None

	Instance of TotalStatistics.

	
suite = None

	Instance of SuiteStatistics.

	
tags = None

	Instance of TagStatistics.

	
visit(visitor)[source]

	

	
class robot.model.statistics.StatisticsBuilder(total_builder, suite_builder, tag_builder)[source]

	Bases: robot.model.visitor.SuiteVisitor

	
start_suite(suite)[source]

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_suite(suite)[source]

	Called when suite ends. Default implementation does nothing.

	
visit_test(test)[source]

	Implements traversing through tests.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
visit_keyword(kw)[source]

	Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
end_for(for_)

	Called when FOR loop ends. Default implementation does nothing.

	
end_for_iteration(iteration)

	Called when FOR loop iteration ends. Default implementation does nothing.

	
end_if(if_)

	Called when IF/ELSE structure ends. Default implementation does nothing.

	
end_if_branch(branch)

	Called when IF/ELSE branch ends. Default implementation does nothing.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_for(for_)

	Called when FOR loop starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_for_iteration(iteration)

	Called when FOR loop iteration starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if(if_)

	Called when IF/ELSE structure starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if_branch(branch)

	Called when IF/ELSE branch starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_for(for_)

	Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without
calling start_for() or end_for() nor visiting body.

	
visit_for_iteration(iteration)

	Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side
there are no iterations.

Can be overridden to allow modifying the passed in iteration without
calling start_for_iteration() or end_for_iteration() nor visiting
body.

	
visit_if(if_)

	Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches
are in its body and visited using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without
calling start_if() or end_if() nor visiting branches.

	
visit_if_branch(branch)

	Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without
calling start_if_branch() or end_if_branch() nor visiting body.

	
visit_message(msg)

	Implements visiting messages.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

robot.model.stats module

	
class robot.model.stats.Stat(name)[source]

	Bases: robot.utils.sortable.Sortable

Generic statistic object used for storing all the statistic values.

	
name = None

	Human readable identifier of the object these statistics
belong to. All Tests for
TotalStatistics,
long name of the suite for
SuiteStatistics
or name of the tag for
TagStatistics

	
passed = None

	Number of passed tests.

	
failed = None

	Number of failed tests.

	
skipped = None

	Number of skipped tests.

	
elapsed = None

	Number of milliseconds it took to execute.

	
get_attributes(include_label=False, include_elapsed=False, exclude_empty=True, values_as_strings=False, html_escape=False)[source]

	

	
total

	

	
add_test(test)[source]

	

	
visit(visitor)[source]

	

	
class robot.model.stats.TotalStat(name)[source]

	Bases: robot.model.stats.Stat

Stores statistic values for a test run.

	
type = 'total'

	

	
add_test(test)

	

	
get_attributes(include_label=False, include_elapsed=False, exclude_empty=True, values_as_strings=False, html_escape=False)

	

	
total

	

	
visit(visitor)

	

	
class robot.model.stats.SuiteStat(suite)[source]

	Bases: robot.model.stats.Stat

Stores statistics values for a single suite.

	
type = 'suite'

	

	
id = None

	Identifier of the suite, e.g. s1-s2.

	
elapsed = None

	Number of milliseconds it took to execute this suite,
including sub-suites.

	
add_stat(other)[source]

	

	
add_test(test)

	

	
get_attributes(include_label=False, include_elapsed=False, exclude_empty=True, values_as_strings=False, html_escape=False)

	

	
total

	

	
visit(visitor)

	

	
class robot.model.stats.TagStat(name, doc='', links=None, combined=None)[source]

	Bases: robot.model.stats.Stat

Stores statistic values for a single tag.

	
type = 'tag'

	

	
doc = None

	Documentation of tag as a string.

	
links = None

	List of tuples in which the first value is the link URL and
the second is the link title. An empty list by default.

	
combined = None

	Pattern as a string if the tag is combined, None otherwise.

	
info

	Returns additional information of the tag statistics
are about. Either combined or an empty string.

	
add_test(test)

	

	
get_attributes(include_label=False, include_elapsed=False, exclude_empty=True, values_as_strings=False, html_escape=False)

	

	
total

	

	
visit(visitor)

	

	
class robot.model.stats.CombinedTagStat(pattern, name=None, doc='', links=None)[source]

	Bases: robot.model.stats.TagStat

	
match(tags)[source]

	

	
add_test(test)

	

	
get_attributes(include_label=False, include_elapsed=False, exclude_empty=True, values_as_strings=False, html_escape=False)

	

	
info

	Returns additional information of the tag statistics
are about. Either combined or an empty string.

	
total

	

	
type = 'tag'

	

	
visit(visitor)

	

robot.model.suitestatistics module

	
class robot.model.suitestatistics.SuiteStatistics(suite)[source]

	Bases: object

Container for suite statistics.

	
stat = None

	Instance of SuiteStat.

	
suites = None

	List of TestSuite objects.

	
visit(visitor)[source]

	

	
class robot.model.suitestatistics.SuiteStatisticsBuilder(suite_stat_level)[source]

	Bases: object

	
current

	

	
start_suite(suite)[source]

	

	
add_test(test)[source]

	

	
end_suite()[source]

	

robot.model.tags module

	
class robot.model.tags.Tags(tags=None)[source]

	Bases: object

	
add(tags)[source]

	

	
remove(tags)[source]

	

	
match(tags)[source]

	

	
class robot.model.tags.TagPatterns(patterns)[source]

	Bases: object

	
match(tags)[source]

	

	
robot.model.tags.TagPattern(pattern)[source]

	

	
class robot.model.tags.SingleTagPattern(pattern)[source]

	Bases: object

	
match(tags)[source]

	

	
class robot.model.tags.AndTagPattern(patterns)[source]

	Bases: object

	
match(tags)[source]

	

	
class robot.model.tags.OrTagPattern(patterns)[source]

	Bases: object

	
match(tags)[source]

	

	
class robot.model.tags.NotTagPattern(must_match, *must_not_match)[source]

	Bases: object

	
match(tags)[source]

	

robot.model.tagsetter module

	
class robot.model.tagsetter.TagSetter(add=None, remove=None)[source]

	Bases: robot.model.visitor.SuiteVisitor

	
start_suite(suite)[source]

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_test(test)[source]

	Implements traversing through tests.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
visit_keyword(keyword)[source]

	Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
end_for(for_)

	Called when FOR loop ends. Default implementation does nothing.

	
end_for_iteration(iteration)

	Called when FOR loop iteration ends. Default implementation does nothing.

	
end_if(if_)

	Called when IF/ELSE structure ends. Default implementation does nothing.

	
end_if_branch(branch)

	Called when IF/ELSE branch ends. Default implementation does nothing.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_for(for_)

	Called when FOR loop starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_for_iteration(iteration)

	Called when FOR loop iteration starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if(if_)

	Called when IF/ELSE structure starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if_branch(branch)

	Called when IF/ELSE branch starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_for(for_)

	Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without
calling start_for() or end_for() nor visiting body.

	
visit_for_iteration(iteration)

	Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side
there are no iterations.

Can be overridden to allow modifying the passed in iteration without
calling start_for_iteration() or end_for_iteration() nor visiting
body.

	
visit_if(if_)

	Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches
are in its body and visited using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without
calling start_if() or end_if() nor visiting branches.

	
visit_if_branch(branch)

	Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without
calling start_if_branch() or end_if_branch() nor visiting body.

	
visit_message(msg)

	Implements visiting messages.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

robot.model.tagstatistics module

	
class robot.model.tagstatistics.TagStatistics(combined_stats)[source]

	Bases: object

Container for tag statistics.

	
tags = None

	Dictionary, where key is the name of the tag as a string and value
is an instance of TagStat.

	
combined = None

	List of CombinedTagStat objects.

	
visit(visitor)[source]

	

	
class robot.model.tagstatistics.TagStatisticsBuilder(included=None, excluded=None, combined=None, docs=None, links=None)[source]

	Bases: object

	
add_test(test)[source]

	

	
class robot.model.tagstatistics.TagStatInfo(docs=None, links=None)[source]

	Bases: object

	
get_stat(tag)[source]

	

	
get_combined_stats(combined=None)[source]

	

	
get_doc(tag)[source]

	

	
get_links(tag)[source]

	

	
class robot.model.tagstatistics.TagStatDoc(pattern, doc)[source]

	Bases: object

	
match(tag)[source]

	

	
class robot.model.tagstatistics.TagStatLink(pattern, link, title)[source]

	Bases: object

	
match(tag)[source]

	

	
get_link(tag)[source]

	

robot.model.testcase module

	
class robot.model.testcase.TestCase(name='', doc='', tags=None, timeout=None, parent=None)[source]

	Bases: robot.model.modelobject.ModelObject

Base model for a single test case.

Extended by robot.running.model.TestCase and
robot.result.model.TestCase.

	
body_class

	alias of robot.model.body.Body

	
fixture_class

	alias of robot.model.keyword.Keyword

	
repr_args = ('name',)

	

	
name

	

	
doc

	

	
timeout

	

	
parent

	

	
body

	Test case body as a Body object.

	
tags

	Test tags as a Tags object.

	
setup

	Test setup as a Keyword object.

This attribute is a Keyword object also when a test has no setup
but in that case its truth value is False.

Setup can be modified by setting attributes directly:

test.setup.name = 'Example'
test.setup.args = ('First', 'Second')

Alternatively the config() method can be used to set multiple
attributes in one call:

test.setup.config(name='Example', args=('First', 'Second'))

The easiest way to reset the whole setup is setting it to None.
It will automatically recreate the underlying Keyword object:

test.setup = None

New in Robot Framework 4.0. Earlier setup was accessed like
test.keywords.setup.

	
teardown

	Test teardown as a Keyword object.

See setup for more information.

	
keywords

	Deprecated since Robot Framework 4.0

Use body, setup or teardown instead.

	
id

	Test case id in format like s1-t3.

See TestSuite.id for
more information.

	
longname

	Test name prefixed with the long name of the parent suite.

	
source

	

	
visit(visitor)[source]

	Visitor interface entry-point.

	
config(**attributes)

	Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting
obj.name = 'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

	
copy(**attributes)

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
deepcopy(**attributes)

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
class robot.model.testcase.TestCases(test_class=<class 'robot.model.testcase.TestCase'>, parent=None, tests=None)[source]

	Bases: robot.model.itemlist.ItemList

	
append(item)

	

	
clear()

	

	
count(item)

	

	
create(*args, **kwargs)

	

	
extend(items)

	

	
index(item, *start_and_end)

	

	
insert(index, item)

	

	
pop(*index)

	

	
remove(item)

	

	
reverse()

	

	
sort()

	

	
visit(visitor)

	

robot.model.testsuite module

	
class robot.model.testsuite.TestSuite(name='', doc='', metadata=None, source=None, rpa=False, parent=None)[source]

	Bases: robot.model.modelobject.ModelObject

Base model for single suite.

Extended by robot.running.model.TestSuite and
robot.result.model.TestSuite.

	
test_class

	alias of robot.model.testcase.TestCase

	
fixture_class

	alias of robot.model.keyword.Keyword

	
repr_args = ('name',)

	

	
doc

	

	
source

	Path to the source file or directory.

	
parent

	Parent suite. None with the root suite.

	
rpa

	True when RPA mode is enabled.

	
name

	Test suite name. If not set, constructed from child suite names.

	
longname

	Suite name prefixed with the long name of the parent suite.

	
metadata

	Free test suite metadata as a dictionary.

	
suites

	Child suites as a TestSuites object.

	
tests

	Tests as a TestCases object.

	
setup

	Suite setup as a Keyword object.

This attribute is a Keyword object also when a suite has no setup
but in that case its truth value is False.

Setup can be modified by setting attributes directly:

suite.setup.name = 'Example'
suite.setup.args = ('First', 'Second')

Alternatively the config() method can be used to set multiple
attributes in one call:

suite.setup.config(name='Example', args=('First', 'Second'))

The easiest way to reset the whole setup is setting it to None.
It will automatically recreate the underlying Keyword object:

suite.setup = None

New in Robot Framework 4.0. Earlier setup was accessed like
suite.keywords.setup.

	
teardown

	Suite teardown as a Keyword object.

See setup for more information.

	
keywords

	Deprecated since Robot Framework 4.0

Use setup or teardown instead.

	
id

	An automatically generated unique id.

The root suite has id s1, its child suites have ids s1-s1,
s1-s2, …, their child suites get ids s1-s1-s1, s1-s1-s2,
…, s1-s2-s1, …, and so on.

The first test in a suite has an id like s1-t1, the second has an
id s1-t2, and so on. Similarly keywords in suites (setup/teardown)
and in tests get ids like s1-k1, s1-t1-k1, and s1-s4-t2-k5.

	
test_count

	Number of the tests in this suite, recursively.

	
has_tests

	

	
set_tags(add=None, remove=None, persist=False)[source]

	Add and/or remove specified tags to the tests in this suite.

	Parameters

	
	add – Tags to add as a list or, if adding only one,
as a single string.

	remove – Tags to remove as a list or as a single string.
Can be given as patterns where * and ? work as wildcards.

	persist – Add/remove specified tags also to new tests added
to this suite in the future.

	
filter(included_suites=None, included_tests=None, included_tags=None, excluded_tags=None)[source]

	Select test cases and remove others from this suite.

Parameters have the same semantics as --suite, --test,
--include, and --exclude command line options. All of them
can be given as a list of strings, or when selecting only one, as
a single string.

Child suites that contain no tests after filtering are automatically
removed.

Example:

suite.filter(included_tests=['Test 1', '* Example'],
 included_tags='priority-1')

	
config(**attributes)

	Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting
obj.name = 'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

	
configure(**options)[source]

	A shortcut to configure a suite using one method call.

Can only be used with the root test suite.

	Parameters

	options – Passed to
SuiteConfigurer that will then
set suite attributes, call filter(), etc. as needed.

Not to be confused with config() method that suites, tests,
and keywords have to make it possible to set multiple attributes in
one call.

	
copy(**attributes)

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
deepcopy(**attributes)

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
remove_empty_suites(preserve_direct_children=False)[source]

	Removes all child suites not containing any tests, recursively.

	
visit(visitor)[source]

	Visitor interface entry-point.

	
class robot.model.testsuite.TestSuites(suite_class=<class 'robot.model.testsuite.TestSuite'>, parent=None, suites=None)[source]

	Bases: robot.model.itemlist.ItemList

	
append(item)

	

	
clear()

	

	
count(item)

	

	
create(*args, **kwargs)

	

	
extend(items)

	

	
index(item, *start_and_end)

	

	
insert(index, item)

	

	
pop(*index)

	

	
remove(item)

	

	
reverse()

	

	
sort()

	

	
visit(visitor)

	

robot.model.totalstatistics module

	
class robot.model.totalstatistics.TotalStatistics(rpa=False)[source]

	Bases: object

Container for total statistics.

	
visit(visitor)[source]

	

	
total

	

	
passed

	

	
skipped

	

	
failed

	

	
add_test(test)[source]

	

	
message

	String representation of the statistics.

	For example::

	2 tests, 1 passed, 1 failed

	
class robot.model.totalstatistics.TotalStatisticsBuilder(suite=None, rpa=False)[source]

	Bases: robot.model.visitor.SuiteVisitor

	
add_test(test)[source]

	

	
visit_test(test)[source]

	Implements traversing through tests.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
visit_keyword(kw)[source]

	Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
end_for(for_)

	Called when FOR loop ends. Default implementation does nothing.

	
end_for_iteration(iteration)

	Called when FOR loop iteration ends. Default implementation does nothing.

	
end_if(if_)

	Called when IF/ELSE structure ends. Default implementation does nothing.

	
end_if_branch(branch)

	Called when IF/ELSE branch ends. Default implementation does nothing.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_for(for_)

	Called when FOR loop starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_for_iteration(iteration)

	Called when FOR loop iteration starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if(if_)

	Called when IF/ELSE structure starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if_branch(branch)

	Called when IF/ELSE branch starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_for(for_)

	Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without
calling start_for() or end_for() nor visiting body.

	
visit_for_iteration(iteration)

	Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side
there are no iterations.

Can be overridden to allow modifying the passed in iteration without
calling start_for_iteration() or end_for_iteration() nor visiting
body.

	
visit_if(if_)

	Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches
are in its body and visited using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without
calling start_if() or end_if() nor visiting branches.

	
visit_if_branch(branch)

	Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without
calling start_if_branch() or end_if_branch() nor visiting body.

	
visit_message(msg)

	Implements visiting messages.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

robot.model.visitor module

Interface to ease traversing through a test suite structure.

Visitors make it easy to modify test suite structures or to collect information
from them. They work both with the executable model
and the result model, but the objects passed to
the visitor methods are slightly different depending on the model they are
used with. The main differences are that on the execution side keywords do
not have child keywords nor messages, and that only the result objects have
status related attributes like status and starttime.

This module contains SuiteVisitor that implements the core logic to
visit a test suite structure, and the result package contains
ResultVisitor that supports visiting the whole
test execution result structure. Both of these visitors should be imported
via the robot.api package when used by external code.

Visitor algorithm

All suite, test, keyword and message objects have a visit() method that
accepts a visitor instance. These methods will then call the correct visitor
method visit_suite(), visit_test(),
visit_keyword() or visit_message(),
depending on the instance where the visit() method exists.

The recommended and definitely easiest way to implement a visitor is extending
the SuiteVisitor base class. The default implementation of its
visit_x() methods take care of traversing child elements of the object
x recursively. A visit_x() method first calls a corresponding
start_x() method (e.g. visit_suite() calls start_suite()),
then calls visit() for all child objects of the x object, and
finally calls the corresponding end_x() method. The default
implementations of start_x() and end_x() do nothing.

Visitors extending the SuiteVisitor can stop visiting at a certain
level either by overriding suitable visit_x() method or by returning
an explicit False from any start_x() method.

Examples

The following example visitor modifies the test suite structure it visits.
It could be used, for example, with Robot Framework’s --prerunmodifier
option to modify test data before execution.

"""Pre-run modifier that selects only every Xth test for execution.

Starts from the first test by default. Tests are selected per suite.
"""

from robot.api import SuiteVisitor

class SelectEveryXthTest(SuiteVisitor):

 def __init__(self, x: int, start: int = 0):
 self.x = x
 self.start = start

 def start_suite(self, suite):
 """Modify suite's tests to contain only every Xth."""
 suite.tests = suite.tests[self.start::self.x]

 def end_suite(self, suite):
 """Remove suites that are empty after removing tests."""
 suite.suites = [s for s in suite.suites if s.test_count > 0]

 def visit_test(self, test):
 """Avoid visiting tests and their keywords to save a little time."""
 pass

For more examples it is possible to look at the source code of visitors used
internally by Robot Framework itself. Some good examples are
TagSetter and
keyword removers.

	
class robot.model.visitor.SuiteVisitor[source]

	Bases: object

Abstract class to ease traversing through the test suite structure.

See the module level documentation for more
information and an example.

	
visit_suite(suite)[source]

	Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
start_suite(suite)[source]

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_suite(suite)[source]

	Called when suite ends. Default implementation does nothing.

	
visit_test(test)[source]

	Implements traversing through tests.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
start_test(test)[source]

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_test(test)[source]

	Called when test ends. Default implementation does nothing.

	
visit_keyword(kw)[source]

	Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
start_keyword(keyword)[source]

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_keyword(keyword)[source]

	Called when keyword ends. Default implementation does nothing.

	
visit_for(for_)[source]

	Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without
calling start_for() or end_for() nor visiting body.

	
start_for(for_)[source]

	Called when FOR loop starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_for(for_)[source]

	Called when FOR loop ends. Default implementation does nothing.

	
visit_for_iteration(iteration)[source]

	Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side
there are no iterations.

Can be overridden to allow modifying the passed in iteration without
calling start_for_iteration() or end_for_iteration() nor visiting
body.

	
start_for_iteration(iteration)[source]

	Called when FOR loop iteration starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_for_iteration(iteration)[source]

	Called when FOR loop iteration ends. Default implementation does nothing.

	
visit_if(if_)[source]

	Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches
are in its body and visited using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without
calling start_if() or end_if() nor visiting branches.

	
start_if(if_)[source]

	Called when IF/ELSE structure starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_if(if_)[source]

	Called when IF/ELSE structure ends. Default implementation does nothing.

	
visit_if_branch(branch)[source]

	Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without
calling start_if_branch() or end_if_branch() nor visiting body.

	
start_if_branch(branch)[source]

	Called when IF/ELSE branch starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_if_branch(branch)[source]

	Called when IF/ELSE branch ends. Default implementation does nothing.

	
visit_message(msg)[source]

	Implements visiting messages.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
start_message(msg)[source]

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_message(msg)[source]

	Called when message ends. Default implementation does nothing.

robot.output package

Package for internal logging and other output.

Not part of the public API, and also subject to change in the future when
test execution is refactored.

Subpackages

	robot.output.console package
	Submodules

	robot.output.console.dotted module

	robot.output.console.highlighting module

	robot.output.console.quiet module

	robot.output.console.verbose module

Submodules

robot.output.debugfile module

	
robot.output.debugfile.DebugFile(path)[source]

	

robot.output.filelogger module

	
class robot.output.filelogger.FileLogger(path, level)[source]

	Bases: robot.output.loggerhelper.AbstractLogger

	
message(msg)[source]

	

	
start_suite(suite)[source]

	

	
end_suite(suite)[source]

	

	
start_test(test)[source]

	

	
end_test(test)[source]

	

	
start_keyword(kw)[source]

	

	
end_keyword(kw)[source]

	

	
output_file(name, path)[source]

	

	
close()[source]

	

	
debug(msg)

	

	
error(msg)

	

	
fail(msg)

	

	
info(msg)

	

	
set_level(level)

	

	
skip(msg)

	

	
trace(msg)

	

	
warn(msg)

	

	
write(message, level, html=False)

	

robot.output.librarylogger module

Implementation of the public test library logging API.

This is exposed via robot.api.logger. Implementation must reside
here to avoid cyclic imports.

	
robot.output.librarylogger.write(msg, level, html=False)[source]

	

	
robot.output.librarylogger.trace(msg, html=False)[source]

	

	
robot.output.librarylogger.debug(msg, html=False)[source]

	

	
robot.output.librarylogger.info(msg, html=False, also_console=False)[source]

	

	
robot.output.librarylogger.warn(msg, html=False)[source]

	

	
robot.output.librarylogger.error(msg, html=False)[source]

	

	
robot.output.librarylogger.console(msg, newline=True, stream='stdout')[source]

	

robot.output.listenerarguments module

	
class robot.output.listenerarguments.ListenerArguments(arguments)[source]

	Bases: object

	
get_arguments(version)[source]

	

	
classmethod by_method_name(name, arguments)[source]

	

	
class robot.output.listenerarguments.MessageArguments(arguments)[source]

	Bases: robot.output.listenerarguments.ListenerArguments

	
classmethod by_method_name(name, arguments)

	

	
get_arguments(version)

	

	
class robot.output.listenerarguments.StartSuiteArguments(arguments)[source]

	Bases: robot.output.listenerarguments._ListenerArgumentsFromItem

	
classmethod by_method_name(name, arguments)

	

	
get_arguments(version)

	

	
class robot.output.listenerarguments.EndSuiteArguments(arguments)[source]

	Bases: robot.output.listenerarguments.StartSuiteArguments

	
classmethod by_method_name(name, arguments)

	

	
get_arguments(version)

	

	
class robot.output.listenerarguments.StartTestArguments(arguments)[source]

	Bases: robot.output.listenerarguments._ListenerArgumentsFromItem

	
classmethod by_method_name(name, arguments)

	

	
get_arguments(version)

	

	
class robot.output.listenerarguments.EndTestArguments(arguments)[source]

	Bases: robot.output.listenerarguments.StartTestArguments

	
classmethod by_method_name(name, arguments)

	

	
get_arguments(version)

	

	
class robot.output.listenerarguments.StartKeywordArguments(arguments)[source]

	Bases: robot.output.listenerarguments._ListenerArgumentsFromItem

	
classmethod by_method_name(name, arguments)

	

	
get_arguments(version)

	

	
class robot.output.listenerarguments.EndKeywordArguments(arguments)[source]

	Bases: robot.output.listenerarguments.StartKeywordArguments

	
classmethod by_method_name(name, arguments)

	

	
get_arguments(version)

	

robot.output.listenermethods module

	
class robot.output.listenermethods.ListenerMethods(method_name, listeners)[source]

	Bases: object

	
class robot.output.listenermethods.LibraryListenerMethods(method_name)[source]

	Bases: object

	
new_suite_scope()[source]

	

	
discard_suite_scope()[source]

	

	
register(listeners, library)[source]

	

	
unregister(library)[source]

	

	
class robot.output.listenermethods.ListenerMethod(method, listener, library=None)[source]

	Bases: object

	
called = False

	

robot.output.listeners module

	
class robot.output.listeners.Listeners(listeners, log_level='INFO')[source]

	Bases: object

	
set_log_level(level)[source]

	

	
start_keyword(kw)[source]

	

	
end_keyword(kw)[source]

	

	
log_message(msg)[source]

	

	
imported(import_type, name, attrs)[source]

	

	
output_file(file_type, path)[source]

	

	
class robot.output.listeners.LibraryListeners(log_level='INFO')[source]

	Bases: object

	
register(listeners, library)[source]

	

	
unregister(library, close=False)[source]

	

	
new_suite_scope()[source]

	

	
discard_suite_scope()[source]

	

	
set_log_level(level)[source]

	

	
log_message(msg)[source]

	

	
imported(import_type, name, attrs)[source]

	

	
output_file(file_type, path)[source]

	

	
class robot.output.listeners.ListenerProxy(listener, method_names, prefix=None)[source]

	Bases: robot.output.loggerhelper.AbstractLoggerProxy

	
classmethod import_listeners(listeners, method_names, prefix=None, raise_on_error=False)[source]

	

robot.output.logger module

	
class robot.output.logger.Logger(register_console_logger=True)[source]

	Bases: robot.output.loggerhelper.AbstractLogger

A global logger proxy to delegating messages to registered loggers.

Whenever something is written to LOGGER in code, all registered loggers are
notified. Messages are also cached and cached messages written to new
loggers when they are registered.

NOTE: This API is likely to change in future versions.

	
start_loggers

	

	
end_loggers

	

	
register_console_logger(type='verbose', width=78, colors='AUTO', markers='AUTO', stdout=None, stderr=None)[source]

	

	
unregister_console_logger()[source]

	

	
register_syslog(path=None, level='INFO')[source]

	

	
register_xml_logger(logger)[source]

	

	
unregister_xml_logger()[source]

	

	
register_listeners(listeners, library_listeners)[source]

	

	
register_logger(*loggers)[source]

	

	
unregister_logger(*loggers)[source]

	

	
disable_message_cache()[source]

	

	
register_error_listener(listener)[source]

	

	
message(msg)[source]

	Messages about what the framework is doing, warnings, errors, …

	
cache_only

	

	
delayed_logging

	

	
log_message(msg)

	Messages about what the framework is doing, warnings, errors, …

	
log_output(output)[source]

	

	
enable_library_import_logging()[source]

	

	
disable_library_import_logging()[source]

	

	
start_suite(suite)[source]

	

	
end_suite(suite)[source]

	

	
start_test(test)[source]

	

	
end_test(test)[source]

	

	
start_keyword(keyword)[source]

	

	
end_keyword(keyword)[source]

	

	
imported(import_type, name, **attrs)[source]

	

	
output_file(file_type, path)[source]

	Finished output, report, log, debug, or xunit file

	
close()[source]

	

	
debug(msg)

	

	
error(msg)

	

	
fail(msg)

	

	
info(msg)

	

	
set_level(level)

	

	
skip(msg)

	

	
trace(msg)

	

	
warn(msg)

	

	
write(message, level, html=False)

	

	
class robot.output.logger.LoggerProxy(logger, method_names=None, prefix=None)[source]

	Bases: robot.output.loggerhelper.AbstractLoggerProxy

	
start_keyword(kw)[source]

	

	
end_keyword(kw)[source]

	

robot.output.loggerhelper module

	
class robot.output.loggerhelper.AbstractLogger(level='TRACE')[source]

	Bases: object

	
set_level(level)[source]

	

	
trace(msg)[source]

	

	
debug(msg)[source]

	

	
info(msg)[source]

	

	
warn(msg)[source]

	

	
fail(msg)[source]

	

	
skip(msg)[source]

	

	
error(msg)[source]

	

	
write(message, level, html=False)[source]

	

	
message(msg)[source]

	

	
class robot.output.loggerhelper.Message(message, level='INFO', html=False, timestamp=None)[source]

	Bases: robot.model.message.Message

	
message

	

	
resolve_delayed_message()[source]

	

	
ELSE = 'ELSE'

	

	
ELSE_IF = 'ELSE IF'

	

	
FOR = 'FOR'

	

	
FOR_ITERATION = 'FOR ITERATION'

	

	
IF = 'IF'

	

	
IF_ELSE_ROOT = 'IF/ELSE ROOT'

	

	
KEYWORD = 'KEYWORD'

	

	
MESSAGE = 'MESSAGE'

	

	
SETUP = 'SETUP'

	

	
TEARDOWN = 'TEARDOWN'

	

	
config(**attributes)

	Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting
obj.name = 'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

	
copy(**attributes)

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
deepcopy(**attributes)

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
html

	

	
html_message

	Returns the message content as HTML.

	
id

	

	
level

	

	
parent

	

	
repr_args = ('message', 'level')

	

	
timestamp

	

	
type = 'MESSAGE'

	

	
visit(visitor)[source]

	Visitor interface entry-point.

	
class robot.output.loggerhelper.IsLogged(level)[source]

	Bases: object

	
set_level(level)[source]

	

	
class robot.output.loggerhelper.AbstractLoggerProxy(logger, method_names=None, prefix=None)[source]

	Bases: object

robot.output.output module

	
class robot.output.output.Output(settings)[source]

	Bases: robot.output.loggerhelper.AbstractLogger

	
register_error_listener(listener)[source]

	

	
close(result)[source]

	

	
start_suite(suite)[source]

	

	
end_suite(suite)[source]

	

	
start_test(test)[source]

	

	
end_test(test)[source]

	

	
start_keyword(kw)[source]

	

	
end_keyword(kw)[source]

	

	
message(msg)[source]

	

	
set_log_level(level)[source]

	

	
debug(msg)

	

	
error(msg)

	

	
fail(msg)

	

	
info(msg)

	

	
set_level(level)

	

	
skip(msg)

	

	
trace(msg)

	

	
warn(msg)

	

	
write(message, level, html=False)

	

robot.output.pyloggingconf module

	
robot.output.pyloggingconf.robot_handler_enabled(*args, **kwds)[source]

	

	
robot.output.pyloggingconf.set_level(level)[source]

	

	
class robot.output.pyloggingconf.RobotHandler(level=0)[source]

	Bases: logging.Handler

Initializes the instance - basically setting the formatter to None
and the filter list to empty.

	
emit(record)[source]

	Do whatever it takes to actually log the specified logging record.

This version is intended to be implemented by subclasses and so
raises a NotImplementedError.

	
acquire()

	Acquire the I/O thread lock.

	
addFilter(filter)

	Add the specified filter to this handler.

	
close()

	Tidy up any resources used by the handler.

This version removes the handler from an internal map of handlers,
_handlers, which is used for handler lookup by name. Subclasses
should ensure that this gets called from overridden close()
methods.

	
createLock()

	Acquire a thread lock for serializing access to the underlying I/O.

	
filter(record)

	Determine if a record is loggable by consulting all the filters.

The default is to allow the record to be logged; any filter can veto
this and the record is then dropped. Returns a zero value if a record
is to be dropped, else non-zero.

	
flush()

	Ensure all logging output has been flushed.

This version does nothing and is intended to be implemented by
subclasses.

	
format(record)

	Format the specified record.

If a formatter is set, use it. Otherwise, use the default formatter
for the module.

	
get_name()

	

	
handle(record)

	Conditionally emit the specified logging record.

Emission depends on filters which may have been added to the handler.
Wrap the actual emission of the record with acquisition/release of
the I/O thread lock. Returns whether the filter passed the record for
emission.

	
handleError(record)

	Handle errors which occur during an emit() call.

This method should be called from handlers when an exception is
encountered during an emit() call. If raiseExceptions is false,
exceptions get silently ignored. This is what is mostly wanted
for a logging system - most users will not care about errors in
the logging system, they are more interested in application errors.
You could, however, replace this with a custom handler if you wish.
The record which was being processed is passed in to this method.

	
name

	

	
release()

	Release the I/O thread lock.

	
removeFilter(filter)

	Remove the specified filter from this handler.

	
setFormatter(fmt)

	Set the formatter for this handler.

	
setLevel(level)

	Set the logging level of this handler.

	
set_name(name)

	

robot.output.stdoutlogsplitter module

	
class robot.output.stdoutlogsplitter.StdoutLogSplitter(output)[source]

	Bases: object

Splits messages logged through stdout (or stderr) into Message objects

robot.output.xmllogger module

	
class robot.output.xmllogger.XmlLogger(path, log_level='TRACE', rpa=False, generator='Robot')[source]

	Bases: robot.result.visitor.ResultVisitor

	
close()[source]

	

	
set_log_level(level)[source]

	

	
message(msg)[source]

	

	
log_message(msg)[source]

	

	
start_keyword(kw)[source]

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_keyword(kw)[source]

	Called when keyword ends. Default implementation does nothing.

	
start_if(if_)[source]

	Called when IF/ELSE structure starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_if(if_)[source]

	Called when IF/ELSE structure ends. Default implementation does nothing.

	
start_if_branch(branch)[source]

	Called when IF/ELSE branch starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_if_branch(branch)[source]

	Called when IF/ELSE branch ends. Default implementation does nothing.

	
start_for(for_)[source]

	Called when FOR loop starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_for(for_)[source]

	Called when FOR loop ends. Default implementation does nothing.

	
start_for_iteration(iteration)[source]

	Called when FOR loop iteration starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_for_iteration(iteration)[source]

	Called when FOR loop iteration ends. Default implementation does nothing.

	
start_test(test)[source]

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_test(test)[source]

	Called when test ends. Default implementation does nothing.

	
start_suite(suite)[source]

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_suite(suite)[source]

	Called when suite ends. Default implementation does nothing.

	
start_statistics(stats)[source]

	

	
end_statistics(stats)[source]

	

	
start_total_statistics(total_stats)[source]

	

	
end_total_statistics(total_stats)[source]

	

	
start_tag_statistics(tag_stats)[source]

	

	
end_tag_statistics(tag_stats)[source]

	

	
start_suite_statistics(tag_stats)[source]

	

	
end_suite_statistics(tag_stats)[source]

	

	
visit_stat(stat)[source]

	

	
start_errors(errors=None)[source]

	

	
end_errors(errors=None)[source]

	

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_result(result)

	

	
end_stat(stat)

	

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_result(result)

	

	
start_stat(stat)

	

	
visit_errors(errors)

	

	
visit_for(for_)

	Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without
calling start_for() or end_for() nor visiting body.

	
visit_for_iteration(iteration)

	Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side
there are no iterations.

Can be overridden to allow modifying the passed in iteration without
calling start_for_iteration() or end_for_iteration() nor visiting
body.

	
visit_if(if_)

	Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches
are in its body and visited using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without
calling start_if() or end_if() nor visiting branches.

	
visit_if_branch(branch)

	Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without
calling start_if_branch() or end_if_branch() nor visiting body.

	
visit_keyword(kw)

	Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
visit_message(msg)

	Implements visiting messages.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_result(result)

	

	
visit_statistics(stats)

	

	
visit_suite(suite)

	Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
visit_suite_statistics(stats)

	

	
visit_tag_statistics(stats)

	

	
visit_test(test)

	Implements traversing through tests.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
visit_total_statistics(stats)

	

robot.output.console package

	
robot.output.console.ConsoleOutput(type='verbose', width=78, colors='AUTO', markers='AUTO', stdout=None, stderr=None)[source]

	

Submodules

robot.output.console.dotted module

	
class robot.output.console.dotted.DottedOutput(width=78, colors='AUTO', stdout=None, stderr=None)[source]

	Bases: object

	
start_suite(suite)[source]

	

	
end_test(test)[source]

	

	
end_suite(suite)[source]

	

	
message(msg)[source]

	

	
output_file(name, path)[source]

	

	
class robot.output.console.dotted.StatusReporter(stream, width)[source]

	Bases: robot.model.visitor.SuiteVisitor

	
report(suite)[source]

	

	
visit_test(test)[source]

	Implements traversing through tests.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
end_for(for_)

	Called when FOR loop ends. Default implementation does nothing.

	
end_for_iteration(iteration)

	Called when FOR loop iteration ends. Default implementation does nothing.

	
end_if(if_)

	Called when IF/ELSE structure ends. Default implementation does nothing.

	
end_if_branch(branch)

	Called when IF/ELSE branch ends. Default implementation does nothing.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_for(for_)

	Called when FOR loop starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_for_iteration(iteration)

	Called when FOR loop iteration starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if(if_)

	Called when IF/ELSE structure starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if_branch(branch)

	Called when IF/ELSE branch starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_for(for_)

	Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without
calling start_for() or end_for() nor visiting body.

	
visit_for_iteration(iteration)

	Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side
there are no iterations.

Can be overridden to allow modifying the passed in iteration without
calling start_for_iteration() or end_for_iteration() nor visiting
body.

	
visit_if(if_)

	Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches
are in its body and visited using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without
calling start_if() or end_if() nor visiting branches.

	
visit_if_branch(branch)

	Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without
calling start_if_branch() or end_if_branch() nor visiting body.

	
visit_keyword(kw)

	Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
visit_message(msg)

	Implements visiting messages.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

robot.output.console.highlighting module

	
class robot.output.console.highlighting.HighlightingStream(stream, colors='AUTO')[source]

	Bases: object

	
write(text, flush=True)[source]

	

	
flush()[source]

	

	
highlight(text, status=None, flush=True)[source]

	

	
error(message, level)[source]

	

	
robot.output.console.highlighting.Highlighter(stream)[source]

	

	
class robot.output.console.highlighting.AnsiHighlighter(stream)[source]

	Bases: object

	
green()[source]

	

	
red()[source]

	

	
yellow()[source]

	

	
reset()[source]

	

	
class robot.output.console.highlighting.NoHighlighting(stream)[source]

	Bases: robot.output.console.highlighting.AnsiHighlighter

	
green()

	

	
red()

	

	
reset()

	

	
yellow()

	

	
class robot.output.console.highlighting.DosHighlighter(stream)[source]

	Bases: object

	
green()[source]

	

	
red()[source]

	

	
yellow()[source]

	

	
reset()[source]

	

robot.output.console.quiet module

	
class robot.output.console.quiet.QuietOutput(colors='AUTO', stderr=None)[source]

	Bases: object

	
message(msg)[source]

	

	
class robot.output.console.quiet.NoOutput[source]

	Bases: object

robot.output.console.verbose module

	
class robot.output.console.verbose.VerboseOutput(width=78, colors='AUTO', markers='AUTO', stdout=None, stderr=None)[source]

	Bases: object

	
start_suite(suite)[source]

	

	
end_suite(suite)[source]

	

	
start_test(test)[source]

	

	
end_test(test)[source]

	

	
start_keyword(kw)[source]

	

	
end_keyword(kw)[source]

	

	
message(msg)[source]

	

	
output_file(name, path)[source]

	

	
class robot.output.console.verbose.VerboseWriter(width=78, colors='AUTO', markers='AUTO', stdout=None, stderr=None)[source]

	Bases: object

	
info(name, doc, start_suite=False)[source]

	

	
suite_separator()[source]

	

	
test_separator()[source]

	

	
status(status, clear=False)[source]

	

	
message(message)[source]

	

	
keyword_marker(status)[source]

	

	
error(message, level, clear=False)[source]

	

	
output(name, path)[source]

	

	
class robot.output.console.verbose.KeywordMarker(highlighter, markers)[source]

	Bases: object

	
mark(status)[source]

	

	
reset_count()[source]

	

robot.parsing package

Module implementing test data parsing.

Public API is exposed via the robot.api.parsing module. See its documentation
for more information and examples. If external code needs to import something from
this module directly, issue should be submitted about exposing it explicitly via
robot.api.parsing.

Subpackages

	robot.parsing.lexer package
	Submodules

	robot.parsing.lexer.blocklexers module

	robot.parsing.lexer.context module

	robot.parsing.lexer.lexer module

	robot.parsing.lexer.sections module

	robot.parsing.lexer.settings module

	robot.parsing.lexer.statementlexers module

	robot.parsing.lexer.tokenizer module

	robot.parsing.lexer.tokens module

	robot.parsing.model package
	Submodules

	robot.parsing.model.blocks module

	robot.parsing.model.statements module

	robot.parsing.model.visitor module

	robot.parsing.parser package
	Submodules

	robot.parsing.parser.blockparsers module

	robot.parsing.parser.fileparser module

	robot.parsing.parser.parser module

Submodules

robot.parsing.suitestructure module

	
class robot.parsing.suitestructure.SuiteStructure(source=None, init_file=None, children=None)[source]

	Bases: object

	
is_directory

	

	
visit(visitor)[source]

	

	
class robot.parsing.suitestructure.SuiteStructureBuilder(included_extensions=('robot',), included_suites=None)[source]

	Bases: object

	
ignored_prefixes = ('_', '.')

	

	
ignored_dirs = ('CVS',)

	

	
build(paths)[source]

	

	
class robot.parsing.suitestructure.SuiteStructureVisitor[source]

	Bases: object

	
visit_file(structure)[source]

	

	
visit_directory(structure)[source]

	

	
start_directory(structure)[source]

	

	
end_directory(structure)[source]

	

robot.parsing.lexer package

Submodules

robot.parsing.lexer.blocklexers module

	
class robot.parsing.lexer.blocklexers.BlockLexer(ctx)[source]

	Bases: robot.parsing.lexer.statementlexers.Lexer

	
accepts_more(statement)[source]

	

	
input(statement)[source]

	

	
lexer_for(statement)[source]

	

	
lexer_classes()[source]

	

	
lex()[source]

	

	
handles(statement)

	

	
class robot.parsing.lexer.blocklexers.FileLexer(ctx)[source]

	Bases: robot.parsing.lexer.blocklexers.BlockLexer

	
lex()[source]

	

	
lexer_classes()[source]

	

	
accepts_more(statement)

	

	
handles(statement)

	

	
input(statement)

	

	
lexer_for(statement)

	

	
class robot.parsing.lexer.blocklexers.SectionLexer(ctx)[source]

	Bases: robot.parsing.lexer.blocklexers.BlockLexer

	
accepts_more(statement)[source]

	

	
handles(statement)

	

	
input(statement)

	

	
lex()

	

	
lexer_classes()

	

	
lexer_for(statement)

	

	
class robot.parsing.lexer.blocklexers.SettingSectionLexer(ctx)[source]

	Bases: robot.parsing.lexer.blocklexers.SectionLexer

	
handles(statement)[source]

	

	
lexer_classes()[source]

	

	
accepts_more(statement)

	

	
input(statement)

	

	
lex()

	

	
lexer_for(statement)

	

	
class robot.parsing.lexer.blocklexers.VariableSectionLexer(ctx)[source]

	Bases: robot.parsing.lexer.blocklexers.SectionLexer

	
handles(statement)[source]

	

	
lexer_classes()[source]

	

	
accepts_more(statement)

	

	
input(statement)

	

	
lex()

	

	
lexer_for(statement)

	

	
class robot.parsing.lexer.blocklexers.TestCaseSectionLexer(ctx)[source]

	Bases: robot.parsing.lexer.blocklexers.SectionLexer

	
handles(statement)[source]

	

	
lexer_classes()[source]

	

	
accepts_more(statement)

	

	
input(statement)

	

	
lex()

	

	
lexer_for(statement)

	

	
class robot.parsing.lexer.blocklexers.KeywordSectionLexer(ctx)[source]

	Bases: robot.parsing.lexer.blocklexers.SettingSectionLexer

	
handles(statement)[source]

	

	
lexer_classes()[source]

	

	
accepts_more(statement)

	

	
input(statement)

	

	
lex()

	

	
lexer_for(statement)

	

	
class robot.parsing.lexer.blocklexers.CommentSectionLexer(ctx)[source]

	Bases: robot.parsing.lexer.blocklexers.SectionLexer

	
handles(statement)[source]

	

	
lexer_classes()[source]

	

	
accepts_more(statement)

	

	
input(statement)

	

	
lex()

	

	
lexer_for(statement)

	

	
class robot.parsing.lexer.blocklexers.ImplicitCommentSectionLexer(ctx)[source]

	Bases: robot.parsing.lexer.blocklexers.SectionLexer

	
handles(statement)[source]

	

	
lexer_classes()[source]

	

	
accepts_more(statement)

	

	
input(statement)

	

	
lex()

	

	
lexer_for(statement)

	

	
class robot.parsing.lexer.blocklexers.ErrorSectionLexer(ctx)[source]

	Bases: robot.parsing.lexer.blocklexers.SectionLexer

	
handles(statement)[source]

	

	
lexer_classes()[source]

	

	
accepts_more(statement)

	

	
input(statement)

	

	
lex()

	

	
lexer_for(statement)

	

	
class robot.parsing.lexer.blocklexers.TestOrKeywordLexer(ctx)[source]

	Bases: robot.parsing.lexer.blocklexers.BlockLexer

	
name_type = NotImplemented

	

	
accepts_more(statement)[source]

	

	
input(statement)[source]

	

	
lexer_classes()[source]

	

	
handles(statement)

	

	
lex()

	

	
lexer_for(statement)

	

	
class robot.parsing.lexer.blocklexers.TestCaseLexer(ctx)[source]

	Bases: robot.parsing.lexer.blocklexers.TestOrKeywordLexer

	
name_type = 'TESTCASE NAME'

	

	
lex()[source]

	

	
accepts_more(statement)

	

	
handles(statement)

	

	
input(statement)

	

	
lexer_classes()

	

	
lexer_for(statement)

	

	
class robot.parsing.lexer.blocklexers.KeywordLexer(ctx)[source]

	Bases: robot.parsing.lexer.blocklexers.TestOrKeywordLexer

	
name_type = 'KEYWORD NAME'

	

	
accepts_more(statement)

	

	
handles(statement)

	

	
input(statement)

	

	
lex()

	

	
lexer_classes()

	

	
lexer_for(statement)

	

	
class robot.parsing.lexer.blocklexers.NestedBlockLexer(ctx)[source]

	Bases: robot.parsing.lexer.blocklexers.BlockLexer

	
accepts_more(statement)[source]

	

	
input(statement)[source]

	

	
handles(statement)

	

	
lex()

	

	
lexer_classes()

	

	
lexer_for(statement)

	

	
class robot.parsing.lexer.blocklexers.ForLexer(ctx)[source]

	Bases: robot.parsing.lexer.blocklexers.NestedBlockLexer

	
handles(statement)[source]

	

	
lexer_classes()[source]

	

	
accepts_more(statement)

	

	
input(statement)

	

	
lex()

	

	
lexer_for(statement)

	

	
class robot.parsing.lexer.blocklexers.IfLexer(ctx)[source]

	Bases: robot.parsing.lexer.blocklexers.NestedBlockLexer

	
handles(statement)[source]

	

	
lexer_classes()[source]

	

	
accepts_more(statement)

	

	
input(statement)

	

	
lex()

	

	
lexer_for(statement)

	

robot.parsing.lexer.context module

	
class robot.parsing.lexer.context.LexingContext(settings=None)[source]

	Bases: object

	
settings_class = None

	

	
lex_setting(statement)[source]

	

	
class robot.parsing.lexer.context.FileContext(settings=None)[source]

	Bases: robot.parsing.lexer.context.LexingContext

	
sections_class = None

	

	
setting_section(statement)[source]

	

	
variable_section(statement)[source]

	

	
test_case_section(statement)[source]

	

	
keyword_section(statement)[source]

	

	
comment_section(statement)[source]

	

	
keyword_context()[source]

	

	
lex_invalid_section(statement)[source]

	

	
lex_setting(statement)

	

	
settings_class = None

	

	
class robot.parsing.lexer.context.TestCaseFileContext(settings=None)[source]

	Bases: robot.parsing.lexer.context.FileContext

	
sections_class

	alias of robot.parsing.lexer.sections.TestCaseFileSections

	
settings_class

	alias of robot.parsing.lexer.settings.TestCaseFileSettings

	
test_case_context()[source]

	

	
comment_section(statement)

	

	
keyword_context()

	

	
keyword_section(statement)

	

	
lex_invalid_section(statement)

	

	
lex_setting(statement)

	

	
setting_section(statement)

	

	
test_case_section(statement)

	

	
variable_section(statement)

	

	
class robot.parsing.lexer.context.ResourceFileContext(settings=None)[source]

	Bases: robot.parsing.lexer.context.FileContext

	
sections_class

	alias of robot.parsing.lexer.sections.ResourceFileSections

	
settings_class

	alias of robot.parsing.lexer.settings.ResourceFileSettings

	
comment_section(statement)

	

	
keyword_context()

	

	
keyword_section(statement)

	

	
lex_invalid_section(statement)

	

	
lex_setting(statement)

	

	
setting_section(statement)

	

	
test_case_section(statement)

	

	
variable_section(statement)

	

	
class robot.parsing.lexer.context.InitFileContext(settings=None)[source]

	Bases: robot.parsing.lexer.context.FileContext

	
sections_class

	alias of robot.parsing.lexer.sections.InitFileSections

	
settings_class

	alias of robot.parsing.lexer.settings.InitFileSettings

	
comment_section(statement)

	

	
keyword_context()

	

	
keyword_section(statement)

	

	
lex_invalid_section(statement)

	

	
lex_setting(statement)

	

	
setting_section(statement)

	

	
test_case_section(statement)

	

	
variable_section(statement)

	

	
class robot.parsing.lexer.context.TestCaseContext(settings=None)[source]

	Bases: robot.parsing.lexer.context.LexingContext

	
template_set

	

	
lex_setting(statement)

	

	
settings_class = None

	

	
class robot.parsing.lexer.context.KeywordContext(settings=None)[source]

	Bases: robot.parsing.lexer.context.LexingContext

	
template_set

	

	
lex_setting(statement)

	

	
settings_class = None

	

robot.parsing.lexer.lexer module

	
robot.parsing.lexer.lexer.get_tokens(source, data_only=False, tokenize_variables=False)[source]

	Parses the given source to tokens.

	Parameters

	
	source – The source where to read the data. Can be a path to
a source file as a string or as pathlib.Path object, an already
opened file object, or Unicode text containing the date directly.
Source files must be UTF-8 encoded.

	data_only – When False (default), returns all tokens. When set
to True, omits separators, comments, continuation markers, and
other non-data tokens.

	tokenize_variables – When True, possible variables in keyword
arguments and elsewhere are tokenized. See the
tokenize_variables()
method for details.

Returns a generator that yields Token
instances.

	
robot.parsing.lexer.lexer.get_resource_tokens(source, data_only=False, tokenize_variables=False)[source]

	Parses the given source to resource file tokens.

Otherwise same as get_tokens() but the source is considered to be
a resource file. This affects, for example, what settings are valid.

	
robot.parsing.lexer.lexer.get_init_tokens(source, data_only=False, tokenize_variables=False)[source]

	Parses the given source to init file tokens.

Otherwise same as get_tokens() but the source is considered to be
a suite initialization file. This affects, for example, what settings are
valid.

	
class robot.parsing.lexer.lexer.Lexer(ctx, data_only=False, tokenize_variables=False)[source]

	Bases: object

	
input(source)[source]

	

	
get_tokens()[source]

	

robot.parsing.lexer.sections module

	
class robot.parsing.lexer.sections.Sections[source]

	Bases: object

	
setting_markers = ('Settings', 'Setting')

	

	
variable_markers = ('Variables', 'Variable')

	

	
test_case_markers = ('Test Cases', 'Test Case', 'Tasks', 'Task')

	

	
keyword_markers = ('Keywords', 'Keyword')

	

	
comment_markers = ('Comments', 'Comment')

	

	
setting(statement)[source]

	

	
variable(statement)[source]

	

	
test_case(statement)[source]

	

	
keyword(statement)[source]

	

	
comment(statement)[source]

	

	
lex_invalid(statement)[source]

	

	
class robot.parsing.lexer.sections.TestCaseFileSections[source]

	Bases: robot.parsing.lexer.sections.Sections

	
test_case(statement)[source]

	

	
comment(statement)

	

	
comment_markers = ('Comments', 'Comment')

	

	
keyword(statement)

	

	
keyword_markers = ('Keywords', 'Keyword')

	

	
lex_invalid(statement)

	

	
setting(statement)

	

	
setting_markers = ('Settings', 'Setting')

	

	
test_case_markers = ('Test Cases', 'Test Case', 'Tasks', 'Task')

	

	
variable(statement)

	

	
variable_markers = ('Variables', 'Variable')

	

	
class robot.parsing.lexer.sections.ResourceFileSections[source]

	Bases: robot.parsing.lexer.sections.Sections

	
comment(statement)

	

	
comment_markers = ('Comments', 'Comment')

	

	
keyword(statement)

	

	
keyword_markers = ('Keywords', 'Keyword')

	

	
lex_invalid(statement)

	

	
setting(statement)

	

	
setting_markers = ('Settings', 'Setting')

	

	
test_case(statement)

	

	
test_case_markers = ('Test Cases', 'Test Case', 'Tasks', 'Task')

	

	
variable(statement)

	

	
variable_markers = ('Variables', 'Variable')

	

	
class robot.parsing.lexer.sections.InitFileSections[source]

	Bases: robot.parsing.lexer.sections.Sections

	
comment(statement)

	

	
comment_markers = ('Comments', 'Comment')

	

	
keyword(statement)

	

	
keyword_markers = ('Keywords', 'Keyword')

	

	
lex_invalid(statement)

	

	
setting(statement)

	

	
setting_markers = ('Settings', 'Setting')

	

	
test_case(statement)

	

	
test_case_markers = ('Test Cases', 'Test Case', 'Tasks', 'Task')

	

	
variable(statement)

	

	
variable_markers = ('Variables', 'Variable')

	

robot.parsing.lexer.settings module

	
class robot.parsing.lexer.settings.Settings[source]

	Bases: object

	
names = ()

	

	
aliases = {}

	

	
multi_use = ('Metadata', 'Library', 'Resource', 'Variables')

	

	
single_value = ('Resource', 'Test Timeout', 'Test Template', 'Timeout', 'Template')

	

	
name_and_arguments = ('Metadata', 'Suite Setup', 'Suite Teardown', 'Test Setup', 'Test Teardown', 'Test Template', 'Setup', 'Teardown', 'Template', 'Resource', 'Variables')

	

	
name_arguments_and_with_name = ('Library',)

	

	
lex(statement)[source]

	

	
class robot.parsing.lexer.settings.TestCaseFileSettings[source]

	Bases: robot.parsing.lexer.settings.Settings

	
names = ('Documentation', 'Metadata', 'Suite Setup', 'Suite Teardown', 'Test Setup', 'Test Teardown', 'Test Template', 'Test Timeout', 'Force Tags', 'Default Tags', 'Library', 'Resource', 'Variables')

	

	
aliases = {'Task Setup': 'Test Setup', 'Task Teardown': 'Test Teardown', 'Task Template': 'Test Template', 'Task Timeout': 'Test Timeout'}

	

	
lex(statement)

	

	
multi_use = ('Metadata', 'Library', 'Resource', 'Variables')

	

	
name_and_arguments = ('Metadata', 'Suite Setup', 'Suite Teardown', 'Test Setup', 'Test Teardown', 'Test Template', 'Setup', 'Teardown', 'Template', 'Resource', 'Variables')

	

	
name_arguments_and_with_name = ('Library',)

	

	
single_value = ('Resource', 'Test Timeout', 'Test Template', 'Timeout', 'Template')

	

	
class robot.parsing.lexer.settings.InitFileSettings[source]

	Bases: robot.parsing.lexer.settings.Settings

	
names = ('Documentation', 'Metadata', 'Suite Setup', 'Suite Teardown', 'Test Setup', 'Test Teardown', 'Test Timeout', 'Force Tags', 'Library', 'Resource', 'Variables')

	

	
aliases = {}

	

	
lex(statement)

	

	
multi_use = ('Metadata', 'Library', 'Resource', 'Variables')

	

	
name_and_arguments = ('Metadata', 'Suite Setup', 'Suite Teardown', 'Test Setup', 'Test Teardown', 'Test Template', 'Setup', 'Teardown', 'Template', 'Resource', 'Variables')

	

	
name_arguments_and_with_name = ('Library',)

	

	
single_value = ('Resource', 'Test Timeout', 'Test Template', 'Timeout', 'Template')

	

	
class robot.parsing.lexer.settings.ResourceFileSettings[source]

	Bases: robot.parsing.lexer.settings.Settings

	
names = ('Documentation', 'Library', 'Resource', 'Variables')

	

	
aliases = {}

	

	
lex(statement)

	

	
multi_use = ('Metadata', 'Library', 'Resource', 'Variables')

	

	
name_and_arguments = ('Metadata', 'Suite Setup', 'Suite Teardown', 'Test Setup', 'Test Teardown', 'Test Template', 'Setup', 'Teardown', 'Template', 'Resource', 'Variables')

	

	
name_arguments_and_with_name = ('Library',)

	

	
single_value = ('Resource', 'Test Timeout', 'Test Template', 'Timeout', 'Template')

	

	
class robot.parsing.lexer.settings.TestCaseSettings(parent)[source]

	Bases: robot.parsing.lexer.settings.Settings

	
names = ('Documentation', 'Tags', 'Setup', 'Teardown', 'Template', 'Timeout')

	

	
template_set

	

	
aliases = {}

	

	
lex(statement)

	

	
multi_use = ('Metadata', 'Library', 'Resource', 'Variables')

	

	
name_and_arguments = ('Metadata', 'Suite Setup', 'Suite Teardown', 'Test Setup', 'Test Teardown', 'Test Template', 'Setup', 'Teardown', 'Template', 'Resource', 'Variables')

	

	
name_arguments_and_with_name = ('Library',)

	

	
single_value = ('Resource', 'Test Timeout', 'Test Template', 'Timeout', 'Template')

	

	
class robot.parsing.lexer.settings.KeywordSettings[source]

	Bases: robot.parsing.lexer.settings.Settings

	
names = ('Documentation', 'Arguments', 'Teardown', 'Timeout', 'Tags', 'Return')

	

	
aliases = {}

	

	
lex(statement)

	

	
multi_use = ('Metadata', 'Library', 'Resource', 'Variables')

	

	
name_and_arguments = ('Metadata', 'Suite Setup', 'Suite Teardown', 'Test Setup', 'Test Teardown', 'Test Template', 'Setup', 'Teardown', 'Template', 'Resource', 'Variables')

	

	
name_arguments_and_with_name = ('Library',)

	

	
single_value = ('Resource', 'Test Timeout', 'Test Template', 'Timeout', 'Template')

	

robot.parsing.lexer.statementlexers module

	
class robot.parsing.lexer.statementlexers.Lexer(ctx)[source]

	Bases: object

Base class for lexers.

	
handles(statement)[source]

	

	
accepts_more(statement)[source]

	

	
input(statement)[source]

	

	
lex()[source]

	

	
class robot.parsing.lexer.statementlexers.StatementLexer(ctx)[source]

	Bases: robot.parsing.lexer.statementlexers.Lexer

	
token_type = None

	

	
accepts_more(statement)[source]

	

	
input(statement)[source]

	

	
lex()[source]

	

	
handles(statement)

	

	
class robot.parsing.lexer.statementlexers.SectionHeaderLexer(ctx)[source]

	Bases: robot.parsing.lexer.statementlexers.StatementLexer

	
handles(statement)[source]

	

	
accepts_more(statement)

	

	
input(statement)

	

	
lex()

	

	
token_type = None

	

	
class robot.parsing.lexer.statementlexers.SettingSectionHeaderLexer(ctx)[source]

	Bases: robot.parsing.lexer.statementlexers.SectionHeaderLexer

	
token_type = 'SETTING HEADER'

	

	
accepts_more(statement)

	

	
handles(statement)

	

	
input(statement)

	

	
lex()

	

	
class robot.parsing.lexer.statementlexers.VariableSectionHeaderLexer(ctx)[source]

	Bases: robot.parsing.lexer.statementlexers.SectionHeaderLexer

	
token_type = 'VARIABLE HEADER'

	

	
accepts_more(statement)

	

	
handles(statement)

	

	
input(statement)

	

	
lex()

	

	
class robot.parsing.lexer.statementlexers.TestCaseSectionHeaderLexer(ctx)[source]

	Bases: robot.parsing.lexer.statementlexers.SectionHeaderLexer

	
token_type = 'TESTCASE HEADER'

	

	
accepts_more(statement)

	

	
handles(statement)

	

	
input(statement)

	

	
lex()

	

	
class robot.parsing.lexer.statementlexers.KeywordSectionHeaderLexer(ctx)[source]

	Bases: robot.parsing.lexer.statementlexers.SectionHeaderLexer

	
token_type = 'KEYWORD HEADER'

	

	
accepts_more(statement)

	

	
handles(statement)

	

	
input(statement)

	

	
lex()

	

	
class robot.parsing.lexer.statementlexers.CommentSectionHeaderLexer(ctx)[source]

	Bases: robot.parsing.lexer.statementlexers.SectionHeaderLexer

	
token_type = 'COMMENT HEADER'

	

	
accepts_more(statement)

	

	
handles(statement)

	

	
input(statement)

	

	
lex()

	

	
class robot.parsing.lexer.statementlexers.ErrorSectionHeaderLexer(ctx)[source]

	Bases: robot.parsing.lexer.statementlexers.SectionHeaderLexer

	
lex()[source]

	

	
accepts_more(statement)

	

	
handles(statement)

	

	
input(statement)

	

	
token_type = None

	

	
class robot.parsing.lexer.statementlexers.CommentLexer(ctx)[source]

	Bases: robot.parsing.lexer.statementlexers.StatementLexer

	
token_type = 'COMMENT'

	

	
accepts_more(statement)

	

	
handles(statement)

	

	
input(statement)

	

	
lex()

	

	
class robot.parsing.lexer.statementlexers.SettingLexer(ctx)[source]

	Bases: robot.parsing.lexer.statementlexers.StatementLexer

	
lex()[source]

	

	
accepts_more(statement)

	

	
handles(statement)

	

	
input(statement)

	

	
token_type = None

	

	
class robot.parsing.lexer.statementlexers.TestOrKeywordSettingLexer(ctx)[source]

	Bases: robot.parsing.lexer.statementlexers.SettingLexer

	
handles(statement)[source]

	

	
accepts_more(statement)

	

	
input(statement)

	

	
lex()

	

	
token_type = None

	

	
class robot.parsing.lexer.statementlexers.VariableLexer(ctx)[source]

	Bases: robot.parsing.lexer.statementlexers.StatementLexer

	
lex()[source]

	

	
accepts_more(statement)

	

	
handles(statement)

	

	
input(statement)

	

	
token_type = None

	

	
class robot.parsing.lexer.statementlexers.KeywordCallLexer(ctx)[source]

	Bases: robot.parsing.lexer.statementlexers.StatementLexer

	
lex()[source]

	

	
accepts_more(statement)

	

	
handles(statement)

	

	
input(statement)

	

	
token_type = None

	

	
class robot.parsing.lexer.statementlexers.ForHeaderLexer(ctx)[source]

	Bases: robot.parsing.lexer.statementlexers.StatementLexer

	
separators = ('IN', 'IN RANGE', 'IN ENUMERATE', 'IN ZIP')

	

	
handles(statement)[source]

	

	
lex()[source]

	

	
accepts_more(statement)

	

	
input(statement)

	

	
token_type = None

	

	
class robot.parsing.lexer.statementlexers.IfHeaderLexer(ctx)[source]

	Bases: robot.parsing.lexer.statementlexers.StatementLexer

	
handles(statement)[source]

	

	
lex()[source]

	

	
accepts_more(statement)

	

	
input(statement)

	

	
token_type = None

	

	
class robot.parsing.lexer.statementlexers.ElseIfHeaderLexer(ctx)[source]

	Bases: robot.parsing.lexer.statementlexers.StatementLexer

	
handles(statement)[source]

	

	
lex()[source]

	

	
accepts_more(statement)

	

	
input(statement)

	

	
token_type = None

	

	
class robot.parsing.lexer.statementlexers.ElseHeaderLexer(ctx)[source]

	Bases: robot.parsing.lexer.statementlexers.StatementLexer

	
handles(statement)[source]

	

	
lex()[source]

	

	
accepts_more(statement)

	

	
input(statement)

	

	
token_type = None

	

	
class robot.parsing.lexer.statementlexers.EndLexer(ctx)[source]

	Bases: robot.parsing.lexer.statementlexers.StatementLexer

	
handles(statement)[source]

	

	
lex()[source]

	

	
accepts_more(statement)

	

	
input(statement)

	

	
token_type = None

	

robot.parsing.lexer.tokenizer module

	
class robot.parsing.lexer.tokenizer.Tokenizer[source]

	Bases: object

	
tokenize(data, data_only=False)[source]

	

robot.parsing.lexer.tokens module

	
class robot.parsing.lexer.tokens.Token(type=None, value=None, lineno=-1, col_offset=-1, error=None)[source]

	Bases: object

Token representing piece of Robot Framework data.

Each token has type, value, line number, column offset and end column
offset in type, value, lineno, col_offset
and end_col_offset attributes, respectively. Tokens representing
error also have their error message in error attribute.

Token types are declared as class attributes such as SETTING_HEADER
and EOL. Values of these constants have changed slightly in Robot
Framework 4.0 and they may change again in the future. It is thus safer
to use the constants, not their values, when types are needed. For example,
use Token(Token.EOL) instead of Token('EOL') and
token.type == Token.EOL instead of token.type == 'EOL'.

If value is not given when Token is initialized and
type is IF, ELSE_IF, ELSE, FOR,
END, WITH_NAME or CONTINUATION, the value is
automatically set to the correct marker value like 'IF' or 'ELSE IF'.
If type is EOL in this case, the value is set to '\n'.

	
SETTING_HEADER = 'SETTING HEADER'

	

	
VARIABLE_HEADER = 'VARIABLE HEADER'

	

	
TESTCASE_HEADER = 'TESTCASE HEADER'

	

	
KEYWORD_HEADER = 'KEYWORD HEADER'

	

	
COMMENT_HEADER = 'COMMENT HEADER'

	

	
TESTCASE_NAME = 'TESTCASE NAME'

	

	
KEYWORD_NAME = 'KEYWORD NAME'

	

	
DOCUMENTATION = 'DOCUMENTATION'

	

	
SUITE_SETUP = 'SUITE SETUP'

	

	
SUITE_TEARDOWN = 'SUITE TEARDOWN'

	

	
METADATA = 'METADATA'

	

	
TEST_SETUP = 'TEST SETUP'

	

	
TEST_TEARDOWN = 'TEST TEARDOWN'

	

	
TEST_TEMPLATE = 'TEST TEMPLATE'

	

	
TEST_TIMEOUT = 'TEST TIMEOUT'

	

	
FORCE_TAGS = 'FORCE TAGS'

	

	
DEFAULT_TAGS = 'DEFAULT TAGS'

	

	
LIBRARY = 'LIBRARY'

	

	
RESOURCE = 'RESOURCE'

	

	
VARIABLES = 'VARIABLES'

	

	
SETUP = 'SETUP'

	

	
TEARDOWN = 'TEARDOWN'

	

	
TEMPLATE = 'TEMPLATE'

	

	
TIMEOUT = 'TIMEOUT'

	

	
TAGS = 'TAGS'

	

	
ARGUMENTS = 'ARGUMENTS'

	

	
RETURN = 'RETURN'

	

	
NAME = 'NAME'

	

	
VARIABLE = 'VARIABLE'

	

	
ARGUMENT = 'ARGUMENT'

	

	
ASSIGN = 'ASSIGN'

	

	
KEYWORD = 'KEYWORD'

	

	
WITH_NAME = 'WITH NAME'

	

	
FOR = 'FOR'

	

	
FOR_SEPARATOR = 'FOR SEPARATOR'

	

	
END = 'END'

	

	
IF = 'IF'

	

	
ELSE_IF = 'ELSE IF'

	

	
ELSE = 'ELSE'

	

	
SEPARATOR = 'SEPARATOR'

	

	
COMMENT = 'COMMENT'

	

	
CONTINUATION = 'CONTINUATION'

	

	
EOL = 'EOL'

	

	
EOS = 'EOS'

	

	
ERROR = 'ERROR'

	

	
FATAL_ERROR = 'FATAL ERROR'

	

	
NON_DATA_TOKENS = frozenset(['COMMENT', 'CONTINUATION', 'SEPARATOR', 'EOS', 'EOL'])

	

	
SETTING_TOKENS = frozenset(['RESOURCE', 'TEMPLATE', 'SETUP', 'TAGS', 'SUITE SETUP', 'TEST SETUP', 'SUITE TEARDOWN', 'DOCUMENTATION', 'LIBRARY', 'TEARDOWN', 'TEST TIMEOUT', 'DEFAULT TAGS', 'TIMEOUT', 'ARGUMENTS', 'FORCE TAGS', 'TEST TEARDOWN', 'RETURN', 'TEST TEMPLATE', 'VARIABLES', 'METADATA'])

	

	
HEADER_TOKENS = frozenset(['VARIABLE HEADER', 'TESTCASE HEADER', 'KEYWORD HEADER', 'COMMENT HEADER', 'SETTING HEADER'])

	

	
ALLOW_VARIABLES = frozenset(['KEYWORD NAME', 'TESTCASE NAME', 'NAME', 'ARGUMENT'])

	

	
type

	

	
value

	

	
lineno

	

	
col_offset

	

	
error

	

	
end_col_offset

	

	
set_error(error, fatal=False)[source]

	

	
tokenize_variables()[source]

	Tokenizes possible variables in token value.

Yields the token itself if the token does not allow variables (see
Token.ALLOW_VARIABLES) or its value does not contain
variables. Otherwise yields variable tokens as well as tokens
before, after, or between variables so that they have the same
type as the original token.

	
class robot.parsing.lexer.tokens.EOS(lineno=-1, col_offset=-1)[source]

	Bases: robot.parsing.lexer.tokens.Token

Token representing end of a statement.

	
classmethod from_token(token)[source]

	

	
ALLOW_VARIABLES = frozenset(['KEYWORD NAME', 'TESTCASE NAME', 'NAME', 'ARGUMENT'])

	

	
ARGUMENT = 'ARGUMENT'

	

	
ARGUMENTS = 'ARGUMENTS'

	

	
ASSIGN = 'ASSIGN'

	

	
COMMENT = 'COMMENT'

	

	
COMMENT_HEADER = 'COMMENT HEADER'

	

	
CONTINUATION = 'CONTINUATION'

	

	
DEFAULT_TAGS = 'DEFAULT TAGS'

	

	
DOCUMENTATION = 'DOCUMENTATION'

	

	
ELSE = 'ELSE'

	

	
ELSE_IF = 'ELSE IF'

	

	
END = 'END'

	

	
EOL = 'EOL'

	

	
EOS = 'EOS'

	

	
ERROR = 'ERROR'

	

	
FATAL_ERROR = 'FATAL ERROR'

	

	
FOR = 'FOR'

	

	
FORCE_TAGS = 'FORCE TAGS'

	

	
FOR_SEPARATOR = 'FOR SEPARATOR'

	

	
HEADER_TOKENS = frozenset(['VARIABLE HEADER', 'TESTCASE HEADER', 'KEYWORD HEADER', 'COMMENT HEADER', 'SETTING HEADER'])

	

	
IF = 'IF'

	

	
KEYWORD = 'KEYWORD'

	

	
KEYWORD_HEADER = 'KEYWORD HEADER'

	

	
KEYWORD_NAME = 'KEYWORD NAME'

	

	
LIBRARY = 'LIBRARY'

	

	
METADATA = 'METADATA'

	

	
NAME = 'NAME'

	

	
NON_DATA_TOKENS = frozenset(['COMMENT', 'CONTINUATION', 'SEPARATOR', 'EOS', 'EOL'])

	

	
RESOURCE = 'RESOURCE'

	

	
RETURN = 'RETURN'

	

	
SEPARATOR = 'SEPARATOR'

	

	
SETTING_HEADER = 'SETTING HEADER'

	

	
SETTING_TOKENS = frozenset(['RESOURCE', 'TEMPLATE', 'SETUP', 'TAGS', 'SUITE SETUP', 'TEST SETUP', 'SUITE TEARDOWN', 'DOCUMENTATION', 'LIBRARY', 'TEARDOWN', 'TEST TIMEOUT', 'DEFAULT TAGS', 'TIMEOUT', 'ARGUMENTS', 'FORCE TAGS', 'TEST TEARDOWN', 'RETURN', 'TEST TEMPLATE', 'VARIABLES', 'METADATA'])

	

	
SETUP = 'SETUP'

	

	
SUITE_SETUP = 'SUITE SETUP'

	

	
SUITE_TEARDOWN = 'SUITE TEARDOWN'

	

	
TAGS = 'TAGS'

	

	
TEARDOWN = 'TEARDOWN'

	

	
TEMPLATE = 'TEMPLATE'

	

	
TESTCASE_HEADER = 'TESTCASE HEADER'

	

	
TESTCASE_NAME = 'TESTCASE NAME'

	

	
TEST_SETUP = 'TEST SETUP'

	

	
TEST_TEARDOWN = 'TEST TEARDOWN'

	

	
TEST_TEMPLATE = 'TEST TEMPLATE'

	

	
TEST_TIMEOUT = 'TEST TIMEOUT'

	

	
TIMEOUT = 'TIMEOUT'

	

	
VARIABLE = 'VARIABLE'

	

	
VARIABLES = 'VARIABLES'

	

	
VARIABLE_HEADER = 'VARIABLE HEADER'

	

	
WITH_NAME = 'WITH NAME'

	

	
col_offset

	

	
end_col_offset

	

	
error

	

	
lineno

	

	
set_error(error, fatal=False)

	

	
tokenize_variables()

	Tokenizes possible variables in token value.

Yields the token itself if the token does not allow variables (see
Token.ALLOW_VARIABLES) or its value does not contain
variables. Otherwise yields variable tokens as well as tokens
before, after, or between variables so that they have the same
type as the original token.

	
type

	

	
value

	

robot.parsing.model package

Submodules

robot.parsing.model.blocks module

	
class robot.parsing.model.blocks.Block[source]

	Bases: _ast.AST

	
errors = ()

	

	
lineno

	

	
col_offset

	

	
end_lineno

	

	
end_col_offset

	

	
validate_model()[source]

	

	
validate()[source]

	

	
class robot.parsing.model.blocks.File(sections=None, source=None)[source]

	Bases: robot.parsing.model.blocks.Block

	
save(output=None)[source]

	Save model to the given output or to the original source file.

The output can be a path to a file or an already opened file
object. If output is not given, the original source file will
be overwritten.

	
col_offset

	

	
end_col_offset

	

	
end_lineno

	

	
errors = ()

	

	
lineno

	

	
validate()

	

	
validate_model()

	

	
class robot.parsing.model.blocks.Section(header=None, body=None)[source]

	Bases: robot.parsing.model.blocks.Block

	
col_offset

	

	
end_col_offset

	

	
end_lineno

	

	
errors = ()

	

	
lineno

	

	
validate()

	

	
validate_model()

	

	
class robot.parsing.model.blocks.SettingSection(header=None, body=None)[source]

	Bases: robot.parsing.model.blocks.Section

	
col_offset

	

	
end_col_offset

	

	
end_lineno

	

	
errors = ()

	

	
lineno

	

	
validate()

	

	
validate_model()

	

	
class robot.parsing.model.blocks.VariableSection(header=None, body=None)[source]

	Bases: robot.parsing.model.blocks.Section

	
col_offset

	

	
end_col_offset

	

	
end_lineno

	

	
errors = ()

	

	
lineno

	

	
validate()

	

	
validate_model()

	

	
class robot.parsing.model.blocks.TestCaseSection(header=None, body=None)[source]

	Bases: robot.parsing.model.blocks.Section

	
tasks

	

	
col_offset

	

	
end_col_offset

	

	
end_lineno

	

	
errors = ()

	

	
lineno

	

	
validate()

	

	
validate_model()

	

	
class robot.parsing.model.blocks.KeywordSection(header=None, body=None)[source]

	Bases: robot.parsing.model.blocks.Section

	
col_offset

	

	
end_col_offset

	

	
end_lineno

	

	
errors = ()

	

	
lineno

	

	
validate()

	

	
validate_model()

	

	
class robot.parsing.model.blocks.CommentSection(header=None, body=None)[source]

	Bases: robot.parsing.model.blocks.Section

	
col_offset

	

	
end_col_offset

	

	
end_lineno

	

	
errors = ()

	

	
lineno

	

	
validate()

	

	
validate_model()

	

	
class robot.parsing.model.blocks.TestCase(header, body=None)[source]

	Bases: robot.parsing.model.blocks.Block

	
name

	

	
col_offset

	

	
end_col_offset

	

	
end_lineno

	

	
errors = ()

	

	
lineno

	

	
validate()

	

	
validate_model()

	

	
class robot.parsing.model.blocks.Keyword(header, body=None)[source]

	Bases: robot.parsing.model.blocks.Block

	
name

	

	
col_offset

	

	
end_col_offset

	

	
end_lineno

	

	
errors = ()

	

	
lineno

	

	
validate()

	

	
validate_model()

	

	
class robot.parsing.model.blocks.If(header, body=None, orelse=None, end=None, errors=())[source]

	Bases: robot.parsing.model.blocks.Block

Represents IF structures in the model.

Used with IF, ELSE_IF and ELSE nodes. The type attribute specifies the type.

	
errors = ()

	

	
type

	

	
condition

	

	
validate()[source]

	

	
col_offset

	

	
end_col_offset

	

	
end_lineno

	

	
lineno

	

	
validate_model()

	

	
class robot.parsing.model.blocks.For(header, body=None, end=None, errors=())[source]

	Bases: robot.parsing.model.blocks.Block

	
errors = ()

	

	
variables

	

	
values

	

	
flavor

	

	
validate()[source]

	

	
col_offset

	

	
end_col_offset

	

	
end_lineno

	

	
lineno

	

	
validate_model()

	

	
class robot.parsing.model.blocks.ModelWriter(output)[source]

	Bases: robot.parsing.model.visitor.ModelVisitor

	
write(model)[source]

	

	
visit_Statement(statement)[source]

	

	
generic_visit(node)

	Called if no explicit visitor function exists for a node.

	
visit(node)

	Visit a node.

	
class robot.parsing.model.blocks.ModelValidator[source]

	Bases: robot.parsing.model.visitor.ModelVisitor

	
visit_Block(node)[source]

	

	
visit_Statement(node)[source]

	

	
generic_visit(node)

	Called if no explicit visitor function exists for a node.

	
visit(node)

	Visit a node.

	
class robot.parsing.model.blocks.FirstStatementFinder[source]

	Bases: robot.parsing.model.visitor.ModelVisitor

	
classmethod find_from(model)[source]

	

	
visit_Statement(statement)[source]

	

	
generic_visit(node)[source]

	Called if no explicit visitor function exists for a node.

	
visit(node)

	Visit a node.

	
class robot.parsing.model.blocks.LastStatementFinder[source]

	Bases: robot.parsing.model.visitor.ModelVisitor

	
classmethod find_from(model)[source]

	

	
generic_visit(node)

	Called if no explicit visitor function exists for a node.

	
visit(node)

	Visit a node.

	
visit_Statement(statement)[source]

	

robot.parsing.model.statements module

	
class robot.parsing.model.statements.Statement(tokens, errors=())[source]

	Bases: _ast.AST

	
type = None

	

	
handles_types = ()

	

	
lineno

	

	
col_offset

	

	
end_lineno

	

	
end_col_offset

	

	
classmethod register(subcls)[source]

	

	
classmethod from_tokens(tokens)[source]

	

	
classmethod from_params(*args, **kwargs)[source]

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
data_tokens

	

	
get_token(*types)[source]

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)[source]

	Return tokens having any of the given types.

	
get_value(type, default=None)[source]

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)[source]

	Return values of tokens having any of the given types.

	
lines

	

	
validate()[source]

	

	
class robot.parsing.model.statements.DocumentationOrMetadata(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.Statement

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_params(*args, **kwargs)

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
handles_types = ()

	

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
type = None

	

	
validate()

	

	
class robot.parsing.model.statements.SingleValue(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.Statement

	
value

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_params(*args, **kwargs)

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
handles_types = ()

	

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
type = None

	

	
validate()

	

	
class robot.parsing.model.statements.MultiValue(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.Statement

	
values

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_params(*args, **kwargs)

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
handles_types = ()

	

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
type = None

	

	
validate()

	

	
class robot.parsing.model.statements.Fixture(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.Statement

	
name

	

	
args

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_params(*args, **kwargs)

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
handles_types = ()

	

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
type = None

	

	
validate()

	

	
class robot.parsing.model.statements.SectionHeader(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.Statement

	
handles_types = ('SETTING HEADER', 'VARIABLE HEADER', 'TESTCASE HEADER', 'KEYWORD HEADER', 'COMMENT HEADER')

	

	
classmethod from_params(type, name=None, eol='\n')[source]

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
type

	

	
name

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
validate()

	

	
class robot.parsing.model.statements.LibraryImport(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.Statement

	
type = 'LIBRARY'

	

	
classmethod from_params(name, args=(), alias=None, separator=' ', eol='\n')[source]

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
name

	

	
args

	

	
alias

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
handles_types = ()

	

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
validate()

	

	
class robot.parsing.model.statements.ResourceImport(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.Statement

	
type = 'RESOURCE'

	

	
classmethod from_params(name, separator=' ', eol='\n')[source]

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
name

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
handles_types = ()

	

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
validate()

	

	
class robot.parsing.model.statements.VariablesImport(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.Statement

	
type = 'VARIABLES'

	

	
classmethod from_params(name, args=(), separator=' ', eol='\n')[source]

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
name

	

	
args

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
handles_types = ()

	

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
validate()

	

	
class robot.parsing.model.statements.Documentation(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.DocumentationOrMetadata

	
type = 'DOCUMENTATION'

	

	
classmethod from_params(value, indent=' ', separator=' ', eol='\n', settings_section=True)[source]

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
value

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
handles_types = ()

	

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
validate()

	

	
class robot.parsing.model.statements.Metadata(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.DocumentationOrMetadata

	
type = 'METADATA'

	

	
classmethod from_params(name, value, separator=' ', eol='\n')[source]

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
name

	

	
value

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
handles_types = ()

	

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
validate()

	

	
class robot.parsing.model.statements.ForceTags(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.MultiValue

	
type = 'FORCE TAGS'

	

	
classmethod from_params(values, separator=' ', eol='\n')[source]

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
handles_types = ()

	

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
validate()

	

	
values

	

	
class robot.parsing.model.statements.DefaultTags(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.MultiValue

	
type = 'DEFAULT TAGS'

	

	
classmethod from_params(values, separator=' ', eol='\n')[source]

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
handles_types = ()

	

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
validate()

	

	
values

	

	
class robot.parsing.model.statements.SuiteSetup(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.Fixture

	
type = 'SUITE SETUP'

	

	
classmethod from_params(name, args=(), separator=' ', eol='\n')[source]

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
args

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
handles_types = ()

	

	
lineno

	

	
lines

	

	
name

	

	
classmethod register(subcls)

	

	
validate()

	

	
class robot.parsing.model.statements.SuiteTeardown(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.Fixture

	
type = 'SUITE TEARDOWN'

	

	
classmethod from_params(name, args=(), separator=' ', eol='\n')[source]

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
args

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
handles_types = ()

	

	
lineno

	

	
lines

	

	
name

	

	
classmethod register(subcls)

	

	
validate()

	

	
class robot.parsing.model.statements.TestSetup(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.Fixture

	
type = 'TEST SETUP'

	

	
classmethod from_params(name, args=(), separator=' ', eol='\n')[source]

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
args

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
handles_types = ()

	

	
lineno

	

	
lines

	

	
name

	

	
classmethod register(subcls)

	

	
validate()

	

	
class robot.parsing.model.statements.TestTeardown(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.Fixture

	
type = 'TEST TEARDOWN'

	

	
classmethod from_params(name, args=(), separator=' ', eol='\n')[source]

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
args

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
handles_types = ()

	

	
lineno

	

	
lines

	

	
name

	

	
classmethod register(subcls)

	

	
validate()

	

	
class robot.parsing.model.statements.TestTemplate(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.SingleValue

	
type = 'TEST TEMPLATE'

	

	
classmethod from_params(value, separator=' ', eol='\n')[source]

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
handles_types = ()

	

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
validate()

	

	
value

	

	
class robot.parsing.model.statements.TestTimeout(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.SingleValue

	
type = 'TEST TIMEOUT'

	

	
classmethod from_params(value, separator=' ', eol='\n')[source]

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
handles_types = ()

	

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
validate()

	

	
value

	

	
class robot.parsing.model.statements.Variable(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.Statement

	
type = 'VARIABLE'

	

	
classmethod from_params(name, value, separator=' ', eol='\n')[source]

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
name

	

	
value

	

	
validate()[source]

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
handles_types = ()

	

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
class robot.parsing.model.statements.TestCaseName(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.Statement

	
type = 'TESTCASE NAME'

	

	
classmethod from_params(name, eol='\n')[source]

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
name

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
handles_types = ()

	

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
validate()

	

	
class robot.parsing.model.statements.KeywordName(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.Statement

	
type = 'KEYWORD NAME'

	

	
classmethod from_params(name, eol='\n')[source]

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
name

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
handles_types = ()

	

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
validate()

	

	
class robot.parsing.model.statements.Setup(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.Fixture

	
type = 'SETUP'

	

	
classmethod from_params(name, args=(), indent=' ', separator=' ', eol='\n')[source]

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
args

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
handles_types = ()

	

	
lineno

	

	
lines

	

	
name

	

	
classmethod register(subcls)

	

	
validate()

	

	
class robot.parsing.model.statements.Teardown(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.Fixture

	
type = 'TEARDOWN'

	

	
classmethod from_params(name, args=(), indent=' ', separator=' ', eol='\n')[source]

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
args

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
handles_types = ()

	

	
lineno

	

	
lines

	

	
name

	

	
classmethod register(subcls)

	

	
validate()

	

	
class robot.parsing.model.statements.Tags(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.MultiValue

	
type = 'TAGS'

	

	
classmethod from_params(values, indent=' ', separator=' ', eol='\n')[source]

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
handles_types = ()

	

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
validate()

	

	
values

	

	
class robot.parsing.model.statements.Template(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.SingleValue

	
type = 'TEMPLATE'

	

	
classmethod from_params(value, indent=' ', separator=' ', eol='\n')[source]

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
handles_types = ()

	

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
validate()

	

	
value

	

	
class robot.parsing.model.statements.Timeout(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.SingleValue

	
type = 'TIMEOUT'

	

	
classmethod from_params(value, indent=' ', separator=' ', eol='\n')[source]

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
handles_types = ()

	

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
validate()

	

	
value

	

	
class robot.parsing.model.statements.Arguments(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.MultiValue

	
type = 'ARGUMENTS'

	

	
classmethod from_params(args, indent=' ', separator=' ', eol='\n')[source]

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
validate()[source]

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
handles_types = ()

	

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
values

	

	
class robot.parsing.model.statements.Return(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.MultiValue

	
type = 'RETURN'

	

	
classmethod from_params(args, indent=' ', separator=' ', eol='\n')[source]

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
handles_types = ()

	

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
validate()

	

	
values

	

	
class robot.parsing.model.statements.KeywordCall(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.Statement

	
type = 'KEYWORD'

	

	
handles_types = ('KEYWORD', 'ASSIGN')

	

	
classmethod from_params(name, assign=(), args=(), indent=' ', separator=' ', eol='\n')[source]

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
keyword

	

	
args

	

	
assign

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
validate()

	

	
class robot.parsing.model.statements.TemplateArguments(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.Statement

	
type = 'ARGUMENT'

	

	
classmethod from_params(args, indent=' ', separator=' ', eol='\n')[source]

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
args

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
handles_types = ()

	

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
validate()

	

	
class robot.parsing.model.statements.ForHeader(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.Statement

	
type = 'FOR'

	

	
classmethod from_params(variables, values, flavor='IN', indent=' ', separator=' ', eol='\n')[source]

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
variables

	

	
values

	

	
flavor

	

	
validate()[source]

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
handles_types = ()

	

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
class robot.parsing.model.statements.IfHeader(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.Statement

	
type = 'IF'

	

	
classmethod from_params(condition, indent=' ', separator=' ', eol='\n')[source]

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
condition

	

	
validate()[source]

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
handles_types = ()

	

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
class robot.parsing.model.statements.ElseIfHeader(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.IfHeader

	
type = 'ELSE IF'

	

	
classmethod from_params(condition, indent=' ', separator=' ', eol='\n')[source]

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
col_offset

	

	
condition

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
handles_types = ()

	

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
validate()

	

	
class robot.parsing.model.statements.ElseHeader(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.Statement

	
type = 'ELSE'

	

	
classmethod from_params(indent=' ', eol='\n')[source]

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
condition

	

	
validate()[source]

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
handles_types = ()

	

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
class robot.parsing.model.statements.End(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.Statement

	
type = 'END'

	

	
classmethod from_params(indent=' ', eol='\n')[source]

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
validate()[source]

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
handles_types = ()

	

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
class robot.parsing.model.statements.Comment(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.Statement

	
type = 'COMMENT'

	

	
classmethod from_params(comment, indent=' ', eol='\n')[source]

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
handles_types = ()

	

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
validate()

	

	
class robot.parsing.model.statements.Error(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.Statement

	
type = 'ERROR'

	

	
handles_types = ('ERROR', 'FATAL ERROR')

	

	
errors

	Errors got from the underlying ERROR and FATAL_ERROR tokens.

Errors can be set also explicitly. When accessing errors, they are returned
along with errors got from tokens.

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_params(*args, **kwargs)

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
validate()

	

	
class robot.parsing.model.statements.EmptyLine(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.Statement

	
type = 'EOL'

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_params(eol='\n')[source]

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
handles_types = ()

	

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
validate()

	

robot.parsing.model.visitor module

	
class robot.parsing.model.visitor.VisitorFinder[source]

	Bases: object

	
class robot.parsing.model.visitor.ModelVisitor[source]

	Bases: ast.NodeVisitor, robot.parsing.model.visitor.VisitorFinder

NodeVisitor that supports matching nodes based on their base classes.

Otherwise identical to the standard ast.NodeVisitor [https://docs.python.org/library/ast.html#ast.NodeVisitor],
but allows creating visit_ClassName methods so that the ClassName
is one of the base classes of the node. For example, this visitor method
matches all statements:

def visit_Statement(self, node):
 # ...

	
visit(node)[source]

	Visit a node.

	
generic_visit(node)

	Called if no explicit visitor function exists for a node.

	
class robot.parsing.model.visitor.ModelTransformer[source]

	Bases: ast.NodeTransformer, robot.parsing.model.visitor.VisitorFinder

NodeTransformer that supports matching nodes based on their base classes.

See ModelVisitor for explanation how this is different compared
to the standard ast.NodeTransformer [https://docs.python.org/library/ast.html#ast.NodeTransformer].

	
visit(node)[source]

	Visit a node.

	
generic_visit(node)

	Called if no explicit visitor function exists for a node.

robot.parsing.parser package

Submodules

robot.parsing.parser.blockparsers module

	
class robot.parsing.parser.blockparsers.Parser(model)[source]

	Bases: object

Base class for parsers.

	
handles(statement)[source]

	

	
parse(statement)[source]

	

	
class robot.parsing.parser.blockparsers.BlockParser(model)[source]

	Bases: robot.parsing.parser.blockparsers.Parser

	
unhandled_tokens = frozenset(['TESTCASE HEADER', 'TESTCASE NAME', 'SETTING HEADER', 'VARIABLE HEADER', 'KEYWORD HEADER', 'COMMENT HEADER', 'KEYWORD NAME'])

	

	
handles(statement)[source]

	

	
parse(statement)[source]

	

	
class robot.parsing.parser.blockparsers.TestCaseParser(header)[source]

	Bases: robot.parsing.parser.blockparsers.BlockParser

	
handles(statement)

	

	
parse(statement)

	

	
unhandled_tokens = frozenset(['TESTCASE HEADER', 'TESTCASE NAME', 'SETTING HEADER', 'VARIABLE HEADER', 'KEYWORD HEADER', 'COMMENT HEADER', 'KEYWORD NAME'])

	

	
class robot.parsing.parser.blockparsers.KeywordParser(header)[source]

	Bases: robot.parsing.parser.blockparsers.BlockParser

	
handles(statement)

	

	
parse(statement)

	

	
unhandled_tokens = frozenset(['TESTCASE HEADER', 'TESTCASE NAME', 'SETTING HEADER', 'VARIABLE HEADER', 'KEYWORD HEADER', 'COMMENT HEADER', 'KEYWORD NAME'])

	

	
class robot.parsing.parser.blockparsers.NestedBlockParser(model)[source]

	Bases: robot.parsing.parser.blockparsers.BlockParser

	
handles(statement)[source]

	

	
parse(statement)[source]

	

	
unhandled_tokens = frozenset(['TESTCASE HEADER', 'TESTCASE NAME', 'SETTING HEADER', 'VARIABLE HEADER', 'KEYWORD HEADER', 'COMMENT HEADER', 'KEYWORD NAME'])

	

	
class robot.parsing.parser.blockparsers.ForParser(header)[source]

	Bases: robot.parsing.parser.blockparsers.NestedBlockParser

	
handles(statement)

	

	
parse(statement)

	

	
unhandled_tokens = frozenset(['TESTCASE HEADER', 'TESTCASE NAME', 'SETTING HEADER', 'VARIABLE HEADER', 'KEYWORD HEADER', 'COMMENT HEADER', 'KEYWORD NAME'])

	

	
class robot.parsing.parser.blockparsers.IfParser(header)[source]

	Bases: robot.parsing.parser.blockparsers.NestedBlockParser

	
parse(statement)[source]

	

	
handles(statement)

	

	
unhandled_tokens = frozenset(['TESTCASE HEADER', 'TESTCASE NAME', 'SETTING HEADER', 'VARIABLE HEADER', 'KEYWORD HEADER', 'COMMENT HEADER', 'KEYWORD NAME'])

	

	
class robot.parsing.parser.blockparsers.OrElseParser(header)[source]

	Bases: robot.parsing.parser.blockparsers.IfParser

	
handles(statement)[source]

	

	
parse(statement)

	

	
unhandled_tokens = frozenset(['TESTCASE HEADER', 'TESTCASE NAME', 'SETTING HEADER', 'VARIABLE HEADER', 'KEYWORD HEADER', 'COMMENT HEADER', 'KEYWORD NAME'])

	

robot.parsing.parser.fileparser module

	
class robot.parsing.parser.fileparser.FileParser(source=None)[source]

	Bases: robot.parsing.parser.blockparsers.Parser

	
handles(statement)[source]

	

	
parse(statement)[source]

	

	
class robot.parsing.parser.fileparser.SectionParser(header)[source]

	Bases: robot.parsing.parser.blockparsers.Parser

	
model_class = None

	

	
handles(statement)[source]

	

	
parse(statement)[source]

	

	
class robot.parsing.parser.fileparser.SettingSectionParser(header)[source]

	Bases: robot.parsing.parser.fileparser.SectionParser

	
model_class

	alias of robot.parsing.model.blocks.SettingSection

	
handles(statement)

	

	
parse(statement)

	

	
class robot.parsing.parser.fileparser.VariableSectionParser(header)[source]

	Bases: robot.parsing.parser.fileparser.SectionParser

	
model_class

	alias of robot.parsing.model.blocks.VariableSection

	
handles(statement)

	

	
parse(statement)

	

	
class robot.parsing.parser.fileparser.CommentSectionParser(header)[source]

	Bases: robot.parsing.parser.fileparser.SectionParser

	
model_class

	alias of robot.parsing.model.blocks.CommentSection

	
handles(statement)

	

	
parse(statement)

	

	
class robot.parsing.parser.fileparser.ImplicitCommentSectionParser(header)[source]

	Bases: robot.parsing.parser.fileparser.SectionParser

	
model_class(statement)[source]

	

	
handles(statement)

	

	
parse(statement)

	

	
class robot.parsing.parser.fileparser.TestCaseSectionParser(header)[source]

	Bases: robot.parsing.parser.fileparser.SectionParser

	
model_class

	alias of robot.parsing.model.blocks.TestCaseSection

	
parse(statement)[source]

	

	
handles(statement)

	

	
class robot.parsing.parser.fileparser.KeywordSectionParser(header)[source]

	Bases: robot.parsing.parser.fileparser.SectionParser

	
model_class

	alias of robot.parsing.model.blocks.KeywordSection

	
parse(statement)[source]

	

	
handles(statement)

	

robot.parsing.parser.parser module

	
robot.parsing.parser.parser.get_model(source, data_only=False, curdir=None)[source]

	Parses the given source to a model represented as an AST.

How to use the model is explained more thoroughly in the general
documentation of the robot.parsing module.

	Parameters

	
	source – The source where to read the data. Can be a path to
a source file as a string or as pathlib.Path object, an already
opened file object, or Unicode text containing the date directly.
Source files must be UTF-8 encoded.

	data_only – When False (default), returns all tokens. When set
to True, omits separators, comments, continuation markers, and
other non-data tokens. Model like this cannot be saved back to
file system.

	curdir – Directory where the source file exists. This path is used
to set the value of the built-in ${CURDIR} variable during parsing.
When not given, the variable is left as-is. Should only be given
only if the model will be executed afterwards. If the model is saved
back to disk, resolving ${CURDIR} is typically not a good idea.

Use get_resource_model() or get_init_model() when parsing
resource or suite initialization files, respectively.

	
robot.parsing.parser.parser.get_resource_model(source, data_only=False, curdir=None)[source]

	Parses the given source to a resource file model.

Otherwise same as get_model() but the source is considered to be
a resource file. This affects, for example, what settings are valid.

	
robot.parsing.parser.parser.get_init_model(source, data_only=False, curdir=None)[source]

	Parses the given source to a init file model.

Otherwise same as get_model() but the source is considered to be
a suite initialization file. This affects, for example, what settings are
valid.

robot.reporting package

Implements report, log, output XML, and xUnit file generation.

The public API of this package is the ResultWriter class. It
can write result files based on XML output files on the file system,
as well as based on the result objects returned by
the ExecutionResult() factory method or
an executed TestSuite.

It is highly recommended to use the public API via the robot.api package.

This package is considered stable.

Submodules

robot.reporting.expandkeywordmatcher module

	
class robot.reporting.expandkeywordmatcher.ExpandKeywordMatcher(expand_keywords)[source]

	Bases: object

	
match(kw)[source]

	

robot.reporting.jsbuildingcontext module

	
class robot.reporting.jsbuildingcontext.JsBuildingContext(log_path=None, split_log=False, expand_keywords=None, prune_input=False)[source]

	Bases: object

	
string(string, escape=True, attr=False)[source]

	

	
html(string)[source]

	

	
relative_source(source)[source]

	

	
timestamp(time)[source]

	

	
message_level(level)[source]

	

	
create_link_target(msg)[source]

	

	
check_expansion(kw)[source]

	

	
expand_keywords

	

	
link(msg)[source]

	

	
strings

	

	
start_splitting_if_needed(split=False)[source]

	

	
end_splitting(model)[source]

	

	
prune_input(**kwds)[source]

	

robot.reporting.jsexecutionresult module

	
class robot.reporting.jsexecutionresult.JsExecutionResult(suite, statistics, errors, strings, basemillis=None, split_results=None, min_level=None, expand_keywords=None)[source]

	Bases: object

	
remove_data_not_needed_in_report()[source]

	

robot.reporting.jsmodelbuilders module

	
class robot.reporting.jsmodelbuilders.JsModelBuilder(log_path=None, split_log=False, expand_keywords=None, prune_input_to_save_memory=False)[source]

	Bases: object

	
build_from(result_from_xml)[source]

	

	
class robot.reporting.jsmodelbuilders.SuiteBuilder(context)[source]

	Bases: robot.reporting.jsmodelbuilders._Builder

	
build(suite)[source]

	

	
class robot.reporting.jsmodelbuilders.TestBuilder(context)[source]

	Bases: robot.reporting.jsmodelbuilders._Builder

	
build(test)[source]

	

	
class robot.reporting.jsmodelbuilders.KeywordBuilder(context)[source]

	Bases: robot.reporting.jsmodelbuilders._Builder

	
build(item, split=False)[source]

	

	
build_keyword(kw, split=False)[source]

	

	
class robot.reporting.jsmodelbuilders.MessageBuilder(context)[source]

	Bases: robot.reporting.jsmodelbuilders._Builder

	
build(msg)[source]

	

	
class robot.reporting.jsmodelbuilders.StatisticsBuilder[source]

	Bases: object

	
build(statistics)[source]

	

	
class robot.reporting.jsmodelbuilders.ErrorsBuilder(context)[source]

	Bases: robot.reporting.jsmodelbuilders._Builder

	
build(errors)[source]

	

	
class robot.reporting.jsmodelbuilders.ErrorMessageBuilder(context)[source]

	Bases: robot.reporting.jsmodelbuilders.MessageBuilder

	
build(msg)[source]

	

robot.reporting.jswriter module

	
class robot.reporting.jswriter.JsResultWriter(output, start_block='<script type="text/javascript">n', end_block='</script>n', split_threshold=9500)[source]

	Bases: object

	
write(result, settings)[source]

	

	
class robot.reporting.jswriter.SuiteWriter(write_json, split_threshold)[source]

	Bases: object

	
write(suite, variable)[source]

	

	
class robot.reporting.jswriter.SplitLogWriter(output)[source]

	Bases: object

	
write(keywords, strings, index, notify)[source]

	

robot.reporting.logreportwriters module

	
class robot.reporting.logreportwriters.LogWriter(js_model)[source]

	Bases: robot.reporting.logreportwriters._LogReportWriter

	
usage = 'log'

	

	
write(path, config)[source]

	

	
class robot.reporting.logreportwriters.ReportWriter(js_model)[source]

	Bases: robot.reporting.logreportwriters._LogReportWriter

	
usage = 'report'

	

	
write(path, config)[source]

	

	
class robot.reporting.logreportwriters.RobotModelWriter(output, model, config)[source]

	Bases: robot.htmldata.htmlfilewriter.ModelWriter

	
write(line)[source]

	

	
handles(line)

	

robot.reporting.outputwriter module

	
class robot.reporting.outputwriter.OutputWriter(output, rpa=False)[source]

	Bases: robot.output.xmllogger.XmlLogger

	
start_message(msg)[source]

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
close()[source]

	

	
end_result(result)[source]

	

	
end_errors(errors=None)

	

	
end_for(for_)

	Called when FOR loop ends. Default implementation does nothing.

	
end_for_iteration(iteration)

	Called when FOR loop iteration ends. Default implementation does nothing.

	
end_if(if_)

	Called when IF/ELSE structure ends. Default implementation does nothing.

	
end_if_branch(branch)

	Called when IF/ELSE branch ends. Default implementation does nothing.

	
end_keyword(kw)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_stat(stat)

	

	
end_statistics(stats)

	

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_suite_statistics(tag_stats)

	

	
end_tag_statistics(tag_stats)

	

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
end_total_statistics(total_stats)

	

	
log_message(msg)

	

	
message(msg)

	

	
set_log_level(level)

	

	
start_errors(errors=None)

	

	
start_for(for_)

	Called when FOR loop starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_for_iteration(iteration)

	Called when FOR loop iteration starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if(if_)

	Called when IF/ELSE structure starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if_branch(branch)

	Called when IF/ELSE branch starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_keyword(kw)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_result(result)

	

	
start_stat(stat)

	

	
start_statistics(stats)

	

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_suite_statistics(tag_stats)

	

	
start_tag_statistics(tag_stats)

	

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_total_statistics(total_stats)

	

	
visit_errors(errors)

	

	
visit_for(for_)

	Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without
calling start_for() or end_for() nor visiting body.

	
visit_for_iteration(iteration)

	Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side
there are no iterations.

Can be overridden to allow modifying the passed in iteration without
calling start_for_iteration() or end_for_iteration() nor visiting
body.

	
visit_if(if_)

	Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches
are in its body and visited using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without
calling start_if() or end_if() nor visiting branches.

	
visit_if_branch(branch)

	Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without
calling start_if_branch() or end_if_branch() nor visiting body.

	
visit_keyword(kw)

	Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
visit_message(msg)

	Implements visiting messages.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_result(result)

	

	
visit_stat(stat)

	

	
visit_statistics(stats)

	

	
visit_suite(suite)

	Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
visit_suite_statistics(stats)

	

	
visit_tag_statistics(stats)

	

	
visit_test(test)

	Implements traversing through tests.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
visit_total_statistics(stats)

	

robot.reporting.resultwriter module

	
class robot.reporting.resultwriter.ResultWriter(*sources)[source]

	Bases: object

A class to create log, report, output XML and xUnit files.

	Parameters

	sources – Either one Result
object, or one or more paths to existing output XML files.

By default writes report.html and log.html, but no output XML
or xUnit files. Custom file names can be given and results disabled
or enabled using settings or options passed to the
write_results() method. The latter is typically more convenient:

writer = ResultWriter(result)
writer.write_results(report='custom.html', log=None, xunit='xunit.xml')

	
write_results(settings=None, **options)[source]

	Writes results based on the given settings or options.

	Parameters

	
	settings – RebotSettings object
to configure result writing.

	options – Used to construct new
RebotSettings object if settings
are not given.

	
class robot.reporting.resultwriter.Results(settings, *sources)[source]

	Bases: object

	
result

	

	
js_result

	

robot.reporting.stringcache module

	
class robot.reporting.stringcache.StringIndex[source]

	Bases: int

	
bit_length() → int

	Number of bits necessary to represent self in binary.
>>> bin(37)
‘0b100101’
>>> (37).bit_length()
6

	
conjugate()

	Returns self, the complex conjugate of any int.

	
denominator

	the denominator of a rational number in lowest terms

	
imag

	the imaginary part of a complex number

	
numerator

	the numerator of a rational number in lowest terms

	
real

	the real part of a complex number

	
class robot.reporting.stringcache.StringCache[source]

	Bases: object

	
add(text)[source]

	

	
dump()[source]

	

robot.reporting.xunitwriter module

	
class robot.reporting.xunitwriter.XUnitWriter(execution_result)[source]

	Bases: object

	
write(output)[source]

	

	
class robot.reporting.xunitwriter.XUnitFileWriter(xml_writer)[source]

	Bases: robot.result.visitor.ResultVisitor

Provides an xUnit-compatible result file.

Attempts to adhere to the de facto schema guessed by Peter Reilly, see:
http://marc.info/?l=ant-dev&m=123551933508682

	
start_suite(suite)[source]

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_suite(suite)[source]

	Called when suite ends. Default implementation does nothing.

	
visit_test(test)[source]

	Implements traversing through tests.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
visit_keyword(kw)[source]

	Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
visit_statistics(stats)[source]

	

	
visit_errors(errors)[source]

	

	
end_result(result)[source]

	

	
end_errors(errors)

	

	
end_for(for_)

	Called when FOR loop ends. Default implementation does nothing.

	
end_for_iteration(iteration)

	Called when FOR loop iteration ends. Default implementation does nothing.

	
end_if(if_)

	Called when IF/ELSE structure ends. Default implementation does nothing.

	
end_if_branch(branch)

	Called when IF/ELSE branch ends. Default implementation does nothing.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_stat(stat)

	

	
end_statistics(stats)

	

	
end_suite_statistics(suite_stats)

	

	
end_tag_statistics(stats)

	

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
end_total_statistics(stats)

	

	
start_errors(errors)

	

	
start_for(for_)

	Called when FOR loop starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_for_iteration(iteration)

	Called when FOR loop iteration starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if(if_)

	Called when IF/ELSE structure starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if_branch(branch)

	Called when IF/ELSE branch starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_result(result)

	

	
start_stat(stat)

	

	
start_statistics(stats)

	

	
start_suite_statistics(stats)

	

	
start_tag_statistics(stats)

	

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_total_statistics(stats)

	

	
visit_for(for_)

	Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without
calling start_for() or end_for() nor visiting body.

	
visit_for_iteration(iteration)

	Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side
there are no iterations.

Can be overridden to allow modifying the passed in iteration without
calling start_for_iteration() or end_for_iteration() nor visiting
body.

	
visit_if(if_)

	Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches
are in its body and visited using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without
calling start_if() or end_if() nor visiting branches.

	
visit_if_branch(branch)

	Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without
calling start_if_branch() or end_if_branch() nor visiting body.

	
visit_message(msg)

	Implements visiting messages.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_result(result)

	

	
visit_stat(stat)

	

	
visit_suite(suite)

	Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
visit_suite_statistics(stats)

	

	
visit_tag_statistics(stats)

	

	
visit_total_statistics(stats)

	

robot.result package

Implements parsing execution results from XML output files.

The main public API of this package consists of the ExecutionResult()
factory method, that returns Result objects, and of the
ResultVisitor abstract class, that eases further processing
the results.

The model objects in the model module can also be considered to be
part of the public API, because they can be found inside the Result
object. They can also be inspected and modified as part of the normal test
execution by pre-Rebot modifiers [http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#programmatic-modification-of-results] and listeners [http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#listener-interface].

It is highly recommended to import the public entry-points via the
robot.api package like in the example below. In those rare cases
where the aforementioned model objects are needed directly, they can be
imported from this package.

This package is considered stable.

Example

#!/usr/bin/env python

"""Usage: check_test_times.py seconds inpath [outpath]

Reads test execution result from an output XML file and checks that no test
took longer than given amount of seconds to execute.

Optional `outpath` specifies where to write processed results. If not given,
results are written over the original file.
"""

import sys
from robot.api import ExecutionResult, ResultVisitor

class ExecutionTimeChecker(ResultVisitor):

 def __init__(self, max_seconds):
 self.max_milliseconds = max_seconds * 1000

 def visit_test(self, test):
 if test.status == 'PASS' and test.elapsedtime > self.max_milliseconds:
 test.status = 'FAIL'
 test.message = 'Test execution took too long.'

def check_tests(seconds, inpath, outpath=None):
 result = ExecutionResult(inpath)
 result.visit(ExecutionTimeChecker(float(seconds)))
 result.save(outpath)

if __name__ == '__main__':
 try:
 check_tests(*sys.argv[1:])
 except TypeError:
 print(__doc__)

Submodules

robot.result.configurer module

	
class robot.result.configurer.SuiteConfigurer(remove_keywords=None, log_level=None, start_time=None, end_time=None, **base_config)[source]

	Bases: robot.model.configurer.SuiteConfigurer

Result suite configured.

Calls suite’s
remove_keywords() and
filter_messages() methods
and sets its start and end time based on the given named parameters.

base_config is forwarded to
robot.model.SuiteConfigurer
that will do further configuration based on them.

	
visit_suite(suite)[source]

	Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
add_tags

	

	
end_for(for_)

	Called when FOR loop ends. Default implementation does nothing.

	
end_for_iteration(iteration)

	Called when FOR loop iteration ends. Default implementation does nothing.

	
end_if(if_)

	Called when IF/ELSE structure ends. Default implementation does nothing.

	
end_if_branch(branch)

	Called when IF/ELSE branch ends. Default implementation does nothing.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
remove_tags

	

	
start_for(for_)

	Called when FOR loop starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_for_iteration(iteration)

	Called when FOR loop iteration starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if(if_)

	Called when IF/ELSE structure starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if_branch(branch)

	Called when IF/ELSE branch starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_for(for_)

	Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without
calling start_for() or end_for() nor visiting body.

	
visit_for_iteration(iteration)

	Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side
there are no iterations.

Can be overridden to allow modifying the passed in iteration without
calling start_for_iteration() or end_for_iteration() nor visiting
body.

	
visit_if(if_)

	Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches
are in its body and visited using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without
calling start_if() or end_if() nor visiting branches.

	
visit_if_branch(branch)

	Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without
calling start_if_branch() or end_if_branch() nor visiting body.

	
visit_keyword(kw)

	Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
visit_message(msg)

	Implements visiting messages.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_test(test)

	Implements traversing through tests.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

robot.result.executionerrors module

	
class robot.result.executionerrors.ExecutionErrors(messages=None)[source]

	Bases: object

Represents errors occurred during the execution of tests.

An error might be, for example, that importing a library has failed.

	
id = 'errors'

	

	
messages

	A list-like object of
Message instances.

	
add(other)[source]

	

	
visit(visitor)[source]

	

robot.result.executionresult module

	
class robot.result.executionresult.Result(source=None, root_suite=None, errors=None, rpa=None)[source]

	Bases: object

Test execution results.

Can be created based on XML output files using the
ExecutionResult()
factory method. Also returned by the
robot.running.TestSuite.run
method.

	
source = None

	Path to the XML file where results are read from.

	
suite = None

	Hierarchical execution results as a
TestSuite object.

	
errors = None

	Execution errors as an
ExecutionErrors object.

	
statistics

	Test execution statistics.

Statistics are an instance of
Statistics that is created based
on the contained suite and possible
configuration.

Statistics are created every time this property is accessed. Saving
them to a variable is thus often a good idea to avoid re-creating
them unnecessarily:

from robot.api import ExecutionResult

result = ExecutionResult('output.xml')
result.configure(stat_config={'suite_stat_level': 2,
 'tag_stat_combine': 'tagANDanother'})
stats = result.statistics
print(stats.total.failed)
print(stats.total.passed)
print(stats.tags.combined[0].total)

	
return_code

	Return code (integer) of test execution.

By default returns the number of failed tests (max 250),
but can be configured to always return 0.

	
configure(status_rc=True, suite_config=None, stat_config=None)[source]

	Configures the result object and objects it contains.

	Parameters

	
	status_rc – If set to False, return_code always
returns 0.

	suite_config – A dictionary of configuration options passed
to configure() method of
the contained suite.

	stat_config – A dictionary of configuration options used when
creating statistics.

	
save(path=None)[source]

	Save results as a new output XML file.

	Parameters

	path – Path to save results to. If omitted, overwrites the
original file.

	
visit(visitor)[source]

	An entry point to visit the whole result object.

	Parameters

	visitor – An instance of ResultVisitor.

Visitors can gather information, modify results, etc. See
result package for a simple usage example.

Notice that it is also possible to call result.suite.visit if there is no need to
visit the contained statistics or errors.

	
handle_suite_teardown_failures()[source]

	Internal usage only.

	
set_execution_mode(other)[source]

	Set execution mode based on other result. Internal usage only.

	
class robot.result.executionresult.CombinedResult(results=None)[source]

	Bases: robot.result.executionresult.Result

Combined results of multiple test executions.

	
add_result(other)[source]

	

	
configure(status_rc=True, suite_config=None, stat_config=None)

	Configures the result object and objects it contains.

	Parameters

	
	status_rc – If set to False, return_code always
returns 0.

	suite_config – A dictionary of configuration options passed
to configure() method of
the contained suite.

	stat_config – A dictionary of configuration options used when
creating statistics.

	
handle_suite_teardown_failures()

	Internal usage only.

	
return_code

	Return code (integer) of test execution.

By default returns the number of failed tests (max 250),
but can be configured to always return 0.

	
save(path=None)

	Save results as a new output XML file.

	Parameters

	path – Path to save results to. If omitted, overwrites the
original file.

	
set_execution_mode(other)

	Set execution mode based on other result. Internal usage only.

	
statistics

	Test execution statistics.

Statistics are an instance of
Statistics that is created based
on the contained suite and possible
configuration.

Statistics are created every time this property is accessed. Saving
them to a variable is thus often a good idea to avoid re-creating
them unnecessarily:

from robot.api import ExecutionResult

result = ExecutionResult('output.xml')
result.configure(stat_config={'suite_stat_level': 2,
 'tag_stat_combine': 'tagANDanother'})
stats = result.statistics
print(stats.total.failed)
print(stats.total.passed)
print(stats.tags.combined[0].total)

	
visit(visitor)

	An entry point to visit the whole result object.

	Parameters

	visitor – An instance of ResultVisitor.

Visitors can gather information, modify results, etc. See
result package for a simple usage example.

Notice that it is also possible to call result.suite.visit if there is no need to
visit the contained statistics or errors.

robot.result.flattenkeywordmatcher module

	
robot.result.flattenkeywordmatcher.validate_flatten_keyword(options)[source]

	

	
class robot.result.flattenkeywordmatcher.FlattenByTypeMatcher(flatten)[source]

	Bases: object

	
match(tag)[source]

	

	
class robot.result.flattenkeywordmatcher.FlattenByNameMatcher(flatten)[source]

	Bases: object

	
match(kwname, libname=None)[source]

	

	
class robot.result.flattenkeywordmatcher.FlattenByTagMatcher(flatten)[source]

	Bases: object

	
match(kwtags)[source]

	

robot.result.keywordremover module

	
robot.result.keywordremover.KeywordRemover(how)[source]

	

	
class robot.result.keywordremover.AllKeywordsRemover[source]

	Bases: robot.result.keywordremover._KeywordRemover

	
visit_keyword(keyword)[source]

	Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
visit_for(for_)[source]

	Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without
calling start_for() or end_for() nor visiting body.

	
visit_if_branch(branch)[source]

	Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without
calling start_if_branch() or end_if_branch() nor visiting body.

	
end_for(for_)

	Called when FOR loop ends. Default implementation does nothing.

	
end_for_iteration(iteration)

	Called when FOR loop iteration ends. Default implementation does nothing.

	
end_if(if_)

	Called when IF/ELSE structure ends. Default implementation does nothing.

	
end_if_branch(branch)

	Called when IF/ELSE branch ends. Default implementation does nothing.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_for(for_)

	Called when FOR loop starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_for_iteration(iteration)

	Called when FOR loop iteration starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if(if_)

	Called when IF/ELSE structure starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if_branch(branch)

	Called when IF/ELSE branch starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_for_iteration(iteration)

	Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side
there are no iterations.

Can be overridden to allow modifying the passed in iteration without
calling start_for_iteration() or end_for_iteration() nor visiting
body.

	
visit_if(if_)

	Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches
are in its body and visited using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without
calling start_if() or end_if() nor visiting branches.

	
visit_message(msg)

	Implements visiting messages.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
visit_test(test)

	Implements traversing through tests.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
class robot.result.keywordremover.PassedKeywordRemover[source]

	Bases: robot.result.keywordremover._KeywordRemover

	
start_suite(suite)[source]

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_test(test)[source]

	Implements traversing through tests.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
visit_keyword(keyword)[source]

	Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
end_for(for_)

	Called when FOR loop ends. Default implementation does nothing.

	
end_for_iteration(iteration)

	Called when FOR loop iteration ends. Default implementation does nothing.

	
end_if(if_)

	Called when IF/ELSE structure ends. Default implementation does nothing.

	
end_if_branch(branch)

	Called when IF/ELSE branch ends. Default implementation does nothing.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_for(for_)

	Called when FOR loop starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_for_iteration(iteration)

	Called when FOR loop iteration starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if(if_)

	Called when IF/ELSE structure starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if_branch(branch)

	Called when IF/ELSE branch starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_for(for_)

	Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without
calling start_for() or end_for() nor visiting body.

	
visit_for_iteration(iteration)

	Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side
there are no iterations.

Can be overridden to allow modifying the passed in iteration without
calling start_for_iteration() or end_for_iteration() nor visiting
body.

	
visit_if(if_)

	Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches
are in its body and visited using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without
calling start_if() or end_if() nor visiting branches.

	
visit_if_branch(branch)

	Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without
calling start_if_branch() or end_if_branch() nor visiting body.

	
visit_message(msg)

	Implements visiting messages.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
class robot.result.keywordremover.ByNameKeywordRemover(pattern)[source]

	Bases: robot.result.keywordremover._KeywordRemover

	
start_keyword(kw)[source]

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_for(for_)

	Called when FOR loop ends. Default implementation does nothing.

	
end_for_iteration(iteration)

	Called when FOR loop iteration ends. Default implementation does nothing.

	
end_if(if_)

	Called when IF/ELSE structure ends. Default implementation does nothing.

	
end_if_branch(branch)

	Called when IF/ELSE branch ends. Default implementation does nothing.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_for(for_)

	Called when FOR loop starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_for_iteration(iteration)

	Called when FOR loop iteration starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if(if_)

	Called when IF/ELSE structure starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if_branch(branch)

	Called when IF/ELSE branch starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_for(for_)

	Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without
calling start_for() or end_for() nor visiting body.

	
visit_for_iteration(iteration)

	Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side
there are no iterations.

Can be overridden to allow modifying the passed in iteration without
calling start_for_iteration() or end_for_iteration() nor visiting
body.

	
visit_if(if_)

	Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches
are in its body and visited using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without
calling start_if() or end_if() nor visiting branches.

	
visit_if_branch(branch)

	Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without
calling start_if_branch() or end_if_branch() nor visiting body.

	
visit_keyword(kw)

	Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
visit_message(msg)

	Implements visiting messages.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
visit_test(test)

	Implements traversing through tests.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
class robot.result.keywordremover.ByTagKeywordRemover(pattern)[source]

	Bases: robot.result.keywordremover._KeywordRemover

	
start_keyword(kw)[source]

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_for(for_)

	Called when FOR loop ends. Default implementation does nothing.

	
end_for_iteration(iteration)

	Called when FOR loop iteration ends. Default implementation does nothing.

	
end_if(if_)

	Called when IF/ELSE structure ends. Default implementation does nothing.

	
end_if_branch(branch)

	Called when IF/ELSE branch ends. Default implementation does nothing.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_for(for_)

	Called when FOR loop starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_for_iteration(iteration)

	Called when FOR loop iteration starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if(if_)

	Called when IF/ELSE structure starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if_branch(branch)

	Called when IF/ELSE branch starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_for(for_)

	Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without
calling start_for() or end_for() nor visiting body.

	
visit_for_iteration(iteration)

	Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side
there are no iterations.

Can be overridden to allow modifying the passed in iteration without
calling start_for_iteration() or end_for_iteration() nor visiting
body.

	
visit_if(if_)

	Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches
are in its body and visited using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without
calling start_if() or end_if() nor visiting branches.

	
visit_if_branch(branch)

	Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without
calling start_if_branch() or end_if_branch() nor visiting body.

	
visit_keyword(kw)

	Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
visit_message(msg)

	Implements visiting messages.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
visit_test(test)

	Implements traversing through tests.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
class robot.result.keywordremover.ForLoopItemsRemover[source]

	Bases: robot.result.keywordremover._KeywordRemover

	
start_for(for_)[source]

	Called when FOR loop starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_for(for_)

	Called when FOR loop ends. Default implementation does nothing.

	
end_for_iteration(iteration)

	Called when FOR loop iteration ends. Default implementation does nothing.

	
end_if(if_)

	Called when IF/ELSE structure ends. Default implementation does nothing.

	
end_if_branch(branch)

	Called when IF/ELSE branch ends. Default implementation does nothing.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_for_iteration(iteration)

	Called when FOR loop iteration starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if(if_)

	Called when IF/ELSE structure starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if_branch(branch)

	Called when IF/ELSE branch starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_for(for_)

	Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without
calling start_for() or end_for() nor visiting body.

	
visit_for_iteration(iteration)

	Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side
there are no iterations.

Can be overridden to allow modifying the passed in iteration without
calling start_for_iteration() or end_for_iteration() nor visiting
body.

	
visit_if(if_)

	Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches
are in its body and visited using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without
calling start_if() or end_if() nor visiting branches.

	
visit_if_branch(branch)

	Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without
calling start_if_branch() or end_if_branch() nor visiting body.

	
visit_keyword(kw)

	Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
visit_message(msg)

	Implements visiting messages.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
visit_test(test)

	Implements traversing through tests.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
class robot.result.keywordremover.WaitUntilKeywordSucceedsRemover[source]

	Bases: robot.result.keywordremover._KeywordRemover

	
start_keyword(kw)[source]

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_for(for_)

	Called when FOR loop ends. Default implementation does nothing.

	
end_for_iteration(iteration)

	Called when FOR loop iteration ends. Default implementation does nothing.

	
end_if(if_)

	Called when IF/ELSE structure ends. Default implementation does nothing.

	
end_if_branch(branch)

	Called when IF/ELSE branch ends. Default implementation does nothing.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_for(for_)

	Called when FOR loop starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_for_iteration(iteration)

	Called when FOR loop iteration starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if(if_)

	Called when IF/ELSE structure starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if_branch(branch)

	Called when IF/ELSE branch starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_for(for_)

	Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without
calling start_for() or end_for() nor visiting body.

	
visit_for_iteration(iteration)

	Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side
there are no iterations.

Can be overridden to allow modifying the passed in iteration without
calling start_for_iteration() or end_for_iteration() nor visiting
body.

	
visit_if(if_)

	Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches
are in its body and visited using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without
calling start_if() or end_if() nor visiting branches.

	
visit_if_branch(branch)

	Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without
calling start_if_branch() or end_if_branch() nor visiting body.

	
visit_keyword(kw)

	Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
visit_message(msg)

	Implements visiting messages.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
visit_test(test)

	Implements traversing through tests.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
class robot.result.keywordremover.WarningAndErrorFinder[source]

	Bases: robot.model.visitor.SuiteVisitor

	
start_suite(suite)[source]

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)[source]

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_keyword(keyword)[source]

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_message(msg)[source]

	Implements visiting messages.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
end_for(for_)

	Called when FOR loop ends. Default implementation does nothing.

	
end_for_iteration(iteration)

	Called when FOR loop iteration ends. Default implementation does nothing.

	
end_if(if_)

	Called when IF/ELSE structure ends. Default implementation does nothing.

	
end_if_branch(branch)

	Called when IF/ELSE branch ends. Default implementation does nothing.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_for(for_)

	Called when FOR loop starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_for_iteration(iteration)

	Called when FOR loop iteration starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if(if_)

	Called when IF/ELSE structure starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if_branch(branch)

	Called when IF/ELSE branch starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_for(for_)

	Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without
calling start_for() or end_for() nor visiting body.

	
visit_for_iteration(iteration)

	Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side
there are no iterations.

Can be overridden to allow modifying the passed in iteration without
calling start_for_iteration() or end_for_iteration() nor visiting
body.

	
visit_if(if_)

	Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches
are in its body and visited using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without
calling start_if() or end_if() nor visiting branches.

	
visit_if_branch(branch)

	Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without
calling start_if_branch() or end_if_branch() nor visiting body.

	
visit_keyword(kw)

	Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
visit_suite(suite)

	Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
visit_test(test)

	Implements traversing through tests.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
class robot.result.keywordremover.RemovalMessage(message)[source]

	Bases: object

	
set_if_removed(kw, len_before)[source]

	

	
set(kw, message=None)[source]

	

robot.result.merger module

	
class robot.result.merger.Merger(result, rpa=False)[source]

	Bases: robot.model.visitor.SuiteVisitor

	
merge(merged)[source]

	

	
start_suite(suite)[source]

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_suite(suite)[source]

	Called when suite ends. Default implementation does nothing.

	
visit_test(test)[source]

	Implements traversing through tests.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
end_for(for_)

	Called when FOR loop ends. Default implementation does nothing.

	
end_for_iteration(iteration)

	Called when FOR loop iteration ends. Default implementation does nothing.

	
end_if(if_)

	Called when IF/ELSE structure ends. Default implementation does nothing.

	
end_if_branch(branch)

	Called when IF/ELSE branch ends. Default implementation does nothing.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_for(for_)

	Called when FOR loop starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_for_iteration(iteration)

	Called when FOR loop iteration starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if(if_)

	Called when IF/ELSE structure starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if_branch(branch)

	Called when IF/ELSE branch starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_for(for_)

	Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without
calling start_for() or end_for() nor visiting body.

	
visit_for_iteration(iteration)

	Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side
there are no iterations.

Can be overridden to allow modifying the passed in iteration without
calling start_for_iteration() or end_for_iteration() nor visiting
body.

	
visit_if(if_)

	Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches
are in its body and visited using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without
calling start_if() or end_if() nor visiting branches.

	
visit_if_branch(branch)

	Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without
calling start_if_branch() or end_if_branch() nor visiting body.

	
visit_keyword(kw)

	Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
visit_message(msg)

	Implements visiting messages.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

robot.result.messagefilter module

	
class robot.result.messagefilter.MessageFilter(log_level=None)[source]

	Bases: robot.model.visitor.SuiteVisitor

	
start_suite(suite)[source]

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_keyword(keyword)[source]

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_for(for_)

	Called when FOR loop ends. Default implementation does nothing.

	
end_for_iteration(iteration)

	Called when FOR loop iteration ends. Default implementation does nothing.

	
end_if(if_)

	Called when IF/ELSE structure ends. Default implementation does nothing.

	
end_if_branch(branch)

	Called when IF/ELSE branch ends. Default implementation does nothing.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_for(for_)

	Called when FOR loop starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_for_iteration(iteration)

	Called when FOR loop iteration starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if(if_)

	Called when IF/ELSE structure starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if_branch(branch)

	Called when IF/ELSE branch starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_for(for_)

	Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without
calling start_for() or end_for() nor visiting body.

	
visit_for_iteration(iteration)

	Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side
there are no iterations.

Can be overridden to allow modifying the passed in iteration without
calling start_for_iteration() or end_for_iteration() nor visiting
body.

	
visit_if(if_)

	Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches
are in its body and visited using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without
calling start_if() or end_if() nor visiting branches.

	
visit_if_branch(branch)

	Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without
calling start_if_branch() or end_if_branch() nor visiting body.

	
visit_keyword(kw)

	Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
visit_message(msg)

	Implements visiting messages.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
visit_test(test)

	Implements traversing through tests.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

robot.result.model module

Module implementing result related model objects.

During test execution these objects are created internally by various runners.
At that time they can inspected and modified by listeners [http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#listener-interface].

When results are parsed from XML output files after execution to be able to
create logs and reports, these objects are created by the
ExecutionResult() factory method.
At that point they can be inspected and modified by pre-Rebot modifiers [http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#programmatic-modification-of-results].

The ExecutionResult() factory method can also be used
by custom scripts and tools. In such usage it is often easiest to inspect and
modify these objects using the visitor interface.

	
class robot.result.model.Body(parent=None, items=None)[source]

	Bases: robot.model.body.Body

	
message_class

	alias of Message

	
create_message(*args, **kwargs)[source]

	

	
filter(keywords=None, fors=None, ifs=None, messages=None, predicate=None)[source]

	Filter body items based on type and/or custom predicate.

To include or exclude items based on types, give matching arguments
True or False values. For example, to include only keywords, use
body.filter(keywords=True) and to exclude FOR and IF constructs use
body.filter(fors=False, ifs=False). Including and excluding by types
at the same time is not supported.

Custom predicate is a calleble getting each body item as an argument
that must return True/False depending on should the item be included
or not.

Selected items are returned as a list and the original body is not modified.

	
append(item)

	

	
clear()

	

	
count(item)

	

	
create

	

	
create_for(*args, **kwargs)[source]

	

	
create_if(*args, **kwargs)[source]

	

	
create_keyword(*args, **kwargs)[source]

	

	
extend(items)

	

	
for_class

	alias of For

	
if_class

	alias of If

	
index(item, *start_and_end)

	

	
insert(index, item)

	

	
keyword_class

	alias of Keyword

	
pop(*index)

	

	
classmethod register(item_class)[source]

	

	
remove(item)

	

	
reverse()

	

	
sort()

	

	
visit(visitor)

	

	
class robot.result.model.ForIterations(parent=None, items=None)[source]

	Bases: robot.result.model.Body

	
for_iteration_class

	alias of ForIteration

	
if_class = None

	

	
for_class = None

	

	
create_iteration(*args, **kwargs)[source]

	

	
append(item)

	

	
clear()

	

	
count(item)

	

	
create

	

	
create_for(*args, **kwargs)

	

	
create_if(*args, **kwargs)

	

	
create_keyword(*args, **kwargs)

	

	
create_message(*args, **kwargs)

	

	
extend(items)

	

	
filter(keywords=None, fors=None, ifs=None, messages=None, predicate=None)

	Filter body items based on type and/or custom predicate.

To include or exclude items based on types, give matching arguments
True or False values. For example, to include only keywords, use
body.filter(keywords=True) and to exclude FOR and IF constructs use
body.filter(fors=False, ifs=False). Including and excluding by types
at the same time is not supported.

Custom predicate is a calleble getting each body item as an argument
that must return True/False depending on should the item be included
or not.

Selected items are returned as a list and the original body is not modified.

	
index(item, *start_and_end)

	

	
insert(index, item)

	

	
keyword_class

	alias of Keyword

	
message_class

	alias of Message

	
pop(*index)

	

	
classmethod register(item_class)

	

	
remove(item)

	

	
reverse()

	

	
sort()

	

	
visit(visitor)

	

	
class robot.result.model.IfBranches(parent=None, items=None)[source]

	Bases: robot.result.model.Body, robot.model.body.IfBranches

	
append(item)

	

	
clear()

	

	
count(item)

	

	
create

	

	
create_branch(*args, **kwargs)[source]

	

	
create_for(*args, **kwargs)

	

	
create_if(*args, **kwargs)

	

	
create_keyword(*args, **kwargs)

	

	
create_message(*args, **kwargs)

	

	
extend(items)

	

	
filter(keywords=None, fors=None, ifs=None, messages=None, predicate=None)

	Filter body items based on type and/or custom predicate.

To include or exclude items based on types, give matching arguments
True or False values. For example, to include only keywords, use
body.filter(keywords=True) and to exclude FOR and IF constructs use
body.filter(fors=False, ifs=False). Including and excluding by types
at the same time is not supported.

Custom predicate is a calleble getting each body item as an argument
that must return True/False depending on should the item be included
or not.

Selected items are returned as a list and the original body is not modified.

	
for_class

	alias of For

	
if_branch_class

	alias of IfBranch

	
if_class

	alias of If

	
index(item, *start_and_end)

	

	
insert(index, item)

	

	
keyword_class

	alias of Keyword

	
message_class

	alias of Message

	
pop(*index)

	

	
classmethod register(item_class)

	

	
remove(item)

	

	
reverse()

	

	
sort()

	

	
visit(visitor)

	

	
class robot.result.model.Message(message='', level='INFO', html=False, timestamp=None, parent=None)[source]

	Bases: robot.model.message.Message

	
ELSE = 'ELSE'

	

	
ELSE_IF = 'ELSE IF'

	

	
FOR = 'FOR'

	

	
FOR_ITERATION = 'FOR ITERATION'

	

	
IF = 'IF'

	

	
IF_ELSE_ROOT = 'IF/ELSE ROOT'

	

	
KEYWORD = 'KEYWORD'

	

	
MESSAGE = 'MESSAGE'

	

	
SETUP = 'SETUP'

	

	
TEARDOWN = 'TEARDOWN'

	

	
config(**attributes)

	Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting
obj.name = 'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

	
copy(**attributes)

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
deepcopy(**attributes)

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
html

	

	
html_message

	Returns the message content as HTML.

	
id

	

	
level

	

	
message

	

	
parent

	

	
repr_args = ('message', 'level')

	

	
timestamp

	

	
type = 'MESSAGE'

	

	
visit(visitor)[source]

	Visitor interface entry-point.

	
class robot.result.model.StatusMixin[source]

	Bases: object

	
PASS = 'PASS'

	

	
FAIL = 'FAIL'

	

	
SKIP = 'SKIP'

	

	
NOT_RUN = 'NOT RUN'

	

	
NOT_SET = 'NOT SET'

	

	
elapsedtime

	Total execution time in milliseconds.

	
passed

	True when status is ‘PASS’, False otherwise.

	
failed

	True when status is ‘FAIL’, False otherwise.

	
skipped

	True when status is ‘SKIP’, False otherwise.

Setting to False value is ambiguous and raises an exception.

	
not_run

	True when status is ‘NOT RUN’, False otherwise.

Setting to False value is ambiguous and raises an exception.

	
class robot.result.model.ForIteration(variables=None, status='FAIL', starttime=None, endtime=None, doc='', parent=None)[source]

	Bases: robot.model.body.BodyItem, robot.result.model.StatusMixin, robot.result.modeldeprecation.DeprecatedAttributesMixin

	
type = 'FOR ITERATION'

	

	
body_class

	alias of Body

	
repr_args = ('variables',)

	

	
variables

	

	
parent

	

	
status

	

	
starttime

	

	
endtime

	

	
doc

	

	
body

	

	
visit(visitor)[source]

	

	
name

	Deprecated.

	
ELSE = 'ELSE'

	

	
ELSE_IF = 'ELSE IF'

	

	
FAIL = 'FAIL'

	

	
FOR = 'FOR'

	

	
FOR_ITERATION = 'FOR ITERATION'

	

	
IF = 'IF'

	

	
IF_ELSE_ROOT = 'IF/ELSE ROOT'

	

	
KEYWORD = 'KEYWORD'

	

	
MESSAGE = 'MESSAGE'

	

	
NOT_RUN = 'NOT RUN'

	

	
NOT_SET = 'NOT SET'

	

	
PASS = 'PASS'

	

	
SETUP = 'SETUP'

	

	
SKIP = 'SKIP'

	

	
TEARDOWN = 'TEARDOWN'

	

	
args

	Deprecated.

	
assign

	Deprecated.

	
config(**attributes)

	Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting
obj.name = 'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

	
copy(**attributes)

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
deepcopy(**attributes)

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
elapsedtime

	Total execution time in milliseconds.

	
failed

	True when status is ‘FAIL’, False otherwise.

	
id

	Item id in format like s1-t3-k1.

See TestSuite.id for
more information.

	
kwname

	Deprecated.

	
libname

	Deprecated.

	
message

	Deprecated.

	
not_run

	True when status is ‘NOT RUN’, False otherwise.

Setting to False value is ambiguous and raises an exception.

	
passed

	True when status is ‘PASS’, False otherwise.

	
skipped

	True when status is ‘SKIP’, False otherwise.

Setting to False value is ambiguous and raises an exception.

	
tags

	Deprecated.

	
timeout

	Deprecated.

	
class robot.result.model.For(variables=(), flavor='IN', values=(), status='FAIL', starttime=None, endtime=None, doc='', parent=None)[source]

	Bases: robot.model.control.For, robot.result.model.StatusMixin, robot.result.modeldeprecation.DeprecatedAttributesMixin

	
body_class

	alias of ForIterations

	
status

	

	
starttime

	

	
endtime

	

	
doc

	

	
name

	Deprecated.

	
ELSE = 'ELSE'

	

	
ELSE_IF = 'ELSE IF'

	

	
FAIL = 'FAIL'

	

	
FOR = 'FOR'

	

	
FOR_ITERATION = 'FOR ITERATION'

	

	
IF = 'IF'

	

	
IF_ELSE_ROOT = 'IF/ELSE ROOT'

	

	
KEYWORD = 'KEYWORD'

	

	
MESSAGE = 'MESSAGE'

	

	
NOT_RUN = 'NOT RUN'

	

	
NOT_SET = 'NOT SET'

	

	
PASS = 'PASS'

	

	
SETUP = 'SETUP'

	

	
SKIP = 'SKIP'

	

	
TEARDOWN = 'TEARDOWN'

	

	
args

	Deprecated.

	
assign

	Deprecated.

	
body

	

	
config(**attributes)

	Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting
obj.name = 'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

	
copy(**attributes)

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
deepcopy(**attributes)

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
elapsedtime

	Total execution time in milliseconds.

	
failed

	True when status is ‘FAIL’, False otherwise.

	
flavor

	

	
id

	Item id in format like s1-t3-k1.

See TestSuite.id for
more information.

	
keywords

	Deprecated since Robot Framework 4.0. Use body instead.

	
kwname

	Deprecated.

	
libname

	Deprecated.

	
message

	Deprecated.

	
not_run

	True when status is ‘NOT RUN’, False otherwise.

Setting to False value is ambiguous and raises an exception.

	
parent

	

	
passed

	True when status is ‘PASS’, False otherwise.

	
repr_args = ('variables', 'flavor', 'values')

	

	
skipped

	True when status is ‘SKIP’, False otherwise.

Setting to False value is ambiguous and raises an exception.

	
tags

	Deprecated.

	
timeout

	Deprecated.

	
type = 'FOR'

	

	
values

	

	
variables

	

	
visit(visitor)[source]

	

	
class robot.result.model.If(parent=None, status='FAIL', starttime=None, endtime=None, doc='')[source]

	Bases: robot.model.control.If, robot.result.model.StatusMixin, robot.result.modeldeprecation.DeprecatedAttributesMixin

	
body_class

	alias of IfBranches

	
status

	

	
starttime

	

	
endtime

	

	
doc

	

	
ELSE = 'ELSE'

	

	
ELSE_IF = 'ELSE IF'

	

	
FAIL = 'FAIL'

	

	
FOR = 'FOR'

	

	
FOR_ITERATION = 'FOR ITERATION'

	

	
IF = 'IF'

	

	
IF_ELSE_ROOT = 'IF/ELSE ROOT'

	

	
KEYWORD = 'KEYWORD'

	

	
MESSAGE = 'MESSAGE'

	

	
NOT_RUN = 'NOT RUN'

	

	
NOT_SET = 'NOT SET'

	

	
PASS = 'PASS'

	

	
SETUP = 'SETUP'

	

	
SKIP = 'SKIP'

	

	
TEARDOWN = 'TEARDOWN'

	

	
args

	Deprecated.

	
assign

	Deprecated.

	
body

	

	
config(**attributes)

	Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting
obj.name = 'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

	
copy(**attributes)

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
deepcopy(**attributes)

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
elapsedtime

	Total execution time in milliseconds.

	
failed

	True when status is ‘FAIL’, False otherwise.

	
id

	Root IF/ELSE id is always None.

	
kwname

	Deprecated.

	
libname

	Deprecated.

	
message

	Deprecated.

	
name

	Deprecated.

	
not_run

	True when status is ‘NOT RUN’, False otherwise.

Setting to False value is ambiguous and raises an exception.

	
parent

	

	
passed

	True when status is ‘PASS’, False otherwise.

	
repr_args = ()

	

	
skipped

	True when status is ‘SKIP’, False otherwise.

Setting to False value is ambiguous and raises an exception.

	
tags

	Deprecated.

	
timeout

	Deprecated.

	
type = 'IF/ELSE ROOT'

	

	
visit(visitor)[source]

	

	
class robot.result.model.IfBranch(type='IF', condition=None, status='FAIL', starttime=None, endtime=None, doc='', parent=None)[source]

	Bases: robot.model.control.IfBranch, robot.result.model.StatusMixin, robot.result.modeldeprecation.DeprecatedAttributesMixin

	
body_class

	alias of Body

	
status

	

	
starttime

	

	
endtime

	

	
doc

	

	
name

	Deprecated.

	
ELSE = 'ELSE'

	

	
ELSE_IF = 'ELSE IF'

	

	
FAIL = 'FAIL'

	

	
FOR = 'FOR'

	

	
FOR_ITERATION = 'FOR ITERATION'

	

	
IF = 'IF'

	

	
IF_ELSE_ROOT = 'IF/ELSE ROOT'

	

	
KEYWORD = 'KEYWORD'

	

	
MESSAGE = 'MESSAGE'

	

	
NOT_RUN = 'NOT RUN'

	

	
NOT_SET = 'NOT SET'

	

	
PASS = 'PASS'

	

	
SETUP = 'SETUP'

	

	
SKIP = 'SKIP'

	

	
TEARDOWN = 'TEARDOWN'

	

	
args

	Deprecated.

	
assign

	Deprecated.

	
body

	

	
condition

	

	
config(**attributes)

	Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting
obj.name = 'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

	
copy(**attributes)

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
deepcopy(**attributes)

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
elapsedtime

	Total execution time in milliseconds.

	
failed

	True when status is ‘FAIL’, False otherwise.

	
id

	Branch id omits the root IF/ELSE object from the parent id part.

	
kwname

	Deprecated.

	
libname

	Deprecated.

	
message

	Deprecated.

	
not_run

	True when status is ‘NOT RUN’, False otherwise.

Setting to False value is ambiguous and raises an exception.

	
parent

	

	
passed

	True when status is ‘PASS’, False otherwise.

	
repr_args = ('type', 'condition')

	

	
skipped

	True when status is ‘SKIP’, False otherwise.

Setting to False value is ambiguous and raises an exception.

	
tags

	Deprecated.

	
timeout

	Deprecated.

	
type

	

	
visit(visitor)[source]

	

	
class robot.result.model.Keyword(kwname='', libname='', doc='', args=(), assign=(), tags=(), timeout=None, type='KEYWORD', status='FAIL', starttime=None, endtime=None, parent=None, sourcename=None)[source]

	Bases: robot.model.keyword.Keyword, robot.result.model.StatusMixin

Represents results of a single keyword.

See the base class for documentation of attributes not documented here.

	
body_class

	alias of Body

	
kwname

	Name of the keyword without library or resource name.

	
libname

	Name of the library or resource containing this keyword.

	
status

	Execution status as a string. PASS, FAIL, SKIP or NOT RUN.

	
starttime

	Keyword execution start time in format %Y%m%d %H:%M:%S.%f.

	
endtime

	Keyword execution end time in format %Y%m%d %H:%M:%S.%f.

	
message

	Keyword status message. Used only if suite teardowns fails.

	
sourcename

	Original name of keyword with embedded arguments.

	
body

	Child keywords and messages as a Body object.

	
keywords

	Deprecated since Robot Framework 4.0.

Use body or teardown instead.

	
messages

	Keyword’s messages.

Starting from Robot Framework 4.0 this is a list generated from messages
in body.

	
children

	List of child keywords and messages in creation order.

Deprecated since Robot Framework 4.0. Use :att:`body` instead.

	
name

	Keyword name in format libname.kwname.

Just kwname if libname is empty. In practice that is the
case only with user keywords in the same file as the executed test case
or test suite.

Cannot be set directly. Set libname and kwname
separately instead.

	
ELSE = 'ELSE'

	

	
ELSE_IF = 'ELSE IF'

	

	
FAIL = 'FAIL'

	

	
FOR = 'FOR'

	

	
FOR_ITERATION = 'FOR ITERATION'

	

	
IF = 'IF'

	

	
IF_ELSE_ROOT = 'IF/ELSE ROOT'

	

	
KEYWORD = 'KEYWORD'

	

	
MESSAGE = 'MESSAGE'

	

	
NOT_RUN = 'NOT RUN'

	

	
NOT_SET = 'NOT SET'

	

	
PASS = 'PASS'

	

	
SETUP = 'SETUP'

	

	
SKIP = 'SKIP'

	

	
TEARDOWN = 'TEARDOWN'

	

	
args

	

	
assign

	

	
config(**attributes)

	Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting
obj.name = 'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

	
copy(**attributes)

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
deepcopy(**attributes)

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
doc

	

	
elapsedtime

	Total execution time in milliseconds.

	
failed

	True when status is ‘FAIL’, False otherwise.

	
has_teardown

	Check does a keyword have a teardown without creating a teardown object.

A difference between using if kw.has_teardown: and if kw.teardown:
is that accessing the teardown attribute creates a Keyword
object representing a teardown even when the keyword actually does not
have one. This typically does not matter, but with bigger suite structures
having lot of keywords it can have a considerable effect on memory usage.

New in Robot Framework 4.1.2.

	
id

	Item id in format like s1-t3-k1.

See TestSuite.id for
more information.

	
not_run

	True when status is ‘NOT RUN’, False otherwise.

Setting to False value is ambiguous and raises an exception.

	
parent

	

	
passed

	True when status is ‘PASS’, False otherwise.

	
repr_args = ('name', 'args', 'assign')

	

	
skipped

	True when status is ‘SKIP’, False otherwise.

Setting to False value is ambiguous and raises an exception.

	
tags

	Keyword tags as a Tags object.

	
teardown

	Keyword teardown as a Keyword object.

Teardown can be modified by setting attributes directly:

keyword.teardown.name = 'Example'
keyword.teardown.args = ('First', 'Second')

Alternatively the config() method can be used to set multiple
attributes in one call:

keyword.teardown.config(name='Example', args=('First', 'Second'))

The easiest way to reset the whole teardown is setting it to None.
It will automatically recreate the underlying Keyword object:

keyword.teardown = None

This attribute is a Keyword object also when a keyword has no teardown
but in that case its truth value is False. If there is a need to just
check does a keyword have a teardown, using the has_teardown
attribute avoids creating the Keyword object and is thus more memory
efficient.

New in Robot Framework 4.0. Earlier teardown was accessed like
keyword.keywords.teardown. has_teardown is new in Robot
Framework 4.1.2.

	
timeout

	

	
type

	

	
visit(visitor)[source]

	Visitor interface entry-point.

	
class robot.result.model.TestCase(name='', doc='', tags=None, timeout=None, status='FAIL', message='', starttime=None, endtime=None)[source]

	Bases: robot.model.testcase.TestCase, robot.result.model.StatusMixin

Represents results of a single test case.

See the base class for documentation of attributes not documented here.

	
body_class

	alias of Body

	
fixture_class

	alias of Keyword

	
status

	Status as a string PASS or FAIL. See also passed.

	
message

	Test message. Typically a failure message but can be set also when
test passes.

	
starttime

	Test case execution start time in format %Y%m%d %H:%M:%S.%f.

	
endtime

	Test case execution end time in format %Y%m%d %H:%M:%S.%f.

	
not_run

	

	
critical

	

	
FAIL = 'FAIL'

	

	
NOT_RUN = 'NOT RUN'

	

	
NOT_SET = 'NOT SET'

	

	
PASS = 'PASS'

	

	
SKIP = 'SKIP'

	

	
body

	Test case body as a Body object.

	
config(**attributes)

	Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting
obj.name = 'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

	
copy(**attributes)

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
deepcopy(**attributes)

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
doc

	

	
elapsedtime

	Total execution time in milliseconds.

	
failed

	True when status is ‘FAIL’, False otherwise.

	
id

	Test case id in format like s1-t3.

See TestSuite.id for
more information.

	
keywords

	Deprecated since Robot Framework 4.0

Use body, setup or teardown instead.

	
longname

	Test name prefixed with the long name of the parent suite.

	
name

	

	
parent

	

	
passed

	True when status is ‘PASS’, False otherwise.

	
repr_args = ('name',)

	

	
setup

	Test setup as a Keyword object.

This attribute is a Keyword object also when a test has no setup
but in that case its truth value is False.

Setup can be modified by setting attributes directly:

test.setup.name = 'Example'
test.setup.args = ('First', 'Second')

Alternatively the config() method can be used to set multiple
attributes in one call:

test.setup.config(name='Example', args=('First', 'Second'))

The easiest way to reset the whole setup is setting it to None.
It will automatically recreate the underlying Keyword object:

test.setup = None

New in Robot Framework 4.0. Earlier setup was accessed like
test.keywords.setup.

	
skipped

	True when status is ‘SKIP’, False otherwise.

Setting to False value is ambiguous and raises an exception.

	
source

	

	
tags

	Test tags as a Tags object.

	
teardown

	Test teardown as a Keyword object.

See setup for more information.

	
timeout

	

	
visit(visitor)[source]

	Visitor interface entry-point.

	
class robot.result.model.TestSuite(name='', doc='', metadata=None, source=None, message='', starttime=None, endtime=None, rpa=False)[source]

	Bases: robot.model.testsuite.TestSuite, robot.result.model.StatusMixin

Represents results of a single test suite.

See the base class for documentation of attributes not documented here.

	
test_class

	alias of TestCase

	
fixture_class

	alias of Keyword

	
message

	Possible suite setup or teardown error message.

	
starttime

	Suite execution start time in format %Y%m%d %H:%M:%S.%f.

	
endtime

	Suite execution end time in format %Y%m%d %H:%M:%S.%f.

	
passed

	True if no test has failed but some have passed, False otherwise.

	
failed

	True if any test has failed, False otherwise.

	
skipped

	True if there are no passed or failed tests, False otherwise.

	
not_run

	

	
status

	‘PASS’, ‘FAIL’ or ‘SKIP’ depending on test statuses.

	If any test has failed, status is ‘FAIL’.

	If no test has failed but at least some test has passed, status is ‘PASS’.

	If there are no failed or passed tests, status is ‘SKIP’. This covers both
the case when all tests have been skipped and when there are no tests.

	
statistics

	Suite statistics as a TotalStatistics object.

Recreated every time this property is accessed, so saving the results
to a variable and inspecting it is often a good idea:

stats = suite.statistics
print(stats.failed)
print(stats.total)
print(stats.message)

	
full_message

	Combination of message and stat_message.

	
FAIL = 'FAIL'

	

	
NOT_RUN = 'NOT RUN'

	

	
NOT_SET = 'NOT SET'

	

	
PASS = 'PASS'

	

	
SKIP = 'SKIP'

	

	
config(**attributes)

	Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting
obj.name = 'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

	
copy(**attributes)

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
deepcopy(**attributes)

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
doc

	

	
filter(included_suites=None, included_tests=None, included_tags=None, excluded_tags=None)[source]

	Select test cases and remove others from this suite.

Parameters have the same semantics as --suite, --test,
--include, and --exclude command line options. All of them
can be given as a list of strings, or when selecting only one, as
a single string.

Child suites that contain no tests after filtering are automatically
removed.

Example:

suite.filter(included_tests=['Test 1', '* Example'],
 included_tags='priority-1')

	
has_tests

	

	
id

	An automatically generated unique id.

The root suite has id s1, its child suites have ids s1-s1,
s1-s2, …, their child suites get ids s1-s1-s1, s1-s1-s2,
…, s1-s2-s1, …, and so on.

The first test in a suite has an id like s1-t1, the second has an
id s1-t2, and so on. Similarly keywords in suites (setup/teardown)
and in tests get ids like s1-k1, s1-t1-k1, and s1-s4-t2-k5.

	
keywords

	Deprecated since Robot Framework 4.0

Use setup or teardown instead.

	
longname

	Suite name prefixed with the long name of the parent suite.

	
metadata

	Free test suite metadata as a dictionary.

	
name

	Test suite name. If not set, constructed from child suite names.

	
parent

	

	
remove_empty_suites(preserve_direct_children=False)[source]

	Removes all child suites not containing any tests, recursively.

	
repr_args = ('name',)

	

	
rpa

	

	
set_tags(add=None, remove=None, persist=False)[source]

	Add and/or remove specified tags to the tests in this suite.

	Parameters

	
	add – Tags to add as a list or, if adding only one,
as a single string.

	remove – Tags to remove as a list or as a single string.
Can be given as patterns where * and ? work as wildcards.

	persist – Add/remove specified tags also to new tests added
to this suite in the future.

	
setup

	Suite setup as a Keyword object.

This attribute is a Keyword object also when a suite has no setup
but in that case its truth value is False.

Setup can be modified by setting attributes directly:

suite.setup.name = 'Example'
suite.setup.args = ('First', 'Second')

Alternatively the config() method can be used to set multiple
attributes in one call:

suite.setup.config(name='Example', args=('First', 'Second'))

The easiest way to reset the whole setup is setting it to None.
It will automatically recreate the underlying Keyword object:

suite.setup = None

New in Robot Framework 4.0. Earlier setup was accessed like
suite.keywords.setup.

	
source

	

	
stat_message

	String representation of the statistics.

	
suites

	Child suites as a TestSuites object.

	
teardown

	Suite teardown as a Keyword object.

See setup for more information.

	
test_count

	Number of the tests in this suite, recursively.

	
tests

	Tests as a TestCases object.

	
visit(visitor)[source]

	Visitor interface entry-point.

	
elapsedtime

	Total execution time in milliseconds.

	
remove_keywords(how)[source]

	Remove keywords based on the given condition.

	Parameters

	how – What approach to use when removing keywords. Either
ALL, PASSED, FOR, WUKS, or NAME:<pattern>.

For more information about the possible values see the documentation
of the --removekeywords command line option.

	
filter_messages(log_level='TRACE')[source]

	Remove log messages below the specified log_level.

	
configure(**options)[source]

	A shortcut to configure a suite using one method call.

Can only be used with the root test suite.

	Parameters

	options – Passed to
SuiteConfigurer that will then
set suite attributes, call filter(), etc. as needed.

Example:

suite.configure(remove_keywords='PASSED',
 doc='Smoke test results.')

Not to be confused with config() method that suites, tests,
and keywords have to make it possible to set multiple attributes in
one call.

	
handle_suite_teardown_failures()[source]

	Internal usage only.

	
suite_teardown_failed(error)[source]

	Internal usage only.

	
suite_teardown_skipped(message)[source]

	Internal usage only.

robot.result.modeldeprecation module

	
robot.result.modeldeprecation.deprecated(method)[source]

	

	
class robot.result.modeldeprecation.DeprecatedAttributesMixin[source]

	Bases: object

	
name

	Deprecated.

	
kwname

	Deprecated.

	
libname

	Deprecated.

	
args

	Deprecated.

	
assign

	Deprecated.

	
tags

	Deprecated.

	
timeout

	Deprecated.

	
message

	Deprecated.

robot.result.resultbuilder module

	
robot.result.resultbuilder.ExecutionResult(*sources, **options)[source]

	Factory method to constructs Result objects.

	Parameters

	
	sources – XML source(s) containing execution results.
Can be specified as paths, opened file objects, or strings/bytes
containing XML directly. Support for bytes is new in RF 3.2.

	options – Configuration options.
Using merge=True causes multiple results to be combined so that
tests in the latter results replace the ones in the original.
Setting rpa either to True (RPA mode) or False (test
automation) sets execution mode explicitly. By default it is got
from processed output files and conflicting modes cause an error.
Other options are passed directly to the
ExecutionResultBuilder object used internally.

	Returns

	Result instance.

Should be imported by external code via the robot.api package.
See the robot.result package for a usage example.

	
class robot.result.resultbuilder.ExecutionResultBuilder(source, include_keywords=True, flattened_keywords=None)[source]

	Bases: object

Builds Result objects based on output files.

Instead of using this builder directly, it is recommended to use the
ExecutionResult() factory method.

	Parameters

	
	source – Path to the XML output file to build
Result objects from.

	include_keywords – Boolean controlling whether to include
keyword information in the result or not. Keywords are
not needed when generating only report. Although the the option name
has word “keyword”, it controls also including FOR and IF structures.

	flatten_keywords – List of patterns controlling what keywords to
flatten. See the documentation of --flattenkeywords option for
more details.

	
build(result)[source]

	

	
class robot.result.resultbuilder.RemoveKeywords[source]

	Bases: robot.model.visitor.SuiteVisitor

	
start_suite(suite)[source]

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_test(test)[source]

	Implements traversing through tests.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
end_for(for_)

	Called when FOR loop ends. Default implementation does nothing.

	
end_for_iteration(iteration)

	Called when FOR loop iteration ends. Default implementation does nothing.

	
end_if(if_)

	Called when IF/ELSE structure ends. Default implementation does nothing.

	
end_if_branch(branch)

	Called when IF/ELSE branch ends. Default implementation does nothing.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_for(for_)

	Called when FOR loop starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_for_iteration(iteration)

	Called when FOR loop iteration starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if(if_)

	Called when IF/ELSE structure starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if_branch(branch)

	Called when IF/ELSE branch starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_for(for_)

	Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without
calling start_for() or end_for() nor visiting body.

	
visit_for_iteration(iteration)

	Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side
there are no iterations.

Can be overridden to allow modifying the passed in iteration without
calling start_for_iteration() or end_for_iteration() nor visiting
body.

	
visit_if(if_)

	Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches
are in its body and visited using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without
calling start_if() or end_if() nor visiting branches.

	
visit_if_branch(branch)

	Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without
calling start_if_branch() or end_if_branch() nor visiting body.

	
visit_keyword(kw)

	Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
visit_message(msg)

	Implements visiting messages.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

robot.result.suiteteardownfailed module

	
class robot.result.suiteteardownfailed.SuiteTeardownFailureHandler[source]

	Bases: robot.model.visitor.SuiteVisitor

	
end_suite(suite)[source]

	Called when suite ends. Default implementation does nothing.

	
visit_test(test)[source]

	Implements traversing through tests.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
visit_keyword(keyword)[source]

	Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
end_for(for_)

	Called when FOR loop ends. Default implementation does nothing.

	
end_for_iteration(iteration)

	Called when FOR loop iteration ends. Default implementation does nothing.

	
end_if(if_)

	Called when IF/ELSE structure ends. Default implementation does nothing.

	
end_if_branch(branch)

	Called when IF/ELSE branch ends. Default implementation does nothing.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_for(for_)

	Called when FOR loop starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_for_iteration(iteration)

	Called when FOR loop iteration starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if(if_)

	Called when IF/ELSE structure starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if_branch(branch)

	Called when IF/ELSE branch starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_for(for_)

	Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without
calling start_for() or end_for() nor visiting body.

	
visit_for_iteration(iteration)

	Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side
there are no iterations.

Can be overridden to allow modifying the passed in iteration without
calling start_for_iteration() or end_for_iteration() nor visiting
body.

	
visit_if(if_)

	Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches
are in its body and visited using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without
calling start_if() or end_if() nor visiting branches.

	
visit_if_branch(branch)

	Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without
calling start_if_branch() or end_if_branch() nor visiting body.

	
visit_message(msg)

	Implements visiting messages.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
class robot.result.suiteteardownfailed.SuiteTeardownFailed(message, skipped=False)[source]

	Bases: robot.model.visitor.SuiteVisitor

	
visit_test(test)[source]

	Implements traversing through tests.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
visit_keyword(keyword)[source]

	Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
end_for(for_)

	Called when FOR loop ends. Default implementation does nothing.

	
end_for_iteration(iteration)

	Called when FOR loop iteration ends. Default implementation does nothing.

	
end_if(if_)

	Called when IF/ELSE structure ends. Default implementation does nothing.

	
end_if_branch(branch)

	Called when IF/ELSE branch ends. Default implementation does nothing.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_for(for_)

	Called when FOR loop starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_for_iteration(iteration)

	Called when FOR loop iteration starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if(if_)

	Called when IF/ELSE structure starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if_branch(branch)

	Called when IF/ELSE branch starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_for(for_)

	Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without
calling start_for() or end_for() nor visiting body.

	
visit_for_iteration(iteration)

	Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side
there are no iterations.

Can be overridden to allow modifying the passed in iteration without
calling start_for_iteration() or end_for_iteration() nor visiting
body.

	
visit_if(if_)

	Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches
are in its body and visited using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without
calling start_if() or end_if() nor visiting branches.

	
visit_if_branch(branch)

	Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without
calling start_if_branch() or end_if_branch() nor visiting body.

	
visit_message(msg)

	Implements visiting messages.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

robot.result.visitor module

Visitors can be used to easily traverse result structures.

This module contains ResultVisitor for traversing the whole
Result object. It extends
SuiteVisitor that contains visiting logic
for the test suite structure.

	
class robot.result.visitor.ResultVisitor[source]

	Bases: robot.model.visitor.SuiteVisitor

Abstract class to conveniently travel Result objects.

A visitor implementation can be given to the visit() method of a
result object. This will cause the result object to be traversed and the
visitor’s visit_x(), start_x(), and end_x() methods to
be called for each suite, test, keyword and message, as well as for errors,
statistics, and other information in the result object. See methods below
for a full list of available visitor methods.

See the result package level documentation for
more information about handling results and a concrete visitor example.
For more information about the visitor algorithm see documentation in
robot.model.visitor module.

	
visit_result(result)[source]

	

	
start_result(result)[source]

	

	
end_result(result)[source]

	

	
visit_statistics(stats)[source]

	

	
start_statistics(stats)[source]

	

	
end_statistics(stats)[source]

	

	
visit_total_statistics(stats)[source]

	

	
start_total_statistics(stats)[source]

	

	
end_total_statistics(stats)[source]

	

	
visit_tag_statistics(stats)[source]

	

	
start_tag_statistics(stats)[source]

	

	
end_tag_statistics(stats)[source]

	

	
visit_suite_statistics(stats)[source]

	

	
start_suite_statistics(stats)[source]

	

	
end_suite_statistics(suite_stats)[source]

	

	
visit_stat(stat)[source]

	

	
start_stat(stat)[source]

	

	
end_stat(stat)[source]

	

	
visit_errors(errors)[source]

	

	
start_errors(errors)[source]

	

	
end_errors(errors)[source]

	

	
end_for(for_)

	Called when FOR loop ends. Default implementation does nothing.

	
end_for_iteration(iteration)

	Called when FOR loop iteration ends. Default implementation does nothing.

	
end_if(if_)

	Called when IF/ELSE structure ends. Default implementation does nothing.

	
end_if_branch(branch)

	Called when IF/ELSE branch ends. Default implementation does nothing.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_for(for_)

	Called when FOR loop starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_for_iteration(iteration)

	Called when FOR loop iteration starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if(if_)

	Called when IF/ELSE structure starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if_branch(branch)

	Called when IF/ELSE branch starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_for(for_)

	Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without
calling start_for() or end_for() nor visiting body.

	
visit_for_iteration(iteration)

	Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side
there are no iterations.

Can be overridden to allow modifying the passed in iteration without
calling start_for_iteration() or end_for_iteration() nor visiting
body.

	
visit_if(if_)

	Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches
are in its body and visited using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without
calling start_if() or end_if() nor visiting branches.

	
visit_if_branch(branch)

	Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without
calling start_if_branch() or end_if_branch() nor visiting body.

	
visit_keyword(kw)

	Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
visit_message(msg)

	Implements visiting messages.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
visit_test(test)

	Implements traversing through tests.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

robot.result.xmlelementhandlers module

	
class robot.result.xmlelementhandlers.XmlElementHandler(execution_result, root_handler=None)[source]

	Bases: object

	
start(elem)[source]

	

	
end(elem)[source]

	

	
class robot.result.xmlelementhandlers.ElementHandler[source]

	Bases: object

	
element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.IfBranchHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.ForIterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>}

	

	
tag = None

	

	
children = frozenset([])

	

	
classmethod register(handler)[source]

	

	
get_child_handler(tag)[source]

	

	
start(elem, result)[source]

	

	
end(elem, result)[source]

	

	
class robot.result.xmlelementhandlers.RootHandler[source]

	Bases: robot.result.xmlelementhandlers.ElementHandler

	
children = frozenset(['robot'])

	

	
element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.IfBranchHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.ForIterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>}

	

	
end(elem, result)

	

	
get_child_handler(tag)

	

	
classmethod register(handler)

	

	
start(elem, result)

	

	
tag = None

	

	
class robot.result.xmlelementhandlers.RobotHandler[source]

	Bases: robot.result.xmlelementhandlers.ElementHandler

	
tag = 'robot'

	

	
children = frozenset(['suite', 'statistics', 'errors'])

	

	
start(elem, result)[source]

	

	
element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.IfBranchHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.ForIterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>}

	

	
end(elem, result)

	

	
get_child_handler(tag)

	

	
classmethod register(handler)

	

	
class robot.result.xmlelementhandlers.SuiteHandler[source]

	Bases: robot.result.xmlelementhandlers.ElementHandler

	
tag = 'suite'

	

	
children = frozenset(['status', 'doc', 'meta', 'kw', 'test', 'suite', 'metadata'])

	

	
start(elem, result)[source]

	

	
get_child_handler(tag)[source]

	

	
element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.IfBranchHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.ForIterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>}

	

	
end(elem, result)

	

	
classmethod register(handler)

	

	
class robot.result.xmlelementhandlers.TestHandler[source]

	Bases: robot.result.xmlelementhandlers.ElementHandler

	
tag = 'test'

	

	
children = frozenset(['status', 'for', 'tags', 'doc', 'tag', 'kw', 'timeout', 'msg', 'if'])

	

	
start(elem, result)[source]

	

	
element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.IfBranchHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.ForIterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>}

	

	
end(elem, result)

	

	
get_child_handler(tag)

	

	
classmethod register(handler)

	

	
class robot.result.xmlelementhandlers.KeywordHandler[source]

	Bases: robot.result.xmlelementhandlers.ElementHandler

	
tag = 'kw'

	

	
children = frozenset(['status', 'for', 'tags', 'doc', 'msg', 'tag', 'kw', 'arguments', 'timeout', 'arg', 'var', 'assign', 'if'])

	

	
start(elem, result)[source]

	

	
element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.IfBranchHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.ForIterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>}

	

	
end(elem, result)

	

	
get_child_handler(tag)

	

	
classmethod register(handler)

	

	
class robot.result.xmlelementhandlers.ForHandler[source]

	Bases: robot.result.xmlelementhandlers.ElementHandler

	
tag = 'for'

	

	
children = frozenset(['status', 'doc', 'iter', 'msg', 'kw', 'value', 'var'])

	

	
start(elem, result)[source]

	

	
element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.IfBranchHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.ForIterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>}

	

	
end(elem, result)

	

	
get_child_handler(tag)

	

	
classmethod register(handler)

	

	
class robot.result.xmlelementhandlers.ForIterationHandler[source]

	Bases: robot.result.xmlelementhandlers.ElementHandler

	
tag = 'iter'

	

	
children = frozenset(['status', 'for', 'doc', 'msg', 'kw', 'var', 'if'])

	

	
start(elem, result)[source]

	

	
element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.IfBranchHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.ForIterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>}

	

	
end(elem, result)

	

	
get_child_handler(tag)

	

	
classmethod register(handler)

	

	
class robot.result.xmlelementhandlers.IfHandler[source]

	Bases: robot.result.xmlelementhandlers.ElementHandler

	
tag = 'if'

	

	
children = frozenset(['status', 'msg', 'branch', 'doc'])

	

	
start(elem, result)[source]

	

	
element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.IfBranchHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.ForIterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>}

	

	
end(elem, result)

	

	
get_child_handler(tag)

	

	
classmethod register(handler)

	

	
class robot.result.xmlelementhandlers.IfBranchHandler[source]

	Bases: robot.result.xmlelementhandlers.ElementHandler

	
tag = 'branch'

	

	
children = frozenset(['status', 'for', 'doc', 'kw', 'msg', 'if'])

	

	
start(elem, result)[source]

	

	
element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.IfBranchHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.ForIterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>}

	

	
end(elem, result)

	

	
get_child_handler(tag)

	

	
classmethod register(handler)

	

	
class robot.result.xmlelementhandlers.MessageHandler[source]

	Bases: robot.result.xmlelementhandlers.ElementHandler

	
tag = 'msg'

	

	
end(elem, result)[source]

	

	
children = frozenset([])

	

	
element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.IfBranchHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.ForIterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>}

	

	
get_child_handler(tag)

	

	
classmethod register(handler)

	

	
start(elem, result)

	

	
class robot.result.xmlelementhandlers.StatusHandler(set_status=True)[source]

	Bases: robot.result.xmlelementhandlers.ElementHandler

	
tag = 'status'

	

	
end(elem, result)[source]

	

	
children = frozenset([])

	

	
element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.IfBranchHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.ForIterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>}

	

	
get_child_handler(tag)

	

	
classmethod register(handler)

	

	
start(elem, result)

	

	
class robot.result.xmlelementhandlers.DocHandler[source]

	Bases: robot.result.xmlelementhandlers.ElementHandler

	
tag = 'doc'

	

	
end(elem, result)[source]

	

	
children = frozenset([])

	

	
element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.IfBranchHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.ForIterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>}

	

	
get_child_handler(tag)

	

	
classmethod register(handler)

	

	
start(elem, result)

	

	
class robot.result.xmlelementhandlers.MetadataHandler[source]

	Bases: robot.result.xmlelementhandlers.ElementHandler

	
tag = 'metadata'

	

	
children = frozenset(['item'])

	

	
element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.IfBranchHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.ForIterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>}

	

	
end(elem, result)

	

	
get_child_handler(tag)

	

	
classmethod register(handler)

	

	
start(elem, result)

	

	
class robot.result.xmlelementhandlers.MetadataItemHandler[source]

	Bases: robot.result.xmlelementhandlers.ElementHandler

	
tag = 'item'

	

	
end(elem, result)[source]

	

	
children = frozenset([])

	

	
element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.IfBranchHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.ForIterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>}

	

	
get_child_handler(tag)

	

	
classmethod register(handler)

	

	
start(elem, result)

	

	
class robot.result.xmlelementhandlers.MetaHandler[source]

	Bases: robot.result.xmlelementhandlers.ElementHandler

	
tag = 'meta'

	

	
end(elem, result)[source]

	

	
children = frozenset([])

	

	
element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.IfBranchHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.ForIterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>}

	

	
get_child_handler(tag)

	

	
classmethod register(handler)

	

	
start(elem, result)

	

	
class robot.result.xmlelementhandlers.TagsHandler[source]

	Bases: robot.result.xmlelementhandlers.ElementHandler

	
tag = 'tags'

	

	
children = frozenset(['tag'])

	

	
element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.IfBranchHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.ForIterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>}

	

	
end(elem, result)

	

	
get_child_handler(tag)

	

	
classmethod register(handler)

	

	
start(elem, result)

	

	
class robot.result.xmlelementhandlers.TagHandler[source]

	Bases: robot.result.xmlelementhandlers.ElementHandler

	
tag = 'tag'

	

	
end(elem, result)[source]

	

	
children = frozenset([])

	

	
element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.IfBranchHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.ForIterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>}

	

	
get_child_handler(tag)

	

	
classmethod register(handler)

	

	
start(elem, result)

	

	
class robot.result.xmlelementhandlers.TimeoutHandler[source]

	Bases: robot.result.xmlelementhandlers.ElementHandler

	
tag = 'timeout'

	

	
end(elem, result)[source]

	

	
children = frozenset([])

	

	
element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.IfBranchHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.ForIterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>}

	

	
get_child_handler(tag)

	

	
classmethod register(handler)

	

	
start(elem, result)

	

	
class robot.result.xmlelementhandlers.AssignHandler[source]

	Bases: robot.result.xmlelementhandlers.ElementHandler

	
tag = 'assign'

	

	
children = frozenset(['var'])

	

	
element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.IfBranchHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.ForIterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>}

	

	
end(elem, result)

	

	
get_child_handler(tag)

	

	
classmethod register(handler)

	

	
start(elem, result)

	

	
class robot.result.xmlelementhandlers.VarHandler[source]

	Bases: robot.result.xmlelementhandlers.ElementHandler

	
tag = 'var'

	

	
end(elem, result)[source]

	

	
children = frozenset([])

	

	
element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.IfBranchHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.ForIterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>}

	

	
get_child_handler(tag)

	

	
classmethod register(handler)

	

	
start(elem, result)

	

	
class robot.result.xmlelementhandlers.ArgumentsHandler[source]

	Bases: robot.result.xmlelementhandlers.ElementHandler

	
tag = 'arguments'

	

	
children = frozenset(['arg'])

	

	
element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.IfBranchHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.ForIterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>}

	

	
end(elem, result)

	

	
get_child_handler(tag)

	

	
classmethod register(handler)

	

	
start(elem, result)

	

	
class robot.result.xmlelementhandlers.ArgumentHandler[source]

	Bases: robot.result.xmlelementhandlers.ElementHandler

	
tag = 'arg'

	

	
end(elem, result)[source]

	

	
children = frozenset([])

	

	
element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.IfBranchHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.ForIterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>}

	

	
get_child_handler(tag)

	

	
classmethod register(handler)

	

	
start(elem, result)

	

	
class robot.result.xmlelementhandlers.ValueHandler[source]

	Bases: robot.result.xmlelementhandlers.ElementHandler

	
tag = 'value'

	

	
end(elem, result)[source]

	

	
children = frozenset([])

	

	
element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.IfBranchHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.ForIterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>}

	

	
get_child_handler(tag)

	

	
classmethod register(handler)

	

	
start(elem, result)

	

	
class robot.result.xmlelementhandlers.ErrorsHandler[source]

	Bases: robot.result.xmlelementhandlers.ElementHandler

	
tag = 'errors'

	

	
start(elem, result)[source]

	

	
get_child_handler(tag)[source]

	

	
children = frozenset([])

	

	
element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.IfBranchHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.ForIterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>}

	

	
end(elem, result)

	

	
classmethod register(handler)

	

	
class robot.result.xmlelementhandlers.ErrorMessageHandler[source]

	Bases: robot.result.xmlelementhandlers.ElementHandler

	
end(elem, result)[source]

	

	
children = frozenset([])

	

	
element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.IfBranchHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.ForIterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>}

	

	
get_child_handler(tag)

	

	
classmethod register(handler)

	

	
start(elem, result)

	

	
tag = None

	

	
class robot.result.xmlelementhandlers.StatisticsHandler[source]

	Bases: robot.result.xmlelementhandlers.ElementHandler

	
tag = 'statistics'

	

	
get_child_handler(tag)[source]

	

	
children = frozenset([])

	

	
element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.IfBranchHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.ForIterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>}

	

	
end(elem, result)

	

	
classmethod register(handler)

	

	
start(elem, result)

	

robot.running package

Implements the core test execution logic.

The main public entry points of this package are of the following two classes:

	TestSuiteBuilder for creating
executable test suites based on existing test case files and directories.

	TestSuite for creating an executable
test suite structure programmatically.

It is recommended to import both of these classes via the robot.api
package like in the examples below. Also TestCase
and Keyword classes used internally by the
TestSuite class are part of the public API.
In those rare cases where these classes are needed directly, they can be
imported from this package.

Examples

First, let’s assume we have the following test suite in file
activate_skynet.robot:

*** Settings ***
Library OperatingSystem

*** Test Cases ***
Should Activate Skynet
 [Tags] smoke
 [Setup] Set Environment Variable SKYNET activated
 Environment Variable Should Be Set SKYNET

We can easily parse and create an executable test suite based on the above file
using the TestSuiteBuilder class as follows:

from robot.api import TestSuiteBuilder

suite = TestSuiteBuilder().build('path/to/activate_skynet.robot')

That was easy. Let’s next generate the same test suite from scratch
using the TestSuite class:

from robot.api import TestSuite

suite = TestSuite('Activate Skynet')
suite.resource.imports.library('OperatingSystem')
test = suite.tests.create('Should Activate Skynet', tags=['smoke'])
test.setup.config('Set Environment Variable', args=['SKYNET', 'activated'])
test.keywords.create('Environment Variable Should Be Set', args=['SKYNET'])

Not that complicated either, especially considering the flexibility. Notice
that the suite created based on the file could also be edited further using
the same API.

Now that we have a test suite ready, let’s execute it and verify that the returned
Result object contains correct
information:

result = suite.run(output='skynet.xml')

assert result.return_code == 0
assert result.suite.name == 'Activate Skynet'
test = result.suite.tests[0]
assert test.name == 'Should Activate Skynet'
assert test.passed
stats = result.suite.statistics
assert stats.total == 1 and stats.failed == 0

Running the suite generates a normal output XML file, unless it is disabled
by using output=None. Generating log, report, and xUnit files based on
the results is possible using the
ResultWriter class:

from robot.api import ResultWriter

Report and xUnit files can be generated based on the result object.
ResultWriter(result).write_results(report='skynet.html', log=None)
Generating log files requires processing the earlier generated output XML.
ResultWriter('skynet.xml').write_results()

Subpackages

	robot.running.arguments package
	Submodules

	robot.running.arguments.argumentconverter module

	robot.running.arguments.argumentmapper module

	robot.running.arguments.argumentparser module

	robot.running.arguments.argumentresolver module

	robot.running.arguments.argumentspec module

	robot.running.arguments.argumentvalidator module

	robot.running.arguments.embedded module

	robot.running.arguments.javaargumentcoercer module

	robot.running.arguments.py2argumentparser module

	robot.running.arguments.py3argumentparser module

	robot.running.arguments.typeconverters module

	robot.running.arguments.typevalidator module

	robot.running.builder package
	Submodules

	robot.running.builder.builders module

	robot.running.builder.parsers module

	robot.running.builder.testsettings module

	robot.running.builder.transformers module

	robot.running.timeouts package
	Submodules

	robot.running.timeouts.ironpython module

	robot.running.timeouts.jython module

	robot.running.timeouts.posix module

	robot.running.timeouts.windows module

Submodules

robot.running.bodyrunner module

	
class robot.running.bodyrunner.BodyRunner(context, run=True, templated=False)[source]

	Bases: object

	
run(body)[source]

	

	
class robot.running.bodyrunner.KeywordRunner(context, run=True)[source]

	Bases: object

	
run(step, name=None)[source]

	

	
class robot.running.bodyrunner.IfRunner(context, run=True, templated=False)[source]

	Bases: object

	
run(data)[source]

	

	
robot.running.bodyrunner.ForRunner(context, flavor='IN', run=True, templated=False)[source]

	

	
class robot.running.bodyrunner.ForInRunner(context, run=True, templated=False)[source]

	Bases: object

	
flavor = 'IN'

	

	
run(data)[source]

	

	
class robot.running.bodyrunner.ForInRangeRunner(context, run=True, templated=False)[source]

	Bases: robot.running.bodyrunner.ForInRunner

	
flavor = 'IN RANGE'

	

	
run(data)

	

	
class robot.running.bodyrunner.ForInZipRunner(context, run=True, templated=False)[source]

	Bases: robot.running.bodyrunner.ForInRunner

	
flavor = 'IN ZIP'

	

	
run(data)

	

	
class robot.running.bodyrunner.ForInEnumerateRunner(context, run=True, templated=False)[source]

	Bases: robot.running.bodyrunner.ForInRunner

	
flavor = 'IN ENUMERATE'

	

	
run(data)

	

robot.running.context module

	
class robot.running.context.ExecutionContexts[source]

	Bases: object

	
current

	

	
top

	

	
namespaces

	

	
start_suite(suite, namespace, output, dry_run=False)[source]

	

	
end_suite()[source]

	

robot.running.dynamicmethods module

	
robot.running.dynamicmethods.no_dynamic_method(*args)[source]

	

	
class robot.running.dynamicmethods.GetKeywordNames(lib)[source]

	Bases: robot.running.dynamicmethods._DynamicMethod

	
name

	

	
class robot.running.dynamicmethods.RunKeyword(lib)[source]

	Bases: robot.running.dynamicmethods._DynamicMethod

	
supports_kwargs

	

	
name

	

	
class robot.running.dynamicmethods.GetKeywordDocumentation(lib)[source]

	Bases: robot.running.dynamicmethods._DynamicMethod

	
name

	

	
class robot.running.dynamicmethods.GetKeywordArguments(lib)[source]

	Bases: robot.running.dynamicmethods._DynamicMethod

	
name

	

	
class robot.running.dynamicmethods.GetKeywordTypes(lib)[source]

	Bases: robot.running.dynamicmethods._DynamicMethod

	
name

	

	
class robot.running.dynamicmethods.GetKeywordTags(lib)[source]

	Bases: robot.running.dynamicmethods._DynamicMethod

	
name

	

	
class robot.running.dynamicmethods.GetKeywordSource(lib)[source]

	Bases: robot.running.dynamicmethods._DynamicMethod

	
name

	

robot.running.handlers module

	
robot.running.handlers.Handler(library, name, method)[source]

	

	
robot.running.handlers.DynamicHandler(library, name, method, doc, argspec, tags=None)[source]

	

	
robot.running.handlers.InitHandler(library, method=None, docgetter=None)[source]

	

	
class robot.running.handlers.EmbeddedArgumentsHandler(name_regexp, orig_handler)[source]

	Bases: object

	
library

	

	
matches(name)[source]

	

	
create_runner(name)[source]

	

robot.running.handlerstore module

	
class robot.running.handlerstore.HandlerStore(source, source_type)[source]

	Bases: object

	
TEST_LIBRARY_TYPE = 'Test library'

	

	
TEST_CASE_FILE_TYPE = 'Test case file'

	

	
RESOURCE_FILE_TYPE = 'Resource file'

	

	
add(handler, embedded=False)[source]

	

	
create_runner(name)[source]

	

robot.running.importer module

	
class robot.running.importer.Importer[source]

	Bases: object

	
reset()[source]

	

	
close_global_library_listeners()[source]

	

	
import_library(name, args, alias, variables)[source]

	

	
import_resource(path)[source]

	

	
class robot.running.importer.ImportCache[source]

	Bases: object

Keeps track on and optionally caches imported items.

Handles paths in keys case-insensitively on case-insensitive OSes.
Unlike dicts, this storage accepts mutable values in keys.

	
add(key, item=None)[source]

	

	
values()[source]

	

robot.running.librarykeywordrunner module

	
class robot.running.librarykeywordrunner.LibraryKeywordRunner(handler, name=None)[source]

	Bases: object

	
library

	

	
libname

	

	
longname

	

	
run(kw, context, run=True)[source]

	

	
dry_run(kw, context)[source]

	

	
class robot.running.librarykeywordrunner.EmbeddedArgumentsRunner(handler, name)[source]

	Bases: robot.running.librarykeywordrunner.LibraryKeywordRunner

	
dry_run(kw, context)

	

	
libname

	

	
library

	

	
longname

	

	
run(kw, context, run=True)

	

	
class robot.running.librarykeywordrunner.RunKeywordRunner(handler, default_dry_run_keywords=False)[source]

	Bases: robot.running.librarykeywordrunner.LibraryKeywordRunner

	
dry_run(kw, context)

	

	
libname

	

	
library

	

	
longname

	

	
run(kw, context, run=True)

	

robot.running.libraryscopes module

	
robot.running.libraryscopes.LibraryScope(libcode, library)[source]

	

	
class robot.running.libraryscopes.GlobalScope(library)[source]

	Bases: object

	
is_global = True

	

	
start_suite()[source]

	

	
end_suite()[source]

	

	
start_test()[source]

	

	
end_test()[source]

	

	
class robot.running.libraryscopes.TestSuiteScope(library)[source]

	Bases: robot.running.libraryscopes.GlobalScope

	
is_global = False

	

	
start_suite()[source]

	

	
end_suite()[source]

	

	
end_test()

	

	
start_test()

	

	
class robot.running.libraryscopes.TestCaseScope(library)[source]

	Bases: robot.running.libraryscopes.TestSuiteScope

	
start_test()[source]

	

	
end_test()[source]

	

	
end_suite()

	

	
is_global = False

	

	
start_suite()

	

robot.running.model module

Module implementing test execution related model objects.

When tests are executed normally, these objects are created based on the test
data on the file system by TestSuiteBuilder, but external
tools can also create an executable test suite model structure directly.
Regardless the approach to create it, the model is executed by calling
run() method of the root test suite. See the
robot.running package level documentation for more information and
examples.

The most important classes defined in this module are TestSuite,
TestCase and Keyword. When tests are executed, these objects
can be inspected and modified by pre-run modifiers [http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#programmatic-modification-of-results] and listeners [http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#listener-interface].
The aforementioned objects are considered stable, but other objects in this
module may still be changed in the future major releases.

	
class robot.running.model.Body(parent=None, items=None)[source]

	Bases: robot.model.body.Body

	
append(item)

	

	
clear()

	

	
count(item)

	

	
create

	

	
create_for(*args, **kwargs)[source]

	

	
create_if(*args, **kwargs)[source]

	

	
create_keyword(*args, **kwargs)[source]

	

	
extend(items)

	

	
filter(keywords=None, fors=None, ifs=None, predicate=None)[source]

	Filter body items based on type and/or custom predicate.

To include or exclude items based on types, give matching arguments
True or False values. For example, to include only keywords, use
body.filter(keywords=True) and to exclude FOR and IF constructs use
body.filter(fors=False, ifs=False). Including and excluding by types
at the same time is not supported.

Custom predicate is a calleble getting each body item as an argument
that must return True/False depending on should the item be included
or not.

Selected items are returned as a list and the original body is not modified.

	
for_class

	alias of For

	
if_class

	alias of If

	
index(item, *start_and_end)

	

	
insert(index, item)

	

	
keyword_class

	alias of Keyword

	
pop(*index)

	

	
classmethod register(item_class)[source]

	

	
remove(item)

	

	
reverse()

	

	
sort()

	

	
visit(visitor)

	

	
class robot.running.model.IfBranches(parent=None, items=None)[source]

	Bases: robot.model.body.IfBranches

	
append(item)

	

	
clear()

	

	
count(item)

	

	
create

	

	
create_branch(*args, **kwargs)[source]

	

	
create_for(*args, **kwargs)

	

	
create_if(*args, **kwargs)

	

	
create_keyword(*args, **kwargs)

	

	
extend(items)

	

	
filter(keywords=None, fors=None, ifs=None, predicate=None)

	Filter body items based on type and/or custom predicate.

To include or exclude items based on types, give matching arguments
True or False values. For example, to include only keywords, use
body.filter(keywords=True) and to exclude FOR and IF constructs use
body.filter(fors=False, ifs=False). Including and excluding by types
at the same time is not supported.

Custom predicate is a calleble getting each body item as an argument
that must return True/False depending on should the item be included
or not.

Selected items are returned as a list and the original body is not modified.

	
for_class = None

	

	
if_branch_class

	alias of IfBranch

	
if_class = None

	

	
index(item, *start_and_end)

	

	
insert(index, item)

	

	
keyword_class = None

	

	
pop(*index)

	

	
classmethod register(item_class)

	

	
remove(item)

	

	
reverse()

	

	
sort()

	

	
visit(visitor)

	

	
class robot.running.model.Keyword(name='', doc='', args=(), assign=(), tags=(), timeout=None, type='KEYWORD', parent=None, lineno=None)[source]

	Bases: robot.model.keyword.Keyword

Represents a single executable keyword.

These keywords never have child keywords or messages. The actual keyword
that is executed depends on the context where this model is executed.

See the base class for documentation of attributes not documented here.

	
lineno

	

	
source

	

	
run(context, run=True, templated=None)[source]

	

	
ELSE = 'ELSE'

	

	
ELSE_IF = 'ELSE IF'

	

	
FOR = 'FOR'

	

	
FOR_ITERATION = 'FOR ITERATION'

	

	
IF = 'IF'

	

	
IF_ELSE_ROOT = 'IF/ELSE ROOT'

	

	
KEYWORD = 'KEYWORD'

	

	
MESSAGE = 'MESSAGE'

	

	
SETUP = 'SETUP'

	

	
TEARDOWN = 'TEARDOWN'

	

	
args

	

	
assign

	

	
config(**attributes)

	Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting
obj.name = 'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

	
copy(**attributes)

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
deepcopy(**attributes)

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
doc

	

	
has_teardown

	Check does a keyword have a teardown without creating a teardown object.

A difference between using if kw.has_teardown: and if kw.teardown:
is that accessing the teardown attribute creates a Keyword
object representing a teardown even when the keyword actually does not
have one. This typically does not matter, but with bigger suite structures
having lot of keywords it can have a considerable effect on memory usage.

New in Robot Framework 4.1.2.

	
id

	Item id in format like s1-t3-k1.

See TestSuite.id for
more information.

	
name

	

	
parent

	

	
repr_args = ('name', 'args', 'assign')

	

	
tags

	Keyword tags as a Tags object.

	
teardown

	Keyword teardown as a Keyword object.

Teardown can be modified by setting attributes directly:

keyword.teardown.name = 'Example'
keyword.teardown.args = ('First', 'Second')

Alternatively the config() method can be used to set multiple
attributes in one call:

keyword.teardown.config(name='Example', args=('First', 'Second'))

The easiest way to reset the whole teardown is setting it to None.
It will automatically recreate the underlying Keyword object:

keyword.teardown = None

This attribute is a Keyword object also when a keyword has no teardown
but in that case its truth value is False. If there is a need to just
check does a keyword have a teardown, using the has_teardown
attribute avoids creating the Keyword object and is thus more memory
efficient.

New in Robot Framework 4.0. Earlier teardown was accessed like
keyword.keywords.teardown. has_teardown is new in Robot
Framework 4.1.2.

	
timeout

	

	
type

	

	
visit(visitor)[source]

	Visitor interface entry-point.

	
class robot.running.model.For(variables, flavor, values, parent=None, lineno=None, error=None)[source]

	Bases: robot.model.control.For

	
body_class

	alias of Body

	
lineno

	

	
error

	

	
source

	

	
run(context, run=True, templated=False)[source]

	

	
ELSE = 'ELSE'

	

	
ELSE_IF = 'ELSE IF'

	

	
FOR = 'FOR'

	

	
FOR_ITERATION = 'FOR ITERATION'

	

	
IF = 'IF'

	

	
IF_ELSE_ROOT = 'IF/ELSE ROOT'

	

	
KEYWORD = 'KEYWORD'

	

	
MESSAGE = 'MESSAGE'

	

	
SETUP = 'SETUP'

	

	
TEARDOWN = 'TEARDOWN'

	

	
body

	

	
config(**attributes)

	Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting
obj.name = 'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

	
copy(**attributes)

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
deepcopy(**attributes)

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
flavor

	

	
id

	Item id in format like s1-t3-k1.

See TestSuite.id for
more information.

	
keywords

	Deprecated since Robot Framework 4.0. Use body instead.

	
parent

	

	
repr_args = ('variables', 'flavor', 'values')

	

	
type = 'FOR'

	

	
values

	

	
variables

	

	
visit(visitor)[source]

	

	
class robot.running.model.If(parent=None, lineno=None, error=None)[source]

	Bases: robot.model.control.If

	
body_class

	alias of IfBranches

	
lineno

	

	
error

	

	
source

	

	
run(context, run=True, templated=False)[source]

	

	
ELSE = 'ELSE'

	

	
ELSE_IF = 'ELSE IF'

	

	
FOR = 'FOR'

	

	
FOR_ITERATION = 'FOR ITERATION'

	

	
IF = 'IF'

	

	
IF_ELSE_ROOT = 'IF/ELSE ROOT'

	

	
KEYWORD = 'KEYWORD'

	

	
MESSAGE = 'MESSAGE'

	

	
SETUP = 'SETUP'

	

	
TEARDOWN = 'TEARDOWN'

	

	
body

	

	
config(**attributes)

	Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting
obj.name = 'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

	
copy(**attributes)

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
deepcopy(**attributes)

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
id

	Root IF/ELSE id is always None.

	
parent

	

	
repr_args = ()

	

	
type = 'IF/ELSE ROOT'

	

	
visit(visitor)[source]

	

	
class robot.running.model.IfBranch(type='IF', condition=None, parent=None, lineno=None)[source]

	Bases: robot.model.control.IfBranch

	
body_class

	alias of Body

	
lineno

	

	
source

	

	
ELSE = 'ELSE'

	

	
ELSE_IF = 'ELSE IF'

	

	
FOR = 'FOR'

	

	
FOR_ITERATION = 'FOR ITERATION'

	

	
IF = 'IF'

	

	
IF_ELSE_ROOT = 'IF/ELSE ROOT'

	

	
KEYWORD = 'KEYWORD'

	

	
MESSAGE = 'MESSAGE'

	

	
SETUP = 'SETUP'

	

	
TEARDOWN = 'TEARDOWN'

	

	
body

	

	
condition

	

	
config(**attributes)

	Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting
obj.name = 'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

	
copy(**attributes)

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
deepcopy(**attributes)

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
id

	Branch id omits the root IF/ELSE object from the parent id part.

	
parent

	

	
repr_args = ('type', 'condition')

	

	
type

	

	
visit(visitor)[source]

	

	
class robot.running.model.TestCase(name='', doc='', tags=None, timeout=None, template=None, lineno=None)[source]

	Bases: robot.model.testcase.TestCase

Represents a single executable test case.

See the base class for documentation of attributes not documented here.

	
body_class

	Internal usage only.

alias of Body

	
fixture_class

	Internal usage only.

alias of Keyword

	
template

	

	
lineno

	

	
source

	

	
body

	Test case body as a Body object.

	
config(**attributes)

	Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting
obj.name = 'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

	
copy(**attributes)

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
deepcopy(**attributes)

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
doc

	

	
id

	Test case id in format like s1-t3.

See TestSuite.id for
more information.

	
keywords

	Deprecated since Robot Framework 4.0

Use body, setup or teardown instead.

	
longname

	Test name prefixed with the long name of the parent suite.

	
name

	

	
parent

	

	
repr_args = ('name',)

	

	
setup

	Test setup as a Keyword object.

This attribute is a Keyword object also when a test has no setup
but in that case its truth value is False.

Setup can be modified by setting attributes directly:

test.setup.name = 'Example'
test.setup.args = ('First', 'Second')

Alternatively the config() method can be used to set multiple
attributes in one call:

test.setup.config(name='Example', args=('First', 'Second'))

The easiest way to reset the whole setup is setting it to None.
It will automatically recreate the underlying Keyword object:

test.setup = None

New in Robot Framework 4.0. Earlier setup was accessed like
test.keywords.setup.

	
tags

	Test tags as a Tags object.

	
teardown

	Test teardown as a Keyword object.

See setup for more information.

	
timeout

	

	
visit(visitor)[source]

	Visitor interface entry-point.

	
class robot.running.model.TestSuite(name='', doc='', metadata=None, source=None, rpa=None)[source]

	Bases: robot.model.testsuite.TestSuite

Represents a single executable test suite.

See the base class for documentation of attributes not documented here.

	
test_class

	Internal usage only.

alias of TestCase

	
fixture_class

	Internal usage only.

alias of Keyword

	
resource

	ResourceFile instance containing imports, variables and
keywords the suite owns. When data is parsed from the file system,
this data comes from the same test case file that creates the suite.

	
classmethod from_file_system(*paths, **config)[source]

	Create a TestSuite object based on the given paths.

paths are file or directory paths where to read the data from.

Internally utilizes the TestSuiteBuilder class
and config can be used to configure how it is initialized.

New in Robot Framework 3.2.

	
classmethod from_model(model, name=None)[source]

	Create a TestSuite object based on the given model.

The model can be created by using the
get_model() function and possibly
modified by other tooling in the robot.parsing module.

New in Robot Framework 3.2.

	
configure(randomize_suites=False, randomize_tests=False, randomize_seed=None, **options)[source]

	A shortcut to configure a suite using one method call.

Can only be used with the root test suite.

	Parameters

	
	randomize_xxx – Passed to randomize().

	options – Passed to
SuiteConfigurer that will then
set suite attributes, call filter(), etc. as needed.

Example:

suite.configure(included_tags=['smoke'],
 doc='Smoke test results.')

Not to be confused with config() method that suites, tests,
and keywords have to make it possible to set multiple attributes in
one call.

	
randomize(suites=True, tests=True, seed=None)[source]

	Randomizes the order of suites and/or tests, recursively.

	Parameters

	
	suites – Boolean controlling should suites be randomized.

	tests – Boolean controlling should tests be randomized.

	seed – Random seed. Can be given if previous random order needs
to be re-created. Seed value is always shown in logs and reports.

	
run(settings=None, **options)[source]

	Executes the suite based based the given settings or options.

	Parameters

	
	settings – RobotSettings object
to configure test execution.

	options – Used to construct new
RobotSettings object if settings
are not given.

	Returns

	Result object with
information about executed suites and tests.

If options are used, their names are the same as long command line
options except without hyphens. Some options are ignored (see below),
but otherwise they have the same semantics as on the command line.
Options that can be given on the command line multiple times can be
passed as lists like variable=['VAR1:value1', 'VAR2:value2'].
If such an option is used only once, it can be given also as a single
string like variable='VAR:value'.

Additionally listener option allows passing object directly instead of
listener name, e.g. run('tests.robot', listener=Listener()).

To capture stdout and/or stderr streams, pass open file objects in as
special keyword arguments stdout and stderr, respectively.

Only options related to the actual test execution have an effect.
For example, options related to selecting or modifying test cases or
suites (e.g. --include, --name, --prerunmodifier) or
creating logs and reports are silently ignored. The output XML
generated as part of the execution can be configured, though. This
includes disabling it with output=None.

Example:

stdout = StringIO()
result = suite.run(variable='EXAMPLE:value',
 output='example.xml',
 exitonfailure=True,
 stdout=stdout)
print(result.return_code)

To save memory, the returned
Result object does not
have any information about the executed keywords. If that information
is needed, the created output XML file needs to be read using the
ExecutionResult factory method.

See the package level documentation for
more examples, including how to construct executable test suites and
how to create logs and reports based on the execution results.

See the robot.run function for a higher-level
API for executing tests in files or directories.

	
config(**attributes)

	Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting
obj.name = 'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

	
copy(**attributes)

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
deepcopy(**attributes)

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
doc

	

	
filter(included_suites=None, included_tests=None, included_tags=None, excluded_tags=None)[source]

	Select test cases and remove others from this suite.

Parameters have the same semantics as --suite, --test,
--include, and --exclude command line options. All of them
can be given as a list of strings, or when selecting only one, as
a single string.

Child suites that contain no tests after filtering are automatically
removed.

Example:

suite.filter(included_tests=['Test 1', '* Example'],
 included_tags='priority-1')

	
has_tests

	

	
id

	An automatically generated unique id.

The root suite has id s1, its child suites have ids s1-s1,
s1-s2, …, their child suites get ids s1-s1-s1, s1-s1-s2,
…, s1-s2-s1, …, and so on.

The first test in a suite has an id like s1-t1, the second has an
id s1-t2, and so on. Similarly keywords in suites (setup/teardown)
and in tests get ids like s1-k1, s1-t1-k1, and s1-s4-t2-k5.

	
keywords

	Deprecated since Robot Framework 4.0

Use setup or teardown instead.

	
longname

	Suite name prefixed with the long name of the parent suite.

	
metadata

	Free test suite metadata as a dictionary.

	
name

	Test suite name. If not set, constructed from child suite names.

	
parent

	

	
remove_empty_suites(preserve_direct_children=False)[source]

	Removes all child suites not containing any tests, recursively.

	
repr_args = ('name',)

	

	
rpa

	

	
set_tags(add=None, remove=None, persist=False)[source]

	Add and/or remove specified tags to the tests in this suite.

	Parameters

	
	add – Tags to add as a list or, if adding only one,
as a single string.

	remove – Tags to remove as a list or as a single string.
Can be given as patterns where * and ? work as wildcards.

	persist – Add/remove specified tags also to new tests added
to this suite in the future.

	
setup

	Suite setup as a Keyword object.

This attribute is a Keyword object also when a suite has no setup
but in that case its truth value is False.

Setup can be modified by setting attributes directly:

suite.setup.name = 'Example'
suite.setup.args = ('First', 'Second')

Alternatively the config() method can be used to set multiple
attributes in one call:

suite.setup.config(name='Example', args=('First', 'Second'))

The easiest way to reset the whole setup is setting it to None.
It will automatically recreate the underlying Keyword object:

suite.setup = None

New in Robot Framework 4.0. Earlier setup was accessed like
suite.keywords.setup.

	
source

	

	
suites

	Child suites as a TestSuites object.

	
teardown

	Suite teardown as a Keyword object.

See setup for more information.

	
test_count

	Number of the tests in this suite, recursively.

	
tests

	Tests as a TestCases object.

	
visit(visitor)[source]

	Visitor interface entry-point.

	
class robot.running.model.Variable(name, value, source=None, lineno=None, error=None)[source]

	Bases: object

	
report_invalid_syntax(message, level='ERROR')[source]

	

	
class robot.running.model.ResourceFile(doc='', source=None)[source]

	Bases: object

	
imports

	

	
keywords

	

	
variables

	

	
class robot.running.model.UserKeyword(name, args=(), doc='', tags=(), return_=None, timeout=None, lineno=None, parent=None, error=None)[source]

	Bases: object

	
body

	Child keywords as a Body object.

	
keywords

	Deprecated since Robot Framework 4.0.

Use body or teardown instead.

	
teardown

	

	
tags

	

	
source

	

	
class robot.running.model.Import(type, name, args=(), alias=None, source=None, lineno=None)[source]

	Bases: object

	
ALLOWED_TYPES = ('Library', 'Resource', 'Variables')

	

	
directory

	

	
report_invalid_syntax(message, level='ERROR')[source]

	

	
class robot.running.model.Imports(source, imports=None)[source]

	Bases: robot.model.itemlist.ItemList

	
append(item)

	

	
clear()

	

	
count(item)

	

	
create(*args, **kwargs)

	

	
extend(items)

	

	
index(item, *start_and_end)

	

	
insert(index, item)

	

	
pop(*index)

	

	
remove(item)

	

	
reverse()

	

	
sort()

	

	
visit(visitor)

	

	
library(name, args=(), alias=None, lineno=None)[source]

	

	
resource(path, lineno=None)[source]

	

	
variables(path, args=(), lineno=None)[source]

	

robot.running.modelcombiner module

	
class robot.running.modelcombiner.ModelCombiner(data, result, **priority)[source]

	Bases: object

	
data

	

	
result

	

	
priority

	

robot.running.namespace module

	
class robot.running.namespace.Namespace(variables, suite, resource)[source]

	Bases: object

	
libraries

	

	
handle_imports()[source]

	

	
import_resource(name, overwrite=True)[source]

	

	
import_variables(name, args, overwrite=False)[source]

	

	
import_library(name, args=(), alias=None, notify=True)[source]

	

	
set_search_order(new_order)[source]

	

	
start_test()[source]

	

	
end_test()[source]

	

	
start_suite()[source]

	

	
end_suite(suite)[source]

	

	
start_user_keyword()[source]

	

	
end_user_keyword()[source]

	

	
get_library_instance(libname)[source]

	

	
get_library_instances()[source]

	

	
reload_library(libname_or_instance)[source]

	

	
get_runner(name)[source]

	

	
class robot.running.namespace.KeywordStore(resource)[source]

	Bases: object

	
get_library(name_or_instance)[source]

	

	
get_runner(name)[source]

	

	
class robot.running.namespace.KeywordRecommendationFinder(user_keywords, libraries, resources)[source]

	Bases: object

	
recommend_similar_keywords(name)[source]

	Return keyword names similar to name.

	
static format_recommendations(message, recommendations)[source]

	

robot.running.outputcapture module

	
class robot.running.outputcapture.OutputCapturer(library_import=False)[source]

	Bases: object

	
class robot.running.outputcapture.PythonCapturer(stdout=True)[source]

	Bases: object

	
release()[source]

	

	
class robot.running.outputcapture.JavaCapturer(stdout=True)[source]

	Bases: object

	
release()[source]

	

robot.running.randomizer module

	
class robot.running.randomizer.Randomizer(randomize_suites=True, randomize_tests=True, seed=None)[source]

	Bases: robot.model.visitor.SuiteVisitor

	
start_suite(suite)[source]

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_test(test)[source]

	Implements traversing through tests.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
visit_keyword(kw)[source]

	Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
end_for(for_)

	Called when FOR loop ends. Default implementation does nothing.

	
end_for_iteration(iteration)

	Called when FOR loop iteration ends. Default implementation does nothing.

	
end_if(if_)

	Called when IF/ELSE structure ends. Default implementation does nothing.

	
end_if_branch(branch)

	Called when IF/ELSE branch ends. Default implementation does nothing.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_for(for_)

	Called when FOR loop starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_for_iteration(iteration)

	Called when FOR loop iteration starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if(if_)

	Called when IF/ELSE structure starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if_branch(branch)

	Called when IF/ELSE branch starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_for(for_)

	Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without
calling start_for() or end_for() nor visiting body.

	
visit_for_iteration(iteration)

	Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side
there are no iterations.

Can be overridden to allow modifying the passed in iteration without
calling start_for_iteration() or end_for_iteration() nor visiting
body.

	
visit_if(if_)

	Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches
are in its body and visited using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without
calling start_if() or end_if() nor visiting branches.

	
visit_if_branch(branch)

	Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without
calling start_if_branch() or end_if_branch() nor visiting body.

	
visit_message(msg)

	Implements visiting messages.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

robot.running.runkwregister module

robot.running.signalhandler module

robot.running.status module

	
class robot.running.status.Failure[source]

	Bases: object

	
class robot.running.status.Exit(failure_mode=False, error_mode=False, skip_teardown_mode=False)[source]

	Bases: object

	
failure_occurred(failure=None)[source]

	

	
error_occurred()[source]

	

	
teardown_allowed

	

	
class robot.running.status.SuiteStatus(parent=None, exit_on_failure_mode=False, exit_on_error_mode=False, skip_teardown_on_exit_mode=False)[source]

	Bases: robot.running.status._ExecutionStatus

	
error_occurred()

	

	
failed

	

	
failure_occurred()

	

	
message

	

	
setup_executed(failure=None)

	

	
status

	

	
teardown_allowed

	

	
teardown_executed(failure=None)

	

	
class robot.running.status.TestStatus(parent, test, skip_on_failure=None, critical_tags=None, rpa=False)[source]

	Bases: robot.running.status._ExecutionStatus

	
test_failed(failure)[source]

	

	
test_skipped(reason)[source]

	

	
skip_if_needed()[source]

	

	
error_occurred()

	

	
failed

	

	
failure_occurred()

	

	
message

	

	
setup_executed(failure=None)

	

	
status

	

	
teardown_allowed

	

	
teardown_executed(failure=None)

	

	
class robot.running.status.TestMessage(status)[source]

	Bases: robot.running.status._Message

	
setup_message = 'Setup failed:\n%s'

	

	
teardown_message = 'Teardown failed:\n%s'

	

	
setup_skipped_message = '%s'

	

	
teardown_skipped_message = '%s'

	

	
also_teardown_message = '%s\n\nAlso teardown failed:\n%s'

	

	
also_teardown_skip_message = 'Skipped in teardown:\n%s\n\nEarlier message:\n%s'

	

	
exit_on_fatal_message = 'Test execution stopped due to a fatal error.'

	

	
exit_on_failure_message = 'Failure occurred and exit-on-failure mode is in use.'

	

	
exit_on_error_message = 'Error occurred and exit-on-error mode is in use.'

	

	
message

	

	
class robot.running.status.SuiteMessage(status)[source]

	Bases: robot.running.status._Message

	
setup_message = 'Suite setup failed:\n%s'

	

	
setup_skipped_message = 'Skipped in suite setup:\n%s'

	

	
teardown_skipped_message = 'Skipped in suite teardown:\n%s'

	

	
teardown_message = 'Suite teardown failed:\n%s'

	

	
also_teardown_message = '%s\n\nAlso suite teardown failed:\n%s'

	

	
also_teardown_skip_message = 'Skipped in suite teardown:\n%s\n\nEarlier message:\n%s'

	

	
message

	

	
class robot.running.status.ParentMessage(status)[source]

	Bases: robot.running.status.SuiteMessage

	
setup_message = 'Parent suite setup failed:\n%s'

	

	
setup_skipped_message = 'Skipped in parent suite setup:\n%s'

	

	
teardown_skipped_message = 'Skipped in parent suite teardown:\n%s'

	

	
teardown_message = 'Parent suite teardown failed:\n%s'

	

	
also_teardown_message = '%s\n\nAlso parent suite teardown failed:\n%s'

	

	
also_teardown_skip_message = 'Skipped in suite teardown:\n%s\n\nEarlier message:\n%s'

	

	
message

	

robot.running.statusreporter module

	
class robot.running.statusreporter.StatusReporter(data, result, context, run=True)[source]

	Bases: object

robot.running.suiterunner module

	
class robot.running.suiterunner.SuiteRunner(output, settings)[source]

	Bases: robot.model.visitor.SuiteVisitor

	
start_suite(suite)[source]

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_suite(suite)[source]

	Called when suite ends. Default implementation does nothing.

	
visit_test(test)[source]

	Implements traversing through tests.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
end_for(for_)

	Called when FOR loop ends. Default implementation does nothing.

	
end_for_iteration(iteration)

	Called when FOR loop iteration ends. Default implementation does nothing.

	
end_if(if_)

	Called when IF/ELSE structure ends. Default implementation does nothing.

	
end_if_branch(branch)

	Called when IF/ELSE branch ends. Default implementation does nothing.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_for(for_)

	Called when FOR loop starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_for_iteration(iteration)

	Called when FOR loop iteration starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if(if_)

	Called when IF/ELSE structure starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if_branch(branch)

	Called when IF/ELSE branch starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_for(for_)

	Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without
calling start_for() or end_for() nor visiting body.

	
visit_for_iteration(iteration)

	Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side
there are no iterations.

Can be overridden to allow modifying the passed in iteration without
calling start_for_iteration() or end_for_iteration() nor visiting
body.

	
visit_if(if_)

	Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches
are in its body and visited using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without
calling start_if() or end_if() nor visiting branches.

	
visit_if_branch(branch)

	Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without
calling start_if_branch() or end_if_branch() nor visiting body.

	
visit_keyword(kw)

	Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
visit_message(msg)

	Implements visiting messages.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

robot.running.testlibraries module

	
robot.running.testlibraries.TestLibrary(name, args=None, variables=None, create_handlers=True, logger=<robot.output.logger.Logger object>)[source]

	

robot.running.usererrorhandler module

	
class robot.running.usererrorhandler.UserErrorHandler(error, name, libname=None)[source]

	Bases: object

Created if creating handlers fail – running raises DataError.

The idea is not to raise DataError at processing time and prevent all
tests in affected test case file from executing. Instead UserErrorHandler
is created and if it is ever run DataError is raised then.

	Parameters

	
	error (robot.errors.DataError) – Occurred error.

	name (str) – Name of the affected keyword.

	libname (str) – Name of the affected library or resource.

	
longname

	

	
doc

	

	
shortdoc

	

	
create_runner(name)[source]

	

	
run(kw, context, run=True)[source]

	

	
dry_run(kw, context, run=True)

	

robot.running.userkeyword module

	
class robot.running.userkeyword.UserLibrary(resource, source_type='Resource file')[source]

	Bases: object

	
TEST_CASE_FILE_TYPE = 'Test case file'

	

	
RESOURCE_FILE_TYPE = 'Resource file'

	

	
class robot.running.userkeyword.UserKeywordHandler(keyword, libname)[source]

	Bases: object

	
longname

	

	
shortdoc

	

	
create_runner(name)[source]

	

	
class robot.running.userkeyword.EmbeddedArgumentsHandler(keyword, libname, embedded)[source]

	Bases: robot.running.userkeyword.UserKeywordHandler

	
matches(name)[source]

	

	
create_runner(name)[source]

	

	
longname

	

	
shortdoc

	

robot.running.userkeywordrunner module

	
class robot.running.userkeywordrunner.UserKeywordRunner(handler, name=None)[source]

	Bases: object

	
longname

	

	
libname

	

	
arguments

	
	Return type

	robot.running.arguments.ArgumentSpec

	
run(kw, context, run=True)[source]

	

	
dry_run(kw, context)[source]

	

	
class robot.running.userkeywordrunner.EmbeddedArgumentsRunner(handler, name)[source]

	Bases: robot.running.userkeywordrunner.UserKeywordRunner

	
arguments

	
	Return type

	robot.running.arguments.ArgumentSpec

	
dry_run(kw, context)

	

	
libname

	

	
longname

	

	
run(kw, context, run=True)

	

robot.running.arguments package

Submodules

robot.running.arguments.argumentconverter module

	
class robot.running.arguments.argumentconverter.ArgumentConverter(argspec, dry_run=False)

	Bases: object

	
convert(positional, named)

	

robot.running.arguments.argumentmapper module

	
class robot.running.arguments.argumentmapper.ArgumentMapper(argspec)

	Bases: object

	
map(positional, named, replace_defaults=True)

	

	
class robot.running.arguments.argumentmapper.KeywordCallTemplate(argspec)

	Bases: object

	
fill_positional(positional)

	

	
fill_named(named)

	

	
replace_defaults()

	

	
class robot.running.arguments.argumentmapper.DefaultValue(value)

	Bases: object

	
resolve(variables)

	

robot.running.arguments.argumentparser module

	
class robot.running.arguments.argumentparser.JavaArgumentParser(type='Keyword')

	Bases: robot.running.arguments.argumentparser._ArgumentParser

	
parse(signatures, name=None)

	

	
class robot.running.arguments.argumentparser.DynamicArgumentParser(type='Keyword', error_reporter=None)

	Bases: robot.running.arguments.argumentparser._ArgumentSpecParser

	
parse(argspec, name=None)

	

	
class robot.running.arguments.argumentparser.UserKeywordArgumentParser(type='Keyword', error_reporter=None)

	Bases: robot.running.arguments.argumentparser._ArgumentSpecParser

	
parse(argspec, name=None)

	

robot.running.arguments.argumentresolver module

	
class robot.running.arguments.argumentresolver.ArgumentResolver(argspec, resolve_named=True, resolve_variables_until=None, dict_to_kwargs=False)

	Bases: object

	
resolve(arguments, variables=None)

	

	
class robot.running.arguments.argumentresolver.NamedArgumentResolver(argspec)

	Bases: object

	
resolve(arguments, variables=None)

	

	
class robot.running.arguments.argumentresolver.NullNamedArgumentResolver

	Bases: object

	
resolve(arguments, variables=None)

	

	
class robot.running.arguments.argumentresolver.DictToKwargs(argspec, enabled=False)

	Bases: object

	
handle(positional, named)

	

	
class robot.running.arguments.argumentresolver.VariableReplacer(resolve_until=None)

	Bases: object

	
replace(positional, named, variables=None)

	

robot.running.arguments.argumentspec module

	
class robot.running.arguments.argumentspec.Enum

	Bases: object

	
class robot.running.arguments.argumentspec.ArgumentSpec(name=None, type='Keyword', positional_only=None, positional_or_named=None, var_positional=None, named_only=None, var_named=None, defaults=None, types=None)

	Bases: object

	
types

	

	
positional

	

	
minargs

	

	
maxargs

	

	
argument_names

	

	
resolve(arguments, variables=None, resolve_named=True, resolve_variables_until=None, dict_to_kwargs=False)

	

	
map(positional, named, replace_defaults=True)

	

	
class robot.running.arguments.argumentspec.ArgInfo(kind, name='', types=<object object>, default=<object object>)

	Bases: object

	
NOTSET = <object object>

	

	
POSITIONAL_ONLY = 'POSITIONAL_ONLY'

	

	
POSITIONAL_ONLY_MARKER = 'POSITIONAL_ONLY_MARKER'

	

	
POSITIONAL_OR_NAMED = 'POSITIONAL_OR_NAMED'

	

	
VAR_POSITIONAL = 'VAR_POSITIONAL'

	

	
NAMED_ONLY_MARKER = 'NAMED_ONLY_MARKER'

	

	
NAMED_ONLY = 'NAMED_ONLY'

	

	
VAR_NAMED = 'VAR_NAMED'

	

	
types

	

	
required

	

	
types_reprs

	

	
default_repr

	

robot.running.arguments.argumentvalidator module

	
class robot.running.arguments.argumentvalidator.ArgumentValidator(argspec)

	Bases: object

	
validate(positional, named, dryrun=False)

	

robot.running.arguments.embedded module

	
class robot.running.arguments.embedded.EmbeddedArguments(name)

	Bases: object

	
class robot.running.arguments.embedded.EmbeddedArgumentParser

	Bases: object

	
parse(string)

	

robot.running.arguments.javaargumentcoercer module

robot.running.arguments.py2argumentparser module

	
class robot.running.arguments.py2argumentparser.PythonArgumentParser(type='Keyword')

	Bases: object

	
parse(handler, name=None)

	

robot.running.arguments.py3argumentparser module

robot.running.arguments.typeconverters module

	
class robot.running.arguments.typeconverters.Enum

	Bases: object

	
class robot.running.arguments.typeconverters.TypeConverter(used_type)

	Bases: object

	
type = None

	

	
type_name = None

	

	
abc = None

	

	
aliases = ()

	

	
value_types = (<type 'unicode'>,)

	

	
classmethod register(converter)

	

	
classmethod converter_for(type_)

	

	
classmethod handles(type_)

	

	
convert(name, value, explicit_type=True, strict=True)

	

	
no_conversion_needed(value)

	

	
class robot.running.arguments.typeconverters.EnumConverter(used_type)

	Bases: robot.running.arguments.typeconverters.TypeConverter

	
type

	alias of Enum

	
type_name

	

	
value_types

	

	
abc = None

	

	
aliases = ()

	

	
convert(name, value, explicit_type=True, strict=True)

	

	
classmethod converter_for(type_)

	

	
classmethod handles(type_)

	

	
no_conversion_needed(value)

	

	
classmethod register(converter)

	

	
class robot.running.arguments.typeconverters.StringConverter(used_type)

	Bases: robot.running.arguments.typeconverters.TypeConverter

	
type

	alias of __builtin__.unicode

	
type_name = 'string'

	

	
aliases = ('string', 'str', 'unicode')

	

	
abc = None

	

	
convert(name, value, explicit_type=True, strict=True)

	

	
classmethod converter_for(type_)

	

	
classmethod handles(type_)

	

	
no_conversion_needed(value)

	

	
classmethod register(converter)

	

	
value_types = (<type 'unicode'>,)

	

	
class robot.running.arguments.typeconverters.BooleanConverter(used_type)

	Bases: robot.running.arguments.typeconverters.TypeConverter

	
value_types = (<type 'unicode'>, <type 'int'>, <type 'float'>, <type 'NoneType'>)

	

	
type

	alias of __builtin__.bool

	
type_name = 'boolean'

	

	
aliases = ('bool',)

	

	
abc = None

	

	
convert(name, value, explicit_type=True, strict=True)

	

	
classmethod converter_for(type_)

	

	
classmethod handles(type_)

	

	
no_conversion_needed(value)

	

	
classmethod register(converter)

	

	
class robot.running.arguments.typeconverters.IntegerConverter(used_type)

	Bases: robot.running.arguments.typeconverters.TypeConverter

	
type

	alias of __builtin__.int

	
abc

	alias of numbers.Integral

	
type_name = 'integer'

	

	
aliases = ('int', 'long')

	

	
value_types = (<type 'unicode'>, <type 'float'>)

	

	
convert(name, value, explicit_type=True, strict=True)

	

	
classmethod converter_for(type_)

	

	
classmethod handles(type_)

	

	
no_conversion_needed(value)

	

	
classmethod register(converter)

	

	
class robot.running.arguments.typeconverters.FloatConverter(used_type)

	Bases: robot.running.arguments.typeconverters.TypeConverter

	
type

	alias of __builtin__.float

	
abc

	alias of numbers.Real

	
type_name = 'float'

	

	
aliases = ('double',)

	

	
value_types = (<type 'unicode'>, <class 'numbers.Real'>)

	

	
convert(name, value, explicit_type=True, strict=True)

	

	
classmethod converter_for(type_)

	

	
classmethod handles(type_)

	

	
no_conversion_needed(value)

	

	
classmethod register(converter)

	

	
class robot.running.arguments.typeconverters.DecimalConverter(used_type)

	Bases: robot.running.arguments.typeconverters.TypeConverter

	
type

	alias of decimal.Decimal

	
type_name = 'decimal'

	

	
value_types = (<type 'unicode'>, <type 'int'>, <type 'float'>)

	

	
abc = None

	

	
aliases = ()

	

	
convert(name, value, explicit_type=True, strict=True)

	

	
classmethod converter_for(type_)

	

	
classmethod handles(type_)

	

	
no_conversion_needed(value)

	

	
classmethod register(converter)

	

	
class robot.running.arguments.typeconverters.BytesConverter(used_type)

	Bases: robot.running.arguments.typeconverters.TypeConverter

	
type

	alias of __builtin__.str

	
abc = None

	

	
type_name = 'bytes'

	

	
value_types = (<type 'unicode'>, <type 'bytearray'>)

	

	
aliases = ()

	

	
convert(name, value, explicit_type=True, strict=True)

	

	
classmethod converter_for(type_)

	

	
classmethod handles(type_)

	

	
no_conversion_needed(value)

	

	
classmethod register(converter)

	

	
class robot.running.arguments.typeconverters.ByteArrayConverter(used_type)

	Bases: robot.running.arguments.typeconverters.TypeConverter

	
type

	alias of __builtin__.bytearray

	
type_name = 'bytearray'

	

	
value_types = (<type 'unicode'>, <type 'str'>)

	

	
abc = None

	

	
aliases = ()

	

	
convert(name, value, explicit_type=True, strict=True)

	

	
classmethod converter_for(type_)

	

	
classmethod handles(type_)

	

	
no_conversion_needed(value)

	

	
classmethod register(converter)

	

	
class robot.running.arguments.typeconverters.DateTimeConverter(used_type)

	Bases: robot.running.arguments.typeconverters.TypeConverter

	
type

	alias of datetime.datetime

	
type_name = 'datetime'

	

	
value_types = (<type 'unicode'>, <type 'int'>, <type 'float'>)

	

	
abc = None

	

	
aliases = ()

	

	
convert(name, value, explicit_type=True, strict=True)

	

	
classmethod converter_for(type_)

	

	
classmethod handles(type_)

	

	
no_conversion_needed(value)

	

	
classmethod register(converter)

	

	
class robot.running.arguments.typeconverters.DateConverter(used_type)

	Bases: robot.running.arguments.typeconverters.TypeConverter

	
type

	alias of datetime.date

	
type_name = 'date'

	

	
abc = None

	

	
aliases = ()

	

	
convert(name, value, explicit_type=True, strict=True)

	

	
classmethod converter_for(type_)

	

	
classmethod handles(type_)

	

	
no_conversion_needed(value)

	

	
classmethod register(converter)

	

	
value_types = (<type 'unicode'>,)

	

	
class robot.running.arguments.typeconverters.TimeDeltaConverter(used_type)

	Bases: robot.running.arguments.typeconverters.TypeConverter

	
type

	alias of datetime.timedelta

	
type_name = 'timedelta'

	

	
value_types = (<type 'unicode'>, <type 'int'>, <type 'float'>)

	

	
abc = None

	

	
aliases = ()

	

	
convert(name, value, explicit_type=True, strict=True)

	

	
classmethod converter_for(type_)

	

	
classmethod handles(type_)

	

	
no_conversion_needed(value)

	

	
classmethod register(converter)

	

	
class robot.running.arguments.typeconverters.NoneConverter(used_type)

	Bases: robot.running.arguments.typeconverters.TypeConverter

	
type

	alias of __builtin__.NoneType

	
type_name = 'None'

	

	
classmethod handles(type_)

	

	
abc = None

	

	
aliases = ()

	

	
convert(name, value, explicit_type=True, strict=True)

	

	
classmethod converter_for(type_)

	

	
no_conversion_needed(value)

	

	
classmethod register(converter)

	

	
value_types = (<type 'unicode'>,)

	

	
class robot.running.arguments.typeconverters.ListConverter(used_type)

	Bases: robot.running.arguments.typeconverters.TypeConverter

	
type

	alias of __builtin__.list

	
type_name = 'list'

	

	
abc

	alias of _abcoll.Sequence

	
value_types = (<type 'unicode'>, <type 'tuple'>)

	

	
no_conversion_needed(value)

	

	
aliases = ()

	

	
convert(name, value, explicit_type=True, strict=True)

	

	
classmethod converter_for(type_)

	

	
classmethod handles(type_)

	

	
classmethod register(converter)

	

	
class robot.running.arguments.typeconverters.TupleConverter(used_type)

	Bases: robot.running.arguments.typeconverters.TypeConverter

	
type

	alias of __builtin__.tuple

	
type_name = 'tuple'

	

	
value_types = (<type 'unicode'>, <type 'list'>)

	

	
abc = None

	

	
aliases = ()

	

	
convert(name, value, explicit_type=True, strict=True)

	

	
classmethod converter_for(type_)

	

	
classmethod handles(type_)

	

	
no_conversion_needed(value)

	

	
classmethod register(converter)

	

	
class robot.running.arguments.typeconverters.DictionaryConverter(used_type)

	Bases: robot.running.arguments.typeconverters.TypeConverter

	
type

	alias of __builtin__.dict

	
abc

	alias of _abcoll.Mapping

	
type_name = 'dictionary'

	

	
aliases = ('dict', 'map')

	

	
convert(name, value, explicit_type=True, strict=True)

	

	
classmethod converter_for(type_)

	

	
classmethod handles(type_)

	

	
no_conversion_needed(value)

	

	
classmethod register(converter)

	

	
value_types = (<type 'unicode'>,)

	

	
class robot.running.arguments.typeconverters.SetConverter(used_type)

	Bases: robot.running.arguments.typeconverters.TypeConverter

	
type

	alias of __builtin__.set

	
type_name = 'set'

	

	
value_types = (<type 'unicode'>, <type 'frozenset'>, <type 'list'>, <type 'tuple'>, <class '_abcoll.Mapping'>)

	

	
abc

	alias of _abcoll.Set

	
aliases = ()

	

	
convert(name, value, explicit_type=True, strict=True)

	

	
classmethod converter_for(type_)

	

	
classmethod handles(type_)

	

	
no_conversion_needed(value)

	

	
classmethod register(converter)

	

	
class robot.running.arguments.typeconverters.FrozenSetConverter(used_type)

	Bases: robot.running.arguments.typeconverters.TypeConverter

	
type

	alias of __builtin__.frozenset

	
type_name = 'frozenset'

	

	
value_types = (<type 'unicode'>, <type 'set'>, <type 'list'>, <type 'tuple'>, <class '_abcoll.Mapping'>)

	

	
abc = None

	

	
aliases = ()

	

	
convert(name, value, explicit_type=True, strict=True)

	

	
classmethod converter_for(type_)

	

	
classmethod handles(type_)

	

	
no_conversion_needed(value)

	

	
classmethod register(converter)

	

	
class robot.running.arguments.typeconverters.CombinedConverter(union)

	Bases: robot.running.arguments.typeconverters.TypeConverter

	
type = typing.Union

	

	
type_name

	

	
classmethod handles(type_)

	

	
no_conversion_needed(value)

	

	
abc = None

	

	
aliases = ()

	

	
convert(name, value, explicit_type=True, strict=True)

	

	
classmethod converter_for(type_)

	

	
classmethod register(converter)

	

	
value_types = (<type 'unicode'>,)

	

robot.running.arguments.typevalidator module

	
class robot.running.arguments.typevalidator.TypeValidator(argspec)

	Bases: object

	
validate(types)

	

	
validate_type_dict(types)

	

	
convert_type_list_to_dict(types)

	

robot.running.builder package

Submodules

robot.running.builder.builders module

	
class robot.running.builder.builders.TestSuiteBuilder(included_suites=None, included_extensions=('robot',), rpa=None, allow_empty_suite=False, process_curdir=True)[source]

	Bases: object

Builder to construct TestSuite objects based on data on the disk.

The build() method constructs executable
TestSuite objects based on test data files
or directories. There are two main use cases for this API:

	Execute the created suite by using its
run() method. The suite can be
can be modified before execution if needed.

	Inspect the suite to see, for example, what tests it has or what tags
tests have. This can be more convenient than using the lower level
parsing APIs but does not allow saving modified data
back to the disk.

Both modifying the suite and inspecting what data it contains are easiest
done by using the visitor interface.

This class is part of the public API and should be imported via the
robot.api package.

	Parameters

	
	include_suites – List of suite names to include. If None or an empty list,
all suites are included. Same as using --suite on
the command line.

	included_extensions – List of extensions of files to parse. Same as --extension.
This parameter was named extension before RF 3.2.

	rpa – Explicit test execution mode. True for RPA and
False for test automation. By default mode is got from test
data headers and possible conflicting headers cause an error.
Same as --rpa or --norpa.

	allow_empty_suite – Specify is it an error if the built suite contains no tests.
Same as --runemptysuite. New in RF 3.2.

	process_curdir – Control processing the special ${CURDIR} variable. It is
resolved already at parsing time by default, but that can be
changed by giving this argument False value. New in RF 3.2.

	
build(*paths)[source]

	
	Parameters

	paths – Paths to test data files or directories.

	Returns

	TestSuite instance.

	
class robot.running.builder.builders.SuiteStructureParser(included_extensions, rpa=None, process_curdir=True)[source]

	Bases: robot.parsing.suitestructure.SuiteStructureVisitor

	
parse(structure)[source]

	

	
visit_file(structure)[source]

	

	
start_directory(structure)[source]

	

	
end_directory(structure)[source]

	

	
visit_directory(structure)

	

	
class robot.running.builder.builders.ResourceFileBuilder(process_curdir=True)[source]

	Bases: object

	
build(source)[source]

	

robot.running.builder.parsers module

	
class robot.running.builder.parsers.BaseParser[source]

	Bases: object

	
parse_init_file(source, defaults=None)[source]

	

	
parse_suite_file(source, defaults=None)[source]

	

	
parse_resource_file(source)[source]

	

	
class robot.running.builder.parsers.RobotParser(process_curdir=True)[source]

	Bases: robot.running.builder.parsers.BaseParser

	
parse_init_file(source, defaults=None)[source]

	

	
parse_suite_file(source, defaults=None)[source]

	

	
build_suite(model, name=None, defaults=None)[source]

	

	
parse_resource_file(source)[source]

	

	
class robot.running.builder.parsers.RestParser(process_curdir=True)[source]

	Bases: robot.running.builder.parsers.RobotParser

	
build_suite(model, name=None, defaults=None)

	

	
parse_init_file(source, defaults=None)

	

	
parse_resource_file(source)

	

	
parse_suite_file(source, defaults=None)

	

	
class robot.running.builder.parsers.NoInitFileDirectoryParser[source]

	Bases: robot.running.builder.parsers.BaseParser

	
parse_init_file(source, defaults=None)[source]

	

	
parse_resource_file(source)

	

	
parse_suite_file(source, defaults=None)

	

	
robot.running.builder.parsers.format_name(source)[source]

	

	
class robot.running.builder.parsers.ErrorReporter(source)[source]

	Bases: ast.NodeVisitor

	
visit_Error(node)[source]

	

	
generic_visit(node)

	Called if no explicit visitor function exists for a node.

	
visit(node)

	Visit a node.

robot.running.builder.testsettings module

	
class robot.running.builder.testsettings.TestDefaults(parent=None)[source]

	Bases: object

	
setup

	

	
teardown

	

	
force_tags

	

	
timeout

	

	
class robot.running.builder.testsettings.TestSettings(defaults)[source]

	Bases: object

	
setup

	

	
teardown

	

	
timeout

	

	
template

	

	
tags

	

robot.running.builder.transformers module

	
class robot.running.builder.transformers.SettingsBuilder(suite, test_defaults)[source]

	Bases: ast.NodeVisitor

	
visit_Documentation(node)[source]

	

	
visit_Metadata(node)[source]

	

	
visit_SuiteSetup(node)[source]

	

	
visit_SuiteTeardown(node)[source]

	

	
visit_TestSetup(node)[source]

	

	
visit_TestTeardown(node)[source]

	

	
visit_TestTimeout(node)[source]

	

	
visit_DefaultTags(node)[source]

	

	
visit_ForceTags(node)[source]

	

	
visit_TestTemplate(node)[source]

	

	
visit_ResourceImport(node)[source]

	

	
visit_LibraryImport(node)[source]

	

	
visit_VariablesImport(node)[source]

	

	
visit_VariableSection(node)[source]

	

	
visit_TestCaseSection(node)[source]

	

	
visit_KeywordSection(node)[source]

	

	
generic_visit(node)

	Called if no explicit visitor function exists for a node.

	
visit(node)

	Visit a node.

	
class robot.running.builder.transformers.SuiteBuilder(suite, test_defaults)[source]

	Bases: ast.NodeVisitor

	
visit_SettingSection(node)[source]

	

	
visit_Variable(node)[source]

	

	
visit_TestCase(node)[source]

	

	
visit_Keyword(node)[source]

	

	
generic_visit(node)

	Called if no explicit visitor function exists for a node.

	
visit(node)

	Visit a node.

	
class robot.running.builder.transformers.ResourceBuilder(resource)[source]

	Bases: ast.NodeVisitor

	
visit_Documentation(node)[source]

	

	
visit_LibraryImport(node)[source]

	

	
visit_ResourceImport(node)[source]

	

	
visit_VariablesImport(node)[source]

	

	
visit_Variable(node)[source]

	

	
visit_Keyword(node)[source]

	

	
generic_visit(node)

	Called if no explicit visitor function exists for a node.

	
visit(node)

	Visit a node.

	
class robot.running.builder.transformers.TestCaseBuilder(suite, defaults)[source]

	Bases: ast.NodeVisitor

	
visit_TestCase(node)[source]

	

	
visit_For(node)[source]

	

	
visit_If(node)[source]

	

	
visit_TemplateArguments(node)[source]

	

	
visit_Documentation(node)[source]

	

	
visit_Setup(node)[source]

	

	
visit_Teardown(node)[source]

	

	
visit_Timeout(node)[source]

	

	
visit_Tags(node)[source]

	

	
visit_Template(node)[source]

	

	
visit_KeywordCall(node)[source]

	

	
generic_visit(node)

	Called if no explicit visitor function exists for a node.

	
visit(node)

	Visit a node.

	
class robot.running.builder.transformers.KeywordBuilder(resource)[source]

	Bases: ast.NodeVisitor

	
visit_Keyword(node)[source]

	

	
visit_Documentation(node)[source]

	

	
visit_Arguments(node)[source]

	

	
visit_Tags(node)[source]

	

	
visit_Return(node)[source]

	

	
visit_Timeout(node)[source]

	

	
visit_Teardown(node)[source]

	

	
visit_KeywordCall(node)[source]

	

	
visit_For(node)[source]

	

	
visit_If(node)[source]

	

	
generic_visit(node)

	Called if no explicit visitor function exists for a node.

	
visit(node)

	Visit a node.

	
class robot.running.builder.transformers.ForBuilder(parent)[source]

	Bases: ast.NodeVisitor

	
build(node)[source]

	

	
visit_KeywordCall(node)[source]

	

	
visit_TemplateArguments(node)[source]

	

	
visit_For(node)[source]

	

	
visit_If(node)[source]

	

	
generic_visit(node)

	Called if no explicit visitor function exists for a node.

	
visit(node)

	Visit a node.

	
class robot.running.builder.transformers.IfBuilder(parent)[source]

	Bases: ast.NodeVisitor

	
build(node)[source]

	

	
visit_KeywordCall(node)[source]

	

	
visit_TemplateArguments(node)[source]

	

	
visit_If(node)[source]

	

	
visit_For(node)[source]

	

	
generic_visit(node)

	Called if no explicit visitor function exists for a node.

	
visit(node)

	Visit a node.

	
robot.running.builder.transformers.format_error(errors)[source]

	

robot.running.timeouts package

	
class robot.running.timeouts.TestTimeout(timeout=None, variables=None, rpa=False)

	Bases: robot.running.timeouts._Timeout

	
type = 'Test'

	

	
set_keyword_timeout(timeout_occurred)

	

	
any_timeout_occurred()

	

	
active

	

	
get_message()

	

	
replace_variables(variables)

	

	
run(runnable, args=None, kwargs=None)

	

	
start()

	

	
time_left()

	

	
timed_out()

	

	
class robot.running.timeouts.KeywordTimeout(timeout=None, variables=None)

	Bases: robot.running.timeouts._Timeout

	
active

	

	
get_message()

	

	
replace_variables(variables)

	

	
run(runnable, args=None, kwargs=None)

	

	
start()

	

	
time_left()

	

	
timed_out()

	

	
type = 'Keyword'

	

Submodules

robot.running.timeouts.ironpython module

robot.running.timeouts.jython module

robot.running.timeouts.posix module

	
class robot.running.timeouts.posix.Timeout(timeout, error)

	Bases: object

	
execute(runnable)

	

robot.running.timeouts.windows module

	
class robot.running.timeouts.windows.Timeout(timeout, error)

	Bases: object

	
execute(runnable)

	

robot.tidypkg package

Submodules

robot.tidypkg.transformers module

	
class robot.tidypkg.transformers.Cleaner[source]

	Bases: robot.parsing.model.visitor.ModelTransformer

Clean up and normalize data.

Following transformations are made:
1) section headers are normalized to format *** Section Name ***
2) setting names are normalize in setting table and in test cases and

user keywords to format Setting Name or [Setting Name]

	settings without values are removed

	Empty lines after section headers and within items are removed

	For loop declaration and end tokens are normalized to FOR and END

	Old style for loop indent (i.e. a cell with only a ``) are removed

	
visit_CommentSection(section)[source]

	

	
visit_Section(section)[source]

	

	
visit_Statement(statement)[source]

	

	
visit_For(loop)[source]

	

	
generic_visit(node)

	Called if no explicit visitor function exists for a node.

	
visit(node)

	Visit a node.

	
class robot.tidypkg.transformers.NewlineNormalizer(newline, short_test_name_length)[source]

	Bases: robot.parsing.model.visitor.ModelTransformer

Normalize new lines in test data

After this transformation, there is exactly one empty line between each
section and between each test or user keyword.

	
visit_File(node)[source]

	

	
visit_Section(node)[source]

	

	
visit_CommentSection(node)[source]

	

	
visit_TestCaseSection(node)[source]

	

	
visit_TestCase(node)[source]

	

	
visit_KeywordSection(node)[source]

	

	
visit_Keyword(node)[source]

	

	
visit_Statement(statement)[source]

	

	
generic_visit(node)

	Called if no explicit visitor function exists for a node.

	
visit(node)

	Visit a node.

	
class robot.tidypkg.transformers.SeparatorNormalizer(use_pipes, space_count)[source]

	Bases: robot.parsing.model.visitor.ModelTransformer

Make separators and indentation consistent.

	
visit_TestCase(node)[source]

	

	
visit_Keyword(node)[source]

	

	
visit_For(node)[source]

	

	
visit_If(node)[source]

	

	
visit_Statement(statement)[source]

	

	
generic_visit(node)

	Called if no explicit visitor function exists for a node.

	
visit(node)

	Visit a node.

	
class robot.tidypkg.transformers.ColumnAligner(short_test_name_length, widths)[source]

	Bases: robot.parsing.model.visitor.ModelTransformer

	
visit_TestCase(node)[source]

	

	
visit_For(node)[source]

	

	
visit_Statement(statement)[source]

	

	
align_header(statement)[source]

	

	
align_statement(statement)[source]

	

	
widths_for_line(line)[source]

	

	
should_write_content_after_name(line_pos)[source]

	

	
generic_visit(node)

	Called if no explicit visitor function exists for a node.

	
visit(node)

	Visit a node.

	
class robot.tidypkg.transformers.ColumnWidthCounter[source]

	Bases: robot.parsing.model.visitor.ModelTransformer

	
visit_Statement(statement)[source]

	

	
generic_visit(node)

	Called if no explicit visitor function exists for a node.

	
visit(node)

	Visit a node.

	
class robot.tidypkg.transformers.Aligner(short_test_name_length, setting_and_variable_name_length, pipes_mode)[source]

	Bases: robot.parsing.model.visitor.ModelTransformer

	
visit_TestCaseSection(section)[source]

	

	
visit_KeywordSection(section)[source]

	

	
visit_Statement(statement)[source]

	

	
generic_visit(node)

	Called if no explicit visitor function exists for a node.

	
visit(node)

	Visit a node.

robot.utils package

Various generic utility functions and classes.

Utilities are mainly for internal usage, but external libraries and tools
may find some of them useful. Utilities are generally stable, but absolute
backwards compatibility between major versions is not guaranteed.

All utilities are exposed via the robot.utils package, and should be
used either like:

from robot import utils

assert utils.Matcher('H?llo').match('Hillo')

or:

from robot.utils import Matcher

assert Matcher('H?llo').match('Hillo')

	
robot.utils.read_rest_data(rstfile)[source]

	

Submodules

robot.utils.application module

	
class robot.utils.application.Application(usage, name=None, version=None, arg_limits=None, env_options=None, logger=None, **auto_options)[source]

	Bases: object

	
main(arguments, **options)[source]

	

	
validate(options, arguments)[source]

	

	
execute_cli(cli_arguments, exit=True)[source]

	

	
console(msg)[source]

	

	
parse_arguments(cli_args)[source]

	Public interface for parsing command line arguments.

	Parameters

	cli_args – Command line arguments as a list

	Returns

	options (dict), arguments (list)

	Raises

	Information when –help or –version used

	Raises

	DataError when parsing fails

	
execute(*arguments, **options)[source]

	

	
class robot.utils.application.DefaultLogger[source]

	Bases: object

	
info(message)[source]

	

	
error(message)[source]

	

	
close()[source]

	

robot.utils.argumentparser module

	
robot.utils.argumentparser.cmdline2list(args, escaping=False)[source]

	

	
class robot.utils.argumentparser.ArgumentParser(usage, name=None, version=None, arg_limits=None, validator=None, env_options=None, auto_help=True, auto_version=True, auto_pythonpath=True, auto_argumentfile=True)[source]

	Bases: object

Available options and tool name are read from the usage.

Tool name is got from the first row of the usage. It is either the
whole row or anything before first ‘ – ‘.

	
parse_args(args)[source]

	Parse given arguments and return options and positional arguments.

Arguments must be given as a list and are typically sys.argv[1:].

Options are returned as a dictionary where long options are keys. Value
is a string for those options that can be given only one time (if they
are given multiple times the last value is used) or None if the option
is not used at all. Value for options that can be given multiple times
(denoted with ‘*’ in the usage) is a list which contains all the given
values and is empty if options are not used. Options not taken
arguments have value False when they are not set and True otherwise.

Positional arguments are returned as a list in the order they are given.

If ‘check_args’ is True, this method will automatically check that
correct number of arguments, as parsed from the usage line, are given.
If the last argument in the usage line ends with the character ‘s’,
the maximum number of arguments is infinite.

Possible errors in processing arguments are reported using DataError.

Some options have a special meaning and are handled automatically
if defined in the usage and given from the command line:

–argumentfile can be used to automatically read arguments from
a specified file. When –argumentfile is used, the parser always
allows using it multiple times. Adding ‘*’ to denote that is thus
recommend. A special value ‘stdin’ can be used to read arguments from
stdin instead of a file.

–pythonpath can be used to add extra path(s) to sys.path.

–help and –version automatically generate help and version messages.
Version is generated based on the tool name and version – see __init__
for information how to set them. Help contains the whole usage given to
__init__. Possible <VERSION> text in the usage is replaced with the
given version. Both help and version are wrapped to Information
exception.

	
class robot.utils.argumentparser.ArgLimitValidator(arg_limits)[source]

	Bases: object

	
class robot.utils.argumentparser.ArgFileParser(options)[source]

	Bases: object

	
process(args)[source]

	

robot.utils.asserts module

Convenience functions for testing both in unit and higher levels.

	Benefits:

	
	Integrates 100% with unittest (see example below)

	Can be easily used without unittest (using unittest.TestCase when you
only need convenient asserts is not so nice)

	Saved typing and shorter lines because no need to have ‘self.’ before
asserts. These are static functions after all so that is OK.

	All ‘equals’ methods (by default) report given values even if optional
message given. This behavior can be controlled with the optional values
argument.

	Drawbacks:

	
	unittest is not able to filter as much non-interesting traceback away
as with its own methods because AssertionErrors occur outside.

Most of the functions are copied more or less directly from unittest.TestCase
which comes with the following license. Further information about unittest in
general can be found from http://pyunit.sourceforge.net/. This module can be
used freely in same terms as unittest.

unittest license:

Copyright (c) 1999-2003 Steve Purcell
This module is free software, and you may redistribute it and/or modify
it under the same terms as Python itself, so long as this copyright message
and disclaimer are retained in their original form.

IN NO EVENT SHALL THE AUTHOR BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF
THIS CODE, EVEN IF THE AUTHOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

THE AUTHOR SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE CODE PROVIDED HEREUNDER IS ON AN "AS IS" BASIS,
AND THERE IS NO OBLIGATION WHATSOEVER TO PROVIDE MAINTENANCE,
SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Examples:

import unittest
from robot.utils.asserts import assert_equal

class MyTests(unittest.TestCase):

 def test_old_style(self):
 self.assertEqual(1, 2, 'my msg')

 def test_new_style(self):
 assert_equal(1, 2, 'my msg')

Example output:

FF
==
FAIL: test_old_style (example.MyTests)
--
Traceback (most recent call last):
 File "example.py", line 7, in test_old_style
 self.assertEqual(1, 2, 'my msg')
AssertionError: my msg

==
FAIL: test_new_style (example.MyTests)
--
Traceback (most recent call last):
 File "example.py", line 10, in test_new_style
 assert_equal(1, 2, 'my msg')
 File "/path/to/robot/utils/asserts.py", line 181, in assert_equal
 _report_inequality_failure(first, second, msg, values, '!=')
 File "/path/to/robot/utils/asserts.py", line 229, in _report_inequality_failure
 raise AssertionError(msg)
AssertionError: my msg: 1 != 2

--
Ran 2 tests in 0.000s

FAILED (failures=2)

	
robot.utils.asserts.fail(msg=None)[source]

	Fail test immediately with the given message.

	
robot.utils.asserts.assert_false(expr, msg=None)[source]

	Fail the test if the expression is True.

	
robot.utils.asserts.assert_true(expr, msg=None)[source]

	Fail the test unless the expression is True.

	
robot.utils.asserts.assert_not_none(obj, msg=None, values=True)[source]

	Fail the test if given object is None.

	
robot.utils.asserts.assert_none(obj, msg=None, values=True)[source]

	Fail the test if given object is not None.

	
robot.utils.asserts.assert_raises(exc_class, callable_obj, *args, **kwargs)[source]

	Fail unless an exception of class exc_class is thrown by callable_obj.

callable_obj is invoked with arguments args and keyword arguments
kwargs. If a different type of exception is thrown, it will not be
caught, and the test case will be deemed to have suffered an
error, exactly as for an unexpected exception.

If a correct exception is raised, the exception instance is returned
by this method.

	
robot.utils.asserts.assert_raises_with_msg(exc_class, expected_msg, callable_obj, *args, **kwargs)[source]

	Similar to fail_unless_raises but also checks the exception message.

	
robot.utils.asserts.assert_equal(first, second, msg=None, values=True, formatter=None)[source]

	Fail if given objects are unequal as determined by the ‘==’ operator.

	
robot.utils.asserts.assert_not_equal(first, second, msg=None, values=True, formatter=None)[source]

	Fail if given objects are equal as determined by the ‘==’ operator.

	
robot.utils.asserts.assert_almost_equal(first, second, places=7, msg=None, values=True)[source]

	Fail if the two objects are unequal after rounded to given places.

inequality is determined by object’s difference rounded to the
given number of decimal places (default 7) and comparing to zero.
Note that decimal places (from zero) are usually not the same as
significant digits (measured from the most significant digit).

	
robot.utils.asserts.assert_not_almost_equal(first, second, places=7, msg=None, values=True)[source]

	Fail if the two objects are unequal after rounded to given places.

Equality is determined by object’s difference rounded to to the
given number of decimal places (default 7) and comparing to zero.
Note that decimal places (from zero) are usually not the same as
significant digits (measured from the most significant digit).

robot.utils.charwidth module

A module to handle different character widths on the console.

Some East Asian characters have width of two on console, and combining
characters themselves take no extra space.

See issue 604 [1] for more details about East Asian characters. The issue also
contains generate_wild_chars.py script that was originally used to create
_EAST_ASIAN_WILD_CHARS mapping. An updated version of the script is attached
to issue 1096. Big thanks for xieyanbo for the script and the original patch.

Note that Python’s unicodedata module is not used here because importing
it takes several seconds on Jython.

[1] https://github.com/robotframework/robotframework/issues/604
[2] https://github.com/robotframework/robotframework/issues/1096

	
robot.utils.charwidth.get_char_width(char)[source]

	

robot.utils.compat module

	
robot.utils.compat.unwrap(func)[source]

	

	
robot.utils.compat.unicode_to_str(self)[source]

	

	
robot.utils.compat.py2to3(cls)[source]

	Deprecated since RF 4.0. Use ‘py3to2’ instead.

	
robot.utils.compat.py3to2(cls)[source]

	

	
robot.utils.compat.with_metaclass(meta, *bases)[source]

	Create a base class with a metaclass.

	
robot.utils.compat.isatty(stream)[source]

	

robot.utils.compress module

	
robot.utils.compress.compress_text(text)[source]

	

robot.utils.connectioncache module

	
class robot.utils.connectioncache.ConnectionCache(no_current_msg='No open connection.')[source]

	Bases: object

Cache for test libs to use with concurrent connections, processes, etc.

The cache stores the registered connections (or other objects) and allows
switching between them using generated indices or user given aliases.
This is useful with any test library where there’s need for multiple
concurrent connections, processes, etc.

This class can, and is, used also outside the core framework by SSHLibrary,
Selenium(2)Library, etc. Backwards compatibility is thus important when
doing changes.

	
current = None

	Current active connection.

	
current_index

	

	
register(connection, alias=None)[source]

	Registers given connection with optional alias and returns its index.

Given connection is set to be the current connection.

If alias is given, it must be a string. Aliases are case and space
insensitive.

The index of the first connection after initialization, and after
close_all() or empty_cache(), is 1, second is 2, etc.

	
switch(alias_or_index)[source]

	Switches to the connection specified by the given alias or index.

Updates current and also returns its new value.

Alias is whatever was given to register() method and indices
are returned by it. Index can be given either as an integer or
as a string that can be converted to an integer. Raises an error
if no connection with the given index or alias found.

	
get_connection(alias_or_index=None)[source]

	Get the connection specified by the given alias or index..

If alias_or_index is None, returns the current connection
if it is active, or raises an error if it is not.

Alias is whatever was given to register() method and indices
are returned by it. Index can be given either as an integer or
as a string that can be converted to an integer. Raises an error
if no connection with the given index or alias found.

	
close_all(closer_method='close')[source]

	Closes connections using given closer method and empties cache.

If simply calling the closer method is not adequate for closing
connections, clients should close connections themselves and use
empty_cache() afterwards.

	
empty_cache()[source]

	Empties the connection cache.

Indexes of the new connections starts from 1 after this.

	
resolve_alias_or_index(alias_or_index)[source]

	

	
class robot.utils.connectioncache.NoConnection(message)[source]

	Bases: object

	
raise_error()[source]

	

robot.utils.dotdict module

	
class robot.utils.dotdict.DotDict(*args, **kwds)[source]

	Bases: collections.OrderedDict

	
clear() → None. Remove all items from od.

	

	
copy() → a shallow copy of od

	

	
classmethod fromkeys(S[, v]) → New ordered dictionary with keys from S.

	If not specified, the value defaults to None.

	
get(k[, d]) → D[k] if k in D, else d. d defaults to None.

	

	
has_key(k) → True if D has a key k, else False

	

	
items() → list of (key, value) pairs in od

	

	
iteritems()

	od.iteritems -> an iterator over the (key, value) pairs in od

	
iterkeys() → an iterator over the keys in od

	

	
itervalues()

	od.itervalues -> an iterator over the values in od

	
keys() → list of keys in od

	

	
pop(k[, d]) → v, remove specified key and return the corresponding

	value. If key is not found, d is returned if given, otherwise KeyError
is raised.

	
popitem() → (k, v), return and remove a (key, value) pair.

	Pairs are returned in LIFO order if last is true or FIFO order if false.

	
setdefault(k[, d]) → od.get(k,d), also set od[k]=d if k not in od

	

	
update([E,]**F) → None. Update D from mapping/iterable E and F.

	If E present and has a .keys() method, does: for k in E: D[k] = E[k]
If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v
In either case, this is followed by: for k, v in F.items(): D[k] = v

	
values() → list of values in od

	

	
viewitems() → a set-like object providing a view on od's items

	

	
viewkeys() → a set-like object providing a view on od's keys

	

	
viewvalues() → an object providing a view on od's values

	

robot.utils.encoding module

	
robot.utils.encoding.console_decode(string, encoding='UTF-8', force=False)[source]

	Decodes bytes from console encoding to Unicode.

By default uses the system console encoding, but that can be configured
using the encoding argument. In addition to the normal encodings,
it is possible to use case-insensitive values CONSOLE and SYSTEM to
use the system console and system encoding, respectively.

By default returns Unicode strings as-is. The force argument can be used
on IronPython where all strings are unicode and caller knows decoding
is needed.

	
robot.utils.encoding.console_encode(string, encoding=None, errors='replace', stream=<open file '<stdout>', mode 'w'>, force=False)[source]

	Encodes Unicode to bytes in console or system encoding.

If encoding is not given, determines it based on the given stream and system
configuration. In addition to the normal encodings, it is possible to use
case-insensitive values CONSOLE and SYSTEM to use the system console
and system encoding, respectively.

On Python 3 and IronPython returns Unicode unless force is True in which
case returns bytes. Otherwise always returns bytes.

	
robot.utils.encoding.system_decode(string)[source]

	Decodes bytes from system (e.g. cli args or env vars) to Unicode.

Depending on the usage, at least cli args may already be Unicode.

	
robot.utils.encoding.system_encode(string, errors='replace')[source]

	Encodes Unicode to system encoding (e.g. cli args and env vars).

Non-Unicode values are first converted to Unicode.

robot.utils.encodingsniffer module

	
robot.utils.encodingsniffer.get_system_encoding()[source]

	

	
robot.utils.encodingsniffer.get_console_encoding()[source]

	

robot.utils.error module

	
robot.utils.error.get_error_message()[source]

	Returns error message of the last occurred exception.

This method handles also exceptions containing unicode messages. Thus it
MUST be used to get messages from all exceptions originating outside the
framework.

	
robot.utils.error.get_error_details(exclude_robot_traces=True)[source]

	Returns error message and details of the last occurred exception.

	
robot.utils.error.ErrorDetails(exc_info=None, exclude_robot_traces=True)[source]

	This factory returns an object that wraps the last occurred exception

It has attributes message, traceback and error, where message
contains type and message of the original error, traceback contains the
traceback/stack trace and error contains the original error instance.

	
class robot.utils.error.PythonErrorDetails(exc_type, exc_value, exc_traceback, exclude_robot_traces=True)[source]

	Bases: robot.utils.error._ErrorDetails

	
message

	

	
traceback

	

	
class robot.utils.error.JavaErrorDetails(exc_type, exc_value, exc_traceback, exclude_robot_traces=True)[source]

	Bases: robot.utils.error._ErrorDetails

	
message

	

	
traceback

	

robot.utils.escaping module

	
robot.utils.escaping.escape(item)[source]

	

	
robot.utils.escaping.glob_escape(item)[source]

	

	
class robot.utils.escaping.Unescaper[source]

	Bases: object

	
unescape(item)[source]

	

	
robot.utils.escaping.split_from_equals(string)[source]

	

robot.utils.etreewrapper module

	
class robot.utils.etreewrapper.ETSource(source)[source]

	Bases: object

robot.utils.filereader module

	
class robot.utils.filereader.FileReader(source, accept_text=False)[source]

	Bases: object

Utility to ease reading different kind of files.

Supports different sources where to read the data:

	The source can be a path to a file, either as a string or as a
pathlib.Path instance in Python 3. The file itself must be
UTF-8 encoded.

	Alternatively the source can be an already opened file object,
including a StringIO or BytesIO object. The file can contain either
Unicode text or UTF-8 encoded bytes.

	The third options is giving the source as Unicode text directly.
This requires setting accept_text=True when creating the reader.

In all cases bytes are automatically decoded to Unicode and possible
BOM removed.

	
read()[source]

	

	
readlines()[source]

	

robot.utils.frange module

	
robot.utils.frange.frange(*args)[source]

	Like range() but accepts float arguments.

robot.utils.htmlformatters module

	
class robot.utils.htmlformatters.LinkFormatter[source]

	Bases: object

	
format_url(text)[source]

	

	
format_link(text)[source]

	

	
class robot.utils.htmlformatters.LineFormatter[source]

	Bases: object

	
handles(line)

	

	
newline = '\n'

	

	
format(line)[source]

	

	
class robot.utils.htmlformatters.HtmlFormatter[source]

	Bases: object

	
format(text)[source]

	

	
class robot.utils.htmlformatters.RulerFormatter[source]

	Bases: robot.utils.htmlformatters._SingleLineFormatter

	
match()

	match(string[, pos[, endpos]]) –> match object or None.
Matches zero or more characters at the beginning of the string

	
format_line(line)[source]

	

	
add(line)

	

	
end()

	

	
format(lines)

	

	
handles(line)

	

	
class robot.utils.htmlformatters.HeaderFormatter[source]

	Bases: robot.utils.htmlformatters._SingleLineFormatter

	
match()

	match(string[, pos[, endpos]]) –> match object or None.
Matches zero or more characters at the beginning of the string

	
format_line(line)[source]

	

	
add(line)

	

	
end()

	

	
format(lines)

	

	
handles(line)

	

	
class robot.utils.htmlformatters.ParagraphFormatter(other_formatters)[source]

	Bases: robot.utils.htmlformatters._Formatter

	
format(lines)[source]

	

	
add(line)

	

	
end()

	

	
handles(line)

	

	
class robot.utils.htmlformatters.TableFormatter[source]

	Bases: robot.utils.htmlformatters._Formatter

	
format(lines)[source]

	

	
add(line)

	

	
end()

	

	
handles(line)

	

	
class robot.utils.htmlformatters.PreformattedFormatter[source]

	Bases: robot.utils.htmlformatters._Formatter

	
format(lines)[source]

	

	
add(line)

	

	
end()

	

	
handles(line)

	

	
class robot.utils.htmlformatters.ListFormatter[source]

	Bases: robot.utils.htmlformatters._Formatter

	
format(lines)[source]

	

	
add(line)

	

	
end()

	

	
handles(line)

	

robot.utils.importer module

	
robot.utils.importer.invalidate_import_caches()

	

	
class robot.utils.importer.Importer(type=None, logger=None)[source]

	Bases: object

Utility that can import modules and classes based on names and paths.

Imported classes can optionally be instantiated automatically.

	Parameters

	
	type – Type of the thing being imported. Used in error and log messages.

	logger – Logger to be notified about successful imports and other events.
Currently only needs the info method, but other level specific
methods may be needed in the future. If not given, logging is disabled.

	
import_class_or_module(name_or_path, instantiate_with_args=None, return_source=False)[source]

	Imports Python class/module or Java class based on the given name or path.

	Parameters

	
	name_or_path – Name or path of the module or class to import.

	instantiate_with_args – When arguments are given, imported classes are automatically initialized
using them.

	return_source – When true, returns a tuple containing the imported module or class
and a path to it. By default returns only the imported module or class.

The class or module to import can be specified either as a name, in which
case it must be in the module search path, or as a path to the file or
directory implementing the module. See import_class_or_module_by_path()
for more information about importing classes and modules by path.

Classes can be imported from the module search path using name like
modulename.ClassName. If the class name and module name are same, using
just CommonName is enough. When importing a class by a path, the class
name and the module name must match.

Optional arguments to use when creating an instance are given as a list.
Starting from Robot Framework 4.0, both positional and named arguments are
supported (e.g. ['positional', 'name=value']) and arguments are converted
automatically based on type hints and default values.

If arguments needed when creating an instance are initially embedded into
the name or path like Example:arg1:arg2, separate
split_args_from_name_or_path() function can be
used to split them before calling this method.

	
import_class_or_module_by_path(path, instantiate_with_args=None)[source]

	Import a Python module or Java class using a file system path.

	Parameters

	
	path – Path to the module or class to import.

	instantiate_with_args – When arguments are given, imported classes are automatically initialized
using them.

When importing a Python file, the path must end with .py and the
actual file must also exist. When importing Java classes, the path must
end with .java or .class. The Java class file must exist
in both cases and in the former case also the source file must exist.

Use import_class_or_module() to support importing also using name,
not only path. See the documentation of that function for more information
about creating instances automatically.

	
class robot.utils.importer.ByPathImporter(logger)[source]

	Bases: robot.utils.importer._Importer

	
handles(path)[source]

	

	
import_(path)[source]

	

	
class robot.utils.importer.NonDottedImporter(logger)[source]

	Bases: robot.utils.importer._Importer

	
handles(name)[source]

	

	
import_(name)[source]

	

	
class robot.utils.importer.DottedImporter(logger)[source]

	Bases: robot.utils.importer._Importer

	
handles(name)[source]

	

	
import_(name)[source]

	

	
class robot.utils.importer.NoLogger[source]

	Bases: object

	
error(*args, **kws)

	

	
warn(*args, **kws)

	

	
info(*args, **kws)

	

	
debug(*args, **kws)

	

	
trace(*args, **kws)

	

robot.utils.markuputils module

	
robot.utils.markuputils.html_escape(text, linkify=True)[source]

	

	
robot.utils.markuputils.xml_escape(text)[source]

	

	
robot.utils.markuputils.html_format(text)[source]

	

	
robot.utils.markuputils.attribute_escape(attr)[source]

	

robot.utils.markupwriters module

	
class robot.utils.markupwriters.HtmlWriter(output, write_empty=True, usage=None)[source]

	Bases: robot.utils.markupwriters._MarkupWriter

	Parameters

	
	output – Either an opened, file like object, or a path to the
desired output file. In the latter case, the file is created
and clients should use close() method to close it.

	write_empty – Whether to write empty elements and attributes.

	
close()

	Closes the underlying output file.

	
content(content=None, escape=True, newline=False)

	

	
element(name, content=None, attrs=None, escape=True, newline=True)

	

	
end(name, newline=True)

	

	
start(name, attrs=None, newline=True)

	

	
class robot.utils.markupwriters.XmlWriter(output, write_empty=True, usage=None)[source]

	Bases: robot.utils.markupwriters._MarkupWriter

	Parameters

	
	output – Either an opened, file like object, or a path to the
desired output file. In the latter case, the file is created
and clients should use close() method to close it.

	write_empty – Whether to write empty elements and attributes.

	
element(name, content=None, attrs=None, escape=True, newline=True)[source]

	

	
close()

	Closes the underlying output file.

	
content(content=None, escape=True, newline=False)

	

	
end(name, newline=True)

	

	
start(name, attrs=None, newline=True)

	

	
class robot.utils.markupwriters.NullMarkupWriter(**kwargs)[source]

	Bases: object

Null implementation of the _MarkupWriter interface.

	
start(**kwargs)

	

	
content(**kwargs)

	

	
element(**kwargs)

	

	
end(**kwargs)

	

	
close(**kwargs)

	

robot.utils.match module

	
robot.utils.match.eq(str1, str2, ignore=(), caseless=True, spaceless=True)[source]

	

	
class robot.utils.match.Matcher(pattern, ignore=(), caseless=True, spaceless=True, regexp=False)[source]

	Bases: object

	
match(string)[source]

	

	
match_any(strings)[source]

	

	
class robot.utils.match.MultiMatcher(patterns=None, ignore=(), caseless=True, spaceless=True, match_if_no_patterns=False, regexp=False)[source]

	Bases: object

	
match(string)[source]

	

	
match_any(strings)[source]

	

robot.utils.misc module

	
robot.utils.misc.roundup(number, ndigits=0, return_type=None)[source]

	Rounds number to the given number of digits.

Numbers equally close to a certain precision are always rounded away from
zero. By default return value is float when ndigits is positive and
int otherwise, but that can be controlled with return_type.

With the built-in round() rounding equally close numbers as well as
the return type depends on the Python version.

	
robot.utils.misc.printable_name(string, code_style=False)[source]

	Generates and returns printable name from the given string.

Examples:
‘simple’ -> ‘Simple’
‘name with spaces’ -> ‘Name With Spaces’
‘more spaces’ -> ‘More Spaces’
‘Cases AND spaces’ -> ‘Cases AND Spaces’
‘’ -> ‘’

If ‘code_style’ is True:

‘mixedCAPSCamel’ -> ‘Mixed CAPS Camel’
‘camelCaseName’ -> ‘Camel Case Name’
‘under_score_name’ -> ‘Under Score Name’
‘under_and space’ -> ‘Under And Space’
‘miXed_CAPS_nAMe’ -> ‘MiXed CAPS NAMe’
‘’ -> ‘’

	
robot.utils.misc.plural_or_not(item)[source]

	

	
robot.utils.misc.seq2str(sequence, quote="'", sep=', ', lastsep=' and ')[source]

	Returns sequence in format ‘item 1’, ‘item 2’ and ‘item 3’.

	
robot.utils.misc.seq2str2(sequence)[source]

	Returns sequence in format [item 1 | item 2 | …].

	
robot.utils.misc.test_or_task(text, rpa=False)[source]

	Replaces {test} in text with test or task depending on rpa.

robot.utils.normalizing module

	
robot.utils.normalizing.normalize(string, ignore=(), caseless=True, spaceless=True)[source]

	Normalizes given string according to given spec.

By default string is turned to lower case and all whitespace is removed.
Additional characters can be removed by giving them in ignore list.

	
robot.utils.normalizing.normalize_whitespace(string)[source]

	

	
robot.utils.normalizing.lower(string)[source]

	

	
class robot.utils.normalizing.NormalizedDict(initial=None, ignore=(), caseless=True, spaceless=True)[source]

	Bases: _abcoll.MutableMapping

Custom dictionary implementation automatically normalizing keys.

Initialized with possible initial value and normalizing spec.

Initial values can be either a dictionary or an iterable of name/value
pairs. In the latter case items are added in the given order.

Normalizing spec has exact same semantics as with the normalize()
function.

	
copy()[source]

	

	
clear() → None. Remove all items from D.[source]

	

	
get(k[, d]) → D[k] if k in D, else d. d defaults to None.

	

	
items() → list of D's (key, value) pairs, as 2-tuples

	

	
iteritems() → an iterator over the (key, value) items of D

	

	
iterkeys() → an iterator over the keys of D

	

	
itervalues() → an iterator over the values of D

	

	
keys() → list of D's keys

	

	
pop(k[, d]) → v, remove specified key and return the corresponding value.

	If key is not found, d is returned if given, otherwise KeyError is raised.

	
popitem() → (k, v), remove and return some (key, value) pair

	as a 2-tuple; but raise KeyError if D is empty.

	
setdefault(k[, d]) → D.get(k,d), also set D[k]=d if k not in D

	

	
update([E,]**F) → None. Update D from mapping/iterable E and F.

	If E present and has a .keys() method, does: for k in E: D[k] = E[k]
If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v
In either case, this is followed by: for k, v in F.items(): D[k] = v

	
values() → list of D's values

	

robot.utils.platform module

robot.utils.recommendations module

	
class robot.utils.recommendations.RecommendationFinder(normalizer=None)[source]

	Bases: object

	
find_and_format(name, candidates, message, max_matches=10)[source]

	

	
find(name, candidates, max_matches=10)[source]

	Return a list of close matches to name from candidates.

	
format(message, recommendations=None)[source]

	Add recommendations to the given message.

The recommendation string looks like:

<message> Did you mean:
 <recommendations[0]>
 <recommendations[1]>
 <recommendations[2]>

robot.utils.restreader module

robot.utils.robotenv module

robot.utils.robotinspect module

robot.utils.robotio module

robot.utils.robotpath module

robot.utils.robottime module

robot.utils.robottypes module

robot.utils.robottypes2 module

robot.utils.robottypes3 module

robot.utils.setter module

robot.utils.sortable module

robot.utils.text module

robot.utils.unic module

robot.variables package

Implements storing and resolving variables.

This package is mainly for internal usage, but utilities for finding
variables can be used externally as well.

	
robot.variables.is_var(string, identifiers='$@&')[source]

	Deprecated since RF 3.2. Use is_variable instead.

	
robot.variables.is_scalar_var(string)[source]

	Deprecated since RF 3.2. Use is_scalar_variable instead.

	
robot.variables.is_list_var(string)[source]

	Deprecated since RF 3.2. Use is_list_variable instead.

	
robot.variables.is_dict_var(string)[source]

	Deprecated since RF 3.2. Use is_dict_variable instead.

	
robot.variables.contains_var(string, identifiers='$@&')[source]

	Deprecated since RF 3.2. Use contains_variable instead.

Submodules

robot.variables.assigner module

	
class robot.variables.assigner.VariableAssignment(assignment)[source]

	Bases: object

	
validate_assignment()[source]

	

	
assigner(context)[source]

	

	
class robot.variables.assigner.AssignmentValidator[source]

	Bases: object

	
validate(variable)[source]

	

	
class robot.variables.assigner.VariableAssigner(assignment, context)[source]

	Bases: object

	
assign(return_value)[source]

	

	
robot.variables.assigner.ReturnValueResolver(assignment)[source]

	

	
class robot.variables.assigner.NoReturnValueResolver[source]

	Bases: object

	
resolve(return_value)[source]

	

	
class robot.variables.assigner.OneReturnValueResolver(variable)[source]

	Bases: object

	
resolve(return_value)[source]

	

	
class robot.variables.assigner.ScalarsOnlyReturnValueResolver(variables)[source]

	Bases: robot.variables.assigner._MultiReturnValueResolver

	
resolve(return_value)

	

	
class robot.variables.assigner.ScalarsAndListReturnValueResolver(variables)[source]

	Bases: robot.variables.assigner._MultiReturnValueResolver

	
resolve(return_value)

	

robot.variables.evaluation module

	
robot.variables.evaluation.evaluate_expression(expression, variable_store, modules=None, namespace=None)[source]

	

	
class robot.variables.evaluation.EvaluationNamespace(variable_store, namespace)[source]

	Bases: _abcoll.MutableMapping

	
clear() → None. Remove all items from D.

	

	
get(k[, d]) → D[k] if k in D, else d. d defaults to None.

	

	
items() → list of D's (key, value) pairs, as 2-tuples

	

	
iteritems() → an iterator over the (key, value) items of D

	

	
iterkeys() → an iterator over the keys of D

	

	
itervalues() → an iterator over the values of D

	

	
keys() → list of D's keys

	

	
pop(k[, d]) → v, remove specified key and return the corresponding value.

	If key is not found, d is returned if given, otherwise KeyError is raised.

	
popitem() → (k, v), remove and return some (key, value) pair

	as a 2-tuple; but raise KeyError if D is empty.

	
setdefault(k[, d]) → D.get(k,d), also set D[k]=d if k not in D

	

	
update([E,]**F) → None. Update D from mapping/iterable E and F.

	If E present and has a .keys() method, does: for k in E: D[k] = E[k]
If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v
In either case, this is followed by: for k, v in F.items(): D[k] = v

	
values() → list of D's values

	

robot.variables.filesetter module

	
class robot.variables.filesetter.VariableFileSetter(store)[source]

	Bases: object

	
set(path_or_variables, args=None, overwrite=False)[source]

	

	
class robot.variables.filesetter.YamlImporter[source]

	Bases: object

	
import_variables(path, args=None)[source]

	

	
class robot.variables.filesetter.PythonImporter[source]

	Bases: object

	
import_variables(path, args=None)[source]

	

robot.variables.finders module

	
robot.variables.finders.get_java_property(name)

	

	
robot.variables.finders.get_java_properties()

	

	
class robot.variables.finders.VariableFinder(variable_store)[source]

	Bases: object

	
find(variable)[source]

	

	
class robot.variables.finders.StoredFinder(store)[source]

	Bases: object

	
identifiers = '$@&'

	

	
find(name)[source]

	

	
class robot.variables.finders.NumberFinder[source]

	Bases: object

	
identifiers = '$'

	

	
find(name)[source]

	

	
class robot.variables.finders.EmptyFinder[source]

	Bases: object

	
identifiers = '$@&'

	

	
empty = <robot.utils.normalizing.NormalizedDict object>

	

	
find(name)[source]

	

	
class robot.variables.finders.InlinePythonFinder(variables)[source]

	Bases: object

	
identifiers = '$@&'

	

	
find(name)[source]

	

	
class robot.variables.finders.ExtendedFinder(finder)[source]

	Bases: object

	
identifiers = '$@&'

	

	
find(name)[source]

	

	
class robot.variables.finders.EnvironmentFinder[source]

	Bases: object

	
identifiers = '%'

	

	
find(name)[source]

	

robot.variables.notfound module

	
robot.variables.notfound.variable_not_found(name, candidates, message=None, deco_braces=True)[source]

	Raise DataError for missing variable name.

Return recommendations for similar variable names if any are found.

robot.variables.replacer module

	
class robot.variables.replacer.VariableReplacer(variable_store)[source]

	Bases: object

	
replace_list(items, replace_until=None, ignore_errors=False)[source]

	Replaces variables from a list of items.

If an item in a list is a @{list} variable its value is returned.
Possible variables from other items are replaced using ‘replace_scalar’.
Result is always a list.

‘replace_until’ can be used to limit replacing arguments to certain
index from the beginning. Used with Run Keyword variants that only
want to resolve some of the arguments in the beginning and pass others
to called keywords unmodified.

	
replace_scalar(item, ignore_errors=False)[source]

	Replaces variables from a scalar item.

If the item is not a string it is returned as is. If it is a variable,
its value is returned. Otherwise possible variables are replaced with
‘replace_string’. Result may be any object.

	
replace_string(item, custom_unescaper=None, ignore_errors=False)[source]

	Replaces variables from a string. Result is always a string.

Input can also be an already found VariableMatch.

robot.variables.scopes module

	
class robot.variables.scopes.VariableScopes(settings)[source]

	Bases: object

	
current

	

	
start_suite()[source]

	

	
end_suite()[source]

	

	
start_test()[source]

	

	
end_test()[source]

	

	
start_keyword()[source]

	

	
end_keyword()[source]

	

	
replace_list(items, replace_until=None, ignore_errors=False)[source]

	

	
replace_scalar(items, ignore_errors=False)[source]

	

	
replace_string(string, custom_unescaper=None, ignore_errors=False)[source]

	

	
set_from_file(path, args, overwrite=False)[source]

	

	
set_from_variable_table(variables, overwrite=False)[source]

	

	
resolve_delayed()[source]

	

	
set_global(name, value)[source]

	

	
set_suite(name, value, top=False, children=False)[source]

	

	
set_test(name, value)[source]

	

	
set_keyword(name, value)[source]

	

	
set_local_variable(name, value)[source]

	

	
as_dict(decoration=True)[source]

	

	
class robot.variables.scopes.GlobalVariables(settings)[source]

	Bases: robot.variables.variables.Variables

	
as_dict(decoration=True)

	

	
clear()

	

	
copy()

	

	
replace_list(items, replace_until=None, ignore_errors=False)

	

	
replace_scalar(item, ignore_errors=False)

	

	
replace_string(item, custom_unescaper=None, ignore_errors=False)

	

	
resolve_delayed()

	

	
set_from_file(path_or_variables, args=None, overwrite=False)

	

	
set_from_variable_table(variables, overwrite=False)

	

	
update(variables)

	

	
class robot.variables.scopes.SetVariables[source]

	Bases: object

	
start_suite()[source]

	

	
end_suite()[source]

	

	
start_test()[source]

	

	
end_test()[source]

	

	
start_keyword()[source]

	

	
end_keyword()[source]

	

	
set_global(name, value)[source]

	

	
set_suite(name, value)[source]

	

	
set_test(name, value)[source]

	

	
set_keyword(name, value)[source]

	

	
update(variables)[source]

	

robot.variables.search module

	
robot.variables.search.search_variable(string, identifiers='$@&%*', ignore_errors=False)[source]

	

	
robot.variables.search.contains_variable(string, identifiers='$@&')[source]

	

	
robot.variables.search.is_variable(string, identifiers='$@&')[source]

	

	
robot.variables.search.is_scalar_variable(string)[source]

	

	
robot.variables.search.is_list_variable(string)[source]

	

	
robot.variables.search.is_dict_variable(string)[source]

	

	
robot.variables.search.is_assign(string, identifiers='$@&', allow_assign_mark=False)[source]

	

	
robot.variables.search.is_scalar_assign(string, allow_assign_mark=False)[source]

	

	
robot.variables.search.is_list_assign(string, allow_assign_mark=False)[source]

	

	
robot.variables.search.is_dict_assign(string, allow_assign_mark=False)[source]

	

	
class robot.variables.search.VariableMatch(string, identifier=None, base=None, items=(), start=-1, end=-1)[source]

	Bases: object

	
resolve_base(variables, ignore_errors=False)[source]

	

	
name

	

	
before

	

	
match

	

	
after

	

	
is_variable()[source]

	

	
is_scalar_variable()[source]

	

	
is_list_variable()[source]

	

	
is_dict_variable()[source]

	

	
is_assign(allow_assign_mark=False)[source]

	

	
is_scalar_assign(allow_assign_mark=False)[source]

	

	
is_list_assign(allow_assign_mark=False)[source]

	

	
is_dict_assign(allow_assign_mark=False)[source]

	

	
class robot.variables.search.VariableSearcher(identifiers, ignore_errors=False)[source]

	Bases: object

	
search(string)[source]

	

	
variable_state(char)[source]

	

	
waiting_item_state(char)[source]

	

	
item_state(char)[source]

	

	
robot.variables.search.unescape_variable_syntax(item)[source]

	

	
class robot.variables.search.VariableIterator(string, identifiers='$@&%', ignore_errors=False)[source]

	Bases: object

robot.variables.store module

	
class robot.variables.store.VariableStore(variables)[source]

	Bases: object

	
resolve_delayed(item=None)[source]

	

	
get(name, default=<object object>, decorated=True)[source]

	

	
update(store)[source]

	

	
clear()[source]

	

	
add(name, value, overwrite=True, decorated=True)[source]

	

	
as_dict(decoration=True)[source]

	

robot.variables.tablesetter module

	
class robot.variables.tablesetter.VariableTableSetter(store)[source]

	Bases: object

	
set(variables, overwrite=False)[source]

	

	
robot.variables.tablesetter.VariableTableValue(value, name, error_reporter=None)[source]

	

	
class robot.variables.tablesetter.VariableTableValueBase(values, error_reporter=None)[source]

	Bases: object

	
resolve(variables)[source]

	

	
report_error(error)[source]

	

	
class robot.variables.tablesetter.ScalarVariableTableValue(values, error_reporter=None)[source]

	Bases: robot.variables.tablesetter.VariableTableValueBase

	
report_error(error)

	

	
resolve(variables)

	

	
class robot.variables.tablesetter.ListVariableTableValue(values, error_reporter=None)[source]

	Bases: robot.variables.tablesetter.VariableTableValueBase

	
report_error(error)

	

	
resolve(variables)

	

	
class robot.variables.tablesetter.DictVariableTableValue(values, error_reporter=None)[source]

	Bases: robot.variables.tablesetter.VariableTableValueBase

	
report_error(error)

	

	
resolve(variables)

	

robot.variables.variables module

	
class robot.variables.variables.Variables[source]

	Bases: object

Represents a set of variables.

Contains methods for replacing variables from list, scalars, and strings.
On top of ${scalar}, @{list} and &{dict} variables, these methods handle
also %{environment} variables.

	
resolve_delayed()[source]

	

	
replace_list(items, replace_until=None, ignore_errors=False)[source]

	

	
replace_scalar(item, ignore_errors=False)[source]

	

	
replace_string(item, custom_unescaper=None, ignore_errors=False)[source]

	

	
set_from_file(path_or_variables, args=None, overwrite=False)[source]

	

	
set_from_variable_table(variables, overwrite=False)[source]

	

	
clear()[source]

	

	
copy()[source]

	

	
update(variables)[source]

	

	
as_dict(decoration=True)[source]

	

robot.api package

robot.api package exposes the public APIs of Robot Framework.

Unless stated otherwise, the APIs exposed in this package are considered
stable, and thus safe to use when building external tools on top of
Robot Framework. Notice that all parsing APIs were rewritten in Robot
Framework 3.2.

Currently exposed APIs are:

	logger module for libraries’ logging purposes.

	deco module with decorators libraries can utilize.

	exceptions module containing exceptions that libraries can utilize for
reporting failures and other events. These exceptions can be imported also directly
via robot.api like from robot.api import SkipExecution.

	parsing module exposing the parsing APIs. This module is new in Robot
Framework 4.0. Various parsing related functions and classes were exposed
directly via robot.api already in Robot Framework 3.2, but they are
effectively deprecated and will be removed in the future.

	TestSuite class for creating executable
test suites programmatically and
TestSuiteBuilder class
for creating such suites based on existing test data on the file system.

	SuiteVisitor abstract class for processing testdata
before execution. This can be used as a base for implementing a pre-run
modifier that is taken into use with --prerunmodifier commandline option.

	ExecutionResult() factory method
for reading execution results from XML output files and
ResultVisitor abstract class to ease
further processing the results.
ResultVisitor can also be used as a base
for pre-Rebot modifier that is taken into use with --prerebotmodifier
commandline option.

	ResultWriter class for writing
reports, logs, XML outputs, and XUnit files. Can write results based on
XML outputs on the file system, as well as based on the result objects
returned by the ExecutionResult() or
an executed TestSuite.

All of the above names can be imported like:

from robot.api import ApiName

See documentations of the individual APIs for more details.

Tip

APIs related to the command line entry points are exposed directly
via the robot root package.

Submodules

robot.api.deco module

	
robot.api.deco.not_keyword(func)[source]

	Decorator to disable exposing functions or methods as keywords.

Examples:

@not_keyword
def not_exposed_as_keyword():
 # ...

def exposed_as_keyword():
 # ...

Alternatively the automatic keyword discovery can be disabled with
the library() decorator or by setting the ROBOT_AUTO_KEYWORDS
attribute to a false value.

New in Robot Framework 3.2.

	
robot.api.deco.keyword(name=None, tags=(), types=())[source]

	Decorator to set custom name, tags and argument types to keywords.

This decorator creates robot_name, robot_tags and robot_types
attributes on the decorated keyword function or method based on the
provided arguments. Robot Framework checks them to determine the keyword’s
name, tags, and argument types, respectively.

Name must be given as a string, tags as a list of strings, and types
either as a dictionary mapping argument names to types or as a list
of types mapped to arguments based on position. It is OK to specify types
only to some arguments, and setting types to None disables type
conversion altogether.

If the automatic keyword discovery has been disabled with the
library() decorator or by setting the ROBOT_AUTO_KEYWORDS
attribute to a false value, this decorator is needed to mark functions
or methods keywords.

Examples:

@keyword
def example():
 # ...

@keyword('Login as user "${user}" with password "${password}"',
 tags=['custom name', 'embedded arguments', 'tags'])
def login(user, password):
 # ...

@keyword(types={'length': int, 'case_insensitive': bool})
def types_as_dict(length, case_insensitive):
 # ...

@keyword(types=[int, bool])
def types_as_list(length, case_insensitive):
 # ...

@keyword(types=None])
def no_conversion(length, case_insensitive=False):
 # ...

	
robot.api.deco.library(scope=None, version=None, doc_format=None, listener=None, auto_keywords=False)[source]

	Class decorator to control keyword discovery and other library settings.

By default disables automatic keyword detection by setting class attribute
ROBOT_AUTO_KEYWORDS = False to the decorated library. In that mode
only methods decorated explicitly with the keyword() decorator become
keywords. If that is not desired, automatic keyword discovery can be
enabled by using auto_keywords=True.

Arguments scope, version, doc_format and listener set the
library scope, version, documentation format and listener by using class
attributes ROBOT_LIBRARY_SCOPE, ROBOT_LIBRARY_VERSION,
ROBOT_LIBRARY_DOC_FORMAT and ROBOT_LIBRARY_LISTENER, respectively.
These attributes are only set if the related arguments are given and they
override possible existing attributes in the decorated class.

Examples:

@library
class KeywordDiscovery:

 @keyword
 def do_something(self):
 # ...

 def not_keyword(self):
 # ...

@library(scope='GLOBAL', version='3.2')
class LibraryConfiguration:
 # ...

The @library decorator is new in Robot Framework 3.2.

robot.api.exceptions module

Exceptions that libraries can use for communicating failures and other events.

These exceptions can be imported also via the top level robot.api package like
from robot.api import SkipExecution.

This module and all exceptions are new in Robot Framework 4.0.

	
exception robot.api.exceptions.Failure(message, html=False)[source]

	Bases: exceptions.AssertionError

Report failed validation.

There is no practical difference in using this exception compared to using
the standard AssertionError. The main benefits are HTML support and that
the name of this exception is consistent with other exceptions in this module.

	Parameters

	
	message – Exception message.

	html – When True, message is considered to be HTML and not escaped.

	
ROBOT_SUPPRESS_NAME = True

	

	
args

	

	
message

	

	
exception robot.api.exceptions.ContinuableFailure(message, html=False)[source]

	Bases: robot.api.exceptions.Failure

Report failed validation but allow continuing execution.

	Parameters

	
	message – Exception message.

	html – When True, message is considered to be HTML and not escaped.

	
ROBOT_CONTINUE_ON_FAILURE = True

	

	
ROBOT_SUPPRESS_NAME = True

	

	
args

	

	
message

	

	
exception robot.api.exceptions.Error(message, html=False)[source]

	Bases: exceptions.RuntimeError

Report error in execution.

Failures related to the system not behaving as expected should typically be
reported using the Failure exception or the standard AssertionError.
This exception can be used, for example, if the keyword is used incorrectly.

There is no practical difference in using this exception compared to using
the standard RuntimeError. The main benefits are HTML support and that
the name of this exception is consistent with other exceptions in this module.

	Parameters

	
	message – Exception message.

	html – When True, message is considered to be HTML and not escaped.

	
ROBOT_SUPPRESS_NAME = True

	

	
args

	

	
message

	

	
exception robot.api.exceptions.FatalError(message, html=False)[source]

	Bases: robot.api.exceptions.Error

Report error that stops the whole execution.

	Parameters

	
	message – Exception message.

	html – When True, message is considered to be HTML and not escaped.

	
ROBOT_EXIT_ON_FAILURE = True

	

	
ROBOT_SUPPRESS_NAME = False

	

	
args

	

	
message

	

	
exception robot.api.exceptions.SkipExecution(message, html=False)[source]

	Bases: exceptions.Exception

Mark the executed test or task skipped.

	Parameters

	
	message – Exception message.

	html – When True, message is considered to be HTML and not escaped.

	
ROBOT_SKIP_EXECUTION = True

	

	
ROBOT_SUPPRESS_NAME = True

	

	
args

	

	
message

	

robot.api.logger module

Public logging API for test libraries.

This module provides a public API for writing messages to the log file
and the console. Test libraries can use this API like:

logger.info('My message')

instead of logging through the standard output like:

print('*INFO* My message')

In addition to a programmatic interface being cleaner to use, this API
has a benefit that the log messages have accurate timestamps.

If the logging methods are used when Robot Framework is not running,
the messages are redirected to the standard Python logging module
using logger named RobotFramework.

Log levels

It is possible to log messages using levels TRACE, DEBUG, INFO,
WARN and ERROR either using the write() function or, more
commonly, with the log level specific trace(), debug(),
info(), warn(), error() functions.

By default the trace and debug messages are not logged but that can be
changed with the --loglevel command line option. Warnings and errors are
automatically written also to the console and to the Test Execution Errors
section in the log file.

Logging HTML

All methods that are used for writing messages to the log file have an
optional html argument. If a message to be logged is supposed to be
shown as HTML, this argument should be set to True. Alternatively,
write() accepts a pseudo log level HTML.

Example

from robot.api import logger

def my_keyword(arg):
 logger.debug('Got argument %s.' % arg)
 do_something()
 logger.info('<i>This</i> is a boring example.', html=True)

	
robot.api.logger.write(msg, level='INFO', html=False)[source]

	Writes the message to the log file using the given level.

Valid log levels are TRACE, DEBUG, INFO (default), WARN, and
ERROR. Additionally it is possible to use HTML pseudo log level that
logs the message as HTML using the INFO level.

Instead of using this method, it is generally better to use the level
specific methods such as info and debug that have separate
html argument to control the message format.

	
robot.api.logger.trace(msg, html=False)[source]

	Writes the message to the log file using the TRACE level.

	
robot.api.logger.debug(msg, html=False)[source]

	Writes the message to the log file using the DEBUG level.

	
robot.api.logger.info(msg, html=False, also_console=False)[source]

	Writes the message to the log file using the INFO level.

If also_console argument is set to True, the message is
written both to the log file and to the console.

	
robot.api.logger.warn(msg, html=False)[source]

	Writes the message to the log file using the WARN level.

	
robot.api.logger.error(msg, html=False)[source]

	Writes the message to the log file using the ERROR level.

	
robot.api.logger.console(msg, newline=True, stream='stdout')[source]

	Writes the message to the console.

If the newline argument is True, a newline character is
automatically added to the message.

By default the message is written to the standard output stream.
Using the standard error stream is possibly by giving the stream
argument value 'stderr'.

robot.api.parsing module

Public API for parsing, inspecting and modifying test data.

Exposed API

The publicly exposed parsing entry points are the following:

	get_tokens(),
get_resource_tokens(), and
get_init_tokens()
functions for parsing data to tokens.

	Token class that contains all token types as
class attributes.

	get_model(),
get_resource_model(), and
get_init_model()
functions for parsing data to model represented as
an abstract syntax tree (AST).

	Model objects used by the AST model.

	ModelVisitor
to ease inspecting model and modifying data.

	ModelTransformer
for adding and removing nodes.

Note

This module is new in Robot Framework 4.0. In Robot Framework 3.2 functions
for getting tokens and model as well as the Token
class were exposed directly via the robot.api package, but other
parts of the parsing API were not publicly exposed. All code targeting
Robot Framework 4.0 or newer should use this module because parsing related
functions and classes will be removed from robot.api in the future.

Note

Parsing was totally rewritten in Robot Framework 3.2 and external
tools using the parsing APIs need to be updated. Depending on
the use case, it may be possible to use the higher level
TestSuiteBuilder() instead.

Parsing data to tokens

Data can be parsed to tokens by using
get_tokens(),
get_resource_tokens() or
get_init_tokens() functions depending on whether the data
represent a test case (or task) file, a resource file, or a suite
initialization file. In practice the difference between these functions is
what settings and sections are valid.

Typically the data is easier to inspect and modify by using the higher level
model discussed in the next section, but in some cases having just the tokens
can be enough. Tokens returned by the aforementioned functions are
Token instances and they have the token type, value,
and position easily available as their attributes. Tokens also have useful
string representation used by the example below:

from robot.api.parsing import get_tokens

path = 'example.robot'

for token in get_tokens(path):
 print(repr(token))

If the example.robot used by the above example would contain

*** Test Cases ***
Example
 Keyword argument

Second example
 Keyword xxx

*** Keywords ***
Keyword
 [Arguments] ${arg}
 Log ${arg}

then the beginning of the output got when running the earlier code would
look like this:

Token(TESTCASE_HEADER, '*** Test Cases ***', 1, 0)
Token(EOL, '\n', 1, 18)
Token(EOS, '', 1, 19)
Token(TESTCASE_NAME, 'Example', 2, 0)
Token(EOL, '\n', 2, 7)
Token(EOS, '', 2, 8)
Token(SEPARATOR, ' ', 3, 0)
Token(KEYWORD, 'Keyword', 3, 4)
Token(SEPARATOR, ' ', 3, 11)
Token(ARGUMENT, 'argument', 3, 15)
Token(EOL, '\n', 3, 23)
Token(EOS, '', 3, 24)
Token(EOL, '\n', 4, 0)
Token(EOS, '', 4, 1)

The output shows the token type, value, line number and column offset. When finding
tokens by their type, the constants in the Token class such
as Token.TESTCASE_NAME and Token.EOL should be used instead the values
of these constants like 'TESTCASE NAME' and 'EOL'. These values have
changed slightly in Robot Framework 4.0 and they may change in the future as well.

The EOL tokens denote end of a line and they include the newline character
and possible trailing spaces. The EOS tokens denote end of a logical
statement. Typically a single line forms a statement, but when the ...
syntax is used for continuation, a statement spans multiple lines. In
special cases a single line can also contain multiple statements.

Errors caused by unrecognized data such as non-existing section or setting names
are handled during the tokenizing phase. Such errors are reported using tokens
that have ERROR type and the actual error message in their error attribute.
Syntax errors such as empty FOR loops are only handled when building the higher
level model discussed below.

See the documentation of get_tokens() for details
about different ways how to specify the data to be parsed, how to control
should all tokens or only data tokens be returned, and should variables in
keyword arguments and elsewhere be tokenized or not.

Parsing data to model

Data can be parsed to a higher level model by using
get_model(),
get_resource_model(), or
get_init_model() functions depending on the type of
the parsed file same way as when parsing data to tokens.

The model is represented as an abstract syntax tree (AST) implemented on top
of Python’s standard ast.AST [https://docs.python.org/library/ast.html#ast.AST] class. To see how the model looks like, it is
possible to use the ast.dump() [https://docs.python.org/library/ast.html#ast.dump] function or the third-party astpretty [https://pypi.org/project/astpretty]
module:

import ast
import astpretty
from robot.api.parsing import get_model

model = get_model('example.robot')
print(ast.dump(model, include_attributes=True))
print('-' * 72)
astpretty.pprint(model)

Running this code with the example.robot file from the previous
section would produce so much output that it is not included here. If
you are going to work with Robot Framework’s AST, you are recommended to
try that on your own.

Model objects

The model is build from nodes that are based ast.AST [https://docs.python.org/library/ast.html#ast.AST] and further categorized
to blocks and statements. Blocks can contain other blocks and statements as
child nodes whereas statements only have tokens containing the actual data as
Token instances. Both statements and blocks expose
their position information via lineno, col_offset, end_lineno and
end_col_offset attributes and some nodes have also other special attributes
available.

Blocks:

	File (the root of the model)

	SettingSection

	VariableSection

	TestCaseSection

	KeywordSection

	CommentSection

	TestCase

	Keyword

	For

	If

Statements:

	SectionHeader

	LibraryImport

	ResourceImport

	VariablesImport

	Documentation

	Metadata

	ForceTags

	DefaultTags

	SuiteSetup

	SuiteTeardown

	TestSetup

	TestTeardown

	TestTemplate

	TestTimeout

	Variable

	TestCaseName

	KeywordName

	Setup

	Teardown

	Tags

	Template

	Timeout

	Arguments

	Return

	KeywordCall

	TemplateArguments

	ForHeader

	IfHeader

	ElseIfHeader

	ElseHeader

	End

	Comment

	Error

	EmptyLine

Inspecting model

The easiest way to inspect what data a model contains is implementing
ModelVisitor and creating
visit_NodeName to visit nodes with name NodeName as needed.
The following example illustrates how to find what tests a certain test
case file contains:

from robot.api.parsing import get_model, ModelVisitor

class TestNamePrinter(ModelVisitor):

 def visit_File(self, node):
 print(f"File '{node.source}' has following tests:")
 # Call `generic_visit` to visit also child nodes.
 self.generic_visit(node)

 def visit_TestCaseName(self, node):
 print(f"- {node.name} (on line {node.lineno})")

model = get_model('example.robot')
printer = TestNamePrinter()
printer.visit(model)

When the above code is run using the earlier example.robot, the
output is this:

File 'example.robot' has following tests:
- Example (on line 2)
- Second example (on line 5)

Handling errors in model

All nodes in the model have errors attribute that contains possible errors
the node has. These errors include syntax errors such as empty FOR loops or IF
without a condition as well as errors caused by unrecognized data such as
non-existing section or setting names.

Unrecognized data is handled already during the tokenizing phase. In the model
such data is represented as Error
nodes and their errors attribute contain error information got from the
underlying ERROR tokens. Syntax errors do not create
Error
nodes, but instead the model has normal nodes such as
If
with errors in their errors attribute.

A simple way to go through the model and see are there errors is using the
ModelVisitor
discussed in the previous section:

class ErrorReporter(ModelVisitor):

 # Implement `generic_visit` to visit all nodes.
 def generic_visit(self, node):
 if node.errors:
 print(f'Error on line {node.lineno}:')
 for error in node.errors:
 print(f'- {error}')
 ModelVisitor.generic_visit(self, node)

Modifying data

Existing data the model contains can be modified simply by modifying values of
the underlying tokens. If changes need to be saved, that is as easy as calling
the save() method of the root model object. When
just modifying token values, it is possible to still use
ModelVisitor
discussed in the above section. The next section discusses adding or removing
nodes and then
ModelTransformer
should be used instead.

Modifications to tokens obviously require finding the tokens to be modified.
The first step is finding nodes containing the tokens by implementing
needed visit_NodeName methods. Then the exact token or tokens
can be found using nodes’
get_token() or
get_tokens() methods.
If only token values are needed,
get_value() or
get_values() can be used as a shortcut.
First finding nodes and then the right tokens is illustrated by
this keyword renaming example:

from robot.api.parsing import get_model, ModelVisitor, Token

class KeywordRenamer(ModelVisitor):

 def __init__(self, old_name, new_name):
 self.old_name = self.normalize(old_name)
 self.new_name = new_name

 def normalize(self, name):
 return name.lower().replace(' ', '').replace('_', '')

 def visit_KeywordName(self, node):
 '''Rename keyword definitions.'''
 if self.normalize(node.name) == self.old_name:
 token = node.get_token(Token.KEYWORD_NAME)
 token.value = self.new_name

 def visit_KeywordCall(self, node):
 '''Rename keyword usages.'''
 if self.normalize(node.keyword) == self.old_name:
 token = node.get_token(Token.KEYWORD)
 token.value = self.new_name

model = get_model('example.robot')
renamer = KeywordRenamer('Keyword', 'New Name')
renamer.visit(model)
model.save()

If you run the above example using the earlier example.robot, you
can see that the Keyword keyword has been renamed to New Name. Notice
that a real keyword renamer needed to take into account also keywords used
with setups, teardowns and templates.

When token values are changed, column offset of the other tokens on same
line are likely to be wrong. This does not affect saving the model or other
typical usages, but if it is a problem then the caller needs to updated
offsets separately.

Adding and removing nodes

Bigger changes to the model are somewhat more complicated than just modifying
existing token values. When doing this kind of changes,
ModelTransformer
should be used instead of
ModelVisitor
that was discussed in the previous sections.

Removing nodes is relative easy and is accomplished by returning None
from visit_NodeName methods. Remember to return the original node,
or possibly a replacement node, from all of these methods when you do not
want a node to be removed.

Adding nodes requires constructing needed Model objects and adding them
to the model. The following example demonstrates both removing and adding nodes.
If you run it against the earlier example.robot, you see that
the first test gets a new keyword, the second test is removed, and
settings section with documentation is added.

from robot.api.parsing import (
 get_model, Documentation, EmptyLine, KeywordCall,
 ModelTransformer, SettingSection, SectionHeader, Token
)

class TestModifier(ModelTransformer):

 def visit_TestCase(self, node):
 # The matched `TestCase` node is a block with `header` and
 # `body` attributes. `header` is a statement with familiar
 # `get_token` and `get_value` methods for getting certain
 # tokens or their value.
 name = node.header.get_value(Token.TESTCASE_NAME)
 # Returning `None` drops the node altogether i.e. removes
 # this test.
 if name == 'Second example':
 return None
 # Construct new keyword call statement from tokens. See `visit_File`
 # below for an example creating statements using `from_params`.
 new_keyword = KeywordCall([
 Token(Token.SEPARATOR, ' '),
 Token(Token.KEYWORD, 'New Keyword'),
 Token(Token.SEPARATOR, ' '),
 Token(Token.ARGUMENT, 'xxx'),
 Token(Token.EOL)
])
 # Add the keyword call to test as the second item.
 node.body.insert(1, new_keyword)
 # No need to call `generic_visit` because we are not
 # modifying child nodes. The node itself must to be
 # returned to avoid dropping it.
 return node

 def visit_File(self, node):
 # Create settings section with documentation. Needed header and body
 # statements are created using `from_params` method. This is typically
 # more convenient than creating statements based on tokens like above.
 settings = SettingSection(
 header=SectionHeader.from_params(Token.SETTING_HEADER),
 body=[
 Documentation.from_params('This is a really\npowerful API!'),
 EmptyLine.from_params()
]
)
 # Add settings to the beginning of the file.
 node.sections.insert(0, settings)
 # Call `generic_visit` to visit also child nodes.
 return self.generic_visit(node)

model = get_model('example.robot')
TestModifier().visit(model)
model.save('modified.robot')

Executing model

It is possible to convert a parsed and possibly modified model into an
executable TestSuite structure by using its
from_model() class method. In this case
the get_model() function should be given the curdir
argument to get possible ${CURDIR} variable resolved correctly.

from robot.api import TestSuite
from robot.api.parsing import get_model

model = get_model('example.robot', curdir='/home/robot/example')
modify model as needed
suite = TestSuite.from_model(model)
suite.run()

For more details about executing the created
TestSuite object, see the documentation
of its run() method. Notice also
that if you do not need to modify the parsed model, it is easier to
get the executable suite by using the
from_file_system() class method.

robot.conf package

Implements settings for both test execution and output processing.

This package implements RobotSettings and
RebotSettings classes used internally by
the framework. There should be no need to use these classes externally.

This package can be considered relatively stable. Aforementioned classes
are likely to be rewritten at some point to be more convenient to use.
Instantiating them is not likely to change, though.

Submodules

robot.conf.gatherfailed module

	
class robot.conf.gatherfailed.GatherFailedTests[source]

	Bases: robot.model.visitor.SuiteVisitor

	
visit_test(test)[source]

	Implements traversing through tests.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
visit_keyword(kw)[source]

	Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
end_for(for_)

	Called when FOR loop ends. Default implementation does nothing.

	
end_for_iteration(iteration)

	Called when FOR loop iteration ends. Default implementation does nothing.

	
end_if(if_)

	Called when IF/ELSE structure ends. Default implementation does nothing.

	
end_if_branch(branch)

	Called when IF/ELSE branch ends. Default implementation does nothing.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_for(for_)

	Called when FOR loop starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_for_iteration(iteration)

	Called when FOR loop iteration starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if(if_)

	Called when IF/ELSE structure starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if_branch(branch)

	Called when IF/ELSE branch starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_for(for_)

	Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without
calling start_for() or end_for() nor visiting body.

	
visit_for_iteration(iteration)

	Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side
there are no iterations.

Can be overridden to allow modifying the passed in iteration without
calling start_for_iteration() or end_for_iteration() nor visiting
body.

	
visit_if(if_)

	Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches
are in its body and visited using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without
calling start_if() or end_if() nor visiting branches.

	
visit_if_branch(branch)

	Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without
calling start_if_branch() or end_if_branch() nor visiting body.

	
visit_message(msg)

	Implements visiting messages.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
class robot.conf.gatherfailed.GatherFailedSuites[source]

	Bases: robot.model.visitor.SuiteVisitor

	
start_suite(suite)[source]

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_test(test)[source]

	Implements traversing through tests.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
visit_keyword(kw)[source]

	Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
end_for(for_)

	Called when FOR loop ends. Default implementation does nothing.

	
end_for_iteration(iteration)

	Called when FOR loop iteration ends. Default implementation does nothing.

	
end_if(if_)

	Called when IF/ELSE structure ends. Default implementation does nothing.

	
end_if_branch(branch)

	Called when IF/ELSE branch ends. Default implementation does nothing.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_for(for_)

	Called when FOR loop starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_for_iteration(iteration)

	Called when FOR loop iteration starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if(if_)

	Called when IF/ELSE structure starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if_branch(branch)

	Called when IF/ELSE branch starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_for(for_)

	Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without
calling start_for() or end_for() nor visiting body.

	
visit_for_iteration(iteration)

	Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side
there are no iterations.

Can be overridden to allow modifying the passed in iteration without
calling start_for_iteration() or end_for_iteration() nor visiting
body.

	
visit_if(if_)

	Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches
are in its body and visited using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without
calling start_if() or end_if() nor visiting branches.

	
visit_if_branch(branch)

	Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without
calling start_if_branch() or end_if_branch() nor visiting body.

	
visit_message(msg)

	Implements visiting messages.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
robot.conf.gatherfailed.gather_failed_tests(output)[source]

	

	
robot.conf.gatherfailed.gather_failed_suites(output)[source]

	

robot.conf.settings module

	
class robot.conf.settings.RobotSettings(options=None, **extra_options)[source]

	Bases: robot.conf.settings._BaseSettings

	
get_rebot_settings()[source]

	

	
listeners

	

	
debug_file

	

	
suite_config

	

	
randomize_seed

	

	
randomize_suites

	

	
randomize_tests

	

	
dry_run

	

	
exit_on_failure

	

	
exit_on_error

	

	
skipped_tags

	

	
skip_on_failure

	

	
skip_teardown_on_exit

	

	
console_output_config

	

	
console_type

	

	
console_width

	

	
console_markers

	

	
max_error_lines

	

	
pre_run_modifiers

	

	
run_empty_suite

	

	
variables

	

	
variable_files

	

	
extension

	

	
console_colors

	

	
critical_tags

	

	
flatten_keywords

	

	
log

	

	
log_level

	

	
output

	

	
output_directory

	

	
pre_rebot_modifiers

	

	
remove_keywords

	

	
report

	

	
rpa

	

	
split_log

	

	
statistics_config

	

	
status_rc

	

	
xunit

	

	
class robot.conf.settings.RebotSettings(options=None, **extra_options)[source]

	Bases: robot.conf.settings._BaseSettings

	
suite_config

	

	
log_config

	

	
report_config

	

	
merge

	

	
console_output_config

	

	
console_colors

	

	
critical_tags

	

	
flatten_keywords

	

	
log

	

	
log_level

	

	
output

	

	
output_directory

	

	
pre_rebot_modifiers

	

	
process_empty_suite

	

	
remove_keywords

	

	
report

	

	
rpa

	

	
split_log

	

	
statistics_config

	

	
status_rc

	

	
xunit

	

	
expand_keywords

	

robot.htmldata package

Package for writing output files in HTML format.

This package is considered stable but it is not part of the public API.

Submodules

robot.htmldata.htmlfilewriter module

	
class robot.htmldata.htmlfilewriter.HtmlFileWriter(output, model_writer)

	Bases: object

	
write(template)

	

	
class robot.htmldata.htmlfilewriter.ModelWriter

	Bases: robot.htmldata.htmlfilewriter._Writer

	
handles(line)

	

	
write(line)

	

	
class robot.htmldata.htmlfilewriter.LineWriter(output)

	Bases: robot.htmldata.htmlfilewriter._Writer

	
handles(line)

	

	
write(line)

	

	
class robot.htmldata.htmlfilewriter.GeneratorWriter(html_writer)

	Bases: robot.htmldata.htmlfilewriter._Writer

	
write(line)

	

	
handles(line)

	

	
class robot.htmldata.htmlfilewriter.JsFileWriter(html_writer, base_dir)

	Bases: robot.htmldata.htmlfilewriter._InliningWriter

	
write(line)

	

	
handles(line)

	

	
class robot.htmldata.htmlfilewriter.CssFileWriter(html_writer, base_dir)

	Bases: robot.htmldata.htmlfilewriter._InliningWriter

	
write(line)

	

	
handles(line)

	

robot.htmldata.jartemplate module

robot.htmldata.jsonwriter module

	
class robot.htmldata.jsonwriter.JsonWriter(output, separator='')

	Bases: object

	
write_json(prefix, data, postfix=';\n', mapping=None, separator=True)

	

	
write(string, postfix=';\n', separator=True)

	

	
class robot.htmldata.jsonwriter.JsonDumper(output)

	Bases: object

	
dump(data, mapping=None)

	

	
class robot.htmldata.jsonwriter.StringDumper(jsondumper)

	Bases: robot.htmldata.jsonwriter._Dumper

	
dump(data, mapping)

	

	
handles(data, mapping)

	

	
class robot.htmldata.jsonwriter.IntegerDumper(jsondumper)

	Bases: robot.htmldata.jsonwriter._Dumper

	
dump(data, mapping)

	

	
handles(data, mapping)

	

	
class robot.htmldata.jsonwriter.DictDumper(jsondumper)

	Bases: robot.htmldata.jsonwriter._Dumper

	
dump(data, mapping)

	

	
handles(data, mapping)

	

	
class robot.htmldata.jsonwriter.TupleListDumper(jsondumper)

	Bases: robot.htmldata.jsonwriter._Dumper

	
dump(data, mapping)

	

	
handles(data, mapping)

	

	
class robot.htmldata.jsonwriter.MappingDumper(jsondumper)

	Bases: robot.htmldata.jsonwriter._Dumper

	
handles(data, mapping)

	

	
dump(data, mapping)

	

	
class robot.htmldata.jsonwriter.NoneDumper(jsondumper)

	Bases: robot.htmldata.jsonwriter._Dumper

	
handles(data, mapping)

	

	
dump(data, mapping)

	

robot.htmldata.normaltemplate module

	
class robot.htmldata.normaltemplate.HtmlTemplate(filename)

	Bases: object

robot.htmldata.template module

robot.libdocpkg package

Implements the Libdoc tool.

The command line entry point and programmatic interface for Libdoc
are provided by the separate robot.libdoc module.

This package is considered stable but it is not part of the public API.

Submodules

robot.libdocpkg.builder module

	
robot.libdocpkg.builder.JavaDocBuilder()

	

	
robot.libdocpkg.builder.LibraryDocumentation(library_or_resource, name=None, version=None, doc_format=None)

	

	
robot.libdocpkg.builder.DocumentationBuilder(library_or_resource)

	Create a documentation builder for the specified library or resource.

The argument can be a path to a library, a resource file or to a spec file
generated by Libdoc earlier. If the argument does not point to an existing file,
it is expected to be the name of the library to be imported. If a resource file
is to be imported from PYTHONPATH, then ResourceDocBuilder
must be used explicitly instead.

robot.libdocpkg.consoleviewer module

	
class robot.libdocpkg.consoleviewer.ConsoleViewer(libdoc)

	Bases: object

	
classmethod handles(command)

	

	
classmethod validate_command(command, args)

	

	
view(command, *args)

	

	
list(*patterns)

	

	
show(*names)

	

	
version()

	

	
class robot.libdocpkg.consoleviewer.KeywordMatcher(libdoc)

	Bases: object

	
search(patterns)

	

robot.libdocpkg.datatypes module

	
class robot.libdocpkg.datatypes.EnumType

	Bases: object

	
class robot.libdocpkg.datatypes.DataTypeCatalog

	Bases: object

	
enums

	

	
typed_dicts

	

	
update(types)

	

	
to_dictionary()

	

	
class robot.libdocpkg.datatypes.TypedDictDoc(name='', doc='', items=None, type='TypedDict')

	Bases: robot.utils.sortable.Sortable

	
classmethod from_TypedDict(typed_dict)

	

	
to_dictionary()

	

	
class robot.libdocpkg.datatypes.EnumDoc(name='', doc='', members=None, type='Enum')

	Bases: robot.utils.sortable.Sortable

	
classmethod from_Enum(enum_type)

	

	
to_dictionary()

	

robot.libdocpkg.htmlutils module

	
class robot.libdocpkg.htmlutils.DocFormatter(keywords, data_types, introduction, doc_format='ROBOT')

	Bases: object

	
html(doc, intro=False)

	

	
class robot.libdocpkg.htmlutils.DocToHtml(doc_format)

	Bases: object

	
class robot.libdocpkg.htmlutils.HtmlToText

	Bases: object

	
html_tags = {'b': '*', 'code': '``', 'div.*?': '', 'em': '_', 'i': '_', 'strong': '*'}

	

	
html_chars = {'&': '&', ''': "'", '>': '>', '<': '<', '"': '"', '<br */?>': '\n'}

	

	
get_shortdoc_from_html(doc)

	

	
html_to_plain_text(doc)

	

robot.libdocpkg.htmlwriter module

	
class robot.libdocpkg.htmlwriter.LibdocHtmlWriter

	Bases: object

	
write(libdoc, output)

	

	
class robot.libdocpkg.htmlwriter.LibdocModelWriter(output, libdoc)

	Bases: robot.htmldata.htmlfilewriter.ModelWriter

	
write(line)

	

	
handles(line)

	

robot.libdocpkg.java9builder module

robot.libdocpkg.javabuilder module

	
class robot.libdocpkg.javabuilder.JavaDocBuilder

	Bases: object

	
build(path)

	

	
robot.libdocpkg.javabuilder.ClassDoc(path)

	Process the given Java source file and return ClassDoc instance.

Processing is done using com.sun.tools.javadoc APIs. Returned object
implements com.sun.javadoc.ClassDoc interface:
http://docs.oracle.com/javase/7/docs/jdk/api/javadoc/doclet/

robot.libdocpkg.jsonbuilder module

	
class robot.libdocpkg.jsonbuilder.JsonDocBuilder

	Bases: object

	
build(path)

	

	
build_from_dict(spec)

	

robot.libdocpkg.jsonwriter module

	
class robot.libdocpkg.jsonwriter.LibdocJsonWriter

	Bases: object

	
write(libdoc, outfile)

	

robot.libdocpkg.model module

	
class robot.libdocpkg.model.LibraryDoc(name='', doc='', version='', type='LIBRARY', scope='TEST', doc_format='ROBOT', source=None, lineno=-1)

	Bases: object

	
doc

	

	
doc_format

	

	
inits

	

	
keywords

	

	
all_tags

	

	
save(output=None, format='HTML')

	

	
convert_docs_to_html()

	

	
to_dictionary()

	

	
to_json(indent=None)

	

	
class robot.libdocpkg.model.KeywordDoc(name='', args=(), doc='', shortdoc='', tags=(), source=None, lineno=-1, parent=None)

	Bases: robot.utils.sortable.Sortable

	
shortdoc

	

	
deprecated

	

	
generate_shortdoc()

	

	
to_dictionary()

	

robot.libdocpkg.output module

	
class robot.libdocpkg.output.LibdocOutput(output_path, format)

	Bases: object

robot.libdocpkg.robotbuilder module

	
class robot.libdocpkg.robotbuilder.LibraryDocBuilder

	Bases: object

	
build(library)

	

	
class robot.libdocpkg.robotbuilder.ResourceDocBuilder

	Bases: object

	
build(path)

	

	
class robot.libdocpkg.robotbuilder.KeywordDocBuilder(resource=False)

	Bases: object

	
build_keywords(lib)

	

	
build_keyword(kw)

	

robot.libdocpkg.specbuilder module

	
class robot.libdocpkg.specbuilder.SpecDocBuilder

	Bases: object

	
build(path)

	

robot.libdocpkg.writer module

	
robot.libdocpkg.writer.LibdocWriter(format=None)

	

robot.libdocpkg.xmlwriter module

	
class robot.libdocpkg.xmlwriter.LibdocXmlWriter

	Bases: object

	
write(libdoc, outfile)

	

robot.libraries package

Package hosting Robot Framework standard test libraries.

Libraries are mainly used externally in the test data, but they can be
also used by custom test libraries if there is a need. Especially
the BuiltIn library is often useful
when there is a need to interact with the framework.

Because libraries are documented using Robot Framework’s own documentation
syntax, the generated API docs are not that well formed. It is thus better
to find the generated library documentations, for example, via
the http://robotframework.org web site.

Submodules

robot.libraries.BuiltIn module

	
robot.libraries.BuiltIn.run_keyword_variant(resolve)

	

	
class robot.libraries.BuiltIn.BuiltIn

	Bases: robot.libraries.BuiltIn._Verify, robot.libraries.BuiltIn._Converter, robot.libraries.BuiltIn._Variables, robot.libraries.BuiltIn._RunKeyword, robot.libraries.BuiltIn._Control, robot.libraries.BuiltIn._Misc

An always available standard library with often needed keywords.

BuiltIn is Robot Framework’s standard library that provides a set
of generic keywords needed often. It is imported automatically and
thus always available. The provided keywords can be used, for example,
for verifications (e.g. Should Be Equal, Should Contain),
conversions (e.g. Convert To Integer) and for various other purposes
(e.g. Log, Sleep, Run Keyword If, Set Global Variable).

== Table of contents ==

%TOC%

= HTML error messages =

Many of the keywords accept an optional error message to use if the keyword
fails, and it is possible to use HTML in these messages by prefixing them
with *HTML*. See Fail keyword for a usage example. Notice that using
HTML in messages is not limited to BuiltIn library but works with any
error message.

= Evaluating expressions =

Many keywords, such as Evaluate, Run Keyword If and Should Be True,
accept an expression that is evaluated in Python.

== Evaluation namespace ==

Expressions are evaluated using Python’s
[http://docs.python.org/library/functions.html#eval|eval] function so
that all Python built-ins like len() and int() are available.
In addition to that, all unrecognized variables are considered to be
modules that are automatically imported. It is possible to use all
available Python modules, including the standard modules and the installed
third party modules.

Evaluate also allows configuring the execution namespace with a custom
namespace and with custom modules to be imported. The latter functionality
is useful in special cases where the automatic module import does not work
such as when using nested modules like rootmod.submod or list
comprehensions. See the documentation of the Evaluate keyword for mode
details.

NOTE: Automatic module import is a new feature in Robot Framework 3.2.
Earlier modules needed to be explicitly taken into use when using the
Evaluate keyword and other keywords only had access to sys and
os modules.

== Using variables ==

When a variable is used in the expressing using the normal ${variable}
syntax, its value is replaced before the expression is evaluated. This
means that the value used in the expression will be the string
representation of the variable value, not the variable value itself.
This is not a problem with numbers and other objects that have a string
representation that can be evaluated directly, but with other objects
the behavior depends on the string representation. Most importantly,
strings must always be quoted, and if they can contain newlines, they must
be triple quoted.

Actual variables values are also available in the evaluation namespace.
They can be accessed using special variable syntax without the curly
braces like $variable. These variables should never be quoted.

Using the $variable syntax slows down expression evaluation a little.
This should not typically matter, but should be taken into account if
complex expressions are evaluated often and there are strict time
constrains.

Notice that instead of creating complicated expressions, it is often better
to move the logic into a test library. That eases maintenance and can also
enhance execution speed.

= Boolean arguments =

Some keywords accept arguments that are handled as Boolean values true or
false. If such an argument is given as a string, it is considered false if
it is an empty string or equal to FALSE, NONE, NO, OFF or
0, case-insensitively. Keywords verifying something that allow dropping
actual and expected values from the possible error message also consider
string no values to be false. Other strings are considered true unless
the keyword documentation explicitly states otherwise, and other argument
types are tested using the same
[http://docs.python.org/library/stdtypes.html#truth|rules as in Python].

True examples:

False examples:

= Pattern matching =

Many keywords accepts arguments as either glob or regular expression
patterns.

== Glob patterns ==

Some keywords, for example Should Match, support so called
[http://en.wikipedia.org/wiki/Glob_(programming)|glob patterns] where:

Unlike with glob patterns normally, path separator characters / and
\ and the newline character \n are matches by the above
wildcards.

== Regular expressions ==

Some keywords, for example Should Match Regexp, support
[http://en.wikipedia.org/wiki/Regular_expression|regular expressions]
that are more powerful but also more complicated that glob patterns.
The regular expression support is implemented using Python’s
[http://docs.python.org/library/re.html|re module] and its documentation
should be consulted for more information about the syntax.

Because the backslash character (\) is an escape character in
Robot Framework test data, possible backslash characters in regular
expressions need to be escaped with another backslash like \\d\\w+.
Strings that may contain special characters but should be handled
as literal strings, can be escaped with the Regexp Escape keyword.

= Multiline string comparison =

Should Be Equal and Should Be Equal As Strings report the failures using
[http://en.wikipedia.org/wiki/Diff_utility#Unified_format|unified diff
format] if both strings have more than two lines.

Results in the following error message:

= String representations =

Several keywords log values explicitly (e.g. Log) or implicitly (e.g.
Should Be Equal when there are failures). By default keywords log values
using “human readable” string representation, which means that strings
like Hello and numbers like 42 are logged as-is. Most of the time
this is the desired behavior, but there are some problems as well:

	It is not possible to see difference between different objects that
have same string representation like string 42 and integer 42.
Should Be Equal and some other keywords add the type information to
the error message in these cases, though.

	Non-printable characters such as the null byte are not visible.

	Trailing whitespace is not visible.

	Different newlines (\r\n on Windows, \n elsewhere) cannot
be separated from each others.

	There are several Unicode characters that are different but look the
same. One example is the Latin a (\u0061) and the Cyrillic
а (\u0430). Error messages like a != а are
not very helpful.

	Some Unicode characters can be represented using
[https://en.wikipedia.org/wiki/Unicode_equivalence|different forms].
For example, ä can be represented either as a single code point
\u00e4 or using two code points \u0061 and \u0308 combined
together. Such forms are considered canonically equivalent, but strings
containing them are not considered equal when compared in Python. Error
messages like ä != ä are not that helpful either.

	Containers such as lists and dictionaries are formatted into a single
line making it hard to see individual items they contain.

To overcome the above problems, some keywords such as Log and
Should Be Equal have an optional formatter argument that can be
used to configure the string representation. The supported values are
str (default), repr, and ascii that work similarly as
[https://docs.python.org/library/functions.html|Python built-in functions]
with same names. More detailed semantics are explained below.

== str ==

Use the “human readable” string representation. Equivalent to using
str() in Python 3 and unicode() in Python 2. This is the default.

== repr ==

Use the “machine readable” string representation. Similar to using
repr() in Python, which means that strings like Hello are logged
like 'Hello', newlines and non-printable characters are escaped like
\n and \x00, and so on. Non-ASCII characters are shown as-is
like ä in Python 3 and in escaped format like \xe4 in Python 2.
Use ascii to always get the escaped format.

There are also some enhancements compared to the standard repr():
- Bigger lists, dictionaries and other containers are pretty-printed so

that there is one item per row.

	On Python 2 the u prefix is omitted with Unicode strings and
the b prefix is added to byte strings.

== ascii ==

Same as using ascii() in Python 3 or repr() in Python 2 where
ascii() does not exist. Similar to using repr explained above
but with the following differences:

	On Python 3 non-ASCII characters are escaped like \xe4 instead of
showing them as-is like ä. This makes it easier to see differences
between Unicode characters that look the same but are not equal. This
is how repr() works in Python 2.

	On Python 2 just uses the standard repr() meaning that Unicode
strings get the u prefix and no b prefix is added to byte
strings.

	Containers are not pretty-printed.

	
ROBOT_LIBRARY_SCOPE = 'GLOBAL'

	

	
ROBOT_LIBRARY_VERSION = '4.1.2'

	

	
call_method(object, method_name, *args, **kwargs)

	Calls the named method of the given object with the provided arguments.

The possible return value from the method is returned and can be
assigned to a variable. Keyword fails both if the object does not have
a method with the given name or if executing the method raises an
exception.

Possible equal signs in arguments must be escaped with a backslash
like \=.

	
catenate(*items)

	Catenates the given items together and returns the resulted string.

By default, items are catenated with spaces, but if the first item
contains the string SEPARATOR=<sep>, the separator <sep> is
used instead. Items are converted into strings when necessary.

	
comment(*messages)

	Displays the given messages in the log file as keyword arguments.

This keyword does nothing with the arguments it receives, but as they
are visible in the log, this keyword can be used to display simple
messages. Given arguments are ignored so thoroughly that they can even
contain non-existing variables. If you are interested about variable
values, you can use the Log or Log Many keywords.

	
continue_for_loop()

	Skips the current for loop iteration and continues from the next.

Skips the remaining keywords in the current for loop iteration and
continues from the next one. Can be used directly in a for loop or
in a keyword that the loop uses.

See Continue For Loop If to conditionally continue a for loop without
using Run Keyword If or other wrapper keywords.

	
continue_for_loop_if(condition)

	Skips the current for loop iteration if the condition is true.

A wrapper for Continue For Loop to continue a for loop based on
the given condition. The condition is evaluated using the same
semantics as with Should Be True keyword.

	
convert_to_binary(item, base=None, prefix=None, length=None)

	Converts the given item to a binary string.

The item, with an optional base, is first converted to an
integer using Convert To Integer internally. After that it
is converted to a binary number (base 2) represented as a
string such as 1011.

The returned value can contain an optional prefix and can be
required to be of minimum length (excluding the prefix and a
possible minus sign). If the value is initially shorter than
the required length, it is padded with zeros.

See also Convert To Integer, Convert To Octal and Convert To Hex.

	
convert_to_boolean(item)

	Converts the given item to Boolean true or false.

Handles strings True and False (case-insensitive) as expected,
otherwise returns item’s
[http://docs.python.org/library/stdtypes.html#truth|truth value]
using Python’s bool() method.

	
convert_to_bytes(input, input_type='text')

	Converts the given input to bytes according to the input_type.

Valid input types are listed below:

	text: Converts text to bytes character by character. All
characters with ordinal below 256 can be used and are converted to
bytes with same values. Many characters are easiest to represent
using escapes like \x00 or \xff. Supports both Unicode
strings and bytes.

	int: Converts integers separated by spaces to bytes. Similarly as
with Convert To Integer, it is possible to use binary, octal, or
hex values by prefixing the values with 0b, 0o, or 0x,
respectively.

	hex: Converts hexadecimal values to bytes. Single byte is always
two characters long (e.g. 01 or FF). Spaces are ignored and
can be used freely as a visual separator.

	bin: Converts binary values to bytes. Single byte is always eight
characters long (e.g. 00001010). Spaces are ignored and can be
used freely as a visual separator.

In addition to giving the input as a string, it is possible to use
lists or other iterables containing individual characters or numbers.
In that case numbers do not need to be padded to certain length and
they cannot contain extra spaces.

Use Encode String To Bytes in String library if you need to
convert text to bytes using a certain encoding.

	
convert_to_hex(item, base=None, prefix=None, length=None, lowercase=False)

	Converts the given item to a hexadecimal string.

The item, with an optional base, is first converted to an
integer using Convert To Integer internally. After that it
is converted to a hexadecimal number (base 16) represented as
a string such as FF0A.

The returned value can contain an optional prefix and can be
required to be of minimum length (excluding the prefix and a
possible minus sign). If the value is initially shorter than
the required length, it is padded with zeros.

By default the value is returned as an upper case string, but the
lowercase argument a true value (see Boolean arguments) turns
the value (but not the given prefix) to lower case.

See also Convert To Integer, Convert To Binary and Convert To Octal.

	
convert_to_integer(item, base=None)

	Converts the given item to an integer number.

If the given item is a string, it is by default expected to be an
integer in base 10. There are two ways to convert from other bases:

	Give base explicitly to the keyword as base argument.

	Prefix the given string with the base so that 0b means binary
(base 2), 0o means octal (base 8), and 0x means hex (base 16).
The prefix is considered only when base argument is not given and
may itself be prefixed with a plus or minus sign.

The syntax is case-insensitive and possible spaces are ignored.

See also Convert To Number, Convert To Binary, Convert To Octal,
Convert To Hex, and Convert To Bytes.

	
convert_to_number(item, precision=None)

	Converts the given item to a floating point number.

If the optional precision is positive or zero, the returned number
is rounded to that number of decimal digits. Negative precision means
that the number is rounded to the closest multiple of 10 to the power
of the absolute precision. If a number is equally close to a certain
precision, it is always rounded away from zero.

Notice that machines generally cannot store floating point numbers
accurately. This may cause surprises with these numbers in general
and also when they are rounded. For more information see, for example,
these resources:

	http://docs.python.org/tutorial/floatingpoint.html

	http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition

If you want to avoid possible problems with floating point numbers,
you can implement custom keywords using Python’s
[http://docs.python.org/library/decimal.html|decimal] or
[http://docs.python.org/library/fractions.html|fractions] modules.

If you need an integer number, use Convert To Integer instead.

	
convert_to_octal(item, base=None, prefix=None, length=None)

	Converts the given item to an octal string.

The item, with an optional base, is first converted to an
integer using Convert To Integer internally. After that it
is converted to an octal number (base 8) represented as a
string such as 775.

The returned value can contain an optional prefix and can be
required to be of minimum length (excluding the prefix and a
possible minus sign). If the value is initially shorter than
the required length, it is padded with zeros.

See also Convert To Integer, Convert To Binary and Convert To Hex.

	
convert_to_string(item)

	Converts the given item to a Unicode string.

Strings are also [http://www.macchiato.com/unicode/nfc-faq|
NFC normalized].

Use Encode String To Bytes and Decode Bytes To String keywords
in String library if you need to convert between Unicode and byte
strings using different encodings. Use Convert To Bytes if you just
want to create byte strings.

	
create_dictionary(*items)

	Creates and returns a dictionary based on the given items.

Items are typically given using the key=value syntax same way as
&{dictionary} variables are created in the Variable table. Both
keys and values can contain variables, and possible equal sign in key
can be escaped with a backslash like escaped\=key=value. It is
also possible to get items from existing dictionaries by simply using
them like &{dict}.

Alternatively items can be specified so that keys and values are given
separately. This and the key=value syntax can even be combined,
but separately given items must be first. If same key is used multiple
times, the last value has precedence.

The returned dictionary is ordered, and values with strings as keys
can also be accessed using a convenient dot-access syntax like
${dict.key}. Technically the returned dictionary is Robot
Framework’s own DotDict instance. If there is a need, it can be
converted into a regular Python dict instance by using the
Convert To Dictionary keyword from the Collections library.

	
create_list(*items)

	Returns a list containing given items.

The returned list can be assigned both to ${scalar} and @{list}
variables.

	
evaluate(expression, modules=None, namespace=None)

	Evaluates the given expression in Python and returns the result.

expression is evaluated in Python as explained in the
Evaluating expressions section.

modules argument can be used to specify a comma separated
list of Python modules to be imported and added to the evaluation
namespace.

namespace argument can be used to pass a custom evaluation
namespace as a dictionary. Possible modules are added to this
namespace.

Variables used like ${variable} are replaced in the expression
before evaluation. Variables are also available in the evaluation
namespace and can be accessed using the special $variable syntax
as explained in the Evaluating expressions section.

Starting from Robot Framework 3.2, modules used in the expression are
imported automatically. There are, however, two cases where they need to
be explicitly specified using the modules argument:

	When nested modules like rootmod.submod are implemented so that
the root module does not automatically import sub modules. This is
illustrated by the selenium.webdriver example below.

	When using a module in the expression part of a list comprehension.
This is illustrated by the json example below.

NOTE: Prior to Robot Framework 3.2 using modules=rootmod.submod
was not enough to make the root module itself available in the
evaluation namespace. It needed to be taken into use explicitly like
modules=rootmod, rootmod.submod.

	
exit_for_loop()

	Stops executing the enclosing for loop.

Exits the enclosing for loop and continues execution after it.
Can be used directly in a for loop or in a keyword that the loop uses.

See Exit For Loop If to conditionally exit a for loop without
using Run Keyword If or other wrapper keywords.

	
exit_for_loop_if(condition)

	Stops executing the enclosing for loop if the condition is true.

A wrapper for Exit For Loop to exit a for loop based on
the given condition. The condition is evaluated using the same
semantics as with Should Be True keyword.

	
fail(msg=None, *tags)

	Fails the test with the given message and optionally alters its tags.

The error message is specified using the msg argument.
It is possible to use HTML in the given error message, similarly
as with any other keyword accepting an error message, by prefixing
the error with *HTML*.

It is possible to modify tags of the current test case by passing tags
after the message. Tags starting with a hyphen (e.g. -regression)
are removed and others added. Tags are modified using Set Tags and
Remove Tags internally, and the semantics setting and removing them
are the same as with these keywords.

See Fatal Error if you need to stop the whole test execution.

	
fatal_error(msg=None)

	Stops the whole test execution.

The test or suite where this keyword is used fails with the provided
message, and subsequent tests fail with a canned message.
Possible teardowns will nevertheless be executed.

See Fail if you only want to stop one test case unconditionally.

	
get_count(container, item)

	Returns and logs how many times item is found from container.

This keyword works with Python strings and lists and all objects
that either have count method or can be converted to Python lists.

	
get_length(item)

	Returns and logs the length of the given item as an integer.

The item can be anything that has a length, for example, a string,
a list, or a mapping. The keyword first tries to get the length with
the Python function len, which calls the item’s __len__ method
internally. If that fails, the keyword tries to call the item’s
possible length and size methods directly. The final attempt is
trying to get the value of the item’s length attribute. If all
these attempts are unsuccessful, the keyword fails.

See also Length Should Be, Should Be Empty and Should Not Be
Empty.

	
get_library_instance(name=None, all=False)

	Returns the currently active instance of the specified test library.

This keyword makes it easy for test libraries to interact with
other test libraries that have state. This is illustrated by
the Python example below:

It is also possible to use this keyword in the test data and
pass the returned library instance to another keyword. If a
library is imported with a custom name, the name used to get
the instance must be that name and not the original library name.

If the optional argument all is given a true value, then a
dictionary mapping all library names to instances will be returned.

	
get_time(format='timestamp', time_='NOW')

	Returns the given time in the requested format.

NOTE: DateTime library contains much more flexible keywords for
getting the current date and time and for date and time handling in
general.

How time is returned is determined based on the given format
string as follows. Note that all checks are case-insensitive.

	If format contains the word epoch, the time is returned
in seconds after the UNIX epoch (1970-01-01 00:00:00 UTC).
The return value is always an integer.

	If format contains any of the words year, month,
day, hour, min, or sec, only the selected parts are
returned. The order of the returned parts is always the one
in the previous sentence and the order of words in format
is not significant. The parts are returned as zero-padded
strings (e.g. May -> 05).

	Otherwise (and by default) the time is returned as a
timestamp string in the format 2006-02-24 15:08:31.

By default this keyword returns the current local time, but
that can be altered using time argument as explained below.
Note that all checks involving strings are case-insensitive.

	If time is a number, or a string that can be converted to
a number, it is interpreted as seconds since the UNIX epoch.
This documentation was originally written about 1177654467
seconds after the epoch.

	If time is a timestamp, that time will be used. Valid
timestamp formats are YYYY-MM-DD hh:mm:ss and
YYYYMMDD hhmmss.

	If time is equal to NOW (default), the current local
time is used.

	If time is equal to UTC, the current time in
[http://en.wikipedia.org/wiki/Coordinated_Universal_Time|UTC]
is used.

	If time is in the format like NOW - 1 day or UTC + 1 hour
30 min, the current local/UTC time plus/minus the time
specified with the time string is used. The time string format
is described in an appendix of Robot Framework User Guide.

UTC time is 2006-03-29 12:06:21):

	
get_variable_value(name, default=None)

	Returns variable value or default if the variable does not exist.

The name of the variable can be given either as a normal variable name
(e.g. ${NAME}) or in escaped format (e.g. \${NAME}). Notice
that the former has some limitations explained in Set Suite Variable.

See Set Variable If for another keyword to set variables dynamically.

	
get_variables(no_decoration=False)

	Returns a dictionary containing all variables in the current scope.

Variables are returned as a special dictionary that allows accessing
variables in space, case, and underscore insensitive manner similarly
as accessing variables in the test data. This dictionary supports all
same operations as normal Python dictionaries and, for example,
Collections library can be used to access or modify it. Modifying the
returned dictionary has no effect on the variables available in the
current scope.

By default variables are returned with ${}, @{} or &{}
decoration based on variable types. Giving a true value (see Boolean
arguments) to the optional argument no_decoration will return
the variables without the decoration.

	
import_library(name, *args)

	Imports a library with the given name and optional arguments.

This functionality allows dynamic importing of libraries while tests
are running. That may be necessary, if the library itself is dynamic
and not yet available when test data is processed. In a normal case,
libraries should be imported using the Library setting in the Setting
section.

This keyword supports importing libraries both using library
names and physical paths. When paths are used, they must be
given in absolute format or found from
[http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#module-search-path|
search path]. Forward slashes can be used as path separators in all
operating systems.

It is possible to pass arguments to the imported library and also
named argument syntax works if the library supports it. WITH NAME
syntax can be used to give a custom name to the imported library.

	
import_resource(path)

	Imports a resource file with the given path.

Resources imported with this keyword are set into the test suite scope
similarly when importing them in the Setting table using the Resource
setting.

The given path must be absolute or found from
[http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pythonpath-jythonpath-and-ironpythonpath|
search path]. Forward slashes can be used as path separator regardless
the operating system.

	
import_variables(path, *args)

	Imports a variable file with the given path and optional arguments.

Variables imported with this keyword are set into the test suite scope
similarly when importing them in the Setting table using the Variables
setting. These variables override possible existing variables with
the same names. This functionality can thus be used to import new
variables, for example, for each test in a test suite.

The given path must be absolute or found from
[http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pythonpath-jythonpath-and-ironpythonpath|
search path]. Forward slashes can be used as path separator regardless
the operating system.

	
keyword_should_exist(name, msg=None)

	Fails unless the given keyword exists in the current scope.

Fails also if there are more than one keywords with the same name.
Works both with the short name (e.g. Log) and the full name
(e.g. BuiltIn.Log).

The default error message can be overridden with the msg argument.

See also Variable Should Exist.

	
length_should_be(item, length, msg=None)

	Verifies that the length of the given item is correct.

The length of the item is got using the Get Length keyword. The
default error message can be overridden with the msg argument.

	
log(message, level='INFO', html=False, console=False, repr=False, formatter='str')

	Logs the given message with the given level.

Valid levels are TRACE, DEBUG, INFO (default), HTML, WARN, and ERROR.
Messages below the current active log level are ignored. See
Set Log Level keyword and --loglevel command line option
for more details about setting the level.

Messages logged with the WARN or ERROR levels will be automatically
visible also in the console and in the Test Execution Errors section
in the log file.

If the html argument is given a true value (see Boolean
arguments), the message will be considered HTML and special characters
such as < are not escaped. For example, logging
 creates an image when html is true, but
otherwise the message is that exact string. An alternative to using
the html argument is using the HTML pseudo log level. It logs
the message as HTML using the INFO level.

If the console argument is true, the message will be written to
the console where test execution was started from in addition to
the log file. This keyword always uses the standard output stream
and adds a newline after the written message. Use Log To Console
instead if either of these is undesirable,

The formatter argument controls how to format the string
representation of the message. Possible values are str (default),
repr and ascii, and they work similarly to Python built-in
functions with same names. When using repr, bigger lists,
dictionaries and other containers are also pretty-printed so that
there is one item per row. For more details see String
representations.

The old way to control string representation was using the repr
argument, and repr=True is still equivalent to using
formatter=repr. The repr argument will be deprecated in the
future, though, and using formatter is thus recommended.

See Log Many if you want to log multiple messages in one go, and
Log To Console if you only want to write to the console.

	
log_many(*messages)

	Logs the given messages as separate entries using the INFO level.

Supports also logging list and dictionary variable items individually.

See Log and Log To Console keywords if you want to use alternative
log levels, use HTML, or log to the console.

	
log_to_console(message, stream='STDOUT', no_newline=False)

	Logs the given message to the console.

By default uses the standard output stream. Using the standard error
stream is possibly by giving the stream argument value STDERR
(case-insensitive).

By default appends a newline to the logged message. This can be
disabled by giving the no_newline argument a true value (see
Boolean arguments).

This keyword does not log the message to the normal log file. Use
Log keyword, possibly with argument console, if that is desired.

	
log_variables(level='INFO')

	Logs all variables in the current scope with given log level.

	
no_operation()

	Does absolutely nothing.

	
pass_execution(message, *tags)

	Skips rest of the current test, setup, or teardown with PASS status.

This keyword can be used anywhere in the test data, but the place where
used affects the behavior:

	When used in any setup or teardown (suite, test or keyword), passes
that setup or teardown. Possible keyword teardowns of the started
keywords are executed. Does not affect execution or statuses
otherwise.

	When used in a test outside setup or teardown, passes that particular
test case. Possible test and keyword teardowns are executed.

Possible continuable failures before this keyword is used, as well as
failures in executed teardowns, will fail the execution.

It is mandatory to give a message explaining why execution was passed.
By default the message is considered plain text, but starting it with
HTML allows using HTML formatting.

It is also possible to modify test tags passing tags after the message
similarly as with Fail keyword. Tags starting with a hyphen
(e.g. -regression) are removed and others added. Tags are modified
using Set Tags and Remove Tags internally, and the semantics
setting and removing them are the same as with these keywords.

This keyword is typically wrapped to some other keyword, such as
Run Keyword If, to pass based on a condition. The most common case
can be handled also with Pass Execution If:

Passing execution in the middle of a test, setup or teardown should be
used with care. In the worst case it leads to tests that skip all the
parts that could actually uncover problems in the tested application.
In cases where execution cannot continue do to external factors,
it is often safer to fail the test case and make it non-critical.

	
pass_execution_if(condition, message, *tags)

	Conditionally skips rest of the current test, setup, or teardown with PASS status.

A wrapper for Pass Execution to skip rest of the current test,
setup or teardown based the given condition. The condition is
evaluated similarly as with Should Be True keyword, and message
and *tags have same semantics as with Pass Execution.

	
regexp_escape(*patterns)

	Returns each argument string escaped for use as a regular expression.

This keyword can be used to escape strings to be used with
Should Match Regexp and Should Not Match Regexp keywords.

Escaping is done with Python’s re.escape() function.

	
reload_library(name_or_instance)

	Rechecks what keywords the specified library provides.

Can be called explicitly in the test data or by a library itself
when keywords it provides have changed.

The library can be specified by its name or as the active instance of
the library. The latter is especially useful if the library itself
calls this keyword as a method.

	
remove_tags(*tags)

	Removes given tags from the current test or all tests in a suite.

Tags can be given exactly or using a pattern with *, ? and
[chars] acting as wildcards. See the Glob patterns section
for more information.

This keyword can affect either one test case or all test cases in a
test suite similarly as Set Tags keyword.

The current tags are available as a built-in variable @{TEST TAGS}.

See Set Tags if you want to add certain tags and Fail if you want
to fail the test case after setting and/or removing tags.

	
repeat_keyword(repeat, name, *args)

	Executes the specified keyword multiple times.

name and args define the keyword that is executed similarly as
with Run Keyword. repeat specifies how many times (as a count) or
how long time (as a timeout) the keyword should be executed.

If repeat is given as count, it specifies how many times the
keyword should be executed. repeat can be given as an integer or
as a string that can be converted to an integer. If it is a string,
it can have postfix times or x (case and space insensitive)
to make the expression more explicit.

If repeat is given as timeout, it must be in Robot Framework’s
time format (e.g. 1 minute, 2 min 3 s). Using a number alone
(e.g. 1 or 1.5) does not work in this context.

If repeat is zero or negative, the keyword is not executed at
all. This keyword fails immediately if any of the execution
rounds fails.

	
replace_variables(text)

	Replaces variables in the given text with their current values.

If the text contains undefined variables, this keyword fails.
If the given text contains only a single variable, its value is
returned as-is and it can be any object. Otherwise this keyword
always returns a string.

The file template.txt contains Hello ${NAME}! and variable
${NAME} has the value Robot.

	
return_from_keyword(*return_values)

	Returns from the enclosing user keyword.

This keyword can be used to return from a user keyword with PASS status
without executing it fully. It is also possible to return values
similarly as with the [Return] setting. For more detailed information
about working with the return values, see the User Guide.

This keyword is typically wrapped to some other keyword, such as
Run Keyword If or Run Keyword If Test Passed, to return based
on a condition:

It is possible to use this keyword to return from a keyword also inside
a for loop. That, as well as returning values, is demonstrated by the
Find Index keyword in the following somewhat advanced example.
Notice that it is often a good idea to move this kind of complicated
logic into a test library.

The most common use case, returning based on an expression, can be
accomplished directly with Return From Keyword If. See also
Run Keyword And Return and Run Keyword And Return If.

	
return_from_keyword_if(condition, *return_values)

	Returns from the enclosing user keyword if condition is true.

A wrapper for Return From Keyword to return based on the given
condition. The condition is evaluated using the same semantics as
with Should Be True keyword.

Given the same example as in Return From Keyword, we can rewrite the
Find Index keyword as follows:

See also Run Keyword And Return and Run Keyword And Return If.

	
run_keyword(name, *args)

	Executes the given keyword with the given arguments.

Because the name of the keyword to execute is given as an argument, it
can be a variable and thus set dynamically, e.g. from a return value of
another keyword or from the command line.

	
run_keyword_and_continue_on_failure(name, *args)

	Runs the keyword and continues execution even if a failure occurs.

The keyword name and arguments work as with Run Keyword.

The execution is not continued if the failure is caused by invalid syntax,
timeout, or fatal exception.

	
run_keyword_and_expect_error(expected_error, name, *args)

	Runs the keyword and checks that the expected error occurred.

The keyword to execute and its arguments are specified using name
and *args exactly like with Run Keyword.

The expected error must be given in the same format as in Robot Framework
reports. By default it is interpreted as a glob pattern with *, ?
and [chars] as wildcards, but that can be changed by using various
prefixes explained in the table below. Prefixes are case-sensitive and
they must be separated from the actual message with a colon and an
optional space like PREFIX: Message or PREFIX:Message.

See the Pattern matching section for more information about glob
patterns and regular expressions.

If the expected error occurs, the error message is returned and it can
be further processed or tested if needed. If there is no error, or the
error does not match the expected error, this keyword fails.

Errors caused by invalid syntax, timeouts, or fatal exceptions are not
caught by this keyword.

	
run_keyword_and_ignore_error(name, *args)

	Runs the given keyword with the given arguments and ignores possible error.

This keyword returns two values, so that the first is either string
PASS or FAIL, depending on the status of the executed keyword.
The second value is either the return value of the keyword or the
received error message. See Run Keyword And Return Status If you are
only interested in the execution status.

The keyword name and arguments work as in Run Keyword. See
Run Keyword If for a usage example.

Errors caused by invalid syntax, timeouts, or fatal exceptions are not
caught by this keyword. Otherwise this keyword itself never fails.

	
run_keyword_and_return(name, *args)

	Runs the specified keyword and returns from the enclosing user keyword.

The keyword to execute is defined with name and *args exactly
like with Run Keyword. After running the keyword, returns from the
enclosing user keyword and passes possible return value from the
executed keyword further. Returning from a keyword has exactly same
semantics as with Return From Keyword.

Use Run Keyword And Return If if you want to run keyword and return
based on a condition.

	
run_keyword_and_return_if(condition, name, *args)

	Runs the specified keyword and returns from the enclosing user keyword.

A wrapper for Run Keyword And Return to run and return based on
the given condition. The condition is evaluated using the same
semantics as with Should Be True keyword.

Use Return From Keyword If if you want to return a certain value
based on a condition.

	
run_keyword_and_return_status(name, *args)

	Runs the given keyword with given arguments and returns the status as a Boolean value.

This keyword returns Boolean True if the keyword that is executed
succeeds and False if it fails. This is useful, for example, in
combination with Run Keyword If. If you are interested in the error
message or return value, use Run Keyword And Ignore Error instead.

The keyword name and arguments work as in Run Keyword.

Errors caused by invalid syntax, timeouts, or fatal exceptions are not
caught by this keyword. Otherwise this keyword itself never fails.

	
run_keyword_and_warn_on_failure(name, *args)

	Runs the specified keyword logs a warning if the keyword fails.

This keyword is similar to Run Keyword And Ignore Error but if the executed
keyword fails, the error message is logged as a warning to make it more
visible. Returns status and possible return value or error message exactly
like Run Keyword And Ignore Error does.

Errors caused by invalid syntax, timeouts, or fatal exceptions are not
caught by this keyword. Otherwise this keyword itself never fails.

New in Robot Framework 4.0.

	
run_keyword_if(condition, name, *args)

	Runs the given keyword with the given arguments, if condition is true.

NOTE: Robot Framework 4.0 introduced built-in IF/ELSE support and using
that is generally recommended over using this keyword.

The given condition is evaluated in Python as explained in
Evaluating expressions, and name and *args have same
semantics as with Run Keyword.

In this example, only either Some Action or Another Action is
executed, based on the status of My Keyword. Instead of Run Keyword
And Ignore Error you can also use Run Keyword And Return Status.

Variables used like ${variable}, as in the examples above, are
replaced in the expression before evaluation. Variables are also
available in the evaluation namespace and can be accessed using special
syntax $variable as explained in the Evaluating expressions
section.

This keyword supports also optional ELSE and ELSE IF branches. Both
of them are defined in *args and must use exactly format ELSE
or ELSE IF, respectively. ELSE branches must contain first the
name of the keyword to execute and then its possible arguments. ELSE
IF branches must first contain a condition, like the first argument
to this keyword, and then the keyword to execute and its possible
arguments. It is possible to have ELSE branch after ELSE IF and to
have multiple ELSE IF branches. Nested Run Keyword If usage is not
supported when using ELSE and/or ELSE IF branches.

Given previous example, if/else construct can also be created like this:

The return value of this keyword is the return value of the actually
executed keyword or Python None if no keyword was executed (i.e.
if condition was false). Hence, it is recommended to use ELSE
and/or ELSE IF branches to conditionally assign return values from
keyword to variables (see Set Variable If if you need to set fixed
values conditionally). This is illustrated by the example below:

In this example, ${var2} will be set to None if ${condition} is
false.

Notice that ELSE and ELSE IF control words must be used
explicitly and thus cannot come from variables. If you need to use
literal ELSE and ELSE IF strings as arguments, you can escape
them with a backslash like \ELSE and \ELSE IF.

Python’s [http://docs.python.org/library/os.html|os] and
[http://docs.python.org/library/sys.html|sys] modules are
automatically imported when evaluating the condition.
Attributes they contain can thus be used in the condition:

	
run_keyword_if_all_critical_tests_passed(name, *args)

	DEPRECATED. Use BuiltIn.Run Keyword If All Tests Passed instead.

	
run_keyword_if_all_tests_passed(name, *args)

	Runs the given keyword with the given arguments, if all tests passed.

This keyword can only be used in a suite teardown. Trying to use it
anywhere else results in an error.

Otherwise, this keyword works exactly like Run Keyword, see its
documentation for more details.

	
run_keyword_if_any_critical_tests_failed(name, *args)

	DEPRECATED. Use BuiltIn.Run Keyword If Any Tests Failed instead.

	
run_keyword_if_any_tests_failed(name, *args)

	Runs the given keyword with the given arguments, if one or more tests failed.

This keyword can only be used in a suite teardown. Trying to use it
anywhere else results in an error.

Otherwise, this keyword works exactly like Run Keyword, see its
documentation for more details.

	
run_keyword_if_test_failed(name, *args)

	Runs the given keyword with the given arguments, if the test failed.

This keyword can only be used in a test teardown. Trying to use it
anywhere else results in an error.

Otherwise, this keyword works exactly like Run Keyword, see its
documentation for more details.

	
run_keyword_if_test_passed(name, *args)

	Runs the given keyword with the given arguments, if the test passed.

This keyword can only be used in a test teardown. Trying to use it
anywhere else results in an error.

Otherwise, this keyword works exactly like Run Keyword, see its
documentation for more details.

	
run_keyword_if_timeout_occurred(name, *args)

	Runs the given keyword if either a test or a keyword timeout has occurred.

This keyword can only be used in a test teardown. Trying to use it
anywhere else results in an error.

Otherwise, this keyword works exactly like Run Keyword, see its
documentation for more details.

	
run_keyword_unless(condition, name, *args)

	Runs the given keyword with the given arguments if condition is false.

See Run Keyword If for more information and an example. Notice that
this keyword does not support ELSE or ELSE IF branches like
Run Keyword If does, though.

	
run_keywords(*keywords)

	Executes all the given keywords in a sequence.

This keyword is mainly useful in setups and teardowns when they need
to take care of multiple actions and creating a new higher level user
keyword would be an overkill.

By default all arguments are expected to be keywords to be executed.

Keywords can also be run with arguments using upper case AND as
a separator between keywords. The keywords are executed so that the
first argument is the first keyword and proceeding arguments until
the first AND are arguments to it. First argument after the first
AND is the second keyword and proceeding arguments until the next
AND are its arguments. And so on.

Notice that the AND control argument must be used explicitly and
cannot itself come from a variable. If you need to use literal AND
string as argument, you can either use variables or escape it with
a backslash like \AND.

	
set_global_variable(name, *values)

	Makes a variable available globally in all tests and suites.

Variables set with this keyword are globally available in all
subsequent test suites, test cases and user keywords. Also variables
in variable tables are overridden. Variables assigned locally based
on keyword return values or by using Set Test Variable and
Set Suite Variable override these variables in that scope, but
the global value is not changed in those cases.

In practice setting variables with this keyword has the same effect
as using command line options --variable and --variablefile.
Because this keyword can change variables everywhere, it should be
used with care.

See Set Suite Variable for more information and examples.

	
set_library_search_order(*search_order)

	Sets the resolution order to use when a name matches multiple keywords.

The library search order is used to resolve conflicts when a keyword
name in the test data matches multiple keywords. The first library
(or resource, see below) containing the keyword is selected and that
keyword implementation used. If the keyword is not found from any library
(or resource), test executing fails the same way as when the search
order is not set.

When this keyword is used, there is no need to use the long
LibraryName.Keyword Name notation. For example, instead of
having

you can have

This keyword can be used also to set the order of keywords in different
resource files. In this case resource names must be given without paths
or extensions like:

NOTE:
- The search order is valid only in the suite where this keywords is used.
- Keywords in resources always have higher priority than

keywords in libraries regardless the search order.

	The old order is returned and can be used to reset the search order later.

	Library and resource names in the search order are both case and space
insensitive.

	
set_local_variable(name, *values)

	Makes a variable available everywhere within the local scope.

Variables set with this keyword are available within the
local scope of the currently executed test case or in the local scope
of the keyword in which they are defined. For example, if you set a
variable in a user keyword, it is available only in that keyword. Other
test cases or keywords will not see variables set with this keyword.

This keyword is equivalent to a normal variable assignment based on a
keyword return value.

is equivalent with

This keyword will provide the option of setting local variables inside keywords
like Run Keyword If, Run Keyword And Return If, Run Keyword Unless
which until now was not possible by using Set Variable.

It will also be possible to use this keyword from external libraries
that want to set local variables.

New in Robot Framework 3.2.

	
set_log_level(level)

	Sets the log threshold to the specified level and returns the old level.

Messages below the level will not logged. The default logging level is
INFO, but it can be overridden with the command line option
--loglevel.

The available levels: TRACE, DEBUG, INFO (default), WARN, ERROR and NONE (no
logging).

	
set_suite_documentation(doc, append=False, top=False)

	Sets documentation for the current test suite.

By default the possible existing documentation is overwritten, but
this can be changed using the optional append argument similarly
as with Set Test Message keyword.

This keyword sets the documentation of the current suite by default.
If the optional top argument is given a true value (see Boolean
arguments), the documentation of the top level suite is altered
instead.

The documentation of the current suite is available as a built-in
variable ${SUITE DOCUMENTATION}.

	
set_suite_metadata(name, value, append=False, top=False)

	Sets metadata for the current test suite.

By default possible existing metadata values are overwritten, but
this can be changed using the optional append argument similarly
as with Set Test Message keyword.

This keyword sets the metadata of the current suite by default.
If the optional top argument is given a true value (see Boolean
arguments), the metadata of the top level suite is altered instead.

The metadata of the current suite is available as a built-in variable
${SUITE METADATA} in a Python dictionary. Notice that modifying this
variable directly has no effect on the actual metadata the suite has.

	
set_suite_variable(name, *values)

	Makes a variable available everywhere within the scope of the current suite.

Variables set with this keyword are available everywhere within the
scope of the currently executed test suite. Setting variables with this
keyword thus has the same effect as creating them using the Variable
table in the test data file or importing them from variable files.

Possible child test suites do not see variables set with this keyword
by default, but that can be controlled by using children=<option>
as the last argument. If the specified <option> given a true value
(see Boolean arguments), the variable is set also to the child
suites. Parent and sibling suites will never see variables set with
this keyword.

The name of the variable can be given either as a normal variable name
(e.g. ${NAME}) or in escaped format as \${NAME} or $NAME.
Variable value can be given using the same syntax as when variables
are created in the Variable table.

If a variable already exists within the new scope, its value will be
overwritten. Otherwise a new variable is created. If a variable already
exists within the current scope, the value can be left empty and the
variable within the new scope gets the value within the current scope.

To override an existing value with an empty value, use built-in
variables ${EMPTY}, @{EMPTY} or &{EMPTY}:

NOTE: If the variable has value which itself is a variable (escaped
or not), you must always use the escaped format to set the variable:

This limitation applies also to Set Test Variable, Set Global
Variable, Variable Should Exist, Variable Should Not Exist and
Get Variable Value keywords.

	
set_tags(*tags)

	Adds given tags for the current test or all tests in a suite.

When this keyword is used inside a test case, that test gets
the specified tags and other tests are not affected.

If this keyword is used in a suite setup, all test cases in
that suite, recursively, gets the given tags. It is a failure
to use this keyword in a suite teardown.

The current tags are available as a built-in variable @{TEST TAGS}.

See Remove Tags if you want to remove certain tags and Fail if
you want to fail the test case after setting and/or removing tags.

	
set_task_variable(name, *values)

	Makes a variable available everywhere within the scope of the current task.

This is an alias for Set Test Variable that is more applicable when
creating tasks, not tests.

	
set_test_documentation(doc, append=False)

	Sets documentation for the current test case.

By default the possible existing documentation is overwritten, but
this can be changed using the optional append argument similarly
as with Set Test Message keyword.

The current test documentation is available as a built-in variable
${TEST DOCUMENTATION}. This keyword can not be used in suite
setup or suite teardown.

	
set_test_message(message, append=False)

	Sets message for the current test case.

If the optional append argument is given a true value (see Boolean
arguments), the given message is added after the possible earlier
message by joining the messages with a space.

In test teardown this keyword can alter the possible failure message,
but otherwise failures override messages set by this keyword. Notice
that in teardown the message is available as a built-in variable
${TEST MESSAGE}.

It is possible to use HTML format in the message by starting the message
with *HTML*.

This keyword can not be used in suite setup or suite teardown.

	
set_test_variable(name, *values)

	Makes a variable available everywhere within the scope of the current test.

Variables set with this keyword are available everywhere within the
scope of the currently executed test case. For example, if you set a
variable in a user keyword, it is available both in the test case level
and also in all other user keywords used in the current test. Other
test cases will not see variables set with this keyword.
It is an error to call Set Test Variable outside the
scope of a test (e.g. in a Suite Setup or Teardown).

See Set Suite Variable for more information and examples.

	
set_variable(*values)

	Returns the given values which can then be assigned to a variables.

This keyword is mainly used for setting scalar variables.
Additionally it can be used for converting a scalar variable
containing a list to a list variable or to multiple scalar variables.
It is recommended to use Create List when creating new lists.

Variables created with this keyword are available only in the
scope where they are created. See Set Global Variable,
Set Test Variable and Set Suite Variable for information on how to
set variables so that they are available also in a larger scope.

	
set_variable_if(condition, *values)

	Sets variable based on the given condition.

The basic usage is giving a condition and two values. The
given condition is first evaluated the same way as with the
Should Be True keyword. If the condition is true, then the
first value is returned, and otherwise the second value is
returned. The second value can also be omitted, in which case
it has a default value None. This usage is illustrated in the
examples below, where ${rc} is assumed to be zero.

It is also possible to have ‘else if’ support by replacing the
second value with another condition, and having two new values
after it. If the first condition is not true, the second is
evaluated and one of the values after it is returned based on
its truth value. This can be continued by adding more
conditions without a limit.

Use Get Variable Value if you need to set variables
dynamically based on whether a variable exist or not.

	
should_be_empty(item, msg=None)

	Verifies that the given item is empty.

The length of the item is got using the Get Length keyword. The
default error message can be overridden with the msg argument.

	
should_be_equal(first, second, msg=None, values=True, ignore_case=False, formatter='str', strip_spaces=False, collapse_spaces=False)

	Fails if the given objects are unequal.

Optional msg, values and formatter arguments specify how
to construct the error message if this keyword fails:

	If msg is not given, the error message is <first> != <second>.

	If msg is given and values gets a true value (default),
the error message is <msg>: <first> != <second>.

	If msg is given and values gets a false value (see
Boolean arguments), the error message is simply <msg>.

	formatter controls how to format the values. Possible values are
str (default), repr and ascii, and they work similarly
as Python built-in functions with same names. See String
representations for more details.

If ignore_case is given a true value (see Boolean arguments) and
both arguments are strings, comparison is done case-insensitively.
If both arguments are multiline strings, this keyword uses
multiline string comparison.

If strip_spaces is given a true value (see Boolean arguments)
and both arguments are strings, the comparison is done without leading
and trailing spaces. If strip_spaces is given a string value
LEADING or TRAILING (case-insensitive), the comparison is done
without leading or trailing spaces, respectively.

If collapse_spaces is given a true value (see Boolean arguments) and both
arguments are strings, the comparison is done with all white spaces replaced by
a single space character.

strip_spaces is new in Robot Framework 4.0 and
collapse_spaces is new in Robot Framework 4.1.

	
should_be_equal_as_integers(first, second, msg=None, values=True, base=None)

	Fails if objects are unequal after converting them to integers.

See Convert To Integer for information how to convert integers from
other bases than 10 using base argument or 0b/0o/0x prefixes.

See Should Be Equal for an explanation on how to override the default
error message with msg and values.

	
should_be_equal_as_numbers(first, second, msg=None, values=True, precision=6)

	Fails if objects are unequal after converting them to real numbers.

The conversion is done with Convert To Number keyword using the
given precision.

As discussed in the documentation of Convert To Number, machines
generally cannot store floating point numbers accurately. Because of
this limitation, comparing floats for equality is problematic and
a correct approach to use depends on the context. This keyword uses
a very naive approach of rounding the numbers before comparing them,
which is both prone to rounding errors and does not work very well if
numbers are really big or small. For more information about comparing
floats, and ideas on how to implement your own context specific
comparison algorithm, see
http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/.

If you want to avoid possible problems with floating point numbers,
you can implement custom keywords using Python’s
[http://docs.python.org/library/decimal.html|decimal] or
[http://docs.python.org/library/fractions.html|fractions] modules.

See Should Not Be Equal As Numbers for a negative version of this
keyword and Should Be Equal for an explanation on how to override
the default error message with msg and values.

	
should_be_equal_as_strings(first, second, msg=None, values=True, ignore_case=False, strip_spaces=False, formatter='str', collapse_spaces=False)

	Fails if objects are unequal after converting them to strings.

See Should Be Equal for an explanation on how to override the default
error message with msg, values and formatter.

If ignore_case is given a true value (see Boolean arguments),
comparison is done case-insensitively. If both arguments are
multiline strings, this keyword uses multiline string comparison.

If strip_spaces is given a true value (see Boolean arguments)
and both arguments are strings, the comparison is done without leading
and trailing spaces. If strip_spaces is given a string value
LEADING or TRAILING (case-insensitive), the comparison is done
without leading or trailing spaces, respectively.

If collapse_spaces is given a true value (see Boolean arguments) and both
arguments are strings, the comparison is done with all white spaces replaced by
a single space character.

Strings are always [http://www.macchiato.com/unicode/nfc-faq| NFC normalized].

strip_spaces is new in Robot Framework 4.0
and collapse_spaces is new in Robot Framework 4.1.

	
should_be_true(condition, msg=None)

	Fails if the given condition is not true.

If condition is a string (e.g. ${rc} < 10), it is evaluated as
a Python expression as explained in Evaluating expressions and the
keyword status is decided based on the result. If a non-string item is
given, the status is got directly from its
[http://docs.python.org/library/stdtypes.html#truth|truth value].

The default error message (<condition> should be true) is not very
informative, but it can be overridden with the msg argument.

Variables used like ${variable}, as in the examples above, are
replaced in the expression before evaluation. Variables are also
available in the evaluation namespace, and can be accessed using
special $variable syntax as explained in the Evaluating
expressions section.

Should Be True automatically imports Python’s
[http://docs.python.org/library/os.html|os] and
[http://docs.python.org/library/sys.html|sys] modules that contain
several useful attributes:

	
should_contain(container, item, msg=None, values=True, ignore_case=False, strip_spaces=False, collapse_spaces=False)

	Fails if container does not contain item one or more times.

Works with strings, lists, and anything that supports Python’s in
operator.

See Should Be Equal for an explanation on how to override the default
error message with arguments msg and values.

If ignore_case is given a true value (see Boolean arguments) and
compared items are strings, it indicates that comparison should be
case-insensitive. If the container is a list-like object, string
items in it are compared case-insensitively.

If strip_spaces is given a true value (see Boolean arguments)
and both arguments are strings, the comparison is done without leading
and trailing spaces. If strip_spaces is given a string value
LEADING or TRAILING (case-insensitive), the comparison is done
without leading or trailing spaces, respectively.

If collapse_spaces is given a true value (see Boolean arguments) and both
arguments are strings, the comparison is done with all white spaces replaced by
a single space character.

strip_spaces is new in Robot Framework 4.0 and collapse_spaces is new
in Robot Framework 4.1.

	
should_contain_any(container, *items, **configuration)

	Fails if container does not contain any of the *items.

Works with strings, lists, and anything that supports Python’s in
operator.

Supports additional configuration parameters msg, values,
ignore_case and strip_spaces, and collapse_spaces
which have exactly the same semantics as arguments with same
names have with Should Contain. These arguments must always
be given using name=value syntax after all items.

Note that possible equal signs in items must be escaped with
a backslash (e.g. foo\=bar) to avoid them to be passed in
as **configuration.

	
should_contain_x_times(container, item, count, msg=None, ignore_case=False, strip_spaces=False, collapse_spaces=False)

	Fails if container does not contain item count times.

Works with strings, lists and all objects that Get Count works
with. The default error message can be overridden with msg and
the actual count is always logged.

If ignore_case is given a true value (see Boolean arguments) and
compared items are strings, it indicates that comparison should be
case-insensitive. If the container is a list-like object, string
items in it are compared case-insensitively.

If strip_spaces is given a true value (see Boolean arguments)
and both arguments are strings, the comparison is done without leading
and trailing spaces. If strip_spaces is given a string value
LEADING or TRAILING (case-insensitive), the comparison is done
without leading or trailing spaces, respectively.

If collapse_spaces is given a true value (see Boolean arguments) and both
arguments are strings, the comparison is done with all white spaces replaced by
a single space character.

strip_spaces is new in Robot Framework 4.0 and collapse_spaces is new
in Robot Framework 4.1.

	
should_end_with(str1, str2, msg=None, values=True, ignore_case=False, strip_spaces=False, collapse_spaces=False)

	Fails if the string str1 does not end with the string str2.

See Should Be Equal for an explanation on how to override the default
error message with msg and values, as well as for semantics
of the ignore_case, strip_spaces, and collapse_spaces options.

	
should_match(string, pattern, msg=None, values=True, ignore_case=False)

	Fails if the given string does not match the given pattern.

Pattern matching is similar as matching files in a shell with
*, ? and [chars] acting as wildcards. See the
Glob patterns section for more information.

If ignore_case is given a true value (see Boolean arguments) and
compared items are strings, it indicates that comparison should be
case-insensitive.

See Should Be Equal for an explanation on how to override the default
error message with msg and values.

	
should_match_regexp(string, pattern, msg=None, values=True)

	Fails if string does not match pattern as a regular expression.

See the Regular expressions section for more information about
regular expressions and how to use then in Robot Framework test data.

Notice that the given pattern does not need to match the whole string.
For example, the pattern ello matches the string Hello world!.
If a full match is needed, the ^ and $ characters can be used
to denote the beginning and end of the string, respectively.
For example, ^ello$ only matches the exact string ello.

Possible flags altering how the expression is parsed (e.g.
re.IGNORECASE, re.MULTILINE) must be embedded to the
pattern like (?im)pattern. The most useful flags are i
(case-insensitive), m (multiline mode), s (dotall mode)
and x (verbose).

If this keyword passes, it returns the portion of the string that
matched the pattern. Additionally, the possible captured groups are
returned.

See the Should Be Equal keyword for an explanation on how to override
the default error message with the msg and values arguments.

	
should_not_be_empty(item, msg=None)

	Verifies that the given item is not empty.

The length of the item is got using the Get Length keyword. The
default error message can be overridden with the msg argument.

	
should_not_be_equal(first, second, msg=None, values=True, ignore_case=False, strip_spaces=False, collapse_spaces=False)

	Fails if the given objects are equal.

See Should Be Equal for an explanation on how to override the default
error message with msg and values.

If ignore_case is given a true value (see Boolean arguments) and
both arguments are strings, comparison is done case-insensitively.

If strip_spaces is given a true value (see Boolean arguments)
and both arguments are strings, the comparison is done without leading
and trailing spaces. If strip_spaces is given a string value
LEADING or TRAILING (case-insensitive), the comparison is done
without leading or trailing spaces, respectively.

If collapse_spaces is given a true value (see Boolean arguments) and both
arguments are strings, the comparison is done with all white spaces replaced by
a single space character.

strip_spaces is new in Robot Framework 4.0 and collapse_spaces is new
in Robot Framework 4.1.

	
should_not_be_equal_as_integers(first, second, msg=None, values=True, base=None)

	Fails if objects are equal after converting them to integers.

See Convert To Integer for information how to convert integers from
other bases than 10 using base argument or 0b/0o/0x prefixes.

See Should Be Equal for an explanation on how to override the default
error message with msg and values.

See Should Be Equal As Integers for some usage examples.

	
should_not_be_equal_as_numbers(first, second, msg=None, values=True, precision=6)

	Fails if objects are equal after converting them to real numbers.

The conversion is done with Convert To Number keyword using the
given precision.

See Should Be Equal As Numbers for examples on how to use
precision and why it does not always work as expected. See also
Should Be Equal for an explanation on how to override the default
error message with msg and values.

	
should_not_be_equal_as_strings(first, second, msg=None, values=True, ignore_case=False, strip_spaces=False, collapse_spaces=False)

	Fails if objects are equal after converting them to strings.

See Should Be Equal for an explanation on how to override the default
error message with msg and values.

If ignore_case is given a true value (see Boolean arguments),
comparison is done case-insensitively.

If strip_spaces is given a true value (see Boolean arguments)
and both arguments are strings, the comparison is done without leading
and trailing spaces. If strip_spaces is given a string value
LEADING or TRAILING (case-insensitive), the comparison is done
without leading or trailing spaces, respectively.

If collapse_spaces is given a true value (see Boolean arguments) and both
arguments are strings, the comparison is done with all white spaces replaced by
a single space character.

Strings are always [http://www.macchiato.com/unicode/nfc-faq|
NFC normalized].

strip_spaces is new in Robot Framework 4.0 and collapse_spaces is new
in Robot Framework 4.1.

	
should_not_be_true(condition, msg=None)

	Fails if the given condition is true.

See Should Be True for details about how condition is evaluated
and how msg can be used to override the default error message.

	
should_not_contain(container, item, msg=None, values=True, ignore_case=False, strip_spaces=False, collapse_spaces=False)

	Fails if container contains item one or more times.

Works with strings, lists, and anything that supports Python’s in
operator.

See Should Be Equal for an explanation on how to override the default
error message with arguments msg and values. ignore_case
has exactly the same semantics as with Should Contain.

If strip_spaces is given a true value (see Boolean arguments)
and both arguments are strings, the comparison is done without leading
and trailing spaces. If strip_spaces is given a string value
LEADING or TRAILING (case-insensitive), the comparison is done
without leading or trailing spaces, respectively.

If collapse_spaces is given a true value (see Boolean arguments) and both
arguments are strings, the comparison is done with all white spaces replaced by
a single space character.

strip_spaces is new in Robot Framework 4.0 and collapse_spaces is new
in Robot Framework 4.1.

	
should_not_contain_any(container, *items, **configuration)

	Fails if container contains one or more of the *items.

Works with strings, lists, and anything that supports Python’s in
operator.

Supports additional configuration parameters msg, values,
ignore_case and strip_spaces, and collapse_spaces which have exactly
the same semantics as arguments with same names have with Should Contain.
These arguments must always be given using name=value syntax after all items.

Note that possible equal signs in items must be escaped with
a backslash (e.g. foo\=bar) to avoid them to be passed in
as **configuration.

	
should_not_end_with(str1, str2, msg=None, values=True, ignore_case=False, strip_spaces=False, collapse_spaces=False)

	Fails if the string str1 ends with the string str2.

See Should Be Equal for an explanation on how to override the default
error message with msg and values, as well as for semantics
of the ignore_case, strip_spaces, and collapse_spaces options.

	
should_not_match(string, pattern, msg=None, values=True, ignore_case=False)

	Fails if the given string matches the given pattern.

Pattern matching is similar as matching files in a shell with
*, ? and [chars] acting as wildcards. See the
Glob patterns section for more information.

If ignore_case is given a true value (see Boolean arguments),
the comparison is case-insensitive.

See Should Be Equal for an explanation on how to override the default
error message with msg and ``values`.

	
should_not_match_regexp(string, pattern, msg=None, values=True)

	Fails if string matches pattern as a regular expression.

See Should Match Regexp for more information about arguments.

	
should_not_start_with(str1, str2, msg=None, values=True, ignore_case=False, strip_spaces=False, collapse_spaces=False)

	Fails if the string str1 starts with the string str2.

See Should Be Equal for an explanation on how to override the default
error message with msg and values, as well as for semantics
of the ignore_case, strip_spaces, and collapse_spaces options.

	
should_start_with(str1, str2, msg=None, values=True, ignore_case=False, strip_spaces=False, collapse_spaces=False)

	Fails if the string str1 does not start with the string str2.

See Should Be Equal for an explanation on how to override the default
error message with msg and values, as well as for semantics
of the ignore_case, strip_spaces, and collapse_spaces options.

	
skip(msg='Skipped with Skip keyword.')

	Skips the rest of the current test.

Skips the remaining keywords in the current test and sets the given
message to the test. If the test has teardown, it will be executed.

	
skip_if(condition, msg=None)

	Skips the rest of the current test if the condition is True.

Skips the remaining keywords in the current test and sets the given
message to the test. If msg is not given, the condition will
be used as the message. If the test has teardown, it will be executed.

If the condition evaluates to False, does nothing.

	
sleep(time_, reason=None)

	Pauses the test executed for the given time.

time may be either a number or a time string. Time strings are in
a format such as 1 day 2 hours 3 minutes 4 seconds 5milliseconds or
1d 2h 3m 4s 5ms, and they are fully explained in an appendix of
Robot Framework User Guide. Optional reason can be used to explain why
sleeping is necessary. Both the time slept and the reason are logged.

	
variable_should_exist(name, msg=None)

	Fails unless the given variable exists within the current scope.

The name of the variable can be given either as a normal variable name
(e.g. ${NAME}) or in escaped format (e.g. \${NAME}). Notice
that the former has some limitations explained in Set Suite Variable.

The default error message can be overridden with the msg argument.

See also Variable Should Not Exist and Keyword Should Exist.

	
variable_should_not_exist(name, msg=None)

	Fails if the given variable exists within the current scope.

The name of the variable can be given either as a normal variable name
(e.g. ${NAME}) or in escaped format (e.g. \${NAME}). Notice
that the former has some limitations explained in Set Suite Variable.

The default error message can be overridden with the msg argument.

See also Variable Should Exist and Keyword Should Exist.

	
wait_until_keyword_succeeds(retry, retry_interval, name, *args)

	Runs the specified keyword and retries if it fails.

name and args define the keyword that is executed similarly
as with Run Keyword. How long to retry running the keyword is
defined using retry argument either as timeout or count.
retry_interval is the time to wait between execution attempts.

If retry is given as timeout, it must be in Robot Framework’s
time format (e.g. 1 minute, 2 min 3 s, 4.5) that is
explained in an appendix of Robot Framework User Guide. If it is
given as count, it must have times or x postfix (e.g.
5 times, 10 x). retry_interval must always be given in
Robot Framework’s time format.

By default retry_interval is the time to wait _after_ a keyword has
failed. For example, if the first run takes 2 seconds and the retry
interval is 3 seconds, the second run starts 5 seconds after the first
run started. If retry_interval start with prefix strict:, the
execution time of the previous keyword is subtracted from the retry time.
With the earlier example the second run would thus start 3 seconds after
the first run started. A warning is logged if keyword execution time is
longer than a strict interval.

If the keyword does not succeed regardless of retries, this keyword
fails. If the executed keyword passes, its return value is returned.

All normal failures are caught by this keyword. Errors caused by
invalid syntax, test or keyword timeouts, or fatal exceptions (caused
e.g. by Fatal Error) are not caught.

Running the same keyword multiple times inside this keyword can create
lots of output and considerably increase the size of the generated
output files. It is possible to remove unnecessary keywords from
the outputs using --RemoveKeywords WUKS command line option.

Support for “strict” retry interval is new in Robot Framework 4.1.

	
exception robot.libraries.BuiltIn.RobotNotRunningError

	Bases: exceptions.AttributeError

Used when something cannot be done because Robot is not running.

Based on AttributeError to be backwards compatible with RF < 2.8.5.
May later be based directly on Exception, so new code should except
this exception explicitly.

	
args

	

	
message

	

	
robot.libraries.BuiltIn.register_run_keyword(library, keyword, args_to_process=None, deprecation_warning=True)

	Tell Robot Framework that this keyword runs other keywords internally.

NOTE: This API will change in the future. For more information see
https://github.com/robotframework/robotframework/issues/2190. Use with
deprecation_warning=False to avoid related deprecation warnings.

	Why is this method needed

Keywords running other keywords internally using Run Keyword or its variants
like Run Keyword If need some special handling by the framework. This includes
not processing arguments (e.g. variables in them) twice, special handling of
timeouts, and so on.

	How to use this method

library is the name of the library where the registered keyword is implemented.

keyword is the name of the keyword. With Python 2 it is possible to pass also
the function or method implementing the keyword.

args_to_process` defines how many of the arguments to the registered keyword must
be processed normally.

	Examples

from robot.libraries.BuiltIn import BuiltIn, register_run_keyword

	def my_run_keyword(name, *args):

	# do something
return BuiltIn().run_keyword(name, *args)

register_run_keyword(__name__, ‘My Run Keyword’, 1)

from robot.libraries.BuiltIn import BuiltIn, register_run_keyword

	class MyLibrary:

	
	def my_run_keyword_if(self, expression, name, *args):

	# do something
return BuiltIn().run_keyword_if(expression, name, *args)

register_run_keyword(‘MyLibrary’, ‘my_run_keyword_if’, 2)

robot.libraries.Collections module

	
class robot.libraries.Collections.NotSet

	Bases: object

	
class robot.libraries.Collections.Collections

	Bases: robot.libraries.Collections._List, robot.libraries.Collections._Dictionary

A test library providing keywords for handling lists and dictionaries.

Collections is Robot Framework’s standard library that provides a
set of keywords for handling Python lists and dictionaries. This
library has keywords, for example, for modifying and getting
values from lists and dictionaries (e.g. Append To List, Get
From Dictionary) and for verifying their contents (e.g. Lists
Should Be Equal, Dictionary Should Contain Value).

== Table of contents ==

%TOC%

= Related keywords in BuiltIn =

Following keywords in the BuiltIn library can also be used with
lists and dictionaries:

= Using with list-like and dictionary-like objects =

List keywords that do not alter the given list can also be used
with tuples, and to some extend also with other iterables.
Convert To List can be used to convert tuples and other iterables
to Python list objects.

Similarly dictionary keywords can, for most parts, be used with other
mappings. Convert To Dictionary can be used if real Python dict
objects are needed.

= Boolean arguments =

Some keywords accept arguments that are handled as Boolean values true or
false. If such an argument is given as a string, it is considered false if
it is an empty string or equal to FALSE, NONE, NO, OFF or
0, case-insensitively. Keywords verifying something that allow dropping
actual and expected values from the possible error message also consider
string no values to be false. Other strings are considered true
regardless their value, and other argument types are tested using the same
[http://docs.python.org/library/stdtypes.html#truth|rules as in Python].

True examples:

False examples:

Considering OFF and 0 false is new in Robot Framework 3.1.

= Data in examples =

List related keywords use variables in format ${Lx} in their examples.
They mean lists with as many alphabetic characters as specified by x.
For example, ${L1} means ['a'] and ${L3} means
['a', 'b', 'c'].

Dictionary keywords use similar ${Dx} variables. For example, ${D1}
means {'a': 1} and ${D3} means {'a': 1, 'b': 2, 'c': 3}.

	
ROBOT_LIBRARY_SCOPE = 'GLOBAL'

	

	
ROBOT_LIBRARY_VERSION = '4.1.2'

	

	
should_contain_match(list, pattern, msg=None, case_insensitive=False, whitespace_insensitive=False)

	Fails if pattern is not found in list.

By default, pattern matching is similar to matching files in a shell
and is case-sensitive and whitespace-sensitive. In the pattern syntax,
* matches to anything and ? matches to any single character. You
can also prepend glob= to your pattern to explicitly use this pattern
matching behavior.

If you prepend regexp= to your pattern, your pattern will be used
according to the Python
[http://docs.python.org/library/re.html|re module] regular expression
syntax. Important note: Backslashes are an escape character, and must
be escaped with another backslash (e.g. regexp=\\d{6} to search for
\d{6}). See BuiltIn.Should Match Regexp for more details.

If case_insensitive is given a true value (see Boolean arguments),
the pattern matching will ignore case.

If whitespace_insensitive is given a true value (see Boolean
arguments), the pattern matching will ignore whitespace.

Non-string values in lists are ignored when matching patterns.

Use the msg argument to override the default error message.

See also Should Not Contain Match.

	
should_not_contain_match(list, pattern, msg=None, case_insensitive=False, whitespace_insensitive=False)

	Fails if pattern is found in list.

Exact opposite of Should Contain Match keyword. See that keyword
for information about arguments and usage in general.

	
get_matches(list, pattern, case_insensitive=False, whitespace_insensitive=False)

	Returns a list of matches to pattern in list.

For more information on pattern, case_insensitive, and
whitespace_insensitive, see Should Contain Match.

	
get_match_count(list, pattern, case_insensitive=False, whitespace_insensitive=False)

	Returns the count of matches to pattern in list.

For more information on pattern, case_insensitive, and
whitespace_insensitive, see Should Contain Match.

	
append_to_list(list_, *values)

	Adds values to the end of list.

	
combine_lists(*lists)

	Combines the given lists together and returns the result.

The given lists are not altered by this keyword.

	
convert_to_dictionary(item)

	Converts the given item to a Python dict type.

Mainly useful for converting other mappings to normal dictionaries.
This includes converting Robot Framework’s own DotDict instances
that it uses if variables are created using the &{var} syntax.

Use Create Dictionary from the BuiltIn library for constructing new
dictionaries.

	
convert_to_list(item)

	Converts the given item to a Python list type.

Mainly useful for converting tuples and other iterable to lists.
Use Create List from the BuiltIn library for constructing new lists.

	
copy_dictionary(dictionary, deepcopy=False)

	Returns a copy of the given dictionary.

The deepcopy argument controls should the returned dictionary be
a [https://docs.python.org/library/copy.html|shallow or deep copy].
By default returns a shallow copy, but that can be changed by giving
deepcopy a true value (see Boolean arguments). This is a new
option in Robot Framework 3.1.2. Earlier versions always returned
shallow copies.

The given dictionary is never altered by this keyword.

	
copy_list(list_, deepcopy=False)

	Returns a copy of the given list.

If the optional deepcopy is given a true value, the returned
list is a deep copy. New option in Robot Framework 3.1.2.

The given list is never altered by this keyword.

	
count_values_in_list(list_, value, start=0, end=None)

	Returns the number of occurrences of the given value in list.

The search can be narrowed to the selected sublist by the start and
end indexes having the same semantics as with Get Slice From List
keyword. The given list is never altered by this keyword.

	
dictionaries_should_be_equal(dict1, dict2, msg=None, values=True)

	Fails if the given dictionaries are not equal.

First the equality of dictionaries’ keys is checked and after that all
the key value pairs. If there are differences between the values, those
are listed in the error message. The types of the dictionaries do not
need to be same.

See Lists Should Be Equal for more information about configuring
the error message with msg and values arguments.

	
dictionary_should_contain_item(dictionary, key, value, msg=None)

	An item of key / value must be found in a dictionary.

Value is converted to unicode for comparison.

Use the msg argument to override the default error message.

	
dictionary_should_contain_key(dictionary, key, msg=None)

	Fails if key is not found from dictionary.

Use the msg argument to override the default error message.

	
dictionary_should_contain_sub_dictionary(dict1, dict2, msg=None, values=True)

	Fails unless all items in dict2 are found from dict1.

See Lists Should Be Equal for more information about configuring
the error message with msg and values arguments.

	
dictionary_should_contain_value(dictionary, value, msg=None)

	Fails if value is not found from dictionary.

Use the msg argument to override the default error message.

	
dictionary_should_not_contain_key(dictionary, key, msg=None)

	Fails if key is found from dictionary.

Use the msg argument to override the default error message.

	
dictionary_should_not_contain_value(dictionary, value, msg=None)

	Fails if value is found from dictionary.

Use the msg argument to override the default error message.

	
get_dictionary_items(dictionary, sort_keys=True)

	Returns items of the given dictionary as a list.

Uses Get Dictionary Keys to get keys and then returns corresponding
items. By default keys are sorted and items returned in that order,
but this can be changed by giving sort_keys a false value (see
Boolean arguments). Notice that with Python 3.5 and earlier
dictionary order is undefined unless using ordered dictionaries.

Items are returned as a flat list so that first item is a key,
second item is a corresponding value, third item is the second key,
and so on.

The given dictionary is never altered by this keyword.

sort_keys is a new option in Robot Framework 3.1.2. Earlier items
were always sorted based on keys.

	
get_dictionary_keys(dictionary, sort_keys=True)

	Returns keys of the given dictionary as a list.

By default keys are returned in sorted order (assuming they are
sortable), but they can be returned in the original order by giving
sort_keys a false value (see Boolean arguments). Notice that
with Python 3.5 and earlier dictionary order is undefined unless using
ordered dictionaries.

The given dictionary is never altered by this keyword.

sort_keys is a new option in Robot Framework 3.1.2. Earlier keys
were always sorted.

	
get_dictionary_values(dictionary, sort_keys=True)

	Returns values of the given dictionary as a list.

Uses Get Dictionary Keys to get keys and then returns corresponding
values. By default keys are sorted and values returned in that order,
but this can be changed by giving sort_keys a false value (see
Boolean arguments). Notice that with Python 3.5 and earlier
dictionary order is undefined unless using ordered dictionaries.

The given dictionary is never altered by this keyword.

sort_keys is a new option in Robot Framework 3.1.2. Earlier values
were always sorted based on keys.

	
get_from_dictionary(dictionary, key)

	Returns a value from the given dictionary based on the given key.

If the given key cannot be found from the dictionary, this
keyword fails.

The given dictionary is never altered by this keyword.

	
get_from_list(list_, index)

	Returns the value specified with an index from list.

The given list is never altered by this keyword.

Index 0 means the first position, 1 the second, and so on.
Similarly, -1 is the last position, -2 the second last, and so on.
Using an index that does not exist on the list causes an error.
The index can be either an integer or a string that can be converted
to an integer.

	
get_index_from_list(list_, value, start=0, end=None)

	Returns the index of the first occurrence of the value on the list.

The search can be narrowed to the selected sublist by the start and
end indexes having the same semantics as with Get Slice From List
keyword. In case the value is not found, -1 is returned. The given list
is never altered by this keyword.

	
get_slice_from_list(list_, start=0, end=None)

	Returns a slice of the given list between start and end indexes.

The given list is never altered by this keyword.

If both start and end are given, a sublist containing values
from start to end is returned. This is the same as
list[start:end] in Python. To get all items from the beginning,
use 0 as the start value, and to get all items until and including
the end, use None (default) as the end value.

Using start or end not found on the list is the same as using
the largest (or smallest) available index.

	
insert_into_list(list_, index, value)

	Inserts value into list to the position specified with index.

Index 0 adds the value into the first position, 1 to the second,
and so on. Inserting from right works with negative indices so that
-1 is the second last position, -2 third last, and so on. Use
Append To List to add items to the end of the list.

If the absolute value of the index is greater than
the length of the list, the value is added at the end
(positive index) or the beginning (negative index). An index
can be given either as an integer or a string that can be
converted to an integer.

	
keep_in_dictionary(dictionary, *keys)

	Keeps the given keys in the dictionary and removes all other.

If the given key cannot be found from the dictionary, it
is ignored.

	
list_should_contain_sub_list(list1, list2, msg=None, values=True)

	Fails if not all of the elements in list2 are found in list1.

The order of values and the number of values are not taken into
account.

See Lists Should Be Equal for more information about configuring
the error message with msg and values arguments.

	
list_should_contain_value(list_, value, msg=None)

	Fails if the value is not found from list.

Use the msg argument to override the default error message.

	
list_should_not_contain_duplicates(list_, msg=None)

	Fails if any element in the list is found from it more than once.

The default error message lists all the elements that were found
from the list multiple times, but it can be overridden by giving
a custom msg. All multiple times found items and their counts are
also logged.

This keyword works with all iterables that can be converted to a list.
The original iterable is never altered.

	
list_should_not_contain_value(list_, value, msg=None)

	Fails if the value is found from list.

Use the msg argument to override the default error message.

	
lists_should_be_equal(list1, list2, msg=None, values=True, names=None, ignore_order=False)

	Fails if given lists are unequal.

The keyword first verifies that the lists have equal lengths, and then
it checks are all their values equal. Possible differences between the
values are listed in the default error message like Index 4: ABC !=
Abc. The types of the lists do not need to be the same. For example,
Python tuple and list with same content are considered equal.

The error message can be configured using msg and values
arguments:
- If msg is not given, the default error message is used.
- If msg is given and values gets a value considered true

(see Boolean arguments), the error message starts with the given
msg followed by a newline and the default message.

	If msg is given and values is not given a true value,
the error message is just the given msg.

The optional names argument can be used for naming the indices
shown in the default error message. It can either be a list of names
matching the indices in the lists or a dictionary where keys are
indices that need to be named. It is not necessary to name all of
the indices. When using a dictionary, keys can be either integers
or strings that can be converted to integers.

If the items in index 2 would differ in the above examples, the error
message would contain a row like Index 2 (email): name@foo.com !=
name@bar.com.

The optional ignore_order argument can be used to ignore the order
of the elements in the lists. Using it requires items to be sortable.
This is new in Robot Framework 3.2.

	
log_dictionary(dictionary, level='INFO')

	Logs the size and contents of the dictionary using given level.

Valid levels are TRACE, DEBUG, INFO (default), and WARN.

If you only want to log the size, use keyword Get Length from
the BuiltIn library.

	
log_list(list_, level='INFO')

	Logs the length and contents of the list using given level.

Valid levels are TRACE, DEBUG, INFO (default), and WARN.

If you only want to the length, use keyword Get Length from
the BuiltIn library.

	
pop_from_dictionary(dictionary, key, default=)

	Pops the given key from the dictionary and returns its value.

By default the keyword fails if the given key cannot be found from
the dictionary. If optional default value is given, it will be
returned instead of failing.

	
remove_duplicates(list_)

	Returns a list without duplicates based on the given list.

Creates and returns a new list that contains all items in the given
list so that one item can appear only once. Order of the items in
the new list is the same as in the original except for missing
duplicates. Number of the removed duplicates is logged.

	
remove_from_dictionary(dictionary, *keys)

	Removes the given keys from the dictionary.

If the given key cannot be found from the dictionary, it
is ignored.

	
remove_from_list(list_, index)

	Removes and returns the value specified with an index from list.

Index 0 means the first position, 1 the second and so on.
Similarly, -1 is the last position, -2 the second last, and so on.
Using an index that does not exist on the list causes an error.
The index can be either an integer or a string that can be converted
to an integer.

	
remove_values_from_list(list_, *values)

	Removes all occurrences of given values from list.

It is not an error if a value does not exist in the list at all.

	
reverse_list(list_)

	Reverses the given list in place.

Note that the given list is changed and nothing is returned. Use
Copy List first, if you need to keep also the original order.

	
set_list_value(list_, index, value)

	Sets the value of list specified by index to the given value.

Index 0 means the first position, 1 the second and so on.
Similarly, -1 is the last position, -2 second last, and so on.
Using an index that does not exist on the list causes an error.
The index can be either an integer or a string that can be converted to
an integer.

	
set_to_dictionary(dictionary, *key_value_pairs, **items)

	Adds the given key_value_pairs and items to the dictionary.

Giving items as key_value_pairs means giving keys and values
as separate arguments:

The latter syntax is typically more convenient to use, but it has
a limitation that keys must be strings.

If given keys already exist in the dictionary, their values are updated.

	
sort_list(list_)

	Sorts the given list in place.

Sorting fails if items in the list are not comparable with each others.
On Python 2 most objects are comparable, but on Python 3 comparing,
for example, strings with numbers is not possible.

Note that the given list is changed and nothing is returned. Use
Copy List first, if you need to keep also the original order.

robot.libraries.DateTime module

A test library for handling date and time values.

DateTime is a Robot Framework standard library that supports creating and
converting date and time values (e.g. Get Current Date, Convert Time),
as well as doing simple calculations with them (e.g. Subtract Time From Date,
Add Time To Time). It supports dates and times in various formats, and can
also be used by other libraries programmatically.

== Table of contents ==

%TOC%

= Terminology =

In the context of this library, date and time generally have following
meanings:

	
	date: An entity with both date and time components but without any

	timezone information. For example, 2014-06-11 10:07:42.

	time: A time interval. For example, 1 hour 20 minutes or 01:20:00.

This terminology differs from what Python’s standard
[http://docs.python.org/library/datetime.html|datetime] module uses.
Basically its
[http://docs.python.org/library/datetime.html#datetime-objects|datetime] and
[http://docs.python.org/library/datetime.html#timedelta-objects|timedelta]
objects match date and time as defined by this library.

= Date formats =

Dates can given to and received from keywords in timestamp, custom
timestamp, Python datetime and epoch time formats. These formats are
discussed thoroughly in subsequent sections.

Input format is determined automatically based on the given date except when
using custom timestamps, in which case it needs to be given using
date_format argument. Default result format is timestamp, but it can
be overridden using result_format argument.

== Timestamp ==

If a date is given as a string, it is always considered to be a timestamp.
If no custom formatting is given using date_format argument, the timestamp
is expected to be in [http://en.wikipedia.org/wiki/ISO_8601|ISO 8601] like
format YYYY-MM-DD hh:mm:ss.mil, where any non-digit character can be used
as a separator or separators can be omitted altogether. Additionally,
only the date part is mandatory, all possibly missing time components are
considered to be zeros.

Dates can also be returned in the same YYYY-MM-DD hh:mm:ss.mil format by
using timestamp value with result_format argument. This is also the
default format that keywords returning dates use. Milliseconds can be excluded
using exclude_millis as explained in Millisecond handling section.

== Custom timestamp ==

It is possible to use custom timestamps in both input and output.
The custom format is same as accepted by Python’s
[http://docs.python.org/library/datetime.html#strftime-strptime-behavior|
datetime.strptime] function. For example, the default timestamp discussed
in the previous section would match %Y-%m-%d %H:%M:%S.%f.

When using a custom timestamp in input, it must be specified using
date_format argument. The actual input value must be a string that matches
the specified format exactly. When using a custom timestamp in output, it must
be given using result_format argument.

Notice that locale aware directives like %b do not work correctly with
Jython on non-English locales: http://bugs.jython.org/issue2285

== Python datetime ==

Python’s standard
[http://docs.python.org/library/datetime.html#datetime-objects|datetime]
objects can be used both in input and output. In input they are recognized
automatically, and in output it is possible to get them by giving datetime
value to result_format argument.

One nice benefit with datetime objects is that they have different time
components available as attributes that can be easily accessed using the
extended variable syntax.

== Epoch time ==

Epoch time is the time in seconds since the
[http://en.wikipedia.org/wiki/Unix_time|UNIX epoch] i.e. 00:00:00.000 (UTC)
1 January 1970. To give a date in epoch time, it must be given as a number
(integer or float), not as a string. To return a date in epoch time,
it is possible to use epoch value with result_format argument.
Epoch time is returned as a floating point number.

Notice that epoch time itself is independent on timezones and thus same
around the world at a certain time. What local time a certain epoch time
matches obviously then depends on the timezone. For example, examples below
were tested in Finland but verifications would fail on other timezones.

== Earliest supported date ==

The earliest date that is supported depends on the date format and to some
extent on the platform:

	Timestamps support year 1900 and above.

	Python datetime objects support year 1 and above.

	Epoch time supports 1970 and above on Windows with Python and IronPython.

	On other platforms epoch time supports 1900 and above or even earlier.

= Time formats =

Similarly as dates, times can be given to and received from keywords in
various different formats. Supported formats are number, time string
(verbose and compact), timer string and Python timedelta.

Input format for time is always determined automatically based on the input.
Result format is number by default, but it can be customised using
result_format argument.

== Number ==

Time given as a number is interpreted to be seconds. It can be given
either as an integer or a float, or it can be a string that can be converted
to a number.

To return a time as a number, result_format argument must have value
number, which is also the default. Returned number is always a float.

== Time string ==

Time strings are strings in format like 1 minute 42 seconds or 1min 42s.
The basic idea of this format is having first a number and then a text
specifying what time that number represents. Numbers can be either
integers or floating point numbers, the whole format is case and space
insensitive, and it is possible to add a minus prefix to specify negative
times. The available time specifiers are:

	days, day, d

	hours, hour, h

	minutes, minute, mins, min, m

	seconds, second, secs, sec, s

	milliseconds, millisecond, millis, ms

When returning a time string, it is possible to select between verbose
and compact representations using result_format argument. The verbose
format uses long specifiers day, hour, minute, second and
millisecond, and adds s at the end when needed. The compact format uses
shorter specifiers d, h, min, s and ms, and even drops
the space between the number and the specifier.

== Timer string ==

Timer string is a string given in timer like format hh:mm:ss.mil. In this
format both hour and millisecond parts are optional, leading and trailing
zeros can be left out when they are not meaningful, and negative times can
be represented by adding a minus prefix.

To return a time as timer string, result_format argument must be given
value timer. Timer strings are by default returned in full hh:mm:ss.mil
format, but milliseconds can be excluded using exclude_millis as explained
in Millisecond handling section.

== Python timedelta ==

Python’s standard
[http://docs.python.org/library/datetime.html#datetime.timedelta|timedelta]
objects are also supported both in input and in output. In input they are
recognized automatically, and in output it is possible to receive them by
giving timedelta value to result_format argument.

= Millisecond handling =

This library handles dates and times internally using the precision of the
given input. With timestamp, time string, and timer string result
formats seconds are, however, rounded to millisecond accuracy. Milliseconds
may also be included even if there would be none.

All keywords returning dates or times have an option to leave milliseconds out
by giving a true value to exclude_millis argument. If the argument is given
as a string, it is considered true unless it is empty or case-insensitively
equal to false, none or no. Other argument types are tested using
same [http://docs.python.org/library/stdtypes.html#truth|rules as in
Python].

When milliseconds are excluded, seconds in returned dates and times are
rounded to the nearest full second. With timestamp and timer string
result formats, milliseconds will also be removed from the returned string
altogether.

= Programmatic usage =

In addition to be used as normal library, this library is intended to
provide a stable API for other libraries to use if they want to support
same date and time formats as this library. All the provided keywords
are available as functions that can be easily imported:

Additionally helper classes Date and Time can be used directly:

	
robot.libraries.DateTime.get_current_date(time_zone='local', increment=0, result_format='timestamp', exclude_millis=False)

	Returns current local or UTC time with an optional increment.

Arguments:
- time_zone: Get the current time on this time zone. Currently only

local (default) and UTC are supported.

	
	increment: Optional time increment to add to the returned date in

	one of the supported time formats. Can be negative.

	result_format: Format of the returned date (see date formats).

	
	exclude_millis: When set to any true value, rounds and drops

	milliseconds as explained in millisecond handling.

	
robot.libraries.DateTime.convert_date(date, result_format='timestamp', exclude_millis=False, date_format=None)

	Converts between supported date formats.

Arguments:
- date: Date in one of the supported date formats.
- result_format: Format of the returned date.
- exclude_millis: When set to any true value, rounds and drops

milliseconds as explained in millisecond handling.

	date_format: Specifies possible custom timestamp format.

	
robot.libraries.DateTime.convert_time(time, result_format='number', exclude_millis=False)

	Converts between supported time formats.

Arguments:
- time: Time in one of the supported time formats.
- result_format: Format of the returned time.
- exclude_millis: When set to any true value, rounds and drops

milliseconds as explained in millisecond handling.

	
robot.libraries.DateTime.subtract_date_from_date(date1, date2, result_format='number', exclude_millis=False, date1_format=None, date2_format=None)

	Subtracts date from another date and returns time between.

Arguments:
- date1: Date to subtract another date from in one of the

supported date formats.

	
	date2: Date that is subtracted in one of the supported

	date formats.

	result_format: Format of the returned time (see time formats).

	
	exclude_millis: When set to any true value, rounds and drops

	milliseconds as explained in millisecond handling.

	date1_format: Possible custom timestamp format of date1.

	date2_format: Possible custom timestamp format of date2.

Examples:

	
robot.libraries.DateTime.add_time_to_date(date, time, result_format='timestamp', exclude_millis=False, date_format=None)

	Adds time to date and returns the resulting date.

Arguments:
- date: Date to add time to in one of the supported

date formats.

	
	time: Time that is added in one of the supported

	time formats.

	result_format: Format of the returned date.

	
	exclude_millis: When set to any true value, rounds and drops

	milliseconds as explained in millisecond handling.

	date_format: Possible custom timestamp format of date.

	
robot.libraries.DateTime.subtract_time_from_date(date, time, result_format='timestamp', exclude_millis=False, date_format=None)

	Subtracts time from date and returns the resulting date.

Arguments:
- date: Date to subtract time from in one of the supported

date formats.

	
	time: Time that is subtracted in one of the supported

	time formats.

	result_format: Format of the returned date.

	
	exclude_millis: When set to any true value, rounds and drops

	milliseconds as explained in millisecond handling.

	date_format: Possible custom timestamp format of date.

	
robot.libraries.DateTime.add_time_to_time(time1, time2, result_format='number', exclude_millis=False)

	Adds time to another time and returns the resulting time.

Arguments:
- time1: First time in one of the supported time formats.
- time2: Second time in one of the supported time formats.
- result_format: Format of the returned time.
- exclude_millis: When set to any true value, rounds and drops

milliseconds as explained in millisecond handling.

	
robot.libraries.DateTime.subtract_time_from_time(time1, time2, result_format='number', exclude_millis=False)

	Subtracts time from another time and returns the resulting time.

Arguments:
- time1: Time to subtract another time from in one of

the supported time formats.

	time2: Time to subtract in one of the supported time formats.

	result_format: Format of the returned time.

	
	exclude_millis: When set to any true value, rounds and drops

	milliseconds as explained in millisecond handling.

robot.libraries.Dialogs module

A test library providing dialogs for interacting with users.

Dialogs is Robot Framework’s standard library that provides means
for pausing the test execution and getting input from users. The
dialogs are slightly different depending on whether tests are run on
Python, IronPython or Jython but they provide the same functionality.

Long lines in the provided messages are wrapped automatically. If you want
to wrap lines manually, you can add newlines using the \n character
sequence.

The library has a known limitation that it cannot be used with timeouts
on Python.

	
robot.libraries.Dialogs.pause_execution(message='Test execution paused. Press OK to continue.')

	Pauses test execution until user clicks Ok button.

message is the message shown in the dialog.

	
robot.libraries.Dialogs.execute_manual_step(message, default_error='')

	Pauses test execution until user sets the keyword status.

User can press either PASS or FAIL button. In the latter case execution
fails and an additional dialog is opened for defining the error message.

message is the instruction shown in the initial dialog and
default_error is the default value shown in the possible error message
dialog.

	
robot.libraries.Dialogs.get_value_from_user(message, default_value='', hidden=False)

	Pauses test execution and asks user to input a value.

Value typed by the user, or the possible default value, is returned.
Returning an empty value is fine, but pressing Cancel fails the keyword.

message is the instruction shown in the dialog and default_value is
the possible default value shown in the input field.

If hidden is given a true value, the value typed by the user is hidden.
hidden is considered true if it is a non-empty string not equal to
false, none or no, case-insensitively. If it is not a string,
its truth value is got directly using same
[http://docs.python.org/library/stdtypes.html#truth|rules as in Python].

	
robot.libraries.Dialogs.get_selection_from_user(message, *values)

	Pauses test execution and asks user to select a value.

The selected value is returned. Pressing Cancel fails the keyword.

message is the instruction shown in the dialog and values are
the options given to the user.

	
robot.libraries.Dialogs.get_selections_from_user(message, *values)

	Pauses test execution and asks user to select multiple values.

The selected values are returned as a list. Selecting no values is OK
and in that case the returned list is empty. Pressing Cancel fails
the keyword.

message is the instruction shown in the dialog and values are
the options given to the user.

New in Robot Framework 3.1.

robot.libraries.Easter module

	
robot.libraries.Easter.none_shall_pass(who)

	

robot.libraries.OperatingSystem module

	
class robot.libraries.OperatingSystem.OperatingSystem

	Bases: object

A test library providing keywords for OS related tasks.

OperatingSystem is Robot Framework’s standard library that
enables various operating system related tasks to be performed in
the system where Robot Framework is running. It can, among other
things, execute commands (e.g. Run), create and remove files and
directories (e.g. Create File, Remove Directory), check
whether files or directories exists or contain something
(e.g. File Should Exist, Directory Should Be Empty) and
manipulate environment variables (e.g. Set Environment Variable).

== Table of contents ==

%TOC%

= Path separators =

Because Robot Framework uses the backslash (\) as an escape character
in the test data, using a literal backslash requires duplicating it like
in c:\\path\\file.txt. That can be inconvenient especially with
longer Windows paths, and thus all keywords expecting paths as arguments
convert forward slashes to backslashes automatically on Windows. This also
means that paths like ${CURDIR}/path/file.txt are operating system
independent.

Notice that the automatic path separator conversion does not work if
the path is only a part of an argument like with Run and Start Process
keywords. In these cases the built-in variable ${/} that contains
\ or /, depending on the operating system, can be used instead.

= Pattern matching =

Some keywords allow their arguments to be specified as
[http://en.wikipedia.org/wiki/Glob_(programming)|glob patterns] where:

Unless otherwise noted, matching is case-insensitive on
case-insensitive operating systems such as Windows.

= Tilde expansion =

Paths beginning with ~ or ~username are expanded to the current or
specified user’s home directory, respectively. The resulting path is
operating system dependent, but typically e.g. ~/robot is expanded to
C:\Users\<user>\robot on Windows and /home/<user>/robot on
Unixes.

The ~username form does not work on Jython.

= Boolean arguments =

Some keywords accept arguments that are handled as Boolean values true or
false. If such an argument is given as a string, it is considered false if
it is an empty string or equal to FALSE, NONE, NO, OFF or
0, case-insensitively. Other strings are considered true regardless
their value, and other argument types are tested using the same
[http://docs.python.org/library/stdtypes.html#truth|rules as in Python].

True examples:

False examples:

Considering OFF` and 0 false is new in Robot Framework 3.1.

= Example =

	
ROBOT_LIBRARY_SCOPE = 'GLOBAL'

	

	
ROBOT_LIBRARY_VERSION = '4.1.2'

	

	
run(command)

	Runs the given command in the system and returns the output.

The execution status of the command is not checked by this
keyword, and it must be done separately based on the returned
output. If the execution return code is needed, either Run
And Return RC or Run And Return RC And Output can be used.

The standard error stream is automatically redirected to the standard
output stream by adding 2>&1 after the executed command. This
automatic redirection is done only when the executed command does not
contain additional output redirections. You can thus freely forward
the standard error somewhere else, for example, like
my_command 2>stderr.txt.

The returned output contains everything written into the standard
output or error streams by the command (unless either of them
is redirected explicitly). Many commands add an extra newline
(\n) after the output to make it easier to read in the
console. To ease processing the returned output, this possible
trailing newline is stripped by this keyword.

TIP: Run Process keyword provided by the
[http://robotframework.org/robotframework/latest/libraries/Process.html|
Process library] supports better process configuration and is generally
recommended as a replacement for this keyword.

	
run_and_return_rc(command)

	Runs the given command in the system and returns the return code.

The return code (RC) is returned as a positive integer in
range from 0 to 255 as returned by the executed command. On
some operating systems (notable Windows) original return codes
can be something else, but this keyword always maps them to
the 0-255 range. Since the RC is an integer, it must be
checked e.g. with the keyword Should Be Equal As Integers
instead of Should Be Equal (both are built-in keywords).

See Run and Run And Return RC And Output if you need to get the
output of the executed command.

TIP: Run Process keyword provided by the
[http://robotframework.org/robotframework/latest/libraries/Process.html|
Process library] supports better process configuration and is generally
recommended as a replacement for this keyword.

	
run_and_return_rc_and_output(command)

	Runs the given command in the system and returns the RC and output.

The return code (RC) is returned similarly as with Run And Return RC
and the output similarly as with Run.

TIP: Run Process keyword provided by the
[http://robotframework.org/robotframework/latest/libraries/Process.html|
Process library] supports better process configuration and is generally
recommended as a replacement for this keyword.

	
get_file(path, encoding='UTF-8', encoding_errors='strict')

	Returns the contents of a specified file.

This keyword reads the specified file and returns the contents.
Line breaks in content are converted to platform independent form.
See also Get Binary File.

encoding defines the encoding of the file. The default value is
UTF-8, which means that UTF-8 and ASCII encoded files are read
correctly. In addition to the encodings supported by the underlying
Python implementation, the following special encoding values can be
used:

	SYSTEM: Use the default system encoding.

	CONSOLE: Use the console encoding. Outside Windows this is same
as the system encoding.

encoding_errors argument controls what to do if decoding some bytes
fails. All values accepted by decode method in Python are valid, but
in practice the following values are most useful:

	strict: Fail if characters cannot be decoded (default).

	ignore: Ignore characters that cannot be decoded.

	replace: Replace characters that cannot be decoded with
a replacement character.

	
get_binary_file(path)

	Returns the contents of a specified file.

This keyword reads the specified file and returns the contents as is.
See also Get File.

	
grep_file(path, pattern, encoding='UTF-8', encoding_errors='strict')

	Returns the lines of the specified file that match the pattern.

This keyword reads a file from the file system using the defined
path, encoding and encoding_errors similarly as Get File.
A difference is that only the lines that match the given pattern are
returned. Lines are returned as a single string catenated back together
with newlines and the number of matched lines is automatically logged.
Possible trailing newline is never returned.

A line matches if it contains the pattern anywhere in it and
it does not need to match the pattern fully. The pattern
matching syntax is explained in introduction, and in this
case matching is case-sensitive.

If more complex pattern matching is needed, it is possible to use
Get File in combination with String library keywords like Get
Lines Matching Regexp.

This keyword supports special SYSTEM and CONSOLE encodings that
Get File supports only with Robot Framework 4.0 and newer. When using
Python 3, it is possible to use ${NONE} instead of SYSTEM with
earlier versions.

	
log_file(path, encoding='UTF-8', encoding_errors='strict')

	Wrapper for Get File that also logs the returned file.

The file is logged with the INFO level. If you want something else,
just use Get File and the built-in keyword Log with the desired
level.

See Get File for more information about encoding and
encoding_errors arguments.

	
should_exist(path, msg=None)

	Fails unless the given path (file or directory) exists.

The path can be given as an exact path or as a glob pattern.
The pattern matching syntax is explained in introduction.
The default error message can be overridden with the msg argument.

	
should_not_exist(path, msg=None)

	Fails if the given path (file or directory) exists.

The path can be given as an exact path or as a glob pattern.
The pattern matching syntax is explained in introduction.
The default error message can be overridden with the msg argument.

	
file_should_exist(path, msg=None)

	Fails unless the given path points to an existing file.

The path can be given as an exact path or as a glob pattern.
The pattern matching syntax is explained in introduction.
The default error message can be overridden with the msg argument.

	
file_should_not_exist(path, msg=None)

	Fails if the given path points to an existing file.

The path can be given as an exact path or as a glob pattern.
The pattern matching syntax is explained in introduction.
The default error message can be overridden with the msg argument.

	
directory_should_exist(path, msg=None)

	Fails unless the given path points to an existing directory.

The path can be given as an exact path or as a glob pattern.
The pattern matching syntax is explained in introduction.
The default error message can be overridden with the msg argument.

	
directory_should_not_exist(path, msg=None)

	Fails if the given path points to an existing file.

The path can be given as an exact path or as a glob pattern.
The pattern matching syntax is explained in introduction.
The default error message can be overridden with the msg argument.

	
wait_until_removed(path, timeout='1 minute')

	Waits until the given file or directory is removed.

The path can be given as an exact path or as a glob pattern.
The pattern matching syntax is explained in introduction.
If the path is a pattern, the keyword waits until all matching
items are removed.

The optional timeout can be used to control the maximum time of
waiting. The timeout is given as a timeout string, e.g. in a format
15 seconds, 1min 10s or just 10. The time string format is
described in an appendix of Robot Framework User Guide.

If the timeout is negative, the keyword is never timed-out. The keyword
returns immediately, if the path does not exist in the first place.

	
wait_until_created(path, timeout='1 minute')

	Waits until the given file or directory is created.

The path can be given as an exact path or as a glob pattern.
The pattern matching syntax is explained in introduction.
If the path is a pattern, the keyword returns when an item matching
it is created.

The optional timeout can be used to control the maximum time of
waiting. The timeout is given as a timeout string, e.g. in a format
15 seconds, 1min 10s or just 10. The time string format is
described in an appendix of Robot Framework User Guide.

If the timeout is negative, the keyword is never timed-out. The keyword
returns immediately, if the path already exists.

	
directory_should_be_empty(path, msg=None)

	Fails unless the specified directory is empty.

The default error message can be overridden with the msg argument.

	
directory_should_not_be_empty(path, msg=None)

	Fails if the specified directory is empty.

The default error message can be overridden with the msg argument.

	
file_should_be_empty(path, msg=None)

	Fails unless the specified file is empty.

The default error message can be overridden with the msg argument.

	
file_should_not_be_empty(path, msg=None)

	Fails if the specified directory is empty.

The default error message can be overridden with the msg argument.

	
create_file(path, content='', encoding='UTF-8')

	Creates a file with the given content and encoding.

If the directory where the file is created does not exist, it is
automatically created along with possible missing intermediate
directories. Possible existing file is overwritten.

On Windows newline characters (\n) in content are automatically
converted to Windows native newline sequence (\r\n).

See Get File for more information about possible encoding values,
including special values SYSTEM and CONSOLE.

Use Append To File if you want to append to an existing file
and Create Binary File if you need to write bytes without encoding.
File Should Not Exist can be used to avoid overwriting existing
files.

Automatically converting \n to \r\n on Windows is new in
Robot Framework 3.1.

	
create_binary_file(path, content)

	Creates a binary file with the given content.

If content is given as a Unicode string, it is first converted to bytes
character by character. All characters with ordinal below 256 can be
used and are converted to bytes with same values. Using characters
with higher ordinal is an error.

Byte strings, and possible other types, are written to the file as is.

If the directory for the file does not exist, it is created, along
with missing intermediate directories.

Use Create File if you want to create a text file using a certain
encoding. File Should Not Exist can be used to avoid overwriting
existing files.

	
append_to_file(path, content, encoding='UTF-8')

	Appends the given content to the specified file.

If the file exists, the given text is written to its end. If the file
does not exist, it is created.

Other than not overwriting possible existing files, this keyword works
exactly like Create File. See its documentation for more details
about the usage.

Note that special encodings SYSTEM and CONSOLE only work
with this keyword starting from Robot Framework 3.1.2.

	
remove_file(path)

	Removes a file with the given path.

Passes if the file does not exist, but fails if the path does
not point to a regular file (e.g. it points to a directory).

The path can be given as an exact path or as a glob pattern.
The pattern matching syntax is explained in introduction.
If the path is a pattern, all files matching it are removed.

	
remove_files(*paths)

	Uses Remove File to remove multiple files one-by-one.

	
empty_directory(path)

	Deletes all the content from the given directory.

Deletes both files and sub-directories, but the specified directory
itself if not removed. Use Remove Directory if you want to remove
the whole directory.

	
create_directory(path)

	Creates the specified directory.

Also possible intermediate directories are created. Passes if the
directory already exists, but fails if the path exists and is not
a directory.

	
remove_directory(path, recursive=False)

	Removes the directory pointed to by the given path.

If the second argument recursive is given a true value (see
Boolean arguments), the directory is removed recursively. Otherwise
removing fails if the directory is not empty.

If the directory pointed to by the path does not exist, the keyword
passes, but it fails, if the path points to a file.

	
copy_file(source, destination)

	Copies the source file into the destination.

Source must be a path to an existing file or a glob pattern (see
Pattern matching) that matches exactly one file. How the
destination is interpreted is explained below.

1) If the destination is an existing file, the source file is copied
over it.

2) If the destination is an existing directory, the source file is
copied into it. A possible file with the same name as the source is
overwritten.

3) If the destination does not exist and it ends with a path
separator (/ or \), it is considered a directory. That
directory is created and a source file copied into it.
Possible missing intermediate directories are also created.

4) If the destination does not exist and it does not end with a path
separator, it is considered a file. If the path to the file does not
exist, it is created.

The resulting destination path is returned.

See also Copy Files, Move File, and Move Files.

	
move_file(source, destination)

	Moves the source file into the destination.

Arguments have exactly same semantics as with Copy File keyword.
Destination file path is returned.

If the source and destination are on the same filesystem, rename
operation is used. Otherwise file is copied to the destination
filesystem and then removed from the original filesystem.

See also Move Files, Copy File, and Copy Files.

	
copy_files(*sources_and_destination)

	Copies specified files to the target directory.

Source files can be given as exact paths and as glob patterns (see
Pattern matching). At least one source must be given, but it is
not an error if it is a pattern that does not match anything.

Last argument must be the destination directory. If the destination
does not exist, it will be created.

See also Copy File, Move File, and Move Files.

	
move_files(*sources_and_destination)

	Moves specified files to the target directory.

Arguments have exactly same semantics as with Copy Files keyword.

See also Move File, Copy File, and Copy Files.

	
copy_directory(source, destination)

	Copies the source directory into the destination.

If the destination exists, the source is copied under it. Otherwise
the destination directory and the possible missing intermediate
directories are created.

	
move_directory(source, destination)

	Moves the source directory into a destination.

Uses Copy Directory keyword internally, and source and
destination arguments have exactly same semantics as with
that keyword.

	
get_environment_variable(name, default=None)

	Returns the value of an environment variable with the given name.

If no such environment variable is set, returns the default value, if
given. Otherwise fails the test case.

Returned variables are automatically decoded to Unicode using
the system encoding.

Note that you can also access environment variables directly using
the variable syntax %{ENV_VAR_NAME}.

	
set_environment_variable(name, value)

	Sets an environment variable to a specified value.

Values are converted to strings automatically. Set variables are
automatically encoded using the system encoding.

	
append_to_environment_variable(name, *values, **config)

	Appends given values to environment variable name.

If the environment variable already exists, values are added after it,
and otherwise a new environment variable is created.

Values are, by default, joined together using the operating system
path separator (; on Windows, : elsewhere). This can be changed
by giving a separator after the values like separator=value. No
other configuration parameters are accepted.

	
remove_environment_variable(*names)

	Deletes the specified environment variable.

Does nothing if the environment variable is not set.

It is possible to remove multiple variables by passing them to this
keyword as separate arguments.

	
environment_variable_should_be_set(name, msg=None)

	Fails if the specified environment variable is not set.

The default error message can be overridden with the msg argument.

	
environment_variable_should_not_be_set(name, msg=None)

	Fails if the specified environment variable is set.

The default error message can be overridden with the msg argument.

	
get_environment_variables()

	Returns currently available environment variables as a dictionary.

Both keys and values are decoded to Unicode using the system encoding.
Altering the returned dictionary has no effect on the actual environment
variables.

	
log_environment_variables(level='INFO')

	Logs all environment variables using the given log level.

Environment variables are also returned the same way as with
Get Environment Variables keyword.

	
join_path(base, *parts)

	Joins the given path part(s) to the given base path.

The path separator (/ or \) is inserted when needed and
the possible absolute paths handled as expected. The resulted
path is also normalized.

	${path} = ‘my/path’

	${p2} = ‘my/path’

	${p3} = ‘my/path/my/file.txt’

	${p4} = ‘/path’

	${p5} = ‘/my/path2’

	
join_paths(base, *paths)

	Joins given paths with base and returns resulted paths.

See Join Path for more information.

	@{p1} = [‘base/example’, ‘base/other’]

	@{p2} = [‘/example’, ‘/my/base/other’]

	@{p3} = [‘my/base/example/path’, ‘my/base/other’, ‘my/base/one/more’]

	
normalize_path(path, case_normalize=False)

	Normalizes the given path.

	Collapses redundant separators and up-level references.

	Converts / to \ on Windows.

	Replaces initial ~ or ~user by that user’s home directory.
The latter is not supported on Jython.

	If case_normalize is given a true value (see Boolean arguments)
on Windows, converts the path to all lowercase. New in Robot
Framework 3.1.

	${path1} = ‘abc’

	${path2} = ‘def’

	${path3} = ‘abc/def/ghi’

	${path4} = ‘/home/robot/stuff’

On Windows result would use \ instead of / and home directory
would be different.

	
split_path(path)

	Splits the given path from the last path separator (/ or \).

The given path is first normalized (e.g. a possible trailing
path separator is removed, special directories .. and .
removed). The parts that are split are returned as separate
components.

	${path1} = ‘abc’ & ${dir} = ‘def’

	${path2} = ‘abc/def’ & ${file} = ‘ghi.txt’

	${path3} = ‘def’ & ${d2} = ‘ghi’

	
split_extension(path)

	Splits the extension from the given path.

The given path is first normalized (e.g. possible trailing
path separators removed, special directories .. and .
removed). The base path and extension are returned as separate
components so that the dot used as an extension separator is
removed. If the path contains no extension, an empty string is
returned for it. Possible leading and trailing dots in the file
name are never considered to be extension separators.

	${path} = ‘file’ & ${ext} = ‘extension’

	${p2} = ‘path/file’ & ${e2} = ‘ext’

	${p3} = ‘path/file’ & ${e3} = ‘’

	${p4} = ‘p2/file’ & ${e4} = ‘ext’

	${p5} = ‘path/.file’ & ${e5} = ‘ext’

	${p6} = ‘path/.file’ & ${e6} = ‘’

	
get_modified_time(path, format='timestamp')

	Returns the last modification time of a file or directory.

How time is returned is determined based on the given format
string as follows. Note that all checks are case-insensitive.
Returned time is also automatically logged.

	If format contains the word epoch, the time is returned
in seconds after the UNIX epoch. The return value is always
an integer.

	If format contains any of the words year, month,
day, hour, min or sec, only the selected parts are
returned. The order of the returned parts is always the one
in the previous sentence and the order of the words in
format is not significant. The parts are returned as
zero-padded strings (e.g. May -> 05).

	Otherwise, and by default, the time is returned as a
timestamp string in the format 2006-02-24 15:08:31.

2006-03-29 15:06:21):
- ${time} = ‘2006-03-29 15:06:21’
- ${secs} = 1143637581
- ${year} = ‘2006’
- ${y} = ‘2006’ & ${d} = ‘29’
- @{time} = [‘2006’, ‘03’, ‘29’, ‘15’, ‘06’, ‘21’]

	
set_modified_time(path, mtime)

	Sets the file modification and access times.

Changes the modification and access times of the given file to
the value determined by mtime. The time can be given in
different formats described below. Note that all checks
involving strings are case-insensitive. Modified time can only
be set to regular files.

	If mtime is a number, or a string that can be converted
to a number, it is interpreted as seconds since the UNIX
epoch (1970-01-01 00:00:00 UTC). This documentation was
originally written about 1177654467 seconds after the epoch.

	If mtime is a timestamp, that time will be used. Valid
timestamp formats are YYYY-MM-DD hh:mm:ss and
YYYYMMDD hhmmss.

	If mtime is equal to NOW, the current local time is used.

	If mtime is equal to UTC, the current time in
[http://en.wikipedia.org/wiki/Coordinated_Universal_Time|UTC]
is used.

	If mtime is in the format like NOW - 1 day or UTC + 1
hour 30 min, the current local/UTC time plus/minus the time
specified with the time string is used. The time string format
is described in an appendix of Robot Framework User Guide.

	
get_file_size(path)

	Returns and logs file size as an integer in bytes.

	
list_directory(path, pattern=None, absolute=False)

	Returns and logs items in a directory, optionally filtered with pattern.

File and directory names are returned in case-sensitive alphabetical
order, e.g. ['A Name', 'Second', 'a lower case name', 'one more'].
Implicit directories . and .. are not returned. The returned
items are automatically logged.

File and directory names are returned relative to the given path
(e.g. 'file.txt') by default. If you want them be returned in
absolute format (e.g. '/home/robot/file.txt'), give the absolute
argument a true value (see Boolean arguments).

If pattern is given, only items matching it are returned. The pattern
matching syntax is explained in introduction, and in this case
matching is case-sensitive.

	
list_files_in_directory(path, pattern=None, absolute=False)

	Wrapper for List Directory that returns only files.

	
list_directories_in_directory(path, pattern=None, absolute=False)

	Wrapper for List Directory that returns only directories.

	
count_items_in_directory(path, pattern=None)

	Returns and logs the number of all items in the given directory.

The argument pattern has the same semantics as with List Directory
keyword. The count is returned as an integer, so it must be checked e.g.
with the built-in keyword Should Be Equal As Integers.

	
count_files_in_directory(path, pattern=None)

	Wrapper for Count Items In Directory returning only file count.

	
count_directories_in_directory(path, pattern=None)

	Wrapper for Count Items In Directory returning only directory count.

	
touch(path)

	Emulates the UNIX touch command.

Creates a file, if it does not exist. Otherwise changes its access and
modification times to the current time.

Fails if used with the directories or the parent directory of the given
file does not exist.

robot.libraries.Process module

	
class robot.libraries.Process.Process

	Bases: object

Robot Framework test library for running processes.

This library utilizes Python’s
[http://docs.python.org/library/subprocess.html|subprocess]
module and its
[http://docs.python.org/library/subprocess.html#popen-constructor|Popen]
class.

The library has following main usages:

	Running processes in system and waiting for their completion using
Run Process keyword.

	Starting processes on background using Start Process.

	Waiting started process to complete using Wait For Process or
stopping them with Terminate Process or Terminate All Processes.

== Table of contents ==

%TOC%

= Specifying command and arguments =

Both Run Process and Start Process accept the command to execute and
all arguments passed to the command as separate arguments. This makes usage
convenient and also allows these keywords to automatically escape possible
spaces and other special characters in commands and arguments. Notice that
if a command accepts options that themselves accept values, these options
and their values must be given as separate arguments.

When running processes in shell, it is also possible to give the whole
command to execute as a single string. The command can then contain
multiple commands to be run together. When using this approach, the caller
is responsible on escaping.

Possible non-string arguments are converted to strings automatically.

= Process configuration =

Run Process and Start Process keywords can be configured using
optional **configuration keyword arguments. Configuration arguments
must be given after other arguments passed to these keywords and must
use syntax like name=value. Available configuration arguments are
listed below and discussed further in sections afterwards.

Note that because **configuration is passed using name=value syntax,
possible equal signs in other arguments passed to Run Process and
Start Process must be escaped with a backslash like name\=value.
See Run Process for an example.

== Running processes in shell ==

The shell argument specifies whether to run the process in a shell or
not. By default shell is not used, which means that shell specific commands,
like copy and dir on Windows, are not available. You can, however,
run shell scripts and batch files without using a shell.

Giving the shell argument any non-false value, such as shell=True,
changes the program to be executed in a shell. It allows using the shell
capabilities, but can also make the process invocation operating system
dependent. Having a shell between the actually started process and this
library can also interfere communication with the process such as stopping
it and reading its outputs. Because of these problems, it is recommended
to use the shell only when absolutely necessary.

When using a shell it is possible to give the whole command to execute
as a single string. See Specifying command and arguments section for
examples and more details in general.

== Current working directory ==

By default the child process will be executed in the same directory
as the parent process, the process running tests, is executed. This
can be changed by giving an alternative location using the cwd argument.
Forward slashes in the given path are automatically converted to
backslashes on Windows.

Standard output and error streams, when redirected to files,
are also relative to the current working directory possibly set using
the cwd argument.

== Environment variables ==

By default the child process will get a copy of the parent process’s
environment variables. The env argument can be used to give the
child a custom environment as a Python dictionary. If there is a need
to specify only certain environment variable, it is possible to use the
env:<name>=<value> format to set or override only that named variables.
It is also possible to use these two approaches together.

== Standard output and error streams ==

By default processes are run so that their standard output and standard
error streams are kept in the memory. This works fine normally,
but if there is a lot of output, the output buffers may get full and
the program can hang. Additionally on Jython, everything written to
these in-memory buffers can be lost if the process is terminated.

To avoid the above mentioned problems, it is possible to use stdout
and stderr arguments to specify files on the file system where to
redirect the outputs. This can also be useful if other processes or
other keywords need to read or manipulate the outputs somehow.

Given stdout and stderr paths are relative to the current working
directory. Forward slashes in the given paths are automatically converted
to backslashes on Windows.

As a special feature, it is possible to redirect the standard error to
the standard output by using stderr=STDOUT.

Regardless are outputs redirected to files or not, they are accessible
through the result object returned when the process ends. Commands are
expected to write outputs using the console encoding, but output encoding
can be configured using the output_encoding argument if needed.

If you are not interested in outputs at all, you can explicitly ignore them
by using a special value DEVNULL both with stdout and stderr. For
example, stdout=DEVNULL is the same as redirecting output on console
with > /dev/null on UNIX-like operating systems or > NUL on Windows.
This way the process will not hang even if there would be a lot of output,
but naturally output is not available after execution either.

Support for the special value DEVNULL is new in Robot Framework 3.2.

Note that the created output files are not automatically removed after
the test run. The user is responsible to remove them if needed.

== Standard input stream ==

The stdin argument makes it possible to pass information to the standard
input stream of the started process. How its value is interpreted is
explained in the table below.

Values PIPE and NONE are internally mapped directly to
subprocess.PIPE and None, respectively, when calling
[https://docs.python.org/3/library/subprocess.html#subprocess.Popen|subprocess.Popen].
The default behavior may change from PIPE to NONE in future
releases. If you depend on the PIPE behavior, it is a good idea to use
it explicitly.

The support to configure stdin is new in Robot Framework 4.1.2.

== Output encoding ==

Executed commands are, by default, expected to write outputs to the
standard output and error streams using the encoding used by the
system console. If the command uses some other encoding, that can be
configured using the output_encoding argument. This is especially
useful on Windows where the console uses a different encoding than rest
of the system, and many commands use the general system encoding instead
of the console encoding.

The value used with the output_encoding argument must be a valid
encoding and must match the encoding actually used by the command. As a
convenience, it is possible to use strings CONSOLE and SYSTEM
to specify that the console or system encoding is used, respectively.
If produced outputs use different encoding then configured, values got
through the result object will be invalid.

== Alias ==

A custom name given to the process that can be used when selecting the
active process.

= Active process =

The test library keeps record which of the started processes is currently
active. By default it is latest process started with Start Process,
but Switch Process can be used to select a different one. Using
Run Process does not affect the active process.

The keywords that operate on started processes will use the active process
by default, but it is possible to explicitly select a different process
using the handle argument. The handle can be the identifier returned by
Start Process or an alias explicitly given to Start Process or
Run Process.

= Result object =

Run Process, Wait For Process and Terminate Process keywords return a
result object that contains information about the process execution as its
attributes. The same result object, or some of its attributes, can also
be get using Get Process Result keyword. Attributes available in the
object are documented in the table below.

= Boolean arguments =

Some keywords accept arguments that are handled as Boolean values true or
false. If such an argument is given as a string, it is considered false if
it is an empty string or equal to FALSE, NONE, NO, OFF or
0, case-insensitively. Other strings are considered true regardless
their value, and other argument types are tested using the same
[http://docs.python.org/library/stdtypes.html#truth|rules as in Python].

True examples:

False examples:

Considering OFF and 0 false is new in Robot Framework 3.1.

= Example =

	
ROBOT_LIBRARY_SCOPE = 'GLOBAL'

	

	
ROBOT_LIBRARY_VERSION = '4.1.2'

	

	
TERMINATE_TIMEOUT = 30

	

	
KILL_TIMEOUT = 10

	

	
run_process(command, *arguments, **configuration)

	Runs a process and waits for it to complete.

command and *arguments specify the command to execute and
arguments passed to it. See Specifying command and arguments for
more details.

**configuration contains additional configuration related to
starting processes and waiting for them to finish. See Process
configuration for more details about configuration related to starting
processes. Configuration related to waiting for processes consists of
timeout and on_timeout arguments that have same semantics as
with Wait For Process keyword. By default there is no timeout, and
if timeout is defined the default action on timeout is terminate.

Returns a result object containing information about the execution.

Note that possible equal signs in *arguments must be escaped
with a backslash (e.g. name\=value) to avoid them to be passed in
as **configuration.

This keyword does not change the active process.

	
start_process(command, *arguments, **configuration)

	Starts a new process on background.

See Specifying command and arguments and Process configuration
for more information about the arguments, and Run Process keyword
for related examples.

Makes the started process new active process. Returns an identifier
that can be used as a handle to activate the started process if needed.

Processes are started so that they create a new process group. This
allows sending signals to and terminating also possible child
processes. This is not supported on Jython.

	
is_process_running(handle=None)

	Checks is the process running or not.

If handle is not given, uses the current active process.

Returns True if the process is still running and False otherwise.

	
process_should_be_running(handle=None, error_message='Process is not running.')

	Verifies that the process is running.

If handle is not given, uses the current active process.

Fails if the process has stopped.

	
process_should_be_stopped(handle=None, error_message='Process is running.')

	Verifies that the process is not running.

If handle is not given, uses the current active process.

Fails if the process is still running.

	
wait_for_process(handle=None, timeout=None, on_timeout='continue')

	Waits for the process to complete or to reach the given timeout.

The process to wait for must have been started earlier with
Start Process. If handle is not given, uses the current
active process.

timeout defines the maximum time to wait for the process. It can be
given in
[http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#time-format|
various time formats] supported by Robot Framework, for example, 42,
42 s, or 1 minute 30 seconds. The timeout is ignored if it is
Python None (default), string NONE (case-insensitively), zero,
or negative.

on_timeout defines what to do if the timeout occurs. Possible values
and corresponding actions are explained in the table below. Notice
that reaching the timeout never fails the test.

See Terminate Process keyword for more details how processes are
terminated and killed.

If the process ends before the timeout or it is terminated or killed,
this keyword returns a result object containing information about
the execution. If the process is left running, Python None is
returned instead.

Ignoring timeout if it is string NONE, zero, or negative is new
in Robot Framework 3.2.

	
terminate_process(handle=None, kill=False)

	Stops the process gracefully or forcefully.

If handle is not given, uses the current active process.

By default first tries to stop the process gracefully. If the process
does not stop in 30 seconds, or kill argument is given a true value,
(see Boolean arguments) kills the process forcefully. Stops also all
the child processes of the originally started process.

Waits for the process to stop after terminating it. Returns a result
object containing information about the execution similarly as Wait
For Process.

On Unix-like machines graceful termination is done using TERM (15)
signal and killing using KILL (9). Use Send Signal To Process
instead if you just want to send either of these signals without
waiting for the process to stop.

On Windows graceful termination is done using CTRL_BREAK_EVENT
event and killing using Win32 API function TerminateProcess().

Limitations:
- Graceful termination is not supported on Windows when using Jython.

Process is killed instead.

	Stopping the whole process group is not supported when using Jython.

	On Windows forceful kill only stops the main process, not possible
child processes.

	
terminate_all_processes(kill=False)

	Terminates all still running processes started by this library.

This keyword can be used in suite teardown or elsewhere to make
sure that all processes are stopped,

By default tries to terminate processes gracefully, but can be
configured to forcefully kill them immediately. See Terminate Process
that this keyword uses internally for more details.

	
send_signal_to_process(signal, handle=None, group=False)

	Sends the given signal to the specified process.

If handle is not given, uses the current active process.

Signal can be specified either as an integer as a signal name. In the
latter case it is possible to give the name both with or without SIG
prefix, but names are case-sensitive. For example, all the examples
below send signal INT (2):

This keyword is only supported on Unix-like machines, not on Windows.
What signals are supported depends on the system. For a list of
existing signals on your system, see the Unix man pages related to
signal handling (typically man signal or man 7 signal).

By default sends the signal only to the parent process, not to possible
child processes started by it. Notice that when running processes in
shell, the shell is the parent process and it depends on the system
does the shell propagate the signal to the actual started process.

To send the signal to the whole process group, group argument can
be set to any true value (see Boolean arguments). This is not
supported by Jython, however.

	
get_process_id(handle=None)

	Returns the process ID (pid) of the process as an integer.

If handle is not given, uses the current active process.

Notice that the pid is not the same as the handle returned by
Start Process that is used internally by this library.

	
get_process_object(handle=None)

	Return the underlying subprocess.Popen object.

If handle is not given, uses the current active process.

	
get_process_result(handle=None, rc=False, stdout=False, stderr=False, stdout_path=False, stderr_path=False)

	Returns the specified result object or some of its attributes.

The given handle specifies the process whose results should be
returned. If no handle is given, results of the current active
process are returned. In either case, the process must have been
finishes before this keyword can be used. In practice this means
that processes started with Start Process must be finished either
with Wait For Process or Terminate Process before using this
keyword.

If no other arguments than the optional handle are given, a whole
result object is returned. If one or more of the other arguments
are given any true value, only the specified attributes of the
result object are returned. These attributes are always returned
in the same order as arguments are specified in the keyword signature.
See Boolean arguments section for more details about true and false
values.

Although getting results of a previously executed process can be handy
in general, the main use case for this keyword is returning results
over the remote library interface. The remote interface does not
support returning the whole result object, but individual attributes
can be returned without problems.

	
switch_process(handle)

	Makes the specified process the current active process.

The handle can be an identifier returned by Start Process or
the alias given to it explicitly.

	
split_command_line(args, escaping=False)

	Splits command line string into a list of arguments.

String is split from spaces, but argument surrounded in quotes may
contain spaces in them. If escaping is given a true value, then
backslash is treated as an escape character. It can escape unquoted
spaces, quotes inside quotes, and so on, but it also requires using
double backslashes when using Windows paths.

	
join_command_line(*args)

	Joins arguments into one command line string.

In resulting command line string arguments are delimited with a space,
arguments containing spaces are surrounded with quotes, and possible
quotes are escaped with a backslash.

If this keyword is given only one argument and that is a list like
object, then the values of that list are joined instead.

	
class robot.libraries.Process.ExecutionResult(process, stdout, stderr, stdin=None, rc=None, output_encoding=None)

	Bases: object

	
stdout

	

	
stderr

	

	
close_streams()

	

	
class robot.libraries.Process.ProcessConfiguration(cwd=None, shell=False, stdout=None, stderr=None, stdin='PIPE', output_encoding='CONSOLE', alias=None, env=None, **rest)

	Bases: object

	
get_command(command, arguments)

	

	
popen_config

	

	
result_config

	

robot.libraries.Remote module

	
class robot.libraries.Remote.Remote(uri='http://127.0.0.1:8270', timeout=None)

	Bases: object

Connects to a remote server at uri.

Optional timeout can be used to specify a timeout to wait when
initially connecting to the server and if a connection accidentally
closes. Timeout can be given as seconds (e.g. 60) or using
Robot Framework time format (e.g. 60s, 2 minutes 10 seconds).

The default timeout is typically several minutes, but it depends on
the operating system and its configuration. Notice that setting
a timeout that is shorter than keyword execution time will interrupt
the keyword.

Timeouts do not work with IronPython.

	
ROBOT_LIBRARY_SCOPE = 'TEST SUITE'

	

	
get_keyword_names()

	

	
get_keyword_arguments(name)

	

	
get_keyword_types(name)

	

	
get_keyword_tags(name)

	

	
get_keyword_documentation(name)

	

	
run_keyword(name, args, kwargs)

	

	
class robot.libraries.Remote.ArgumentCoercer

	Bases: object

	
binary = <_sre.SRE_Pattern object>

	

	
non_ascii = <_sre.SRE_Pattern object>

	

	
coerce(argument)

	

	
class robot.libraries.Remote.RemoteResult(result)

	Bases: object

	
class robot.libraries.Remote.XmlRpcRemoteClient(uri, timeout=None)

	Bases: object

	
get_library_information()

	

	
get_keyword_names()

	

	
get_keyword_arguments(name)

	

	
get_keyword_types(name)

	

	
get_keyword_tags(name)

	

	
get_keyword_documentation(name)

	

	
run_keyword(name, args, kwargs)

	

	
class robot.libraries.Remote.TimeoutHTTPTransport(use_datetime=0, timeout=None)

	Bases: xmlrpclib.Transport

	
make_connection(host)

	

	
accept_gzip_encoding = True

	

	
close()

	

	
encode_threshold = None

	

	
get_host_info(host)

	

	
getparser()

	

	
parse_response(response)

	

	
request(host, handler, request_body, verbose=0)

	

	
send_content(connection, request_body)

	

	
send_host(connection, host)

	

	
send_request(connection, handler, request_body)

	

	
send_user_agent(connection)

	

	
single_request(host, handler, request_body, verbose=0)

	

	
user_agent = 'xmlrpclib.py/1.0.1 (by www.pythonware.com)'

	

	
class robot.libraries.Remote.TimeoutHTTPSTransport(use_datetime=0, timeout=None)

	Bases: robot.libraries.Remote.TimeoutHTTPTransport

	
accept_gzip_encoding = True

	

	
close()

	

	
encode_threshold = None

	

	
get_host_info(host)

	

	
getparser()

	

	
make_connection(host)

	

	
parse_response(response)

	

	
request(host, handler, request_body, verbose=0)

	

	
send_content(connection, request_body)

	

	
send_host(connection, host)

	

	
send_request(connection, handler, request_body)

	

	
send_user_agent(connection)

	

	
single_request(host, handler, request_body, verbose=0)

	

	
user_agent = 'xmlrpclib.py/1.0.1 (by www.pythonware.com)'

	

robot.libraries.Reserved module

	
class robot.libraries.Reserved.Reserved

	Bases: object

	
ROBOT_LIBRARY_SCOPE = 'GLOBAL'

	

robot.libraries.Screenshot module

	
class robot.libraries.Screenshot.Screenshot(screenshot_directory=None, screenshot_module=None)

	Bases: object

Test library for taking screenshots on the machine where tests are run.

Notice that successfully taking screenshots requires tests to be run with
a physical or virtual display.

== Table of contents ==

%TOC%

= Using with Python =

How screenshots are taken when using Python depends on the operating
system. On OSX screenshots are taken using the built-in screencapture
utility. On other operating systems you need to have one of the following
tools or Python modules installed. You can specify the tool/module to use
when importing the library. If no tool or module is specified, the first
one found will be used.

	wxPython :: http://wxpython.org :: Required also by RIDE so many Robot
Framework users already have this module installed.

	PyGTK :: http://pygtk.org :: This module is available by default on most
Linux distributions.

	Pillow :: http://python-pillow.github.io ::
Only works on Windows. Also the original PIL package is supported.

	Scrot :: http://en.wikipedia.org/wiki/Scrot :: Not used on Windows.
Install with apt-get install scrot or similar.

= Using with Jython and IronPython =

With Jython and IronPython this library uses APIs provided by JVM and .NET
platforms, respectively. These APIs are always available and thus no
external modules are needed.

= Where screenshots are saved =

By default screenshots are saved into the same directory where the Robot
Framework log file is written. If no log is created, screenshots are saved
into the directory where the XML output file is written.

It is possible to specify a custom location for screenshots using
screenshot_directory argument when importing the library and
using Set Screenshot Directory keyword during execution. It is also
possible to save screenshots using an absolute path.

= ScreenCapLibrary =

[https://github.com/mihaiparvu/ScreenCapLibrary|ScreenCapLibrary] is an
external Robot Framework library that can be used as an alternative,
which additionally provides support for multiple formats, adjusting the
quality, using GIFs and video capturing.

Configure where screenshots are saved.

If screenshot_directory is not given, screenshots are saved into
same directory as the log file. The directory can also be set using
Set Screenshot Directory keyword.

screenshot_module specifies the module or tool to use when using
this library on Python outside OSX. Possible values are wxPython,
PyGTK, PIL and scrot, case-insensitively. If no value is
given, the first module/tool found is used in that order. See Using
with Python for more information.

	
ROBOT_LIBRARY_SCOPE = 'TEST SUITE'

	

	
ROBOT_LIBRARY_VERSION = '4.1.2'

	

	
set_screenshot_directory(path)

	Sets the directory where screenshots are saved.

It is possible to use / as a path separator in all operating
systems. Path to the old directory is returned.

The directory can also be set in importing.

	
take_screenshot(name='screenshot', width='800px')

	Takes a screenshot in JPEG format and embeds it into the log file.

Name of the file where the screenshot is stored is derived from the
given name. If the name ends with extension .jpg or
.jpeg, the screenshot will be stored with that exact name.
Otherwise a unique name is created by adding an underscore, a running
index and an extension to the name.

The name will be interpreted to be relative to the directory where
the log file is written. It is also possible to use absolute paths.
Using / as a path separator works in all operating systems.

width specifies the size of the screenshot in the log file.

The path where the screenshot is saved is returned.

	
take_screenshot_without_embedding(name='screenshot')

	Takes a screenshot and links it from the log file.

This keyword is otherwise identical to Take Screenshot but the saved
screenshot is not embedded into the log file. The screenshot is linked
so it is nevertheless easily available.

	
class robot.libraries.Screenshot.ScreenshotTaker(module_name=None)

	Bases: object

	
test(path=None)

	

robot.libraries.String module

	
class robot.libraries.String.String

	Bases: object

A test library for string manipulation and verification.

String is Robot Framework’s standard library for manipulating
strings (e.g. Replace String Using Regexp, Split To Lines) and
verifying their contents (e.g. Should Be String).

Following keywords from BuiltIn library can also be used with strings:

	Catenate

	Get Length

	Length Should Be

	Should (Not) Be Empty

	Should (Not) Be Equal (As Strings/Integers/Numbers)

	Should (Not) Match (Regexp)

	Should (Not) Contain

	Should (Not) Start With

	Should (Not) End With

	Convert To String

	Convert To Bytes

	
ROBOT_LIBRARY_SCOPE = 'GLOBAL'

	

	
ROBOT_LIBRARY_VERSION = '4.1.2'

	

	
convert_to_lower_case(string)

	Converts string to lower case.

Uses Python’s standard
[https://docs.python.org/library/stdtypes.html#str.lower|lower()]
method.

	
convert_to_upper_case(string)

	Converts string to upper case.

Uses Python’s standard
[https://docs.python.org/library/stdtypes.html#str.upper|upper()]
method.

	
convert_to_title_case(string, exclude=None)

	Converts string to title case.

Uses the following algorithm:

	Split the string to words from whitespace characters (spaces,
newlines, etc.).

	Exclude words that are not all lower case. This preserves,
for example, “OK” and “iPhone”.

	Exclude also words listed in the optional exclude argument.

	Title case the first alphabetical character of each word that has
not been excluded.

	Join all words together so that original whitespace is preserved.

Explicitly excluded words can be given as a list or as a string with
words separated by a comma and an optional space. Excluded words are
actually considered to be regular expression patterns, so it is
possible to use something like “example[.!?]?” to match the word
“example” on it own and also if followed by “.”, “!” or “?”.
See BuiltIn.Should Match Regexp for more information about Python
regular expression syntax in general and how to use it in Robot
Framework test data in particular.

The reason this keyword does not use Python’s standard
[https://docs.python.org/library/stdtypes.html#str.title|title()]
method is that it can yield undesired results, for example, if
strings contain upper case letters or special characters like
apostrophes. It would, for example, convert “it’s an OK iPhone”
to “It’S An Ok Iphone”.

New in Robot Framework 3.2.

	
encode_string_to_bytes(string, encoding, errors='strict')

	Encodes the given Unicode string to bytes using the given encoding.

errors argument controls what to do if encoding some characters fails.
All values accepted by encode method in Python are valid, but in
practice the following values are most useful:

	strict: fail if characters cannot be encoded (default)

	ignore: ignore characters that cannot be encoded

	replace: replace characters that cannot be encoded with
a replacement character

Use Convert To Bytes in BuiltIn if you want to create bytes based
on character or integer sequences. Use Decode Bytes To String if you
need to convert byte strings to Unicode strings and Convert To String
in BuiltIn if you need to convert arbitrary objects to Unicode.

	
decode_bytes_to_string(bytes, encoding, errors='strict')

	Decodes the given bytes to a Unicode string using the given encoding.

errors argument controls what to do if decoding some bytes fails.
All values accepted by decode method in Python are valid, but in
practice the following values are most useful:

	strict: fail if characters cannot be decoded (default)

	ignore: ignore characters that cannot be decoded

	replace: replace characters that cannot be decoded with
a replacement character

Use Encode String To Bytes if you need to convert Unicode strings to
byte strings, and Convert To String in BuiltIn if you need to
convert arbitrary objects to Unicode strings.

	
format_string(template, *positional, **named)

	Formats a template using the given positional and named arguments.

The template can be either be a string or an absolute path to
an existing file. In the latter case the file is read and its contents
are used as the template. If the template file contains non-ASCII
characters, it must be encoded using UTF-8.

The template is formatted using Python’s
[https://docs.python.org/library/string.html#format-string-syntax|format
string syntax]. Placeholders are marked using {} with possible
field name and format specification inside. Literal curly braces
can be inserted by doubling them like {{ and }}.

New in Robot Framework 3.1.

	
get_line_count(string)

	Returns and logs the number of lines in the given string.

	
split_to_lines(string, start=0, end=None)

	Splits the given string to lines.

It is possible to get only a selection of lines from start
to end so that start index is inclusive and end is
exclusive. Line numbering starts from 0, and it is possible to
use negative indices to refer to lines from the end.

Lines are returned without the newlines. The number of
returned lines is automatically logged.

Use Get Line if you only need to get a single line.

	
get_line(string, line_number)

	Returns the specified line from the given string.

Line numbering starts from 0 and it is possible to use
negative indices to refer to lines from the end. The line is
returned without the newline character.

Use Split To Lines if all lines are needed.

	
get_lines_containing_string(string, pattern, case_insensitive=False)

	Returns lines of the given string that contain the pattern.

The pattern is always considered to be a normal string, not a glob
or regexp pattern. A line matches if the pattern is found anywhere
on it.

The match is case-sensitive by default, but giving case_insensitive
a true value makes it case-insensitive. The value is considered true
if it is a non-empty string that is not equal to false, none or
no. If the value is not a string, its truth value is got directly
in Python.

Lines are returned as one string catenated back together with
newlines. Possible trailing newline is never returned. The
number of matching lines is automatically logged.

See Get Lines Matching Pattern and Get Lines Matching Regexp
if you need more complex pattern matching.

	
get_lines_matching_pattern(string, pattern, case_insensitive=False)

	Returns lines of the given string that match the pattern.

The pattern is a _glob pattern_ where:

A line matches only if it matches the pattern fully.

The match is case-sensitive by default, but giving case_insensitive
a true value makes it case-insensitive. The value is considered true
if it is a non-empty string that is not equal to false, none or
no. If the value is not a string, its truth value is got directly
in Python.

Lines are returned as one string catenated back together with
newlines. Possible trailing newline is never returned. The
number of matching lines is automatically logged.

See Get Lines Matching Regexp if you need more complex
patterns and Get Lines Containing String if searching
literal strings is enough.

	
get_lines_matching_regexp(string, pattern, partial_match=False)

	Returns lines of the given string that match the regexp pattern.

See BuiltIn.Should Match Regexp for more information about
Python regular expression syntax in general and how to use it
in Robot Framework test data in particular.

By default lines match only if they match the pattern fully, but
partial matching can be enabled by giving the partial_match
argument a true value. The value is considered true
if it is a non-empty string that is not equal to false, none or
no. If the value is not a string, its truth value is got directly
in Python.

If the pattern is empty, it matches only empty lines by default.
When partial matching is enabled, empty pattern matches all lines.

Notice that to make the match case-insensitive, you need to prefix
the pattern with case-insensitive flag (?i).

Lines are returned as one string concatenated back together with
newlines. Possible trailing newline is never returned. The
number of matching lines is automatically logged.

See Get Lines Matching Pattern and Get Lines Containing
String if you do not need full regular expression powers (and
complexity).

	
get_regexp_matches(string, pattern, *groups)

	Returns a list of all non-overlapping matches in the given string.

string is the string to find matches from and pattern is the
regular expression. See BuiltIn.Should Match Regexp for more
information about Python regular expression syntax in general and how
to use it in Robot Framework test data in particular.

If no groups are used, the returned list contains full matches. If one
group is used, the list contains only contents of that group. If
multiple groups are used, the list contains tuples that contain
individual group contents. All groups can be given as indexes (starting
from 1) and named groups also as names.

	
replace_string(string, search_for, replace_with, count=-1)

	Replaces search_for in the given string with replace_with.

search_for is used as a literal string. See Replace String
Using Regexp if more powerful pattern matching is needed.
If you need to just remove a string see Remove String.

If the optional argument count is given, only that many
occurrences from left are replaced. Negative count means
that all occurrences are replaced (default behaviour) and zero
means that nothing is done.

A modified version of the string is returned and the original
string is not altered.

	
replace_string_using_regexp(string, pattern, replace_with, count=-1)

	Replaces pattern in the given string with replace_with.

This keyword is otherwise identical to Replace String, but
the pattern to search for is considered to be a regular
expression. See BuiltIn.Should Match Regexp for more
information about Python regular expression syntax in general
and how to use it in Robot Framework test data in particular.

If you need to just remove a string see Remove String Using Regexp.

	
remove_string(string, *removables)

	Removes all removables from the given string.

removables are used as literal strings. Each removable will be
matched to a temporary string from which preceding removables have
been already removed. See second example below.

Use Remove String Using Regexp if more powerful pattern matching is
needed. If only a certain number of matches should be removed,
Replace String or Replace String Using Regexp can be used.

A modified version of the string is returned and the original
string is not altered.

	
remove_string_using_regexp(string, *patterns)

	Removes patterns from the given string.

This keyword is otherwise identical to Remove String, but
the patterns to search for are considered to be a regular
expression. See Replace String Using Regexp for more information
about the regular expression syntax. That keyword can also be
used if there is a need to remove only a certain number of
occurrences.

	
split_string(string, separator=None, max_split=-1)

	Splits the string using separator as a delimiter string.

If a separator is not given, any whitespace string is a
separator. In that case also possible consecutive whitespace
as well as leading and trailing whitespace is ignored.

Split words are returned as a list. If the optional
max_split is given, at most max_split splits are done, and
the returned list will have maximum max_split + 1 elements.

See Split String From Right if you want to start splitting
from right, and Fetch From Left and Fetch From Right if
you only want to get first/last part of the string.

	
split_string_from_right(string, separator=None, max_split=-1)

	Splits the string using separator starting from right.

Same as Split String, but splitting is started from right. This has
an effect only when max_split is given.

	
split_string_to_characters(string)

	Splits the given string to characters.

	
fetch_from_left(string, marker)

	Returns contents of the string before the first occurrence of marker.

If the marker is not found, whole string is returned.

See also Fetch From Right, Split String and Split String
From Right.

	
fetch_from_right(string, marker)

	Returns contents of the string after the last occurrence of marker.

If the marker is not found, whole string is returned.

See also Fetch From Left, Split String and Split String
From Right.

	
generate_random_string(length=8, chars='[LETTERS][NUMBERS]')

	Generates a string with a desired length from the given chars.

The population sequence chars contains the characters to use
when generating the random string. It can contain any
characters, and it is possible to use special markers
explained in the table below:

	
get_substring(string, start, end=None)

	Returns a substring from start index to end index.

The start index is inclusive and end is exclusive.
Indexing starts from 0, and it is possible to use
negative indices to refer to characters from the end.

	
strip_string(string, mode='both', characters=None)

	Remove leading and/or trailing whitespaces from the given string.

mode is either left to remove leading characters, right to
remove trailing characters, both (default) to remove the
characters from both sides of the string or none to return the
unmodified string.

If the optional characters is given, it must be a string and the
characters in the string will be stripped in the string. Please note,
that this is not a substring to be removed but a list of characters,
see the example below.

	
should_be_string(item, msg=None)

	Fails if the given item is not a string.

With Python 2, except with IronPython, this keyword passes regardless
is the item a Unicode string or a byte string. Use Should Be
Unicode String or Should Be Byte String if you want to restrict
the string type. Notice that with Python 2, except with IronPython,
'string' creates a byte string and u'unicode' must be used to
create a Unicode string.

With Python 3 and IronPython, this keyword passes if the string is
a Unicode string but fails if it is bytes. Notice that with both
Python 3 and IronPython, 'string' creates a Unicode string, and
b'bytes' must be used to create a byte string.

The default error message can be overridden with the optional
msg argument.

	
should_not_be_string(item, msg=None)

	Fails if the given item is a string.

See Should Be String for more details about Unicode strings and byte
strings.

The default error message can be overridden with the optional
msg argument.

	
should_be_unicode_string(item, msg=None)

	Fails if the given item is not a Unicode string.

Use Should Be Byte String if you want to verify the item is a
byte string, or Should Be String if both Unicode and byte strings
are fine. See Should Be String for more details about Unicode
strings and byte strings.

The default error message can be overridden with the optional
msg argument.

	
should_be_byte_string(item, msg=None)

	Fails if the given item is not a byte string.

Use Should Be Unicode String if you want to verify the item is a
Unicode string, or Should Be String if both Unicode and byte strings
are fine. See Should Be String for more details about Unicode strings
and byte strings.

The default error message can be overridden with the optional
msg argument.

	
should_be_lower_case(string, msg=None)

	Fails if the given string is not in lower case.

For example, 'string' and 'with specials!' would pass, and
'String', '' and ' ' would fail.

The default error message can be overridden with the optional
msg argument.

See also Should Be Upper Case and Should Be Title Case.

	
should_be_upper_case(string, msg=None)

	Fails if the given string is not in upper case.

For example, 'STRING' and 'WITH SPECIALS!' would pass, and
'String', '' and ' ' would fail.

The default error message can be overridden with the optional
msg argument.

See also Should Be Title Case and Should Be Lower Case.

	
should_be_title_case(string, msg=None, exclude=None)

	Fails if given string is not title.

string is a title cased string if there is at least one upper case
letter in each word.

For example, 'This Is Title' and 'OK, Give Me My iPhone'
would pass. 'all words lower' and 'Word In lower' would fail.

This logic changed in Robot Framework 4.0 to be compatible with
Convert to Title Case. See Convert to Title Case for title case
algorithm and reasoning.

The default error message can be overridden with the optional
msg argument.

Words can be explicitly excluded with the optional exclude argument.

Explicitly excluded words can be given as a list or as a string with
words separated by a comma and an optional space. Excluded words are
actually considered to be regular expression patterns, so it is
possible to use something like “example[.!?]?” to match the word
“example” on it own and also if followed by “.”, “!” or “?”.
See BuiltIn.Should Match Regexp for more information about Python
regular expression syntax in general and how to use it in Robot
Framework test data in particular.

See also Should Be Upper Case and Should Be Lower Case.

robot.libraries.Telnet module

	
class robot.libraries.Telnet.Telnet(timeout='3 seconds', newline='CRLF', prompt=None, prompt_is_regexp=False, encoding='UTF-8', encoding_errors='ignore', default_log_level='INFO', window_size=None, environ_user=None, terminal_emulation=False, terminal_type=None, telnetlib_log_level='TRACE', connection_timeout=None)

	Bases: object

A test library providing communication over Telnet connections.

Telnet is Robot Framework’s standard library that makes it possible to
connect to Telnet servers and execute commands on the opened connections.

== Table of contents ==

%TOC%

= Connections =

The first step of using Telnet is opening a connection with Open
Connection keyword. Typically the next step is logging in with Login
keyword, and in the end the opened connection can be closed with Close
Connection.

It is possible to open multiple connections and switch the active one
using Switch Connection. Close All Connections can be used to close
all the connections, which is especially useful in suite teardowns to
guarantee that all connections are always closed.

= Writing and reading =

After opening a connection and possibly logging in, commands can be
executed or text written to the connection for other reasons using Write
and Write Bare keywords. The main difference between these two is that
the former adds a [#Configuration|configurable newline] after the text
automatically.

After writing something to the connection, the resulting output can be
read using Read, Read Until, Read Until Regexp, and Read Until
Prompt keywords. Which one to use depends on the context, but the latest
one is often the most convenient.

As a convenience when running a command, it is possible to use Execute
Command that simply uses Write and Read Until Prompt internally.
Write Until Expected Output is useful if you need to wait until writing
something produces a desired output.

Written and read text is automatically encoded/decoded using a
[#Configuration|configured encoding].

The ANSI escape codes, like cursor movement and color codes, are
normally returned as part of the read operation. If an escape code occurs
in middle of a search pattern it may also prevent finding the searched
string. Terminal emulation can be used to process these
escape codes as they would be if a real terminal would be in use.

= Configuration =

Many aspects related the connections can be easily configured either
globally or per connection basis. Global configuration is done when
[#Importing|library is imported], and these values can be overridden per
connection by Open Connection or with setting specific keywords
Set Timeout, Set Newline, Set Prompt, Set Encoding,
Set Default Log Level and Set Telnetlib Log Level.

Values of environ_user, window_size, terminal_emulation, and
terminal_type can not be changed after opening the connection.

== Timeout ==

Timeout defines how long is the maximum time to wait when reading
output. It is used internally by Read Until, Read Until Regexp,
Read Until Prompt, and Login keywords. The default value is 3 seconds.

== Connection Timeout ==

Connection Timeout defines how long is the maximum time to wait when
opening the telnet connection. It is used internally by Open Connection.
The default value is the system global default timeout.

== Newline ==

Newline defines which line separator Write keyword should use. The
default value is CRLF that is typically used by Telnet connections.

Newline can be given either in escaped format using \n and \r or
with special LF and CR syntax.

== Prompt ==

Often the easiest way to read the output of a command is reading all
the output until the next prompt with Read Until Prompt. It also makes
it easier, and faster, to verify did Login succeed.

Prompt can be specified either as a normal string or a regular expression.
The latter is especially useful if the prompt changes as a result of
the executed commands. Prompt can be set to be a regular expression
by giving prompt_is_regexp argument a true value (see Boolean
arguments).

== Encoding ==

To ease handling text containing non-ASCII characters, all written text is
encoded and read text decoded by default. The default encoding is UTF-8
that works also with ASCII. Encoding can be disabled by using a special
encoding value NONE. This is mainly useful if you need to get the bytes
received from the connection as-is.

Notice that when writing to the connection, only Unicode strings are
encoded using the defined encoding. Byte strings are expected to be already
encoded correctly. Notice also that normal text in test data is passed to
the library as Unicode and you need to use variables to use bytes.

It is also possible to configure the error handler to use if encoding or
decoding characters fails. Accepted values are the same that encode/decode
functions in Python strings accept. In practice the following values are
the most useful:

	ignore: ignore characters that cannot be encoded (default)

	strict: fail if characters cannot be encoded

	replace: replace characters that cannot be encoded with a replacement
character

== Default log level ==

Default log level specifies the log level keywords use for logging unless
they are given an explicit log level. The default value is INFO, and
changing it, for example, to DEBUG can be a good idea if there is lot
of unnecessary output that makes log files big.

== Terminal type ==

By default the Telnet library does not negotiate any specific terminal type
with the server. If a specific terminal type, for example vt100, is
desired, the terminal type can be configured in importing and with
Open Connection.

== Window size ==

Window size for negotiation with the server can be configured when
importing the library and with Open Connection.

== USER environment variable ==

Telnet protocol allows the USER environment variable to be sent when
connecting to the server. On some servers it may happen that there is no
login prompt, and on those cases this configuration option will allow still
to define the desired username. The option environ_user can be used in
importing and with Open Connection.

= Terminal emulation =

Telnet library supports terminal
emulation with [http://pyte.readthedocs.io|Pyte]. Terminal emulation
will process the output in a virtual screen. This means that ANSI escape
codes, like cursor movements, and also control characters, like
carriage returns and backspaces, have the same effect on the result as they
would have on a normal terminal screen. For example the sequence
acdc\x1b[3Dbba will result in output abba.

Terminal emulation is taken into use by giving terminal_emulation
argument a true value (see Boolean arguments) either in the library
initialization or with Open Connection.

As Pyte approximates vt-style terminal, you may also want to set the
terminal type as vt100. We also recommend that you increase the window
size, as the terminal emulation will break all lines that are longer than
the window row length.

When terminal emulation is used, the newline and encoding can not be
changed anymore after opening the connection.

As a prerequisite for using terminal emulation, you need to have Pyte
installed. Due to backwards incompatible changes in Pyte, different
Robot Framework versions support different Pyte versions:

	Pyte 0.6 and newer are supported by Robot Framework 3.0.3.
Latest Pyte version can be installed (or upgraded) with
pip install --upgrade pyte.

	Pyte 0.5.2 and older are supported by Robot Framework 3.0.2 and earlier.
Pyte 0.5.2 can be installed with pip install pyte==0.5.2.

= Logging =

All keywords that read something log the output. These keywords take the
log level to use as an optional argument, and if no log level is specified
they use the [#Configuration|configured] default value.

The valid log levels to use are TRACE, DEBUG, INFO (default),
and WARN. Levels below INFO are not shown in log files by default
whereas warnings are shown more prominently.

The [http://docs.python.org/library/telnetlib.html|telnetlib module]
used by this library has a custom logging system for logging content it
sends and receives. By default these messages are written using TRACE
level, but the level is configurable with the telnetlib_log_level
option either in the library initialization, to the Open Connection
or by using the Set Telnetlib Log Level keyword to the active
connection. Special level NONE con be used to disable the logging
altogether.

= Time string format =

Timeouts and other times used must be given as a time string using format
like 15 seconds or 1min 10s. If the timeout is given as just
a number, for example, 10 or 1.5, it is considered to be seconds.
The time string format is described in more detail in an appendix of
[http://robotframework.org/robotframework/#user-guide|Robot Framework User Guide].

= Boolean arguments =

Some keywords accept arguments that are handled as Boolean values true or
false. If such an argument is given as a string, it is considered false if
it is an empty string or equal to FALSE, NONE, NO, OFF or
0, case-insensitively. Other strings are considered true regardless
their value, and other argument types are tested using the same
[http://docs.python.org/library/stdtypes.html#truth|rules as in Python].

True examples:

False examples:

Considering string NONE false is new in Robot Framework 3.0.3 and
considering also OFF and 0 false is new in Robot Framework 3.1.

Telnet library can be imported with optional configuration parameters.

Configuration parameters are used as default values when new
connections are opened with Open Connection keyword. They can also be
overridden after opening the connection using the Set … keywords.
See these keywords as well as Configuration, Terminal emulation and
Logging sections above for more information about these parameters
and their possible values.

See Time string format and Boolean arguments sections for
information about using arguments accepting times and Boolean values,
respectively.

	
ROBOT_LIBRARY_SCOPE = 'TEST_SUITE'

	

	
ROBOT_LIBRARY_VERSION = '4.1.2'

	

	
get_keyword_names()

	

	
open_connection(host, alias=None, port=23, timeout=None, newline=None, prompt=None, prompt_is_regexp=False, encoding=None, encoding_errors=None, default_log_level=None, window_size=None, environ_user=None, terminal_emulation=None, terminal_type=None, telnetlib_log_level=None, connection_timeout=None)

	Opens a new Telnet connection to the given host and port.

The timeout, newline, prompt, prompt_is_regexp,
encoding, default_log_level, window_size, environ_user,
terminal_emulation, terminal_type and telnetlib_log_level
arguments get default values when the library is [#Importing|imported].
Setting them here overrides those values for the opened connection.
See Configuration, Terminal emulation and Logging sections for
more information about these parameters and their possible values.

Possible already opened connections are cached and it is possible to
switch back to them using Switch Connection keyword. It is possible to
switch either using explicitly given alias or using index returned
by this keyword. Indexing starts from 1 and is reset back to it by
Close All Connections keyword.

	
switch_connection(index_or_alias)

	Switches between active connections using an index or an alias.

Aliases can be given to Open Connection keyword which also always
returns the connection index.

This keyword returns the index of previous active connection.

The example above expects that there were no other open
connections when opening the first one, because it used index
1 when switching to the connection later. If you are not
sure about that, you can store the index into a variable as
shown below.

	
close_all_connections()

	Closes all open connections and empties the connection cache.

If multiple connections are opened, this keyword should be used in
a test or suite teardown to make sure that all connections are closed.
It is not an error is some of the connections have already been closed
by Close Connection.

After this keyword, new indexes returned by Open Connection
keyword are reset to 1.

	
class robot.libraries.Telnet.TelnetConnection(host=None, port=23, timeout=3.0, newline='CRLF', prompt=None, prompt_is_regexp=False, encoding='UTF-8', encoding_errors='ignore', default_log_level='INFO', window_size=None, environ_user=None, terminal_emulation=False, terminal_type=None, telnetlib_log_level='TRACE', connection_timeout=None)

	Bases: telnetlib.Telnet

	
NEW_ENVIRON_IS = '\x00'

	

	
NEW_ENVIRON_VAR = '\x00'

	

	
NEW_ENVIRON_VALUE = '\x01'

	

	
INTERNAL_UPDATE_FREQUENCY = 0.03

	

	
set_timeout(timeout)

	Sets the timeout used for waiting output in the current connection.

Read operations that expect some output to appear (Read Until, Read
Until Regexp, Read Until Prompt, Login) use this timeout and fail
if the expected output does not appear before this timeout expires.

The timeout must be given in time string format. The old timeout
is returned and can be used to restore the timeout later.

See Configuration section for more information about global and
connection specific configuration.

	
set_newline(newline)

	Sets the newline used by Write keyword in the current connection.

The old newline is returned and can be used to restore the newline later.
See Set Timeout for a similar example.

If terminal emulation is used, the newline can not be changed on an open
connection.

See Configuration section for more information about global and
connection specific configuration.

	
set_prompt(prompt, prompt_is_regexp=False)

	Sets the prompt used by Read Until Prompt and Login in the current connection.

If prompt_is_regexp is given a true value (see Boolean arguments),
the given prompt is considered to be a regular expression.

The old prompt is returned and can be used to restore the prompt later.

See the documentation of
[http://docs.python.org/library/re.html|Python re module]
for more information about the supported regular expression syntax.
Notice that possible backslashes need to be escaped in Robot Framework
test data.

See Configuration section for more information about global and
connection specific configuration.

	
set_encoding(encoding=None, errors=None)

	Sets the encoding to use for writing and reading in the current connection.

The given encoding specifies the encoding to use when written/read
text is encoded/decoded, and errors specifies the error handler to
use if encoding/decoding fails. Either of these can be omitted and in
that case the old value is not affected. Use string NONE to disable
encoding altogether.

See Configuration section for more information about encoding and
error handlers, as well as global and connection specific configuration
in general.

The old values are returned and can be used to restore the encoding
and the error handler later. See Set Prompt for a similar example.

If terminal emulation is used, the encoding can not be changed on an open
connection.

	
set_telnetlib_log_level(level)

	Sets the log level used for logging in the underlying telnetlib.

Note that telnetlib can be very noisy thus using the level NONE
can shutdown the messages generated by this library.

	
set_default_log_level(level)

	Sets the default log level used for logging in the current connection.

The old default log level is returned and can be used to restore the
log level later.

See Configuration section for more information about global and
connection specific configuration.

	
close_connection(loglevel=None)

	Closes the current Telnet connection.

Remaining output in the connection is read, logged, and returned.
It is not an error to close an already closed connection.

Use Close All Connections if you want to make sure all opened
connections are closed.

See Logging section for more information about log levels.

	
login(username, password, login_prompt='login: ', password_prompt='Password: ', login_timeout='1 second', login_incorrect='Login incorrect')

	Logs in to the Telnet server with the given user information.

This keyword reads from the connection until the login_prompt is
encountered and then types the given username. Then it reads until
the password_prompt and types the given password. In both cases
a newline is appended automatically and the connection specific
timeout used when waiting for outputs.

How logging status is verified depends on whether a prompt is set for
this connection or not:

1) If the prompt is set, this keyword reads the output until the prompt
is found using the normal timeout. If no prompt is found, login is
considered failed and also this keyword fails. Note that in this case
both login_timeout and login_incorrect arguments are ignored.

2) If the prompt is not set, this keywords sleeps until login_timeout
and then reads all the output available on the connection. If the
output contains login_incorrect text, login is considered failed
and also this keyword fails.

See Configuration section for more information about setting
newline, timeout, and prompt.

	
write(text, loglevel=None)

	Writes the given text plus a newline into the connection.

The newline character sequence to use can be [#Configuration|configured]
both globally and per connection basis. The default value is CRLF.

This keyword consumes the written text, until the added newline, from
the output and logs and returns it. The given text itself must not
contain newlines. Use Write Bare instead if either of these features
causes a problem.

Note: This keyword does not return the possible output of the executed
command. To get the output, one of the Read … keywords must be
used. See Writing and reading section for more details.

See Logging section for more information about log levels.

	
write_bare(text)

	Writes the given text, and nothing else, into the connection.

This keyword does not append a newline nor consume the written text.
Use Write if these features are needed.

	
write_until_expected_output(text, expected, timeout, retry_interval, loglevel=None)

	Writes the given text repeatedly, until expected appears in the output.

text is written without appending a newline and it is consumed from
the output before trying to find expected. If expected does not
appear in the output within timeout, this keyword fails.

retry_interval defines the time to wait expected to appear before
writing the text again. Consuming the written text is subject to
the normal [#Configuration|configured timeout].

Both timeout and retry_interval must be given in time string
format. See Logging section for more information about log levels.

The above example writes command ps -ef | grep myprocess\r\n until
myprocess appears in the output. The command is written every 0.5
seconds and the keyword fails if myprocess does not appear in
the output in 5 seconds.

	
write_control_character(character)

	Writes the given control character into the connection.

The control character is prepended with an IAC (interpret as command)
character.

The following control character names are supported: BRK, IP, AO, AYT,
EC, EL, NOP. Additionally, you can use arbitrary numbers to send any
control character.

	
read(loglevel=None)

	Reads everything that is currently available in the output.

Read output is both returned and logged. See Logging section for more
information about log levels.

	
read_until(expected, loglevel=None)

	Reads output until expected text is encountered.

Text up to and including the match is returned and logged. If no match
is found, this keyword fails. How much to wait for the output depends
on the [#Configuration|configured timeout].

See Logging section for more information about log levels. Use
Read Until Regexp if more complex matching is needed.

	
read_until_regexp(*expected)

	Reads output until any of the expected regular expressions match.

This keyword accepts any number of regular expressions patterns or
compiled Python regular expression objects as arguments. Text up to
and including the first match to any of the regular expressions is
returned and logged. If no match is found, this keyword fails. How much
to wait for the output depends on the [#Configuration|configured timeout].

If the last given argument is a [#Logging|valid log level], it is used
as loglevel similarly as with Read Until keyword.

See the documentation of
[http://docs.python.org/library/re.html|Python re module]
for more information about the supported regular expression syntax.
Notice that possible backslashes need to be escaped in Robot Framework
test data.

	
read_until_prompt(loglevel=None, strip_prompt=False)

	Reads output until the prompt is encountered.

This keyword requires the prompt to be [#Configuration|configured]
either in importing or with Open Connection or Set Prompt keyword.

By default, text up to and including the prompt is returned and logged.
If no prompt is found, this keyword fails. How much to wait for the
output depends on the [#Configuration|configured timeout].

If you want to exclude the prompt from the returned output, set
strip_prompt to a true value (see Boolean arguments). If your
prompt is a regular expression, make sure that the expression spans the
whole prompt, because only the part of the output that matches the
regular expression is stripped away.

See Logging section for more information about log levels.

	
execute_command(command, loglevel=None, strip_prompt=False)

	Executes the given command and reads, logs, and returns everything until the prompt.

This keyword requires the prompt to be [#Configuration|configured]
either in importing or with Open Connection or Set Prompt keyword.

This is a convenience keyword that uses Write and Read Until Prompt
internally. Following two examples are thus functionally identical:

See Logging section for more information about log levels and Read
Until Prompt for more information about the strip_prompt parameter.

	
msg(msg, *args)

	

	
close()

	Close the connection.

	
expect(list, timeout=None)

	Read until one from a list of a regular expressions matches.

The first argument is a list of regular expressions, either
compiled (re.RegexObject instances) or uncompiled (strings).
The optional second argument is a timeout, in seconds; default
is no timeout.

Return a tuple of three items: the index in the list of the
first regular expression that matches; the match object
returned; and the text read up till and including the match.

If EOF is read and no text was read, raise EOFError.
Otherwise, when nothing matches, return (-1, None, text) where
text is the text received so far (may be the empty string if a
timeout happened).

If a regular expression ends with a greedy match (e.g. ‘.*’)
or if more than one expression can match the same input, the
results are undeterministic, and may depend on the I/O timing.

	
fileno()

	Return the fileno() of the socket object used internally.

	
fill_rawq()

	Fill raw queue from exactly one recv() system call.

Block if no data is immediately available. Set self.eof when
connection is closed.

	
get_socket()

	Return the socket object used internally.

	
interact()

	Interaction function, emulates a very dumb telnet client.

	
listener()

	Helper for mt_interact() – this executes in the other thread.

	
mt_interact()

	Multithreaded version of interact().

	
open(host, port=0, timeout=<object object>)

	Connect to a host.

The optional second argument is the port number, which
defaults to the standard telnet port (23).

Don’t try to reopen an already connected instance.

	
process_rawq()

	Transfer from raw queue to cooked queue.

Set self.eof when connection is closed. Don’t block unless in
the midst of an IAC sequence.

	
rawq_getchar()

	Get next char from raw queue.

Block if no data is immediately available. Raise EOFError
when connection is closed.

	
read_all()

	Read all data until EOF; block until connection closed.

	
read_eager()

	Read readily available data.

Raise EOFError if connection closed and no cooked data
available. Return ‘’ if no cooked data available otherwise.
Don’t block unless in the midst of an IAC sequence.

	
read_lazy()

	Process and return data that’s already in the queues (lazy).

Raise EOFError if connection closed and no data available.
Return ‘’ if no cooked data available otherwise. Don’t block
unless in the midst of an IAC sequence.

	
read_sb_data()

	Return any data available in the SB … SE queue.

Return ‘’ if no SB … SE available. Should only be called
after seeing a SB or SE command. When a new SB command is
found, old unread SB data will be discarded. Don’t block.

	
read_some()

	Read at least one byte of cooked data unless EOF is hit.

Return ‘’ if EOF is hit. Block if no data is immediately
available.

	
read_very_eager()

	Read everything that’s possible without blocking in I/O (eager).

Raise EOFError if connection closed and no cooked data
available. Return ‘’ if no cooked data available otherwise.
Don’t block unless in the midst of an IAC sequence.

	
read_very_lazy()

	Return any data available in the cooked queue (very lazy).

Raise EOFError if connection closed and no data available.
Return ‘’ if no cooked data available otherwise. Don’t block.

	
set_debuglevel(debuglevel)

	Set the debug level.

The higher it is, the more debug output you get (on sys.stdout).

	
set_option_negotiation_callback(callback)

	Provide a callback function called after each receipt of a telnet option.

	
sock_avail()

	Test whether data is available on the socket.

	
class robot.libraries.Telnet.TerminalEmulator(window_size=None, newline='rn')

	Bases: object

	
current_output

	

	
feed(text)

	

	
read()

	

	
read_until(expected)

	

	
read_until_regexp(regexp_list)

	

	
exception robot.libraries.Telnet.NoMatchError(expected, timeout, output=None)

	Bases: exceptions.AssertionError

	
ROBOT_SUPPRESS_NAME = True

	

	
args

	

	
message

	

robot.libraries.XML module

	
class robot.libraries.XML.XML(use_lxml=False)

	Bases: object

Robot Framework test library for verifying and modifying XML documents.

As the name implies, _XML_ is a test library for verifying contents of XML
files. In practice it is a pretty thin wrapper on top of Python’s
[http://docs.python.org/library/xml.etree.elementtree.html|ElementTree XML API].

The library has the following main usages:

	Parsing an XML file, or a string containing XML, into an XML element
structure and finding certain elements from it for for further analysis
(e.g. Parse XML and Get Element keywords).

	Getting text or attributes of elements
(e.g. Get Element Text and Get Element Attribute).

	Directly verifying text, attributes, or whole elements
(e.g Element Text Should Be and Elements Should Be Equal).

	Modifying XML and saving it (e.g. Set Element Text, Add Element
and Save XML).

== Table of contents ==

%TOC%

= Parsing XML =

XML can be parsed into an element structure using Parse XML keyword.
The XML to be parsed can be specified using a path to an XML file or as
a string or bytes that contain XML directly. The keyword returns the root
element of the structure, which then contains other elements as its
children and their children. Possible comments and processing instructions
in the source XML are removed.

XML is not validated during parsing even if has a schema defined. How
possible doctype elements are handled otherwise depends on the used XML
module and on the platform. The standard ElementTree strips doctypes
altogether but when using lxml they are preserved when XML is saved.

The element structure returned by Parse XML, as well as elements
returned by keywords such as Get Element, can be used as the source
argument with other keywords. In addition to an already parsed XML
structure, other keywords also accept paths to XML files and strings
containing XML similarly as Parse XML. Notice that keywords that modify
XML do not write those changes back to disk even if the source would be
given as a path to a file. Changes must always saved explicitly using
Save XML keyword.

When the source is given as a path to a file, the forward slash character
(/) can be used as the path separator regardless the operating system.
On Windows also the backslash works, but it the test data it needs to be
escaped by doubling it (\\). Using the built-in variable ${/}
naturally works too.

Note: Support for XML as bytes is new in Robot Framework 3.2.

= Using lxml =

By default this library uses Python’s standard
[http://docs.python.org/library/xml.etree.elementtree.html|ElementTree]
module for parsing XML, but it can be configured to use
[http://lxml.de|lxml] module instead when importing the library.
The resulting element structure has same API regardless which module
is used for parsing.

The main benefits of using lxml is that it supports richer xpath syntax
than the standard ElementTree and enables using Evaluate Xpath keyword.
It also preserves the doctype and possible namespace prefixes saving XML.

= Example =

The following simple example demonstrates parsing XML and verifying its
contents both using keywords in this library and in _BuiltIn_ and
Collections libraries. How to use xpath expressions to find elements
and what attributes the returned elements contain are discussed, with
more examples, in Finding elements with xpath and Element attributes
sections.

In this example, as well as in many other examples in this documentation,
${XML} refers to the following example XML document. In practice
${XML} could either be a path to an XML file or it could contain the XML
itself.

Notice that in the example three last lines are equivalent. Which one to
use in practice depends on which other elements you need to get or verify.
If you only need to do one verification, using the last line alone would
suffice. If more verifications are needed, parsing the XML with Parse XML
only once would be more efficient.

= Finding elements with xpath =

ElementTree, and thus also this library, supports finding elements using
xpath expressions. ElementTree does not, however, support the full xpath
standard. The supported xpath syntax is explained below and
[https://docs.python.org/library/xml.etree.elementtree.html#xpath-support|
ElementTree documentation] provides more details. In the examples
${XML} refers to the same XML structure as in the earlier example.

If lxml support is enabled when importing the library, the whole
[http://www.w3.org/TR/xpath/|xpath 1.0 standard] is supported.
That includes everything listed below but also lot of other useful
constructs.

== Tag names ==

When just a single tag name is used, xpath matches all direct child
elements that have that tag name.

== Paths ==

Paths are created by combining tag names with a forward slash (/). For
example, parent/child matches all child elements under parent
element. Notice that if there are multiple parent elements that all
have child elements, parent/child xpath will match all these
child elements.

== Wildcards ==

An asterisk (*) can be used in paths instead of a tag name to denote
any element.

== Current element ==

The current element is denoted with a dot (.). Normally the current
element is implicit and does not need to be included in the xpath.

== Parent element ==

The parent element of another element is denoted with two dots (..).
Notice that it is not possible to refer to the parent of the current
element.

== Search all sub elements ==

Two forward slashes (//) mean that all sub elements, not only the
direct children, are searched. If the search is started from the current
element, an explicit dot is required.

== Predicates ==

Predicates allow selecting elements using also other criteria than tag
names, for example, attributes or position. They are specified after the
normal tag name or path using syntax path[predicate]. The path can have
wildcards and other special syntax explained earlier. What predicates
the standard ElementTree supports is explained in the table below.

Predicates can also be stacked like path[predicate1][predicate2].
A limitation is that possible position predicate must always be first.

= Element attributes =

All keywords returning elements, such as Parse XML, and Get Element,
return ElementTree’s
[http://docs.python.org/library/xml.etree.elementtree.html#element-objects|Element objects].
These elements can be used as inputs for other keywords, but they also
contain several useful attributes that can be accessed directly using
the extended variable syntax.

The attributes that are both useful and convenient to use in the test
data are explained below. Also other attributes, including methods, can
be accessed, but that is typically better to do in custom libraries than
directly in the test data.

The examples use the same ${XML} structure as the earlier examples.

== tag ==

The tag of the element.

== text ==

The text that the element contains or Python None if the element has no
text. Notice that the text _does not_ contain texts of possible child
elements nor text after or between children. Notice also that in XML
whitespace is significant, so the text contains also possible indentation
and newlines. To get also text of the possible children, optionally
whitespace normalized, use Get Element Text keyword.

== tail ==

The text after the element before the next opening or closing tag. Python
None if the element has no tail. Similarly as with text, also
tail contains possible indentation and newlines.

== attrib ==

A Python dictionary containing attributes of the element.

= Handling XML namespaces =

ElementTree and lxml handle possible namespaces in XML documents by adding
the namespace URI to tag names in so called Clark Notation. That is
inconvenient especially with xpaths, and by default this library strips
those namespaces away and moves them to xmlns attribute instead. That
can be avoided by passing keep_clark_notation argument to Parse XML
keyword. Alternatively Parse XML supports stripping namespace information
altogether by using strip_namespaces argument. The pros and cons of
different approaches are discussed in more detail below.

== How ElementTree handles namespaces ==

If an XML document has namespaces, ElementTree adds namespace information
to tag names in [http://www.jclark.com/xml/xmlns.htm|Clark Notation]
(e.g. {http://ns.uri}tag) and removes original xmlns attributes.
This is done both with default namespaces and with namespaces with a prefix.
How it works in practice is illustrated by the following example, where
${NS} variable contains this XML document:

As you can see, including the namespace URI in tag names makes xpaths
really long and complex.

If you save the XML, ElementTree moves namespace information back to
xmlns attributes. Unfortunately it does not restore the original
prefixes:

The resulting output is semantically same as the original, but mangling
prefixes like this may still not be desirable. Notice also that the actual
output depends slightly on ElementTree version.

== Default namespace handling ==

Because the way ElementTree handles namespaces makes xpaths so complicated,
this library, by default, strips namespaces from tag names and moves that
information back to xmlns attributes. How this works in practice is
shown by the example below, where ${NS} variable contains the same XML
document as in the previous example.

Now that tags do not contain namespace information, xpaths are simple again.

A minor limitation of this approach is that namespace prefixes are lost.
As a result the saved output is not exactly same as the original one in
this case either:

Also this output is semantically same as the original. If the original XML
had only default namespaces, the output would also look identical.

== Namespaces when using lxml ==

This library handles namespaces same way both when using lxml and when
not using it. There are, however, differences how lxml internally handles
namespaces compared to the standard ElementTree. The main difference is
that lxml stores information about namespace prefixes and they are thus
preserved if XML is saved. Another visible difference is that lxml includes
namespace information in child elements got with Get Element if the
parent element has namespaces.

== Stripping namespaces altogether ==

Because namespaces often add unnecessary complexity, Parse XML supports
stripping them altogether by using strip_namespaces=True. When this
option is enabled, namespaces are not shown anywhere nor are they included
if XML is saved.

== Attribute namespaces ==

Attributes in XML documents are, by default, in the same namespaces as
the element they belong to. It is possible to use different namespaces
by using prefixes, but this is pretty rare.

If an attribute has a namespace prefix, ElementTree will replace it with
Clark Notation the same way it handles elements. Because stripping
namespaces from attributes could cause attribute conflicts, this library
does not handle attribute namespaces at all. Thus the following example
works the same way regardless how namespaces are handled.

= Boolean arguments =

Some keywords accept arguments that are handled as Boolean values true or
false. If such an argument is given as a string, it is considered false if
it is an empty string or equal to FALSE, NONE, NO, OFF or
0, case-insensitively. Other strings are considered true regardless
their value, and other argument types are tested using the same
[http://docs.python.org/library/stdtypes.html#truth|rules as in Python].

True examples:

False examples:

Considering OFF and 0 false is new in Robot Framework 3.1.

== Pattern matching ==

Some keywords, for example Elements Should Match, support so called
[http://en.wikipedia.org/wiki/Glob_(programming)|glob patterns] where:

Unlike with glob patterns normally, path separator characters / and
\ and the newline character \n are matches by the above
wildcards.

Support for brackets like [abc] and [!a-z] is new in
Robot Framework 3.1

Import library with optionally lxml mode enabled.

By default this library uses Python’s standard
[http://docs.python.org/library/xml.etree.elementtree.html|ElementTree]
module for parsing XML. If use_lxml argument is given a true value
(see Boolean arguments), the library will use [http://lxml.de|lxml]
module instead. See Using lxml section for benefits provided by lxml.

Using lxml requires that the lxml module is installed on the system.
If lxml mode is enabled but the module is not installed, this library
will emit a warning and revert back to using the standard ElementTree.

	
ROBOT_LIBRARY_SCOPE = 'GLOBAL'

	

	
ROBOT_LIBRARY_VERSION = '4.1.2'

	

	
parse_xml(source, keep_clark_notation=False, strip_namespaces=False)

	Parses the given XML file or string into an element structure.

The source can either be a path to an XML file or a string
containing XML. In both cases the XML is parsed into ElementTree
[http://docs.python.org/library/xml.etree.elementtree.html#element-objects|element structure]
and the root element is returned. Possible comments and processing
instructions in the source XML are removed.

As discussed in Handling XML namespaces section, this keyword, by
default, removes namespace information ElementTree has added to tag
names and moves it into xmlns attributes. This typically eases
handling XML documents with namespaces considerably. If you do not
want that to happen, or want to avoid the small overhead of going
through the element structure when your XML does not have namespaces,
you can disable this feature by giving keep_clark_notation argument
a true value (see Boolean arguments).

If you want to strip namespace information altogether so that it is
not included even if XML is saved, you can give a true value to
strip_namespaces argument.

Use Get Element keyword if you want to get a certain element and not
the whole structure. See Parsing XML section for more details and
examples.

	
get_element(source, xpath='.')

	Returns an element in the source matching the xpath.

The source can be a path to an XML file, a string containing XML, or
an already parsed XML element. The xpath specifies which element to
find. See the introduction for more details about both the possible
sources and the supported xpath syntax.

The keyword fails if more, or less, than one element matches the
xpath. Use Get Elements if you want all matching elements to be
returned.

Parse XML is recommended for parsing XML when the whole structure
is needed. It must be used if there is a need to configure how XML
namespaces are handled.

Many other keywords use this keyword internally, and keywords modifying
XML are typically documented to both to modify the given source and
to return it. Modifying the source does not apply if the source is
given as a string. The XML structure parsed based on the string and
then modified is nevertheless returned.

	
get_elements(source, xpath)

	Returns a list of elements in the source matching the xpath.

The source can be a path to an XML file, a string containing XML, or
an already parsed XML element. The xpath specifies which element to
find. See the introduction for more details.

Elements matching the xpath are returned as a list. If no elements
match, an empty list is returned. Use Get Element if you want to get
exactly one match.

	
get_child_elements(source, xpath='.')

	Returns the child elements of the specified element as a list.

The element whose children to return is specified using source and
xpath. They have exactly the same semantics as with Get Element
keyword.

All the direct child elements of the specified element are returned.
If the element has no children, an empty list is returned.

	
get_element_count(source, xpath='.')

	Returns and logs how many elements the given xpath matches.

Arguments source and xpath have exactly the same semantics as
with Get Elements keyword that this keyword uses internally.

See also Element Should Exist and Element Should Not Exist.

	
element_should_exist(source, xpath='.', message=None)

	Verifies that one or more element match the given xpath.

Arguments source and xpath have exactly the same semantics as
with Get Elements keyword. Keyword passes if the xpath matches
one or more elements in the source. The default error message can
be overridden with the message argument.

See also Element Should Not Exist as well as Get Element Count
that this keyword uses internally.

	
element_should_not_exist(source, xpath='.', message=None)

	Verifies that no element match the given xpath.

Arguments source and xpath have exactly the same semantics as
with Get Elements keyword. Keyword fails if the xpath matches any
element in the source. The default error message can be overridden
with the message argument.

See also Element Should Exist as well as Get Element Count
that this keyword uses internally.

	
get_element_text(source, xpath='.', normalize_whitespace=False)

	Returns all text of the element, possibly whitespace normalized.

The element whose text to return is specified using source and
xpath. They have exactly the same semantics as with Get Element
keyword.

This keyword returns all the text of the specified element, including
all the text its children and grandchildren contain. If the element
has no text, an empty string is returned. The returned text is thus not
always the same as the text attribute of the element.

By default all whitespace, including newlines and indentation, inside
the element is returned as-is. If normalize_whitespace is given
a true value (see Boolean arguments), then leading and trailing
whitespace is stripped, newlines and tabs converted to spaces, and
multiple spaces collapsed into one. This is especially useful when
dealing with HTML data.

See also Get Elements Texts, Element Text Should Be and
Element Text Should Match.

	
get_elements_texts(source, xpath, normalize_whitespace=False)

	Returns text of all elements matching xpath as a list.

The elements whose text to return is specified using source and
xpath. They have exactly the same semantics as with Get Elements
keyword.

The text of the matched elements is returned using the same logic
as with Get Element Text. This includes optional whitespace
normalization using the normalize_whitespace option.

	
element_text_should_be(source, expected, xpath='.', normalize_whitespace=False, message=None)

	Verifies that the text of the specified element is expected.

The element whose text is verified is specified using source and
xpath. They have exactly the same semantics as with Get Element
keyword.

The text to verify is got from the specified element using the same
logic as with Get Element Text. This includes optional whitespace
normalization using the normalize_whitespace option.

The keyword passes if the text of the element is equal to the
expected value, and otherwise it fails. The default error message
can be overridden with the message argument. Use Element Text
Should Match to verify the text against a pattern instead of an exact
value.

	
element_text_should_match(source, pattern, xpath='.', normalize_whitespace=False, message=None)

	Verifies that the text of the specified element matches expected.

This keyword works exactly like Element Text Should Be except that
the expected value can be given as a pattern that the text of the
element must match.

Pattern matching is similar as matching files in a shell with
*, ? and [chars] acting as wildcards. See the
Pattern matching section for more information.

	
get_element_attribute(source, name, xpath='.', default=None)

	Returns the named attribute of the specified element.

The element whose attribute to return is specified using source and
xpath. They have exactly the same semantics as with Get Element
keyword.

The value of the attribute name of the specified element is returned.
If the element does not have such element, the default value is
returned instead.

See also Get Element Attributes, Element Attribute Should Be,
Element Attribute Should Match and Element Should Not Have Attribute.

	
get_element_attributes(source, xpath='.')

	Returns all attributes of the specified element.

The element whose attributes to return is specified using source and
xpath. They have exactly the same semantics as with Get Element
keyword.

Attributes are returned as a Python dictionary. It is a copy of the
original attributes so modifying it has no effect on the XML structure.

Use Get Element Attribute to get the value of a single attribute.

	
element_attribute_should_be(source, name, expected, xpath='.', message=None)

	Verifies that the specified attribute is expected.

The element whose attribute is verified is specified using source
and xpath. They have exactly the same semantics as with
Get Element keyword.

The keyword passes if the attribute name of the element is equal to
the expected value, and otherwise it fails. The default error
message can be overridden with the message argument.

To test that the element does not have a certain attribute, Python
None (i.e. variable ${NONE}) can be used as the expected value.
A cleaner alternative is using Element Should Not Have Attribute.

See also Element Attribute Should Match and Get Element Attribute.

	
element_attribute_should_match(source, name, pattern, xpath='.', message=None)

	Verifies that the specified attribute matches expected.

This keyword works exactly like Element Attribute Should Be except
that the expected value can be given as a pattern that the attribute of
the element must match.

Pattern matching is similar as matching files in a shell with
*, ? and [chars] acting as wildcards. See the
Pattern matching section for more information.

	
element_should_not_have_attribute(source, name, xpath='.', message=None)

	Verifies that the specified element does not have attribute name.

The element whose attribute is verified is specified using source
and xpath. They have exactly the same semantics as with
Get Element keyword.

The keyword fails if the specified element has attribute name. The
default error message can be overridden with the message argument.

See also Get Element Attribute, Get Element Attributes,
Element Text Should Be and Element Text Should Match.

	
elements_should_be_equal(source, expected, exclude_children=False, normalize_whitespace=False)

	Verifies that the given source element is equal to expected.

Both source and expected can be given as a path to an XML file,
as a string containing XML, or as an already parsed XML element
structure. See introduction for more information about parsing XML in
general.

The keyword passes if the source element and expected element
are equal. This includes testing the tag names, texts, and attributes
of the elements. By default also child elements are verified the same
way, but this can be disabled by setting exclude_children to a
true value (see Boolean arguments).

All texts inside the given elements are verified, but possible text
outside them is not. By default texts must match exactly, but setting
normalize_whitespace to a true value makes text verification
independent on newlines, tabs, and the amount of spaces. For more
details about handling text see Get Element Text keyword and
discussion about elements’ text and tail attributes in the
introduction.

The last example may look a bit strange because the <p> element
only has text Text with. The reason is that rest of the text
inside <p> actually belongs to the child elements. This includes
the . at the end that is the tail text of the <i> element.

See also Elements Should Match.

	
elements_should_match(source, expected, exclude_children=False, normalize_whitespace=False)

	Verifies that the given source element matches expected.

This keyword works exactly like Elements Should Be Equal except that
texts and attribute values in the expected value can be given as
patterns.

Pattern matching is similar as matching files in a shell with
*, ? and [chars] acting as wildcards. See the
Pattern matching section for more information.

See Elements Should Be Equal for more examples.

	
set_element_tag(source, tag, xpath='.')

	Sets the tag of the specified element.

The element whose tag to set is specified using source and
xpath. They have exactly the same semantics as with Get Element
keyword. The resulting XML structure is returned, and if the source
is an already parsed XML structure, it is also modified in place.

Can only set the tag of a single element. Use Set Elements Tag to set
the tag of multiple elements in one call.

	
set_elements_tag(source, tag, xpath='.')

	Sets the tag of the specified elements.

Like Set Element Tag but sets the tag of all elements matching
the given xpath.

	
set_element_text(source, text=None, tail=None, xpath='.')

	Sets text and/or tail text of the specified element.

The element whose text to set is specified using source and
xpath. They have exactly the same semantics as with Get Element
keyword. The resulting XML structure is returned, and if the source
is an already parsed XML structure, it is also modified in place.

Element’s text and tail text are changed only if new text and/or
tail values are given. See Element attributes section for more
information about text and tail in general.

Can only set the text/tail of a single element. Use Set Elements Text
to set the text/tail of multiple elements in one call.

	
set_elements_text(source, text=None, tail=None, xpath='.')

	Sets text and/or tail text of the specified elements.

Like Set Element Text but sets the text or tail of all elements
matching the given xpath.

	
set_element_attribute(source, name, value, xpath='.')

	Sets attribute name of the specified element to value.

The element whose attribute to set is specified using source and
xpath. They have exactly the same semantics as with Get Element
keyword. The resulting XML structure is returned, and if the source
is an already parsed XML structure, it is also modified in place.

It is possible to both set new attributes and to overwrite existing.
Use Remove Element Attribute or Remove Element Attributes for
removing them.

Can only set an attribute of a single element. Use Set Elements
Attribute to set an attribute of multiple elements in one call.

	
set_elements_attribute(source, name, value, xpath='.')

	Sets attribute name of the specified elements to value.

Like Set Element Attribute but sets the attribute of all elements
matching the given xpath.

	
remove_element_attribute(source, name, xpath='.')

	Removes attribute name from the specified element.

The element whose attribute to remove is specified using source and
xpath. They have exactly the same semantics as with Get Element
keyword. The resulting XML structure is returned, and if the source
is an already parsed XML structure, it is also modified in place.

It is not a failure to remove a non-existing attribute. Use Remove
Element Attributes to remove all attributes and Set Element Attribute
to set them.

Can only remove an attribute from a single element. Use Remove Elements
Attribute to remove an attribute of multiple elements in one call.

	
remove_elements_attribute(source, name, xpath='.')

	Removes attribute name from the specified elements.

Like Remove Element Attribute but removes the attribute of all
elements matching the given xpath.

	
remove_element_attributes(source, xpath='.')

	Removes all attributes from the specified element.

The element whose attributes to remove is specified using source and
xpath. They have exactly the same semantics as with Get Element
keyword. The resulting XML structure is returned, and if the source
is an already parsed XML structure, it is also modified in place.

Use Remove Element Attribute to remove a single attribute and
Set Element Attribute to set them.

Can only remove attributes from a single element. Use Remove Elements
Attributes to remove all attributes of multiple elements in one call.

	
remove_elements_attributes(source, xpath='.')

	Removes all attributes from the specified elements.

Like Remove Element Attributes but removes all attributes of all
elements matching the given xpath.

	
add_element(source, element, index=None, xpath='.')

	Adds a child element to the specified element.

The element to whom to add the new element is specified using source
and xpath. They have exactly the same semantics as with Get Element
keyword. The resulting XML structure is returned, and if the source
is an already parsed XML structure, it is also modified in place.

The element to add can be specified as a path to an XML file or
as a string containing XML, or it can be an already parsed XML element.
The element is copied before adding so modifying either the original
or the added element has no effect on the other
.
The element is added as the last child by default, but a custom index
can be used to alter the position. Indices start from zero (0 = first
position, 1 = second position, etc.), and negative numbers refer to
positions at the end (-1 = second last position, -2 = third last, etc.).

Use Remove Element or Remove Elements to remove elements.

	
remove_element(source, xpath='', remove_tail=False)

	Removes the element matching xpath from the source structure.

The element to remove from the source is specified with xpath
using the same semantics as with Get Element keyword. The resulting
XML structure is returned, and if the source is an already parsed
XML structure, it is also modified in place.

The keyword fails if xpath does not match exactly one element.
Use Remove Elements to remove all matched elements.

Element’s tail text is not removed by default, but that can be changed
by giving remove_tail a true value (see Boolean arguments). See
Element attributes section for more information about tail in
general.

	
remove_elements(source, xpath='', remove_tail=False)

	Removes all elements matching xpath from the source structure.

The elements to remove from the source are specified with xpath
using the same semantics as with Get Elements keyword. The resulting
XML structure is returned, and if the source is an already parsed
XML structure, it is also modified in place.

It is not a failure if xpath matches no elements. Use Remove
Element to remove exactly one element.

Element’s tail text is not removed by default, but that can be changed
by using remove_tail argument similarly as with Remove Element.

	
clear_element(source, xpath='.', clear_tail=False)

	Clears the contents of the specified element.

The element to clear is specified using source and xpath. They
have exactly the same semantics as with Get Element keyword.
The resulting XML structure is returned, and if the source is
an already parsed XML structure, it is also modified in place.

Clearing the element means removing its text, attributes, and children.
Element’s tail text is not removed by default, but that can be changed
by giving clear_tail a true value (see Boolean arguments). See
Element attributes section for more information about tail in
general.

Use Remove Element to remove the whole element.

	
copy_element(source, xpath='.')

	Returns a copy of the specified element.

The element to copy is specified using source and xpath. They
have exactly the same semantics as with Get Element keyword.

If the copy or the original element is modified afterwards, the changes
have no effect on the other.

	
element_to_string(source, xpath='.', encoding=None)

	Returns the string representation of the specified element.

The element to convert to a string is specified using source and
xpath. They have exactly the same semantics as with Get Element
keyword.

By default the string is returned as Unicode. If encoding argument
is given any value, the string is returned as bytes in the specified
encoding. The resulting string never contains the XML declaration.

See also Log Element and Save XML.

	
log_element(source, level='INFO', xpath='.')

	Logs the string representation of the specified element.

The element specified with source and xpath is first converted
into a string using Element To String keyword internally. The
resulting string is then logged using the given level.

The logged string is also returned.

	
save_xml(source, path, encoding='UTF-8')

	Saves the given element to the specified file.

The element to save is specified with source using the same
semantics as with Get Element keyword.

The file where the element is saved is denoted with path and the
encoding to use with encoding. The resulting file always contains
the XML declaration.

The resulting XML file may not be exactly the same as the original:
- Comments and processing instructions are always stripped.
- Possible doctype and namespace prefixes are only preserved when

using lxml.

	Other small differences are possible depending on the ElementTree
or lxml version.

Use Element To String if you just need a string representation of
the element.

	
evaluate_xpath(source, expression, context='.')

	Evaluates the given xpath expression and returns results.

The element in which context the expression is executed is specified
using source and context arguments. They have exactly the same
semantics as source and xpath arguments have with Get Element
keyword.

The xpath expression to evaluate is given as expression argument.
The result of the evaluation is returned as-is.

This keyword works only if lxml mode is taken into use when importing
the library.

	
class robot.libraries.XML.NameSpaceStripper(etree, lxml_etree=False)

	Bases: object

	
strip(elem, preserve=True, current_ns=None, top=True)

	

	
unstrip(elem, current_ns=None, copied=False)

	

	
class robot.libraries.XML.ElementFinder(etree, modern=True, lxml=False)

	Bases: object

	
find_all(elem, xpath)

	

	
class robot.libraries.XML.ElementComparator(comparator, normalizer=None, exclude_children=False)

	Bases: object

	
compare(actual, expected, location=None)

	

	
class robot.libraries.XML.Location(path, is_root=True)

	Bases: object

	
child(tag)

	

robot.libraries.dialogs_ipy module

robot.libraries.dialogs_jy module

robot.libraries.dialogs_py module

	
class robot.libraries.dialogs_py.MessageDialog(message, value=None, **extra)

	Bases: robot.libraries.dialogs_py._TkDialog

	
after(ms, func=None, *args)

	Call function once after given time.

MS specifies the time in milliseconds. FUNC gives the
function which shall be called. Additional parameters
are given as parameters to the function call. Return
identifier to cancel scheduling with after_cancel.

	
after_cancel(id)

	Cancel scheduling of function identified with ID.

Identifier returned by after or after_idle must be
given as first parameter.

	
after_idle(func, *args)

	Call FUNC once if the Tcl main loop has no event to
process.

Return an identifier to cancel the scheduling with
after_cancel.

	
aspect(minNumer=None, minDenom=None, maxNumer=None, maxDenom=None)

	Instruct the window manager to set the aspect ratio (width/height)
of this widget to be between MINNUMER/MINDENOM and MAXNUMER/MAXDENOM. Return a tuple
of the actual values if no argument is given.

	
attributes(*args)

	This subcommand returns or sets platform specific attributes

The first form returns a list of the platform specific flags and
their values. The second form returns the value for the specific
option. The third form sets one or more of the values. The values
are as follows:

On Windows, -disabled gets or sets whether the window is in a
disabled state. -toolwindow gets or sets the style of the window
to toolwindow (as defined in the MSDN). -topmost gets or sets
whether this is a topmost window (displays above all other
windows).

On Macintosh, XXXXX

On Unix, there are currently no special attribute values.

	
bbox(column=None, row=None, col2=None, row2=None)

	Return a tuple of integer coordinates for the bounding
box of this widget controlled by the geometry manager grid.

If COLUMN, ROW is given the bounding box applies from
the cell with row and column 0 to the specified
cell. If COL2 and ROW2 are given the bounding box
starts at that cell.

The returned integers specify the offset of the upper left
corner in the master widget and the width and height.

	
bell(displayof=0)

	Ring a display’s bell.

	
bind(sequence=None, func=None, add=None)

	Bind to this widget at event SEQUENCE a call to function FUNC.

SEQUENCE is a string of concatenated event
patterns. An event pattern is of the form
<MODIFIER-MODIFIER-TYPE-DETAIL> where MODIFIER is one
of Control, Mod2, M2, Shift, Mod3, M3, Lock, Mod4, M4,
Button1, B1, Mod5, M5 Button2, B2, Meta, M, Button3,
B3, Alt, Button4, B4, Double, Button5, B5 Triple,
Mod1, M1. TYPE is one of Activate, Enter, Map,
ButtonPress, Button, Expose, Motion, ButtonRelease
FocusIn, MouseWheel, Circulate, FocusOut, Property,
Colormap, Gravity Reparent, Configure, KeyPress, Key,
Unmap, Deactivate, KeyRelease Visibility, Destroy,
Leave and DETAIL is the button number for ButtonPress,
ButtonRelease and DETAIL is the Keysym for KeyPress and
KeyRelease. Examples are
<Control-Button-1> for pressing Control and mouse button 1 or
<Alt-A> for pressing A and the Alt key (KeyPress can be omitted).
An event pattern can also be a virtual event of the form
<<AString>> where AString can be arbitrary. This
event can be generated by event_generate.
If events are concatenated they must appear shortly
after each other.

FUNC will be called if the event sequence occurs with an
instance of Event as argument. If the return value of FUNC is
“break” no further bound function is invoked.

An additional boolean parameter ADD specifies whether FUNC will
be called additionally to the other bound function or whether
it will replace the previous function.

Bind will return an identifier to allow deletion of the bound function with
unbind without memory leak.

If FUNC or SEQUENCE is omitted the bound function or list
of bound events are returned.

	
bind_all(sequence=None, func=None, add=None)

	Bind to all widgets at an event SEQUENCE a call to function FUNC.
An additional boolean parameter ADD specifies whether FUNC will
be called additionally to the other bound function or whether
it will replace the previous function. See bind for the return value.

	
bind_class(className, sequence=None, func=None, add=None)

	Bind to widgets with bindtag CLASSNAME at event
SEQUENCE a call of function FUNC. An additional
boolean parameter ADD specifies whether FUNC will be
called additionally to the other bound function or
whether it will replace the previous function. See bind for
the return value.

	
bindtags(tagList=None)

	Set or get the list of bindtags for this widget.

With no argument return the list of all bindtags associated with
this widget. With a list of strings as argument the bindtags are
set to this list. The bindtags determine in which order events are
processed (see bind).

	
cget(key)

	Return the resource value for a KEY given as string.

	
client(name=None)

	Store NAME in WM_CLIENT_MACHINE property of this widget. Return
current value.

	
clipboard_append(string, **kw)

	Append STRING to the Tk clipboard.

A widget specified at the optional displayof keyword
argument specifies the target display. The clipboard
can be retrieved with selection_get.

	
clipboard_clear(**kw)

	Clear the data in the Tk clipboard.

A widget specified for the optional displayof keyword
argument specifies the target display.

	
clipboard_get(**kw)

	Retrieve data from the clipboard on window’s display.

The window keyword defaults to the root window of the Tkinter
application.

The type keyword specifies the form in which the data is
to be returned and should be an atom name such as STRING
or FILE_NAME. Type defaults to STRING, except on X11, where the default
is to try UTF8_STRING and fall back to STRING.

This command is equivalent to:

selection_get(CLIPBOARD)

	
colormapwindows(*wlist)

	Store list of window names (WLIST) into WM_COLORMAPWINDOWS property
of this widget. This list contains windows whose colormaps differ from their
parents. Return current list of widgets if WLIST is empty.

	
colormodel(value=None)

	Useless. Not implemented in Tk.

	
columnconfigure(index, cnf={}, **kw)

	Configure column INDEX of a grid.

Valid resources are minsize (minimum size of the column),
weight (how much does additional space propagate to this column)
and pad (how much space to let additionally).

	
command(value=None)

	Store VALUE in WM_COMMAND property. It is the command
which shall be used to invoke the application. Return current
command if VALUE is None.

	
config(cnf=None, **kw)

	Configure resources of a widget.

The values for resources are specified as keyword
arguments. To get an overview about
the allowed keyword arguments call the method keys.

	
configure(cnf=None, **kw)

	Configure resources of a widget.

The values for resources are specified as keyword
arguments. To get an overview about
the allowed keyword arguments call the method keys.

	
deiconify()

	Deiconify this widget. If it was never mapped it will not be mapped.
On Windows it will raise this widget and give it the focus.

	
deletecommand(name)

	Internal function.

Delete the Tcl command provided in NAME.

	
destroy()

	Destroy this and all descendants widgets.

	
event_add(virtual, *sequences)

	Bind a virtual event VIRTUAL (of the form <<Name>>)
to an event SEQUENCE such that the virtual event is triggered
whenever SEQUENCE occurs.

	
event_delete(virtual, *sequences)

	Unbind a virtual event VIRTUAL from SEQUENCE.

	
event_generate(sequence, **kw)

	Generate an event SEQUENCE. Additional
keyword arguments specify parameter of the event
(e.g. x, y, rootx, rooty).

	
event_info(virtual=None)

	Return a list of all virtual events or the information
about the SEQUENCE bound to the virtual event VIRTUAL.

	
focus()

	Direct input focus to this widget.

If the application currently does not have the focus
this widget will get the focus if the application gets
the focus through the window manager.

	
focus_displayof()

	Return the widget which has currently the focus on the
display where this widget is located.

Return None if the application does not have the focus.

	
focus_force()

	Direct input focus to this widget even if the
application does not have the focus. Use with
caution!

	
focus_get()

	Return the widget which has currently the focus in the
application.

Use focus_displayof to allow working with several
displays. Return None if application does not have
the focus.

	
focus_lastfor()

	Return the widget which would have the focus if top level
for this widget gets the focus from the window manager.

	
focus_set()

	Direct input focus to this widget.

If the application currently does not have the focus
this widget will get the focus if the application gets
the focus through the window manager.

	
focusmodel(model=None)

	Set focus model to MODEL. “active” means that this widget will claim
the focus itself, “passive” means that the window manager shall give
the focus. Return current focus model if MODEL is None.

	
frame()

	Return identifier for decorative frame of this widget if present.

	
geometry(newGeometry=None)

	Set geometry to NEWGEOMETRY of the form =widthxheight+x+y. Return
current value if None is given.

	
getboolean(s)

	Return a boolean value for Tcl boolean values true and false given as parameter.

	
getdouble

	alias of __builtin__.float

	
getint

	alias of __builtin__.int

	
getvar(name='PY_VAR')

	Return value of Tcl variable NAME.

	
grab_current()

	Return widget which has currently the grab in this application
or None.

	
grab_release()

	Release grab for this widget if currently set.

	
grab_set(timeout=30)

	

	
grab_set_global()

	Set global grab for this widget.

A global grab directs all events to this and
descendant widgets on the display. Use with caution -
other applications do not get events anymore.

	
grab_status()

	Return None, “local” or “global” if this widget has
no, a local or a global grab.

	
grid(baseWidth=None, baseHeight=None, widthInc=None, heightInc=None)

	Instruct the window manager that this widget shall only be
resized on grid boundaries. WIDTHINC and HEIGHTINC are the width and
height of a grid unit in pixels. BASEWIDTH and BASEHEIGHT are the
number of grid units requested in Tk_GeometryRequest.

	
grid_bbox(column=None, row=None, col2=None, row2=None)

	Return a tuple of integer coordinates for the bounding
box of this widget controlled by the geometry manager grid.

If COLUMN, ROW is given the bounding box applies from
the cell with row and column 0 to the specified
cell. If COL2 and ROW2 are given the bounding box
starts at that cell.

The returned integers specify the offset of the upper left
corner in the master widget and the width and height.

	
grid_columnconfigure(index, cnf={}, **kw)

	Configure column INDEX of a grid.

Valid resources are minsize (minimum size of the column),
weight (how much does additional space propagate to this column)
and pad (how much space to let additionally).

	
grid_location(x, y)

	Return a tuple of column and row which identify the cell
at which the pixel at position X and Y inside the master
widget is located.

	
grid_propagate(flag=['_noarg_'])

	Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information
of the slaves will determine the size of this widget. If no argument
is given, the current setting will be returned.

	
grid_rowconfigure(index, cnf={}, **kw)

	Configure row INDEX of a grid.

Valid resources are minsize (minimum size of the row),
weight (how much does additional space propagate to this row)
and pad (how much space to let additionally).

	
grid_size()

	Return a tuple of the number of column and rows in the grid.

	
grid_slaves(row=None, column=None)

	Return a list of all slaves of this widget
in its packing order.

	
group(pathName=None)

	Set the group leader widgets for related widgets to PATHNAME. Return
the group leader of this widget if None is given.

	
iconbitmap(bitmap=None, default=None)

	Set bitmap for the iconified widget to BITMAP. Return
the bitmap if None is given.

Under Windows, the DEFAULT parameter can be used to set the icon
for the widget and any descendents that don’t have an icon set
explicitly. DEFAULT can be the relative path to a .ico file
(example: root.iconbitmap(default=’myicon.ico’)). See Tk
documentation for more information.

	
iconify()

	Display widget as icon.

	
iconmask(bitmap=None)

	Set mask for the icon bitmap of this widget. Return the
mask if None is given.

	
iconname(newName=None)

	Set the name of the icon for this widget. Return the name if
None is given.

	
iconposition(x=None, y=None)

	Set the position of the icon of this widget to X and Y. Return
a tuple of the current values of X and X if None is given.

	
iconwindow(pathName=None)

	Set widget PATHNAME to be displayed instead of icon. Return the current
value if None is given.

	
image_names()

	Return a list of all existing image names.

	
image_types()

	Return a list of all available image types (e.g. photo bitmap).

	
keys()

	Return a list of all resource names of this widget.

	
lift(aboveThis=None)

	Raise this widget in the stacking order.

	
lower(belowThis=None)

	Lower this widget in the stacking order.

	
mainloop(n=0)

	Call the mainloop of Tk.

	
maxsize(width=None, height=None)

	Set max WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
minsize(width=None, height=None)

	Set min WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
nametowidget(name)

	Return the Tkinter instance of a widget identified by
its Tcl name NAME.

	
option_add(pattern, value, priority=None)

	Set a VALUE (second parameter) for an option
PATTERN (first parameter).

An optional third parameter gives the numeric priority
(defaults to 80).

	
option_clear()

	Clear the option database.

It will be reloaded if option_add is called.

	
option_get(name, className)

	Return the value for an option NAME for this widget
with CLASSNAME.

Values with higher priority override lower values.

	
option_readfile(fileName, priority=None)

	Read file FILENAME into the option database.

An optional second parameter gives the numeric
priority.

	
overrideredirect(boolean=None)

	Instruct the window manager to ignore this widget
if BOOLEAN is given with 1. Return the current value if None
is given.

	
pack_propagate(flag=['_noarg_'])

	Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information
of the slaves will determine the size of this widget. If no argument
is given the current setting will be returned.

	
pack_slaves()

	Return a list of all slaves of this widget
in its packing order.

	
place_slaves()

	Return a list of all slaves of this widget
in its packing order.

	
positionfrom(who=None)

	Instruct the window manager that the position of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
propagate(flag=['_noarg_'])

	Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information
of the slaves will determine the size of this widget. If no argument
is given the current setting will be returned.

	
protocol(name=None, func=None)

	Bind function FUNC to command NAME for this widget.
Return the function bound to NAME if None is given. NAME could be
e.g. “WM_SAVE_YOURSELF” or “WM_DELETE_WINDOW”.

	
quit()

	Quit the Tcl interpreter. All widgets will be destroyed.

	
register(func, subst=None, needcleanup=1)

	Return a newly created Tcl function. If this
function is called, the Python function FUNC will
be executed. An optional function SUBST can
be given which will be executed before FUNC.

	
resizable(width=None, height=None)

	Instruct the window manager whether this width can be resized
in WIDTH or HEIGHT. Both values are boolean values.

	
rowconfigure(index, cnf={}, **kw)

	Configure row INDEX of a grid.

Valid resources are minsize (minimum size of the row),
weight (how much does additional space propagate to this row)
and pad (how much space to let additionally).

	
selection_clear(**kw)

	Clear the current X selection.

	
selection_get(**kw)

	Return the contents of the current X selection.

A keyword parameter selection specifies the name of
the selection and defaults to PRIMARY. A keyword
parameter displayof specifies a widget on the display
to use. A keyword parameter type specifies the form of data to be
fetched, defaulting to STRING except on X11, where UTF8_STRING is tried
before STRING.

	
selection_handle(command, **kw)

	Specify a function COMMAND to call if the X
selection owned by this widget is queried by another
application.

This function must return the contents of the
selection. The function will be called with the
arguments OFFSET and LENGTH which allows the chunking
of very long selections. The following keyword
parameters can be provided:
selection - name of the selection (default PRIMARY),
type - type of the selection (e.g. STRING, FILE_NAME).

	
selection_own(**kw)

	Become owner of X selection.

A keyword parameter selection specifies the name of
the selection (default PRIMARY).

	
selection_own_get(**kw)

	Return owner of X selection.

The following keyword parameter can
be provided:
selection - name of the selection (default PRIMARY),
type - type of the selection (e.g. STRING, FILE_NAME).

	
send(interp, cmd, *args)

	Send Tcl command CMD to different interpreter INTERP to be executed.

	
setvar(name='PY_VAR', value='1')

	Set Tcl variable NAME to VALUE.

	
show()

	

	
size()

	Return a tuple of the number of column and rows in the grid.

	
sizefrom(who=None)

	Instruct the window manager that the size of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
slaves()

	Return a list of all slaves of this widget
in its packing order.

	
state(newstate=None)

	Query or set the state of this widget as one of normal, icon,
iconic (see wm_iconwindow), withdrawn, or zoomed (Windows only).

	
title(string=None)

	Set the title of this widget.

	
tk_bisque()

	Change the color scheme to light brown as used in Tk 3.6 and before.

	
tk_focusFollowsMouse()

	The widget under mouse will get automatically focus. Can not
be disabled easily.

	
tk_focusNext()

	Return the next widget in the focus order which follows
widget which has currently the focus.

The focus order first goes to the next child, then to
the children of the child recursively and then to the
next sibling which is higher in the stacking order. A
widget is omitted if it has the takefocus resource set
to 0.

	
tk_focusPrev()

	Return previous widget in the focus order. See tk_focusNext for details.

	
tk_menuBar(*args)

	Do not use. Needed in Tk 3.6 and earlier.

	
tk_setPalette(*args, **kw)

	Set a new color scheme for all widget elements.

A single color as argument will cause that all colors of Tk
widget elements are derived from this.
Alternatively several keyword parameters and its associated
colors can be given. The following keywords are valid:
activeBackground, foreground, selectColor,
activeForeground, highlightBackground, selectBackground,
background, highlightColor, selectForeground,
disabledForeground, insertBackground, troughColor.

	
tk_strictMotif(boolean=None)

	Set Tcl internal variable, whether the look and feel
should adhere to Motif.

A parameter of 1 means adhere to Motif (e.g. no color
change if mouse passes over slider).
Returns the set value.

	
tkraise(aboveThis=None)

	Raise this widget in the stacking order.

	
transient(master=None)

	Instruct the window manager that this widget is transient
with regard to widget MASTER.

	
unbind(sequence, funcid=None)

	Unbind for this widget for event SEQUENCE the
function identified with FUNCID.

	
unbind_all(sequence)

	Unbind for all widgets for event SEQUENCE all functions.

	
unbind_class(className, sequence)

	Unbind for all widgets with bindtag CLASSNAME for event SEQUENCE
all functions.

	
update()

	Enter event loop until all pending events have been processed by Tcl.

	
update_idletasks()

	Enter event loop until all idle callbacks have been called. This
will update the display of windows but not process events caused by
the user.

	
wait_variable(name='PY_VAR')

	Wait until the variable is modified.

A parameter of type IntVar, StringVar, DoubleVar or
BooleanVar must be given.

	
wait_visibility(window=None)

	Wait until the visibility of a WIDGET changes
(e.g. it appears).

If no parameter is given self is used.

	
wait_window(window=None)

	Wait until a WIDGET is destroyed.

If no parameter is given self is used.

	
waitvar(name='PY_VAR')

	Wait until the variable is modified.

A parameter of type IntVar, StringVar, DoubleVar or
BooleanVar must be given.

	
winfo_atom(name, displayof=0)

	Return integer which represents atom NAME.

	
winfo_atomname(id, displayof=0)

	Return name of atom with identifier ID.

	
winfo_cells()

	Return number of cells in the colormap for this widget.

	
winfo_children()

	Return a list of all widgets which are children of this widget.

	
winfo_class()

	Return window class name of this widget.

	
winfo_colormapfull()

	Return true if at the last color request the colormap was full.

	
winfo_containing(rootX, rootY, displayof=0)

	Return the widget which is at the root coordinates ROOTX, ROOTY.

	
winfo_depth()

	Return the number of bits per pixel.

	
winfo_exists()

	Return true if this widget exists.

	
winfo_fpixels(number)

	Return the number of pixels for the given distance NUMBER
(e.g. “3c”) as float.

	
winfo_geometry()

	Return geometry string for this widget in the form “widthxheight+X+Y”.

	
winfo_height()

	Return height of this widget.

	
winfo_id()

	Return identifier ID for this widget.

	
winfo_interps(displayof=0)

	Return the name of all Tcl interpreters for this display.

	
winfo_ismapped()

	Return true if this widget is mapped.

	
winfo_manager()

	Return the window manager name for this widget.

	
winfo_name()

	Return the name of this widget.

	
winfo_parent()

	Return the name of the parent of this widget.

	
winfo_pathname(id, displayof=0)

	Return the pathname of the widget given by ID.

	
winfo_pixels(number)

	Rounded integer value of winfo_fpixels.

	
winfo_pointerx()

	Return the x coordinate of the pointer on the root window.

	
winfo_pointerxy()

	Return a tuple of x and y coordinates of the pointer on the root window.

	
winfo_pointery()

	Return the y coordinate of the pointer on the root window.

	
winfo_reqheight()

	Return requested height of this widget.

	
winfo_reqwidth()

	Return requested width of this widget.

	
winfo_rgb(color)

	Return tuple of decimal values for red, green, blue for
COLOR in this widget.

	
winfo_rootx()

	Return x coordinate of upper left corner of this widget on the
root window.

	
winfo_rooty()

	Return y coordinate of upper left corner of this widget on the
root window.

	
winfo_screen()

	Return the screen name of this widget.

	
winfo_screencells()

	Return the number of the cells in the colormap of the screen
of this widget.

	
winfo_screendepth()

	Return the number of bits per pixel of the root window of the
screen of this widget.

	
winfo_screenheight()

	Return the number of pixels of the height of the screen of this widget
in pixel.

	
winfo_screenmmheight()

	Return the number of pixels of the height of the screen of
this widget in mm.

	
winfo_screenmmwidth()

	Return the number of pixels of the width of the screen of
this widget in mm.

	
winfo_screenvisual()

	Return one of the strings directcolor, grayscale, pseudocolor,
staticcolor, staticgray, or truecolor for the default
colormodel of this screen.

	
winfo_screenwidth()

	Return the number of pixels of the width of the screen of
this widget in pixel.

	
winfo_server()

	Return information of the X-Server of the screen of this widget in
the form “XmajorRminor vendor vendorVersion”.

	
winfo_toplevel()

	Return the toplevel widget of this widget.

	
winfo_viewable()

	Return true if the widget and all its higher ancestors are mapped.

	
winfo_visual()

	Return one of the strings directcolor, grayscale, pseudocolor,
staticcolor, staticgray, or truecolor for the
colormodel of this widget.

	
winfo_visualid()

	Return the X identifier for the visual for this widget.

	
winfo_visualsavailable(includeids=0)

	Return a list of all visuals available for the screen
of this widget.

Each item in the list consists of a visual name (see winfo_visual), a
depth and if INCLUDEIDS=1 is given also the X identifier.

	
winfo_vrootheight()

	Return the height of the virtual root window associated with this
widget in pixels. If there is no virtual root window return the
height of the screen.

	
winfo_vrootwidth()

	Return the width of the virtual root window associated with this
widget in pixel. If there is no virtual root window return the
width of the screen.

	
winfo_vrootx()

	Return the x offset of the virtual root relative to the root
window of the screen of this widget.

	
winfo_vrooty()

	Return the y offset of the virtual root relative to the root
window of the screen of this widget.

	
winfo_width()

	Return the width of this widget.

	
winfo_x()

	Return the x coordinate of the upper left corner of this widget
in the parent.

	
winfo_y()

	Return the y coordinate of the upper left corner of this widget
in the parent.

	
withdraw()

	Withdraw this widget from the screen such that it is unmapped
and forgotten by the window manager. Re-draw it with wm_deiconify.

	
wm_aspect(minNumer=None, minDenom=None, maxNumer=None, maxDenom=None)

	Instruct the window manager to set the aspect ratio (width/height)
of this widget to be between MINNUMER/MINDENOM and MAXNUMER/MAXDENOM. Return a tuple
of the actual values if no argument is given.

	
wm_attributes(*args)

	This subcommand returns or sets platform specific attributes

The first form returns a list of the platform specific flags and
their values. The second form returns the value for the specific
option. The third form sets one or more of the values. The values
are as follows:

On Windows, -disabled gets or sets whether the window is in a
disabled state. -toolwindow gets or sets the style of the window
to toolwindow (as defined in the MSDN). -topmost gets or sets
whether this is a topmost window (displays above all other
windows).

On Macintosh, XXXXX

On Unix, there are currently no special attribute values.

	
wm_client(name=None)

	Store NAME in WM_CLIENT_MACHINE property of this widget. Return
current value.

	
wm_colormapwindows(*wlist)

	Store list of window names (WLIST) into WM_COLORMAPWINDOWS property
of this widget. This list contains windows whose colormaps differ from their
parents. Return current list of widgets if WLIST is empty.

	
wm_command(value=None)

	Store VALUE in WM_COMMAND property. It is the command
which shall be used to invoke the application. Return current
command if VALUE is None.

	
wm_deiconify()

	Deiconify this widget. If it was never mapped it will not be mapped.
On Windows it will raise this widget and give it the focus.

	
wm_focusmodel(model=None)

	Set focus model to MODEL. “active” means that this widget will claim
the focus itself, “passive” means that the window manager shall give
the focus. Return current focus model if MODEL is None.

	
wm_frame()

	Return identifier for decorative frame of this widget if present.

	
wm_geometry(newGeometry=None)

	Set geometry to NEWGEOMETRY of the form =widthxheight+x+y. Return
current value if None is given.

	
wm_grid(baseWidth=None, baseHeight=None, widthInc=None, heightInc=None)

	Instruct the window manager that this widget shall only be
resized on grid boundaries. WIDTHINC and HEIGHTINC are the width and
height of a grid unit in pixels. BASEWIDTH and BASEHEIGHT are the
number of grid units requested in Tk_GeometryRequest.

	
wm_group(pathName=None)

	Set the group leader widgets for related widgets to PATHNAME. Return
the group leader of this widget if None is given.

	
wm_iconbitmap(bitmap=None, default=None)

	Set bitmap for the iconified widget to BITMAP. Return
the bitmap if None is given.

Under Windows, the DEFAULT parameter can be used to set the icon
for the widget and any descendents that don’t have an icon set
explicitly. DEFAULT can be the relative path to a .ico file
(example: root.iconbitmap(default=’myicon.ico’)). See Tk
documentation for more information.

	
wm_iconify()

	Display widget as icon.

	
wm_iconmask(bitmap=None)

	Set mask for the icon bitmap of this widget. Return the
mask if None is given.

	
wm_iconname(newName=None)

	Set the name of the icon for this widget. Return the name if
None is given.

	
wm_iconposition(x=None, y=None)

	Set the position of the icon of this widget to X and Y. Return
a tuple of the current values of X and X if None is given.

	
wm_iconwindow(pathName=None)

	Set widget PATHNAME to be displayed instead of icon. Return the current
value if None is given.

	
wm_maxsize(width=None, height=None)

	Set max WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
wm_minsize(width=None, height=None)

	Set min WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
wm_overrideredirect(boolean=None)

	Instruct the window manager to ignore this widget
if BOOLEAN is given with 1. Return the current value if None
is given.

	
wm_positionfrom(who=None)

	Instruct the window manager that the position of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
wm_protocol(name=None, func=None)

	Bind function FUNC to command NAME for this widget.
Return the function bound to NAME if None is given. NAME could be
e.g. “WM_SAVE_YOURSELF” or “WM_DELETE_WINDOW”.

	
wm_resizable(width=None, height=None)

	Instruct the window manager whether this width can be resized
in WIDTH or HEIGHT. Both values are boolean values.

	
wm_sizefrom(who=None)

	Instruct the window manager that the size of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
wm_state(newstate=None)

	Query or set the state of this widget as one of normal, icon,
iconic (see wm_iconwindow), withdrawn, or zoomed (Windows only).

	
wm_title(string=None)

	Set the title of this widget.

	
wm_transient(master=None)

	Instruct the window manager that this widget is transient
with regard to widget MASTER.

	
wm_withdraw()

	Withdraw this widget from the screen such that it is unmapped
and forgotten by the window manager. Re-draw it with wm_deiconify.

	
class robot.libraries.dialogs_py.InputDialog(message, default='', hidden=False)

	Bases: robot.libraries.dialogs_py._TkDialog

	
after(ms, func=None, *args)

	Call function once after given time.

MS specifies the time in milliseconds. FUNC gives the
function which shall be called. Additional parameters
are given as parameters to the function call. Return
identifier to cancel scheduling with after_cancel.

	
after_cancel(id)

	Cancel scheduling of function identified with ID.

Identifier returned by after or after_idle must be
given as first parameter.

	
after_idle(func, *args)

	Call FUNC once if the Tcl main loop has no event to
process.

Return an identifier to cancel the scheduling with
after_cancel.

	
aspect(minNumer=None, minDenom=None, maxNumer=None, maxDenom=None)

	Instruct the window manager to set the aspect ratio (width/height)
of this widget to be between MINNUMER/MINDENOM and MAXNUMER/MAXDENOM. Return a tuple
of the actual values if no argument is given.

	
attributes(*args)

	This subcommand returns or sets platform specific attributes

The first form returns a list of the platform specific flags and
their values. The second form returns the value for the specific
option. The third form sets one or more of the values. The values
are as follows:

On Windows, -disabled gets or sets whether the window is in a
disabled state. -toolwindow gets or sets the style of the window
to toolwindow (as defined in the MSDN). -topmost gets or sets
whether this is a topmost window (displays above all other
windows).

On Macintosh, XXXXX

On Unix, there are currently no special attribute values.

	
bbox(column=None, row=None, col2=None, row2=None)

	Return a tuple of integer coordinates for the bounding
box of this widget controlled by the geometry manager grid.

If COLUMN, ROW is given the bounding box applies from
the cell with row and column 0 to the specified
cell. If COL2 and ROW2 are given the bounding box
starts at that cell.

The returned integers specify the offset of the upper left
corner in the master widget and the width and height.

	
bell(displayof=0)

	Ring a display’s bell.

	
bind(sequence=None, func=None, add=None)

	Bind to this widget at event SEQUENCE a call to function FUNC.

SEQUENCE is a string of concatenated event
patterns. An event pattern is of the form
<MODIFIER-MODIFIER-TYPE-DETAIL> where MODIFIER is one
of Control, Mod2, M2, Shift, Mod3, M3, Lock, Mod4, M4,
Button1, B1, Mod5, M5 Button2, B2, Meta, M, Button3,
B3, Alt, Button4, B4, Double, Button5, B5 Triple,
Mod1, M1. TYPE is one of Activate, Enter, Map,
ButtonPress, Button, Expose, Motion, ButtonRelease
FocusIn, MouseWheel, Circulate, FocusOut, Property,
Colormap, Gravity Reparent, Configure, KeyPress, Key,
Unmap, Deactivate, KeyRelease Visibility, Destroy,
Leave and DETAIL is the button number for ButtonPress,
ButtonRelease and DETAIL is the Keysym for KeyPress and
KeyRelease. Examples are
<Control-Button-1> for pressing Control and mouse button 1 or
<Alt-A> for pressing A and the Alt key (KeyPress can be omitted).
An event pattern can also be a virtual event of the form
<<AString>> where AString can be arbitrary. This
event can be generated by event_generate.
If events are concatenated they must appear shortly
after each other.

FUNC will be called if the event sequence occurs with an
instance of Event as argument. If the return value of FUNC is
“break” no further bound function is invoked.

An additional boolean parameter ADD specifies whether FUNC will
be called additionally to the other bound function or whether
it will replace the previous function.

Bind will return an identifier to allow deletion of the bound function with
unbind without memory leak.

If FUNC or SEQUENCE is omitted the bound function or list
of bound events are returned.

	
bind_all(sequence=None, func=None, add=None)

	Bind to all widgets at an event SEQUENCE a call to function FUNC.
An additional boolean parameter ADD specifies whether FUNC will
be called additionally to the other bound function or whether
it will replace the previous function. See bind for the return value.

	
bind_class(className, sequence=None, func=None, add=None)

	Bind to widgets with bindtag CLASSNAME at event
SEQUENCE a call of function FUNC. An additional
boolean parameter ADD specifies whether FUNC will be
called additionally to the other bound function or
whether it will replace the previous function. See bind for
the return value.

	
bindtags(tagList=None)

	Set or get the list of bindtags for this widget.

With no argument return the list of all bindtags associated with
this widget. With a list of strings as argument the bindtags are
set to this list. The bindtags determine in which order events are
processed (see bind).

	
cget(key)

	Return the resource value for a KEY given as string.

	
client(name=None)

	Store NAME in WM_CLIENT_MACHINE property of this widget. Return
current value.

	
clipboard_append(string, **kw)

	Append STRING to the Tk clipboard.

A widget specified at the optional displayof keyword
argument specifies the target display. The clipboard
can be retrieved with selection_get.

	
clipboard_clear(**kw)

	Clear the data in the Tk clipboard.

A widget specified for the optional displayof keyword
argument specifies the target display.

	
clipboard_get(**kw)

	Retrieve data from the clipboard on window’s display.

The window keyword defaults to the root window of the Tkinter
application.

The type keyword specifies the form in which the data is
to be returned and should be an atom name such as STRING
or FILE_NAME. Type defaults to STRING, except on X11, where the default
is to try UTF8_STRING and fall back to STRING.

This command is equivalent to:

selection_get(CLIPBOARD)

	
colormapwindows(*wlist)

	Store list of window names (WLIST) into WM_COLORMAPWINDOWS property
of this widget. This list contains windows whose colormaps differ from their
parents. Return current list of widgets if WLIST is empty.

	
colormodel(value=None)

	Useless. Not implemented in Tk.

	
columnconfigure(index, cnf={}, **kw)

	Configure column INDEX of a grid.

Valid resources are minsize (minimum size of the column),
weight (how much does additional space propagate to this column)
and pad (how much space to let additionally).

	
command(value=None)

	Store VALUE in WM_COMMAND property. It is the command
which shall be used to invoke the application. Return current
command if VALUE is None.

	
config(cnf=None, **kw)

	Configure resources of a widget.

The values for resources are specified as keyword
arguments. To get an overview about
the allowed keyword arguments call the method keys.

	
configure(cnf=None, **kw)

	Configure resources of a widget.

The values for resources are specified as keyword
arguments. To get an overview about
the allowed keyword arguments call the method keys.

	
deiconify()

	Deiconify this widget. If it was never mapped it will not be mapped.
On Windows it will raise this widget and give it the focus.

	
deletecommand(name)

	Internal function.

Delete the Tcl command provided in NAME.

	
destroy()

	Destroy this and all descendants widgets.

	
event_add(virtual, *sequences)

	Bind a virtual event VIRTUAL (of the form <<Name>>)
to an event SEQUENCE such that the virtual event is triggered
whenever SEQUENCE occurs.

	
event_delete(virtual, *sequences)

	Unbind a virtual event VIRTUAL from SEQUENCE.

	
event_generate(sequence, **kw)

	Generate an event SEQUENCE. Additional
keyword arguments specify parameter of the event
(e.g. x, y, rootx, rooty).

	
event_info(virtual=None)

	Return a list of all virtual events or the information
about the SEQUENCE bound to the virtual event VIRTUAL.

	
focus()

	Direct input focus to this widget.

If the application currently does not have the focus
this widget will get the focus if the application gets
the focus through the window manager.

	
focus_displayof()

	Return the widget which has currently the focus on the
display where this widget is located.

Return None if the application does not have the focus.

	
focus_force()

	Direct input focus to this widget even if the
application does not have the focus. Use with
caution!

	
focus_get()

	Return the widget which has currently the focus in the
application.

Use focus_displayof to allow working with several
displays. Return None if application does not have
the focus.

	
focus_lastfor()

	Return the widget which would have the focus if top level
for this widget gets the focus from the window manager.

	
focus_set()

	Direct input focus to this widget.

If the application currently does not have the focus
this widget will get the focus if the application gets
the focus through the window manager.

	
focusmodel(model=None)

	Set focus model to MODEL. “active” means that this widget will claim
the focus itself, “passive” means that the window manager shall give
the focus. Return current focus model if MODEL is None.

	
frame()

	Return identifier for decorative frame of this widget if present.

	
geometry(newGeometry=None)

	Set geometry to NEWGEOMETRY of the form =widthxheight+x+y. Return
current value if None is given.

	
getboolean(s)

	Return a boolean value for Tcl boolean values true and false given as parameter.

	
getdouble

	alias of __builtin__.float

	
getint

	alias of __builtin__.int

	
getvar(name='PY_VAR')

	Return value of Tcl variable NAME.

	
grab_current()

	Return widget which has currently the grab in this application
or None.

	
grab_release()

	Release grab for this widget if currently set.

	
grab_set(timeout=30)

	

	
grab_set_global()

	Set global grab for this widget.

A global grab directs all events to this and
descendant widgets on the display. Use with caution -
other applications do not get events anymore.

	
grab_status()

	Return None, “local” or “global” if this widget has
no, a local or a global grab.

	
grid(baseWidth=None, baseHeight=None, widthInc=None, heightInc=None)

	Instruct the window manager that this widget shall only be
resized on grid boundaries. WIDTHINC and HEIGHTINC are the width and
height of a grid unit in pixels. BASEWIDTH and BASEHEIGHT are the
number of grid units requested in Tk_GeometryRequest.

	
grid_bbox(column=None, row=None, col2=None, row2=None)

	Return a tuple of integer coordinates for the bounding
box of this widget controlled by the geometry manager grid.

If COLUMN, ROW is given the bounding box applies from
the cell with row and column 0 to the specified
cell. If COL2 and ROW2 are given the bounding box
starts at that cell.

The returned integers specify the offset of the upper left
corner in the master widget and the width and height.

	
grid_columnconfigure(index, cnf={}, **kw)

	Configure column INDEX of a grid.

Valid resources are minsize (minimum size of the column),
weight (how much does additional space propagate to this column)
and pad (how much space to let additionally).

	
grid_location(x, y)

	Return a tuple of column and row which identify the cell
at which the pixel at position X and Y inside the master
widget is located.

	
grid_propagate(flag=['_noarg_'])

	Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information
of the slaves will determine the size of this widget. If no argument
is given, the current setting will be returned.

	
grid_rowconfigure(index, cnf={}, **kw)

	Configure row INDEX of a grid.

Valid resources are minsize (minimum size of the row),
weight (how much does additional space propagate to this row)
and pad (how much space to let additionally).

	
grid_size()

	Return a tuple of the number of column and rows in the grid.

	
grid_slaves(row=None, column=None)

	Return a list of all slaves of this widget
in its packing order.

	
group(pathName=None)

	Set the group leader widgets for related widgets to PATHNAME. Return
the group leader of this widget if None is given.

	
iconbitmap(bitmap=None, default=None)

	Set bitmap for the iconified widget to BITMAP. Return
the bitmap if None is given.

Under Windows, the DEFAULT parameter can be used to set the icon
for the widget and any descendents that don’t have an icon set
explicitly. DEFAULT can be the relative path to a .ico file
(example: root.iconbitmap(default=’myicon.ico’)). See Tk
documentation for more information.

	
iconify()

	Display widget as icon.

	
iconmask(bitmap=None)

	Set mask for the icon bitmap of this widget. Return the
mask if None is given.

	
iconname(newName=None)

	Set the name of the icon for this widget. Return the name if
None is given.

	
iconposition(x=None, y=None)

	Set the position of the icon of this widget to X and Y. Return
a tuple of the current values of X and X if None is given.

	
iconwindow(pathName=None)

	Set widget PATHNAME to be displayed instead of icon. Return the current
value if None is given.

	
image_names()

	Return a list of all existing image names.

	
image_types()

	Return a list of all available image types (e.g. photo bitmap).

	
keys()

	Return a list of all resource names of this widget.

	
lift(aboveThis=None)

	Raise this widget in the stacking order.

	
lower(belowThis=None)

	Lower this widget in the stacking order.

	
mainloop(n=0)

	Call the mainloop of Tk.

	
maxsize(width=None, height=None)

	Set max WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
minsize(width=None, height=None)

	Set min WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
nametowidget(name)

	Return the Tkinter instance of a widget identified by
its Tcl name NAME.

	
option_add(pattern, value, priority=None)

	Set a VALUE (second parameter) for an option
PATTERN (first parameter).

An optional third parameter gives the numeric priority
(defaults to 80).

	
option_clear()

	Clear the option database.

It will be reloaded if option_add is called.

	
option_get(name, className)

	Return the value for an option NAME for this widget
with CLASSNAME.

Values with higher priority override lower values.

	
option_readfile(fileName, priority=None)

	Read file FILENAME into the option database.

An optional second parameter gives the numeric
priority.

	
overrideredirect(boolean=None)

	Instruct the window manager to ignore this widget
if BOOLEAN is given with 1. Return the current value if None
is given.

	
pack_propagate(flag=['_noarg_'])

	Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information
of the slaves will determine the size of this widget. If no argument
is given the current setting will be returned.

	
pack_slaves()

	Return a list of all slaves of this widget
in its packing order.

	
place_slaves()

	Return a list of all slaves of this widget
in its packing order.

	
positionfrom(who=None)

	Instruct the window manager that the position of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
propagate(flag=['_noarg_'])

	Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information
of the slaves will determine the size of this widget. If no argument
is given the current setting will be returned.

	
protocol(name=None, func=None)

	Bind function FUNC to command NAME for this widget.
Return the function bound to NAME if None is given. NAME could be
e.g. “WM_SAVE_YOURSELF” or “WM_DELETE_WINDOW”.

	
quit()

	Quit the Tcl interpreter. All widgets will be destroyed.

	
register(func, subst=None, needcleanup=1)

	Return a newly created Tcl function. If this
function is called, the Python function FUNC will
be executed. An optional function SUBST can
be given which will be executed before FUNC.

	
resizable(width=None, height=None)

	Instruct the window manager whether this width can be resized
in WIDTH or HEIGHT. Both values are boolean values.

	
rowconfigure(index, cnf={}, **kw)

	Configure row INDEX of a grid.

Valid resources are minsize (minimum size of the row),
weight (how much does additional space propagate to this row)
and pad (how much space to let additionally).

	
selection_clear(**kw)

	Clear the current X selection.

	
selection_get(**kw)

	Return the contents of the current X selection.

A keyword parameter selection specifies the name of
the selection and defaults to PRIMARY. A keyword
parameter displayof specifies a widget on the display
to use. A keyword parameter type specifies the form of data to be
fetched, defaulting to STRING except on X11, where UTF8_STRING is tried
before STRING.

	
selection_handle(command, **kw)

	Specify a function COMMAND to call if the X
selection owned by this widget is queried by another
application.

This function must return the contents of the
selection. The function will be called with the
arguments OFFSET and LENGTH which allows the chunking
of very long selections. The following keyword
parameters can be provided:
selection - name of the selection (default PRIMARY),
type - type of the selection (e.g. STRING, FILE_NAME).

	
selection_own(**kw)

	Become owner of X selection.

A keyword parameter selection specifies the name of
the selection (default PRIMARY).

	
selection_own_get(**kw)

	Return owner of X selection.

The following keyword parameter can
be provided:
selection - name of the selection (default PRIMARY),
type - type of the selection (e.g. STRING, FILE_NAME).

	
send(interp, cmd, *args)

	Send Tcl command CMD to different interpreter INTERP to be executed.

	
setvar(name='PY_VAR', value='1')

	Set Tcl variable NAME to VALUE.

	
show()

	

	
size()

	Return a tuple of the number of column and rows in the grid.

	
sizefrom(who=None)

	Instruct the window manager that the size of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
slaves()

	Return a list of all slaves of this widget
in its packing order.

	
state(newstate=None)

	Query or set the state of this widget as one of normal, icon,
iconic (see wm_iconwindow), withdrawn, or zoomed (Windows only).

	
title(string=None)

	Set the title of this widget.

	
tk_bisque()

	Change the color scheme to light brown as used in Tk 3.6 and before.

	
tk_focusFollowsMouse()

	The widget under mouse will get automatically focus. Can not
be disabled easily.

	
tk_focusNext()

	Return the next widget in the focus order which follows
widget which has currently the focus.

The focus order first goes to the next child, then to
the children of the child recursively and then to the
next sibling which is higher in the stacking order. A
widget is omitted if it has the takefocus resource set
to 0.

	
tk_focusPrev()

	Return previous widget in the focus order. See tk_focusNext for details.

	
tk_menuBar(*args)

	Do not use. Needed in Tk 3.6 and earlier.

	
tk_setPalette(*args, **kw)

	Set a new color scheme for all widget elements.

A single color as argument will cause that all colors of Tk
widget elements are derived from this.
Alternatively several keyword parameters and its associated
colors can be given. The following keywords are valid:
activeBackground, foreground, selectColor,
activeForeground, highlightBackground, selectBackground,
background, highlightColor, selectForeground,
disabledForeground, insertBackground, troughColor.

	
tk_strictMotif(boolean=None)

	Set Tcl internal variable, whether the look and feel
should adhere to Motif.

A parameter of 1 means adhere to Motif (e.g. no color
change if mouse passes over slider).
Returns the set value.

	
tkraise(aboveThis=None)

	Raise this widget in the stacking order.

	
transient(master=None)

	Instruct the window manager that this widget is transient
with regard to widget MASTER.

	
unbind(sequence, funcid=None)

	Unbind for this widget for event SEQUENCE the
function identified with FUNCID.

	
unbind_all(sequence)

	Unbind for all widgets for event SEQUENCE all functions.

	
unbind_class(className, sequence)

	Unbind for all widgets with bindtag CLASSNAME for event SEQUENCE
all functions.

	
update()

	Enter event loop until all pending events have been processed by Tcl.

	
update_idletasks()

	Enter event loop until all idle callbacks have been called. This
will update the display of windows but not process events caused by
the user.

	
wait_variable(name='PY_VAR')

	Wait until the variable is modified.

A parameter of type IntVar, StringVar, DoubleVar or
BooleanVar must be given.

	
wait_visibility(window=None)

	Wait until the visibility of a WIDGET changes
(e.g. it appears).

If no parameter is given self is used.

	
wait_window(window=None)

	Wait until a WIDGET is destroyed.

If no parameter is given self is used.

	
waitvar(name='PY_VAR')

	Wait until the variable is modified.

A parameter of type IntVar, StringVar, DoubleVar or
BooleanVar must be given.

	
winfo_atom(name, displayof=0)

	Return integer which represents atom NAME.

	
winfo_atomname(id, displayof=0)

	Return name of atom with identifier ID.

	
winfo_cells()

	Return number of cells in the colormap for this widget.

	
winfo_children()

	Return a list of all widgets which are children of this widget.

	
winfo_class()

	Return window class name of this widget.

	
winfo_colormapfull()

	Return true if at the last color request the colormap was full.

	
winfo_containing(rootX, rootY, displayof=0)

	Return the widget which is at the root coordinates ROOTX, ROOTY.

	
winfo_depth()

	Return the number of bits per pixel.

	
winfo_exists()

	Return true if this widget exists.

	
winfo_fpixels(number)

	Return the number of pixels for the given distance NUMBER
(e.g. “3c”) as float.

	
winfo_geometry()

	Return geometry string for this widget in the form “widthxheight+X+Y”.

	
winfo_height()

	Return height of this widget.

	
winfo_id()

	Return identifier ID for this widget.

	
winfo_interps(displayof=0)

	Return the name of all Tcl interpreters for this display.

	
winfo_ismapped()

	Return true if this widget is mapped.

	
winfo_manager()

	Return the window manager name for this widget.

	
winfo_name()

	Return the name of this widget.

	
winfo_parent()

	Return the name of the parent of this widget.

	
winfo_pathname(id, displayof=0)

	Return the pathname of the widget given by ID.

	
winfo_pixels(number)

	Rounded integer value of winfo_fpixels.

	
winfo_pointerx()

	Return the x coordinate of the pointer on the root window.

	
winfo_pointerxy()

	Return a tuple of x and y coordinates of the pointer on the root window.

	
winfo_pointery()

	Return the y coordinate of the pointer on the root window.

	
winfo_reqheight()

	Return requested height of this widget.

	
winfo_reqwidth()

	Return requested width of this widget.

	
winfo_rgb(color)

	Return tuple of decimal values for red, green, blue for
COLOR in this widget.

	
winfo_rootx()

	Return x coordinate of upper left corner of this widget on the
root window.

	
winfo_rooty()

	Return y coordinate of upper left corner of this widget on the
root window.

	
winfo_screen()

	Return the screen name of this widget.

	
winfo_screencells()

	Return the number of the cells in the colormap of the screen
of this widget.

	
winfo_screendepth()

	Return the number of bits per pixel of the root window of the
screen of this widget.

	
winfo_screenheight()

	Return the number of pixels of the height of the screen of this widget
in pixel.

	
winfo_screenmmheight()

	Return the number of pixels of the height of the screen of
this widget in mm.

	
winfo_screenmmwidth()

	Return the number of pixels of the width of the screen of
this widget in mm.

	
winfo_screenvisual()

	Return one of the strings directcolor, grayscale, pseudocolor,
staticcolor, staticgray, or truecolor for the default
colormodel of this screen.

	
winfo_screenwidth()

	Return the number of pixels of the width of the screen of
this widget in pixel.

	
winfo_server()

	Return information of the X-Server of the screen of this widget in
the form “XmajorRminor vendor vendorVersion”.

	
winfo_toplevel()

	Return the toplevel widget of this widget.

	
winfo_viewable()

	Return true if the widget and all its higher ancestors are mapped.

	
winfo_visual()

	Return one of the strings directcolor, grayscale, pseudocolor,
staticcolor, staticgray, or truecolor for the
colormodel of this widget.

	
winfo_visualid()

	Return the X identifier for the visual for this widget.

	
winfo_visualsavailable(includeids=0)

	Return a list of all visuals available for the screen
of this widget.

Each item in the list consists of a visual name (see winfo_visual), a
depth and if INCLUDEIDS=1 is given also the X identifier.

	
winfo_vrootheight()

	Return the height of the virtual root window associated with this
widget in pixels. If there is no virtual root window return the
height of the screen.

	
winfo_vrootwidth()

	Return the width of the virtual root window associated with this
widget in pixel. If there is no virtual root window return the
width of the screen.

	
winfo_vrootx()

	Return the x offset of the virtual root relative to the root
window of the screen of this widget.

	
winfo_vrooty()

	Return the y offset of the virtual root relative to the root
window of the screen of this widget.

	
winfo_width()

	Return the width of this widget.

	
winfo_x()

	Return the x coordinate of the upper left corner of this widget
in the parent.

	
winfo_y()

	Return the y coordinate of the upper left corner of this widget
in the parent.

	
withdraw()

	Withdraw this widget from the screen such that it is unmapped
and forgotten by the window manager. Re-draw it with wm_deiconify.

	
wm_aspect(minNumer=None, minDenom=None, maxNumer=None, maxDenom=None)

	Instruct the window manager to set the aspect ratio (width/height)
of this widget to be between MINNUMER/MINDENOM and MAXNUMER/MAXDENOM. Return a tuple
of the actual values if no argument is given.

	
wm_attributes(*args)

	This subcommand returns or sets platform specific attributes

The first form returns a list of the platform specific flags and
their values. The second form returns the value for the specific
option. The third form sets one or more of the values. The values
are as follows:

On Windows, -disabled gets or sets whether the window is in a
disabled state. -toolwindow gets or sets the style of the window
to toolwindow (as defined in the MSDN). -topmost gets or sets
whether this is a topmost window (displays above all other
windows).

On Macintosh, XXXXX

On Unix, there are currently no special attribute values.

	
wm_client(name=None)

	Store NAME in WM_CLIENT_MACHINE property of this widget. Return
current value.

	
wm_colormapwindows(*wlist)

	Store list of window names (WLIST) into WM_COLORMAPWINDOWS property
of this widget. This list contains windows whose colormaps differ from their
parents. Return current list of widgets if WLIST is empty.

	
wm_command(value=None)

	Store VALUE in WM_COMMAND property. It is the command
which shall be used to invoke the application. Return current
command if VALUE is None.

	
wm_deiconify()

	Deiconify this widget. If it was never mapped it will not be mapped.
On Windows it will raise this widget and give it the focus.

	
wm_focusmodel(model=None)

	Set focus model to MODEL. “active” means that this widget will claim
the focus itself, “passive” means that the window manager shall give
the focus. Return current focus model if MODEL is None.

	
wm_frame()

	Return identifier for decorative frame of this widget if present.

	
wm_geometry(newGeometry=None)

	Set geometry to NEWGEOMETRY of the form =widthxheight+x+y. Return
current value if None is given.

	
wm_grid(baseWidth=None, baseHeight=None, widthInc=None, heightInc=None)

	Instruct the window manager that this widget shall only be
resized on grid boundaries. WIDTHINC and HEIGHTINC are the width and
height of a grid unit in pixels. BASEWIDTH and BASEHEIGHT are the
number of grid units requested in Tk_GeometryRequest.

	
wm_group(pathName=None)

	Set the group leader widgets for related widgets to PATHNAME. Return
the group leader of this widget if None is given.

	
wm_iconbitmap(bitmap=None, default=None)

	Set bitmap for the iconified widget to BITMAP. Return
the bitmap if None is given.

Under Windows, the DEFAULT parameter can be used to set the icon
for the widget and any descendents that don’t have an icon set
explicitly. DEFAULT can be the relative path to a .ico file
(example: root.iconbitmap(default=’myicon.ico’)). See Tk
documentation for more information.

	
wm_iconify()

	Display widget as icon.

	
wm_iconmask(bitmap=None)

	Set mask for the icon bitmap of this widget. Return the
mask if None is given.

	
wm_iconname(newName=None)

	Set the name of the icon for this widget. Return the name if
None is given.

	
wm_iconposition(x=None, y=None)

	Set the position of the icon of this widget to X and Y. Return
a tuple of the current values of X and X if None is given.

	
wm_iconwindow(pathName=None)

	Set widget PATHNAME to be displayed instead of icon. Return the current
value if None is given.

	
wm_maxsize(width=None, height=None)

	Set max WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
wm_minsize(width=None, height=None)

	Set min WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
wm_overrideredirect(boolean=None)

	Instruct the window manager to ignore this widget
if BOOLEAN is given with 1. Return the current value if None
is given.

	
wm_positionfrom(who=None)

	Instruct the window manager that the position of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
wm_protocol(name=None, func=None)

	Bind function FUNC to command NAME for this widget.
Return the function bound to NAME if None is given. NAME could be
e.g. “WM_SAVE_YOURSELF” or “WM_DELETE_WINDOW”.

	
wm_resizable(width=None, height=None)

	Instruct the window manager whether this width can be resized
in WIDTH or HEIGHT. Both values are boolean values.

	
wm_sizefrom(who=None)

	Instruct the window manager that the size of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
wm_state(newstate=None)

	Query or set the state of this widget as one of normal, icon,
iconic (see wm_iconwindow), withdrawn, or zoomed (Windows only).

	
wm_title(string=None)

	Set the title of this widget.

	
wm_transient(master=None)

	Instruct the window manager that this widget is transient
with regard to widget MASTER.

	
wm_withdraw()

	Withdraw this widget from the screen such that it is unmapped
and forgotten by the window manager. Re-draw it with wm_deiconify.

	
class robot.libraries.dialogs_py.SelectionDialog(message, values)

	Bases: robot.libraries.dialogs_py._TkDialog

	
after(ms, func=None, *args)

	Call function once after given time.

MS specifies the time in milliseconds. FUNC gives the
function which shall be called. Additional parameters
are given as parameters to the function call. Return
identifier to cancel scheduling with after_cancel.

	
after_cancel(id)

	Cancel scheduling of function identified with ID.

Identifier returned by after or after_idle must be
given as first parameter.

	
after_idle(func, *args)

	Call FUNC once if the Tcl main loop has no event to
process.

Return an identifier to cancel the scheduling with
after_cancel.

	
aspect(minNumer=None, minDenom=None, maxNumer=None, maxDenom=None)

	Instruct the window manager to set the aspect ratio (width/height)
of this widget to be between MINNUMER/MINDENOM and MAXNUMER/MAXDENOM. Return a tuple
of the actual values if no argument is given.

	
attributes(*args)

	This subcommand returns or sets platform specific attributes

The first form returns a list of the platform specific flags and
their values. The second form returns the value for the specific
option. The third form sets one or more of the values. The values
are as follows:

On Windows, -disabled gets or sets whether the window is in a
disabled state. -toolwindow gets or sets the style of the window
to toolwindow (as defined in the MSDN). -topmost gets or sets
whether this is a topmost window (displays above all other
windows).

On Macintosh, XXXXX

On Unix, there are currently no special attribute values.

	
bbox(column=None, row=None, col2=None, row2=None)

	Return a tuple of integer coordinates for the bounding
box of this widget controlled by the geometry manager grid.

If COLUMN, ROW is given the bounding box applies from
the cell with row and column 0 to the specified
cell. If COL2 and ROW2 are given the bounding box
starts at that cell.

The returned integers specify the offset of the upper left
corner in the master widget and the width and height.

	
bell(displayof=0)

	Ring a display’s bell.

	
bind(sequence=None, func=None, add=None)

	Bind to this widget at event SEQUENCE a call to function FUNC.

SEQUENCE is a string of concatenated event
patterns. An event pattern is of the form
<MODIFIER-MODIFIER-TYPE-DETAIL> where MODIFIER is one
of Control, Mod2, M2, Shift, Mod3, M3, Lock, Mod4, M4,
Button1, B1, Mod5, M5 Button2, B2, Meta, M, Button3,
B3, Alt, Button4, B4, Double, Button5, B5 Triple,
Mod1, M1. TYPE is one of Activate, Enter, Map,
ButtonPress, Button, Expose, Motion, ButtonRelease
FocusIn, MouseWheel, Circulate, FocusOut, Property,
Colormap, Gravity Reparent, Configure, KeyPress, Key,
Unmap, Deactivate, KeyRelease Visibility, Destroy,
Leave and DETAIL is the button number for ButtonPress,
ButtonRelease and DETAIL is the Keysym for KeyPress and
KeyRelease. Examples are
<Control-Button-1> for pressing Control and mouse button 1 or
<Alt-A> for pressing A and the Alt key (KeyPress can be omitted).
An event pattern can also be a virtual event of the form
<<AString>> where AString can be arbitrary. This
event can be generated by event_generate.
If events are concatenated they must appear shortly
after each other.

FUNC will be called if the event sequence occurs with an
instance of Event as argument. If the return value of FUNC is
“break” no further bound function is invoked.

An additional boolean parameter ADD specifies whether FUNC will
be called additionally to the other bound function or whether
it will replace the previous function.

Bind will return an identifier to allow deletion of the bound function with
unbind without memory leak.

If FUNC or SEQUENCE is omitted the bound function or list
of bound events are returned.

	
bind_all(sequence=None, func=None, add=None)

	Bind to all widgets at an event SEQUENCE a call to function FUNC.
An additional boolean parameter ADD specifies whether FUNC will
be called additionally to the other bound function or whether
it will replace the previous function. See bind for the return value.

	
bind_class(className, sequence=None, func=None, add=None)

	Bind to widgets with bindtag CLASSNAME at event
SEQUENCE a call of function FUNC. An additional
boolean parameter ADD specifies whether FUNC will be
called additionally to the other bound function or
whether it will replace the previous function. See bind for
the return value.

	
bindtags(tagList=None)

	Set or get the list of bindtags for this widget.

With no argument return the list of all bindtags associated with
this widget. With a list of strings as argument the bindtags are
set to this list. The bindtags determine in which order events are
processed (see bind).

	
cget(key)

	Return the resource value for a KEY given as string.

	
client(name=None)

	Store NAME in WM_CLIENT_MACHINE property of this widget. Return
current value.

	
clipboard_append(string, **kw)

	Append STRING to the Tk clipboard.

A widget specified at the optional displayof keyword
argument specifies the target display. The clipboard
can be retrieved with selection_get.

	
clipboard_clear(**kw)

	Clear the data in the Tk clipboard.

A widget specified for the optional displayof keyword
argument specifies the target display.

	
clipboard_get(**kw)

	Retrieve data from the clipboard on window’s display.

The window keyword defaults to the root window of the Tkinter
application.

The type keyword specifies the form in which the data is
to be returned and should be an atom name such as STRING
or FILE_NAME. Type defaults to STRING, except on X11, where the default
is to try UTF8_STRING and fall back to STRING.

This command is equivalent to:

selection_get(CLIPBOARD)

	
colormapwindows(*wlist)

	Store list of window names (WLIST) into WM_COLORMAPWINDOWS property
of this widget. This list contains windows whose colormaps differ from their
parents. Return current list of widgets if WLIST is empty.

	
colormodel(value=None)

	Useless. Not implemented in Tk.

	
columnconfigure(index, cnf={}, **kw)

	Configure column INDEX of a grid.

Valid resources are minsize (minimum size of the column),
weight (how much does additional space propagate to this column)
and pad (how much space to let additionally).

	
command(value=None)

	Store VALUE in WM_COMMAND property. It is the command
which shall be used to invoke the application. Return current
command if VALUE is None.

	
config(cnf=None, **kw)

	Configure resources of a widget.

The values for resources are specified as keyword
arguments. To get an overview about
the allowed keyword arguments call the method keys.

	
configure(cnf=None, **kw)

	Configure resources of a widget.

The values for resources are specified as keyword
arguments. To get an overview about
the allowed keyword arguments call the method keys.

	
deiconify()

	Deiconify this widget. If it was never mapped it will not be mapped.
On Windows it will raise this widget and give it the focus.

	
deletecommand(name)

	Internal function.

Delete the Tcl command provided in NAME.

	
destroy()

	Destroy this and all descendants widgets.

	
event_add(virtual, *sequences)

	Bind a virtual event VIRTUAL (of the form <<Name>>)
to an event SEQUENCE such that the virtual event is triggered
whenever SEQUENCE occurs.

	
event_delete(virtual, *sequences)

	Unbind a virtual event VIRTUAL from SEQUENCE.

	
event_generate(sequence, **kw)

	Generate an event SEQUENCE. Additional
keyword arguments specify parameter of the event
(e.g. x, y, rootx, rooty).

	
event_info(virtual=None)

	Return a list of all virtual events or the information
about the SEQUENCE bound to the virtual event VIRTUAL.

	
focus()

	Direct input focus to this widget.

If the application currently does not have the focus
this widget will get the focus if the application gets
the focus through the window manager.

	
focus_displayof()

	Return the widget which has currently the focus on the
display where this widget is located.

Return None if the application does not have the focus.

	
focus_force()

	Direct input focus to this widget even if the
application does not have the focus. Use with
caution!

	
focus_get()

	Return the widget which has currently the focus in the
application.

Use focus_displayof to allow working with several
displays. Return None if application does not have
the focus.

	
focus_lastfor()

	Return the widget which would have the focus if top level
for this widget gets the focus from the window manager.

	
focus_set()

	Direct input focus to this widget.

If the application currently does not have the focus
this widget will get the focus if the application gets
the focus through the window manager.

	
focusmodel(model=None)

	Set focus model to MODEL. “active” means that this widget will claim
the focus itself, “passive” means that the window manager shall give
the focus. Return current focus model if MODEL is None.

	
frame()

	Return identifier for decorative frame of this widget if present.

	
geometry(newGeometry=None)

	Set geometry to NEWGEOMETRY of the form =widthxheight+x+y. Return
current value if None is given.

	
getboolean(s)

	Return a boolean value for Tcl boolean values true and false given as parameter.

	
getdouble

	alias of __builtin__.float

	
getint

	alias of __builtin__.int

	
getvar(name='PY_VAR')

	Return value of Tcl variable NAME.

	
grab_current()

	Return widget which has currently the grab in this application
or None.

	
grab_release()

	Release grab for this widget if currently set.

	
grab_set(timeout=30)

	

	
grab_set_global()

	Set global grab for this widget.

A global grab directs all events to this and
descendant widgets on the display. Use with caution -
other applications do not get events anymore.

	
grab_status()

	Return None, “local” or “global” if this widget has
no, a local or a global grab.

	
grid(baseWidth=None, baseHeight=None, widthInc=None, heightInc=None)

	Instruct the window manager that this widget shall only be
resized on grid boundaries. WIDTHINC and HEIGHTINC are the width and
height of a grid unit in pixels. BASEWIDTH and BASEHEIGHT are the
number of grid units requested in Tk_GeometryRequest.

	
grid_bbox(column=None, row=None, col2=None, row2=None)

	Return a tuple of integer coordinates for the bounding
box of this widget controlled by the geometry manager grid.

If COLUMN, ROW is given the bounding box applies from
the cell with row and column 0 to the specified
cell. If COL2 and ROW2 are given the bounding box
starts at that cell.

The returned integers specify the offset of the upper left
corner in the master widget and the width and height.

	
grid_columnconfigure(index, cnf={}, **kw)

	Configure column INDEX of a grid.

Valid resources are minsize (minimum size of the column),
weight (how much does additional space propagate to this column)
and pad (how much space to let additionally).

	
grid_location(x, y)

	Return a tuple of column and row which identify the cell
at which the pixel at position X and Y inside the master
widget is located.

	
grid_propagate(flag=['_noarg_'])

	Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information
of the slaves will determine the size of this widget. If no argument
is given, the current setting will be returned.

	
grid_rowconfigure(index, cnf={}, **kw)

	Configure row INDEX of a grid.

Valid resources are minsize (minimum size of the row),
weight (how much does additional space propagate to this row)
and pad (how much space to let additionally).

	
grid_size()

	Return a tuple of the number of column and rows in the grid.

	
grid_slaves(row=None, column=None)

	Return a list of all slaves of this widget
in its packing order.

	
group(pathName=None)

	Set the group leader widgets for related widgets to PATHNAME. Return
the group leader of this widget if None is given.

	
iconbitmap(bitmap=None, default=None)

	Set bitmap for the iconified widget to BITMAP. Return
the bitmap if None is given.

Under Windows, the DEFAULT parameter can be used to set the icon
for the widget and any descendents that don’t have an icon set
explicitly. DEFAULT can be the relative path to a .ico file
(example: root.iconbitmap(default=’myicon.ico’)). See Tk
documentation for more information.

	
iconify()

	Display widget as icon.

	
iconmask(bitmap=None)

	Set mask for the icon bitmap of this widget. Return the
mask if None is given.

	
iconname(newName=None)

	Set the name of the icon for this widget. Return the name if
None is given.

	
iconposition(x=None, y=None)

	Set the position of the icon of this widget to X and Y. Return
a tuple of the current values of X and X if None is given.

	
iconwindow(pathName=None)

	Set widget PATHNAME to be displayed instead of icon. Return the current
value if None is given.

	
image_names()

	Return a list of all existing image names.

	
image_types()

	Return a list of all available image types (e.g. photo bitmap).

	
keys()

	Return a list of all resource names of this widget.

	
lift(aboveThis=None)

	Raise this widget in the stacking order.

	
lower(belowThis=None)

	Lower this widget in the stacking order.

	
mainloop(n=0)

	Call the mainloop of Tk.

	
maxsize(width=None, height=None)

	Set max WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
minsize(width=None, height=None)

	Set min WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
nametowidget(name)

	Return the Tkinter instance of a widget identified by
its Tcl name NAME.

	
option_add(pattern, value, priority=None)

	Set a VALUE (second parameter) for an option
PATTERN (first parameter).

An optional third parameter gives the numeric priority
(defaults to 80).

	
option_clear()

	Clear the option database.

It will be reloaded if option_add is called.

	
option_get(name, className)

	Return the value for an option NAME for this widget
with CLASSNAME.

Values with higher priority override lower values.

	
option_readfile(fileName, priority=None)

	Read file FILENAME into the option database.

An optional second parameter gives the numeric
priority.

	
overrideredirect(boolean=None)

	Instruct the window manager to ignore this widget
if BOOLEAN is given with 1. Return the current value if None
is given.

	
pack_propagate(flag=['_noarg_'])

	Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information
of the slaves will determine the size of this widget. If no argument
is given the current setting will be returned.

	
pack_slaves()

	Return a list of all slaves of this widget
in its packing order.

	
place_slaves()

	Return a list of all slaves of this widget
in its packing order.

	
positionfrom(who=None)

	Instruct the window manager that the position of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
propagate(flag=['_noarg_'])

	Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information
of the slaves will determine the size of this widget. If no argument
is given the current setting will be returned.

	
protocol(name=None, func=None)

	Bind function FUNC to command NAME for this widget.
Return the function bound to NAME if None is given. NAME could be
e.g. “WM_SAVE_YOURSELF” or “WM_DELETE_WINDOW”.

	
quit()

	Quit the Tcl interpreter. All widgets will be destroyed.

	
register(func, subst=None, needcleanup=1)

	Return a newly created Tcl function. If this
function is called, the Python function FUNC will
be executed. An optional function SUBST can
be given which will be executed before FUNC.

	
resizable(width=None, height=None)

	Instruct the window manager whether this width can be resized
in WIDTH or HEIGHT. Both values are boolean values.

	
rowconfigure(index, cnf={}, **kw)

	Configure row INDEX of a grid.

Valid resources are minsize (minimum size of the row),
weight (how much does additional space propagate to this row)
and pad (how much space to let additionally).

	
selection_clear(**kw)

	Clear the current X selection.

	
selection_get(**kw)

	Return the contents of the current X selection.

A keyword parameter selection specifies the name of
the selection and defaults to PRIMARY. A keyword
parameter displayof specifies a widget on the display
to use. A keyword parameter type specifies the form of data to be
fetched, defaulting to STRING except on X11, where UTF8_STRING is tried
before STRING.

	
selection_handle(command, **kw)

	Specify a function COMMAND to call if the X
selection owned by this widget is queried by another
application.

This function must return the contents of the
selection. The function will be called with the
arguments OFFSET and LENGTH which allows the chunking
of very long selections. The following keyword
parameters can be provided:
selection - name of the selection (default PRIMARY),
type - type of the selection (e.g. STRING, FILE_NAME).

	
selection_own(**kw)

	Become owner of X selection.

A keyword parameter selection specifies the name of
the selection (default PRIMARY).

	
selection_own_get(**kw)

	Return owner of X selection.

The following keyword parameter can
be provided:
selection - name of the selection (default PRIMARY),
type - type of the selection (e.g. STRING, FILE_NAME).

	
send(interp, cmd, *args)

	Send Tcl command CMD to different interpreter INTERP to be executed.

	
setvar(name='PY_VAR', value='1')

	Set Tcl variable NAME to VALUE.

	
show()

	

	
size()

	Return a tuple of the number of column and rows in the grid.

	
sizefrom(who=None)

	Instruct the window manager that the size of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
slaves()

	Return a list of all slaves of this widget
in its packing order.

	
state(newstate=None)

	Query or set the state of this widget as one of normal, icon,
iconic (see wm_iconwindow), withdrawn, or zoomed (Windows only).

	
title(string=None)

	Set the title of this widget.

	
tk_bisque()

	Change the color scheme to light brown as used in Tk 3.6 and before.

	
tk_focusFollowsMouse()

	The widget under mouse will get automatically focus. Can not
be disabled easily.

	
tk_focusNext()

	Return the next widget in the focus order which follows
widget which has currently the focus.

The focus order first goes to the next child, then to
the children of the child recursively and then to the
next sibling which is higher in the stacking order. A
widget is omitted if it has the takefocus resource set
to 0.

	
tk_focusPrev()

	Return previous widget in the focus order. See tk_focusNext for details.

	
tk_menuBar(*args)

	Do not use. Needed in Tk 3.6 and earlier.

	
tk_setPalette(*args, **kw)

	Set a new color scheme for all widget elements.

A single color as argument will cause that all colors of Tk
widget elements are derived from this.
Alternatively several keyword parameters and its associated
colors can be given. The following keywords are valid:
activeBackground, foreground, selectColor,
activeForeground, highlightBackground, selectBackground,
background, highlightColor, selectForeground,
disabledForeground, insertBackground, troughColor.

	
tk_strictMotif(boolean=None)

	Set Tcl internal variable, whether the look and feel
should adhere to Motif.

A parameter of 1 means adhere to Motif (e.g. no color
change if mouse passes over slider).
Returns the set value.

	
tkraise(aboveThis=None)

	Raise this widget in the stacking order.

	
transient(master=None)

	Instruct the window manager that this widget is transient
with regard to widget MASTER.

	
unbind(sequence, funcid=None)

	Unbind for this widget for event SEQUENCE the
function identified with FUNCID.

	
unbind_all(sequence)

	Unbind for all widgets for event SEQUENCE all functions.

	
unbind_class(className, sequence)

	Unbind for all widgets with bindtag CLASSNAME for event SEQUENCE
all functions.

	
update()

	Enter event loop until all pending events have been processed by Tcl.

	
update_idletasks()

	Enter event loop until all idle callbacks have been called. This
will update the display of windows but not process events caused by
the user.

	
wait_variable(name='PY_VAR')

	Wait until the variable is modified.

A parameter of type IntVar, StringVar, DoubleVar or
BooleanVar must be given.

	
wait_visibility(window=None)

	Wait until the visibility of a WIDGET changes
(e.g. it appears).

If no parameter is given self is used.

	
wait_window(window=None)

	Wait until a WIDGET is destroyed.

If no parameter is given self is used.

	
waitvar(name='PY_VAR')

	Wait until the variable is modified.

A parameter of type IntVar, StringVar, DoubleVar or
BooleanVar must be given.

	
winfo_atom(name, displayof=0)

	Return integer which represents atom NAME.

	
winfo_atomname(id, displayof=0)

	Return name of atom with identifier ID.

	
winfo_cells()

	Return number of cells in the colormap for this widget.

	
winfo_children()

	Return a list of all widgets which are children of this widget.

	
winfo_class()

	Return window class name of this widget.

	
winfo_colormapfull()

	Return true if at the last color request the colormap was full.

	
winfo_containing(rootX, rootY, displayof=0)

	Return the widget which is at the root coordinates ROOTX, ROOTY.

	
winfo_depth()

	Return the number of bits per pixel.

	
winfo_exists()

	Return true if this widget exists.

	
winfo_fpixels(number)

	Return the number of pixels for the given distance NUMBER
(e.g. “3c”) as float.

	
winfo_geometry()

	Return geometry string for this widget in the form “widthxheight+X+Y”.

	
winfo_height()

	Return height of this widget.

	
winfo_id()

	Return identifier ID for this widget.

	
winfo_interps(displayof=0)

	Return the name of all Tcl interpreters for this display.

	
winfo_ismapped()

	Return true if this widget is mapped.

	
winfo_manager()

	Return the window manager name for this widget.

	
winfo_name()

	Return the name of this widget.

	
winfo_parent()

	Return the name of the parent of this widget.

	
winfo_pathname(id, displayof=0)

	Return the pathname of the widget given by ID.

	
winfo_pixels(number)

	Rounded integer value of winfo_fpixels.

	
winfo_pointerx()

	Return the x coordinate of the pointer on the root window.

	
winfo_pointerxy()

	Return a tuple of x and y coordinates of the pointer on the root window.

	
winfo_pointery()

	Return the y coordinate of the pointer on the root window.

	
winfo_reqheight()

	Return requested height of this widget.

	
winfo_reqwidth()

	Return requested width of this widget.

	
winfo_rgb(color)

	Return tuple of decimal values for red, green, blue for
COLOR in this widget.

	
winfo_rootx()

	Return x coordinate of upper left corner of this widget on the
root window.

	
winfo_rooty()

	Return y coordinate of upper left corner of this widget on the
root window.

	
winfo_screen()

	Return the screen name of this widget.

	
winfo_screencells()

	Return the number of the cells in the colormap of the screen
of this widget.

	
winfo_screendepth()

	Return the number of bits per pixel of the root window of the
screen of this widget.

	
winfo_screenheight()

	Return the number of pixels of the height of the screen of this widget
in pixel.

	
winfo_screenmmheight()

	Return the number of pixels of the height of the screen of
this widget in mm.

	
winfo_screenmmwidth()

	Return the number of pixels of the width of the screen of
this widget in mm.

	
winfo_screenvisual()

	Return one of the strings directcolor, grayscale, pseudocolor,
staticcolor, staticgray, or truecolor for the default
colormodel of this screen.

	
winfo_screenwidth()

	Return the number of pixels of the width of the screen of
this widget in pixel.

	
winfo_server()

	Return information of the X-Server of the screen of this widget in
the form “XmajorRminor vendor vendorVersion”.

	
winfo_toplevel()

	Return the toplevel widget of this widget.

	
winfo_viewable()

	Return true if the widget and all its higher ancestors are mapped.

	
winfo_visual()

	Return one of the strings directcolor, grayscale, pseudocolor,
staticcolor, staticgray, or truecolor for the
colormodel of this widget.

	
winfo_visualid()

	Return the X identifier for the visual for this widget.

	
winfo_visualsavailable(includeids=0)

	Return a list of all visuals available for the screen
of this widget.

Each item in the list consists of a visual name (see winfo_visual), a
depth and if INCLUDEIDS=1 is given also the X identifier.

	
winfo_vrootheight()

	Return the height of the virtual root window associated with this
widget in pixels. If there is no virtual root window return the
height of the screen.

	
winfo_vrootwidth()

	Return the width of the virtual root window associated with this
widget in pixel. If there is no virtual root window return the
width of the screen.

	
winfo_vrootx()

	Return the x offset of the virtual root relative to the root
window of the screen of this widget.

	
winfo_vrooty()

	Return the y offset of the virtual root relative to the root
window of the screen of this widget.

	
winfo_width()

	Return the width of this widget.

	
winfo_x()

	Return the x coordinate of the upper left corner of this widget
in the parent.

	
winfo_y()

	Return the y coordinate of the upper left corner of this widget
in the parent.

	
withdraw()

	Withdraw this widget from the screen such that it is unmapped
and forgotten by the window manager. Re-draw it with wm_deiconify.

	
wm_aspect(minNumer=None, minDenom=None, maxNumer=None, maxDenom=None)

	Instruct the window manager to set the aspect ratio (width/height)
of this widget to be between MINNUMER/MINDENOM and MAXNUMER/MAXDENOM. Return a tuple
of the actual values if no argument is given.

	
wm_attributes(*args)

	This subcommand returns or sets platform specific attributes

The first form returns a list of the platform specific flags and
their values. The second form returns the value for the specific
option. The third form sets one or more of the values. The values
are as follows:

On Windows, -disabled gets or sets whether the window is in a
disabled state. -toolwindow gets or sets the style of the window
to toolwindow (as defined in the MSDN). -topmost gets or sets
whether this is a topmost window (displays above all other
windows).

On Macintosh, XXXXX

On Unix, there are currently no special attribute values.

	
wm_client(name=None)

	Store NAME in WM_CLIENT_MACHINE property of this widget. Return
current value.

	
wm_colormapwindows(*wlist)

	Store list of window names (WLIST) into WM_COLORMAPWINDOWS property
of this widget. This list contains windows whose colormaps differ from their
parents. Return current list of widgets if WLIST is empty.

	
wm_command(value=None)

	Store VALUE in WM_COMMAND property. It is the command
which shall be used to invoke the application. Return current
command if VALUE is None.

	
wm_deiconify()

	Deiconify this widget. If it was never mapped it will not be mapped.
On Windows it will raise this widget and give it the focus.

	
wm_focusmodel(model=None)

	Set focus model to MODEL. “active” means that this widget will claim
the focus itself, “passive” means that the window manager shall give
the focus. Return current focus model if MODEL is None.

	
wm_frame()

	Return identifier for decorative frame of this widget if present.

	
wm_geometry(newGeometry=None)

	Set geometry to NEWGEOMETRY of the form =widthxheight+x+y. Return
current value if None is given.

	
wm_grid(baseWidth=None, baseHeight=None, widthInc=None, heightInc=None)

	Instruct the window manager that this widget shall only be
resized on grid boundaries. WIDTHINC and HEIGHTINC are the width and
height of a grid unit in pixels. BASEWIDTH and BASEHEIGHT are the
number of grid units requested in Tk_GeometryRequest.

	
wm_group(pathName=None)

	Set the group leader widgets for related widgets to PATHNAME. Return
the group leader of this widget if None is given.

	
wm_iconbitmap(bitmap=None, default=None)

	Set bitmap for the iconified widget to BITMAP. Return
the bitmap if None is given.

Under Windows, the DEFAULT parameter can be used to set the icon
for the widget and any descendents that don’t have an icon set
explicitly. DEFAULT can be the relative path to a .ico file
(example: root.iconbitmap(default=’myicon.ico’)). See Tk
documentation for more information.

	
wm_iconify()

	Display widget as icon.

	
wm_iconmask(bitmap=None)

	Set mask for the icon bitmap of this widget. Return the
mask if None is given.

	
wm_iconname(newName=None)

	Set the name of the icon for this widget. Return the name if
None is given.

	
wm_iconposition(x=None, y=None)

	Set the position of the icon of this widget to X and Y. Return
a tuple of the current values of X and X if None is given.

	
wm_iconwindow(pathName=None)

	Set widget PATHNAME to be displayed instead of icon. Return the current
value if None is given.

	
wm_maxsize(width=None, height=None)

	Set max WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
wm_minsize(width=None, height=None)

	Set min WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
wm_overrideredirect(boolean=None)

	Instruct the window manager to ignore this widget
if BOOLEAN is given with 1. Return the current value if None
is given.

	
wm_positionfrom(who=None)

	Instruct the window manager that the position of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
wm_protocol(name=None, func=None)

	Bind function FUNC to command NAME for this widget.
Return the function bound to NAME if None is given. NAME could be
e.g. “WM_SAVE_YOURSELF” or “WM_DELETE_WINDOW”.

	
wm_resizable(width=None, height=None)

	Instruct the window manager whether this width can be resized
in WIDTH or HEIGHT. Both values are boolean values.

	
wm_sizefrom(who=None)

	Instruct the window manager that the size of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
wm_state(newstate=None)

	Query or set the state of this widget as one of normal, icon,
iconic (see wm_iconwindow), withdrawn, or zoomed (Windows only).

	
wm_title(string=None)

	Set the title of this widget.

	
wm_transient(master=None)

	Instruct the window manager that this widget is transient
with regard to widget MASTER.

	
wm_withdraw()

	Withdraw this widget from the screen such that it is unmapped
and forgotten by the window manager. Re-draw it with wm_deiconify.

	
class robot.libraries.dialogs_py.MultipleSelectionDialog(message, values)

	Bases: robot.libraries.dialogs_py._TkDialog

	
after(ms, func=None, *args)

	Call function once after given time.

MS specifies the time in milliseconds. FUNC gives the
function which shall be called. Additional parameters
are given as parameters to the function call. Return
identifier to cancel scheduling with after_cancel.

	
after_cancel(id)

	Cancel scheduling of function identified with ID.

Identifier returned by after or after_idle must be
given as first parameter.

	
after_idle(func, *args)

	Call FUNC once if the Tcl main loop has no event to
process.

Return an identifier to cancel the scheduling with
after_cancel.

	
aspect(minNumer=None, minDenom=None, maxNumer=None, maxDenom=None)

	Instruct the window manager to set the aspect ratio (width/height)
of this widget to be between MINNUMER/MINDENOM and MAXNUMER/MAXDENOM. Return a tuple
of the actual values if no argument is given.

	
attributes(*args)

	This subcommand returns or sets platform specific attributes

The first form returns a list of the platform specific flags and
their values. The second form returns the value for the specific
option. The third form sets one or more of the values. The values
are as follows:

On Windows, -disabled gets or sets whether the window is in a
disabled state. -toolwindow gets or sets the style of the window
to toolwindow (as defined in the MSDN). -topmost gets or sets
whether this is a topmost window (displays above all other
windows).

On Macintosh, XXXXX

On Unix, there are currently no special attribute values.

	
bbox(column=None, row=None, col2=None, row2=None)

	Return a tuple of integer coordinates for the bounding
box of this widget controlled by the geometry manager grid.

If COLUMN, ROW is given the bounding box applies from
the cell with row and column 0 to the specified
cell. If COL2 and ROW2 are given the bounding box
starts at that cell.

The returned integers specify the offset of the upper left
corner in the master widget and the width and height.

	
bell(displayof=0)

	Ring a display’s bell.

	
bind(sequence=None, func=None, add=None)

	Bind to this widget at event SEQUENCE a call to function FUNC.

SEQUENCE is a string of concatenated event
patterns. An event pattern is of the form
<MODIFIER-MODIFIER-TYPE-DETAIL> where MODIFIER is one
of Control, Mod2, M2, Shift, Mod3, M3, Lock, Mod4, M4,
Button1, B1, Mod5, M5 Button2, B2, Meta, M, Button3,
B3, Alt, Button4, B4, Double, Button5, B5 Triple,
Mod1, M1. TYPE is one of Activate, Enter, Map,
ButtonPress, Button, Expose, Motion, ButtonRelease
FocusIn, MouseWheel, Circulate, FocusOut, Property,
Colormap, Gravity Reparent, Configure, KeyPress, Key,
Unmap, Deactivate, KeyRelease Visibility, Destroy,
Leave and DETAIL is the button number for ButtonPress,
ButtonRelease and DETAIL is the Keysym for KeyPress and
KeyRelease. Examples are
<Control-Button-1> for pressing Control and mouse button 1 or
<Alt-A> for pressing A and the Alt key (KeyPress can be omitted).
An event pattern can also be a virtual event of the form
<<AString>> where AString can be arbitrary. This
event can be generated by event_generate.
If events are concatenated they must appear shortly
after each other.

FUNC will be called if the event sequence occurs with an
instance of Event as argument. If the return value of FUNC is
“break” no further bound function is invoked.

An additional boolean parameter ADD specifies whether FUNC will
be called additionally to the other bound function or whether
it will replace the previous function.

Bind will return an identifier to allow deletion of the bound function with
unbind without memory leak.

If FUNC or SEQUENCE is omitted the bound function or list
of bound events are returned.

	
bind_all(sequence=None, func=None, add=None)

	Bind to all widgets at an event SEQUENCE a call to function FUNC.
An additional boolean parameter ADD specifies whether FUNC will
be called additionally to the other bound function or whether
it will replace the previous function. See bind for the return value.

	
bind_class(className, sequence=None, func=None, add=None)

	Bind to widgets with bindtag CLASSNAME at event
SEQUENCE a call of function FUNC. An additional
boolean parameter ADD specifies whether FUNC will be
called additionally to the other bound function or
whether it will replace the previous function. See bind for
the return value.

	
bindtags(tagList=None)

	Set or get the list of bindtags for this widget.

With no argument return the list of all bindtags associated with
this widget. With a list of strings as argument the bindtags are
set to this list. The bindtags determine in which order events are
processed (see bind).

	
cget(key)

	Return the resource value for a KEY given as string.

	
client(name=None)

	Store NAME in WM_CLIENT_MACHINE property of this widget. Return
current value.

	
clipboard_append(string, **kw)

	Append STRING to the Tk clipboard.

A widget specified at the optional displayof keyword
argument specifies the target display. The clipboard
can be retrieved with selection_get.

	
clipboard_clear(**kw)

	Clear the data in the Tk clipboard.

A widget specified for the optional displayof keyword
argument specifies the target display.

	
clipboard_get(**kw)

	Retrieve data from the clipboard on window’s display.

The window keyword defaults to the root window of the Tkinter
application.

The type keyword specifies the form in which the data is
to be returned and should be an atom name such as STRING
or FILE_NAME. Type defaults to STRING, except on X11, where the default
is to try UTF8_STRING and fall back to STRING.

This command is equivalent to:

selection_get(CLIPBOARD)

	
colormapwindows(*wlist)

	Store list of window names (WLIST) into WM_COLORMAPWINDOWS property
of this widget. This list contains windows whose colormaps differ from their
parents. Return current list of widgets if WLIST is empty.

	
colormodel(value=None)

	Useless. Not implemented in Tk.

	
columnconfigure(index, cnf={}, **kw)

	Configure column INDEX of a grid.

Valid resources are minsize (minimum size of the column),
weight (how much does additional space propagate to this column)
and pad (how much space to let additionally).

	
command(value=None)

	Store VALUE in WM_COMMAND property. It is the command
which shall be used to invoke the application. Return current
command if VALUE is None.

	
config(cnf=None, **kw)

	Configure resources of a widget.

The values for resources are specified as keyword
arguments. To get an overview about
the allowed keyword arguments call the method keys.

	
configure(cnf=None, **kw)

	Configure resources of a widget.

The values for resources are specified as keyword
arguments. To get an overview about
the allowed keyword arguments call the method keys.

	
deiconify()

	Deiconify this widget. If it was never mapped it will not be mapped.
On Windows it will raise this widget and give it the focus.

	
deletecommand(name)

	Internal function.

Delete the Tcl command provided in NAME.

	
destroy()

	Destroy this and all descendants widgets.

	
event_add(virtual, *sequences)

	Bind a virtual event VIRTUAL (of the form <<Name>>)
to an event SEQUENCE such that the virtual event is triggered
whenever SEQUENCE occurs.

	
event_delete(virtual, *sequences)

	Unbind a virtual event VIRTUAL from SEQUENCE.

	
event_generate(sequence, **kw)

	Generate an event SEQUENCE. Additional
keyword arguments specify parameter of the event
(e.g. x, y, rootx, rooty).

	
event_info(virtual=None)

	Return a list of all virtual events or the information
about the SEQUENCE bound to the virtual event VIRTUAL.

	
focus()

	Direct input focus to this widget.

If the application currently does not have the focus
this widget will get the focus if the application gets
the focus through the window manager.

	
focus_displayof()

	Return the widget which has currently the focus on the
display where this widget is located.

Return None if the application does not have the focus.

	
focus_force()

	Direct input focus to this widget even if the
application does not have the focus. Use with
caution!

	
focus_get()

	Return the widget which has currently the focus in the
application.

Use focus_displayof to allow working with several
displays. Return None if application does not have
the focus.

	
focus_lastfor()

	Return the widget which would have the focus if top level
for this widget gets the focus from the window manager.

	
focus_set()

	Direct input focus to this widget.

If the application currently does not have the focus
this widget will get the focus if the application gets
the focus through the window manager.

	
focusmodel(model=None)

	Set focus model to MODEL. “active” means that this widget will claim
the focus itself, “passive” means that the window manager shall give
the focus. Return current focus model if MODEL is None.

	
frame()

	Return identifier for decorative frame of this widget if present.

	
geometry(newGeometry=None)

	Set geometry to NEWGEOMETRY of the form =widthxheight+x+y. Return
current value if None is given.

	
getboolean(s)

	Return a boolean value for Tcl boolean values true and false given as parameter.

	
getdouble

	alias of __builtin__.float

	
getint

	alias of __builtin__.int

	
getvar(name='PY_VAR')

	Return value of Tcl variable NAME.

	
grab_current()

	Return widget which has currently the grab in this application
or None.

	
grab_release()

	Release grab for this widget if currently set.

	
grab_set(timeout=30)

	

	
grab_set_global()

	Set global grab for this widget.

A global grab directs all events to this and
descendant widgets on the display. Use with caution -
other applications do not get events anymore.

	
grab_status()

	Return None, “local” or “global” if this widget has
no, a local or a global grab.

	
grid(baseWidth=None, baseHeight=None, widthInc=None, heightInc=None)

	Instruct the window manager that this widget shall only be
resized on grid boundaries. WIDTHINC and HEIGHTINC are the width and
height of a grid unit in pixels. BASEWIDTH and BASEHEIGHT are the
number of grid units requested in Tk_GeometryRequest.

	
grid_bbox(column=None, row=None, col2=None, row2=None)

	Return a tuple of integer coordinates for the bounding
box of this widget controlled by the geometry manager grid.

If COLUMN, ROW is given the bounding box applies from
the cell with row and column 0 to the specified
cell. If COL2 and ROW2 are given the bounding box
starts at that cell.

The returned integers specify the offset of the upper left
corner in the master widget and the width and height.

	
grid_columnconfigure(index, cnf={}, **kw)

	Configure column INDEX of a grid.

Valid resources are minsize (minimum size of the column),
weight (how much does additional space propagate to this column)
and pad (how much space to let additionally).

	
grid_location(x, y)

	Return a tuple of column and row which identify the cell
at which the pixel at position X and Y inside the master
widget is located.

	
grid_propagate(flag=['_noarg_'])

	Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information
of the slaves will determine the size of this widget. If no argument
is given, the current setting will be returned.

	
grid_rowconfigure(index, cnf={}, **kw)

	Configure row INDEX of a grid.

Valid resources are minsize (minimum size of the row),
weight (how much does additional space propagate to this row)
and pad (how much space to let additionally).

	
grid_size()

	Return a tuple of the number of column and rows in the grid.

	
grid_slaves(row=None, column=None)

	Return a list of all slaves of this widget
in its packing order.

	
group(pathName=None)

	Set the group leader widgets for related widgets to PATHNAME. Return
the group leader of this widget if None is given.

	
iconbitmap(bitmap=None, default=None)

	Set bitmap for the iconified widget to BITMAP. Return
the bitmap if None is given.

Under Windows, the DEFAULT parameter can be used to set the icon
for the widget and any descendents that don’t have an icon set
explicitly. DEFAULT can be the relative path to a .ico file
(example: root.iconbitmap(default=’myicon.ico’)). See Tk
documentation for more information.

	
iconify()

	Display widget as icon.

	
iconmask(bitmap=None)

	Set mask for the icon bitmap of this widget. Return the
mask if None is given.

	
iconname(newName=None)

	Set the name of the icon for this widget. Return the name if
None is given.

	
iconposition(x=None, y=None)

	Set the position of the icon of this widget to X and Y. Return
a tuple of the current values of X and X if None is given.

	
iconwindow(pathName=None)

	Set widget PATHNAME to be displayed instead of icon. Return the current
value if None is given.

	
image_names()

	Return a list of all existing image names.

	
image_types()

	Return a list of all available image types (e.g. photo bitmap).

	
keys()

	Return a list of all resource names of this widget.

	
lift(aboveThis=None)

	Raise this widget in the stacking order.

	
lower(belowThis=None)

	Lower this widget in the stacking order.

	
mainloop(n=0)

	Call the mainloop of Tk.

	
maxsize(width=None, height=None)

	Set max WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
minsize(width=None, height=None)

	Set min WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
nametowidget(name)

	Return the Tkinter instance of a widget identified by
its Tcl name NAME.

	
option_add(pattern, value, priority=None)

	Set a VALUE (second parameter) for an option
PATTERN (first parameter).

An optional third parameter gives the numeric priority
(defaults to 80).

	
option_clear()

	Clear the option database.

It will be reloaded if option_add is called.

	
option_get(name, className)

	Return the value for an option NAME for this widget
with CLASSNAME.

Values with higher priority override lower values.

	
option_readfile(fileName, priority=None)

	Read file FILENAME into the option database.

An optional second parameter gives the numeric
priority.

	
overrideredirect(boolean=None)

	Instruct the window manager to ignore this widget
if BOOLEAN is given with 1. Return the current value if None
is given.

	
pack_propagate(flag=['_noarg_'])

	Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information
of the slaves will determine the size of this widget. If no argument
is given the current setting will be returned.

	
pack_slaves()

	Return a list of all slaves of this widget
in its packing order.

	
place_slaves()

	Return a list of all slaves of this widget
in its packing order.

	
positionfrom(who=None)

	Instruct the window manager that the position of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
propagate(flag=['_noarg_'])

	Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information
of the slaves will determine the size of this widget. If no argument
is given the current setting will be returned.

	
protocol(name=None, func=None)

	Bind function FUNC to command NAME for this widget.
Return the function bound to NAME if None is given. NAME could be
e.g. “WM_SAVE_YOURSELF” or “WM_DELETE_WINDOW”.

	
quit()

	Quit the Tcl interpreter. All widgets will be destroyed.

	
register(func, subst=None, needcleanup=1)

	Return a newly created Tcl function. If this
function is called, the Python function FUNC will
be executed. An optional function SUBST can
be given which will be executed before FUNC.

	
resizable(width=None, height=None)

	Instruct the window manager whether this width can be resized
in WIDTH or HEIGHT. Both values are boolean values.

	
rowconfigure(index, cnf={}, **kw)

	Configure row INDEX of a grid.

Valid resources are minsize (minimum size of the row),
weight (how much does additional space propagate to this row)
and pad (how much space to let additionally).

	
selection_clear(**kw)

	Clear the current X selection.

	
selection_get(**kw)

	Return the contents of the current X selection.

A keyword parameter selection specifies the name of
the selection and defaults to PRIMARY. A keyword
parameter displayof specifies a widget on the display
to use. A keyword parameter type specifies the form of data to be
fetched, defaulting to STRING except on X11, where UTF8_STRING is tried
before STRING.

	
selection_handle(command, **kw)

	Specify a function COMMAND to call if the X
selection owned by this widget is queried by another
application.

This function must return the contents of the
selection. The function will be called with the
arguments OFFSET and LENGTH which allows the chunking
of very long selections. The following keyword
parameters can be provided:
selection - name of the selection (default PRIMARY),
type - type of the selection (e.g. STRING, FILE_NAME).

	
selection_own(**kw)

	Become owner of X selection.

A keyword parameter selection specifies the name of
the selection (default PRIMARY).

	
selection_own_get(**kw)

	Return owner of X selection.

The following keyword parameter can
be provided:
selection - name of the selection (default PRIMARY),
type - type of the selection (e.g. STRING, FILE_NAME).

	
send(interp, cmd, *args)

	Send Tcl command CMD to different interpreter INTERP to be executed.

	
setvar(name='PY_VAR', value='1')

	Set Tcl variable NAME to VALUE.

	
show()

	

	
size()

	Return a tuple of the number of column and rows in the grid.

	
sizefrom(who=None)

	Instruct the window manager that the size of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
slaves()

	Return a list of all slaves of this widget
in its packing order.

	
state(newstate=None)

	Query or set the state of this widget as one of normal, icon,
iconic (see wm_iconwindow), withdrawn, or zoomed (Windows only).

	
title(string=None)

	Set the title of this widget.

	
tk_bisque()

	Change the color scheme to light brown as used in Tk 3.6 and before.

	
tk_focusFollowsMouse()

	The widget under mouse will get automatically focus. Can not
be disabled easily.

	
tk_focusNext()

	Return the next widget in the focus order which follows
widget which has currently the focus.

The focus order first goes to the next child, then to
the children of the child recursively and then to the
next sibling which is higher in the stacking order. A
widget is omitted if it has the takefocus resource set
to 0.

	
tk_focusPrev()

	Return previous widget in the focus order. See tk_focusNext for details.

	
tk_menuBar(*args)

	Do not use. Needed in Tk 3.6 and earlier.

	
tk_setPalette(*args, **kw)

	Set a new color scheme for all widget elements.

A single color as argument will cause that all colors of Tk
widget elements are derived from this.
Alternatively several keyword parameters and its associated
colors can be given. The following keywords are valid:
activeBackground, foreground, selectColor,
activeForeground, highlightBackground, selectBackground,
background, highlightColor, selectForeground,
disabledForeground, insertBackground, troughColor.

	
tk_strictMotif(boolean=None)

	Set Tcl internal variable, whether the look and feel
should adhere to Motif.

A parameter of 1 means adhere to Motif (e.g. no color
change if mouse passes over slider).
Returns the set value.

	
tkraise(aboveThis=None)

	Raise this widget in the stacking order.

	
transient(master=None)

	Instruct the window manager that this widget is transient
with regard to widget MASTER.

	
unbind(sequence, funcid=None)

	Unbind for this widget for event SEQUENCE the
function identified with FUNCID.

	
unbind_all(sequence)

	Unbind for all widgets for event SEQUENCE all functions.

	
unbind_class(className, sequence)

	Unbind for all widgets with bindtag CLASSNAME for event SEQUENCE
all functions.

	
update()

	Enter event loop until all pending events have been processed by Tcl.

	
update_idletasks()

	Enter event loop until all idle callbacks have been called. This
will update the display of windows but not process events caused by
the user.

	
wait_variable(name='PY_VAR')

	Wait until the variable is modified.

A parameter of type IntVar, StringVar, DoubleVar or
BooleanVar must be given.

	
wait_visibility(window=None)

	Wait until the visibility of a WIDGET changes
(e.g. it appears).

If no parameter is given self is used.

	
wait_window(window=None)

	Wait until a WIDGET is destroyed.

If no parameter is given self is used.

	
waitvar(name='PY_VAR')

	Wait until the variable is modified.

A parameter of type IntVar, StringVar, DoubleVar or
BooleanVar must be given.

	
winfo_atom(name, displayof=0)

	Return integer which represents atom NAME.

	
winfo_atomname(id, displayof=0)

	Return name of atom with identifier ID.

	
winfo_cells()

	Return number of cells in the colormap for this widget.

	
winfo_children()

	Return a list of all widgets which are children of this widget.

	
winfo_class()

	Return window class name of this widget.

	
winfo_colormapfull()

	Return true if at the last color request the colormap was full.

	
winfo_containing(rootX, rootY, displayof=0)

	Return the widget which is at the root coordinates ROOTX, ROOTY.

	
winfo_depth()

	Return the number of bits per pixel.

	
winfo_exists()

	Return true if this widget exists.

	
winfo_fpixels(number)

	Return the number of pixels for the given distance NUMBER
(e.g. “3c”) as float.

	
winfo_geometry()

	Return geometry string for this widget in the form “widthxheight+X+Y”.

	
winfo_height()

	Return height of this widget.

	
winfo_id()

	Return identifier ID for this widget.

	
winfo_interps(displayof=0)

	Return the name of all Tcl interpreters for this display.

	
winfo_ismapped()

	Return true if this widget is mapped.

	
winfo_manager()

	Return the window manager name for this widget.

	
winfo_name()

	Return the name of this widget.

	
winfo_parent()

	Return the name of the parent of this widget.

	
winfo_pathname(id, displayof=0)

	Return the pathname of the widget given by ID.

	
winfo_pixels(number)

	Rounded integer value of winfo_fpixels.

	
winfo_pointerx()

	Return the x coordinate of the pointer on the root window.

	
winfo_pointerxy()

	Return a tuple of x and y coordinates of the pointer on the root window.

	
winfo_pointery()

	Return the y coordinate of the pointer on the root window.

	
winfo_reqheight()

	Return requested height of this widget.

	
winfo_reqwidth()

	Return requested width of this widget.

	
winfo_rgb(color)

	Return tuple of decimal values for red, green, blue for
COLOR in this widget.

	
winfo_rootx()

	Return x coordinate of upper left corner of this widget on the
root window.

	
winfo_rooty()

	Return y coordinate of upper left corner of this widget on the
root window.

	
winfo_screen()

	Return the screen name of this widget.

	
winfo_screencells()

	Return the number of the cells in the colormap of the screen
of this widget.

	
winfo_screendepth()

	Return the number of bits per pixel of the root window of the
screen of this widget.

	
winfo_screenheight()

	Return the number of pixels of the height of the screen of this widget
in pixel.

	
winfo_screenmmheight()

	Return the number of pixels of the height of the screen of
this widget in mm.

	
winfo_screenmmwidth()

	Return the number of pixels of the width of the screen of
this widget in mm.

	
winfo_screenvisual()

	Return one of the strings directcolor, grayscale, pseudocolor,
staticcolor, staticgray, or truecolor for the default
colormodel of this screen.

	
winfo_screenwidth()

	Return the number of pixels of the width of the screen of
this widget in pixel.

	
winfo_server()

	Return information of the X-Server of the screen of this widget in
the form “XmajorRminor vendor vendorVersion”.

	
winfo_toplevel()

	Return the toplevel widget of this widget.

	
winfo_viewable()

	Return true if the widget and all its higher ancestors are mapped.

	
winfo_visual()

	Return one of the strings directcolor, grayscale, pseudocolor,
staticcolor, staticgray, or truecolor for the
colormodel of this widget.

	
winfo_visualid()

	Return the X identifier for the visual for this widget.

	
winfo_visualsavailable(includeids=0)

	Return a list of all visuals available for the screen
of this widget.

Each item in the list consists of a visual name (see winfo_visual), a
depth and if INCLUDEIDS=1 is given also the X identifier.

	
winfo_vrootheight()

	Return the height of the virtual root window associated with this
widget in pixels. If there is no virtual root window return the
height of the screen.

	
winfo_vrootwidth()

	Return the width of the virtual root window associated with this
widget in pixel. If there is no virtual root window return the
width of the screen.

	
winfo_vrootx()

	Return the x offset of the virtual root relative to the root
window of the screen of this widget.

	
winfo_vrooty()

	Return the y offset of the virtual root relative to the root
window of the screen of this widget.

	
winfo_width()

	Return the width of this widget.

	
winfo_x()

	Return the x coordinate of the upper left corner of this widget
in the parent.

	
winfo_y()

	Return the y coordinate of the upper left corner of this widget
in the parent.

	
withdraw()

	Withdraw this widget from the screen such that it is unmapped
and forgotten by the window manager. Re-draw it with wm_deiconify.

	
wm_aspect(minNumer=None, minDenom=None, maxNumer=None, maxDenom=None)

	Instruct the window manager to set the aspect ratio (width/height)
of this widget to be between MINNUMER/MINDENOM and MAXNUMER/MAXDENOM. Return a tuple
of the actual values if no argument is given.

	
wm_attributes(*args)

	This subcommand returns or sets platform specific attributes

The first form returns a list of the platform specific flags and
their values. The second form returns the value for the specific
option. The third form sets one or more of the values. The values
are as follows:

On Windows, -disabled gets or sets whether the window is in a
disabled state. -toolwindow gets or sets the style of the window
to toolwindow (as defined in the MSDN). -topmost gets or sets
whether this is a topmost window (displays above all other
windows).

On Macintosh, XXXXX

On Unix, there are currently no special attribute values.

	
wm_client(name=None)

	Store NAME in WM_CLIENT_MACHINE property of this widget. Return
current value.

	
wm_colormapwindows(*wlist)

	Store list of window names (WLIST) into WM_COLORMAPWINDOWS property
of this widget. This list contains windows whose colormaps differ from their
parents. Return current list of widgets if WLIST is empty.

	
wm_command(value=None)

	Store VALUE in WM_COMMAND property. It is the command
which shall be used to invoke the application. Return current
command if VALUE is None.

	
wm_deiconify()

	Deiconify this widget. If it was never mapped it will not be mapped.
On Windows it will raise this widget and give it the focus.

	
wm_focusmodel(model=None)

	Set focus model to MODEL. “active” means that this widget will claim
the focus itself, “passive” means that the window manager shall give
the focus. Return current focus model if MODEL is None.

	
wm_frame()

	Return identifier for decorative frame of this widget if present.

	
wm_geometry(newGeometry=None)

	Set geometry to NEWGEOMETRY of the form =widthxheight+x+y. Return
current value if None is given.

	
wm_grid(baseWidth=None, baseHeight=None, widthInc=None, heightInc=None)

	Instruct the window manager that this widget shall only be
resized on grid boundaries. WIDTHINC and HEIGHTINC are the width and
height of a grid unit in pixels. BASEWIDTH and BASEHEIGHT are the
number of grid units requested in Tk_GeometryRequest.

	
wm_group(pathName=None)

	Set the group leader widgets for related widgets to PATHNAME. Return
the group leader of this widget if None is given.

	
wm_iconbitmap(bitmap=None, default=None)

	Set bitmap for the iconified widget to BITMAP. Return
the bitmap if None is given.

Under Windows, the DEFAULT parameter can be used to set the icon
for the widget and any descendents that don’t have an icon set
explicitly. DEFAULT can be the relative path to a .ico file
(example: root.iconbitmap(default=’myicon.ico’)). See Tk
documentation for more information.

	
wm_iconify()

	Display widget as icon.

	
wm_iconmask(bitmap=None)

	Set mask for the icon bitmap of this widget. Return the
mask if None is given.

	
wm_iconname(newName=None)

	Set the name of the icon for this widget. Return the name if
None is given.

	
wm_iconposition(x=None, y=None)

	Set the position of the icon of this widget to X and Y. Return
a tuple of the current values of X and X if None is given.

	
wm_iconwindow(pathName=None)

	Set widget PATHNAME to be displayed instead of icon. Return the current
value if None is given.

	
wm_maxsize(width=None, height=None)

	Set max WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
wm_minsize(width=None, height=None)

	Set min WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
wm_overrideredirect(boolean=None)

	Instruct the window manager to ignore this widget
if BOOLEAN is given with 1. Return the current value if None
is given.

	
wm_positionfrom(who=None)

	Instruct the window manager that the position of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
wm_protocol(name=None, func=None)

	Bind function FUNC to command NAME for this widget.
Return the function bound to NAME if None is given. NAME could be
e.g. “WM_SAVE_YOURSELF” or “WM_DELETE_WINDOW”.

	
wm_resizable(width=None, height=None)

	Instruct the window manager whether this width can be resized
in WIDTH or HEIGHT. Both values are boolean values.

	
wm_sizefrom(who=None)

	Instruct the window manager that the size of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
wm_state(newstate=None)

	Query or set the state of this widget as one of normal, icon,
iconic (see wm_iconwindow), withdrawn, or zoomed (Windows only).

	
wm_title(string=None)

	Set the title of this widget.

	
wm_transient(master=None)

	Instruct the window manager that this widget is transient
with regard to widget MASTER.

	
wm_withdraw()

	Withdraw this widget from the screen such that it is unmapped
and forgotten by the window manager. Re-draw it with wm_deiconify.

	
class robot.libraries.dialogs_py.PassFailDialog(message, value=None, **extra)

	Bases: robot.libraries.dialogs_py._TkDialog

	
after(ms, func=None, *args)

	Call function once after given time.

MS specifies the time in milliseconds. FUNC gives the
function which shall be called. Additional parameters
are given as parameters to the function call. Return
identifier to cancel scheduling with after_cancel.

	
after_cancel(id)

	Cancel scheduling of function identified with ID.

Identifier returned by after or after_idle must be
given as first parameter.

	
after_idle(func, *args)

	Call FUNC once if the Tcl main loop has no event to
process.

Return an identifier to cancel the scheduling with
after_cancel.

	
aspect(minNumer=None, minDenom=None, maxNumer=None, maxDenom=None)

	Instruct the window manager to set the aspect ratio (width/height)
of this widget to be between MINNUMER/MINDENOM and MAXNUMER/MAXDENOM. Return a tuple
of the actual values if no argument is given.

	
attributes(*args)

	This subcommand returns or sets platform specific attributes

The first form returns a list of the platform specific flags and
their values. The second form returns the value for the specific
option. The third form sets one or more of the values. The values
are as follows:

On Windows, -disabled gets or sets whether the window is in a
disabled state. -toolwindow gets or sets the style of the window
to toolwindow (as defined in the MSDN). -topmost gets or sets
whether this is a topmost window (displays above all other
windows).

On Macintosh, XXXXX

On Unix, there are currently no special attribute values.

	
bbox(column=None, row=None, col2=None, row2=None)

	Return a tuple of integer coordinates for the bounding
box of this widget controlled by the geometry manager grid.

If COLUMN, ROW is given the bounding box applies from
the cell with row and column 0 to the specified
cell. If COL2 and ROW2 are given the bounding box
starts at that cell.

The returned integers specify the offset of the upper left
corner in the master widget and the width and height.

	
bell(displayof=0)

	Ring a display’s bell.

	
bind(sequence=None, func=None, add=None)

	Bind to this widget at event SEQUENCE a call to function FUNC.

SEQUENCE is a string of concatenated event
patterns. An event pattern is of the form
<MODIFIER-MODIFIER-TYPE-DETAIL> where MODIFIER is one
of Control, Mod2, M2, Shift, Mod3, M3, Lock, Mod4, M4,
Button1, B1, Mod5, M5 Button2, B2, Meta, M, Button3,
B3, Alt, Button4, B4, Double, Button5, B5 Triple,
Mod1, M1. TYPE is one of Activate, Enter, Map,
ButtonPress, Button, Expose, Motion, ButtonRelease
FocusIn, MouseWheel, Circulate, FocusOut, Property,
Colormap, Gravity Reparent, Configure, KeyPress, Key,
Unmap, Deactivate, KeyRelease Visibility, Destroy,
Leave and DETAIL is the button number for ButtonPress,
ButtonRelease and DETAIL is the Keysym for KeyPress and
KeyRelease. Examples are
<Control-Button-1> for pressing Control and mouse button 1 or
<Alt-A> for pressing A and the Alt key (KeyPress can be omitted).
An event pattern can also be a virtual event of the form
<<AString>> where AString can be arbitrary. This
event can be generated by event_generate.
If events are concatenated they must appear shortly
after each other.

FUNC will be called if the event sequence occurs with an
instance of Event as argument. If the return value of FUNC is
“break” no further bound function is invoked.

An additional boolean parameter ADD specifies whether FUNC will
be called additionally to the other bound function or whether
it will replace the previous function.

Bind will return an identifier to allow deletion of the bound function with
unbind without memory leak.

If FUNC or SEQUENCE is omitted the bound function or list
of bound events are returned.

	
bind_all(sequence=None, func=None, add=None)

	Bind to all widgets at an event SEQUENCE a call to function FUNC.
An additional boolean parameter ADD specifies whether FUNC will
be called additionally to the other bound function or whether
it will replace the previous function. See bind for the return value.

	
bind_class(className, sequence=None, func=None, add=None)

	Bind to widgets with bindtag CLASSNAME at event
SEQUENCE a call of function FUNC. An additional
boolean parameter ADD specifies whether FUNC will be
called additionally to the other bound function or
whether it will replace the previous function. See bind for
the return value.

	
bindtags(tagList=None)

	Set or get the list of bindtags for this widget.

With no argument return the list of all bindtags associated with
this widget. With a list of strings as argument the bindtags are
set to this list. The bindtags determine in which order events are
processed (see bind).

	
cget(key)

	Return the resource value for a KEY given as string.

	
client(name=None)

	Store NAME in WM_CLIENT_MACHINE property of this widget. Return
current value.

	
clipboard_append(string, **kw)

	Append STRING to the Tk clipboard.

A widget specified at the optional displayof keyword
argument specifies the target display. The clipboard
can be retrieved with selection_get.

	
clipboard_clear(**kw)

	Clear the data in the Tk clipboard.

A widget specified for the optional displayof keyword
argument specifies the target display.

	
clipboard_get(**kw)

	Retrieve data from the clipboard on window’s display.

The window keyword defaults to the root window of the Tkinter
application.

The type keyword specifies the form in which the data is
to be returned and should be an atom name such as STRING
or FILE_NAME. Type defaults to STRING, except on X11, where the default
is to try UTF8_STRING and fall back to STRING.

This command is equivalent to:

selection_get(CLIPBOARD)

	
colormapwindows(*wlist)

	Store list of window names (WLIST) into WM_COLORMAPWINDOWS property
of this widget. This list contains windows whose colormaps differ from their
parents. Return current list of widgets if WLIST is empty.

	
colormodel(value=None)

	Useless. Not implemented in Tk.

	
columnconfigure(index, cnf={}, **kw)

	Configure column INDEX of a grid.

Valid resources are minsize (minimum size of the column),
weight (how much does additional space propagate to this column)
and pad (how much space to let additionally).

	
command(value=None)

	Store VALUE in WM_COMMAND property. It is the command
which shall be used to invoke the application. Return current
command if VALUE is None.

	
config(cnf=None, **kw)

	Configure resources of a widget.

The values for resources are specified as keyword
arguments. To get an overview about
the allowed keyword arguments call the method keys.

	
configure(cnf=None, **kw)

	Configure resources of a widget.

The values for resources are specified as keyword
arguments. To get an overview about
the allowed keyword arguments call the method keys.

	
deiconify()

	Deiconify this widget. If it was never mapped it will not be mapped.
On Windows it will raise this widget and give it the focus.

	
deletecommand(name)

	Internal function.

Delete the Tcl command provided in NAME.

	
destroy()

	Destroy this and all descendants widgets.

	
event_add(virtual, *sequences)

	Bind a virtual event VIRTUAL (of the form <<Name>>)
to an event SEQUENCE such that the virtual event is triggered
whenever SEQUENCE occurs.

	
event_delete(virtual, *sequences)

	Unbind a virtual event VIRTUAL from SEQUENCE.

	
event_generate(sequence, **kw)

	Generate an event SEQUENCE. Additional
keyword arguments specify parameter of the event
(e.g. x, y, rootx, rooty).

	
event_info(virtual=None)

	Return a list of all virtual events or the information
about the SEQUENCE bound to the virtual event VIRTUAL.

	
focus()

	Direct input focus to this widget.

If the application currently does not have the focus
this widget will get the focus if the application gets
the focus through the window manager.

	
focus_displayof()

	Return the widget which has currently the focus on the
display where this widget is located.

Return None if the application does not have the focus.

	
focus_force()

	Direct input focus to this widget even if the
application does not have the focus. Use with
caution!

	
focus_get()

	Return the widget which has currently the focus in the
application.

Use focus_displayof to allow working with several
displays. Return None if application does not have
the focus.

	
focus_lastfor()

	Return the widget which would have the focus if top level
for this widget gets the focus from the window manager.

	
focus_set()

	Direct input focus to this widget.

If the application currently does not have the focus
this widget will get the focus if the application gets
the focus through the window manager.

	
focusmodel(model=None)

	Set focus model to MODEL. “active” means that this widget will claim
the focus itself, “passive” means that the window manager shall give
the focus. Return current focus model if MODEL is None.

	
frame()

	Return identifier for decorative frame of this widget if present.

	
geometry(newGeometry=None)

	Set geometry to NEWGEOMETRY of the form =widthxheight+x+y. Return
current value if None is given.

	
getboolean(s)

	Return a boolean value for Tcl boolean values true and false given as parameter.

	
getdouble

	alias of __builtin__.float

	
getint

	alias of __builtin__.int

	
getvar(name='PY_VAR')

	Return value of Tcl variable NAME.

	
grab_current()

	Return widget which has currently the grab in this application
or None.

	
grab_release()

	Release grab for this widget if currently set.

	
grab_set(timeout=30)

	

	
grab_set_global()

	Set global grab for this widget.

A global grab directs all events to this and
descendant widgets on the display. Use with caution -
other applications do not get events anymore.

	
grab_status()

	Return None, “local” or “global” if this widget has
no, a local or a global grab.

	
grid(baseWidth=None, baseHeight=None, widthInc=None, heightInc=None)

	Instruct the window manager that this widget shall only be
resized on grid boundaries. WIDTHINC and HEIGHTINC are the width and
height of a grid unit in pixels. BASEWIDTH and BASEHEIGHT are the
number of grid units requested in Tk_GeometryRequest.

	
grid_bbox(column=None, row=None, col2=None, row2=None)

	Return a tuple of integer coordinates for the bounding
box of this widget controlled by the geometry manager grid.

If COLUMN, ROW is given the bounding box applies from
the cell with row and column 0 to the specified
cell. If COL2 and ROW2 are given the bounding box
starts at that cell.

The returned integers specify the offset of the upper left
corner in the master widget and the width and height.

	
grid_columnconfigure(index, cnf={}, **kw)

	Configure column INDEX of a grid.

Valid resources are minsize (minimum size of the column),
weight (how much does additional space propagate to this column)
and pad (how much space to let additionally).

	
grid_location(x, y)

	Return a tuple of column and row which identify the cell
at which the pixel at position X and Y inside the master
widget is located.

	
grid_propagate(flag=['_noarg_'])

	Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information
of the slaves will determine the size of this widget. If no argument
is given, the current setting will be returned.

	
grid_rowconfigure(index, cnf={}, **kw)

	Configure row INDEX of a grid.

Valid resources are minsize (minimum size of the row),
weight (how much does additional space propagate to this row)
and pad (how much space to let additionally).

	
grid_size()

	Return a tuple of the number of column and rows in the grid.

	
grid_slaves(row=None, column=None)

	Return a list of all slaves of this widget
in its packing order.

	
group(pathName=None)

	Set the group leader widgets for related widgets to PATHNAME. Return
the group leader of this widget if None is given.

	
iconbitmap(bitmap=None, default=None)

	Set bitmap for the iconified widget to BITMAP. Return
the bitmap if None is given.

Under Windows, the DEFAULT parameter can be used to set the icon
for the widget and any descendents that don’t have an icon set
explicitly. DEFAULT can be the relative path to a .ico file
(example: root.iconbitmap(default=’myicon.ico’)). See Tk
documentation for more information.

	
iconify()

	Display widget as icon.

	
iconmask(bitmap=None)

	Set mask for the icon bitmap of this widget. Return the
mask if None is given.

	
iconname(newName=None)

	Set the name of the icon for this widget. Return the name if
None is given.

	
iconposition(x=None, y=None)

	Set the position of the icon of this widget to X and Y. Return
a tuple of the current values of X and X if None is given.

	
iconwindow(pathName=None)

	Set widget PATHNAME to be displayed instead of icon. Return the current
value if None is given.

	
image_names()

	Return a list of all existing image names.

	
image_types()

	Return a list of all available image types (e.g. photo bitmap).

	
keys()

	Return a list of all resource names of this widget.

	
lift(aboveThis=None)

	Raise this widget in the stacking order.

	
lower(belowThis=None)

	Lower this widget in the stacking order.

	
mainloop(n=0)

	Call the mainloop of Tk.

	
maxsize(width=None, height=None)

	Set max WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
minsize(width=None, height=None)

	Set min WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
nametowidget(name)

	Return the Tkinter instance of a widget identified by
its Tcl name NAME.

	
option_add(pattern, value, priority=None)

	Set a VALUE (second parameter) for an option
PATTERN (first parameter).

An optional third parameter gives the numeric priority
(defaults to 80).

	
option_clear()

	Clear the option database.

It will be reloaded if option_add is called.

	
option_get(name, className)

	Return the value for an option NAME for this widget
with CLASSNAME.

Values with higher priority override lower values.

	
option_readfile(fileName, priority=None)

	Read file FILENAME into the option database.

An optional second parameter gives the numeric
priority.

	
overrideredirect(boolean=None)

	Instruct the window manager to ignore this widget
if BOOLEAN is given with 1. Return the current value if None
is given.

	
pack_propagate(flag=['_noarg_'])

	Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information
of the slaves will determine the size of this widget. If no argument
is given the current setting will be returned.

	
pack_slaves()

	Return a list of all slaves of this widget
in its packing order.

	
place_slaves()

	Return a list of all slaves of this widget
in its packing order.

	
positionfrom(who=None)

	Instruct the window manager that the position of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
propagate(flag=['_noarg_'])

	Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information
of the slaves will determine the size of this widget. If no argument
is given the current setting will be returned.

	
protocol(name=None, func=None)

	Bind function FUNC to command NAME for this widget.
Return the function bound to NAME if None is given. NAME could be
e.g. “WM_SAVE_YOURSELF” or “WM_DELETE_WINDOW”.

	
quit()

	Quit the Tcl interpreter. All widgets will be destroyed.

	
register(func, subst=None, needcleanup=1)

	Return a newly created Tcl function. If this
function is called, the Python function FUNC will
be executed. An optional function SUBST can
be given which will be executed before FUNC.

	
resizable(width=None, height=None)

	Instruct the window manager whether this width can be resized
in WIDTH or HEIGHT. Both values are boolean values.

	
rowconfigure(index, cnf={}, **kw)

	Configure row INDEX of a grid.

Valid resources are minsize (minimum size of the row),
weight (how much does additional space propagate to this row)
and pad (how much space to let additionally).

	
selection_clear(**kw)

	Clear the current X selection.

	
selection_get(**kw)

	Return the contents of the current X selection.

A keyword parameter selection specifies the name of
the selection and defaults to PRIMARY. A keyword
parameter displayof specifies a widget on the display
to use. A keyword parameter type specifies the form of data to be
fetched, defaulting to STRING except on X11, where UTF8_STRING is tried
before STRING.

	
selection_handle(command, **kw)

	Specify a function COMMAND to call if the X
selection owned by this widget is queried by another
application.

This function must return the contents of the
selection. The function will be called with the
arguments OFFSET and LENGTH which allows the chunking
of very long selections. The following keyword
parameters can be provided:
selection - name of the selection (default PRIMARY),
type - type of the selection (e.g. STRING, FILE_NAME).

	
selection_own(**kw)

	Become owner of X selection.

A keyword parameter selection specifies the name of
the selection (default PRIMARY).

	
selection_own_get(**kw)

	Return owner of X selection.

The following keyword parameter can
be provided:
selection - name of the selection (default PRIMARY),
type - type of the selection (e.g. STRING, FILE_NAME).

	
send(interp, cmd, *args)

	Send Tcl command CMD to different interpreter INTERP to be executed.

	
setvar(name='PY_VAR', value='1')

	Set Tcl variable NAME to VALUE.

	
show()

	

	
size()

	Return a tuple of the number of column and rows in the grid.

	
sizefrom(who=None)

	Instruct the window manager that the size of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
slaves()

	Return a list of all slaves of this widget
in its packing order.

	
state(newstate=None)

	Query or set the state of this widget as one of normal, icon,
iconic (see wm_iconwindow), withdrawn, or zoomed (Windows only).

	
title(string=None)

	Set the title of this widget.

	
tk_bisque()

	Change the color scheme to light brown as used in Tk 3.6 and before.

	
tk_focusFollowsMouse()

	The widget under mouse will get automatically focus. Can not
be disabled easily.

	
tk_focusNext()

	Return the next widget in the focus order which follows
widget which has currently the focus.

The focus order first goes to the next child, then to
the children of the child recursively and then to the
next sibling which is higher in the stacking order. A
widget is omitted if it has the takefocus resource set
to 0.

	
tk_focusPrev()

	Return previous widget in the focus order. See tk_focusNext for details.

	
tk_menuBar(*args)

	Do not use. Needed in Tk 3.6 and earlier.

	
tk_setPalette(*args, **kw)

	Set a new color scheme for all widget elements.

A single color as argument will cause that all colors of Tk
widget elements are derived from this.
Alternatively several keyword parameters and its associated
colors can be given. The following keywords are valid:
activeBackground, foreground, selectColor,
activeForeground, highlightBackground, selectBackground,
background, highlightColor, selectForeground,
disabledForeground, insertBackground, troughColor.

	
tk_strictMotif(boolean=None)

	Set Tcl internal variable, whether the look and feel
should adhere to Motif.

A parameter of 1 means adhere to Motif (e.g. no color
change if mouse passes over slider).
Returns the set value.

	
tkraise(aboveThis=None)

	Raise this widget in the stacking order.

	
transient(master=None)

	Instruct the window manager that this widget is transient
with regard to widget MASTER.

	
unbind(sequence, funcid=None)

	Unbind for this widget for event SEQUENCE the
function identified with FUNCID.

	
unbind_all(sequence)

	Unbind for all widgets for event SEQUENCE all functions.

	
unbind_class(className, sequence)

	Unbind for all widgets with bindtag CLASSNAME for event SEQUENCE
all functions.

	
update()

	Enter event loop until all pending events have been processed by Tcl.

	
update_idletasks()

	Enter event loop until all idle callbacks have been called. This
will update the display of windows but not process events caused by
the user.

	
wait_variable(name='PY_VAR')

	Wait until the variable is modified.

A parameter of type IntVar, StringVar, DoubleVar or
BooleanVar must be given.

	
wait_visibility(window=None)

	Wait until the visibility of a WIDGET changes
(e.g. it appears).

If no parameter is given self is used.

	
wait_window(window=None)

	Wait until a WIDGET is destroyed.

If no parameter is given self is used.

	
waitvar(name='PY_VAR')

	Wait until the variable is modified.

A parameter of type IntVar, StringVar, DoubleVar or
BooleanVar must be given.

	
winfo_atom(name, displayof=0)

	Return integer which represents atom NAME.

	
winfo_atomname(id, displayof=0)

	Return name of atom with identifier ID.

	
winfo_cells()

	Return number of cells in the colormap for this widget.

	
winfo_children()

	Return a list of all widgets which are children of this widget.

	
winfo_class()

	Return window class name of this widget.

	
winfo_colormapfull()

	Return true if at the last color request the colormap was full.

	
winfo_containing(rootX, rootY, displayof=0)

	Return the widget which is at the root coordinates ROOTX, ROOTY.

	
winfo_depth()

	Return the number of bits per pixel.

	
winfo_exists()

	Return true if this widget exists.

	
winfo_fpixels(number)

	Return the number of pixels for the given distance NUMBER
(e.g. “3c”) as float.

	
winfo_geometry()

	Return geometry string for this widget in the form “widthxheight+X+Y”.

	
winfo_height()

	Return height of this widget.

	
winfo_id()

	Return identifier ID for this widget.

	
winfo_interps(displayof=0)

	Return the name of all Tcl interpreters for this display.

	
winfo_ismapped()

	Return true if this widget is mapped.

	
winfo_manager()

	Return the window manager name for this widget.

	
winfo_name()

	Return the name of this widget.

	
winfo_parent()

	Return the name of the parent of this widget.

	
winfo_pathname(id, displayof=0)

	Return the pathname of the widget given by ID.

	
winfo_pixels(number)

	Rounded integer value of winfo_fpixels.

	
winfo_pointerx()

	Return the x coordinate of the pointer on the root window.

	
winfo_pointerxy()

	Return a tuple of x and y coordinates of the pointer on the root window.

	
winfo_pointery()

	Return the y coordinate of the pointer on the root window.

	
winfo_reqheight()

	Return requested height of this widget.

	
winfo_reqwidth()

	Return requested width of this widget.

	
winfo_rgb(color)

	Return tuple of decimal values for red, green, blue for
COLOR in this widget.

	
winfo_rootx()

	Return x coordinate of upper left corner of this widget on the
root window.

	
winfo_rooty()

	Return y coordinate of upper left corner of this widget on the
root window.

	
winfo_screen()

	Return the screen name of this widget.

	
winfo_screencells()

	Return the number of the cells in the colormap of the screen
of this widget.

	
winfo_screendepth()

	Return the number of bits per pixel of the root window of the
screen of this widget.

	
winfo_screenheight()

	Return the number of pixels of the height of the screen of this widget
in pixel.

	
winfo_screenmmheight()

	Return the number of pixels of the height of the screen of
this widget in mm.

	
winfo_screenmmwidth()

	Return the number of pixels of the width of the screen of
this widget in mm.

	
winfo_screenvisual()

	Return one of the strings directcolor, grayscale, pseudocolor,
staticcolor, staticgray, or truecolor for the default
colormodel of this screen.

	
winfo_screenwidth()

	Return the number of pixels of the width of the screen of
this widget in pixel.

	
winfo_server()

	Return information of the X-Server of the screen of this widget in
the form “XmajorRminor vendor vendorVersion”.

	
winfo_toplevel()

	Return the toplevel widget of this widget.

	
winfo_viewable()

	Return true if the widget and all its higher ancestors are mapped.

	
winfo_visual()

	Return one of the strings directcolor, grayscale, pseudocolor,
staticcolor, staticgray, or truecolor for the
colormodel of this widget.

	
winfo_visualid()

	Return the X identifier for the visual for this widget.

	
winfo_visualsavailable(includeids=0)

	Return a list of all visuals available for the screen
of this widget.

Each item in the list consists of a visual name (see winfo_visual), a
depth and if INCLUDEIDS=1 is given also the X identifier.

	
winfo_vrootheight()

	Return the height of the virtual root window associated with this
widget in pixels. If there is no virtual root window return the
height of the screen.

	
winfo_vrootwidth()

	Return the width of the virtual root window associated with this
widget in pixel. If there is no virtual root window return the
width of the screen.

	
winfo_vrootx()

	Return the x offset of the virtual root relative to the root
window of the screen of this widget.

	
winfo_vrooty()

	Return the y offset of the virtual root relative to the root
window of the screen of this widget.

	
winfo_width()

	Return the width of this widget.

	
winfo_x()

	Return the x coordinate of the upper left corner of this widget
in the parent.

	
winfo_y()

	Return the y coordinate of the upper left corner of this widget
in the parent.

	
withdraw()

	Withdraw this widget from the screen such that it is unmapped
and forgotten by the window manager. Re-draw it with wm_deiconify.

	
wm_aspect(minNumer=None, minDenom=None, maxNumer=None, maxDenom=None)

	Instruct the window manager to set the aspect ratio (width/height)
of this widget to be between MINNUMER/MINDENOM and MAXNUMER/MAXDENOM. Return a tuple
of the actual values if no argument is given.

	
wm_attributes(*args)

	This subcommand returns or sets platform specific attributes

The first form returns a list of the platform specific flags and
their values. The second form returns the value for the specific
option. The third form sets one or more of the values. The values
are as follows:

On Windows, -disabled gets or sets whether the window is in a
disabled state. -toolwindow gets or sets the style of the window
to toolwindow (as defined in the MSDN). -topmost gets or sets
whether this is a topmost window (displays above all other
windows).

On Macintosh, XXXXX

On Unix, there are currently no special attribute values.

	
wm_client(name=None)

	Store NAME in WM_CLIENT_MACHINE property of this widget. Return
current value.

	
wm_colormapwindows(*wlist)

	Store list of window names (WLIST) into WM_COLORMAPWINDOWS property
of this widget. This list contains windows whose colormaps differ from their
parents. Return current list of widgets if WLIST is empty.

	
wm_command(value=None)

	Store VALUE in WM_COMMAND property. It is the command
which shall be used to invoke the application. Return current
command if VALUE is None.

	
wm_deiconify()

	Deiconify this widget. If it was never mapped it will not be mapped.
On Windows it will raise this widget and give it the focus.

	
wm_focusmodel(model=None)

	Set focus model to MODEL. “active” means that this widget will claim
the focus itself, “passive” means that the window manager shall give
the focus. Return current focus model if MODEL is None.

	
wm_frame()

	Return identifier for decorative frame of this widget if present.

	
wm_geometry(newGeometry=None)

	Set geometry to NEWGEOMETRY of the form =widthxheight+x+y. Return
current value if None is given.

	
wm_grid(baseWidth=None, baseHeight=None, widthInc=None, heightInc=None)

	Instruct the window manager that this widget shall only be
resized on grid boundaries. WIDTHINC and HEIGHTINC are the width and
height of a grid unit in pixels. BASEWIDTH and BASEHEIGHT are the
number of grid units requested in Tk_GeometryRequest.

	
wm_group(pathName=None)

	Set the group leader widgets for related widgets to PATHNAME. Return
the group leader of this widget if None is given.

	
wm_iconbitmap(bitmap=None, default=None)

	Set bitmap for the iconified widget to BITMAP. Return
the bitmap if None is given.

Under Windows, the DEFAULT parameter can be used to set the icon
for the widget and any descendents that don’t have an icon set
explicitly. DEFAULT can be the relative path to a .ico file
(example: root.iconbitmap(default=’myicon.ico’)). See Tk
documentation for more information.

	
wm_iconify()

	Display widget as icon.

	
wm_iconmask(bitmap=None)

	Set mask for the icon bitmap of this widget. Return the
mask if None is given.

	
wm_iconname(newName=None)

	Set the name of the icon for this widget. Return the name if
None is given.

	
wm_iconposition(x=None, y=None)

	Set the position of the icon of this widget to X and Y. Return
a tuple of the current values of X and X if None is given.

	
wm_iconwindow(pathName=None)

	Set widget PATHNAME to be displayed instead of icon. Return the current
value if None is given.

	
wm_maxsize(width=None, height=None)

	Set max WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
wm_minsize(width=None, height=None)

	Set min WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
wm_overrideredirect(boolean=None)

	Instruct the window manager to ignore this widget
if BOOLEAN is given with 1. Return the current value if None
is given.

	
wm_positionfrom(who=None)

	Instruct the window manager that the position of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
wm_protocol(name=None, func=None)

	Bind function FUNC to command NAME for this widget.
Return the function bound to NAME if None is given. NAME could be
e.g. “WM_SAVE_YOURSELF” or “WM_DELETE_WINDOW”.

	
wm_resizable(width=None, height=None)

	Instruct the window manager whether this width can be resized
in WIDTH or HEIGHT. Both values are boolean values.

	
wm_sizefrom(who=None)

	Instruct the window manager that the size of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
wm_state(newstate=None)

	Query or set the state of this widget as one of normal, icon,
iconic (see wm_iconwindow), withdrawn, or zoomed (Windows only).

	
wm_title(string=None)

	Set the title of this widget.

	
wm_transient(master=None)

	Instruct the window manager that this widget is transient
with regard to widget MASTER.

	
wm_withdraw()

	Withdraw this widget from the screen such that it is unmapped
and forgotten by the window manager. Re-draw it with wm_deiconify.

robot.model package

Package with generic, reusable and extensible model classes.

This package contains, for example, TestSuite,
TestCase, Keyword
and SuiteVisitor base classes.
These classes are extended both by execution
and result related model objects and used also
elsewhere.

This package is considered stable.

Submodules

robot.model.body module

	
class robot.model.body.BodyItem[source]

	Bases: robot.model.modelobject.ModelObject

	
KEYWORD = 'KEYWORD'

	

	
SETUP = 'SETUP'

	

	
TEARDOWN = 'TEARDOWN'

	

	
FOR = 'FOR'

	

	
FOR_ITERATION = 'FOR ITERATION'

	

	
IF_ELSE_ROOT = 'IF/ELSE ROOT'

	

	
IF = 'IF'

	

	
ELSE_IF = 'ELSE IF'

	

	
ELSE = 'ELSE'

	

	
MESSAGE = 'MESSAGE'

	

	
type = None

	

	
id

	Item id in format like s1-t3-k1.

See TestSuite.id for
more information.

	
config(**attributes)

	Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting
obj.name = 'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

	
copy(**attributes)

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
deepcopy(**attributes)

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
parent

	

	
repr_args = ()

	

	
class robot.model.body.Body(parent=None, items=None)[source]

	Bases: robot.model.itemlist.ItemList

A list-like object representing body of a suite, a test or a keyword.

Body contains the keywords and other structures such as for loops.

	
keyword_class

	alias of robot.model.keyword.Keyword

	
for_class

	alias of robot.model.control.For

	
if_class

	alias of robot.model.control.If

	
classmethod register(item_class)[source]

	

	
create

	

	
create_keyword(*args, **kwargs)[source]

	

	
create_for(*args, **kwargs)[source]

	

	
create_if(*args, **kwargs)[source]

	

	
filter(keywords=None, fors=None, ifs=None, predicate=None)[source]

	Filter body items based on type and/or custom predicate.

To include or exclude items based on types, give matching arguments
True or False values. For example, to include only keywords, use
body.filter(keywords=True) and to exclude FOR and IF constructs use
body.filter(fors=False, ifs=False). Including and excluding by types
at the same time is not supported.

Custom predicate is a calleble getting each body item as an argument
that must return True/False depending on should the item be included
or not.

Selected items are returned as a list and the original body is not modified.

	
append(item)

	

	
clear()

	

	
count(item)

	

	
extend(items)

	

	
index(item, *start_and_end)

	

	
insert(index, item)

	

	
pop(*index)

	

	
remove(item)

	

	
reverse()

	

	
sort()

	

	
visit(visitor)

	

	
class robot.model.body.IfBranches(parent=None, items=None)[source]

	Bases: robot.model.body.Body

	
if_branch_class

	alias of robot.model.control.IfBranch

	
keyword_class = None

	

	
for_class = None

	

	
if_class = None

	

	
create_branch(*args, **kwargs)[source]

	

	
append(item)

	

	
clear()

	

	
count(item)

	

	
create

	

	
create_for(*args, **kwargs)

	

	
create_if(*args, **kwargs)

	

	
create_keyword(*args, **kwargs)

	

	
extend(items)

	

	
filter(keywords=None, fors=None, ifs=None, predicate=None)

	Filter body items based on type and/or custom predicate.

To include or exclude items based on types, give matching arguments
True or False values. For example, to include only keywords, use
body.filter(keywords=True) and to exclude FOR and IF constructs use
body.filter(fors=False, ifs=False). Including and excluding by types
at the same time is not supported.

Custom predicate is a calleble getting each body item as an argument
that must return True/False depending on should the item be included
or not.

Selected items are returned as a list and the original body is not modified.

	
index(item, *start_and_end)

	

	
insert(index, item)

	

	
pop(*index)

	

	
classmethod register(item_class)

	

	
remove(item)

	

	
reverse()

	

	
sort()

	

	
visit(visitor)

	

robot.model.configurer module

	
class robot.model.configurer.SuiteConfigurer(name=None, doc=None, metadata=None, set_tags=None, include_tags=None, exclude_tags=None, include_suites=None, include_tests=None, empty_suite_ok=False)[source]

	Bases: robot.model.visitor.SuiteVisitor

	
add_tags

	

	
remove_tags

	

	
visit_suite(suite)[source]

	Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
end_for(for_)

	Called when FOR loop ends. Default implementation does nothing.

	
end_for_iteration(iteration)

	Called when FOR loop iteration ends. Default implementation does nothing.

	
end_if(if_)

	Called when IF/ELSE structure ends. Default implementation does nothing.

	
end_if_branch(branch)

	Called when IF/ELSE branch ends. Default implementation does nothing.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_for(for_)

	Called when FOR loop starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_for_iteration(iteration)

	Called when FOR loop iteration starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if(if_)

	Called when IF/ELSE structure starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if_branch(branch)

	Called when IF/ELSE branch starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_for(for_)

	Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without
calling start_for() or end_for() nor visiting body.

	
visit_for_iteration(iteration)

	Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side
there are no iterations.

Can be overridden to allow modifying the passed in iteration without
calling start_for_iteration() or end_for_iteration() nor visiting
body.

	
visit_if(if_)

	Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches
are in its body and visited using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without
calling start_if() or end_if() nor visiting branches.

	
visit_if_branch(branch)

	Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without
calling start_if_branch() or end_if_branch() nor visiting body.

	
visit_keyword(kw)

	Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
visit_message(msg)

	Implements visiting messages.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_test(test)

	Implements traversing through tests.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

robot.model.control module

	
class robot.model.control.For(variables=(), flavor='IN', values=(), parent=None)[source]

	Bases: robot.model.body.BodyItem

	
type = 'FOR'

	

	
body_class

	alias of robot.model.body.Body

	
repr_args = ('variables', 'flavor', 'values')

	

	
variables

	

	
flavor

	

	
values

	

	
parent

	

	
body

	

	
keywords

	Deprecated since Robot Framework 4.0. Use body instead.

	
visit(visitor)[source]

	

	
ELSE = 'ELSE'

	

	
ELSE_IF = 'ELSE IF'

	

	
FOR = 'FOR'

	

	
FOR_ITERATION = 'FOR ITERATION'

	

	
IF = 'IF'

	

	
IF_ELSE_ROOT = 'IF/ELSE ROOT'

	

	
KEYWORD = 'KEYWORD'

	

	
MESSAGE = 'MESSAGE'

	

	
SETUP = 'SETUP'

	

	
TEARDOWN = 'TEARDOWN'

	

	
config(**attributes)

	Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting
obj.name = 'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

	
copy(**attributes)

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
deepcopy(**attributes)

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
id

	Item id in format like s1-t3-k1.

See TestSuite.id for
more information.

	
class robot.model.control.If(parent=None)[source]

	Bases: robot.model.body.BodyItem

IF/ELSE structure root. Branches are stored in body.

	
type = 'IF/ELSE ROOT'

	

	
body_class

	alias of robot.model.body.IfBranches

	
parent

	

	
body

	

	
id

	Root IF/ELSE id is always None.

	
visit(visitor)[source]

	

	
ELSE = 'ELSE'

	

	
ELSE_IF = 'ELSE IF'

	

	
FOR = 'FOR'

	

	
FOR_ITERATION = 'FOR ITERATION'

	

	
IF = 'IF'

	

	
IF_ELSE_ROOT = 'IF/ELSE ROOT'

	

	
KEYWORD = 'KEYWORD'

	

	
MESSAGE = 'MESSAGE'

	

	
SETUP = 'SETUP'

	

	
TEARDOWN = 'TEARDOWN'

	

	
config(**attributes)

	Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting
obj.name = 'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

	
copy(**attributes)

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
deepcopy(**attributes)

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
repr_args = ()

	

	
class robot.model.control.IfBranch(type='IF', condition=None, parent=None)[source]

	Bases: robot.model.body.BodyItem

	
body_class

	alias of robot.model.body.Body

	
repr_args = ('type', 'condition')

	

	
type

	

	
condition

	

	
parent

	

	
ELSE = 'ELSE'

	

	
ELSE_IF = 'ELSE IF'

	

	
FOR = 'FOR'

	

	
FOR_ITERATION = 'FOR ITERATION'

	

	
IF = 'IF'

	

	
IF_ELSE_ROOT = 'IF/ELSE ROOT'

	

	
KEYWORD = 'KEYWORD'

	

	
MESSAGE = 'MESSAGE'

	

	
SETUP = 'SETUP'

	

	
TEARDOWN = 'TEARDOWN'

	

	
body

	

	
config(**attributes)

	Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting
obj.name = 'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

	
copy(**attributes)

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
deepcopy(**attributes)

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
id

	Branch id omits the root IF/ELSE object from the parent id part.

	
visit(visitor)[source]

	

robot.model.filter module

	
class robot.model.filter.EmptySuiteRemover(preserve_direct_children=False)[source]

	Bases: robot.model.visitor.SuiteVisitor

	
end_suite(suite)[source]

	Called when suite ends. Default implementation does nothing.

	
visit_test(test)[source]

	Implements traversing through tests.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
visit_keyword(kw)[source]

	Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
end_for(for_)

	Called when FOR loop ends. Default implementation does nothing.

	
end_for_iteration(iteration)

	Called when FOR loop iteration ends. Default implementation does nothing.

	
end_if(if_)

	Called when IF/ELSE structure ends. Default implementation does nothing.

	
end_if_branch(branch)

	Called when IF/ELSE branch ends. Default implementation does nothing.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_for(for_)

	Called when FOR loop starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_for_iteration(iteration)

	Called when FOR loop iteration starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if(if_)

	Called when IF/ELSE structure starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if_branch(branch)

	Called when IF/ELSE branch starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_for(for_)

	Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without
calling start_for() or end_for() nor visiting body.

	
visit_for_iteration(iteration)

	Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side
there are no iterations.

Can be overridden to allow modifying the passed in iteration without
calling start_for_iteration() or end_for_iteration() nor visiting
body.

	
visit_if(if_)

	Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches
are in its body and visited using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without
calling start_if() or end_if() nor visiting branches.

	
visit_if_branch(branch)

	Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without
calling start_if_branch() or end_if_branch() nor visiting body.

	
visit_message(msg)

	Implements visiting messages.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
class robot.model.filter.Filter(include_suites=None, include_tests=None, include_tags=None, exclude_tags=None)[source]

	Bases: robot.model.filter.EmptySuiteRemover

	
include_suites

	

	
include_tests

	

	
include_tags

	

	
exclude_tags

	

	
start_suite(suite)[source]

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_for(for_)

	Called when FOR loop ends. Default implementation does nothing.

	
end_for_iteration(iteration)

	Called when FOR loop iteration ends. Default implementation does nothing.

	
end_if(if_)

	Called when IF/ELSE structure ends. Default implementation does nothing.

	
end_if_branch(branch)

	Called when IF/ELSE branch ends. Default implementation does nothing.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_for(for_)

	Called when FOR loop starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_for_iteration(iteration)

	Called when FOR loop iteration starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if(if_)

	Called when IF/ELSE structure starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if_branch(branch)

	Called when IF/ELSE branch starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_for(for_)

	Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without
calling start_for() or end_for() nor visiting body.

	
visit_for_iteration(iteration)

	Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side
there are no iterations.

Can be overridden to allow modifying the passed in iteration without
calling start_for_iteration() or end_for_iteration() nor visiting
body.

	
visit_if(if_)

	Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches
are in its body and visited using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without
calling start_if() or end_if() nor visiting branches.

	
visit_if_branch(branch)

	Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without
calling start_if_branch() or end_if_branch() nor visiting body.

	
visit_keyword(kw)

	Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
visit_message(msg)

	Implements visiting messages.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
visit_test(test)

	Implements traversing through tests.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

robot.model.fixture module

	
robot.model.fixture.create_fixture(fixture, parent, type)[source]

	

robot.model.itemlist module

	
class robot.model.itemlist.ItemList(item_class, common_attrs=None, items=None)[source]

	Bases: object

	
create(*args, **kwargs)[source]

	

	
append(item)[source]

	

	
extend(items)[source]

	

	
insert(index, item)[source]

	

	
pop(*index)[source]

	

	
remove(item)[source]

	

	
index(item, *start_and_end)[source]

	

	
clear()[source]

	

	
visit(visitor)[source]

	

	
count(item)[source]

	

	
sort()[source]

	

	
reverse()[source]

	

robot.model.keyword module

	
class robot.model.keyword.Keyword(name='', doc='', args=(), assign=(), tags=(), timeout=None, type='KEYWORD', parent=None)[source]

	Bases: robot.model.body.BodyItem

Base model for a single keyword.

Extended by robot.running.model.Keyword and
robot.result.model.Keyword.

	
repr_args = ('name', 'args', 'assign')

	

	
doc

	

	
args

	

	
assign

	

	
timeout

	

	
type

	

	
parent

	

	
name

	

	
teardown

	Keyword teardown as a Keyword object.

Teardown can be modified by setting attributes directly:

keyword.teardown.name = 'Example'
keyword.teardown.args = ('First', 'Second')

Alternatively the config() method can be used to set multiple
attributes in one call:

keyword.teardown.config(name='Example', args=('First', 'Second'))

The easiest way to reset the whole teardown is setting it to None.
It will automatically recreate the underlying Keyword object:

keyword.teardown = None

This attribute is a Keyword object also when a keyword has no teardown
but in that case its truth value is False. If there is a need to just
check does a keyword have a teardown, using the has_teardown
attribute avoids creating the Keyword object and is thus more memory
efficient.

New in Robot Framework 4.0. Earlier teardown was accessed like
keyword.keywords.teardown. has_teardown is new in Robot
Framework 4.1.2.

	
has_teardown

	Check does a keyword have a teardown without creating a teardown object.

A difference between using if kw.has_teardown: and if kw.teardown:
is that accessing the teardown attribute creates a Keyword
object representing a teardown even when the keyword actually does not
have one. This typically does not matter, but with bigger suite structures
having lot of keywords it can have a considerable effect on memory usage.

New in Robot Framework 4.1.2.

	
tags

	Keyword tags as a Tags object.

	
visit(visitor)[source]

	Visitor interface entry-point.

	
ELSE = 'ELSE'

	

	
ELSE_IF = 'ELSE IF'

	

	
FOR = 'FOR'

	

	
FOR_ITERATION = 'FOR ITERATION'

	

	
IF = 'IF'

	

	
IF_ELSE_ROOT = 'IF/ELSE ROOT'

	

	
KEYWORD = 'KEYWORD'

	

	
MESSAGE = 'MESSAGE'

	

	
SETUP = 'SETUP'

	

	
TEARDOWN = 'TEARDOWN'

	

	
config(**attributes)

	Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting
obj.name = 'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

	
copy(**attributes)

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
deepcopy(**attributes)

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
id

	Item id in format like s1-t3-k1.

See TestSuite.id for
more information.

	
class robot.model.keyword.Keywords(parent=None, keywords=None)[source]

	Bases: robot.model.itemlist.ItemList

A list-like object representing keywords in a suite, a test or a keyword.

Read-only and deprecated since Robot Framework 4.0.

	
deprecation_message = "'keywords' attribute is read-only and deprecated since Robot Framework 4.0. Use 'body', 'setup' or 'teardown' instead."

	

	
setup

	

	
create_setup(*args, **kwargs)[source]

	

	
teardown

	

	
create_teardown(*args, **kwargs)[source]

	

	
all

	Iterates over all keywords, including setup and teardown.

	
normal

	Iterates over normal keywords, omitting setup and teardown.

	
create(*args, **kwargs)[source]

	

	
append(item)[source]

	

	
extend(items)[source]

	

	
insert(index, item)[source]

	

	
pop(*index)[source]

	

	
remove(item)[source]

	

	
clear()[source]

	

	
count(item)

	

	
index(item, *start_and_end)

	

	
visit(visitor)

	

	
sort()[source]

	

	
reverse()[source]

	

	
classmethod raise_deprecation_error()[source]

	

robot.model.message module

	
class robot.model.message.Message(message='', level='INFO', html=False, timestamp=None, parent=None)[source]

	Bases: robot.model.body.BodyItem

A message created during the test execution.

Can be a log message triggered by a keyword, or a warning or an error
that occurred during parsing or test execution.

	
type = 'MESSAGE'

	

	
repr_args = ('message', 'level')

	

	
message

	The message content as a string.

	
level

	Severity of the message. Either TRACE, DEBUG, INFO,
WARN, ERROR, FAIL or ``SKIP`. The last two are only used
with keyword failure messages.

	
html

	True if the content is in HTML, False otherwise.

	
timestamp

	Timestamp in format %Y%m%d %H:%M:%S.%f.

	
parent

	The object this message was triggered by.

	
html_message

	Returns the message content as HTML.

	
id

	

	
visit(visitor)[source]

	Visitor interface entry-point.

	
ELSE = 'ELSE'

	

	
ELSE_IF = 'ELSE IF'

	

	
FOR = 'FOR'

	

	
FOR_ITERATION = 'FOR ITERATION'

	

	
IF = 'IF'

	

	
IF_ELSE_ROOT = 'IF/ELSE ROOT'

	

	
KEYWORD = 'KEYWORD'

	

	
MESSAGE = 'MESSAGE'

	

	
SETUP = 'SETUP'

	

	
TEARDOWN = 'TEARDOWN'

	

	
config(**attributes)

	Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting
obj.name = 'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

	
copy(**attributes)

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
deepcopy(**attributes)

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
class robot.model.message.Messages(message_class=<class 'robot.model.message.Message'>, parent=None, messages=None)[source]

	Bases: robot.model.itemlist.ItemList

	
append(item)

	

	
clear()

	

	
count(item)

	

	
create(*args, **kwargs)

	

	
extend(items)

	

	
index(item, *start_and_end)

	

	
insert(index, item)

	

	
pop(*index)

	

	
remove(item)

	

	
reverse()

	

	
sort()

	

	
visit(visitor)

	

robot.model.metadata module

	
class robot.model.metadata.Metadata(initial=None)[source]

	Bases: robot.utils.normalizing.NormalizedDict

	
clear() → None. Remove all items from D.

	

	
copy()

	

	
get(k[, d]) → D[k] if k in D, else d. d defaults to None.

	

	
items() → list of D's (key, value) pairs, as 2-tuples

	

	
iteritems() → an iterator over the (key, value) items of D

	

	
iterkeys() → an iterator over the keys of D

	

	
itervalues() → an iterator over the values of D

	

	
keys() → list of D's keys

	

	
pop(k[, d]) → v, remove specified key and return the corresponding value.

	If key is not found, d is returned if given, otherwise KeyError is raised.

	
popitem() → (k, v), remove and return some (key, value) pair

	as a 2-tuple; but raise KeyError if D is empty.

	
setdefault(k[, d]) → D.get(k,d), also set D[k]=d if k not in D

	

	
update([E,]**F) → None. Update D from mapping/iterable E and F.

	If E present and has a .keys() method, does: for k in E: D[k] = E[k]
If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v
In either case, this is followed by: for k, v in F.items(): D[k] = v

	
values() → list of D's values

	

robot.model.modelobject module

	
class robot.model.modelobject.ModelObject[source]

	Bases: object

	
repr_args = ()

	

	
config(**attributes)[source]

	Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting
obj.name = 'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

	
copy(**attributes)[source]

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
deepcopy(**attributes)[source]

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

robot.model.modifier module

	
class robot.model.modifier.ModelModifier(visitors, empty_suite_ok, logger)[source]

	Bases: robot.model.visitor.SuiteVisitor

	
visit_suite(suite)[source]

	Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
end_for(for_)

	Called when FOR loop ends. Default implementation does nothing.

	
end_for_iteration(iteration)

	Called when FOR loop iteration ends. Default implementation does nothing.

	
end_if(if_)

	Called when IF/ELSE structure ends. Default implementation does nothing.

	
end_if_branch(branch)

	Called when IF/ELSE branch ends. Default implementation does nothing.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_for(for_)

	Called when FOR loop starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_for_iteration(iteration)

	Called when FOR loop iteration starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if(if_)

	Called when IF/ELSE structure starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if_branch(branch)

	Called when IF/ELSE branch starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_for(for_)

	Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without
calling start_for() or end_for() nor visiting body.

	
visit_for_iteration(iteration)

	Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side
there are no iterations.

Can be overridden to allow modifying the passed in iteration without
calling start_for_iteration() or end_for_iteration() nor visiting
body.

	
visit_if(if_)

	Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches
are in its body and visited using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without
calling start_if() or end_if() nor visiting branches.

	
visit_if_branch(branch)

	Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without
calling start_if_branch() or end_if_branch() nor visiting body.

	
visit_keyword(kw)

	Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
visit_message(msg)

	Implements visiting messages.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_test(test)

	Implements traversing through tests.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

robot.model.namepatterns module

	
class robot.model.namepatterns.SuiteNamePatterns(patterns=None)[source]

	Bases: robot.model.namepatterns._NamePatterns

	
match(name, longname=None)

	

	
class robot.model.namepatterns.TestNamePatterns(patterns=None)[source]

	Bases: robot.model.namepatterns._NamePatterns

	
match(name, longname=None)

	

robot.model.statistics module

	
class robot.model.statistics.Statistics(suite, suite_stat_level=-1, tag_stat_include=None, tag_stat_exclude=None, tag_stat_combine=None, tag_doc=None, tag_stat_link=None, rpa=False)[source]

	Bases: object

Container for total, suite and tag statistics.

Accepted parameters have the same semantics as the matching command line
options.

	
total = None

	Instance of TotalStatistics.

	
suite = None

	Instance of SuiteStatistics.

	
tags = None

	Instance of TagStatistics.

	
visit(visitor)[source]

	

	
class robot.model.statistics.StatisticsBuilder(total_builder, suite_builder, tag_builder)[source]

	Bases: robot.model.visitor.SuiteVisitor

	
start_suite(suite)[source]

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_suite(suite)[source]

	Called when suite ends. Default implementation does nothing.

	
visit_test(test)[source]

	Implements traversing through tests.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
visit_keyword(kw)[source]

	Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
end_for(for_)

	Called when FOR loop ends. Default implementation does nothing.

	
end_for_iteration(iteration)

	Called when FOR loop iteration ends. Default implementation does nothing.

	
end_if(if_)

	Called when IF/ELSE structure ends. Default implementation does nothing.

	
end_if_branch(branch)

	Called when IF/ELSE branch ends. Default implementation does nothing.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_for(for_)

	Called when FOR loop starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_for_iteration(iteration)

	Called when FOR loop iteration starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if(if_)

	Called when IF/ELSE structure starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if_branch(branch)

	Called when IF/ELSE branch starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_for(for_)

	Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without
calling start_for() or end_for() nor visiting body.

	
visit_for_iteration(iteration)

	Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side
there are no iterations.

Can be overridden to allow modifying the passed in iteration without
calling start_for_iteration() or end_for_iteration() nor visiting
body.

	
visit_if(if_)

	Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches
are in its body and visited using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without
calling start_if() or end_if() nor visiting branches.

	
visit_if_branch(branch)

	Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without
calling start_if_branch() or end_if_branch() nor visiting body.

	
visit_message(msg)

	Implements visiting messages.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

robot.model.stats module

	
class robot.model.stats.Stat(name)[source]

	Bases: robot.utils.sortable.Sortable

Generic statistic object used for storing all the statistic values.

	
name = None

	Human readable identifier of the object these statistics
belong to. All Tests for
TotalStatistics,
long name of the suite for
SuiteStatistics
or name of the tag for
TagStatistics

	
passed = None

	Number of passed tests.

	
failed = None

	Number of failed tests.

	
skipped = None

	Number of skipped tests.

	
elapsed = None

	Number of milliseconds it took to execute.

	
get_attributes(include_label=False, include_elapsed=False, exclude_empty=True, values_as_strings=False, html_escape=False)[source]

	

	
total

	

	
add_test(test)[source]

	

	
visit(visitor)[source]

	

	
class robot.model.stats.TotalStat(name)[source]

	Bases: robot.model.stats.Stat

Stores statistic values for a test run.

	
type = 'total'

	

	
add_test(test)

	

	
get_attributes(include_label=False, include_elapsed=False, exclude_empty=True, values_as_strings=False, html_escape=False)

	

	
total

	

	
visit(visitor)

	

	
class robot.model.stats.SuiteStat(suite)[source]

	Bases: robot.model.stats.Stat

Stores statistics values for a single suite.

	
type = 'suite'

	

	
id = None

	Identifier of the suite, e.g. s1-s2.

	
elapsed = None

	Number of milliseconds it took to execute this suite,
including sub-suites.

	
add_stat(other)[source]

	

	
add_test(test)

	

	
get_attributes(include_label=False, include_elapsed=False, exclude_empty=True, values_as_strings=False, html_escape=False)

	

	
total

	

	
visit(visitor)

	

	
class robot.model.stats.TagStat(name, doc='', links=None, combined=None)[source]

	Bases: robot.model.stats.Stat

Stores statistic values for a single tag.

	
type = 'tag'

	

	
doc = None

	Documentation of tag as a string.

	
links = None

	List of tuples in which the first value is the link URL and
the second is the link title. An empty list by default.

	
combined = None

	Pattern as a string if the tag is combined, None otherwise.

	
info

	Returns additional information of the tag statistics
are about. Either combined or an empty string.

	
add_test(test)

	

	
get_attributes(include_label=False, include_elapsed=False, exclude_empty=True, values_as_strings=False, html_escape=False)

	

	
total

	

	
visit(visitor)

	

	
class robot.model.stats.CombinedTagStat(pattern, name=None, doc='', links=None)[source]

	Bases: robot.model.stats.TagStat

	
match(tags)[source]

	

	
add_test(test)

	

	
get_attributes(include_label=False, include_elapsed=False, exclude_empty=True, values_as_strings=False, html_escape=False)

	

	
info

	Returns additional information of the tag statistics
are about. Either combined or an empty string.

	
total

	

	
type = 'tag'

	

	
visit(visitor)

	

robot.model.suitestatistics module

	
class robot.model.suitestatistics.SuiteStatistics(suite)[source]

	Bases: object

Container for suite statistics.

	
stat = None

	Instance of SuiteStat.

	
suites = None

	List of TestSuite objects.

	
visit(visitor)[source]

	

	
class robot.model.suitestatistics.SuiteStatisticsBuilder(suite_stat_level)[source]

	Bases: object

	
current

	

	
start_suite(suite)[source]

	

	
add_test(test)[source]

	

	
end_suite()[source]

	

robot.model.tags module

	
class robot.model.tags.Tags(tags=None)[source]

	Bases: object

	
add(tags)[source]

	

	
remove(tags)[source]

	

	
match(tags)[source]

	

	
class robot.model.tags.TagPatterns(patterns)[source]

	Bases: object

	
match(tags)[source]

	

	
robot.model.tags.TagPattern(pattern)[source]

	

	
class robot.model.tags.SingleTagPattern(pattern)[source]

	Bases: object

	
match(tags)[source]

	

	
class robot.model.tags.AndTagPattern(patterns)[source]

	Bases: object

	
match(tags)[source]

	

	
class robot.model.tags.OrTagPattern(patterns)[source]

	Bases: object

	
match(tags)[source]

	

	
class robot.model.tags.NotTagPattern(must_match, *must_not_match)[source]

	Bases: object

	
match(tags)[source]

	

robot.model.tagsetter module

	
class robot.model.tagsetter.TagSetter(add=None, remove=None)[source]

	Bases: robot.model.visitor.SuiteVisitor

	
start_suite(suite)[source]

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_test(test)[source]

	Implements traversing through tests.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
visit_keyword(keyword)[source]

	Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
end_for(for_)

	Called when FOR loop ends. Default implementation does nothing.

	
end_for_iteration(iteration)

	Called when FOR loop iteration ends. Default implementation does nothing.

	
end_if(if_)

	Called when IF/ELSE structure ends. Default implementation does nothing.

	
end_if_branch(branch)

	Called when IF/ELSE branch ends. Default implementation does nothing.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_for(for_)

	Called when FOR loop starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_for_iteration(iteration)

	Called when FOR loop iteration starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if(if_)

	Called when IF/ELSE structure starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if_branch(branch)

	Called when IF/ELSE branch starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_for(for_)

	Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without
calling start_for() or end_for() nor visiting body.

	
visit_for_iteration(iteration)

	Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side
there are no iterations.

Can be overridden to allow modifying the passed in iteration without
calling start_for_iteration() or end_for_iteration() nor visiting
body.

	
visit_if(if_)

	Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches
are in its body and visited using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without
calling start_if() or end_if() nor visiting branches.

	
visit_if_branch(branch)

	Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without
calling start_if_branch() or end_if_branch() nor visiting body.

	
visit_message(msg)

	Implements visiting messages.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

robot.model.tagstatistics module

	
class robot.model.tagstatistics.TagStatistics(combined_stats)[source]

	Bases: object

Container for tag statistics.

	
tags = None

	Dictionary, where key is the name of the tag as a string and value
is an instance of TagStat.

	
combined = None

	List of CombinedTagStat objects.

	
visit(visitor)[source]

	

	
class robot.model.tagstatistics.TagStatisticsBuilder(included=None, excluded=None, combined=None, docs=None, links=None)[source]

	Bases: object

	
add_test(test)[source]

	

	
class robot.model.tagstatistics.TagStatInfo(docs=None, links=None)[source]

	Bases: object

	
get_stat(tag)[source]

	

	
get_combined_stats(combined=None)[source]

	

	
get_doc(tag)[source]

	

	
get_links(tag)[source]

	

	
class robot.model.tagstatistics.TagStatDoc(pattern, doc)[source]

	Bases: object

	
match(tag)[source]

	

	
class robot.model.tagstatistics.TagStatLink(pattern, link, title)[source]

	Bases: object

	
match(tag)[source]

	

	
get_link(tag)[source]

	

robot.model.testcase module

	
class robot.model.testcase.TestCase(name='', doc='', tags=None, timeout=None, parent=None)[source]

	Bases: robot.model.modelobject.ModelObject

Base model for a single test case.

Extended by robot.running.model.TestCase and
robot.result.model.TestCase.

	
body_class

	alias of robot.model.body.Body

	
fixture_class

	alias of robot.model.keyword.Keyword

	
repr_args = ('name',)

	

	
name

	

	
doc

	

	
timeout

	

	
parent

	

	
body

	Test case body as a Body object.

	
tags

	Test tags as a Tags object.

	
setup

	Test setup as a Keyword object.

This attribute is a Keyword object also when a test has no setup
but in that case its truth value is False.

Setup can be modified by setting attributes directly:

test.setup.name = 'Example'
test.setup.args = ('First', 'Second')

Alternatively the config() method can be used to set multiple
attributes in one call:

test.setup.config(name='Example', args=('First', 'Second'))

The easiest way to reset the whole setup is setting it to None.
It will automatically recreate the underlying Keyword object:

test.setup = None

New in Robot Framework 4.0. Earlier setup was accessed like
test.keywords.setup.

	
teardown

	Test teardown as a Keyword object.

See setup for more information.

	
keywords

	Deprecated since Robot Framework 4.0

Use body, setup or teardown instead.

	
id

	Test case id in format like s1-t3.

See TestSuite.id for
more information.

	
longname

	Test name prefixed with the long name of the parent suite.

	
source

	

	
visit(visitor)[source]

	Visitor interface entry-point.

	
config(**attributes)

	Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting
obj.name = 'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

	
copy(**attributes)

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
deepcopy(**attributes)

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
class robot.model.testcase.TestCases(test_class=<class 'robot.model.testcase.TestCase'>, parent=None, tests=None)[source]

	Bases: robot.model.itemlist.ItemList

	
append(item)

	

	
clear()

	

	
count(item)

	

	
create(*args, **kwargs)

	

	
extend(items)

	

	
index(item, *start_and_end)

	

	
insert(index, item)

	

	
pop(*index)

	

	
remove(item)

	

	
reverse()

	

	
sort()

	

	
visit(visitor)

	

robot.model.testsuite module

	
class robot.model.testsuite.TestSuite(name='', doc='', metadata=None, source=None, rpa=False, parent=None)[source]

	Bases: robot.model.modelobject.ModelObject

Base model for single suite.

Extended by robot.running.model.TestSuite and
robot.result.model.TestSuite.

	
test_class

	alias of robot.model.testcase.TestCase

	
fixture_class

	alias of robot.model.keyword.Keyword

	
repr_args = ('name',)

	

	
doc

	

	
source

	Path to the source file or directory.

	
parent

	Parent suite. None with the root suite.

	
rpa

	True when RPA mode is enabled.

	
name

	Test suite name. If not set, constructed from child suite names.

	
longname

	Suite name prefixed with the long name of the parent suite.

	
metadata

	Free test suite metadata as a dictionary.

	
suites

	Child suites as a TestSuites object.

	
tests

	Tests as a TestCases object.

	
setup

	Suite setup as a Keyword object.

This attribute is a Keyword object also when a suite has no setup
but in that case its truth value is False.

Setup can be modified by setting attributes directly:

suite.setup.name = 'Example'
suite.setup.args = ('First', 'Second')

Alternatively the config() method can be used to set multiple
attributes in one call:

suite.setup.config(name='Example', args=('First', 'Second'))

The easiest way to reset the whole setup is setting it to None.
It will automatically recreate the underlying Keyword object:

suite.setup = None

New in Robot Framework 4.0. Earlier setup was accessed like
suite.keywords.setup.

	
teardown

	Suite teardown as a Keyword object.

See setup for more information.

	
keywords

	Deprecated since Robot Framework 4.0

Use setup or teardown instead.

	
id

	An automatically generated unique id.

The root suite has id s1, its child suites have ids s1-s1,
s1-s2, …, their child suites get ids s1-s1-s1, s1-s1-s2,
…, s1-s2-s1, …, and so on.

The first test in a suite has an id like s1-t1, the second has an
id s1-t2, and so on. Similarly keywords in suites (setup/teardown)
and in tests get ids like s1-k1, s1-t1-k1, and s1-s4-t2-k5.

	
test_count

	Number of the tests in this suite, recursively.

	
has_tests

	

	
set_tags(add=None, remove=None, persist=False)[source]

	Add and/or remove specified tags to the tests in this suite.

	Parameters

	
	add – Tags to add as a list or, if adding only one,
as a single string.

	remove – Tags to remove as a list or as a single string.
Can be given as patterns where * and ? work as wildcards.

	persist – Add/remove specified tags also to new tests added
to this suite in the future.

	
filter(included_suites=None, included_tests=None, included_tags=None, excluded_tags=None)[source]

	Select test cases and remove others from this suite.

Parameters have the same semantics as --suite, --test,
--include, and --exclude command line options. All of them
can be given as a list of strings, or when selecting only one, as
a single string.

Child suites that contain no tests after filtering are automatically
removed.

Example:

suite.filter(included_tests=['Test 1', '* Example'],
 included_tags='priority-1')

	
config(**attributes)

	Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting
obj.name = 'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

	
configure(**options)[source]

	A shortcut to configure a suite using one method call.

Can only be used with the root test suite.

	Parameters

	options – Passed to
SuiteConfigurer that will then
set suite attributes, call filter(), etc. as needed.

Not to be confused with config() method that suites, tests,
and keywords have to make it possible to set multiple attributes in
one call.

	
copy(**attributes)

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
deepcopy(**attributes)

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
remove_empty_suites(preserve_direct_children=False)[source]

	Removes all child suites not containing any tests, recursively.

	
visit(visitor)[source]

	Visitor interface entry-point.

	
class robot.model.testsuite.TestSuites(suite_class=<class 'robot.model.testsuite.TestSuite'>, parent=None, suites=None)[source]

	Bases: robot.model.itemlist.ItemList

	
append(item)

	

	
clear()

	

	
count(item)

	

	
create(*args, **kwargs)

	

	
extend(items)

	

	
index(item, *start_and_end)

	

	
insert(index, item)

	

	
pop(*index)

	

	
remove(item)

	

	
reverse()

	

	
sort()

	

	
visit(visitor)

	

robot.model.totalstatistics module

	
class robot.model.totalstatistics.TotalStatistics(rpa=False)[source]

	Bases: object

Container for total statistics.

	
visit(visitor)[source]

	

	
total

	

	
passed

	

	
skipped

	

	
failed

	

	
add_test(test)[source]

	

	
message

	String representation of the statistics.

	For example::

	2 tests, 1 passed, 1 failed

	
class robot.model.totalstatistics.TotalStatisticsBuilder(suite=None, rpa=False)[source]

	Bases: robot.model.visitor.SuiteVisitor

	
add_test(test)[source]

	

	
visit_test(test)[source]

	Implements traversing through tests.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
visit_keyword(kw)[source]

	Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
end_for(for_)

	Called when FOR loop ends. Default implementation does nothing.

	
end_for_iteration(iteration)

	Called when FOR loop iteration ends. Default implementation does nothing.

	
end_if(if_)

	Called when IF/ELSE structure ends. Default implementation does nothing.

	
end_if_branch(branch)

	Called when IF/ELSE branch ends. Default implementation does nothing.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_for(for_)

	Called when FOR loop starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_for_iteration(iteration)

	Called when FOR loop iteration starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if(if_)

	Called when IF/ELSE structure starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if_branch(branch)

	Called when IF/ELSE branch starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_for(for_)

	Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without
calling start_for() or end_for() nor visiting body.

	
visit_for_iteration(iteration)

	Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side
there are no iterations.

Can be overridden to allow modifying the passed in iteration without
calling start_for_iteration() or end_for_iteration() nor visiting
body.

	
visit_if(if_)

	Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches
are in its body and visited using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without
calling start_if() or end_if() nor visiting branches.

	
visit_if_branch(branch)

	Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without
calling start_if_branch() or end_if_branch() nor visiting body.

	
visit_message(msg)

	Implements visiting messages.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

robot.model.visitor module

Interface to ease traversing through a test suite structure.

Visitors make it easy to modify test suite structures or to collect information
from them. They work both with the executable model
and the result model, but the objects passed to
the visitor methods are slightly different depending on the model they are
used with. The main differences are that on the execution side keywords do
not have child keywords nor messages, and that only the result objects have
status related attributes like status and starttime.

This module contains SuiteVisitor that implements the core logic to
visit a test suite structure, and the result package contains
ResultVisitor that supports visiting the whole
test execution result structure. Both of these visitors should be imported
via the robot.api package when used by external code.

Visitor algorithm

All suite, test, keyword and message objects have a visit() method that
accepts a visitor instance. These methods will then call the correct visitor
method visit_suite(), visit_test(),
visit_keyword() or visit_message(),
depending on the instance where the visit() method exists.

The recommended and definitely easiest way to implement a visitor is extending
the SuiteVisitor base class. The default implementation of its
visit_x() methods take care of traversing child elements of the object
x recursively. A visit_x() method first calls a corresponding
start_x() method (e.g. visit_suite() calls start_suite()),
then calls visit() for all child objects of the x object, and
finally calls the corresponding end_x() method. The default
implementations of start_x() and end_x() do nothing.

Visitors extending the SuiteVisitor can stop visiting at a certain
level either by overriding suitable visit_x() method or by returning
an explicit False from any start_x() method.

Examples

The following example visitor modifies the test suite structure it visits.
It could be used, for example, with Robot Framework’s --prerunmodifier
option to modify test data before execution.

"""Pre-run modifier that selects only every Xth test for execution.

Starts from the first test by default. Tests are selected per suite.
"""

from robot.api import SuiteVisitor

class SelectEveryXthTest(SuiteVisitor):

 def __init__(self, x: int, start: int = 0):
 self.x = x
 self.start = start

 def start_suite(self, suite):
 """Modify suite's tests to contain only every Xth."""
 suite.tests = suite.tests[self.start::self.x]

 def end_suite(self, suite):
 """Remove suites that are empty after removing tests."""
 suite.suites = [s for s in suite.suites if s.test_count > 0]

 def visit_test(self, test):
 """Avoid visiting tests and their keywords to save a little time."""
 pass

For more examples it is possible to look at the source code of visitors used
internally by Robot Framework itself. Some good examples are
TagSetter and
keyword removers.

	
class robot.model.visitor.SuiteVisitor[source]

	Bases: object

Abstract class to ease traversing through the test suite structure.

See the module level documentation for more
information and an example.

	
visit_suite(suite)[source]

	Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
start_suite(suite)[source]

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_suite(suite)[source]

	Called when suite ends. Default implementation does nothing.

	
visit_test(test)[source]

	Implements traversing through tests.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
start_test(test)[source]

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_test(test)[source]

	Called when test ends. Default implementation does nothing.

	
visit_keyword(kw)[source]

	Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
start_keyword(keyword)[source]

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_keyword(keyword)[source]

	Called when keyword ends. Default implementation does nothing.

	
visit_for(for_)[source]

	Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without
calling start_for() or end_for() nor visiting body.

	
start_for(for_)[source]

	Called when FOR loop starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_for(for_)[source]

	Called when FOR loop ends. Default implementation does nothing.

	
visit_for_iteration(iteration)[source]

	Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side
there are no iterations.

Can be overridden to allow modifying the passed in iteration without
calling start_for_iteration() or end_for_iteration() nor visiting
body.

	
start_for_iteration(iteration)[source]

	Called when FOR loop iteration starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_for_iteration(iteration)[source]

	Called when FOR loop iteration ends. Default implementation does nothing.

	
visit_if(if_)[source]

	Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches
are in its body and visited using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without
calling start_if() or end_if() nor visiting branches.

	
start_if(if_)[source]

	Called when IF/ELSE structure starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_if(if_)[source]

	Called when IF/ELSE structure ends. Default implementation does nothing.

	
visit_if_branch(branch)[source]

	Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without
calling start_if_branch() or end_if_branch() nor visiting body.

	
start_if_branch(branch)[source]

	Called when IF/ELSE branch starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_if_branch(branch)[source]

	Called when IF/ELSE branch ends. Default implementation does nothing.

	
visit_message(msg)[source]

	Implements visiting messages.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
start_message(msg)[source]

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_message(msg)[source]

	Called when message ends. Default implementation does nothing.

robot.output package

Package for internal logging and other output.

Not part of the public API, and also subject to change in the future when
test execution is refactored.

Subpackages

	robot.output.console package
	Submodules

	robot.output.console.dotted module

	robot.output.console.highlighting module

	robot.output.console.quiet module

	robot.output.console.verbose module

Submodules

robot.output.debugfile module

	
robot.output.debugfile.DebugFile(path)[source]

	

robot.output.filelogger module

	
class robot.output.filelogger.FileLogger(path, level)[source]

	Bases: robot.output.loggerhelper.AbstractLogger

	
message(msg)[source]

	

	
start_suite(suite)[source]

	

	
end_suite(suite)[source]

	

	
start_test(test)[source]

	

	
end_test(test)[source]

	

	
start_keyword(kw)[source]

	

	
end_keyword(kw)[source]

	

	
output_file(name, path)[source]

	

	
close()[source]

	

	
debug(msg)

	

	
error(msg)

	

	
fail(msg)

	

	
info(msg)

	

	
set_level(level)

	

	
skip(msg)

	

	
trace(msg)

	

	
warn(msg)

	

	
write(message, level, html=False)

	

robot.output.librarylogger module

Implementation of the public test library logging API.

This is exposed via robot.api.logger. Implementation must reside
here to avoid cyclic imports.

	
robot.output.librarylogger.write(msg, level, html=False)[source]

	

	
robot.output.librarylogger.trace(msg, html=False)[source]

	

	
robot.output.librarylogger.debug(msg, html=False)[source]

	

	
robot.output.librarylogger.info(msg, html=False, also_console=False)[source]

	

	
robot.output.librarylogger.warn(msg, html=False)[source]

	

	
robot.output.librarylogger.error(msg, html=False)[source]

	

	
robot.output.librarylogger.console(msg, newline=True, stream='stdout')[source]

	

robot.output.listenerarguments module

	
class robot.output.listenerarguments.ListenerArguments(arguments)[source]

	Bases: object

	
get_arguments(version)[source]

	

	
classmethod by_method_name(name, arguments)[source]

	

	
class robot.output.listenerarguments.MessageArguments(arguments)[source]

	Bases: robot.output.listenerarguments.ListenerArguments

	
classmethod by_method_name(name, arguments)

	

	
get_arguments(version)

	

	
class robot.output.listenerarguments.StartSuiteArguments(arguments)[source]

	Bases: robot.output.listenerarguments._ListenerArgumentsFromItem

	
classmethod by_method_name(name, arguments)

	

	
get_arguments(version)

	

	
class robot.output.listenerarguments.EndSuiteArguments(arguments)[source]

	Bases: robot.output.listenerarguments.StartSuiteArguments

	
classmethod by_method_name(name, arguments)

	

	
get_arguments(version)

	

	
class robot.output.listenerarguments.StartTestArguments(arguments)[source]

	Bases: robot.output.listenerarguments._ListenerArgumentsFromItem

	
classmethod by_method_name(name, arguments)

	

	
get_arguments(version)

	

	
class robot.output.listenerarguments.EndTestArguments(arguments)[source]

	Bases: robot.output.listenerarguments.StartTestArguments

	
classmethod by_method_name(name, arguments)

	

	
get_arguments(version)

	

	
class robot.output.listenerarguments.StartKeywordArguments(arguments)[source]

	Bases: robot.output.listenerarguments._ListenerArgumentsFromItem

	
classmethod by_method_name(name, arguments)

	

	
get_arguments(version)

	

	
class robot.output.listenerarguments.EndKeywordArguments(arguments)[source]

	Bases: robot.output.listenerarguments.StartKeywordArguments

	
classmethod by_method_name(name, arguments)

	

	
get_arguments(version)

	

robot.output.listenermethods module

	
class robot.output.listenermethods.ListenerMethods(method_name, listeners)[source]

	Bases: object

	
class robot.output.listenermethods.LibraryListenerMethods(method_name)[source]

	Bases: object

	
new_suite_scope()[source]

	

	
discard_suite_scope()[source]

	

	
register(listeners, library)[source]

	

	
unregister(library)[source]

	

	
class robot.output.listenermethods.ListenerMethod(method, listener, library=None)[source]

	Bases: object

	
called = False

	

robot.output.listeners module

	
class robot.output.listeners.Listeners(listeners, log_level='INFO')[source]

	Bases: object

	
set_log_level(level)[source]

	

	
start_keyword(kw)[source]

	

	
end_keyword(kw)[source]

	

	
log_message(msg)[source]

	

	
imported(import_type, name, attrs)[source]

	

	
output_file(file_type, path)[source]

	

	
class robot.output.listeners.LibraryListeners(log_level='INFO')[source]

	Bases: object

	
register(listeners, library)[source]

	

	
unregister(library, close=False)[source]

	

	
new_suite_scope()[source]

	

	
discard_suite_scope()[source]

	

	
set_log_level(level)[source]

	

	
log_message(msg)[source]

	

	
imported(import_type, name, attrs)[source]

	

	
output_file(file_type, path)[source]

	

	
class robot.output.listeners.ListenerProxy(listener, method_names, prefix=None)[source]

	Bases: robot.output.loggerhelper.AbstractLoggerProxy

	
classmethod import_listeners(listeners, method_names, prefix=None, raise_on_error=False)[source]

	

robot.output.logger module

	
class robot.output.logger.Logger(register_console_logger=True)[source]

	Bases: robot.output.loggerhelper.AbstractLogger

A global logger proxy to delegating messages to registered loggers.

Whenever something is written to LOGGER in code, all registered loggers are
notified. Messages are also cached and cached messages written to new
loggers when they are registered.

NOTE: This API is likely to change in future versions.

	
start_loggers

	

	
end_loggers

	

	
register_console_logger(type='verbose', width=78, colors='AUTO', markers='AUTO', stdout=None, stderr=None)[source]

	

	
unregister_console_logger()[source]

	

	
register_syslog(path=None, level='INFO')[source]

	

	
register_xml_logger(logger)[source]

	

	
unregister_xml_logger()[source]

	

	
register_listeners(listeners, library_listeners)[source]

	

	
register_logger(*loggers)[source]

	

	
unregister_logger(*loggers)[source]

	

	
disable_message_cache()[source]

	

	
register_error_listener(listener)[source]

	

	
message(msg)[source]

	Messages about what the framework is doing, warnings, errors, …

	
cache_only

	

	
delayed_logging

	

	
log_message(msg)

	Messages about what the framework is doing, warnings, errors, …

	
log_output(output)[source]

	

	
enable_library_import_logging()[source]

	

	
disable_library_import_logging()[source]

	

	
start_suite(suite)[source]

	

	
end_suite(suite)[source]

	

	
start_test(test)[source]

	

	
end_test(test)[source]

	

	
start_keyword(keyword)[source]

	

	
end_keyword(keyword)[source]

	

	
imported(import_type, name, **attrs)[source]

	

	
output_file(file_type, path)[source]

	Finished output, report, log, debug, or xunit file

	
close()[source]

	

	
debug(msg)

	

	
error(msg)

	

	
fail(msg)

	

	
info(msg)

	

	
set_level(level)

	

	
skip(msg)

	

	
trace(msg)

	

	
warn(msg)

	

	
write(message, level, html=False)

	

	
class robot.output.logger.LoggerProxy(logger, method_names=None, prefix=None)[source]

	Bases: robot.output.loggerhelper.AbstractLoggerProxy

	
start_keyword(kw)[source]

	

	
end_keyword(kw)[source]

	

robot.output.loggerhelper module

	
class robot.output.loggerhelper.AbstractLogger(level='TRACE')[source]

	Bases: object

	
set_level(level)[source]

	

	
trace(msg)[source]

	

	
debug(msg)[source]

	

	
info(msg)[source]

	

	
warn(msg)[source]

	

	
fail(msg)[source]

	

	
skip(msg)[source]

	

	
error(msg)[source]

	

	
write(message, level, html=False)[source]

	

	
message(msg)[source]

	

	
class robot.output.loggerhelper.Message(message, level='INFO', html=False, timestamp=None)[source]

	Bases: robot.model.message.Message

	
message

	

	
resolve_delayed_message()[source]

	

	
ELSE = 'ELSE'

	

	
ELSE_IF = 'ELSE IF'

	

	
FOR = 'FOR'

	

	
FOR_ITERATION = 'FOR ITERATION'

	

	
IF = 'IF'

	

	
IF_ELSE_ROOT = 'IF/ELSE ROOT'

	

	
KEYWORD = 'KEYWORD'

	

	
MESSAGE = 'MESSAGE'

	

	
SETUP = 'SETUP'

	

	
TEARDOWN = 'TEARDOWN'

	

	
config(**attributes)

	Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting
obj.name = 'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

	
copy(**attributes)

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
deepcopy(**attributes)

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
html

	

	
html_message

	Returns the message content as HTML.

	
id

	

	
level

	

	
parent

	

	
repr_args = ('message', 'level')

	

	
timestamp

	

	
type = 'MESSAGE'

	

	
visit(visitor)[source]

	Visitor interface entry-point.

	
class robot.output.loggerhelper.IsLogged(level)[source]

	Bases: object

	
set_level(level)[source]

	

	
class robot.output.loggerhelper.AbstractLoggerProxy(logger, method_names=None, prefix=None)[source]

	Bases: object

robot.output.output module

	
class robot.output.output.Output(settings)[source]

	Bases: robot.output.loggerhelper.AbstractLogger

	
register_error_listener(listener)[source]

	

	
close(result)[source]

	

	
start_suite(suite)[source]

	

	
end_suite(suite)[source]

	

	
start_test(test)[source]

	

	
end_test(test)[source]

	

	
start_keyword(kw)[source]

	

	
end_keyword(kw)[source]

	

	
message(msg)[source]

	

	
set_log_level(level)[source]

	

	
debug(msg)

	

	
error(msg)

	

	
fail(msg)

	

	
info(msg)

	

	
set_level(level)

	

	
skip(msg)

	

	
trace(msg)

	

	
warn(msg)

	

	
write(message, level, html=False)

	

robot.output.pyloggingconf module

	
robot.output.pyloggingconf.robot_handler_enabled(*args, **kwds)[source]

	

	
robot.output.pyloggingconf.set_level(level)[source]

	

	
class robot.output.pyloggingconf.RobotHandler(level=0)[source]

	Bases: logging.Handler

Initializes the instance - basically setting the formatter to None
and the filter list to empty.

	
emit(record)[source]

	Do whatever it takes to actually log the specified logging record.

This version is intended to be implemented by subclasses and so
raises a NotImplementedError.

	
acquire()

	Acquire the I/O thread lock.

	
addFilter(filter)

	Add the specified filter to this handler.

	
close()

	Tidy up any resources used by the handler.

This version removes the handler from an internal map of handlers,
_handlers, which is used for handler lookup by name. Subclasses
should ensure that this gets called from overridden close()
methods.

	
createLock()

	Acquire a thread lock for serializing access to the underlying I/O.

	
filter(record)

	Determine if a record is loggable by consulting all the filters.

The default is to allow the record to be logged; any filter can veto
this and the record is then dropped. Returns a zero value if a record
is to be dropped, else non-zero.

	
flush()

	Ensure all logging output has been flushed.

This version does nothing and is intended to be implemented by
subclasses.

	
format(record)

	Format the specified record.

If a formatter is set, use it. Otherwise, use the default formatter
for the module.

	
get_name()

	

	
handle(record)

	Conditionally emit the specified logging record.

Emission depends on filters which may have been added to the handler.
Wrap the actual emission of the record with acquisition/release of
the I/O thread lock. Returns whether the filter passed the record for
emission.

	
handleError(record)

	Handle errors which occur during an emit() call.

This method should be called from handlers when an exception is
encountered during an emit() call. If raiseExceptions is false,
exceptions get silently ignored. This is what is mostly wanted
for a logging system - most users will not care about errors in
the logging system, they are more interested in application errors.
You could, however, replace this with a custom handler if you wish.
The record which was being processed is passed in to this method.

	
name

	

	
release()

	Release the I/O thread lock.

	
removeFilter(filter)

	Remove the specified filter from this handler.

	
setFormatter(fmt)

	Set the formatter for this handler.

	
setLevel(level)

	Set the logging level of this handler.

	
set_name(name)

	

robot.output.stdoutlogsplitter module

	
class robot.output.stdoutlogsplitter.StdoutLogSplitter(output)[source]

	Bases: object

Splits messages logged through stdout (or stderr) into Message objects

robot.output.xmllogger module

	
class robot.output.xmllogger.XmlLogger(path, log_level='TRACE', rpa=False, generator='Robot')[source]

	Bases: robot.result.visitor.ResultVisitor

	
close()[source]

	

	
set_log_level(level)[source]

	

	
message(msg)[source]

	

	
log_message(msg)[source]

	

	
start_keyword(kw)[source]

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_keyword(kw)[source]

	Called when keyword ends. Default implementation does nothing.

	
start_if(if_)[source]

	Called when IF/ELSE structure starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_if(if_)[source]

	Called when IF/ELSE structure ends. Default implementation does nothing.

	
start_if_branch(branch)[source]

	Called when IF/ELSE branch starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_if_branch(branch)[source]

	Called when IF/ELSE branch ends. Default implementation does nothing.

	
start_for(for_)[source]

	Called when FOR loop starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_for(for_)[source]

	Called when FOR loop ends. Default implementation does nothing.

	
start_for_iteration(iteration)[source]

	Called when FOR loop iteration starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_for_iteration(iteration)[source]

	Called when FOR loop iteration ends. Default implementation does nothing.

	
start_test(test)[source]

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_test(test)[source]

	Called when test ends. Default implementation does nothing.

	
start_suite(suite)[source]

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_suite(suite)[source]

	Called when suite ends. Default implementation does nothing.

	
start_statistics(stats)[source]

	

	
end_statistics(stats)[source]

	

	
start_total_statistics(total_stats)[source]

	

	
end_total_statistics(total_stats)[source]

	

	
start_tag_statistics(tag_stats)[source]

	

	
end_tag_statistics(tag_stats)[source]

	

	
start_suite_statistics(tag_stats)[source]

	

	
end_suite_statistics(tag_stats)[source]

	

	
visit_stat(stat)[source]

	

	
start_errors(errors=None)[source]

	

	
end_errors(errors=None)[source]

	

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_result(result)

	

	
end_stat(stat)

	

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_result(result)

	

	
start_stat(stat)

	

	
visit_errors(errors)

	

	
visit_for(for_)

	Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without
calling start_for() or end_for() nor visiting body.

	
visit_for_iteration(iteration)

	Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side
there are no iterations.

Can be overridden to allow modifying the passed in iteration without
calling start_for_iteration() or end_for_iteration() nor visiting
body.

	
visit_if(if_)

	Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches
are in its body and visited using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without
calling start_if() or end_if() nor visiting branches.

	
visit_if_branch(branch)

	Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without
calling start_if_branch() or end_if_branch() nor visiting body.

	
visit_keyword(kw)

	Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
visit_message(msg)

	Implements visiting messages.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_result(result)

	

	
visit_statistics(stats)

	

	
visit_suite(suite)

	Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
visit_suite_statistics(stats)

	

	
visit_tag_statistics(stats)

	

	
visit_test(test)

	Implements traversing through tests.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
visit_total_statistics(stats)

	

robot.output.console package

	
robot.output.console.ConsoleOutput(type='verbose', width=78, colors='AUTO', markers='AUTO', stdout=None, stderr=None)[source]

	

Submodules

robot.output.console.dotted module

	
class robot.output.console.dotted.DottedOutput(width=78, colors='AUTO', stdout=None, stderr=None)[source]

	Bases: object

	
start_suite(suite)[source]

	

	
end_test(test)[source]

	

	
end_suite(suite)[source]

	

	
message(msg)[source]

	

	
output_file(name, path)[source]

	

	
class robot.output.console.dotted.StatusReporter(stream, width)[source]

	Bases: robot.model.visitor.SuiteVisitor

	
report(suite)[source]

	

	
visit_test(test)[source]

	Implements traversing through tests.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
end_for(for_)

	Called when FOR loop ends. Default implementation does nothing.

	
end_for_iteration(iteration)

	Called when FOR loop iteration ends. Default implementation does nothing.

	
end_if(if_)

	Called when IF/ELSE structure ends. Default implementation does nothing.

	
end_if_branch(branch)

	Called when IF/ELSE branch ends. Default implementation does nothing.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_for(for_)

	Called when FOR loop starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_for_iteration(iteration)

	Called when FOR loop iteration starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if(if_)

	Called when IF/ELSE structure starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if_branch(branch)

	Called when IF/ELSE branch starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_for(for_)

	Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without
calling start_for() or end_for() nor visiting body.

	
visit_for_iteration(iteration)

	Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side
there are no iterations.

Can be overridden to allow modifying the passed in iteration without
calling start_for_iteration() or end_for_iteration() nor visiting
body.

	
visit_if(if_)

	Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches
are in its body and visited using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without
calling start_if() or end_if() nor visiting branches.

	
visit_if_branch(branch)

	Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without
calling start_if_branch() or end_if_branch() nor visiting body.

	
visit_keyword(kw)

	Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
visit_message(msg)

	Implements visiting messages.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

robot.output.console.highlighting module

	
class robot.output.console.highlighting.HighlightingStream(stream, colors='AUTO')[source]

	Bases: object

	
write(text, flush=True)[source]

	

	
flush()[source]

	

	
highlight(text, status=None, flush=True)[source]

	

	
error(message, level)[source]

	

	
robot.output.console.highlighting.Highlighter(stream)[source]

	

	
class robot.output.console.highlighting.AnsiHighlighter(stream)[source]

	Bases: object

	
green()[source]

	

	
red()[source]

	

	
yellow()[source]

	

	
reset()[source]

	

	
class robot.output.console.highlighting.NoHighlighting(stream)[source]

	Bases: robot.output.console.highlighting.AnsiHighlighter

	
green()

	

	
red()

	

	
reset()

	

	
yellow()

	

	
class robot.output.console.highlighting.DosHighlighter(stream)[source]

	Bases: object

	
green()[source]

	

	
red()[source]

	

	
yellow()[source]

	

	
reset()[source]

	

robot.output.console.quiet module

	
class robot.output.console.quiet.QuietOutput(colors='AUTO', stderr=None)[source]

	Bases: object

	
message(msg)[source]

	

	
class robot.output.console.quiet.NoOutput[source]

	Bases: object

robot.output.console.verbose module

	
class robot.output.console.verbose.VerboseOutput(width=78, colors='AUTO', markers='AUTO', stdout=None, stderr=None)[source]

	Bases: object

	
start_suite(suite)[source]

	

	
end_suite(suite)[source]

	

	
start_test(test)[source]

	

	
end_test(test)[source]

	

	
start_keyword(kw)[source]

	

	
end_keyword(kw)[source]

	

	
message(msg)[source]

	

	
output_file(name, path)[source]

	

	
class robot.output.console.verbose.VerboseWriter(width=78, colors='AUTO', markers='AUTO', stdout=None, stderr=None)[source]

	Bases: object

	
info(name, doc, start_suite=False)[source]

	

	
suite_separator()[source]

	

	
test_separator()[source]

	

	
status(status, clear=False)[source]

	

	
message(message)[source]

	

	
keyword_marker(status)[source]

	

	
error(message, level, clear=False)[source]

	

	
output(name, path)[source]

	

	
class robot.output.console.verbose.KeywordMarker(highlighter, markers)[source]

	Bases: object

	
mark(status)[source]

	

	
reset_count()[source]

	

robot.parsing package

Module implementing test data parsing.

Public API is exposed via the robot.api.parsing module. See its documentation
for more information and examples. If external code needs to import something from
this module directly, issue should be submitted about exposing it explicitly via
robot.api.parsing.

Subpackages

	robot.parsing.lexer package
	Submodules

	robot.parsing.lexer.blocklexers module

	robot.parsing.lexer.context module

	robot.parsing.lexer.lexer module

	robot.parsing.lexer.sections module

	robot.parsing.lexer.settings module

	robot.parsing.lexer.statementlexers module

	robot.parsing.lexer.tokenizer module

	robot.parsing.lexer.tokens module

	robot.parsing.model package
	Submodules

	robot.parsing.model.blocks module

	robot.parsing.model.statements module

	robot.parsing.model.visitor module

	robot.parsing.parser package
	Submodules

	robot.parsing.parser.blockparsers module

	robot.parsing.parser.fileparser module

	robot.parsing.parser.parser module

Submodules

robot.parsing.suitestructure module

	
class robot.parsing.suitestructure.SuiteStructure(source=None, init_file=None, children=None)[source]

	Bases: object

	
is_directory

	

	
visit(visitor)[source]

	

	
class robot.parsing.suitestructure.SuiteStructureBuilder(included_extensions=('robot',), included_suites=None)[source]

	Bases: object

	
ignored_prefixes = ('_', '.')

	

	
ignored_dirs = ('CVS',)

	

	
build(paths)[source]

	

	
class robot.parsing.suitestructure.SuiteStructureVisitor[source]

	Bases: object

	
visit_file(structure)[source]

	

	
visit_directory(structure)[source]

	

	
start_directory(structure)[source]

	

	
end_directory(structure)[source]

	

robot.parsing.lexer package

Submodules

robot.parsing.lexer.blocklexers module

	
class robot.parsing.lexer.blocklexers.BlockLexer(ctx)[source]

	Bases: robot.parsing.lexer.statementlexers.Lexer

	
accepts_more(statement)[source]

	

	
input(statement)[source]

	

	
lexer_for(statement)[source]

	

	
lexer_classes()[source]

	

	
lex()[source]

	

	
handles(statement)

	

	
class robot.parsing.lexer.blocklexers.FileLexer(ctx)[source]

	Bases: robot.parsing.lexer.blocklexers.BlockLexer

	
lex()[source]

	

	
lexer_classes()[source]

	

	
accepts_more(statement)

	

	
handles(statement)

	

	
input(statement)

	

	
lexer_for(statement)

	

	
class robot.parsing.lexer.blocklexers.SectionLexer(ctx)[source]

	Bases: robot.parsing.lexer.blocklexers.BlockLexer

	
accepts_more(statement)[source]

	

	
handles(statement)

	

	
input(statement)

	

	
lex()

	

	
lexer_classes()

	

	
lexer_for(statement)

	

	
class robot.parsing.lexer.blocklexers.SettingSectionLexer(ctx)[source]

	Bases: robot.parsing.lexer.blocklexers.SectionLexer

	
handles(statement)[source]

	

	
lexer_classes()[source]

	

	
accepts_more(statement)

	

	
input(statement)

	

	
lex()

	

	
lexer_for(statement)

	

	
class robot.parsing.lexer.blocklexers.VariableSectionLexer(ctx)[source]

	Bases: robot.parsing.lexer.blocklexers.SectionLexer

	
handles(statement)[source]

	

	
lexer_classes()[source]

	

	
accepts_more(statement)

	

	
input(statement)

	

	
lex()

	

	
lexer_for(statement)

	

	
class robot.parsing.lexer.blocklexers.TestCaseSectionLexer(ctx)[source]

	Bases: robot.parsing.lexer.blocklexers.SectionLexer

	
handles(statement)[source]

	

	
lexer_classes()[source]

	

	
accepts_more(statement)

	

	
input(statement)

	

	
lex()

	

	
lexer_for(statement)

	

	
class robot.parsing.lexer.blocklexers.KeywordSectionLexer(ctx)[source]

	Bases: robot.parsing.lexer.blocklexers.SettingSectionLexer

	
handles(statement)[source]

	

	
lexer_classes()[source]

	

	
accepts_more(statement)

	

	
input(statement)

	

	
lex()

	

	
lexer_for(statement)

	

	
class robot.parsing.lexer.blocklexers.CommentSectionLexer(ctx)[source]

	Bases: robot.parsing.lexer.blocklexers.SectionLexer

	
handles(statement)[source]

	

	
lexer_classes()[source]

	

	
accepts_more(statement)

	

	
input(statement)

	

	
lex()

	

	
lexer_for(statement)

	

	
class robot.parsing.lexer.blocklexers.ImplicitCommentSectionLexer(ctx)[source]

	Bases: robot.parsing.lexer.blocklexers.SectionLexer

	
handles(statement)[source]

	

	
lexer_classes()[source]

	

	
accepts_more(statement)

	

	
input(statement)

	

	
lex()

	

	
lexer_for(statement)

	

	
class robot.parsing.lexer.blocklexers.ErrorSectionLexer(ctx)[source]

	Bases: robot.parsing.lexer.blocklexers.SectionLexer

	
handles(statement)[source]

	

	
lexer_classes()[source]

	

	
accepts_more(statement)

	

	
input(statement)

	

	
lex()

	

	
lexer_for(statement)

	

	
class robot.parsing.lexer.blocklexers.TestOrKeywordLexer(ctx)[source]

	Bases: robot.parsing.lexer.blocklexers.BlockLexer

	
name_type = NotImplemented

	

	
accepts_more(statement)[source]

	

	
input(statement)[source]

	

	
lexer_classes()[source]

	

	
handles(statement)

	

	
lex()

	

	
lexer_for(statement)

	

	
class robot.parsing.lexer.blocklexers.TestCaseLexer(ctx)[source]

	Bases: robot.parsing.lexer.blocklexers.TestOrKeywordLexer

	
name_type = 'TESTCASE NAME'

	

	
lex()[source]

	

	
accepts_more(statement)

	

	
handles(statement)

	

	
input(statement)

	

	
lexer_classes()

	

	
lexer_for(statement)

	

	
class robot.parsing.lexer.blocklexers.KeywordLexer(ctx)[source]

	Bases: robot.parsing.lexer.blocklexers.TestOrKeywordLexer

	
name_type = 'KEYWORD NAME'

	

	
accepts_more(statement)

	

	
handles(statement)

	

	
input(statement)

	

	
lex()

	

	
lexer_classes()

	

	
lexer_for(statement)

	

	
class robot.parsing.lexer.blocklexers.NestedBlockLexer(ctx)[source]

	Bases: robot.parsing.lexer.blocklexers.BlockLexer

	
accepts_more(statement)[source]

	

	
input(statement)[source]

	

	
handles(statement)

	

	
lex()

	

	
lexer_classes()

	

	
lexer_for(statement)

	

	
class robot.parsing.lexer.blocklexers.ForLexer(ctx)[source]

	Bases: robot.parsing.lexer.blocklexers.NestedBlockLexer

	
handles(statement)[source]

	

	
lexer_classes()[source]

	

	
accepts_more(statement)

	

	
input(statement)

	

	
lex()

	

	
lexer_for(statement)

	

	
class robot.parsing.lexer.blocklexers.IfLexer(ctx)[source]

	Bases: robot.parsing.lexer.blocklexers.NestedBlockLexer

	
handles(statement)[source]

	

	
lexer_classes()[source]

	

	
accepts_more(statement)

	

	
input(statement)

	

	
lex()

	

	
lexer_for(statement)

	

robot.parsing.lexer.context module

	
class robot.parsing.lexer.context.LexingContext(settings=None)[source]

	Bases: object

	
settings_class = None

	

	
lex_setting(statement)[source]

	

	
class robot.parsing.lexer.context.FileContext(settings=None)[source]

	Bases: robot.parsing.lexer.context.LexingContext

	
sections_class = None

	

	
setting_section(statement)[source]

	

	
variable_section(statement)[source]

	

	
test_case_section(statement)[source]

	

	
keyword_section(statement)[source]

	

	
comment_section(statement)[source]

	

	
keyword_context()[source]

	

	
lex_invalid_section(statement)[source]

	

	
lex_setting(statement)

	

	
settings_class = None

	

	
class robot.parsing.lexer.context.TestCaseFileContext(settings=None)[source]

	Bases: robot.parsing.lexer.context.FileContext

	
sections_class

	alias of robot.parsing.lexer.sections.TestCaseFileSections

	
settings_class

	alias of robot.parsing.lexer.settings.TestCaseFileSettings

	
test_case_context()[source]

	

	
comment_section(statement)

	

	
keyword_context()

	

	
keyword_section(statement)

	

	
lex_invalid_section(statement)

	

	
lex_setting(statement)

	

	
setting_section(statement)

	

	
test_case_section(statement)

	

	
variable_section(statement)

	

	
class robot.parsing.lexer.context.ResourceFileContext(settings=None)[source]

	Bases: robot.parsing.lexer.context.FileContext

	
sections_class

	alias of robot.parsing.lexer.sections.ResourceFileSections

	
settings_class

	alias of robot.parsing.lexer.settings.ResourceFileSettings

	
comment_section(statement)

	

	
keyword_context()

	

	
keyword_section(statement)

	

	
lex_invalid_section(statement)

	

	
lex_setting(statement)

	

	
setting_section(statement)

	

	
test_case_section(statement)

	

	
variable_section(statement)

	

	
class robot.parsing.lexer.context.InitFileContext(settings=None)[source]

	Bases: robot.parsing.lexer.context.FileContext

	
sections_class

	alias of robot.parsing.lexer.sections.InitFileSections

	
settings_class

	alias of robot.parsing.lexer.settings.InitFileSettings

	
comment_section(statement)

	

	
keyword_context()

	

	
keyword_section(statement)

	

	
lex_invalid_section(statement)

	

	
lex_setting(statement)

	

	
setting_section(statement)

	

	
test_case_section(statement)

	

	
variable_section(statement)

	

	
class robot.parsing.lexer.context.TestCaseContext(settings=None)[source]

	Bases: robot.parsing.lexer.context.LexingContext

	
template_set

	

	
lex_setting(statement)

	

	
settings_class = None

	

	
class robot.parsing.lexer.context.KeywordContext(settings=None)[source]

	Bases: robot.parsing.lexer.context.LexingContext

	
template_set

	

	
lex_setting(statement)

	

	
settings_class = None

	

robot.parsing.lexer.lexer module

	
robot.parsing.lexer.lexer.get_tokens(source, data_only=False, tokenize_variables=False)[source]

	Parses the given source to tokens.

	Parameters

	
	source – The source where to read the data. Can be a path to
a source file as a string or as pathlib.Path object, an already
opened file object, or Unicode text containing the date directly.
Source files must be UTF-8 encoded.

	data_only – When False (default), returns all tokens. When set
to True, omits separators, comments, continuation markers, and
other non-data tokens.

	tokenize_variables – When True, possible variables in keyword
arguments and elsewhere are tokenized. See the
tokenize_variables()
method for details.

Returns a generator that yields Token
instances.

	
robot.parsing.lexer.lexer.get_resource_tokens(source, data_only=False, tokenize_variables=False)[source]

	Parses the given source to resource file tokens.

Otherwise same as get_tokens() but the source is considered to be
a resource file. This affects, for example, what settings are valid.

	
robot.parsing.lexer.lexer.get_init_tokens(source, data_only=False, tokenize_variables=False)[source]

	Parses the given source to init file tokens.

Otherwise same as get_tokens() but the source is considered to be
a suite initialization file. This affects, for example, what settings are
valid.

	
class robot.parsing.lexer.lexer.Lexer(ctx, data_only=False, tokenize_variables=False)[source]

	Bases: object

	
input(source)[source]

	

	
get_tokens()[source]

	

robot.parsing.lexer.sections module

	
class robot.parsing.lexer.sections.Sections[source]

	Bases: object

	
setting_markers = ('Settings', 'Setting')

	

	
variable_markers = ('Variables', 'Variable')

	

	
test_case_markers = ('Test Cases', 'Test Case', 'Tasks', 'Task')

	

	
keyword_markers = ('Keywords', 'Keyword')

	

	
comment_markers = ('Comments', 'Comment')

	

	
setting(statement)[source]

	

	
variable(statement)[source]

	

	
test_case(statement)[source]

	

	
keyword(statement)[source]

	

	
comment(statement)[source]

	

	
lex_invalid(statement)[source]

	

	
class robot.parsing.lexer.sections.TestCaseFileSections[source]

	Bases: robot.parsing.lexer.sections.Sections

	
test_case(statement)[source]

	

	
comment(statement)

	

	
comment_markers = ('Comments', 'Comment')

	

	
keyword(statement)

	

	
keyword_markers = ('Keywords', 'Keyword')

	

	
lex_invalid(statement)

	

	
setting(statement)

	

	
setting_markers = ('Settings', 'Setting')

	

	
test_case_markers = ('Test Cases', 'Test Case', 'Tasks', 'Task')

	

	
variable(statement)

	

	
variable_markers = ('Variables', 'Variable')

	

	
class robot.parsing.lexer.sections.ResourceFileSections[source]

	Bases: robot.parsing.lexer.sections.Sections

	
comment(statement)

	

	
comment_markers = ('Comments', 'Comment')

	

	
keyword(statement)

	

	
keyword_markers = ('Keywords', 'Keyword')

	

	
lex_invalid(statement)

	

	
setting(statement)

	

	
setting_markers = ('Settings', 'Setting')

	

	
test_case(statement)

	

	
test_case_markers = ('Test Cases', 'Test Case', 'Tasks', 'Task')

	

	
variable(statement)

	

	
variable_markers = ('Variables', 'Variable')

	

	
class robot.parsing.lexer.sections.InitFileSections[source]

	Bases: robot.parsing.lexer.sections.Sections

	
comment(statement)

	

	
comment_markers = ('Comments', 'Comment')

	

	
keyword(statement)

	

	
keyword_markers = ('Keywords', 'Keyword')

	

	
lex_invalid(statement)

	

	
setting(statement)

	

	
setting_markers = ('Settings', 'Setting')

	

	
test_case(statement)

	

	
test_case_markers = ('Test Cases', 'Test Case', 'Tasks', 'Task')

	

	
variable(statement)

	

	
variable_markers = ('Variables', 'Variable')

	

robot.parsing.lexer.settings module

	
class robot.parsing.lexer.settings.Settings[source]

	Bases: object

	
names = ()

	

	
aliases = {}

	

	
multi_use = ('Metadata', 'Library', 'Resource', 'Variables')

	

	
single_value = ('Resource', 'Test Timeout', 'Test Template', 'Timeout', 'Template')

	

	
name_and_arguments = ('Metadata', 'Suite Setup', 'Suite Teardown', 'Test Setup', 'Test Teardown', 'Test Template', 'Setup', 'Teardown', 'Template', 'Resource', 'Variables')

	

	
name_arguments_and_with_name = ('Library',)

	

	
lex(statement)[source]

	

	
class robot.parsing.lexer.settings.TestCaseFileSettings[source]

	Bases: robot.parsing.lexer.settings.Settings

	
names = ('Documentation', 'Metadata', 'Suite Setup', 'Suite Teardown', 'Test Setup', 'Test Teardown', 'Test Template', 'Test Timeout', 'Force Tags', 'Default Tags', 'Library', 'Resource', 'Variables')

	

	
aliases = {'Task Setup': 'Test Setup', 'Task Teardown': 'Test Teardown', 'Task Template': 'Test Template', 'Task Timeout': 'Test Timeout'}

	

	
lex(statement)

	

	
multi_use = ('Metadata', 'Library', 'Resource', 'Variables')

	

	
name_and_arguments = ('Metadata', 'Suite Setup', 'Suite Teardown', 'Test Setup', 'Test Teardown', 'Test Template', 'Setup', 'Teardown', 'Template', 'Resource', 'Variables')

	

	
name_arguments_and_with_name = ('Library',)

	

	
single_value = ('Resource', 'Test Timeout', 'Test Template', 'Timeout', 'Template')

	

	
class robot.parsing.lexer.settings.InitFileSettings[source]

	Bases: robot.parsing.lexer.settings.Settings

	
names = ('Documentation', 'Metadata', 'Suite Setup', 'Suite Teardown', 'Test Setup', 'Test Teardown', 'Test Timeout', 'Force Tags', 'Library', 'Resource', 'Variables')

	

	
aliases = {}

	

	
lex(statement)

	

	
multi_use = ('Metadata', 'Library', 'Resource', 'Variables')

	

	
name_and_arguments = ('Metadata', 'Suite Setup', 'Suite Teardown', 'Test Setup', 'Test Teardown', 'Test Template', 'Setup', 'Teardown', 'Template', 'Resource', 'Variables')

	

	
name_arguments_and_with_name = ('Library',)

	

	
single_value = ('Resource', 'Test Timeout', 'Test Template', 'Timeout', 'Template')

	

	
class robot.parsing.lexer.settings.ResourceFileSettings[source]

	Bases: robot.parsing.lexer.settings.Settings

	
names = ('Documentation', 'Library', 'Resource', 'Variables')

	

	
aliases = {}

	

	
lex(statement)

	

	
multi_use = ('Metadata', 'Library', 'Resource', 'Variables')

	

	
name_and_arguments = ('Metadata', 'Suite Setup', 'Suite Teardown', 'Test Setup', 'Test Teardown', 'Test Template', 'Setup', 'Teardown', 'Template', 'Resource', 'Variables')

	

	
name_arguments_and_with_name = ('Library',)

	

	
single_value = ('Resource', 'Test Timeout', 'Test Template', 'Timeout', 'Template')

	

	
class robot.parsing.lexer.settings.TestCaseSettings(parent)[source]

	Bases: robot.parsing.lexer.settings.Settings

	
names = ('Documentation', 'Tags', 'Setup', 'Teardown', 'Template', 'Timeout')

	

	
template_set

	

	
aliases = {}

	

	
lex(statement)

	

	
multi_use = ('Metadata', 'Library', 'Resource', 'Variables')

	

	
name_and_arguments = ('Metadata', 'Suite Setup', 'Suite Teardown', 'Test Setup', 'Test Teardown', 'Test Template', 'Setup', 'Teardown', 'Template', 'Resource', 'Variables')

	

	
name_arguments_and_with_name = ('Library',)

	

	
single_value = ('Resource', 'Test Timeout', 'Test Template', 'Timeout', 'Template')

	

	
class robot.parsing.lexer.settings.KeywordSettings[source]

	Bases: robot.parsing.lexer.settings.Settings

	
names = ('Documentation', 'Arguments', 'Teardown', 'Timeout', 'Tags', 'Return')

	

	
aliases = {}

	

	
lex(statement)

	

	
multi_use = ('Metadata', 'Library', 'Resource', 'Variables')

	

	
name_and_arguments = ('Metadata', 'Suite Setup', 'Suite Teardown', 'Test Setup', 'Test Teardown', 'Test Template', 'Setup', 'Teardown', 'Template', 'Resource', 'Variables')

	

	
name_arguments_and_with_name = ('Library',)

	

	
single_value = ('Resource', 'Test Timeout', 'Test Template', 'Timeout', 'Template')

	

robot.parsing.lexer.statementlexers module

	
class robot.parsing.lexer.statementlexers.Lexer(ctx)[source]

	Bases: object

Base class for lexers.

	
handles(statement)[source]

	

	
accepts_more(statement)[source]

	

	
input(statement)[source]

	

	
lex()[source]

	

	
class robot.parsing.lexer.statementlexers.StatementLexer(ctx)[source]

	Bases: robot.parsing.lexer.statementlexers.Lexer

	
token_type = None

	

	
accepts_more(statement)[source]

	

	
input(statement)[source]

	

	
lex()[source]

	

	
handles(statement)

	

	
class robot.parsing.lexer.statementlexers.SectionHeaderLexer(ctx)[source]

	Bases: robot.parsing.lexer.statementlexers.StatementLexer

	
handles(statement)[source]

	

	
accepts_more(statement)

	

	
input(statement)

	

	
lex()

	

	
token_type = None

	

	
class robot.parsing.lexer.statementlexers.SettingSectionHeaderLexer(ctx)[source]

	Bases: robot.parsing.lexer.statementlexers.SectionHeaderLexer

	
token_type = 'SETTING HEADER'

	

	
accepts_more(statement)

	

	
handles(statement)

	

	
input(statement)

	

	
lex()

	

	
class robot.parsing.lexer.statementlexers.VariableSectionHeaderLexer(ctx)[source]

	Bases: robot.parsing.lexer.statementlexers.SectionHeaderLexer

	
token_type = 'VARIABLE HEADER'

	

	
accepts_more(statement)

	

	
handles(statement)

	

	
input(statement)

	

	
lex()

	

	
class robot.parsing.lexer.statementlexers.TestCaseSectionHeaderLexer(ctx)[source]

	Bases: robot.parsing.lexer.statementlexers.SectionHeaderLexer

	
token_type = 'TESTCASE HEADER'

	

	
accepts_more(statement)

	

	
handles(statement)

	

	
input(statement)

	

	
lex()

	

	
class robot.parsing.lexer.statementlexers.KeywordSectionHeaderLexer(ctx)[source]

	Bases: robot.parsing.lexer.statementlexers.SectionHeaderLexer

	
token_type = 'KEYWORD HEADER'

	

	
accepts_more(statement)

	

	
handles(statement)

	

	
input(statement)

	

	
lex()

	

	
class robot.parsing.lexer.statementlexers.CommentSectionHeaderLexer(ctx)[source]

	Bases: robot.parsing.lexer.statementlexers.SectionHeaderLexer

	
token_type = 'COMMENT HEADER'

	

	
accepts_more(statement)

	

	
handles(statement)

	

	
input(statement)

	

	
lex()

	

	
class robot.parsing.lexer.statementlexers.ErrorSectionHeaderLexer(ctx)[source]

	Bases: robot.parsing.lexer.statementlexers.SectionHeaderLexer

	
lex()[source]

	

	
accepts_more(statement)

	

	
handles(statement)

	

	
input(statement)

	

	
token_type = None

	

	
class robot.parsing.lexer.statementlexers.CommentLexer(ctx)[source]

	Bases: robot.parsing.lexer.statementlexers.StatementLexer

	
token_type = 'COMMENT'

	

	
accepts_more(statement)

	

	
handles(statement)

	

	
input(statement)

	

	
lex()

	

	
class robot.parsing.lexer.statementlexers.SettingLexer(ctx)[source]

	Bases: robot.parsing.lexer.statementlexers.StatementLexer

	
lex()[source]

	

	
accepts_more(statement)

	

	
handles(statement)

	

	
input(statement)

	

	
token_type = None

	

	
class robot.parsing.lexer.statementlexers.TestOrKeywordSettingLexer(ctx)[source]

	Bases: robot.parsing.lexer.statementlexers.SettingLexer

	
handles(statement)[source]

	

	
accepts_more(statement)

	

	
input(statement)

	

	
lex()

	

	
token_type = None

	

	
class robot.parsing.lexer.statementlexers.VariableLexer(ctx)[source]

	Bases: robot.parsing.lexer.statementlexers.StatementLexer

	
lex()[source]

	

	
accepts_more(statement)

	

	
handles(statement)

	

	
input(statement)

	

	
token_type = None

	

	
class robot.parsing.lexer.statementlexers.KeywordCallLexer(ctx)[source]

	Bases: robot.parsing.lexer.statementlexers.StatementLexer

	
lex()[source]

	

	
accepts_more(statement)

	

	
handles(statement)

	

	
input(statement)

	

	
token_type = None

	

	
class robot.parsing.lexer.statementlexers.ForHeaderLexer(ctx)[source]

	Bases: robot.parsing.lexer.statementlexers.StatementLexer

	
separators = ('IN', 'IN RANGE', 'IN ENUMERATE', 'IN ZIP')

	

	
handles(statement)[source]

	

	
lex()[source]

	

	
accepts_more(statement)

	

	
input(statement)

	

	
token_type = None

	

	
class robot.parsing.lexer.statementlexers.IfHeaderLexer(ctx)[source]

	Bases: robot.parsing.lexer.statementlexers.StatementLexer

	
handles(statement)[source]

	

	
lex()[source]

	

	
accepts_more(statement)

	

	
input(statement)

	

	
token_type = None

	

	
class robot.parsing.lexer.statementlexers.ElseIfHeaderLexer(ctx)[source]

	Bases: robot.parsing.lexer.statementlexers.StatementLexer

	
handles(statement)[source]

	

	
lex()[source]

	

	
accepts_more(statement)

	

	
input(statement)

	

	
token_type = None

	

	
class robot.parsing.lexer.statementlexers.ElseHeaderLexer(ctx)[source]

	Bases: robot.parsing.lexer.statementlexers.StatementLexer

	
handles(statement)[source]

	

	
lex()[source]

	

	
accepts_more(statement)

	

	
input(statement)

	

	
token_type = None

	

	
class robot.parsing.lexer.statementlexers.EndLexer(ctx)[source]

	Bases: robot.parsing.lexer.statementlexers.StatementLexer

	
handles(statement)[source]

	

	
lex()[source]

	

	
accepts_more(statement)

	

	
input(statement)

	

	
token_type = None

	

robot.parsing.lexer.tokenizer module

	
class robot.parsing.lexer.tokenizer.Tokenizer[source]

	Bases: object

	
tokenize(data, data_only=False)[source]

	

robot.parsing.lexer.tokens module

	
class robot.parsing.lexer.tokens.Token(type=None, value=None, lineno=-1, col_offset=-1, error=None)[source]

	Bases: object

Token representing piece of Robot Framework data.

Each token has type, value, line number, column offset and end column
offset in type, value, lineno, col_offset
and end_col_offset attributes, respectively. Tokens representing
error also have their error message in error attribute.

Token types are declared as class attributes such as SETTING_HEADER
and EOL. Values of these constants have changed slightly in Robot
Framework 4.0 and they may change again in the future. It is thus safer
to use the constants, not their values, when types are needed. For example,
use Token(Token.EOL) instead of Token('EOL') and
token.type == Token.EOL instead of token.type == 'EOL'.

If value is not given when Token is initialized and
type is IF, ELSE_IF, ELSE, FOR,
END, WITH_NAME or CONTINUATION, the value is
automatically set to the correct marker value like 'IF' or 'ELSE IF'.
If type is EOL in this case, the value is set to '\n'.

	
SETTING_HEADER = 'SETTING HEADER'

	

	
VARIABLE_HEADER = 'VARIABLE HEADER'

	

	
TESTCASE_HEADER = 'TESTCASE HEADER'

	

	
KEYWORD_HEADER = 'KEYWORD HEADER'

	

	
COMMENT_HEADER = 'COMMENT HEADER'

	

	
TESTCASE_NAME = 'TESTCASE NAME'

	

	
KEYWORD_NAME = 'KEYWORD NAME'

	

	
DOCUMENTATION = 'DOCUMENTATION'

	

	
SUITE_SETUP = 'SUITE SETUP'

	

	
SUITE_TEARDOWN = 'SUITE TEARDOWN'

	

	
METADATA = 'METADATA'

	

	
TEST_SETUP = 'TEST SETUP'

	

	
TEST_TEARDOWN = 'TEST TEARDOWN'

	

	
TEST_TEMPLATE = 'TEST TEMPLATE'

	

	
TEST_TIMEOUT = 'TEST TIMEOUT'

	

	
FORCE_TAGS = 'FORCE TAGS'

	

	
DEFAULT_TAGS = 'DEFAULT TAGS'

	

	
LIBRARY = 'LIBRARY'

	

	
RESOURCE = 'RESOURCE'

	

	
VARIABLES = 'VARIABLES'

	

	
SETUP = 'SETUP'

	

	
TEARDOWN = 'TEARDOWN'

	

	
TEMPLATE = 'TEMPLATE'

	

	
TIMEOUT = 'TIMEOUT'

	

	
TAGS = 'TAGS'

	

	
ARGUMENTS = 'ARGUMENTS'

	

	
RETURN = 'RETURN'

	

	
NAME = 'NAME'

	

	
VARIABLE = 'VARIABLE'

	

	
ARGUMENT = 'ARGUMENT'

	

	
ASSIGN = 'ASSIGN'

	

	
KEYWORD = 'KEYWORD'

	

	
WITH_NAME = 'WITH NAME'

	

	
FOR = 'FOR'

	

	
FOR_SEPARATOR = 'FOR SEPARATOR'

	

	
END = 'END'

	

	
IF = 'IF'

	

	
ELSE_IF = 'ELSE IF'

	

	
ELSE = 'ELSE'

	

	
SEPARATOR = 'SEPARATOR'

	

	
COMMENT = 'COMMENT'

	

	
CONTINUATION = 'CONTINUATION'

	

	
EOL = 'EOL'

	

	
EOS = 'EOS'

	

	
ERROR = 'ERROR'

	

	
FATAL_ERROR = 'FATAL ERROR'

	

	
NON_DATA_TOKENS = frozenset(['COMMENT', 'CONTINUATION', 'SEPARATOR', 'EOS', 'EOL'])

	

	
SETTING_TOKENS = frozenset(['RESOURCE', 'TEMPLATE', 'SETUP', 'TAGS', 'SUITE SETUP', 'TEST SETUP', 'SUITE TEARDOWN', 'DOCUMENTATION', 'LIBRARY', 'TEARDOWN', 'TEST TIMEOUT', 'DEFAULT TAGS', 'TIMEOUT', 'ARGUMENTS', 'FORCE TAGS', 'TEST TEARDOWN', 'RETURN', 'TEST TEMPLATE', 'VARIABLES', 'METADATA'])

	

	
HEADER_TOKENS = frozenset(['VARIABLE HEADER', 'TESTCASE HEADER', 'KEYWORD HEADER', 'COMMENT HEADER', 'SETTING HEADER'])

	

	
ALLOW_VARIABLES = frozenset(['KEYWORD NAME', 'TESTCASE NAME', 'NAME', 'ARGUMENT'])

	

	
type

	

	
value

	

	
lineno

	

	
col_offset

	

	
error

	

	
end_col_offset

	

	
set_error(error, fatal=False)[source]

	

	
tokenize_variables()[source]

	Tokenizes possible variables in token value.

Yields the token itself if the token does not allow variables (see
Token.ALLOW_VARIABLES) or its value does not contain
variables. Otherwise yields variable tokens as well as tokens
before, after, or between variables so that they have the same
type as the original token.

	
class robot.parsing.lexer.tokens.EOS(lineno=-1, col_offset=-1)[source]

	Bases: robot.parsing.lexer.tokens.Token

Token representing end of a statement.

	
classmethod from_token(token)[source]

	

	
ALLOW_VARIABLES = frozenset(['KEYWORD NAME', 'TESTCASE NAME', 'NAME', 'ARGUMENT'])

	

	
ARGUMENT = 'ARGUMENT'

	

	
ARGUMENTS = 'ARGUMENTS'

	

	
ASSIGN = 'ASSIGN'

	

	
COMMENT = 'COMMENT'

	

	
COMMENT_HEADER = 'COMMENT HEADER'

	

	
CONTINUATION = 'CONTINUATION'

	

	
DEFAULT_TAGS = 'DEFAULT TAGS'

	

	
DOCUMENTATION = 'DOCUMENTATION'

	

	
ELSE = 'ELSE'

	

	
ELSE_IF = 'ELSE IF'

	

	
END = 'END'

	

	
EOL = 'EOL'

	

	
EOS = 'EOS'

	

	
ERROR = 'ERROR'

	

	
FATAL_ERROR = 'FATAL ERROR'

	

	
FOR = 'FOR'

	

	
FORCE_TAGS = 'FORCE TAGS'

	

	
FOR_SEPARATOR = 'FOR SEPARATOR'

	

	
HEADER_TOKENS = frozenset(['VARIABLE HEADER', 'TESTCASE HEADER', 'KEYWORD HEADER', 'COMMENT HEADER', 'SETTING HEADER'])

	

	
IF = 'IF'

	

	
KEYWORD = 'KEYWORD'

	

	
KEYWORD_HEADER = 'KEYWORD HEADER'

	

	
KEYWORD_NAME = 'KEYWORD NAME'

	

	
LIBRARY = 'LIBRARY'

	

	
METADATA = 'METADATA'

	

	
NAME = 'NAME'

	

	
NON_DATA_TOKENS = frozenset(['COMMENT', 'CONTINUATION', 'SEPARATOR', 'EOS', 'EOL'])

	

	
RESOURCE = 'RESOURCE'

	

	
RETURN = 'RETURN'

	

	
SEPARATOR = 'SEPARATOR'

	

	
SETTING_HEADER = 'SETTING HEADER'

	

	
SETTING_TOKENS = frozenset(['RESOURCE', 'TEMPLATE', 'SETUP', 'TAGS', 'SUITE SETUP', 'TEST SETUP', 'SUITE TEARDOWN', 'DOCUMENTATION', 'LIBRARY', 'TEARDOWN', 'TEST TIMEOUT', 'DEFAULT TAGS', 'TIMEOUT', 'ARGUMENTS', 'FORCE TAGS', 'TEST TEARDOWN', 'RETURN', 'TEST TEMPLATE', 'VARIABLES', 'METADATA'])

	

	
SETUP = 'SETUP'

	

	
SUITE_SETUP = 'SUITE SETUP'

	

	
SUITE_TEARDOWN = 'SUITE TEARDOWN'

	

	
TAGS = 'TAGS'

	

	
TEARDOWN = 'TEARDOWN'

	

	
TEMPLATE = 'TEMPLATE'

	

	
TESTCASE_HEADER = 'TESTCASE HEADER'

	

	
TESTCASE_NAME = 'TESTCASE NAME'

	

	
TEST_SETUP = 'TEST SETUP'

	

	
TEST_TEARDOWN = 'TEST TEARDOWN'

	

	
TEST_TEMPLATE = 'TEST TEMPLATE'

	

	
TEST_TIMEOUT = 'TEST TIMEOUT'

	

	
TIMEOUT = 'TIMEOUT'

	

	
VARIABLE = 'VARIABLE'

	

	
VARIABLES = 'VARIABLES'

	

	
VARIABLE_HEADER = 'VARIABLE HEADER'

	

	
WITH_NAME = 'WITH NAME'

	

	
col_offset

	

	
end_col_offset

	

	
error

	

	
lineno

	

	
set_error(error, fatal=False)

	

	
tokenize_variables()

	Tokenizes possible variables in token value.

Yields the token itself if the token does not allow variables (see
Token.ALLOW_VARIABLES) or its value does not contain
variables. Otherwise yields variable tokens as well as tokens
before, after, or between variables so that they have the same
type as the original token.

	
type

	

	
value

	

robot.parsing.model package

Submodules

robot.parsing.model.blocks module

	
class robot.parsing.model.blocks.Block[source]

	Bases: _ast.AST

	
errors = ()

	

	
lineno

	

	
col_offset

	

	
end_lineno

	

	
end_col_offset

	

	
validate_model()[source]

	

	
validate()[source]

	

	
class robot.parsing.model.blocks.File(sections=None, source=None)[source]

	Bases: robot.parsing.model.blocks.Block

	
save(output=None)[source]

	Save model to the given output or to the original source file.

The output can be a path to a file or an already opened file
object. If output is not given, the original source file will
be overwritten.

	
col_offset

	

	
end_col_offset

	

	
end_lineno

	

	
errors = ()

	

	
lineno

	

	
validate()

	

	
validate_model()

	

	
class robot.parsing.model.blocks.Section(header=None, body=None)[source]

	Bases: robot.parsing.model.blocks.Block

	
col_offset

	

	
end_col_offset

	

	
end_lineno

	

	
errors = ()

	

	
lineno

	

	
validate()

	

	
validate_model()

	

	
class robot.parsing.model.blocks.SettingSection(header=None, body=None)[source]

	Bases: robot.parsing.model.blocks.Section

	
col_offset

	

	
end_col_offset

	

	
end_lineno

	

	
errors = ()

	

	
lineno

	

	
validate()

	

	
validate_model()

	

	
class robot.parsing.model.blocks.VariableSection(header=None, body=None)[source]

	Bases: robot.parsing.model.blocks.Section

	
col_offset

	

	
end_col_offset

	

	
end_lineno

	

	
errors = ()

	

	
lineno

	

	
validate()

	

	
validate_model()

	

	
class robot.parsing.model.blocks.TestCaseSection(header=None, body=None)[source]

	Bases: robot.parsing.model.blocks.Section

	
tasks

	

	
col_offset

	

	
end_col_offset

	

	
end_lineno

	

	
errors = ()

	

	
lineno

	

	
validate()

	

	
validate_model()

	

	
class robot.parsing.model.blocks.KeywordSection(header=None, body=None)[source]

	Bases: robot.parsing.model.blocks.Section

	
col_offset

	

	
end_col_offset

	

	
end_lineno

	

	
errors = ()

	

	
lineno

	

	
validate()

	

	
validate_model()

	

	
class robot.parsing.model.blocks.CommentSection(header=None, body=None)[source]

	Bases: robot.parsing.model.blocks.Section

	
col_offset

	

	
end_col_offset

	

	
end_lineno

	

	
errors = ()

	

	
lineno

	

	
validate()

	

	
validate_model()

	

	
class robot.parsing.model.blocks.TestCase(header, body=None)[source]

	Bases: robot.parsing.model.blocks.Block

	
name

	

	
col_offset

	

	
end_col_offset

	

	
end_lineno

	

	
errors = ()

	

	
lineno

	

	
validate()

	

	
validate_model()

	

	
class robot.parsing.model.blocks.Keyword(header, body=None)[source]

	Bases: robot.parsing.model.blocks.Block

	
name

	

	
col_offset

	

	
end_col_offset

	

	
end_lineno

	

	
errors = ()

	

	
lineno

	

	
validate()

	

	
validate_model()

	

	
class robot.parsing.model.blocks.If(header, body=None, orelse=None, end=None, errors=())[source]

	Bases: robot.parsing.model.blocks.Block

Represents IF structures in the model.

Used with IF, ELSE_IF and ELSE nodes. The type attribute specifies the type.

	
errors = ()

	

	
type

	

	
condition

	

	
validate()[source]

	

	
col_offset

	

	
end_col_offset

	

	
end_lineno

	

	
lineno

	

	
validate_model()

	

	
class robot.parsing.model.blocks.For(header, body=None, end=None, errors=())[source]

	Bases: robot.parsing.model.blocks.Block

	
errors = ()

	

	
variables

	

	
values

	

	
flavor

	

	
validate()[source]

	

	
col_offset

	

	
end_col_offset

	

	
end_lineno

	

	
lineno

	

	
validate_model()

	

	
class robot.parsing.model.blocks.ModelWriter(output)[source]

	Bases: robot.parsing.model.visitor.ModelVisitor

	
write(model)[source]

	

	
visit_Statement(statement)[source]

	

	
generic_visit(node)

	Called if no explicit visitor function exists for a node.

	
visit(node)

	Visit a node.

	
class robot.parsing.model.blocks.ModelValidator[source]

	Bases: robot.parsing.model.visitor.ModelVisitor

	
visit_Block(node)[source]

	

	
visit_Statement(node)[source]

	

	
generic_visit(node)

	Called if no explicit visitor function exists for a node.

	
visit(node)

	Visit a node.

	
class robot.parsing.model.blocks.FirstStatementFinder[source]

	Bases: robot.parsing.model.visitor.ModelVisitor

	
classmethod find_from(model)[source]

	

	
visit_Statement(statement)[source]

	

	
generic_visit(node)[source]

	Called if no explicit visitor function exists for a node.

	
visit(node)

	Visit a node.

	
class robot.parsing.model.blocks.LastStatementFinder[source]

	Bases: robot.parsing.model.visitor.ModelVisitor

	
classmethod find_from(model)[source]

	

	
generic_visit(node)

	Called if no explicit visitor function exists for a node.

	
visit(node)

	Visit a node.

	
visit_Statement(statement)[source]

	

robot.parsing.model.statements module

	
class robot.parsing.model.statements.Statement(tokens, errors=())[source]

	Bases: _ast.AST

	
type = None

	

	
handles_types = ()

	

	
lineno

	

	
col_offset

	

	
end_lineno

	

	
end_col_offset

	

	
classmethod register(subcls)[source]

	

	
classmethod from_tokens(tokens)[source]

	

	
classmethod from_params(*args, **kwargs)[source]

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
data_tokens

	

	
get_token(*types)[source]

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)[source]

	Return tokens having any of the given types.

	
get_value(type, default=None)[source]

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)[source]

	Return values of tokens having any of the given types.

	
lines

	

	
validate()[source]

	

	
class robot.parsing.model.statements.DocumentationOrMetadata(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.Statement

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_params(*args, **kwargs)

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
handles_types = ()

	

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
type = None

	

	
validate()

	

	
class robot.parsing.model.statements.SingleValue(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.Statement

	
value

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_params(*args, **kwargs)

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
handles_types = ()

	

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
type = None

	

	
validate()

	

	
class robot.parsing.model.statements.MultiValue(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.Statement

	
values

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_params(*args, **kwargs)

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
handles_types = ()

	

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
type = None

	

	
validate()

	

	
class robot.parsing.model.statements.Fixture(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.Statement

	
name

	

	
args

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_params(*args, **kwargs)

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
handles_types = ()

	

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
type = None

	

	
validate()

	

	
class robot.parsing.model.statements.SectionHeader(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.Statement

	
handles_types = ('SETTING HEADER', 'VARIABLE HEADER', 'TESTCASE HEADER', 'KEYWORD HEADER', 'COMMENT HEADER')

	

	
classmethod from_params(type, name=None, eol='\n')[source]

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
type

	

	
name

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
validate()

	

	
class robot.parsing.model.statements.LibraryImport(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.Statement

	
type = 'LIBRARY'

	

	
classmethod from_params(name, args=(), alias=None, separator=' ', eol='\n')[source]

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
name

	

	
args

	

	
alias

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
handles_types = ()

	

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
validate()

	

	
class robot.parsing.model.statements.ResourceImport(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.Statement

	
type = 'RESOURCE'

	

	
classmethod from_params(name, separator=' ', eol='\n')[source]

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
name

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
handles_types = ()

	

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
validate()

	

	
class robot.parsing.model.statements.VariablesImport(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.Statement

	
type = 'VARIABLES'

	

	
classmethod from_params(name, args=(), separator=' ', eol='\n')[source]

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
name

	

	
args

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
handles_types = ()

	

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
validate()

	

	
class robot.parsing.model.statements.Documentation(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.DocumentationOrMetadata

	
type = 'DOCUMENTATION'

	

	
classmethod from_params(value, indent=' ', separator=' ', eol='\n', settings_section=True)[source]

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
value

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
handles_types = ()

	

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
validate()

	

	
class robot.parsing.model.statements.Metadata(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.DocumentationOrMetadata

	
type = 'METADATA'

	

	
classmethod from_params(name, value, separator=' ', eol='\n')[source]

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
name

	

	
value

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
handles_types = ()

	

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
validate()

	

	
class robot.parsing.model.statements.ForceTags(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.MultiValue

	
type = 'FORCE TAGS'

	

	
classmethod from_params(values, separator=' ', eol='\n')[source]

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
handles_types = ()

	

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
validate()

	

	
values

	

	
class robot.parsing.model.statements.DefaultTags(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.MultiValue

	
type = 'DEFAULT TAGS'

	

	
classmethod from_params(values, separator=' ', eol='\n')[source]

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
handles_types = ()

	

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
validate()

	

	
values

	

	
class robot.parsing.model.statements.SuiteSetup(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.Fixture

	
type = 'SUITE SETUP'

	

	
classmethod from_params(name, args=(), separator=' ', eol='\n')[source]

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
args

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
handles_types = ()

	

	
lineno

	

	
lines

	

	
name

	

	
classmethod register(subcls)

	

	
validate()

	

	
class robot.parsing.model.statements.SuiteTeardown(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.Fixture

	
type = 'SUITE TEARDOWN'

	

	
classmethod from_params(name, args=(), separator=' ', eol='\n')[source]

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
args

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
handles_types = ()

	

	
lineno

	

	
lines

	

	
name

	

	
classmethod register(subcls)

	

	
validate()

	

	
class robot.parsing.model.statements.TestSetup(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.Fixture

	
type = 'TEST SETUP'

	

	
classmethod from_params(name, args=(), separator=' ', eol='\n')[source]

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
args

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
handles_types = ()

	

	
lineno

	

	
lines

	

	
name

	

	
classmethod register(subcls)

	

	
validate()

	

	
class robot.parsing.model.statements.TestTeardown(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.Fixture

	
type = 'TEST TEARDOWN'

	

	
classmethod from_params(name, args=(), separator=' ', eol='\n')[source]

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
args

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
handles_types = ()

	

	
lineno

	

	
lines

	

	
name

	

	
classmethod register(subcls)

	

	
validate()

	

	
class robot.parsing.model.statements.TestTemplate(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.SingleValue

	
type = 'TEST TEMPLATE'

	

	
classmethod from_params(value, separator=' ', eol='\n')[source]

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
handles_types = ()

	

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
validate()

	

	
value

	

	
class robot.parsing.model.statements.TestTimeout(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.SingleValue

	
type = 'TEST TIMEOUT'

	

	
classmethod from_params(value, separator=' ', eol='\n')[source]

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
handles_types = ()

	

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
validate()

	

	
value

	

	
class robot.parsing.model.statements.Variable(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.Statement

	
type = 'VARIABLE'

	

	
classmethod from_params(name, value, separator=' ', eol='\n')[source]

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
name

	

	
value

	

	
validate()[source]

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
handles_types = ()

	

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
class robot.parsing.model.statements.TestCaseName(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.Statement

	
type = 'TESTCASE NAME'

	

	
classmethod from_params(name, eol='\n')[source]

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
name

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
handles_types = ()

	

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
validate()

	

	
class robot.parsing.model.statements.KeywordName(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.Statement

	
type = 'KEYWORD NAME'

	

	
classmethod from_params(name, eol='\n')[source]

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
name

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
handles_types = ()

	

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
validate()

	

	
class robot.parsing.model.statements.Setup(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.Fixture

	
type = 'SETUP'

	

	
classmethod from_params(name, args=(), indent=' ', separator=' ', eol='\n')[source]

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
args

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
handles_types = ()

	

	
lineno

	

	
lines

	

	
name

	

	
classmethod register(subcls)

	

	
validate()

	

	
class robot.parsing.model.statements.Teardown(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.Fixture

	
type = 'TEARDOWN'

	

	
classmethod from_params(name, args=(), indent=' ', separator=' ', eol='\n')[source]

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
args

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
handles_types = ()

	

	
lineno

	

	
lines

	

	
name

	

	
classmethod register(subcls)

	

	
validate()

	

	
class robot.parsing.model.statements.Tags(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.MultiValue

	
type = 'TAGS'

	

	
classmethod from_params(values, indent=' ', separator=' ', eol='\n')[source]

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
handles_types = ()

	

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
validate()

	

	
values

	

	
class robot.parsing.model.statements.Template(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.SingleValue

	
type = 'TEMPLATE'

	

	
classmethod from_params(value, indent=' ', separator=' ', eol='\n')[source]

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
handles_types = ()

	

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
validate()

	

	
value

	

	
class robot.parsing.model.statements.Timeout(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.SingleValue

	
type = 'TIMEOUT'

	

	
classmethod from_params(value, indent=' ', separator=' ', eol='\n')[source]

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
handles_types = ()

	

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
validate()

	

	
value

	

	
class robot.parsing.model.statements.Arguments(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.MultiValue

	
type = 'ARGUMENTS'

	

	
classmethod from_params(args, indent=' ', separator=' ', eol='\n')[source]

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
validate()[source]

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
handles_types = ()

	

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
values

	

	
class robot.parsing.model.statements.Return(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.MultiValue

	
type = 'RETURN'

	

	
classmethod from_params(args, indent=' ', separator=' ', eol='\n')[source]

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
handles_types = ()

	

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
validate()

	

	
values

	

	
class robot.parsing.model.statements.KeywordCall(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.Statement

	
type = 'KEYWORD'

	

	
handles_types = ('KEYWORD', 'ASSIGN')

	

	
classmethod from_params(name, assign=(), args=(), indent=' ', separator=' ', eol='\n')[source]

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
keyword

	

	
args

	

	
assign

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
validate()

	

	
class robot.parsing.model.statements.TemplateArguments(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.Statement

	
type = 'ARGUMENT'

	

	
classmethod from_params(args, indent=' ', separator=' ', eol='\n')[source]

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
args

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
handles_types = ()

	

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
validate()

	

	
class robot.parsing.model.statements.ForHeader(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.Statement

	
type = 'FOR'

	

	
classmethod from_params(variables, values, flavor='IN', indent=' ', separator=' ', eol='\n')[source]

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
variables

	

	
values

	

	
flavor

	

	
validate()[source]

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
handles_types = ()

	

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
class robot.parsing.model.statements.IfHeader(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.Statement

	
type = 'IF'

	

	
classmethod from_params(condition, indent=' ', separator=' ', eol='\n')[source]

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
condition

	

	
validate()[source]

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
handles_types = ()

	

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
class robot.parsing.model.statements.ElseIfHeader(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.IfHeader

	
type = 'ELSE IF'

	

	
classmethod from_params(condition, indent=' ', separator=' ', eol='\n')[source]

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
col_offset

	

	
condition

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
handles_types = ()

	

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
validate()

	

	
class robot.parsing.model.statements.ElseHeader(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.Statement

	
type = 'ELSE'

	

	
classmethod from_params(indent=' ', eol='\n')[source]

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
condition

	

	
validate()[source]

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
handles_types = ()

	

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
class robot.parsing.model.statements.End(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.Statement

	
type = 'END'

	

	
classmethod from_params(indent=' ', eol='\n')[source]

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
validate()[source]

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
handles_types = ()

	

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
class robot.parsing.model.statements.Comment(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.Statement

	
type = 'COMMENT'

	

	
classmethod from_params(comment, indent=' ', eol='\n')[source]

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
handles_types = ()

	

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
validate()

	

	
class robot.parsing.model.statements.Error(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.Statement

	
type = 'ERROR'

	

	
handles_types = ('ERROR', 'FATAL ERROR')

	

	
errors

	Errors got from the underlying ERROR and FATAL_ERROR tokens.

Errors can be set also explicitly. When accessing errors, they are returned
along with errors got from tokens.

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_params(*args, **kwargs)

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
validate()

	

	
class robot.parsing.model.statements.EmptyLine(tokens, errors=())[source]

	Bases: robot.parsing.model.statements.Statement

	
type = 'EOL'

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
classmethod from_params(eol='\n')[source]

	Create statement from passed parameters.

Required and optional arguments should match class properties. Values are
used to create matching tokens.

There is one notable difference for Documentation statement where
settings_header flag is used to determine if statement belongs to
settings header or test/keyword.

Most implementations support following general properties:
- separator whitespace inserted between each token. Default is four spaces.
- indent whitespace inserted before first token. Default is four spaces.
- eol end of line sign. Default is '\n'.

	
classmethod from_tokens(tokens)

	

	
get_token(*types)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
handles_types = ()

	

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
validate()

	

robot.parsing.model.visitor module

	
class robot.parsing.model.visitor.VisitorFinder[source]

	Bases: object

	
class robot.parsing.model.visitor.ModelVisitor[source]

	Bases: ast.NodeVisitor, robot.parsing.model.visitor.VisitorFinder

NodeVisitor that supports matching nodes based on their base classes.

Otherwise identical to the standard ast.NodeVisitor [https://docs.python.org/library/ast.html#ast.NodeVisitor],
but allows creating visit_ClassName methods so that the ClassName
is one of the base classes of the node. For example, this visitor method
matches all statements:

def visit_Statement(self, node):
 # ...

	
visit(node)[source]

	Visit a node.

	
generic_visit(node)

	Called if no explicit visitor function exists for a node.

	
class robot.parsing.model.visitor.ModelTransformer[source]

	Bases: ast.NodeTransformer, robot.parsing.model.visitor.VisitorFinder

NodeTransformer that supports matching nodes based on their base classes.

See ModelVisitor for explanation how this is different compared
to the standard ast.NodeTransformer [https://docs.python.org/library/ast.html#ast.NodeTransformer].

	
visit(node)[source]

	Visit a node.

	
generic_visit(node)

	Called if no explicit visitor function exists for a node.

robot.parsing.parser package

Submodules

robot.parsing.parser.blockparsers module

	
class robot.parsing.parser.blockparsers.Parser(model)[source]

	Bases: object

Base class for parsers.

	
handles(statement)[source]

	

	
parse(statement)[source]

	

	
class robot.parsing.parser.blockparsers.BlockParser(model)[source]

	Bases: robot.parsing.parser.blockparsers.Parser

	
unhandled_tokens = frozenset(['TESTCASE HEADER', 'TESTCASE NAME', 'SETTING HEADER', 'VARIABLE HEADER', 'KEYWORD HEADER', 'COMMENT HEADER', 'KEYWORD NAME'])

	

	
handles(statement)[source]

	

	
parse(statement)[source]

	

	
class robot.parsing.parser.blockparsers.TestCaseParser(header)[source]

	Bases: robot.parsing.parser.blockparsers.BlockParser

	
handles(statement)

	

	
parse(statement)

	

	
unhandled_tokens = frozenset(['TESTCASE HEADER', 'TESTCASE NAME', 'SETTING HEADER', 'VARIABLE HEADER', 'KEYWORD HEADER', 'COMMENT HEADER', 'KEYWORD NAME'])

	

	
class robot.parsing.parser.blockparsers.KeywordParser(header)[source]

	Bases: robot.parsing.parser.blockparsers.BlockParser

	
handles(statement)

	

	
parse(statement)

	

	
unhandled_tokens = frozenset(['TESTCASE HEADER', 'TESTCASE NAME', 'SETTING HEADER', 'VARIABLE HEADER', 'KEYWORD HEADER', 'COMMENT HEADER', 'KEYWORD NAME'])

	

	
class robot.parsing.parser.blockparsers.NestedBlockParser(model)[source]

	Bases: robot.parsing.parser.blockparsers.BlockParser

	
handles(statement)[source]

	

	
parse(statement)[source]

	

	
unhandled_tokens = frozenset(['TESTCASE HEADER', 'TESTCASE NAME', 'SETTING HEADER', 'VARIABLE HEADER', 'KEYWORD HEADER', 'COMMENT HEADER', 'KEYWORD NAME'])

	

	
class robot.parsing.parser.blockparsers.ForParser(header)[source]

	Bases: robot.parsing.parser.blockparsers.NestedBlockParser

	
handles(statement)

	

	
parse(statement)

	

	
unhandled_tokens = frozenset(['TESTCASE HEADER', 'TESTCASE NAME', 'SETTING HEADER', 'VARIABLE HEADER', 'KEYWORD HEADER', 'COMMENT HEADER', 'KEYWORD NAME'])

	

	
class robot.parsing.parser.blockparsers.IfParser(header)[source]

	Bases: robot.parsing.parser.blockparsers.NestedBlockParser

	
parse(statement)[source]

	

	
handles(statement)

	

	
unhandled_tokens = frozenset(['TESTCASE HEADER', 'TESTCASE NAME', 'SETTING HEADER', 'VARIABLE HEADER', 'KEYWORD HEADER', 'COMMENT HEADER', 'KEYWORD NAME'])

	

	
class robot.parsing.parser.blockparsers.OrElseParser(header)[source]

	Bases: robot.parsing.parser.blockparsers.IfParser

	
handles(statement)[source]

	

	
parse(statement)

	

	
unhandled_tokens = frozenset(['TESTCASE HEADER', 'TESTCASE NAME', 'SETTING HEADER', 'VARIABLE HEADER', 'KEYWORD HEADER', 'COMMENT HEADER', 'KEYWORD NAME'])

	

robot.parsing.parser.fileparser module

	
class robot.parsing.parser.fileparser.FileParser(source=None)[source]

	Bases: robot.parsing.parser.blockparsers.Parser

	
handles(statement)[source]

	

	
parse(statement)[source]

	

	
class robot.parsing.parser.fileparser.SectionParser(header)[source]

	Bases: robot.parsing.parser.blockparsers.Parser

	
model_class = None

	

	
handles(statement)[source]

	

	
parse(statement)[source]

	

	
class robot.parsing.parser.fileparser.SettingSectionParser(header)[source]

	Bases: robot.parsing.parser.fileparser.SectionParser

	
model_class

	alias of robot.parsing.model.blocks.SettingSection

	
handles(statement)

	

	
parse(statement)

	

	
class robot.parsing.parser.fileparser.VariableSectionParser(header)[source]

	Bases: robot.parsing.parser.fileparser.SectionParser

	
model_class

	alias of robot.parsing.model.blocks.VariableSection

	
handles(statement)

	

	
parse(statement)

	

	
class robot.parsing.parser.fileparser.CommentSectionParser(header)[source]

	Bases: robot.parsing.parser.fileparser.SectionParser

	
model_class

	alias of robot.parsing.model.blocks.CommentSection

	
handles(statement)

	

	
parse(statement)

	

	
class robot.parsing.parser.fileparser.ImplicitCommentSectionParser(header)[source]

	Bases: robot.parsing.parser.fileparser.SectionParser

	
model_class(statement)[source]

	

	
handles(statement)

	

	
parse(statement)

	

	
class robot.parsing.parser.fileparser.TestCaseSectionParser(header)[source]

	Bases: robot.parsing.parser.fileparser.SectionParser

	
model_class

	alias of robot.parsing.model.blocks.TestCaseSection

	
parse(statement)[source]

	

	
handles(statement)

	

	
class robot.parsing.parser.fileparser.KeywordSectionParser(header)[source]

	Bases: robot.parsing.parser.fileparser.SectionParser

	
model_class

	alias of robot.parsing.model.blocks.KeywordSection

	
parse(statement)[source]

	

	
handles(statement)

	

robot.parsing.parser.parser module

	
robot.parsing.parser.parser.get_model(source, data_only=False, curdir=None)[source]

	Parses the given source to a model represented as an AST.

How to use the model is explained more thoroughly in the general
documentation of the robot.parsing module.

	Parameters

	
	source – The source where to read the data. Can be a path to
a source file as a string or as pathlib.Path object, an already
opened file object, or Unicode text containing the date directly.
Source files must be UTF-8 encoded.

	data_only – When False (default), returns all tokens. When set
to True, omits separators, comments, continuation markers, and
other non-data tokens. Model like this cannot be saved back to
file system.

	curdir – Directory where the source file exists. This path is used
to set the value of the built-in ${CURDIR} variable during parsing.
When not given, the variable is left as-is. Should only be given
only if the model will be executed afterwards. If the model is saved
back to disk, resolving ${CURDIR} is typically not a good idea.

Use get_resource_model() or get_init_model() when parsing
resource or suite initialization files, respectively.

	
robot.parsing.parser.parser.get_resource_model(source, data_only=False, curdir=None)[source]

	Parses the given source to a resource file model.

Otherwise same as get_model() but the source is considered to be
a resource file. This affects, for example, what settings are valid.

	
robot.parsing.parser.parser.get_init_model(source, data_only=False, curdir=None)[source]

	Parses the given source to a init file model.

Otherwise same as get_model() but the source is considered to be
a suite initialization file. This affects, for example, what settings are
valid.

robot.reporting package

Implements report, log, output XML, and xUnit file generation.

The public API of this package is the ResultWriter class. It
can write result files based on XML output files on the file system,
as well as based on the result objects returned by
the ExecutionResult() factory method or
an executed TestSuite.

It is highly recommended to use the public API via the robot.api package.

This package is considered stable.

Submodules

robot.reporting.expandkeywordmatcher module

	
class robot.reporting.expandkeywordmatcher.ExpandKeywordMatcher(expand_keywords)[source]

	Bases: object

	
match(kw)[source]

	

robot.reporting.jsbuildingcontext module

	
class robot.reporting.jsbuildingcontext.JsBuildingContext(log_path=None, split_log=False, expand_keywords=None, prune_input=False)[source]

	Bases: object

	
string(string, escape=True, attr=False)[source]

	

	
html(string)[source]

	

	
relative_source(source)[source]

	

	
timestamp(time)[source]

	

	
message_level(level)[source]

	

	
create_link_target(msg)[source]

	

	
check_expansion(kw)[source]

	

	
expand_keywords

	

	
link(msg)[source]

	

	
strings

	

	
start_splitting_if_needed(split=False)[source]

	

	
end_splitting(model)[source]

	

	
prune_input(**kwds)[source]

	

robot.reporting.jsexecutionresult module

	
class robot.reporting.jsexecutionresult.JsExecutionResult(suite, statistics, errors, strings, basemillis=None, split_results=None, min_level=None, expand_keywords=None)[source]

	Bases: object

	
remove_data_not_needed_in_report()[source]

	

robot.reporting.jsmodelbuilders module

	
class robot.reporting.jsmodelbuilders.JsModelBuilder(log_path=None, split_log=False, expand_keywords=None, prune_input_to_save_memory=False)[source]

	Bases: object

	
build_from(result_from_xml)[source]

	

	
class robot.reporting.jsmodelbuilders.SuiteBuilder(context)[source]

	Bases: robot.reporting.jsmodelbuilders._Builder

	
build(suite)[source]

	

	
class robot.reporting.jsmodelbuilders.TestBuilder(context)[source]

	Bases: robot.reporting.jsmodelbuilders._Builder

	
build(test)[source]

	

	
class robot.reporting.jsmodelbuilders.KeywordBuilder(context)[source]

	Bases: robot.reporting.jsmodelbuilders._Builder

	
build(item, split=False)[source]

	

	
build_keyword(kw, split=False)[source]

	

	
class robot.reporting.jsmodelbuilders.MessageBuilder(context)[source]

	Bases: robot.reporting.jsmodelbuilders._Builder

	
build(msg)[source]

	

	
class robot.reporting.jsmodelbuilders.StatisticsBuilder[source]

	Bases: object

	
build(statistics)[source]

	

	
class robot.reporting.jsmodelbuilders.ErrorsBuilder(context)[source]

	Bases: robot.reporting.jsmodelbuilders._Builder

	
build(errors)[source]

	

	
class robot.reporting.jsmodelbuilders.ErrorMessageBuilder(context)[source]

	Bases: robot.reporting.jsmodelbuilders.MessageBuilder

	
build(msg)[source]

	

robot.reporting.jswriter module

	
class robot.reporting.jswriter.JsResultWriter(output, start_block='<script type="text/javascript">n', end_block='</script>n', split_threshold=9500)[source]

	Bases: object

	
write(result, settings)[source]

	

	
class robot.reporting.jswriter.SuiteWriter(write_json, split_threshold)[source]

	Bases: object

	
write(suite, variable)[source]

	

	
class robot.reporting.jswriter.SplitLogWriter(output)[source]

	Bases: object

	
write(keywords, strings, index, notify)[source]

	

robot.reporting.logreportwriters module

	
class robot.reporting.logreportwriters.LogWriter(js_model)[source]

	Bases: robot.reporting.logreportwriters._LogReportWriter

	
usage = 'log'

	

	
write(path, config)[source]

	

	
class robot.reporting.logreportwriters.ReportWriter(js_model)[source]

	Bases: robot.reporting.logreportwriters._LogReportWriter

	
usage = 'report'

	

	
write(path, config)[source]

	

	
class robot.reporting.logreportwriters.RobotModelWriter(output, model, config)[source]

	Bases: robot.htmldata.htmlfilewriter.ModelWriter

	
write(line)[source]

	

	
handles(line)

	

robot.reporting.outputwriter module

	
class robot.reporting.outputwriter.OutputWriter(output, rpa=False)[source]

	Bases: robot.output.xmllogger.XmlLogger

	
start_message(msg)[source]

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
close()[source]

	

	
end_result(result)[source]

	

	
end_errors(errors=None)

	

	
end_for(for_)

	Called when FOR loop ends. Default implementation does nothing.

	
end_for_iteration(iteration)

	Called when FOR loop iteration ends. Default implementation does nothing.

	
end_if(if_)

	Called when IF/ELSE structure ends. Default implementation does nothing.

	
end_if_branch(branch)

	Called when IF/ELSE branch ends. Default implementation does nothing.

	
end_keyword(kw)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_stat(stat)

	

	
end_statistics(stats)

	

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_suite_statistics(tag_stats)

	

	
end_tag_statistics(tag_stats)

	

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
end_total_statistics(total_stats)

	

	
log_message(msg)

	

	
message(msg)

	

	
set_log_level(level)

	

	
start_errors(errors=None)

	

	
start_for(for_)

	Called when FOR loop starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_for_iteration(iteration)

	Called when FOR loop iteration starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if(if_)

	Called when IF/ELSE structure starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if_branch(branch)

	Called when IF/ELSE branch starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_keyword(kw)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_result(result)

	

	
start_stat(stat)

	

	
start_statistics(stats)

	

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_suite_statistics(tag_stats)

	

	
start_tag_statistics(tag_stats)

	

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_total_statistics(total_stats)

	

	
visit_errors(errors)

	

	
visit_for(for_)

	Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without
calling start_for() or end_for() nor visiting body.

	
visit_for_iteration(iteration)

	Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side
there are no iterations.

Can be overridden to allow modifying the passed in iteration without
calling start_for_iteration() or end_for_iteration() nor visiting
body.

	
visit_if(if_)

	Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches
are in its body and visited using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without
calling start_if() or end_if() nor visiting branches.

	
visit_if_branch(branch)

	Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without
calling start_if_branch() or end_if_branch() nor visiting body.

	
visit_keyword(kw)

	Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
visit_message(msg)

	Implements visiting messages.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_result(result)

	

	
visit_stat(stat)

	

	
visit_statistics(stats)

	

	
visit_suite(suite)

	Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
visit_suite_statistics(stats)

	

	
visit_tag_statistics(stats)

	

	
visit_test(test)

	Implements traversing through tests.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
visit_total_statistics(stats)

	

robot.reporting.resultwriter module

	
class robot.reporting.resultwriter.ResultWriter(*sources)[source]

	Bases: object

A class to create log, report, output XML and xUnit files.

	Parameters

	sources – Either one Result
object, or one or more paths to existing output XML files.

By default writes report.html and log.html, but no output XML
or xUnit files. Custom file names can be given and results disabled
or enabled using settings or options passed to the
write_results() method. The latter is typically more convenient:

writer = ResultWriter(result)
writer.write_results(report='custom.html', log=None, xunit='xunit.xml')

	
write_results(settings=None, **options)[source]

	Writes results based on the given settings or options.

	Parameters

	
	settings – RebotSettings object
to configure result writing.

	options – Used to construct new
RebotSettings object if settings
are not given.

	
class robot.reporting.resultwriter.Results(settings, *sources)[source]

	Bases: object

	
result

	

	
js_result

	

robot.reporting.stringcache module

	
class robot.reporting.stringcache.StringIndex[source]

	Bases: int

	
bit_length() → int

	Number of bits necessary to represent self in binary.
>>> bin(37)
‘0b100101’
>>> (37).bit_length()
6

	
conjugate()

	Returns self, the complex conjugate of any int.

	
denominator

	the denominator of a rational number in lowest terms

	
imag

	the imaginary part of a complex number

	
numerator

	the numerator of a rational number in lowest terms

	
real

	the real part of a complex number

	
class robot.reporting.stringcache.StringCache[source]

	Bases: object

	
add(text)[source]

	

	
dump()[source]

	

robot.reporting.xunitwriter module

	
class robot.reporting.xunitwriter.XUnitWriter(execution_result)[source]

	Bases: object

	
write(output)[source]

	

	
class robot.reporting.xunitwriter.XUnitFileWriter(xml_writer)[source]

	Bases: robot.result.visitor.ResultVisitor

Provides an xUnit-compatible result file.

Attempts to adhere to the de facto schema guessed by Peter Reilly, see:
http://marc.info/?l=ant-dev&m=123551933508682

	
start_suite(suite)[source]

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_suite(suite)[source]

	Called when suite ends. Default implementation does nothing.

	
visit_test(test)[source]

	Implements traversing through tests.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
visit_keyword(kw)[source]

	Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
visit_statistics(stats)[source]

	

	
visit_errors(errors)[source]

	

	
end_result(result)[source]

	

	
end_errors(errors)

	

	
end_for(for_)

	Called when FOR loop ends. Default implementation does nothing.

	
end_for_iteration(iteration)

	Called when FOR loop iteration ends. Default implementation does nothing.

	
end_if(if_)

	Called when IF/ELSE structure ends. Default implementation does nothing.

	
end_if_branch(branch)

	Called when IF/ELSE branch ends. Default implementation does nothing.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_stat(stat)

	

	
end_statistics(stats)

	

	
end_suite_statistics(suite_stats)

	

	
end_tag_statistics(stats)

	

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
end_total_statistics(stats)

	

	
start_errors(errors)

	

	
start_for(for_)

	Called when FOR loop starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_for_iteration(iteration)

	Called when FOR loop iteration starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if(if_)

	Called when IF/ELSE structure starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if_branch(branch)

	Called when IF/ELSE branch starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_result(result)

	

	
start_stat(stat)

	

	
start_statistics(stats)

	

	
start_suite_statistics(stats)

	

	
start_tag_statistics(stats)

	

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_total_statistics(stats)

	

	
visit_for(for_)

	Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without
calling start_for() or end_for() nor visiting body.

	
visit_for_iteration(iteration)

	Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side
there are no iterations.

Can be overridden to allow modifying the passed in iteration without
calling start_for_iteration() or end_for_iteration() nor visiting
body.

	
visit_if(if_)

	Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches
are in its body and visited using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without
calling start_if() or end_if() nor visiting branches.

	
visit_if_branch(branch)

	Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without
calling start_if_branch() or end_if_branch() nor visiting body.

	
visit_message(msg)

	Implements visiting messages.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_result(result)

	

	
visit_stat(stat)

	

	
visit_suite(suite)

	Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
visit_suite_statistics(stats)

	

	
visit_tag_statistics(stats)

	

	
visit_total_statistics(stats)

	

robot.result package

Implements parsing execution results from XML output files.

The main public API of this package consists of the ExecutionResult()
factory method, that returns Result objects, and of the
ResultVisitor abstract class, that eases further processing
the results.

The model objects in the model module can also be considered to be
part of the public API, because they can be found inside the Result
object. They can also be inspected and modified as part of the normal test
execution by pre-Rebot modifiers [http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#programmatic-modification-of-results] and listeners [http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#listener-interface].

It is highly recommended to import the public entry-points via the
robot.api package like in the example below. In those rare cases
where the aforementioned model objects are needed directly, they can be
imported from this package.

This package is considered stable.

Example

#!/usr/bin/env python

"""Usage: check_test_times.py seconds inpath [outpath]

Reads test execution result from an output XML file and checks that no test
took longer than given amount of seconds to execute.

Optional `outpath` specifies where to write processed results. If not given,
results are written over the original file.
"""

import sys
from robot.api import ExecutionResult, ResultVisitor

class ExecutionTimeChecker(ResultVisitor):

 def __init__(self, max_seconds):
 self.max_milliseconds = max_seconds * 1000

 def visit_test(self, test):
 if test.status == 'PASS' and test.elapsedtime > self.max_milliseconds:
 test.status = 'FAIL'
 test.message = 'Test execution took too long.'

def check_tests(seconds, inpath, outpath=None):
 result = ExecutionResult(inpath)
 result.visit(ExecutionTimeChecker(float(seconds)))
 result.save(outpath)

if __name__ == '__main__':
 try:
 check_tests(*sys.argv[1:])
 except TypeError:
 print(__doc__)

Submodules

robot.result.configurer module

	
class robot.result.configurer.SuiteConfigurer(remove_keywords=None, log_level=None, start_time=None, end_time=None, **base_config)[source]

	Bases: robot.model.configurer.SuiteConfigurer

Result suite configured.

Calls suite’s
remove_keywords() and
filter_messages() methods
and sets its start and end time based on the given named parameters.

base_config is forwarded to
robot.model.SuiteConfigurer
that will do further configuration based on them.

	
visit_suite(suite)[source]

	Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
add_tags

	

	
end_for(for_)

	Called when FOR loop ends. Default implementation does nothing.

	
end_for_iteration(iteration)

	Called when FOR loop iteration ends. Default implementation does nothing.

	
end_if(if_)

	Called when IF/ELSE structure ends. Default implementation does nothing.

	
end_if_branch(branch)

	Called when IF/ELSE branch ends. Default implementation does nothing.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
remove_tags

	

	
start_for(for_)

	Called when FOR loop starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_for_iteration(iteration)

	Called when FOR loop iteration starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if(if_)

	Called when IF/ELSE structure starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if_branch(branch)

	Called when IF/ELSE branch starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_for(for_)

	Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without
calling start_for() or end_for() nor visiting body.

	
visit_for_iteration(iteration)

	Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side
there are no iterations.

Can be overridden to allow modifying the passed in iteration without
calling start_for_iteration() or end_for_iteration() nor visiting
body.

	
visit_if(if_)

	Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches
are in its body and visited using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without
calling start_if() or end_if() nor visiting branches.

	
visit_if_branch(branch)

	Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without
calling start_if_branch() or end_if_branch() nor visiting body.

	
visit_keyword(kw)

	Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
visit_message(msg)

	Implements visiting messages.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_test(test)

	Implements traversing through tests.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

robot.result.executionerrors module

	
class robot.result.executionerrors.ExecutionErrors(messages=None)[source]

	Bases: object

Represents errors occurred during the execution of tests.

An error might be, for example, that importing a library has failed.

	
id = 'errors'

	

	
messages

	A list-like object of
Message instances.

	
add(other)[source]

	

	
visit(visitor)[source]

	

robot.result.executionresult module

	
class robot.result.executionresult.Result(source=None, root_suite=None, errors=None, rpa=None)[source]

	Bases: object

Test execution results.

Can be created based on XML output files using the
ExecutionResult()
factory method. Also returned by the
robot.running.TestSuite.run
method.

	
source = None

	Path to the XML file where results are read from.

	
suite = None

	Hierarchical execution results as a
TestSuite object.

	
errors = None

	Execution errors as an
ExecutionErrors object.

	
statistics

	Test execution statistics.

Statistics are an instance of
Statistics that is created based
on the contained suite and possible
configuration.

Statistics are created every time this property is accessed. Saving
them to a variable is thus often a good idea to avoid re-creating
them unnecessarily:

from robot.api import ExecutionResult

result = ExecutionResult('output.xml')
result.configure(stat_config={'suite_stat_level': 2,
 'tag_stat_combine': 'tagANDanother'})
stats = result.statistics
print(stats.total.failed)
print(stats.total.passed)
print(stats.tags.combined[0].total)

	
return_code

	Return code (integer) of test execution.

By default returns the number of failed tests (max 250),
but can be configured to always return 0.

	
configure(status_rc=True, suite_config=None, stat_config=None)[source]

	Configures the result object and objects it contains.

	Parameters

	
	status_rc – If set to False, return_code always
returns 0.

	suite_config – A dictionary of configuration options passed
to configure() method of
the contained suite.

	stat_config – A dictionary of configuration options used when
creating statistics.

	
save(path=None)[source]

	Save results as a new output XML file.

	Parameters

	path – Path to save results to. If omitted, overwrites the
original file.

	
visit(visitor)[source]

	An entry point to visit the whole result object.

	Parameters

	visitor – An instance of ResultVisitor.

Visitors can gather information, modify results, etc. See
result package for a simple usage example.

Notice that it is also possible to call result.suite.visit if there is no need to
visit the contained statistics or errors.

	
handle_suite_teardown_failures()[source]

	Internal usage only.

	
set_execution_mode(other)[source]

	Set execution mode based on other result. Internal usage only.

	
class robot.result.executionresult.CombinedResult(results=None)[source]

	Bases: robot.result.executionresult.Result

Combined results of multiple test executions.

	
add_result(other)[source]

	

	
configure(status_rc=True, suite_config=None, stat_config=None)

	Configures the result object and objects it contains.

	Parameters

	
	status_rc – If set to False, return_code always
returns 0.

	suite_config – A dictionary of configuration options passed
to configure() method of
the contained suite.

	stat_config – A dictionary of configuration options used when
creating statistics.

	
handle_suite_teardown_failures()

	Internal usage only.

	
return_code

	Return code (integer) of test execution.

By default returns the number of failed tests (max 250),
but can be configured to always return 0.

	
save(path=None)

	Save results as a new output XML file.

	Parameters

	path – Path to save results to. If omitted, overwrites the
original file.

	
set_execution_mode(other)

	Set execution mode based on other result. Internal usage only.

	
statistics

	Test execution statistics.

Statistics are an instance of
Statistics that is created based
on the contained suite and possible
configuration.

Statistics are created every time this property is accessed. Saving
them to a variable is thus often a good idea to avoid re-creating
them unnecessarily:

from robot.api import ExecutionResult

result = ExecutionResult('output.xml')
result.configure(stat_config={'suite_stat_level': 2,
 'tag_stat_combine': 'tagANDanother'})
stats = result.statistics
print(stats.total.failed)
print(stats.total.passed)
print(stats.tags.combined[0].total)

	
visit(visitor)

	An entry point to visit the whole result object.

	Parameters

	visitor – An instance of ResultVisitor.

Visitors can gather information, modify results, etc. See
result package for a simple usage example.

Notice that it is also possible to call result.suite.visit if there is no need to
visit the contained statistics or errors.

robot.result.flattenkeywordmatcher module

	
robot.result.flattenkeywordmatcher.validate_flatten_keyword(options)[source]

	

	
class robot.result.flattenkeywordmatcher.FlattenByTypeMatcher(flatten)[source]

	Bases: object

	
match(tag)[source]

	

	
class robot.result.flattenkeywordmatcher.FlattenByNameMatcher(flatten)[source]

	Bases: object

	
match(kwname, libname=None)[source]

	

	
class robot.result.flattenkeywordmatcher.FlattenByTagMatcher(flatten)[source]

	Bases: object

	
match(kwtags)[source]

	

robot.result.keywordremover module

	
robot.result.keywordremover.KeywordRemover(how)[source]

	

	
class robot.result.keywordremover.AllKeywordsRemover[source]

	Bases: robot.result.keywordremover._KeywordRemover

	
visit_keyword(keyword)[source]

	Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
visit_for(for_)[source]

	Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without
calling start_for() or end_for() nor visiting body.

	
visit_if_branch(branch)[source]

	Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without
calling start_if_branch() or end_if_branch() nor visiting body.

	
end_for(for_)

	Called when FOR loop ends. Default implementation does nothing.

	
end_for_iteration(iteration)

	Called when FOR loop iteration ends. Default implementation does nothing.

	
end_if(if_)

	Called when IF/ELSE structure ends. Default implementation does nothing.

	
end_if_branch(branch)

	Called when IF/ELSE branch ends. Default implementation does nothing.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_for(for_)

	Called when FOR loop starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_for_iteration(iteration)

	Called when FOR loop iteration starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if(if_)

	Called when IF/ELSE structure starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if_branch(branch)

	Called when IF/ELSE branch starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_for_iteration(iteration)

	Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side
there are no iterations.

Can be overridden to allow modifying the passed in iteration without
calling start_for_iteration() or end_for_iteration() nor visiting
body.

	
visit_if(if_)

	Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches
are in its body and visited using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without
calling start_if() or end_if() nor visiting branches.

	
visit_message(msg)

	Implements visiting messages.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
visit_test(test)

	Implements traversing through tests.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
class robot.result.keywordremover.PassedKeywordRemover[source]

	Bases: robot.result.keywordremover._KeywordRemover

	
start_suite(suite)[source]

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_test(test)[source]

	Implements traversing through tests.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
visit_keyword(keyword)[source]

	Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
end_for(for_)

	Called when FOR loop ends. Default implementation does nothing.

	
end_for_iteration(iteration)

	Called when FOR loop iteration ends. Default implementation does nothing.

	
end_if(if_)

	Called when IF/ELSE structure ends. Default implementation does nothing.

	
end_if_branch(branch)

	Called when IF/ELSE branch ends. Default implementation does nothing.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_for(for_)

	Called when FOR loop starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_for_iteration(iteration)

	Called when FOR loop iteration starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if(if_)

	Called when IF/ELSE structure starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if_branch(branch)

	Called when IF/ELSE branch starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_for(for_)

	Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without
calling start_for() or end_for() nor visiting body.

	
visit_for_iteration(iteration)

	Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side
there are no iterations.

Can be overridden to allow modifying the passed in iteration without
calling start_for_iteration() or end_for_iteration() nor visiting
body.

	
visit_if(if_)

	Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches
are in its body and visited using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without
calling start_if() or end_if() nor visiting branches.

	
visit_if_branch(branch)

	Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without
calling start_if_branch() or end_if_branch() nor visiting body.

	
visit_message(msg)

	Implements visiting messages.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
class robot.result.keywordremover.ByNameKeywordRemover(pattern)[source]

	Bases: robot.result.keywordremover._KeywordRemover

	
start_keyword(kw)[source]

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_for(for_)

	Called when FOR loop ends. Default implementation does nothing.

	
end_for_iteration(iteration)

	Called when FOR loop iteration ends. Default implementation does nothing.

	
end_if(if_)

	Called when IF/ELSE structure ends. Default implementation does nothing.

	
end_if_branch(branch)

	Called when IF/ELSE branch ends. Default implementation does nothing.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_for(for_)

	Called when FOR loop starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_for_iteration(iteration)

	Called when FOR loop iteration starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if(if_)

	Called when IF/ELSE structure starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if_branch(branch)

	Called when IF/ELSE branch starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_for(for_)

	Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without
calling start_for() or end_for() nor visiting body.

	
visit_for_iteration(iteration)

	Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side
there are no iterations.

Can be overridden to allow modifying the passed in iteration without
calling start_for_iteration() or end_for_iteration() nor visiting
body.

	
visit_if(if_)

	Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches
are in its body and visited using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without
calling start_if() or end_if() nor visiting branches.

	
visit_if_branch(branch)

	Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without
calling start_if_branch() or end_if_branch() nor visiting body.

	
visit_keyword(kw)

	Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
visit_message(msg)

	Implements visiting messages.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
visit_test(test)

	Implements traversing through tests.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
class robot.result.keywordremover.ByTagKeywordRemover(pattern)[source]

	Bases: robot.result.keywordremover._KeywordRemover

	
start_keyword(kw)[source]

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_for(for_)

	Called when FOR loop ends. Default implementation does nothing.

	
end_for_iteration(iteration)

	Called when FOR loop iteration ends. Default implementation does nothing.

	
end_if(if_)

	Called when IF/ELSE structure ends. Default implementation does nothing.

	
end_if_branch(branch)

	Called when IF/ELSE branch ends. Default implementation does nothing.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_for(for_)

	Called when FOR loop starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_for_iteration(iteration)

	Called when FOR loop iteration starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if(if_)

	Called when IF/ELSE structure starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if_branch(branch)

	Called when IF/ELSE branch starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_for(for_)

	Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without
calling start_for() or end_for() nor visiting body.

	
visit_for_iteration(iteration)

	Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side
there are no iterations.

Can be overridden to allow modifying the passed in iteration without
calling start_for_iteration() or end_for_iteration() nor visiting
body.

	
visit_if(if_)

	Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches
are in its body and visited using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without
calling start_if() or end_if() nor visiting branches.

	
visit_if_branch(branch)

	Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without
calling start_if_branch() or end_if_branch() nor visiting body.

	
visit_keyword(kw)

	Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
visit_message(msg)

	Implements visiting messages.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
visit_test(test)

	Implements traversing through tests.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
class robot.result.keywordremover.ForLoopItemsRemover[source]

	Bases: robot.result.keywordremover._KeywordRemover

	
start_for(for_)[source]

	Called when FOR loop starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_for(for_)

	Called when FOR loop ends. Default implementation does nothing.

	
end_for_iteration(iteration)

	Called when FOR loop iteration ends. Default implementation does nothing.

	
end_if(if_)

	Called when IF/ELSE structure ends. Default implementation does nothing.

	
end_if_branch(branch)

	Called when IF/ELSE branch ends. Default implementation does nothing.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_for_iteration(iteration)

	Called when FOR loop iteration starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if(if_)

	Called when IF/ELSE structure starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if_branch(branch)

	Called when IF/ELSE branch starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_for(for_)

	Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without
calling start_for() or end_for() nor visiting body.

	
visit_for_iteration(iteration)

	Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side
there are no iterations.

Can be overridden to allow modifying the passed in iteration without
calling start_for_iteration() or end_for_iteration() nor visiting
body.

	
visit_if(if_)

	Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches
are in its body and visited using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without
calling start_if() or end_if() nor visiting branches.

	
visit_if_branch(branch)

	Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without
calling start_if_branch() or end_if_branch() nor visiting body.

	
visit_keyword(kw)

	Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
visit_message(msg)

	Implements visiting messages.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
visit_test(test)

	Implements traversing through tests.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
class robot.result.keywordremover.WaitUntilKeywordSucceedsRemover[source]

	Bases: robot.result.keywordremover._KeywordRemover

	
start_keyword(kw)[source]

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_for(for_)

	Called when FOR loop ends. Default implementation does nothing.

	
end_for_iteration(iteration)

	Called when FOR loop iteration ends. Default implementation does nothing.

	
end_if(if_)

	Called when IF/ELSE structure ends. Default implementation does nothing.

	
end_if_branch(branch)

	Called when IF/ELSE branch ends. Default implementation does nothing.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_for(for_)

	Called when FOR loop starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_for_iteration(iteration)

	Called when FOR loop iteration starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if(if_)

	Called when IF/ELSE structure starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if_branch(branch)

	Called when IF/ELSE branch starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_for(for_)

	Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without
calling start_for() or end_for() nor visiting body.

	
visit_for_iteration(iteration)

	Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side
there are no iterations.

Can be overridden to allow modifying the passed in iteration without
calling start_for_iteration() or end_for_iteration() nor visiting
body.

	
visit_if(if_)

	Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches
are in its body and visited using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without
calling start_if() or end_if() nor visiting branches.

	
visit_if_branch(branch)

	Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without
calling start_if_branch() or end_if_branch() nor visiting body.

	
visit_keyword(kw)

	Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
visit_message(msg)

	Implements visiting messages.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
visit_test(test)

	Implements traversing through tests.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
class robot.result.keywordremover.WarningAndErrorFinder[source]

	Bases: robot.model.visitor.SuiteVisitor

	
start_suite(suite)[source]

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)[source]

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_keyword(keyword)[source]

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_message(msg)[source]

	Implements visiting messages.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
end_for(for_)

	Called when FOR loop ends. Default implementation does nothing.

	
end_for_iteration(iteration)

	Called when FOR loop iteration ends. Default implementation does nothing.

	
end_if(if_)

	Called when IF/ELSE structure ends. Default implementation does nothing.

	
end_if_branch(branch)

	Called when IF/ELSE branch ends. Default implementation does nothing.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_for(for_)

	Called when FOR loop starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_for_iteration(iteration)

	Called when FOR loop iteration starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if(if_)

	Called when IF/ELSE structure starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if_branch(branch)

	Called when IF/ELSE branch starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_for(for_)

	Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without
calling start_for() or end_for() nor visiting body.

	
visit_for_iteration(iteration)

	Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side
there are no iterations.

Can be overridden to allow modifying the passed in iteration without
calling start_for_iteration() or end_for_iteration() nor visiting
body.

	
visit_if(if_)

	Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches
are in its body and visited using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without
calling start_if() or end_if() nor visiting branches.

	
visit_if_branch(branch)

	Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without
calling start_if_branch() or end_if_branch() nor visiting body.

	
visit_keyword(kw)

	Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
visit_suite(suite)

	Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
visit_test(test)

	Implements traversing through tests.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
class robot.result.keywordremover.RemovalMessage(message)[source]

	Bases: object

	
set_if_removed(kw, len_before)[source]

	

	
set(kw, message=None)[source]

	

robot.result.merger module

	
class robot.result.merger.Merger(result, rpa=False)[source]

	Bases: robot.model.visitor.SuiteVisitor

	
merge(merged)[source]

	

	
start_suite(suite)[source]

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_suite(suite)[source]

	Called when suite ends. Default implementation does nothing.

	
visit_test(test)[source]

	Implements traversing through tests.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
end_for(for_)

	Called when FOR loop ends. Default implementation does nothing.

	
end_for_iteration(iteration)

	Called when FOR loop iteration ends. Default implementation does nothing.

	
end_if(if_)

	Called when IF/ELSE structure ends. Default implementation does nothing.

	
end_if_branch(branch)

	Called when IF/ELSE branch ends. Default implementation does nothing.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_for(for_)

	Called when FOR loop starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_for_iteration(iteration)

	Called when FOR loop iteration starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if(if_)

	Called when IF/ELSE structure starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if_branch(branch)

	Called when IF/ELSE branch starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_for(for_)

	Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without
calling start_for() or end_for() nor visiting body.

	
visit_for_iteration(iteration)

	Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side
there are no iterations.

Can be overridden to allow modifying the passed in iteration without
calling start_for_iteration() or end_for_iteration() nor visiting
body.

	
visit_if(if_)

	Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches
are in its body and visited using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without
calling start_if() or end_if() nor visiting branches.

	
visit_if_branch(branch)

	Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without
calling start_if_branch() or end_if_branch() nor visiting body.

	
visit_keyword(kw)

	Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
visit_message(msg)

	Implements visiting messages.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

robot.result.messagefilter module

	
class robot.result.messagefilter.MessageFilter(log_level=None)[source]

	Bases: robot.model.visitor.SuiteVisitor

	
start_suite(suite)[source]

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_keyword(keyword)[source]

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_for(for_)

	Called when FOR loop ends. Default implementation does nothing.

	
end_for_iteration(iteration)

	Called when FOR loop iteration ends. Default implementation does nothing.

	
end_if(if_)

	Called when IF/ELSE structure ends. Default implementation does nothing.

	
end_if_branch(branch)

	Called when IF/ELSE branch ends. Default implementation does nothing.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_for(for_)

	Called when FOR loop starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_for_iteration(iteration)

	Called when FOR loop iteration starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if(if_)

	Called when IF/ELSE structure starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if_branch(branch)

	Called when IF/ELSE branch starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_for(for_)

	Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without
calling start_for() or end_for() nor visiting body.

	
visit_for_iteration(iteration)

	Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side
there are no iterations.

Can be overridden to allow modifying the passed in iteration without
calling start_for_iteration() or end_for_iteration() nor visiting
body.

	
visit_if(if_)

	Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches
are in its body and visited using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without
calling start_if() or end_if() nor visiting branches.

	
visit_if_branch(branch)

	Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without
calling start_if_branch() or end_if_branch() nor visiting body.

	
visit_keyword(kw)

	Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
visit_message(msg)

	Implements visiting messages.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
visit_test(test)

	Implements traversing through tests.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

robot.result.model module

Module implementing result related model objects.

During test execution these objects are created internally by various runners.
At that time they can inspected and modified by listeners [http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#listener-interface].

When results are parsed from XML output files after execution to be able to
create logs and reports, these objects are created by the
ExecutionResult() factory method.
At that point they can be inspected and modified by pre-Rebot modifiers [http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#programmatic-modification-of-results].

The ExecutionResult() factory method can also be used
by custom scripts and tools. In such usage it is often easiest to inspect and
modify these objects using the visitor interface.

	
class robot.result.model.Body(parent=None, items=None)[source]

	Bases: robot.model.body.Body

	
message_class

	alias of Message

	
create_message(*args, **kwargs)[source]

	

	
filter(keywords=None, fors=None, ifs=None, messages=None, predicate=None)[source]

	Filter body items based on type and/or custom predicate.

To include or exclude items based on types, give matching arguments
True or False values. For example, to include only keywords, use
body.filter(keywords=True) and to exclude FOR and IF constructs use
body.filter(fors=False, ifs=False). Including and excluding by types
at the same time is not supported.

Custom predicate is a calleble getting each body item as an argument
that must return True/False depending on should the item be included
or not.

Selected items are returned as a list and the original body is not modified.

	
append(item)

	

	
clear()

	

	
count(item)

	

	
create

	

	
create_for(*args, **kwargs)[source]

	

	
create_if(*args, **kwargs)[source]

	

	
create_keyword(*args, **kwargs)[source]

	

	
extend(items)

	

	
for_class

	alias of For

	
if_class

	alias of If

	
index(item, *start_and_end)

	

	
insert(index, item)

	

	
keyword_class

	alias of Keyword

	
pop(*index)

	

	
classmethod register(item_class)[source]

	

	
remove(item)

	

	
reverse()

	

	
sort()

	

	
visit(visitor)

	

	
class robot.result.model.ForIterations(parent=None, items=None)[source]

	Bases: robot.result.model.Body

	
for_iteration_class

	alias of ForIteration

	
if_class = None

	

	
for_class = None

	

	
create_iteration(*args, **kwargs)[source]

	

	
append(item)

	

	
clear()

	

	
count(item)

	

	
create

	

	
create_for(*args, **kwargs)

	

	
create_if(*args, **kwargs)

	

	
create_keyword(*args, **kwargs)

	

	
create_message(*args, **kwargs)

	

	
extend(items)

	

	
filter(keywords=None, fors=None, ifs=None, messages=None, predicate=None)

	Filter body items based on type and/or custom predicate.

To include or exclude items based on types, give matching arguments
True or False values. For example, to include only keywords, use
body.filter(keywords=True) and to exclude FOR and IF constructs use
body.filter(fors=False, ifs=False). Including and excluding by types
at the same time is not supported.

Custom predicate is a calleble getting each body item as an argument
that must return True/False depending on should the item be included
or not.

Selected items are returned as a list and the original body is not modified.

	
index(item, *start_and_end)

	

	
insert(index, item)

	

	
keyword_class

	alias of Keyword

	
message_class

	alias of Message

	
pop(*index)

	

	
classmethod register(item_class)

	

	
remove(item)

	

	
reverse()

	

	
sort()

	

	
visit(visitor)

	

	
class robot.result.model.IfBranches(parent=None, items=None)[source]

	Bases: robot.result.model.Body, robot.model.body.IfBranches

	
append(item)

	

	
clear()

	

	
count(item)

	

	
create

	

	
create_branch(*args, **kwargs)[source]

	

	
create_for(*args, **kwargs)

	

	
create_if(*args, **kwargs)

	

	
create_keyword(*args, **kwargs)

	

	
create_message(*args, **kwargs)

	

	
extend(items)

	

	
filter(keywords=None, fors=None, ifs=None, messages=None, predicate=None)

	Filter body items based on type and/or custom predicate.

To include or exclude items based on types, give matching arguments
True or False values. For example, to include only keywords, use
body.filter(keywords=True) and to exclude FOR and IF constructs use
body.filter(fors=False, ifs=False). Including and excluding by types
at the same time is not supported.

Custom predicate is a calleble getting each body item as an argument
that must return True/False depending on should the item be included
or not.

Selected items are returned as a list and the original body is not modified.

	
for_class

	alias of For

	
if_branch_class

	alias of IfBranch

	
if_class

	alias of If

	
index(item, *start_and_end)

	

	
insert(index, item)

	

	
keyword_class

	alias of Keyword

	
message_class

	alias of Message

	
pop(*index)

	

	
classmethod register(item_class)

	

	
remove(item)

	

	
reverse()

	

	
sort()

	

	
visit(visitor)

	

	
class robot.result.model.Message(message='', level='INFO', html=False, timestamp=None, parent=None)[source]

	Bases: robot.model.message.Message

	
ELSE = 'ELSE'

	

	
ELSE_IF = 'ELSE IF'

	

	
FOR = 'FOR'

	

	
FOR_ITERATION = 'FOR ITERATION'

	

	
IF = 'IF'

	

	
IF_ELSE_ROOT = 'IF/ELSE ROOT'

	

	
KEYWORD = 'KEYWORD'

	

	
MESSAGE = 'MESSAGE'

	

	
SETUP = 'SETUP'

	

	
TEARDOWN = 'TEARDOWN'

	

	
config(**attributes)

	Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting
obj.name = 'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

	
copy(**attributes)

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
deepcopy(**attributes)

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
html

	

	
html_message

	Returns the message content as HTML.

	
id

	

	
level

	

	
message

	

	
parent

	

	
repr_args = ('message', 'level')

	

	
timestamp

	

	
type = 'MESSAGE'

	

	
visit(visitor)[source]

	Visitor interface entry-point.

	
class robot.result.model.StatusMixin[source]

	Bases: object

	
PASS = 'PASS'

	

	
FAIL = 'FAIL'

	

	
SKIP = 'SKIP'

	

	
NOT_RUN = 'NOT RUN'

	

	
NOT_SET = 'NOT SET'

	

	
elapsedtime

	Total execution time in milliseconds.

	
passed

	True when status is ‘PASS’, False otherwise.

	
failed

	True when status is ‘FAIL’, False otherwise.

	
skipped

	True when status is ‘SKIP’, False otherwise.

Setting to False value is ambiguous and raises an exception.

	
not_run

	True when status is ‘NOT RUN’, False otherwise.

Setting to False value is ambiguous and raises an exception.

	
class robot.result.model.ForIteration(variables=None, status='FAIL', starttime=None, endtime=None, doc='', parent=None)[source]

	Bases: robot.model.body.BodyItem, robot.result.model.StatusMixin, robot.result.modeldeprecation.DeprecatedAttributesMixin

	
type = 'FOR ITERATION'

	

	
body_class

	alias of Body

	
repr_args = ('variables',)

	

	
variables

	

	
parent

	

	
status

	

	
starttime

	

	
endtime

	

	
doc

	

	
body

	

	
visit(visitor)[source]

	

	
name

	Deprecated.

	
ELSE = 'ELSE'

	

	
ELSE_IF = 'ELSE IF'

	

	
FAIL = 'FAIL'

	

	
FOR = 'FOR'

	

	
FOR_ITERATION = 'FOR ITERATION'

	

	
IF = 'IF'

	

	
IF_ELSE_ROOT = 'IF/ELSE ROOT'

	

	
KEYWORD = 'KEYWORD'

	

	
MESSAGE = 'MESSAGE'

	

	
NOT_RUN = 'NOT RUN'

	

	
NOT_SET = 'NOT SET'

	

	
PASS = 'PASS'

	

	
SETUP = 'SETUP'

	

	
SKIP = 'SKIP'

	

	
TEARDOWN = 'TEARDOWN'

	

	
args

	Deprecated.

	
assign

	Deprecated.

	
config(**attributes)

	Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting
obj.name = 'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

	
copy(**attributes)

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
deepcopy(**attributes)

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
elapsedtime

	Total execution time in milliseconds.

	
failed

	True when status is ‘FAIL’, False otherwise.

	
id

	Item id in format like s1-t3-k1.

See TestSuite.id for
more information.

	
kwname

	Deprecated.

	
libname

	Deprecated.

	
message

	Deprecated.

	
not_run

	True when status is ‘NOT RUN’, False otherwise.

Setting to False value is ambiguous and raises an exception.

	
passed

	True when status is ‘PASS’, False otherwise.

	
skipped

	True when status is ‘SKIP’, False otherwise.

Setting to False value is ambiguous and raises an exception.

	
tags

	Deprecated.

	
timeout

	Deprecated.

	
class robot.result.model.For(variables=(), flavor='IN', values=(), status='FAIL', starttime=None, endtime=None, doc='', parent=None)[source]

	Bases: robot.model.control.For, robot.result.model.StatusMixin, robot.result.modeldeprecation.DeprecatedAttributesMixin

	
body_class

	alias of ForIterations

	
status

	

	
starttime

	

	
endtime

	

	
doc

	

	
name

	Deprecated.

	
ELSE = 'ELSE'

	

	
ELSE_IF = 'ELSE IF'

	

	
FAIL = 'FAIL'

	

	
FOR = 'FOR'

	

	
FOR_ITERATION = 'FOR ITERATION'

	

	
IF = 'IF'

	

	
IF_ELSE_ROOT = 'IF/ELSE ROOT'

	

	
KEYWORD = 'KEYWORD'

	

	
MESSAGE = 'MESSAGE'

	

	
NOT_RUN = 'NOT RUN'

	

	
NOT_SET = 'NOT SET'

	

	
PASS = 'PASS'

	

	
SETUP = 'SETUP'

	

	
SKIP = 'SKIP'

	

	
TEARDOWN = 'TEARDOWN'

	

	
args

	Deprecated.

	
assign

	Deprecated.

	
body

	

	
config(**attributes)

	Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting
obj.name = 'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

	
copy(**attributes)

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
deepcopy(**attributes)

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
elapsedtime

	Total execution time in milliseconds.

	
failed

	True when status is ‘FAIL’, False otherwise.

	
flavor

	

	
id

	Item id in format like s1-t3-k1.

See TestSuite.id for
more information.

	
keywords

	Deprecated since Robot Framework 4.0. Use body instead.

	
kwname

	Deprecated.

	
libname

	Deprecated.

	
message

	Deprecated.

	
not_run

	True when status is ‘NOT RUN’, False otherwise.

Setting to False value is ambiguous and raises an exception.

	
parent

	

	
passed

	True when status is ‘PASS’, False otherwise.

	
repr_args = ('variables', 'flavor', 'values')

	

	
skipped

	True when status is ‘SKIP’, False otherwise.

Setting to False value is ambiguous and raises an exception.

	
tags

	Deprecated.

	
timeout

	Deprecated.

	
type = 'FOR'

	

	
values

	

	
variables

	

	
visit(visitor)[source]

	

	
class robot.result.model.If(parent=None, status='FAIL', starttime=None, endtime=None, doc='')[source]

	Bases: robot.model.control.If, robot.result.model.StatusMixin, robot.result.modeldeprecation.DeprecatedAttributesMixin

	
body_class

	alias of IfBranches

	
status

	

	
starttime

	

	
endtime

	

	
doc

	

	
ELSE = 'ELSE'

	

	
ELSE_IF = 'ELSE IF'

	

	
FAIL = 'FAIL'

	

	
FOR = 'FOR'

	

	
FOR_ITERATION = 'FOR ITERATION'

	

	
IF = 'IF'

	

	
IF_ELSE_ROOT = 'IF/ELSE ROOT'

	

	
KEYWORD = 'KEYWORD'

	

	
MESSAGE = 'MESSAGE'

	

	
NOT_RUN = 'NOT RUN'

	

	
NOT_SET = 'NOT SET'

	

	
PASS = 'PASS'

	

	
SETUP = 'SETUP'

	

	
SKIP = 'SKIP'

	

	
TEARDOWN = 'TEARDOWN'

	

	
args

	Deprecated.

	
assign

	Deprecated.

	
body

	

	
config(**attributes)

	Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting
obj.name = 'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

	
copy(**attributes)

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
deepcopy(**attributes)

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
elapsedtime

	Total execution time in milliseconds.

	
failed

	True when status is ‘FAIL’, False otherwise.

	
id

	Root IF/ELSE id is always None.

	
kwname

	Deprecated.

	
libname

	Deprecated.

	
message

	Deprecated.

	
name

	Deprecated.

	
not_run

	True when status is ‘NOT RUN’, False otherwise.

Setting to False value is ambiguous and raises an exception.

	
parent

	

	
passed

	True when status is ‘PASS’, False otherwise.

	
repr_args = ()

	

	
skipped

	True when status is ‘SKIP’, False otherwise.

Setting to False value is ambiguous and raises an exception.

	
tags

	Deprecated.

	
timeout

	Deprecated.

	
type = 'IF/ELSE ROOT'

	

	
visit(visitor)[source]

	

	
class robot.result.model.IfBranch(type='IF', condition=None, status='FAIL', starttime=None, endtime=None, doc='', parent=None)[source]

	Bases: robot.model.control.IfBranch, robot.result.model.StatusMixin, robot.result.modeldeprecation.DeprecatedAttributesMixin

	
body_class

	alias of Body

	
status

	

	
starttime

	

	
endtime

	

	
doc

	

	
name

	Deprecated.

	
ELSE = 'ELSE'

	

	
ELSE_IF = 'ELSE IF'

	

	
FAIL = 'FAIL'

	

	
FOR = 'FOR'

	

	
FOR_ITERATION = 'FOR ITERATION'

	

	
IF = 'IF'

	

	
IF_ELSE_ROOT = 'IF/ELSE ROOT'

	

	
KEYWORD = 'KEYWORD'

	

	
MESSAGE = 'MESSAGE'

	

	
NOT_RUN = 'NOT RUN'

	

	
NOT_SET = 'NOT SET'

	

	
PASS = 'PASS'

	

	
SETUP = 'SETUP'

	

	
SKIP = 'SKIP'

	

	
TEARDOWN = 'TEARDOWN'

	

	
args

	Deprecated.

	
assign

	Deprecated.

	
body

	

	
condition

	

	
config(**attributes)

	Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting
obj.name = 'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

	
copy(**attributes)

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
deepcopy(**attributes)

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
elapsedtime

	Total execution time in milliseconds.

	
failed

	True when status is ‘FAIL’, False otherwise.

	
id

	Branch id omits the root IF/ELSE object from the parent id part.

	
kwname

	Deprecated.

	
libname

	Deprecated.

	
message

	Deprecated.

	
not_run

	True when status is ‘NOT RUN’, False otherwise.

Setting to False value is ambiguous and raises an exception.

	
parent

	

	
passed

	True when status is ‘PASS’, False otherwise.

	
repr_args = ('type', 'condition')

	

	
skipped

	True when status is ‘SKIP’, False otherwise.

Setting to False value is ambiguous and raises an exception.

	
tags

	Deprecated.

	
timeout

	Deprecated.

	
type

	

	
visit(visitor)[source]

	

	
class robot.result.model.Keyword(kwname='', libname='', doc='', args=(), assign=(), tags=(), timeout=None, type='KEYWORD', status='FAIL', starttime=None, endtime=None, parent=None, sourcename=None)[source]

	Bases: robot.model.keyword.Keyword, robot.result.model.StatusMixin

Represents results of a single keyword.

See the base class for documentation of attributes not documented here.

	
body_class

	alias of Body

	
kwname

	Name of the keyword without library or resource name.

	
libname

	Name of the library or resource containing this keyword.

	
status

	Execution status as a string. PASS, FAIL, SKIP or NOT RUN.

	
starttime

	Keyword execution start time in format %Y%m%d %H:%M:%S.%f.

	
endtime

	Keyword execution end time in format %Y%m%d %H:%M:%S.%f.

	
message

	Keyword status message. Used only if suite teardowns fails.

	
sourcename

	Original name of keyword with embedded arguments.

	
body

	Child keywords and messages as a Body object.

	
keywords

	Deprecated since Robot Framework 4.0.

Use body or teardown instead.

	
messages

	Keyword’s messages.

Starting from Robot Framework 4.0 this is a list generated from messages
in body.

	
children

	List of child keywords and messages in creation order.

Deprecated since Robot Framework 4.0. Use :att:`body` instead.

	
name

	Keyword name in format libname.kwname.

Just kwname if libname is empty. In practice that is the
case only with user keywords in the same file as the executed test case
or test suite.

Cannot be set directly. Set libname and kwname
separately instead.

	
ELSE = 'ELSE'

	

	
ELSE_IF = 'ELSE IF'

	

	
FAIL = 'FAIL'

	

	
FOR = 'FOR'

	

	
FOR_ITERATION = 'FOR ITERATION'

	

	
IF = 'IF'

	

	
IF_ELSE_ROOT = 'IF/ELSE ROOT'

	

	
KEYWORD = 'KEYWORD'

	

	
MESSAGE = 'MESSAGE'

	

	
NOT_RUN = 'NOT RUN'

	

	
NOT_SET = 'NOT SET'

	

	
PASS = 'PASS'

	

	
SETUP = 'SETUP'

	

	
SKIP = 'SKIP'

	

	
TEARDOWN = 'TEARDOWN'

	

	
args

	

	
assign

	

	
config(**attributes)

	Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting
obj.name = 'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

	
copy(**attributes)

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
deepcopy(**attributes)

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
doc

	

	
elapsedtime

	Total execution time in milliseconds.

	
failed

	True when status is ‘FAIL’, False otherwise.

	
has_teardown

	Check does a keyword have a teardown without creating a teardown object.

A difference between using if kw.has_teardown: and if kw.teardown:
is that accessing the teardown attribute creates a Keyword
object representing a teardown even when the keyword actually does not
have one. This typically does not matter, but with bigger suite structures
having lot of keywords it can have a considerable effect on memory usage.

New in Robot Framework 4.1.2.

	
id

	Item id in format like s1-t3-k1.

See TestSuite.id for
more information.

	
not_run

	True when status is ‘NOT RUN’, False otherwise.

Setting to False value is ambiguous and raises an exception.

	
parent

	

	
passed

	True when status is ‘PASS’, False otherwise.

	
repr_args = ('name', 'args', 'assign')

	

	
skipped

	True when status is ‘SKIP’, False otherwise.

Setting to False value is ambiguous and raises an exception.

	
tags

	Keyword tags as a Tags object.

	
teardown

	Keyword teardown as a Keyword object.

Teardown can be modified by setting attributes directly:

keyword.teardown.name = 'Example'
keyword.teardown.args = ('First', 'Second')

Alternatively the config() method can be used to set multiple
attributes in one call:

keyword.teardown.config(name='Example', args=('First', 'Second'))

The easiest way to reset the whole teardown is setting it to None.
It will automatically recreate the underlying Keyword object:

keyword.teardown = None

This attribute is a Keyword object also when a keyword has no teardown
but in that case its truth value is False. If there is a need to just
check does a keyword have a teardown, using the has_teardown
attribute avoids creating the Keyword object and is thus more memory
efficient.

New in Robot Framework 4.0. Earlier teardown was accessed like
keyword.keywords.teardown. has_teardown is new in Robot
Framework 4.1.2.

	
timeout

	

	
type

	

	
visit(visitor)[source]

	Visitor interface entry-point.

	
class robot.result.model.TestCase(name='', doc='', tags=None, timeout=None, status='FAIL', message='', starttime=None, endtime=None)[source]

	Bases: robot.model.testcase.TestCase, robot.result.model.StatusMixin

Represents results of a single test case.

See the base class for documentation of attributes not documented here.

	
body_class

	alias of Body

	
fixture_class

	alias of Keyword

	
status

	Status as a string PASS or FAIL. See also passed.

	
message

	Test message. Typically a failure message but can be set also when
test passes.

	
starttime

	Test case execution start time in format %Y%m%d %H:%M:%S.%f.

	
endtime

	Test case execution end time in format %Y%m%d %H:%M:%S.%f.

	
not_run

	

	
critical

	

	
FAIL = 'FAIL'

	

	
NOT_RUN = 'NOT RUN'

	

	
NOT_SET = 'NOT SET'

	

	
PASS = 'PASS'

	

	
SKIP = 'SKIP'

	

	
body

	Test case body as a Body object.

	
config(**attributes)

	Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting
obj.name = 'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

	
copy(**attributes)

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
deepcopy(**attributes)

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
doc

	

	
elapsedtime

	Total execution time in milliseconds.

	
failed

	True when status is ‘FAIL’, False otherwise.

	
id

	Test case id in format like s1-t3.

See TestSuite.id for
more information.

	
keywords

	Deprecated since Robot Framework 4.0

Use body, setup or teardown instead.

	
longname

	Test name prefixed with the long name of the parent suite.

	
name

	

	
parent

	

	
passed

	True when status is ‘PASS’, False otherwise.

	
repr_args = ('name',)

	

	
setup

	Test setup as a Keyword object.

This attribute is a Keyword object also when a test has no setup
but in that case its truth value is False.

Setup can be modified by setting attributes directly:

test.setup.name = 'Example'
test.setup.args = ('First', 'Second')

Alternatively the config() method can be used to set multiple
attributes in one call:

test.setup.config(name='Example', args=('First', 'Second'))

The easiest way to reset the whole setup is setting it to None.
It will automatically recreate the underlying Keyword object:

test.setup = None

New in Robot Framework 4.0. Earlier setup was accessed like
test.keywords.setup.

	
skipped

	True when status is ‘SKIP’, False otherwise.

Setting to False value is ambiguous and raises an exception.

	
source

	

	
tags

	Test tags as a Tags object.

	
teardown

	Test teardown as a Keyword object.

See setup for more information.

	
timeout

	

	
visit(visitor)[source]

	Visitor interface entry-point.

	
class robot.result.model.TestSuite(name='', doc='', metadata=None, source=None, message='', starttime=None, endtime=None, rpa=False)[source]

	Bases: robot.model.testsuite.TestSuite, robot.result.model.StatusMixin

Represents results of a single test suite.

See the base class for documentation of attributes not documented here.

	
test_class

	alias of TestCase

	
fixture_class

	alias of Keyword

	
message

	Possible suite setup or teardown error message.

	
starttime

	Suite execution start time in format %Y%m%d %H:%M:%S.%f.

	
endtime

	Suite execution end time in format %Y%m%d %H:%M:%S.%f.

	
passed

	True if no test has failed but some have passed, False otherwise.

	
failed

	True if any test has failed, False otherwise.

	
skipped

	True if there are no passed or failed tests, False otherwise.

	
not_run

	

	
status

	‘PASS’, ‘FAIL’ or ‘SKIP’ depending on test statuses.

	If any test has failed, status is ‘FAIL’.

	If no test has failed but at least some test has passed, status is ‘PASS’.

	If there are no failed or passed tests, status is ‘SKIP’. This covers both
the case when all tests have been skipped and when there are no tests.

	
statistics

	Suite statistics as a TotalStatistics object.

Recreated every time this property is accessed, so saving the results
to a variable and inspecting it is often a good idea:

stats = suite.statistics
print(stats.failed)
print(stats.total)
print(stats.message)

	
full_message

	Combination of message and stat_message.

	
FAIL = 'FAIL'

	

	
NOT_RUN = 'NOT RUN'

	

	
NOT_SET = 'NOT SET'

	

	
PASS = 'PASS'

	

	
SKIP = 'SKIP'

	

	
config(**attributes)

	Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting
obj.name = 'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

	
copy(**attributes)

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
deepcopy(**attributes)

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
doc

	

	
filter(included_suites=None, included_tests=None, included_tags=None, excluded_tags=None)[source]

	Select test cases and remove others from this suite.

Parameters have the same semantics as --suite, --test,
--include, and --exclude command line options. All of them
can be given as a list of strings, or when selecting only one, as
a single string.

Child suites that contain no tests after filtering are automatically
removed.

Example:

suite.filter(included_tests=['Test 1', '* Example'],
 included_tags='priority-1')

	
has_tests

	

	
id

	An automatically generated unique id.

The root suite has id s1, its child suites have ids s1-s1,
s1-s2, …, their child suites get ids s1-s1-s1, s1-s1-s2,
…, s1-s2-s1, …, and so on.

The first test in a suite has an id like s1-t1, the second has an
id s1-t2, and so on. Similarly keywords in suites (setup/teardown)
and in tests get ids like s1-k1, s1-t1-k1, and s1-s4-t2-k5.

	
keywords

	Deprecated since Robot Framework 4.0

Use setup or teardown instead.

	
longname

	Suite name prefixed with the long name of the parent suite.

	
metadata

	Free test suite metadata as a dictionary.

	
name

	Test suite name. If not set, constructed from child suite names.

	
parent

	

	
remove_empty_suites(preserve_direct_children=False)[source]

	Removes all child suites not containing any tests, recursively.

	
repr_args = ('name',)

	

	
rpa

	

	
set_tags(add=None, remove=None, persist=False)[source]

	Add and/or remove specified tags to the tests in this suite.

	Parameters

	
	add – Tags to add as a list or, if adding only one,
as a single string.

	remove – Tags to remove as a list or as a single string.
Can be given as patterns where * and ? work as wildcards.

	persist – Add/remove specified tags also to new tests added
to this suite in the future.

	
setup

	Suite setup as a Keyword object.

This attribute is a Keyword object also when a suite has no setup
but in that case its truth value is False.

Setup can be modified by setting attributes directly:

suite.setup.name = 'Example'
suite.setup.args = ('First', 'Second')

Alternatively the config() method can be used to set multiple
attributes in one call:

suite.setup.config(name='Example', args=('First', 'Second'))

The easiest way to reset the whole setup is setting it to None.
It will automatically recreate the underlying Keyword object:

suite.setup = None

New in Robot Framework 4.0. Earlier setup was accessed like
suite.keywords.setup.

	
source

	

	
stat_message

	String representation of the statistics.

	
suites

	Child suites as a TestSuites object.

	
teardown

	Suite teardown as a Keyword object.

See setup for more information.

	
test_count

	Number of the tests in this suite, recursively.

	
tests

	Tests as a TestCases object.

	
visit(visitor)[source]

	Visitor interface entry-point.

	
elapsedtime

	Total execution time in milliseconds.

	
remove_keywords(how)[source]

	Remove keywords based on the given condition.

	Parameters

	how – What approach to use when removing keywords. Either
ALL, PASSED, FOR, WUKS, or NAME:<pattern>.

For more information about the possible values see the documentation
of the --removekeywords command line option.

	
filter_messages(log_level='TRACE')[source]

	Remove log messages below the specified log_level.

	
configure(**options)[source]

	A shortcut to configure a suite using one method call.

Can only be used with the root test suite.

	Parameters

	options – Passed to
SuiteConfigurer that will then
set suite attributes, call filter(), etc. as needed.

Example:

suite.configure(remove_keywords='PASSED',
 doc='Smoke test results.')

Not to be confused with config() method that suites, tests,
and keywords have to make it possible to set multiple attributes in
one call.

	
handle_suite_teardown_failures()[source]

	Internal usage only.

	
suite_teardown_failed(error)[source]

	Internal usage only.

	
suite_teardown_skipped(message)[source]

	Internal usage only.

robot.result.modeldeprecation module

	
robot.result.modeldeprecation.deprecated(method)[source]

	

	
class robot.result.modeldeprecation.DeprecatedAttributesMixin[source]

	Bases: object

	
name

	Deprecated.

	
kwname

	Deprecated.

	
libname

	Deprecated.

	
args

	Deprecated.

	
assign

	Deprecated.

	
tags

	Deprecated.

	
timeout

	Deprecated.

	
message

	Deprecated.

robot.result.resultbuilder module

	
robot.result.resultbuilder.ExecutionResult(*sources, **options)[source]

	Factory method to constructs Result objects.

	Parameters

	
	sources – XML source(s) containing execution results.
Can be specified as paths, opened file objects, or strings/bytes
containing XML directly. Support for bytes is new in RF 3.2.

	options – Configuration options.
Using merge=True causes multiple results to be combined so that
tests in the latter results replace the ones in the original.
Setting rpa either to True (RPA mode) or False (test
automation) sets execution mode explicitly. By default it is got
from processed output files and conflicting modes cause an error.
Other options are passed directly to the
ExecutionResultBuilder object used internally.

	Returns

	Result instance.

Should be imported by external code via the robot.api package.
See the robot.result package for a usage example.

	
class robot.result.resultbuilder.ExecutionResultBuilder(source, include_keywords=True, flattened_keywords=None)[source]

	Bases: object

Builds Result objects based on output files.

Instead of using this builder directly, it is recommended to use the
ExecutionResult() factory method.

	Parameters

	
	source – Path to the XML output file to build
Result objects from.

	include_keywords – Boolean controlling whether to include
keyword information in the result or not. Keywords are
not needed when generating only report. Although the the option name
has word “keyword”, it controls also including FOR and IF structures.

	flatten_keywords – List of patterns controlling what keywords to
flatten. See the documentation of --flattenkeywords option for
more details.

	
build(result)[source]

	

	
class robot.result.resultbuilder.RemoveKeywords[source]

	Bases: robot.model.visitor.SuiteVisitor

	
start_suite(suite)[source]

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_test(test)[source]

	Implements traversing through tests.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
end_for(for_)

	Called when FOR loop ends. Default implementation does nothing.

	
end_for_iteration(iteration)

	Called when FOR loop iteration ends. Default implementation does nothing.

	
end_if(if_)

	Called when IF/ELSE structure ends. Default implementation does nothing.

	
end_if_branch(branch)

	Called when IF/ELSE branch ends. Default implementation does nothing.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_for(for_)

	Called when FOR loop starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_for_iteration(iteration)

	Called when FOR loop iteration starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if(if_)

	Called when IF/ELSE structure starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if_branch(branch)

	Called when IF/ELSE branch starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_for(for_)

	Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without
calling start_for() or end_for() nor visiting body.

	
visit_for_iteration(iteration)

	Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side
there are no iterations.

Can be overridden to allow modifying the passed in iteration without
calling start_for_iteration() or end_for_iteration() nor visiting
body.

	
visit_if(if_)

	Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches
are in its body and visited using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without
calling start_if() or end_if() nor visiting branches.

	
visit_if_branch(branch)

	Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without
calling start_if_branch() or end_if_branch() nor visiting body.

	
visit_keyword(kw)

	Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
visit_message(msg)

	Implements visiting messages.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

robot.result.suiteteardownfailed module

	
class robot.result.suiteteardownfailed.SuiteTeardownFailureHandler[source]

	Bases: robot.model.visitor.SuiteVisitor

	
end_suite(suite)[source]

	Called when suite ends. Default implementation does nothing.

	
visit_test(test)[source]

	Implements traversing through tests.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
visit_keyword(keyword)[source]

	Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
end_for(for_)

	Called when FOR loop ends. Default implementation does nothing.

	
end_for_iteration(iteration)

	Called when FOR loop iteration ends. Default implementation does nothing.

	
end_if(if_)

	Called when IF/ELSE structure ends. Default implementation does nothing.

	
end_if_branch(branch)

	Called when IF/ELSE branch ends. Default implementation does nothing.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_for(for_)

	Called when FOR loop starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_for_iteration(iteration)

	Called when FOR loop iteration starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if(if_)

	Called when IF/ELSE structure starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if_branch(branch)

	Called when IF/ELSE branch starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_for(for_)

	Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without
calling start_for() or end_for() nor visiting body.

	
visit_for_iteration(iteration)

	Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side
there are no iterations.

Can be overridden to allow modifying the passed in iteration without
calling start_for_iteration() or end_for_iteration() nor visiting
body.

	
visit_if(if_)

	Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches
are in its body and visited using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without
calling start_if() or end_if() nor visiting branches.

	
visit_if_branch(branch)

	Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without
calling start_if_branch() or end_if_branch() nor visiting body.

	
visit_message(msg)

	Implements visiting messages.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
class robot.result.suiteteardownfailed.SuiteTeardownFailed(message, skipped=False)[source]

	Bases: robot.model.visitor.SuiteVisitor

	
visit_test(test)[source]

	Implements traversing through tests.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
visit_keyword(keyword)[source]

	Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
end_for(for_)

	Called when FOR loop ends. Default implementation does nothing.

	
end_for_iteration(iteration)

	Called when FOR loop iteration ends. Default implementation does nothing.

	
end_if(if_)

	Called when IF/ELSE structure ends. Default implementation does nothing.

	
end_if_branch(branch)

	Called when IF/ELSE branch ends. Default implementation does nothing.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_for(for_)

	Called when FOR loop starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_for_iteration(iteration)

	Called when FOR loop iteration starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if(if_)

	Called when IF/ELSE structure starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if_branch(branch)

	Called when IF/ELSE branch starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_for(for_)

	Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without
calling start_for() or end_for() nor visiting body.

	
visit_for_iteration(iteration)

	Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side
there are no iterations.

Can be overridden to allow modifying the passed in iteration without
calling start_for_iteration() or end_for_iteration() nor visiting
body.

	
visit_if(if_)

	Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches
are in its body and visited using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without
calling start_if() or end_if() nor visiting branches.

	
visit_if_branch(branch)

	Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without
calling start_if_branch() or end_if_branch() nor visiting body.

	
visit_message(msg)

	Implements visiting messages.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

robot.result.visitor module

Visitors can be used to easily traverse result structures.

This module contains ResultVisitor for traversing the whole
Result object. It extends
SuiteVisitor that contains visiting logic
for the test suite structure.

	
class robot.result.visitor.ResultVisitor[source]

	Bases: robot.model.visitor.SuiteVisitor

Abstract class to conveniently travel Result objects.

A visitor implementation can be given to the visit() method of a
result object. This will cause the result object to be traversed and the
visitor’s visit_x(), start_x(), and end_x() methods to
be called for each suite, test, keyword and message, as well as for errors,
statistics, and other information in the result object. See methods below
for a full list of available visitor methods.

See the result package level documentation for
more information about handling results and a concrete visitor example.
For more information about the visitor algorithm see documentation in
robot.model.visitor module.

	
visit_result(result)[source]

	

	
start_result(result)[source]

	

	
end_result(result)[source]

	

	
visit_statistics(stats)[source]

	

	
start_statistics(stats)[source]

	

	
end_statistics(stats)[source]

	

	
visit_total_statistics(stats)[source]

	

	
start_total_statistics(stats)[source]

	

	
end_total_statistics(stats)[source]

	

	
visit_tag_statistics(stats)[source]

	

	
start_tag_statistics(stats)[source]

	

	
end_tag_statistics(stats)[source]

	

	
visit_suite_statistics(stats)[source]

	

	
start_suite_statistics(stats)[source]

	

	
end_suite_statistics(suite_stats)[source]

	

	
visit_stat(stat)[source]

	

	
start_stat(stat)[source]

	

	
end_stat(stat)[source]

	

	
visit_errors(errors)[source]

	

	
start_errors(errors)[source]

	

	
end_errors(errors)[source]

	

	
end_for(for_)

	Called when FOR loop ends. Default implementation does nothing.

	
end_for_iteration(iteration)

	Called when FOR loop iteration ends. Default implementation does nothing.

	
end_if(if_)

	Called when IF/ELSE structure ends. Default implementation does nothing.

	
end_if_branch(branch)

	Called when IF/ELSE branch ends. Default implementation does nothing.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_for(for_)

	Called when FOR loop starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_for_iteration(iteration)

	Called when FOR loop iteration starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if(if_)

	Called when IF/ELSE structure starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if_branch(branch)

	Called when IF/ELSE branch starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_for(for_)

	Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without
calling start_for() or end_for() nor visiting body.

	
visit_for_iteration(iteration)

	Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side
there are no iterations.

Can be overridden to allow modifying the passed in iteration without
calling start_for_iteration() or end_for_iteration() nor visiting
body.

	
visit_if(if_)

	Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches
are in its body and visited using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without
calling start_if() or end_if() nor visiting branches.

	
visit_if_branch(branch)

	Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without
calling start_if_branch() or end_if_branch() nor visiting body.

	
visit_keyword(kw)

	Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
visit_message(msg)

	Implements visiting messages.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
visit_test(test)

	Implements traversing through tests.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

robot.result.xmlelementhandlers module

	
class robot.result.xmlelementhandlers.XmlElementHandler(execution_result, root_handler=None)[source]

	Bases: object

	
start(elem)[source]

	

	
end(elem)[source]

	

	
class robot.result.xmlelementhandlers.ElementHandler[source]

	Bases: object

	
element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.IfBranchHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.ForIterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>}

	

	
tag = None

	

	
children = frozenset([])

	

	
classmethod register(handler)[source]

	

	
get_child_handler(tag)[source]

	

	
start(elem, result)[source]

	

	
end(elem, result)[source]

	

	
class robot.result.xmlelementhandlers.RootHandler[source]

	Bases: robot.result.xmlelementhandlers.ElementHandler

	
children = frozenset(['robot'])

	

	
element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.IfBranchHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.ForIterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>}

	

	
end(elem, result)

	

	
get_child_handler(tag)

	

	
classmethod register(handler)

	

	
start(elem, result)

	

	
tag = None

	

	
class robot.result.xmlelementhandlers.RobotHandler[source]

	Bases: robot.result.xmlelementhandlers.ElementHandler

	
tag = 'robot'

	

	
children = frozenset(['suite', 'statistics', 'errors'])

	

	
start(elem, result)[source]

	

	
element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.IfBranchHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.ForIterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>}

	

	
end(elem, result)

	

	
get_child_handler(tag)

	

	
classmethod register(handler)

	

	
class robot.result.xmlelementhandlers.SuiteHandler[source]

	Bases: robot.result.xmlelementhandlers.ElementHandler

	
tag = 'suite'

	

	
children = frozenset(['status', 'doc', 'meta', 'kw', 'test', 'suite', 'metadata'])

	

	
start(elem, result)[source]

	

	
get_child_handler(tag)[source]

	

	
element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.IfBranchHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.ForIterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>}

	

	
end(elem, result)

	

	
classmethod register(handler)

	

	
class robot.result.xmlelementhandlers.TestHandler[source]

	Bases: robot.result.xmlelementhandlers.ElementHandler

	
tag = 'test'

	

	
children = frozenset(['status', 'for', 'tags', 'doc', 'tag', 'kw', 'timeout', 'msg', 'if'])

	

	
start(elem, result)[source]

	

	
element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.IfBranchHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.ForIterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>}

	

	
end(elem, result)

	

	
get_child_handler(tag)

	

	
classmethod register(handler)

	

	
class robot.result.xmlelementhandlers.KeywordHandler[source]

	Bases: robot.result.xmlelementhandlers.ElementHandler

	
tag = 'kw'

	

	
children = frozenset(['status', 'for', 'tags', 'doc', 'msg', 'tag', 'kw', 'arguments', 'timeout', 'arg', 'var', 'assign', 'if'])

	

	
start(elem, result)[source]

	

	
element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.IfBranchHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.ForIterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>}

	

	
end(elem, result)

	

	
get_child_handler(tag)

	

	
classmethod register(handler)

	

	
class robot.result.xmlelementhandlers.ForHandler[source]

	Bases: robot.result.xmlelementhandlers.ElementHandler

	
tag = 'for'

	

	
children = frozenset(['status', 'doc', 'iter', 'msg', 'kw', 'value', 'var'])

	

	
start(elem, result)[source]

	

	
element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.IfBranchHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.ForIterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>}

	

	
end(elem, result)

	

	
get_child_handler(tag)

	

	
classmethod register(handler)

	

	
class robot.result.xmlelementhandlers.ForIterationHandler[source]

	Bases: robot.result.xmlelementhandlers.ElementHandler

	
tag = 'iter'

	

	
children = frozenset(['status', 'for', 'doc', 'msg', 'kw', 'var', 'if'])

	

	
start(elem, result)[source]

	

	
element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.IfBranchHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.ForIterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>}

	

	
end(elem, result)

	

	
get_child_handler(tag)

	

	
classmethod register(handler)

	

	
class robot.result.xmlelementhandlers.IfHandler[source]

	Bases: robot.result.xmlelementhandlers.ElementHandler

	
tag = 'if'

	

	
children = frozenset(['status', 'msg', 'branch', 'doc'])

	

	
start(elem, result)[source]

	

	
element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.IfBranchHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.ForIterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>}

	

	
end(elem, result)

	

	
get_child_handler(tag)

	

	
classmethod register(handler)

	

	
class robot.result.xmlelementhandlers.IfBranchHandler[source]

	Bases: robot.result.xmlelementhandlers.ElementHandler

	
tag = 'branch'

	

	
children = frozenset(['status', 'for', 'doc', 'kw', 'msg', 'if'])

	

	
start(elem, result)[source]

	

	
element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.IfBranchHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.ForIterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>}

	

	
end(elem, result)

	

	
get_child_handler(tag)

	

	
classmethod register(handler)

	

	
class robot.result.xmlelementhandlers.MessageHandler[source]

	Bases: robot.result.xmlelementhandlers.ElementHandler

	
tag = 'msg'

	

	
end(elem, result)[source]

	

	
children = frozenset([])

	

	
element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.IfBranchHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.ForIterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>}

	

	
get_child_handler(tag)

	

	
classmethod register(handler)

	

	
start(elem, result)

	

	
class robot.result.xmlelementhandlers.StatusHandler(set_status=True)[source]

	Bases: robot.result.xmlelementhandlers.ElementHandler

	
tag = 'status'

	

	
end(elem, result)[source]

	

	
children = frozenset([])

	

	
element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.IfBranchHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.ForIterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>}

	

	
get_child_handler(tag)

	

	
classmethod register(handler)

	

	
start(elem, result)

	

	
class robot.result.xmlelementhandlers.DocHandler[source]

	Bases: robot.result.xmlelementhandlers.ElementHandler

	
tag = 'doc'

	

	
end(elem, result)[source]

	

	
children = frozenset([])

	

	
element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.IfBranchHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.ForIterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>}

	

	
get_child_handler(tag)

	

	
classmethod register(handler)

	

	
start(elem, result)

	

	
class robot.result.xmlelementhandlers.MetadataHandler[source]

	Bases: robot.result.xmlelementhandlers.ElementHandler

	
tag = 'metadata'

	

	
children = frozenset(['item'])

	

	
element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.IfBranchHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.ForIterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>}

	

	
end(elem, result)

	

	
get_child_handler(tag)

	

	
classmethod register(handler)

	

	
start(elem, result)

	

	
class robot.result.xmlelementhandlers.MetadataItemHandler[source]

	Bases: robot.result.xmlelementhandlers.ElementHandler

	
tag = 'item'

	

	
end(elem, result)[source]

	

	
children = frozenset([])

	

	
element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.IfBranchHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.ForIterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>}

	

	
get_child_handler(tag)

	

	
classmethod register(handler)

	

	
start(elem, result)

	

	
class robot.result.xmlelementhandlers.MetaHandler[source]

	Bases: robot.result.xmlelementhandlers.ElementHandler

	
tag = 'meta'

	

	
end(elem, result)[source]

	

	
children = frozenset([])

	

	
element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.IfBranchHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.ForIterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>}

	

	
get_child_handler(tag)

	

	
classmethod register(handler)

	

	
start(elem, result)

	

	
class robot.result.xmlelementhandlers.TagsHandler[source]

	Bases: robot.result.xmlelementhandlers.ElementHandler

	
tag = 'tags'

	

	
children = frozenset(['tag'])

	

	
element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.IfBranchHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.ForIterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>}

	

	
end(elem, result)

	

	
get_child_handler(tag)

	

	
classmethod register(handler)

	

	
start(elem, result)

	

	
class robot.result.xmlelementhandlers.TagHandler[source]

	Bases: robot.result.xmlelementhandlers.ElementHandler

	
tag = 'tag'

	

	
end(elem, result)[source]

	

	
children = frozenset([])

	

	
element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.IfBranchHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.ForIterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>}

	

	
get_child_handler(tag)

	

	
classmethod register(handler)

	

	
start(elem, result)

	

	
class robot.result.xmlelementhandlers.TimeoutHandler[source]

	Bases: robot.result.xmlelementhandlers.ElementHandler

	
tag = 'timeout'

	

	
end(elem, result)[source]

	

	
children = frozenset([])

	

	
element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.IfBranchHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.ForIterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>}

	

	
get_child_handler(tag)

	

	
classmethod register(handler)

	

	
start(elem, result)

	

	
class robot.result.xmlelementhandlers.AssignHandler[source]

	Bases: robot.result.xmlelementhandlers.ElementHandler

	
tag = 'assign'

	

	
children = frozenset(['var'])

	

	
element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.IfBranchHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.ForIterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>}

	

	
end(elem, result)

	

	
get_child_handler(tag)

	

	
classmethod register(handler)

	

	
start(elem, result)

	

	
class robot.result.xmlelementhandlers.VarHandler[source]

	Bases: robot.result.xmlelementhandlers.ElementHandler

	
tag = 'var'

	

	
end(elem, result)[source]

	

	
children = frozenset([])

	

	
element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.IfBranchHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.ForIterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>}

	

	
get_child_handler(tag)

	

	
classmethod register(handler)

	

	
start(elem, result)

	

	
class robot.result.xmlelementhandlers.ArgumentsHandler[source]

	Bases: robot.result.xmlelementhandlers.ElementHandler

	
tag = 'arguments'

	

	
children = frozenset(['arg'])

	

	
element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.IfBranchHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.ForIterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>}

	

	
end(elem, result)

	

	
get_child_handler(tag)

	

	
classmethod register(handler)

	

	
start(elem, result)

	

	
class robot.result.xmlelementhandlers.ArgumentHandler[source]

	Bases: robot.result.xmlelementhandlers.ElementHandler

	
tag = 'arg'

	

	
end(elem, result)[source]

	

	
children = frozenset([])

	

	
element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.IfBranchHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.ForIterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>}

	

	
get_child_handler(tag)

	

	
classmethod register(handler)

	

	
start(elem, result)

	

	
class robot.result.xmlelementhandlers.ValueHandler[source]

	Bases: robot.result.xmlelementhandlers.ElementHandler

	
tag = 'value'

	

	
end(elem, result)[source]

	

	
children = frozenset([])

	

	
element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.IfBranchHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.ForIterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>}

	

	
get_child_handler(tag)

	

	
classmethod register(handler)

	

	
start(elem, result)

	

	
class robot.result.xmlelementhandlers.ErrorsHandler[source]

	Bases: robot.result.xmlelementhandlers.ElementHandler

	
tag = 'errors'

	

	
start(elem, result)[source]

	

	
get_child_handler(tag)[source]

	

	
children = frozenset([])

	

	
element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.IfBranchHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.ForIterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>}

	

	
end(elem, result)

	

	
classmethod register(handler)

	

	
class robot.result.xmlelementhandlers.ErrorMessageHandler[source]

	Bases: robot.result.xmlelementhandlers.ElementHandler

	
end(elem, result)[source]

	

	
children = frozenset([])

	

	
element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.IfBranchHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.ForIterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>}

	

	
get_child_handler(tag)

	

	
classmethod register(handler)

	

	
start(elem, result)

	

	
tag = None

	

	
class robot.result.xmlelementhandlers.StatisticsHandler[source]

	Bases: robot.result.xmlelementhandlers.ElementHandler

	
tag = 'statistics'

	

	
get_child_handler(tag)[source]

	

	
children = frozenset([])

	

	
element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.IfBranchHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.ForIterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>}

	

	
end(elem, result)

	

	
classmethod register(handler)

	

	
start(elem, result)

	

robot.running package

Implements the core test execution logic.

The main public entry points of this package are of the following two classes:

	TestSuiteBuilder for creating
executable test suites based on existing test case files and directories.

	TestSuite for creating an executable
test suite structure programmatically.

It is recommended to import both of these classes via the robot.api
package like in the examples below. Also TestCase
and Keyword classes used internally by the
TestSuite class are part of the public API.
In those rare cases where these classes are needed directly, they can be
imported from this package.

Examples

First, let’s assume we have the following test suite in file
activate_skynet.robot:

*** Settings ***
Library OperatingSystem

*** Test Cases ***
Should Activate Skynet
 [Tags] smoke
 [Setup] Set Environment Variable SKYNET activated
 Environment Variable Should Be Set SKYNET

We can easily parse and create an executable test suite based on the above file
using the TestSuiteBuilder class as follows:

from robot.api import TestSuiteBuilder

suite = TestSuiteBuilder().build('path/to/activate_skynet.robot')

That was easy. Let’s next generate the same test suite from scratch
using the TestSuite class:

from robot.api import TestSuite

suite = TestSuite('Activate Skynet')
suite.resource.imports.library('OperatingSystem')
test = suite.tests.create('Should Activate Skynet', tags=['smoke'])
test.setup.config('Set Environment Variable', args=['SKYNET', 'activated'])
test.keywords.create('Environment Variable Should Be Set', args=['SKYNET'])

Not that complicated either, especially considering the flexibility. Notice
that the suite created based on the file could also be edited further using
the same API.

Now that we have a test suite ready, let’s execute it and verify that the returned
Result object contains correct
information:

result = suite.run(output='skynet.xml')

assert result.return_code == 0
assert result.suite.name == 'Activate Skynet'
test = result.suite.tests[0]
assert test.name == 'Should Activate Skynet'
assert test.passed
stats = result.suite.statistics
assert stats.total == 1 and stats.failed == 0

Running the suite generates a normal output XML file, unless it is disabled
by using output=None. Generating log, report, and xUnit files based on
the results is possible using the
ResultWriter class:

from robot.api import ResultWriter

Report and xUnit files can be generated based on the result object.
ResultWriter(result).write_results(report='skynet.html', log=None)
Generating log files requires processing the earlier generated output XML.
ResultWriter('skynet.xml').write_results()

Subpackages

	robot.running.arguments package
	Submodules

	robot.running.arguments.argumentconverter module

	robot.running.arguments.argumentmapper module

	robot.running.arguments.argumentparser module

	robot.running.arguments.argumentresolver module

	robot.running.arguments.argumentspec module

	robot.running.arguments.argumentvalidator module

	robot.running.arguments.embedded module

	robot.running.arguments.javaargumentcoercer module

	robot.running.arguments.py2argumentparser module

	robot.running.arguments.py3argumentparser module

	robot.running.arguments.typeconverters module

	robot.running.arguments.typevalidator module

	robot.running.builder package
	Submodules

	robot.running.builder.builders module

	robot.running.builder.parsers module

	robot.running.builder.testsettings module

	robot.running.builder.transformers module

	robot.running.timeouts package
	Submodules

	robot.running.timeouts.ironpython module

	robot.running.timeouts.jython module

	robot.running.timeouts.posix module

	robot.running.timeouts.windows module

Submodules

robot.running.bodyrunner module

	
class robot.running.bodyrunner.BodyRunner(context, run=True, templated=False)[source]

	Bases: object

	
run(body)[source]

	

	
class robot.running.bodyrunner.KeywordRunner(context, run=True)[source]

	Bases: object

	
run(step, name=None)[source]

	

	
class robot.running.bodyrunner.IfRunner(context, run=True, templated=False)[source]

	Bases: object

	
run(data)[source]

	

	
robot.running.bodyrunner.ForRunner(context, flavor='IN', run=True, templated=False)[source]

	

	
class robot.running.bodyrunner.ForInRunner(context, run=True, templated=False)[source]

	Bases: object

	
flavor = 'IN'

	

	
run(data)[source]

	

	
class robot.running.bodyrunner.ForInRangeRunner(context, run=True, templated=False)[source]

	Bases: robot.running.bodyrunner.ForInRunner

	
flavor = 'IN RANGE'

	

	
run(data)

	

	
class robot.running.bodyrunner.ForInZipRunner(context, run=True, templated=False)[source]

	Bases: robot.running.bodyrunner.ForInRunner

	
flavor = 'IN ZIP'

	

	
run(data)

	

	
class robot.running.bodyrunner.ForInEnumerateRunner(context, run=True, templated=False)[source]

	Bases: robot.running.bodyrunner.ForInRunner

	
flavor = 'IN ENUMERATE'

	

	
run(data)

	

robot.running.context module

	
class robot.running.context.ExecutionContexts[source]

	Bases: object

	
current

	

	
top

	

	
namespaces

	

	
start_suite(suite, namespace, output, dry_run=False)[source]

	

	
end_suite()[source]

	

robot.running.dynamicmethods module

	
robot.running.dynamicmethods.no_dynamic_method(*args)[source]

	

	
class robot.running.dynamicmethods.GetKeywordNames(lib)[source]

	Bases: robot.running.dynamicmethods._DynamicMethod

	
name

	

	
class robot.running.dynamicmethods.RunKeyword(lib)[source]

	Bases: robot.running.dynamicmethods._DynamicMethod

	
supports_kwargs

	

	
name

	

	
class robot.running.dynamicmethods.GetKeywordDocumentation(lib)[source]

	Bases: robot.running.dynamicmethods._DynamicMethod

	
name

	

	
class robot.running.dynamicmethods.GetKeywordArguments(lib)[source]

	Bases: robot.running.dynamicmethods._DynamicMethod

	
name

	

	
class robot.running.dynamicmethods.GetKeywordTypes(lib)[source]

	Bases: robot.running.dynamicmethods._DynamicMethod

	
name

	

	
class robot.running.dynamicmethods.GetKeywordTags(lib)[source]

	Bases: robot.running.dynamicmethods._DynamicMethod

	
name

	

	
class robot.running.dynamicmethods.GetKeywordSource(lib)[source]

	Bases: robot.running.dynamicmethods._DynamicMethod

	
name

	

robot.running.handlers module

	
robot.running.handlers.Handler(library, name, method)[source]

	

	
robot.running.handlers.DynamicHandler(library, name, method, doc, argspec, tags=None)[source]

	

	
robot.running.handlers.InitHandler(library, method=None, docgetter=None)[source]

	

	
class robot.running.handlers.EmbeddedArgumentsHandler(name_regexp, orig_handler)[source]

	Bases: object

	
library

	

	
matches(name)[source]

	

	
create_runner(name)[source]

	

robot.running.handlerstore module

	
class robot.running.handlerstore.HandlerStore(source, source_type)[source]

	Bases: object

	
TEST_LIBRARY_TYPE = 'Test library'

	

	
TEST_CASE_FILE_TYPE = 'Test case file'

	

	
RESOURCE_FILE_TYPE = 'Resource file'

	

	
add(handler, embedded=False)[source]

	

	
create_runner(name)[source]

	

robot.running.importer module

	
class robot.running.importer.Importer[source]

	Bases: object

	
reset()[source]

	

	
close_global_library_listeners()[source]

	

	
import_library(name, args, alias, variables)[source]

	

	
import_resource(path)[source]

	

	
class robot.running.importer.ImportCache[source]

	Bases: object

Keeps track on and optionally caches imported items.

Handles paths in keys case-insensitively on case-insensitive OSes.
Unlike dicts, this storage accepts mutable values in keys.

	
add(key, item=None)[source]

	

	
values()[source]

	

robot.running.librarykeywordrunner module

	
class robot.running.librarykeywordrunner.LibraryKeywordRunner(handler, name=None)[source]

	Bases: object

	
library

	

	
libname

	

	
longname

	

	
run(kw, context, run=True)[source]

	

	
dry_run(kw, context)[source]

	

	
class robot.running.librarykeywordrunner.EmbeddedArgumentsRunner(handler, name)[source]

	Bases: robot.running.librarykeywordrunner.LibraryKeywordRunner

	
dry_run(kw, context)

	

	
libname

	

	
library

	

	
longname

	

	
run(kw, context, run=True)

	

	
class robot.running.librarykeywordrunner.RunKeywordRunner(handler, default_dry_run_keywords=False)[source]

	Bases: robot.running.librarykeywordrunner.LibraryKeywordRunner

	
dry_run(kw, context)

	

	
libname

	

	
library

	

	
longname

	

	
run(kw, context, run=True)

	

robot.running.libraryscopes module

	
robot.running.libraryscopes.LibraryScope(libcode, library)[source]

	

	
class robot.running.libraryscopes.GlobalScope(library)[source]

	Bases: object

	
is_global = True

	

	
start_suite()[source]

	

	
end_suite()[source]

	

	
start_test()[source]

	

	
end_test()[source]

	

	
class robot.running.libraryscopes.TestSuiteScope(library)[source]

	Bases: robot.running.libraryscopes.GlobalScope

	
is_global = False

	

	
start_suite()[source]

	

	
end_suite()[source]

	

	
end_test()

	

	
start_test()

	

	
class robot.running.libraryscopes.TestCaseScope(library)[source]

	Bases: robot.running.libraryscopes.TestSuiteScope

	
start_test()[source]

	

	
end_test()[source]

	

	
end_suite()

	

	
is_global = False

	

	
start_suite()

	

robot.running.model module

Module implementing test execution related model objects.

When tests are executed normally, these objects are created based on the test
data on the file system by TestSuiteBuilder, but external
tools can also create an executable test suite model structure directly.
Regardless the approach to create it, the model is executed by calling
run() method of the root test suite. See the
robot.running package level documentation for more information and
examples.

The most important classes defined in this module are TestSuite,
TestCase and Keyword. When tests are executed, these objects
can be inspected and modified by pre-run modifiers [http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#programmatic-modification-of-results] and listeners [http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#listener-interface].
The aforementioned objects are considered stable, but other objects in this
module may still be changed in the future major releases.

	
class robot.running.model.Body(parent=None, items=None)[source]

	Bases: robot.model.body.Body

	
append(item)

	

	
clear()

	

	
count(item)

	

	
create

	

	
create_for(*args, **kwargs)[source]

	

	
create_if(*args, **kwargs)[source]

	

	
create_keyword(*args, **kwargs)[source]

	

	
extend(items)

	

	
filter(keywords=None, fors=None, ifs=None, predicate=None)[source]

	Filter body items based on type and/or custom predicate.

To include or exclude items based on types, give matching arguments
True or False values. For example, to include only keywords, use
body.filter(keywords=True) and to exclude FOR and IF constructs use
body.filter(fors=False, ifs=False). Including and excluding by types
at the same time is not supported.

Custom predicate is a calleble getting each body item as an argument
that must return True/False depending on should the item be included
or not.

Selected items are returned as a list and the original body is not modified.

	
for_class

	alias of For

	
if_class

	alias of If

	
index(item, *start_and_end)

	

	
insert(index, item)

	

	
keyword_class

	alias of Keyword

	
pop(*index)

	

	
classmethod register(item_class)[source]

	

	
remove(item)

	

	
reverse()

	

	
sort()

	

	
visit(visitor)

	

	
class robot.running.model.IfBranches(parent=None, items=None)[source]

	Bases: robot.model.body.IfBranches

	
append(item)

	

	
clear()

	

	
count(item)

	

	
create

	

	
create_branch(*args, **kwargs)[source]

	

	
create_for(*args, **kwargs)

	

	
create_if(*args, **kwargs)

	

	
create_keyword(*args, **kwargs)

	

	
extend(items)

	

	
filter(keywords=None, fors=None, ifs=None, predicate=None)

	Filter body items based on type and/or custom predicate.

To include or exclude items based on types, give matching arguments
True or False values. For example, to include only keywords, use
body.filter(keywords=True) and to exclude FOR and IF constructs use
body.filter(fors=False, ifs=False). Including and excluding by types
at the same time is not supported.

Custom predicate is a calleble getting each body item as an argument
that must return True/False depending on should the item be included
or not.

Selected items are returned as a list and the original body is not modified.

	
for_class = None

	

	
if_branch_class

	alias of IfBranch

	
if_class = None

	

	
index(item, *start_and_end)

	

	
insert(index, item)

	

	
keyword_class = None

	

	
pop(*index)

	

	
classmethod register(item_class)

	

	
remove(item)

	

	
reverse()

	

	
sort()

	

	
visit(visitor)

	

	
class robot.running.model.Keyword(name='', doc='', args=(), assign=(), tags=(), timeout=None, type='KEYWORD', parent=None, lineno=None)[source]

	Bases: robot.model.keyword.Keyword

Represents a single executable keyword.

These keywords never have child keywords or messages. The actual keyword
that is executed depends on the context where this model is executed.

See the base class for documentation of attributes not documented here.

	
lineno

	

	
source

	

	
run(context, run=True, templated=None)[source]

	

	
ELSE = 'ELSE'

	

	
ELSE_IF = 'ELSE IF'

	

	
FOR = 'FOR'

	

	
FOR_ITERATION = 'FOR ITERATION'

	

	
IF = 'IF'

	

	
IF_ELSE_ROOT = 'IF/ELSE ROOT'

	

	
KEYWORD = 'KEYWORD'

	

	
MESSAGE = 'MESSAGE'

	

	
SETUP = 'SETUP'

	

	
TEARDOWN = 'TEARDOWN'

	

	
args

	

	
assign

	

	
config(**attributes)

	Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting
obj.name = 'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

	
copy(**attributes)

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
deepcopy(**attributes)

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
doc

	

	
has_teardown

	Check does a keyword have a teardown without creating a teardown object.

A difference between using if kw.has_teardown: and if kw.teardown:
is that accessing the teardown attribute creates a Keyword
object representing a teardown even when the keyword actually does not
have one. This typically does not matter, but with bigger suite structures
having lot of keywords it can have a considerable effect on memory usage.

New in Robot Framework 4.1.2.

	
id

	Item id in format like s1-t3-k1.

See TestSuite.id for
more information.

	
name

	

	
parent

	

	
repr_args = ('name', 'args', 'assign')

	

	
tags

	Keyword tags as a Tags object.

	
teardown

	Keyword teardown as a Keyword object.

Teardown can be modified by setting attributes directly:

keyword.teardown.name = 'Example'
keyword.teardown.args = ('First', 'Second')

Alternatively the config() method can be used to set multiple
attributes in one call:

keyword.teardown.config(name='Example', args=('First', 'Second'))

The easiest way to reset the whole teardown is setting it to None.
It will automatically recreate the underlying Keyword object:

keyword.teardown = None

This attribute is a Keyword object also when a keyword has no teardown
but in that case its truth value is False. If there is a need to just
check does a keyword have a teardown, using the has_teardown
attribute avoids creating the Keyword object and is thus more memory
efficient.

New in Robot Framework 4.0. Earlier teardown was accessed like
keyword.keywords.teardown. has_teardown is new in Robot
Framework 4.1.2.

	
timeout

	

	
type

	

	
visit(visitor)[source]

	Visitor interface entry-point.

	
class robot.running.model.For(variables, flavor, values, parent=None, lineno=None, error=None)[source]

	Bases: robot.model.control.For

	
body_class

	alias of Body

	
lineno

	

	
error

	

	
source

	

	
run(context, run=True, templated=False)[source]

	

	
ELSE = 'ELSE'

	

	
ELSE_IF = 'ELSE IF'

	

	
FOR = 'FOR'

	

	
FOR_ITERATION = 'FOR ITERATION'

	

	
IF = 'IF'

	

	
IF_ELSE_ROOT = 'IF/ELSE ROOT'

	

	
KEYWORD = 'KEYWORD'

	

	
MESSAGE = 'MESSAGE'

	

	
SETUP = 'SETUP'

	

	
TEARDOWN = 'TEARDOWN'

	

	
body

	

	
config(**attributes)

	Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting
obj.name = 'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

	
copy(**attributes)

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
deepcopy(**attributes)

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
flavor

	

	
id

	Item id in format like s1-t3-k1.

See TestSuite.id for
more information.

	
keywords

	Deprecated since Robot Framework 4.0. Use body instead.

	
parent

	

	
repr_args = ('variables', 'flavor', 'values')

	

	
type = 'FOR'

	

	
values

	

	
variables

	

	
visit(visitor)[source]

	

	
class robot.running.model.If(parent=None, lineno=None, error=None)[source]

	Bases: robot.model.control.If

	
body_class

	alias of IfBranches

	
lineno

	

	
error

	

	
source

	

	
run(context, run=True, templated=False)[source]

	

	
ELSE = 'ELSE'

	

	
ELSE_IF = 'ELSE IF'

	

	
FOR = 'FOR'

	

	
FOR_ITERATION = 'FOR ITERATION'

	

	
IF = 'IF'

	

	
IF_ELSE_ROOT = 'IF/ELSE ROOT'

	

	
KEYWORD = 'KEYWORD'

	

	
MESSAGE = 'MESSAGE'

	

	
SETUP = 'SETUP'

	

	
TEARDOWN = 'TEARDOWN'

	

	
body

	

	
config(**attributes)

	Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting
obj.name = 'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

	
copy(**attributes)

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
deepcopy(**attributes)

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
id

	Root IF/ELSE id is always None.

	
parent

	

	
repr_args = ()

	

	
type = 'IF/ELSE ROOT'

	

	
visit(visitor)[source]

	

	
class robot.running.model.IfBranch(type='IF', condition=None, parent=None, lineno=None)[source]

	Bases: robot.model.control.IfBranch

	
body_class

	alias of Body

	
lineno

	

	
source

	

	
ELSE = 'ELSE'

	

	
ELSE_IF = 'ELSE IF'

	

	
FOR = 'FOR'

	

	
FOR_ITERATION = 'FOR ITERATION'

	

	
IF = 'IF'

	

	
IF_ELSE_ROOT = 'IF/ELSE ROOT'

	

	
KEYWORD = 'KEYWORD'

	

	
MESSAGE = 'MESSAGE'

	

	
SETUP = 'SETUP'

	

	
TEARDOWN = 'TEARDOWN'

	

	
body

	

	
condition

	

	
config(**attributes)

	Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting
obj.name = 'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

	
copy(**attributes)

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
deepcopy(**attributes)

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
id

	Branch id omits the root IF/ELSE object from the parent id part.

	
parent

	

	
repr_args = ('type', 'condition')

	

	
type

	

	
visit(visitor)[source]

	

	
class robot.running.model.TestCase(name='', doc='', tags=None, timeout=None, template=None, lineno=None)[source]

	Bases: robot.model.testcase.TestCase

Represents a single executable test case.

See the base class for documentation of attributes not documented here.

	
body_class

	Internal usage only.

alias of Body

	
fixture_class

	Internal usage only.

alias of Keyword

	
template

	

	
lineno

	

	
source

	

	
body

	Test case body as a Body object.

	
config(**attributes)

	Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting
obj.name = 'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

	
copy(**attributes)

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
deepcopy(**attributes)

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
doc

	

	
id

	Test case id in format like s1-t3.

See TestSuite.id for
more information.

	
keywords

	Deprecated since Robot Framework 4.0

Use body, setup or teardown instead.

	
longname

	Test name prefixed with the long name of the parent suite.

	
name

	

	
parent

	

	
repr_args = ('name',)

	

	
setup

	Test setup as a Keyword object.

This attribute is a Keyword object also when a test has no setup
but in that case its truth value is False.

Setup can be modified by setting attributes directly:

test.setup.name = 'Example'
test.setup.args = ('First', 'Second')

Alternatively the config() method can be used to set multiple
attributes in one call:

test.setup.config(name='Example', args=('First', 'Second'))

The easiest way to reset the whole setup is setting it to None.
It will automatically recreate the underlying Keyword object:

test.setup = None

New in Robot Framework 4.0. Earlier setup was accessed like
test.keywords.setup.

	
tags

	Test tags as a Tags object.

	
teardown

	Test teardown as a Keyword object.

See setup for more information.

	
timeout

	

	
visit(visitor)[source]

	Visitor interface entry-point.

	
class robot.running.model.TestSuite(name='', doc='', metadata=None, source=None, rpa=None)[source]

	Bases: robot.model.testsuite.TestSuite

Represents a single executable test suite.

See the base class for documentation of attributes not documented here.

	
test_class

	Internal usage only.

alias of TestCase

	
fixture_class

	Internal usage only.

alias of Keyword

	
resource

	ResourceFile instance containing imports, variables and
keywords the suite owns. When data is parsed from the file system,
this data comes from the same test case file that creates the suite.

	
classmethod from_file_system(*paths, **config)[source]

	Create a TestSuite object based on the given paths.

paths are file or directory paths where to read the data from.

Internally utilizes the TestSuiteBuilder class
and config can be used to configure how it is initialized.

New in Robot Framework 3.2.

	
classmethod from_model(model, name=None)[source]

	Create a TestSuite object based on the given model.

The model can be created by using the
get_model() function and possibly
modified by other tooling in the robot.parsing module.

New in Robot Framework 3.2.

	
configure(randomize_suites=False, randomize_tests=False, randomize_seed=None, **options)[source]

	A shortcut to configure a suite using one method call.

Can only be used with the root test suite.

	Parameters

	
	randomize_xxx – Passed to randomize().

	options – Passed to
SuiteConfigurer that will then
set suite attributes, call filter(), etc. as needed.

Example:

suite.configure(included_tags=['smoke'],
 doc='Smoke test results.')

Not to be confused with config() method that suites, tests,
and keywords have to make it possible to set multiple attributes in
one call.

	
randomize(suites=True, tests=True, seed=None)[source]

	Randomizes the order of suites and/or tests, recursively.

	Parameters

	
	suites – Boolean controlling should suites be randomized.

	tests – Boolean controlling should tests be randomized.

	seed – Random seed. Can be given if previous random order needs
to be re-created. Seed value is always shown in logs and reports.

	
run(settings=None, **options)[source]

	Executes the suite based based the given settings or options.

	Parameters

	
	settings – RobotSettings object
to configure test execution.

	options – Used to construct new
RobotSettings object if settings
are not given.

	Returns

	Result object with
information about executed suites and tests.

If options are used, their names are the same as long command line
options except without hyphens. Some options are ignored (see below),
but otherwise they have the same semantics as on the command line.
Options that can be given on the command line multiple times can be
passed as lists like variable=['VAR1:value1', 'VAR2:value2'].
If such an option is used only once, it can be given also as a single
string like variable='VAR:value'.

Additionally listener option allows passing object directly instead of
listener name, e.g. run('tests.robot', listener=Listener()).

To capture stdout and/or stderr streams, pass open file objects in as
special keyword arguments stdout and stderr, respectively.

Only options related to the actual test execution have an effect.
For example, options related to selecting or modifying test cases or
suites (e.g. --include, --name, --prerunmodifier) or
creating logs and reports are silently ignored. The output XML
generated as part of the execution can be configured, though. This
includes disabling it with output=None.

Example:

stdout = StringIO()
result = suite.run(variable='EXAMPLE:value',
 output='example.xml',
 exitonfailure=True,
 stdout=stdout)
print(result.return_code)

To save memory, the returned
Result object does not
have any information about the executed keywords. If that information
is needed, the created output XML file needs to be read using the
ExecutionResult factory method.

See the package level documentation for
more examples, including how to construct executable test suites and
how to create logs and reports based on the execution results.

See the robot.run function for a higher-level
API for executing tests in files or directories.

	
config(**attributes)

	Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting
obj.name = 'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

	
copy(**attributes)

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
deepcopy(**attributes)

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

	
doc

	

	
filter(included_suites=None, included_tests=None, included_tags=None, excluded_tags=None)[source]

	Select test cases and remove others from this suite.

Parameters have the same semantics as --suite, --test,
--include, and --exclude command line options. All of them
can be given as a list of strings, or when selecting only one, as
a single string.

Child suites that contain no tests after filtering are automatically
removed.

Example:

suite.filter(included_tests=['Test 1', '* Example'],
 included_tags='priority-1')

	
has_tests

	

	
id

	An automatically generated unique id.

The root suite has id s1, its child suites have ids s1-s1,
s1-s2, …, their child suites get ids s1-s1-s1, s1-s1-s2,
…, s1-s2-s1, …, and so on.

The first test in a suite has an id like s1-t1, the second has an
id s1-t2, and so on. Similarly keywords in suites (setup/teardown)
and in tests get ids like s1-k1, s1-t1-k1, and s1-s4-t2-k5.

	
keywords

	Deprecated since Robot Framework 4.0

Use setup or teardown instead.

	
longname

	Suite name prefixed with the long name of the parent suite.

	
metadata

	Free test suite metadata as a dictionary.

	
name

	Test suite name. If not set, constructed from child suite names.

	
parent

	

	
remove_empty_suites(preserve_direct_children=False)[source]

	Removes all child suites not containing any tests, recursively.

	
repr_args = ('name',)

	

	
rpa

	

	
set_tags(add=None, remove=None, persist=False)[source]

	Add and/or remove specified tags to the tests in this suite.

	Parameters

	
	add – Tags to add as a list or, if adding only one,
as a single string.

	remove – Tags to remove as a list or as a single string.
Can be given as patterns where * and ? work as wildcards.

	persist – Add/remove specified tags also to new tests added
to this suite in the future.

	
setup

	Suite setup as a Keyword object.

This attribute is a Keyword object also when a suite has no setup
but in that case its truth value is False.

Setup can be modified by setting attributes directly:

suite.setup.name = 'Example'
suite.setup.args = ('First', 'Second')

Alternatively the config() method can be used to set multiple
attributes in one call:

suite.setup.config(name='Example', args=('First', 'Second'))

The easiest way to reset the whole setup is setting it to None.
It will automatically recreate the underlying Keyword object:

suite.setup = None

New in Robot Framework 4.0. Earlier setup was accessed like
suite.keywords.setup.

	
source

	

	
suites

	Child suites as a TestSuites object.

	
teardown

	Suite teardown as a Keyword object.

See setup for more information.

	
test_count

	Number of the tests in this suite, recursively.

	
tests

	Tests as a TestCases object.

	
visit(visitor)[source]

	Visitor interface entry-point.

	
class robot.running.model.Variable(name, value, source=None, lineno=None, error=None)[source]

	Bases: object

	
report_invalid_syntax(message, level='ERROR')[source]

	

	
class robot.running.model.ResourceFile(doc='', source=None)[source]

	Bases: object

	
imports

	

	
keywords

	

	
variables

	

	
class robot.running.model.UserKeyword(name, args=(), doc='', tags=(), return_=None, timeout=None, lineno=None, parent=None, error=None)[source]

	Bases: object

	
body

	Child keywords as a Body object.

	
keywords

	Deprecated since Robot Framework 4.0.

Use body or teardown instead.

	
teardown

	

	
tags

	

	
source

	

	
class robot.running.model.Import(type, name, args=(), alias=None, source=None, lineno=None)[source]

	Bases: object

	
ALLOWED_TYPES = ('Library', 'Resource', 'Variables')

	

	
directory

	

	
report_invalid_syntax(message, level='ERROR')[source]

	

	
class robot.running.model.Imports(source, imports=None)[source]

	Bases: robot.model.itemlist.ItemList

	
append(item)

	

	
clear()

	

	
count(item)

	

	
create(*args, **kwargs)

	

	
extend(items)

	

	
index(item, *start_and_end)

	

	
insert(index, item)

	

	
pop(*index)

	

	
remove(item)

	

	
reverse()

	

	
sort()

	

	
visit(visitor)

	

	
library(name, args=(), alias=None, lineno=None)[source]

	

	
resource(path, lineno=None)[source]

	

	
variables(path, args=(), lineno=None)[source]

	

robot.running.modelcombiner module

	
class robot.running.modelcombiner.ModelCombiner(data, result, **priority)[source]

	Bases: object

	
data

	

	
result

	

	
priority

	

robot.running.namespace module

	
class robot.running.namespace.Namespace(variables, suite, resource)[source]

	Bases: object

	
libraries

	

	
handle_imports()[source]

	

	
import_resource(name, overwrite=True)[source]

	

	
import_variables(name, args, overwrite=False)[source]

	

	
import_library(name, args=(), alias=None, notify=True)[source]

	

	
set_search_order(new_order)[source]

	

	
start_test()[source]

	

	
end_test()[source]

	

	
start_suite()[source]

	

	
end_suite(suite)[source]

	

	
start_user_keyword()[source]

	

	
end_user_keyword()[source]

	

	
get_library_instance(libname)[source]

	

	
get_library_instances()[source]

	

	
reload_library(libname_or_instance)[source]

	

	
get_runner(name)[source]

	

	
class robot.running.namespace.KeywordStore(resource)[source]

	Bases: object

	
get_library(name_or_instance)[source]

	

	
get_runner(name)[source]

	

	
class robot.running.namespace.KeywordRecommendationFinder(user_keywords, libraries, resources)[source]

	Bases: object

	
recommend_similar_keywords(name)[source]

	Return keyword names similar to name.

	
static format_recommendations(message, recommendations)[source]

	

robot.running.outputcapture module

	
class robot.running.outputcapture.OutputCapturer(library_import=False)[source]

	Bases: object

	
class robot.running.outputcapture.PythonCapturer(stdout=True)[source]

	Bases: object

	
release()[source]

	

	
class robot.running.outputcapture.JavaCapturer(stdout=True)[source]

	Bases: object

	
release()[source]

	

robot.running.randomizer module

	
class robot.running.randomizer.Randomizer(randomize_suites=True, randomize_tests=True, seed=None)[source]

	Bases: robot.model.visitor.SuiteVisitor

	
start_suite(suite)[source]

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_test(test)[source]

	Implements traversing through tests.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
visit_keyword(kw)[source]

	Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
end_for(for_)

	Called when FOR loop ends. Default implementation does nothing.

	
end_for_iteration(iteration)

	Called when FOR loop iteration ends. Default implementation does nothing.

	
end_if(if_)

	Called when IF/ELSE structure ends. Default implementation does nothing.

	
end_if_branch(branch)

	Called when IF/ELSE branch ends. Default implementation does nothing.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_for(for_)

	Called when FOR loop starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_for_iteration(iteration)

	Called when FOR loop iteration starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if(if_)

	Called when IF/ELSE structure starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if_branch(branch)

	Called when IF/ELSE branch starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_for(for_)

	Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without
calling start_for() or end_for() nor visiting body.

	
visit_for_iteration(iteration)

	Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side
there are no iterations.

Can be overridden to allow modifying the passed in iteration without
calling start_for_iteration() or end_for_iteration() nor visiting
body.

	
visit_if(if_)

	Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches
are in its body and visited using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without
calling start_if() or end_if() nor visiting branches.

	
visit_if_branch(branch)

	Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without
calling start_if_branch() or end_if_branch() nor visiting body.

	
visit_message(msg)

	Implements visiting messages.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

robot.running.runkwregister module

robot.running.signalhandler module

robot.running.status module

	
class robot.running.status.Failure[source]

	Bases: object

	
class robot.running.status.Exit(failure_mode=False, error_mode=False, skip_teardown_mode=False)[source]

	Bases: object

	
failure_occurred(failure=None)[source]

	

	
error_occurred()[source]

	

	
teardown_allowed

	

	
class robot.running.status.SuiteStatus(parent=None, exit_on_failure_mode=False, exit_on_error_mode=False, skip_teardown_on_exit_mode=False)[source]

	Bases: robot.running.status._ExecutionStatus

	
error_occurred()

	

	
failed

	

	
failure_occurred()

	

	
message

	

	
setup_executed(failure=None)

	

	
status

	

	
teardown_allowed

	

	
teardown_executed(failure=None)

	

	
class robot.running.status.TestStatus(parent, test, skip_on_failure=None, critical_tags=None, rpa=False)[source]

	Bases: robot.running.status._ExecutionStatus

	
test_failed(failure)[source]

	

	
test_skipped(reason)[source]

	

	
skip_if_needed()[source]

	

	
error_occurred()

	

	
failed

	

	
failure_occurred()

	

	
message

	

	
setup_executed(failure=None)

	

	
status

	

	
teardown_allowed

	

	
teardown_executed(failure=None)

	

	
class robot.running.status.TestMessage(status)[source]

	Bases: robot.running.status._Message

	
setup_message = 'Setup failed:\n%s'

	

	
teardown_message = 'Teardown failed:\n%s'

	

	
setup_skipped_message = '%s'

	

	
teardown_skipped_message = '%s'

	

	
also_teardown_message = '%s\n\nAlso teardown failed:\n%s'

	

	
also_teardown_skip_message = 'Skipped in teardown:\n%s\n\nEarlier message:\n%s'

	

	
exit_on_fatal_message = 'Test execution stopped due to a fatal error.'

	

	
exit_on_failure_message = 'Failure occurred and exit-on-failure mode is in use.'

	

	
exit_on_error_message = 'Error occurred and exit-on-error mode is in use.'

	

	
message

	

	
class robot.running.status.SuiteMessage(status)[source]

	Bases: robot.running.status._Message

	
setup_message = 'Suite setup failed:\n%s'

	

	
setup_skipped_message = 'Skipped in suite setup:\n%s'

	

	
teardown_skipped_message = 'Skipped in suite teardown:\n%s'

	

	
teardown_message = 'Suite teardown failed:\n%s'

	

	
also_teardown_message = '%s\n\nAlso suite teardown failed:\n%s'

	

	
also_teardown_skip_message = 'Skipped in suite teardown:\n%s\n\nEarlier message:\n%s'

	

	
message

	

	
class robot.running.status.ParentMessage(status)[source]

	Bases: robot.running.status.SuiteMessage

	
setup_message = 'Parent suite setup failed:\n%s'

	

	
setup_skipped_message = 'Skipped in parent suite setup:\n%s'

	

	
teardown_skipped_message = 'Skipped in parent suite teardown:\n%s'

	

	
teardown_message = 'Parent suite teardown failed:\n%s'

	

	
also_teardown_message = '%s\n\nAlso parent suite teardown failed:\n%s'

	

	
also_teardown_skip_message = 'Skipped in suite teardown:\n%s\n\nEarlier message:\n%s'

	

	
message

	

robot.running.statusreporter module

	
class robot.running.statusreporter.StatusReporter(data, result, context, run=True)[source]

	Bases: object

robot.running.suiterunner module

	
class robot.running.suiterunner.SuiteRunner(output, settings)[source]

	Bases: robot.model.visitor.SuiteVisitor

	
start_suite(suite)[source]

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_suite(suite)[source]

	Called when suite ends. Default implementation does nothing.

	
visit_test(test)[source]

	Implements traversing through tests.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
end_for(for_)

	Called when FOR loop ends. Default implementation does nothing.

	
end_for_iteration(iteration)

	Called when FOR loop iteration ends. Default implementation does nothing.

	
end_if(if_)

	Called when IF/ELSE structure ends. Default implementation does nothing.

	
end_if_branch(branch)

	Called when IF/ELSE branch ends. Default implementation does nothing.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_for(for_)

	Called when FOR loop starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_for_iteration(iteration)

	Called when FOR loop iteration starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if(if_)

	Called when IF/ELSE structure starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_if_branch(branch)

	Called when IF/ELSE branch starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_for(for_)

	Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without
calling start_for() or end_for() nor visiting body.

	
visit_for_iteration(iteration)

	Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side
there are no iterations.

Can be overridden to allow modifying the passed in iteration without
calling start_for_iteration() or end_for_iteration() nor visiting
body.

	
visit_if(if_)

	Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches
are in its body and visited using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without
calling start_if() or end_if() nor visiting branches.

	
visit_if_branch(branch)

	Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without
calling start_if_branch() or end_if_branch() nor visiting body.

	
visit_keyword(kw)

	Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
visit_message(msg)

	Implements visiting messages.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

robot.running.testlibraries module

	
robot.running.testlibraries.TestLibrary(name, args=None, variables=None, create_handlers=True, logger=<robot.output.logger.Logger object>)[source]

	

robot.running.usererrorhandler module

	
class robot.running.usererrorhandler.UserErrorHandler(error, name, libname=None)[source]

	Bases: object

Created if creating handlers fail – running raises DataError.

The idea is not to raise DataError at processing time and prevent all
tests in affected test case file from executing. Instead UserErrorHandler
is created and if it is ever run DataError is raised then.

	Parameters

	
	error (robot.errors.DataError) – Occurred error.

	name (str) – Name of the affected keyword.

	libname (str) – Name of the affected library or resource.

	
longname

	

	
doc

	

	
shortdoc

	

	
create_runner(name)[source]

	

	
run(kw, context, run=True)[source]

	

	
dry_run(kw, context, run=True)

	

robot.running.userkeyword module

	
class robot.running.userkeyword.UserLibrary(resource, source_type='Resource file')[source]

	Bases: object

	
TEST_CASE_FILE_TYPE = 'Test case file'

	

	
RESOURCE_FILE_TYPE = 'Resource file'

	

	
class robot.running.userkeyword.UserKeywordHandler(keyword, libname)[source]

	Bases: object

	
longname

	

	
shortdoc

	

	
create_runner(name)[source]

	

	
class robot.running.userkeyword.EmbeddedArgumentsHandler(keyword, libname, embedded)[source]

	Bases: robot.running.userkeyword.UserKeywordHandler

	
matches(name)[source]

	

	
create_runner(name)[source]

	

	
longname

	

	
shortdoc

	

robot.running.userkeywordrunner module

	
class robot.running.userkeywordrunner.UserKeywordRunner(handler, name=None)[source]

	Bases: object

	
longname

	

	
libname

	

	
arguments

	
	Return type

	robot.running.arguments.ArgumentSpec

	
run(kw, context, run=True)[source]

	

	
dry_run(kw, context)[source]

	

	
class robot.running.userkeywordrunner.EmbeddedArgumentsRunner(handler, name)[source]

	Bases: robot.running.userkeywordrunner.UserKeywordRunner

	
arguments

	
	Return type

	robot.running.arguments.ArgumentSpec

	
dry_run(kw, context)

	

	
libname

	

	
longname

	

	
run(kw, context, run=True)

	

robot.running.arguments package

Submodules

robot.running.arguments.argumentconverter module

	
class robot.running.arguments.argumentconverter.ArgumentConverter(argspec, dry_run=False)

	Bases: object

	
convert(positional, named)

	

robot.running.arguments.argumentmapper module

	
class robot.running.arguments.argumentmapper.ArgumentMapper(argspec)

	Bases: object

	
map(positional, named, replace_defaults=True)

	

	
class robot.running.arguments.argumentmapper.KeywordCallTemplate(argspec)

	Bases: object

	
fill_positional(positional)

	

	
fill_named(named)

	

	
replace_defaults()

	

	
class robot.running.arguments.argumentmapper.DefaultValue(value)

	Bases: object

	
resolve(variables)

	

robot.running.arguments.argumentparser module

	
class robot.running.arguments.argumentparser.JavaArgumentParser(type='Keyword')

	Bases: robot.running.arguments.argumentparser._ArgumentParser

	
parse(signatures, name=None)

	

	
class robot.running.arguments.argumentparser.DynamicArgumentParser(type='Keyword', error_reporter=None)

	Bases: robot.running.arguments.argumentparser._ArgumentSpecParser

	
parse(argspec, name=None)

	

	
class robot.running.arguments.argumentparser.UserKeywordArgumentParser(type='Keyword', error_reporter=None)

	Bases: robot.running.arguments.argumentparser._ArgumentSpecParser

	
parse(argspec, name=None)

	

robot.running.arguments.argumentresolver module

	
class robot.running.arguments.argumentresolver.ArgumentResolver(argspec, resolve_named=True, resolve_variables_until=None, dict_to_kwargs=False)

	Bases: object

	
resolve(arguments, variables=None)

	

	
class robot.running.arguments.argumentresolver.NamedArgumentResolver(argspec)

	Bases: object

	
resolve(arguments, variables=None)

	

	
class robot.running.arguments.argumentresolver.NullNamedArgumentResolver

	Bases: object

	
resolve(arguments, variables=None)

	

	
class robot.running.arguments.argumentresolver.DictToKwargs(argspec, enabled=False)

	Bases: object

	
handle(positional, named)

	

	
class robot.running.arguments.argumentresolver.VariableReplacer(resolve_until=None)

	Bases: object

	
replace(positional, named, variables=None)

	

robot.running.arguments.argumentspec module

	
class robot.running.arguments.argumentspec.Enum

	Bases: object

	
class robot.running.arguments.argumentspec.ArgumentSpec(name=None, type='Keyword', positional_only=None, positional_or_named=None, var_positional=None, named_only=None, var_named=None, defaults=None, types=None)

	Bases: object

	
types

	

	
positional

	

	
minargs

	

	
maxargs

	

	
argument_names

	

	
resolve(arguments, variables=None, resolve_named=True, resolve_variables_until=None, dict_to_kwargs=False)

	

	
map(positional, named, replace_defaults=True)

	

	
class robot.running.arguments.argumentspec.ArgInfo(kind, name='', types=<object object>, default=<object object>)

	Bases: object

	
NOTSET = <object object>

	

	
POSITIONAL_ONLY = 'POSITIONAL_ONLY'

	

	
POSITIONAL_ONLY_MARKER = 'POSITIONAL_ONLY_MARKER'

	

	
POSITIONAL_OR_NAMED = 'POSITIONAL_OR_NAMED'

	

	
VAR_POSITIONAL = 'VAR_POSITIONAL'

	

	
NAMED_ONLY_MARKER = 'NAMED_ONLY_MARKER'

	

	
NAMED_ONLY = 'NAMED_ONLY'

	

	
VAR_NAMED = 'VAR_NAMED'

	

	
types

	

	
required

	

	
types_reprs

	

	
default_repr

	

robot.running.arguments.argumentvalidator module

	
class robot.running.arguments.argumentvalidator.ArgumentValidator(argspec)

	Bases: object

	
validate(positional, named, dryrun=False)

	

robot.running.arguments.embedded module

	
class robot.running.arguments.embedded.EmbeddedArguments(name)

	Bases: object

	
class robot.running.arguments.embedded.EmbeddedArgumentParser

	Bases: object

	
parse(string)

	

robot.running.arguments.javaargumentcoercer module

robot.running.arguments.py2argumentparser module

	
class robot.running.arguments.py2argumentparser.PythonArgumentParser(type='Keyword')

	Bases: object

	
parse(handler, name=None)

	

robot.running.arguments.py3argumentparser module

robot.running.arguments.typeconverters module

	
class robot.running.arguments.typeconverters.Enum

	Bases: object

	
class robot.running.arguments.typeconverters.TypeConverter(used_type)

	Bases: object

	
type = None

	

	
type_name = None

	

	
abc = None

	

	
aliases = ()

	

	
value_types = (<type 'unicode'>,)

	

	
classmethod register(converter)

	

	
classmethod converter_for(type_)

	

	
classmethod handles(type_)

	

	
convert(name, value, explicit_type=True, strict=True)

	

	
no_conversion_needed(value)

	

	
class robot.running.arguments.typeconverters.EnumConverter(used_type)

	Bases: robot.running.arguments.typeconverters.TypeConverter

	
type

	alias of Enum

	
type_name

	

	
value_types

	

	
abc = None

	

	
aliases = ()

	

	
convert(name, value, explicit_type=True, strict=True)

	

	
classmethod converter_for(type_)

	

	
classmethod handles(type_)

	

	
no_conversion_needed(value)

	

	
classmethod register(converter)

	

	
class robot.running.arguments.typeconverters.StringConverter(used_type)

	Bases: robot.running.arguments.typeconverters.TypeConverter

	
type

	alias of __builtin__.unicode

	
type_name = 'string'

	

	
aliases = ('string', 'str', 'unicode')

	

	
abc = None

	

	
convert(name, value, explicit_type=True, strict=True)

	

	
classmethod converter_for(type_)

	

	
classmethod handles(type_)

	

	
no_conversion_needed(value)

	

	
classmethod register(converter)

	

	
value_types = (<type 'unicode'>,)

	

	
class robot.running.arguments.typeconverters.BooleanConverter(used_type)

	Bases: robot.running.arguments.typeconverters.TypeConverter

	
value_types = (<type 'unicode'>, <type 'int'>, <type 'float'>, <type 'NoneType'>)

	

	
type

	alias of __builtin__.bool

	
type_name = 'boolean'

	

	
aliases = ('bool',)

	

	
abc = None

	

	
convert(name, value, explicit_type=True, strict=True)

	

	
classmethod converter_for(type_)

	

	
classmethod handles(type_)

	

	
no_conversion_needed(value)

	

	
classmethod register(converter)

	

	
class robot.running.arguments.typeconverters.IntegerConverter(used_type)

	Bases: robot.running.arguments.typeconverters.TypeConverter

	
type

	alias of __builtin__.int

	
abc

	alias of numbers.Integral

	
type_name = 'integer'

	

	
aliases = ('int', 'long')

	

	
value_types = (<type 'unicode'>, <type 'float'>)

	

	
convert(name, value, explicit_type=True, strict=True)

	

	
classmethod converter_for(type_)

	

	
classmethod handles(type_)

	

	
no_conversion_needed(value)

	

	
classmethod register(converter)

	

	
class robot.running.arguments.typeconverters.FloatConverter(used_type)

	Bases: robot.running.arguments.typeconverters.TypeConverter

	
type

	alias of __builtin__.float

	
abc

	alias of numbers.Real

	
type_name = 'float'

	

	
aliases = ('double',)

	

	
value_types = (<type 'unicode'>, <class 'numbers.Real'>)

	

	
convert(name, value, explicit_type=True, strict=True)

	

	
classmethod converter_for(type_)

	

	
classmethod handles(type_)

	

	
no_conversion_needed(value)

	

	
classmethod register(converter)

	

	
class robot.running.arguments.typeconverters.DecimalConverter(used_type)

	Bases: robot.running.arguments.typeconverters.TypeConverter

	
type

	alias of decimal.Decimal

	
type_name = 'decimal'

	

	
value_types = (<type 'unicode'>, <type 'int'>, <type 'float'>)

	

	
abc = None

	

	
aliases = ()

	

	
convert(name, value, explicit_type=True, strict=True)

	

	
classmethod converter_for(type_)

	

	
classmethod handles(type_)

	

	
no_conversion_needed(value)

	

	
classmethod register(converter)

	

	
class robot.running.arguments.typeconverters.BytesConverter(used_type)

	Bases: robot.running.arguments.typeconverters.TypeConverter

	
type

	alias of __builtin__.str

	
abc = None

	

	
type_name = 'bytes'

	

	
value_types = (<type 'unicode'>, <type 'bytearray'>)

	

	
aliases = ()

	

	
convert(name, value, explicit_type=True, strict=True)

	

	
classmethod converter_for(type_)

	

	
classmethod handles(type_)

	

	
no_conversion_needed(value)

	

	
classmethod register(converter)

	

	
class robot.running.arguments.typeconverters.ByteArrayConverter(used_type)

	Bases: robot.running.arguments.typeconverters.TypeConverter

	
type

	alias of __builtin__.bytearray

	
type_name = 'bytearray'

	

	
value_types = (<type 'unicode'>, <type 'str'>)

	

	
abc = None

	

	
aliases = ()

	

	
convert(name, value, explicit_type=True, strict=True)

	

	
classmethod converter_for(type_)

	

	
classmethod handles(type_)

	

	
no_conversion_needed(value)

	

	
classmethod register(converter)

	

	
class robot.running.arguments.typeconverters.DateTimeConverter(used_type)

	Bases: robot.running.arguments.typeconverters.TypeConverter

	
type

	alias of datetime.datetime

	
type_name = 'datetime'

	

	
value_types = (<type 'unicode'>, <type 'int'>, <type 'float'>)

	

	
abc = None

	

	
aliases = ()

	

	
convert(name, value, explicit_type=True, strict=True)

	

	
classmethod converter_for(type_)

	

	
classmethod handles(type_)

	

	
no_conversion_needed(value)

	

	
classmethod register(converter)

	

	
class robot.running.arguments.typeconverters.DateConverter(used_type)

	Bases: robot.running.arguments.typeconverters.TypeConverter

	
type

	alias of datetime.date

	
type_name = 'date'

	

	
abc = None

	

	
aliases = ()

	

	
convert(name, value, explicit_type=True, strict=True)

	

	
classmethod converter_for(type_)

	

	
classmethod handles(type_)

	

	
no_conversion_needed(value)

	

	
classmethod register(converter)

	

	
value_types = (<type 'unicode'>,)

	

	
class robot.running.arguments.typeconverters.TimeDeltaConverter(used_type)

	Bases: robot.running.arguments.typeconverters.TypeConverter

	
type

	alias of datetime.timedelta

	
type_name = 'timedelta'

	

	
value_types = (<type 'unicode'>, <type 'int'>, <type 'float'>)

	

	
abc = None

	

	
aliases = ()

	

	
convert(name, value, explicit_type=True, strict=True)

	

	
classmethod converter_for(type_)

	

	
classmethod handles(type_)

	

	
no_conversion_needed(value)

	

	
classmethod register(converter)

	

	
class robot.running.arguments.typeconverters.NoneConverter(used_type)

	Bases: robot.running.arguments.typeconverters.TypeConverter

	
type

	alias of __builtin__.NoneType

	
type_name = 'None'

	

	
classmethod handles(type_)

	

	
abc = None

	

	
aliases = ()

	

	
convert(name, value, explicit_type=True, strict=True)

	

	
classmethod converter_for(type_)

	

	
no_conversion_needed(value)

	

	
classmethod register(converter)

	

	
value_types = (<type 'unicode'>,)

	

	
class robot.running.arguments.typeconverters.ListConverter(used_type)

	Bases: robot.running.arguments.typeconverters.TypeConverter

	
type

	alias of __builtin__.list

	
type_name = 'list'

	

	
abc

	alias of _abcoll.Sequence

	
value_types = (<type 'unicode'>, <type 'tuple'>)

	

	
no_conversion_needed(value)

	

	
aliases = ()

	

	
convert(name, value, explicit_type=True, strict=True)

	

	
classmethod converter_for(type_)

	

	
classmethod handles(type_)

	

	
classmethod register(converter)

	

	
class robot.running.arguments.typeconverters.TupleConverter(used_type)

	Bases: robot.running.arguments.typeconverters.TypeConverter

	
type

	alias of __builtin__.tuple

	
type_name = 'tuple'

	

	
value_types = (<type 'unicode'>, <type 'list'>)

	

	
abc = None

	

	
aliases = ()

	

	
convert(name, value, explicit_type=True, strict=True)

	

	
classmethod converter_for(type_)

	

	
classmethod handles(type_)

	

	
no_conversion_needed(value)

	

	
classmethod register(converter)

	

	
class robot.running.arguments.typeconverters.DictionaryConverter(used_type)

	Bases: robot.running.arguments.typeconverters.TypeConverter

	
type

	alias of __builtin__.dict

	
abc

	alias of _abcoll.Mapping

	
type_name = 'dictionary'

	

	
aliases = ('dict', 'map')

	

	
convert(name, value, explicit_type=True, strict=True)

	

	
classmethod converter_for(type_)

	

	
classmethod handles(type_)

	

	
no_conversion_needed(value)

	

	
classmethod register(converter)

	

	
value_types = (<type 'unicode'>,)

	

	
class robot.running.arguments.typeconverters.SetConverter(used_type)

	Bases: robot.running.arguments.typeconverters.TypeConverter

	
type

	alias of __builtin__.set

	
type_name = 'set'

	

	
value_types = (<type 'unicode'>, <type 'frozenset'>, <type 'list'>, <type 'tuple'>, <class '_abcoll.Mapping'>)

	

	
abc

	alias of _abcoll.Set

	
aliases = ()

	

	
convert(name, value, explicit_type=True, strict=True)

	

	
classmethod converter_for(type_)

	

	
classmethod handles(type_)

	

	
no_conversion_needed(value)

	

	
classmethod register(converter)

	

	
class robot.running.arguments.typeconverters.FrozenSetConverter(used_type)

	Bases: robot.running.arguments.typeconverters.TypeConverter

	
type

	alias of __builtin__.frozenset

	
type_name = 'frozenset'

	

	
value_types = (<type 'unicode'>, <type 'set'>, <type 'list'>, <type 'tuple'>, <class '_abcoll.Mapping'>)

	

	
abc = None

	

	
aliases = ()

	

	
convert(name, value, explicit_type=True, strict=True)

	

	
classmethod converter_for(type_)

	

	
classmethod handles(type_)

	

	
no_conversion_needed(value)

	

	
classmethod register(converter)

	

	
class robot.running.arguments.typeconverters.CombinedConverter(union)

	Bases: robot.running.arguments.typeconverters.TypeConverter

	
type = typing.Union

	

	
type_name

	

	
classmethod handles(type_)

	

	
no_conversion_needed(value)

	

	
abc = None

	

	
aliases = ()

	

	
convert(name, value, explicit_type=True, strict=True)

	

	
classmethod converter_for(type_)

	

	
classmethod register(converter)

	

	
value_types = (<type 'unicode'>,)

	

robot.running.arguments.typevalidator module

	
class robot.running.arguments.typevalidator.TypeValidator(argspec)

	Bases: object

	
validate(types)

	

	
validate_type_dict(types)

	

	
convert_type_list_to_dict(types)

	

robot.running.builder package

Submodules

robot.running.builder.builders module

	
class robot.running.builder.builders.TestSuiteBuilder(included_suites=None, included_extensions=('robot',), rpa=None, allow_empty_suite=False, process_curdir=True)[source]

	Bases: object

Builder to construct TestSuite objects based on data on the disk.

The build() method constructs executable
TestSuite objects based on test data files
or directories. There are two main use cases for this API:

	Execute the created suite by using its
run() method. The suite can be
can be modified before execution if needed.

	Inspect the suite to see, for example, what tests it has or what tags
tests have. This can be more convenient than using the lower level
parsing APIs but does not allow saving modified data
back to the disk.

Both modifying the suite and inspecting what data it contains are easiest
done by using the visitor interface.

This class is part of the public API and should be imported via the
robot.api package.

	Parameters

	
	include_suites – List of suite names to include. If None or an empty list,
all suites are included. Same as using --suite on
the command line.

	included_extensions – List of extensions of files to parse. Same as --extension.
This parameter was named extension before RF 3.2.

	rpa – Explicit test execution mode. True for RPA and
False for test automation. By default mode is got from test
data headers and possible conflicting headers cause an error.
Same as --rpa or --norpa.

	allow_empty_suite – Specify is it an error if the built suite contains no tests.
Same as --runemptysuite. New in RF 3.2.

	process_curdir – Control processing the special ${CURDIR} variable. It is
resolved already at parsing time by default, but that can be
changed by giving this argument False value. New in RF 3.2.

	
build(*paths)[source]

	
	Parameters

	paths – Paths to test data files or directories.

	Returns

	TestSuite instance.

	
class robot.running.builder.builders.SuiteStructureParser(included_extensions, rpa=None, process_curdir=True)[source]

	Bases: robot.parsing.suitestructure.SuiteStructureVisitor

	
parse(structure)[source]

	

	
visit_file(structure)[source]

	

	
start_directory(structure)[source]

	

	
end_directory(structure)[source]

	

	
visit_directory(structure)

	

	
class robot.running.builder.builders.ResourceFileBuilder(process_curdir=True)[source]

	Bases: object

	
build(source)[source]

	

robot.running.builder.parsers module

	
class robot.running.builder.parsers.BaseParser[source]

	Bases: object

	
parse_init_file(source, defaults=None)[source]

	

	
parse_suite_file(source, defaults=None)[source]

	

	
parse_resource_file(source)[source]

	

	
class robot.running.builder.parsers.RobotParser(process_curdir=True)[source]

	Bases: robot.running.builder.parsers.BaseParser

	
parse_init_file(source, defaults=None)[source]

	

	
parse_suite_file(source, defaults=None)[source]

	

	
build_suite(model, name=None, defaults=None)[source]

	

	
parse_resource_file(source)[source]

	

	
class robot.running.builder.parsers.RestParser(process_curdir=True)[source]

	Bases: robot.running.builder.parsers.RobotParser

	
build_suite(model, name=None, defaults=None)

	

	
parse_init_file(source, defaults=None)

	

	
parse_resource_file(source)

	

	
parse_suite_file(source, defaults=None)

	

	
class robot.running.builder.parsers.NoInitFileDirectoryParser[source]

	Bases: robot.running.builder.parsers.BaseParser

	
parse_init_file(source, defaults=None)[source]

	

	
parse_resource_file(source)

	

	
parse_suite_file(source, defaults=None)

	

	
robot.running.builder.parsers.format_name(source)[source]

	

	
class robot.running.builder.parsers.ErrorReporter(source)[source]

	Bases: ast.NodeVisitor

	
visit_Error(node)[source]

	

	
generic_visit(node)

	Called if no explicit visitor function exists for a node.

	
visit(node)

	Visit a node.

robot.running.builder.testsettings module

	
class robot.running.builder.testsettings.TestDefaults(parent=None)[source]

	Bases: object

	
setup

	

	
teardown

	

	
force_tags

	

	
timeout

	

	
class robot.running.builder.testsettings.TestSettings(defaults)[source]

	Bases: object

	
setup

	

	
teardown

	

	
timeout

	

	
template

	

	
tags

	

robot.running.builder.transformers module

	
class robot.running.builder.transformers.SettingsBuilder(suite, test_defaults)[source]

	Bases: ast.NodeVisitor

	
visit_Documentation(node)[source]

	

	
visit_Metadata(node)[source]

	

	
visit_SuiteSetup(node)[source]

	

	
visit_SuiteTeardown(node)[source]

	

	
visit_TestSetup(node)[source]

	

	
visit_TestTeardown(node)[source]

	

	
visit_TestTimeout(node)[source]

	

	
visit_DefaultTags(node)[source]

	

	
visit_ForceTags(node)[source]

	

	
visit_TestTemplate(node)[source]

	

	
visit_ResourceImport(node)[source]

	

	
visit_LibraryImport(node)[source]

	

	
visit_VariablesImport(node)[source]

	

	
visit_VariableSection(node)[source]

	

	
visit_TestCaseSection(node)[source]

	

	
visit_KeywordSection(node)[source]

	

	
generic_visit(node)

	Called if no explicit visitor function exists for a node.

	
visit(node)

	Visit a node.

	
class robot.running.builder.transformers.SuiteBuilder(suite, test_defaults)[source]

	Bases: ast.NodeVisitor

	
visit_SettingSection(node)[source]

	

	
visit_Variable(node)[source]

	

	
visit_TestCase(node)[source]

	

	
visit_Keyword(node)[source]

	

	
generic_visit(node)

	Called if no explicit visitor function exists for a node.

	
visit(node)

	Visit a node.

	
class robot.running.builder.transformers.ResourceBuilder(resource)[source]

	Bases: ast.NodeVisitor

	
visit_Documentation(node)[source]

	

	
visit_LibraryImport(node)[source]

	

	
visit_ResourceImport(node)[source]

	

	
visit_VariablesImport(node)[source]

	

	
visit_Variable(node)[source]

	

	
visit_Keyword(node)[source]

	

	
generic_visit(node)

	Called if no explicit visitor function exists for a node.

	
visit(node)

	Visit a node.

	
class robot.running.builder.transformers.TestCaseBuilder(suite, defaults)[source]

	Bases: ast.NodeVisitor

	
visit_TestCase(node)[source]

	

	
visit_For(node)[source]

	

	
visit_If(node)[source]

	

	
visit_TemplateArguments(node)[source]

	

	
visit_Documentation(node)[source]

	

	
visit_Setup(node)[source]

	

	
visit_Teardown(node)[source]

	

	
visit_Timeout(node)[source]

	

	
visit_Tags(node)[source]

	

	
visit_Template(node)[source]

	

	
visit_KeywordCall(node)[source]

	

	
generic_visit(node)

	Called if no explicit visitor function exists for a node.

	
visit(node)

	Visit a node.

	
class robot.running.builder.transformers.KeywordBuilder(resource)[source]

	Bases: ast.NodeVisitor

	
visit_Keyword(node)[source]

	

	
visit_Documentation(node)[source]

	

	
visit_Arguments(node)[source]

	

	
visit_Tags(node)[source]

	

	
visit_Return(node)[source]

	

	
visit_Timeout(node)[source]

	

	
visit_Teardown(node)[source]

	

	
visit_KeywordCall(node)[source]

	

	
visit_For(node)[source]

	

	
visit_If(node)[source]

	

	
generic_visit(node)

	Called if no explicit visitor function exists for a node.

	
visit(node)

	Visit a node.

	
class robot.running.builder.transformers.ForBuilder(parent)[source]

	Bases: ast.NodeVisitor

	
build(node)[source]

	

	
visit_KeywordCall(node)[source]

	

	
visit_TemplateArguments(node)[source]

	

	
visit_For(node)[source]

	

	
visit_If(node)[source]

	

	
generic_visit(node)

	Called if no explicit visitor function exists for a node.

	
visit(node)

	Visit a node.

	
class robot.running.builder.transformers.IfBuilder(parent)[source]

	Bases: ast.NodeVisitor

	
build(node)[source]

	

	
visit_KeywordCall(node)[source]

	

	
visit_TemplateArguments(node)[source]

	

	
visit_If(node)[source]

	

	
visit_For(node)[source]

	

	
generic_visit(node)

	Called if no explicit visitor function exists for a node.

	
visit(node)

	Visit a node.

	
robot.running.builder.transformers.format_error(errors)[source]

	

robot.running.timeouts package

	
class robot.running.timeouts.TestTimeout(timeout=None, variables=None, rpa=False)

	Bases: robot.running.timeouts._Timeout

	
type = 'Test'

	

	
set_keyword_timeout(timeout_occurred)

	

	
any_timeout_occurred()

	

	
active

	

	
get_message()

	

	
replace_variables(variables)

	

	
run(runnable, args=None, kwargs=None)

	

	
start()

	

	
time_left()

	

	
timed_out()

	

	
class robot.running.timeouts.KeywordTimeout(timeout=None, variables=None)

	Bases: robot.running.timeouts._Timeout

	
active

	

	
get_message()

	

	
replace_variables(variables)

	

	
run(runnable, args=None, kwargs=None)

	

	
start()

	

	
time_left()

	

	
timed_out()

	

	
type = 'Keyword'

	

Submodules

robot.running.timeouts.ironpython module

robot.running.timeouts.jython module

robot.running.timeouts.posix module

	
class robot.running.timeouts.posix.Timeout(timeout, error)

	Bases: object

	
execute(runnable)

	

robot.running.timeouts.windows module

	
class robot.running.timeouts.windows.Timeout(timeout, error)

	Bases: object

	
execute(runnable)

	

robot.utils package

Various generic utility functions and classes.

Utilities are mainly for internal usage, but external libraries and tools
may find some of them useful. Utilities are generally stable, but absolute
backwards compatibility between major versions is not guaranteed.

All utilities are exposed via the robot.utils package, and should be
used either like:

from robot import utils

assert utils.Matcher('H?llo').match('Hillo')

or:

from robot.utils import Matcher

assert Matcher('H?llo').match('Hillo')

	
robot.utils.read_rest_data(rstfile)[source]

	

Submodules

robot.utils.application module

	
class robot.utils.application.Application(usage, name=None, version=None, arg_limits=None, env_options=None, logger=None, **auto_options)[source]

	Bases: object

	
main(arguments, **options)[source]

	

	
validate(options, arguments)[source]

	

	
execute_cli(cli_arguments, exit=True)[source]

	

	
console(msg)[source]

	

	
parse_arguments(cli_args)[source]

	Public interface for parsing command line arguments.

	Parameters

	cli_args – Command line arguments as a list

	Returns

	options (dict), arguments (list)

	Raises

	Information when –help or –version used

	Raises

	DataError when parsing fails

	
execute(*arguments, **options)[source]

	

	
class robot.utils.application.DefaultLogger[source]

	Bases: object

	
info(message)[source]

	

	
error(message)[source]

	

	
close()[source]

	

robot.utils.argumentparser module

	
robot.utils.argumentparser.cmdline2list(args, escaping=False)[source]

	

	
class robot.utils.argumentparser.ArgumentParser(usage, name=None, version=None, arg_limits=None, validator=None, env_options=None, auto_help=True, auto_version=True, auto_pythonpath=True, auto_argumentfile=True)[source]

	Bases: object

Available options and tool name are read from the usage.

Tool name is got from the first row of the usage. It is either the
whole row or anything before first ‘ – ‘.

	
parse_args(args)[source]

	Parse given arguments and return options and positional arguments.

Arguments must be given as a list and are typically sys.argv[1:].

Options are returned as a dictionary where long options are keys. Value
is a string for those options that can be given only one time (if they
are given multiple times the last value is used) or None if the option
is not used at all. Value for options that can be given multiple times
(denoted with ‘*’ in the usage) is a list which contains all the given
values and is empty if options are not used. Options not taken
arguments have value False when they are not set and True otherwise.

Positional arguments are returned as a list in the order they are given.

If ‘check_args’ is True, this method will automatically check that
correct number of arguments, as parsed from the usage line, are given.
If the last argument in the usage line ends with the character ‘s’,
the maximum number of arguments is infinite.

Possible errors in processing arguments are reported using DataError.

Some options have a special meaning and are handled automatically
if defined in the usage and given from the command line:

–argumentfile can be used to automatically read arguments from
a specified file. When –argumentfile is used, the parser always
allows using it multiple times. Adding ‘*’ to denote that is thus
recommend. A special value ‘stdin’ can be used to read arguments from
stdin instead of a file.

–pythonpath can be used to add extra path(s) to sys.path.

–help and –version automatically generate help and version messages.
Version is generated based on the tool name and version – see __init__
for information how to set them. Help contains the whole usage given to
__init__. Possible <VERSION> text in the usage is replaced with the
given version. Both help and version are wrapped to Information
exception.

	
class robot.utils.argumentparser.ArgLimitValidator(arg_limits)[source]

	Bases: object

	
class robot.utils.argumentparser.ArgFileParser(options)[source]

	Bases: object

	
process(args)[source]

	

robot.utils.asserts module

Convenience functions for testing both in unit and higher levels.

	Benefits:

	
	Integrates 100% with unittest (see example below)

	Can be easily used without unittest (using unittest.TestCase when you
only need convenient asserts is not so nice)

	Saved typing and shorter lines because no need to have ‘self.’ before
asserts. These are static functions after all so that is OK.

	All ‘equals’ methods (by default) report given values even if optional
message given. This behavior can be controlled with the optional values
argument.

	Drawbacks:

	
	unittest is not able to filter as much non-interesting traceback away
as with its own methods because AssertionErrors occur outside.

Most of the functions are copied more or less directly from unittest.TestCase
which comes with the following license. Further information about unittest in
general can be found from http://pyunit.sourceforge.net/. This module can be
used freely in same terms as unittest.

unittest license:

Copyright (c) 1999-2003 Steve Purcell
This module is free software, and you may redistribute it and/or modify
it under the same terms as Python itself, so long as this copyright message
and disclaimer are retained in their original form.

IN NO EVENT SHALL THE AUTHOR BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF
THIS CODE, EVEN IF THE AUTHOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

THE AUTHOR SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE CODE PROVIDED HEREUNDER IS ON AN "AS IS" BASIS,
AND THERE IS NO OBLIGATION WHATSOEVER TO PROVIDE MAINTENANCE,
SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Examples:

import unittest
from robot.utils.asserts import assert_equal

class MyTests(unittest.TestCase):

 def test_old_style(self):
 self.assertEqual(1, 2, 'my msg')

 def test_new_style(self):
 assert_equal(1, 2, 'my msg')

Example output:

FF
==
FAIL: test_old_style (example.MyTests)
--
Traceback (most recent call last):
 File "example.py", line 7, in test_old_style
 self.assertEqual(1, 2, 'my msg')
AssertionError: my msg

==
FAIL: test_new_style (example.MyTests)
--
Traceback (most recent call last):
 File "example.py", line 10, in test_new_style
 assert_equal(1, 2, 'my msg')
 File "/path/to/robot/utils/asserts.py", line 181, in assert_equal
 _report_inequality_failure(first, second, msg, values, '!=')
 File "/path/to/robot/utils/asserts.py", line 229, in _report_inequality_failure
 raise AssertionError(msg)
AssertionError: my msg: 1 != 2

--
Ran 2 tests in 0.000s

FAILED (failures=2)

	
robot.utils.asserts.fail(msg=None)[source]

	Fail test immediately with the given message.

	
robot.utils.asserts.assert_false(expr, msg=None)[source]

	Fail the test if the expression is True.

	
robot.utils.asserts.assert_true(expr, msg=None)[source]

	Fail the test unless the expression is True.

	
robot.utils.asserts.assert_not_none(obj, msg=None, values=True)[source]

	Fail the test if given object is None.

	
robot.utils.asserts.assert_none(obj, msg=None, values=True)[source]

	Fail the test if given object is not None.

	
robot.utils.asserts.assert_raises(exc_class, callable_obj, *args, **kwargs)[source]

	Fail unless an exception of class exc_class is thrown by callable_obj.

callable_obj is invoked with arguments args and keyword arguments
kwargs. If a different type of exception is thrown, it will not be
caught, and the test case will be deemed to have suffered an
error, exactly as for an unexpected exception.

If a correct exception is raised, the exception instance is returned
by this method.

	
robot.utils.asserts.assert_raises_with_msg(exc_class, expected_msg, callable_obj, *args, **kwargs)[source]

	Similar to fail_unless_raises but also checks the exception message.

	
robot.utils.asserts.assert_equal(first, second, msg=None, values=True, formatter=None)[source]

	Fail if given objects are unequal as determined by the ‘==’ operator.

	
robot.utils.asserts.assert_not_equal(first, second, msg=None, values=True, formatter=None)[source]

	Fail if given objects are equal as determined by the ‘==’ operator.

	
robot.utils.asserts.assert_almost_equal(first, second, places=7, msg=None, values=True)[source]

	Fail if the two objects are unequal after rounded to given places.

inequality is determined by object’s difference rounded to the
given number of decimal places (default 7) and comparing to zero.
Note that decimal places (from zero) are usually not the same as
significant digits (measured from the most significant digit).

	
robot.utils.asserts.assert_not_almost_equal(first, second, places=7, msg=None, values=True)[source]

	Fail if the two objects are unequal after rounded to given places.

Equality is determined by object’s difference rounded to to the
given number of decimal places (default 7) and comparing to zero.
Note that decimal places (from zero) are usually not the same as
significant digits (measured from the most significant digit).

robot.utils.charwidth module

A module to handle different character widths on the console.

Some East Asian characters have width of two on console, and combining
characters themselves take no extra space.

See issue 604 [1] for more details about East Asian characters. The issue also
contains generate_wild_chars.py script that was originally used to create
_EAST_ASIAN_WILD_CHARS mapping. An updated version of the script is attached
to issue 1096. Big thanks for xieyanbo for the script and the original patch.

Note that Python’s unicodedata module is not used here because importing
it takes several seconds on Jython.

[1] https://github.com/robotframework/robotframework/issues/604
[2] https://github.com/robotframework/robotframework/issues/1096

	
robot.utils.charwidth.get_char_width(char)[source]

	

robot.utils.compat module

	
robot.utils.compat.unwrap(func)[source]

	

	
robot.utils.compat.unicode_to_str(self)[source]

	

	
robot.utils.compat.py2to3(cls)[source]

	Deprecated since RF 4.0. Use ‘py3to2’ instead.

	
robot.utils.compat.py3to2(cls)[source]

	

	
robot.utils.compat.with_metaclass(meta, *bases)[source]

	Create a base class with a metaclass.

	
robot.utils.compat.isatty(stream)[source]

	

robot.utils.compress module

	
robot.utils.compress.compress_text(text)[source]

	

robot.utils.connectioncache module

	
class robot.utils.connectioncache.ConnectionCache(no_current_msg='No open connection.')[source]

	Bases: object

Cache for test libs to use with concurrent connections, processes, etc.

The cache stores the registered connections (or other objects) and allows
switching between them using generated indices or user given aliases.
This is useful with any test library where there’s need for multiple
concurrent connections, processes, etc.

This class can, and is, used also outside the core framework by SSHLibrary,
Selenium(2)Library, etc. Backwards compatibility is thus important when
doing changes.

	
current = None

	Current active connection.

	
current_index

	

	
register(connection, alias=None)[source]

	Registers given connection with optional alias and returns its index.

Given connection is set to be the current connection.

If alias is given, it must be a string. Aliases are case and space
insensitive.

The index of the first connection after initialization, and after
close_all() or empty_cache(), is 1, second is 2, etc.

	
switch(alias_or_index)[source]

	Switches to the connection specified by the given alias or index.

Updates current and also returns its new value.

Alias is whatever was given to register() method and indices
are returned by it. Index can be given either as an integer or
as a string that can be converted to an integer. Raises an error
if no connection with the given index or alias found.

	
get_connection(alias_or_index=None)[source]

	Get the connection specified by the given alias or index..

If alias_or_index is None, returns the current connection
if it is active, or raises an error if it is not.

Alias is whatever was given to register() method and indices
are returned by it. Index can be given either as an integer or
as a string that can be converted to an integer. Raises an error
if no connection with the given index or alias found.

	
close_all(closer_method='close')[source]

	Closes connections using given closer method and empties cache.

If simply calling the closer method is not adequate for closing
connections, clients should close connections themselves and use
empty_cache() afterwards.

	
empty_cache()[source]

	Empties the connection cache.

Indexes of the new connections starts from 1 after this.

	
resolve_alias_or_index(alias_or_index)[source]

	

	
class robot.utils.connectioncache.NoConnection(message)[source]

	Bases: object

	
raise_error()[source]

	

robot.utils.dotdict module

	
class robot.utils.dotdict.DotDict(*args, **kwds)[source]

	Bases: collections.OrderedDict

	
clear() → None. Remove all items from od.

	

	
copy() → a shallow copy of od

	

	
classmethod fromkeys(S[, v]) → New ordered dictionary with keys from S.

	If not specified, the value defaults to None.

	
get(k[, d]) → D[k] if k in D, else d. d defaults to None.

	

	
has_key(k) → True if D has a key k, else False

	

	
items() → list of (key, value) pairs in od

	

	
iteritems()

	od.iteritems -> an iterator over the (key, value) pairs in od

	
iterkeys() → an iterator over the keys in od

	

	
itervalues()

	od.itervalues -> an iterator over the values in od

	
keys() → list of keys in od

	

	
pop(k[, d]) → v, remove specified key and return the corresponding

	value. If key is not found, d is returned if given, otherwise KeyError
is raised.

	
popitem() → (k, v), return and remove a (key, value) pair.

	Pairs are returned in LIFO order if last is true or FIFO order if false.

	
setdefault(k[, d]) → od.get(k,d), also set od[k]=d if k not in od

	

	
update([E,]**F) → None. Update D from mapping/iterable E and F.

	If E present and has a .keys() method, does: for k in E: D[k] = E[k]
If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v
In either case, this is followed by: for k, v in F.items(): D[k] = v

	
values() → list of values in od

	

	
viewitems() → a set-like object providing a view on od's items

	

	
viewkeys() → a set-like object providing a view on od's keys

	

	
viewvalues() → an object providing a view on od's values

	

robot.utils.encoding module

	
robot.utils.encoding.console_decode(string, encoding='UTF-8', force=False)[source]

	Decodes bytes from console encoding to Unicode.

By default uses the system console encoding, but that can be configured
using the encoding argument. In addition to the normal encodings,
it is possible to use case-insensitive values CONSOLE and SYSTEM to
use the system console and system encoding, respectively.

By default returns Unicode strings as-is. The force argument can be used
on IronPython where all strings are unicode and caller knows decoding
is needed.

	
robot.utils.encoding.console_encode(string, encoding=None, errors='replace', stream=<open file '<stdout>', mode 'w'>, force=False)[source]

	Encodes Unicode to bytes in console or system encoding.

If encoding is not given, determines it based on the given stream and system
configuration. In addition to the normal encodings, it is possible to use
case-insensitive values CONSOLE and SYSTEM to use the system console
and system encoding, respectively.

On Python 3 and IronPython returns Unicode unless force is True in which
case returns bytes. Otherwise always returns bytes.

	
robot.utils.encoding.system_decode(string)[source]

	Decodes bytes from system (e.g. cli args or env vars) to Unicode.

Depending on the usage, at least cli args may already be Unicode.

	
robot.utils.encoding.system_encode(string, errors='replace')[source]

	Encodes Unicode to system encoding (e.g. cli args and env vars).

Non-Unicode values are first converted to Unicode.

robot.utils.encodingsniffer module

	
robot.utils.encodingsniffer.get_system_encoding()[source]

	

	
robot.utils.encodingsniffer.get_console_encoding()[source]

	

robot.utils.error module

	
robot.utils.error.get_error_message()[source]

	Returns error message of the last occurred exception.

This method handles also exceptions containing unicode messages. Thus it
MUST be used to get messages from all exceptions originating outside the
framework.

	
robot.utils.error.get_error_details(exclude_robot_traces=True)[source]

	Returns error message and details of the last occurred exception.

	
robot.utils.error.ErrorDetails(exc_info=None, exclude_robot_traces=True)[source]

	This factory returns an object that wraps the last occurred exception

It has attributes message, traceback and error, where message
contains type and message of the original error, traceback contains the
traceback/stack trace and error contains the original error instance.

	
class robot.utils.error.PythonErrorDetails(exc_type, exc_value, exc_traceback, exclude_robot_traces=True)[source]

	Bases: robot.utils.error._ErrorDetails

	
message

	

	
traceback

	

	
class robot.utils.error.JavaErrorDetails(exc_type, exc_value, exc_traceback, exclude_robot_traces=True)[source]

	Bases: robot.utils.error._ErrorDetails

	
message

	

	
traceback

	

robot.utils.escaping module

	
robot.utils.escaping.escape(item)[source]

	

	
robot.utils.escaping.glob_escape(item)[source]

	

	
class robot.utils.escaping.Unescaper[source]

	Bases: object

	
unescape(item)[source]

	

	
robot.utils.escaping.split_from_equals(string)[source]

	

robot.utils.etreewrapper module

	
class robot.utils.etreewrapper.ETSource(source)[source]

	Bases: object

robot.utils.filereader module

	
class robot.utils.filereader.FileReader(source, accept_text=False)[source]

	Bases: object

Utility to ease reading different kind of files.

Supports different sources where to read the data:

	The source can be a path to a file, either as a string or as a
pathlib.Path instance in Python 3. The file itself must be
UTF-8 encoded.

	Alternatively the source can be an already opened file object,
including a StringIO or BytesIO object. The file can contain either
Unicode text or UTF-8 encoded bytes.

	The third options is giving the source as Unicode text directly.
This requires setting accept_text=True when creating the reader.

In all cases bytes are automatically decoded to Unicode and possible
BOM removed.

	
read()[source]

	

	
readlines()[source]

	

robot.utils.frange module

	
robot.utils.frange.frange(*args)[source]

	Like range() but accepts float arguments.

robot.utils.htmlformatters module

	
class robot.utils.htmlformatters.LinkFormatter[source]

	Bases: object

	
format_url(text)[source]

	

	
format_link(text)[source]

	

	
class robot.utils.htmlformatters.LineFormatter[source]

	Bases: object

	
handles(line)

	

	
newline = '\n'

	

	
format(line)[source]

	

	
class robot.utils.htmlformatters.HtmlFormatter[source]

	Bases: object

	
format(text)[source]

	

	
class robot.utils.htmlformatters.RulerFormatter[source]

	Bases: robot.utils.htmlformatters._SingleLineFormatter

	
match()

	match(string[, pos[, endpos]]) –> match object or None.
Matches zero or more characters at the beginning of the string

	
format_line(line)[source]

	

	
add(line)

	

	
end()

	

	
format(lines)

	

	
handles(line)

	

	
class robot.utils.htmlformatters.HeaderFormatter[source]

	Bases: robot.utils.htmlformatters._SingleLineFormatter

	
match()

	match(string[, pos[, endpos]]) –> match object or None.
Matches zero or more characters at the beginning of the string

	
format_line(line)[source]

	

	
add(line)

	

	
end()

	

	
format(lines)

	

	
handles(line)

	

	
class robot.utils.htmlformatters.ParagraphFormatter(other_formatters)[source]

	Bases: robot.utils.htmlformatters._Formatter

	
format(lines)[source]

	

	
add(line)

	

	
end()

	

	
handles(line)

	

	
class robot.utils.htmlformatters.TableFormatter[source]

	Bases: robot.utils.htmlformatters._Formatter

	
format(lines)[source]

	

	
add(line)

	

	
end()

	

	
handles(line)

	

	
class robot.utils.htmlformatters.PreformattedFormatter[source]

	Bases: robot.utils.htmlformatters._Formatter

	
format(lines)[source]

	

	
add(line)

	

	
end()

	

	
handles(line)

	

	
class robot.utils.htmlformatters.ListFormatter[source]

	Bases: robot.utils.htmlformatters._Formatter

	
format(lines)[source]

	

	
add(line)

	

	
end()

	

	
handles(line)

	

robot.utils.importer module

	
robot.utils.importer.invalidate_import_caches()

	

	
class robot.utils.importer.Importer(type=None, logger=None)[source]

	Bases: object

Utility that can import modules and classes based on names and paths.

Imported classes can optionally be instantiated automatically.

	Parameters

	
	type – Type of the thing being imported. Used in error and log messages.

	logger – Logger to be notified about successful imports and other events.
Currently only needs the info method, but other level specific
methods may be needed in the future. If not given, logging is disabled.

	
import_class_or_module(name_or_path, instantiate_with_args=None, return_source=False)[source]

	Imports Python class/module or Java class based on the given name or path.

	Parameters

	
	name_or_path – Name or path of the module or class to import.

	instantiate_with_args – When arguments are given, imported classes are automatically initialized
using them.

	return_source – When true, returns a tuple containing the imported module or class
and a path to it. By default returns only the imported module or class.

The class or module to import can be specified either as a name, in which
case it must be in the module search path, or as a path to the file or
directory implementing the module. See import_class_or_module_by_path()
for more information about importing classes and modules by path.

Classes can be imported from the module search path using name like
modulename.ClassName. If the class name and module name are same, using
just CommonName is enough. When importing a class by a path, the class
name and the module name must match.

Optional arguments to use when creating an instance are given as a list.
Starting from Robot Framework 4.0, both positional and named arguments are
supported (e.g. ['positional', 'name=value']) and arguments are converted
automatically based on type hints and default values.

If arguments needed when creating an instance are initially embedded into
the name or path like Example:arg1:arg2, separate
split_args_from_name_or_path() function can be
used to split them before calling this method.

	
import_class_or_module_by_path(path, instantiate_with_args=None)[source]

	Import a Python module or Java class using a file system path.

	Parameters

	
	path – Path to the module or class to import.

	instantiate_with_args – When arguments are given, imported classes are automatically initialized
using them.

When importing a Python file, the path must end with .py and the
actual file must also exist. When importing Java classes, the path must
end with .java or .class. The Java class file must exist
in both cases and in the former case also the source file must exist.

Use import_class_or_module() to support importing also using name,
not only path. See the documentation of that function for more information
about creating instances automatically.

	
class robot.utils.importer.ByPathImporter(logger)[source]

	Bases: robot.utils.importer._Importer

	
handles(path)[source]

	

	
import_(path)[source]

	

	
class robot.utils.importer.NonDottedImporter(logger)[source]

	Bases: robot.utils.importer._Importer

	
handles(name)[source]

	

	
import_(name)[source]

	

	
class robot.utils.importer.DottedImporter(logger)[source]

	Bases: robot.utils.importer._Importer

	
handles(name)[source]

	

	
import_(name)[source]

	

	
class robot.utils.importer.NoLogger[source]

	Bases: object

	
error(*args, **kws)

	

	
warn(*args, **kws)

	

	
info(*args, **kws)

	

	
debug(*args, **kws)

	

	
trace(*args, **kws)

	

robot.utils.markuputils module

	
robot.utils.markuputils.html_escape(text, linkify=True)[source]

	

	
robot.utils.markuputils.xml_escape(text)[source]

	

	
robot.utils.markuputils.html_format(text)[source]

	

	
robot.utils.markuputils.attribute_escape(attr)[source]

	

robot.utils.markupwriters module

	
class robot.utils.markupwriters.HtmlWriter(output, write_empty=True, usage=None)[source]

	Bases: robot.utils.markupwriters._MarkupWriter

	Parameters

	
	output – Either an opened, file like object, or a path to the
desired output file. In the latter case, the file is created
and clients should use close() method to close it.

	write_empty – Whether to write empty elements and attributes.

	
close()

	Closes the underlying output file.

	
content(content=None, escape=True, newline=False)

	

	
element(name, content=None, attrs=None, escape=True, newline=True)

	

	
end(name, newline=True)

	

	
start(name, attrs=None, newline=True)

	

	
class robot.utils.markupwriters.XmlWriter(output, write_empty=True, usage=None)[source]

	Bases: robot.utils.markupwriters._MarkupWriter

	Parameters

	
	output – Either an opened, file like object, or a path to the
desired output file. In the latter case, the file is created
and clients should use close() method to close it.

	write_empty – Whether to write empty elements and attributes.

	
element(name, content=None, attrs=None, escape=True, newline=True)[source]

	

	
close()

	Closes the underlying output file.

	
content(content=None, escape=True, newline=False)

	

	
end(name, newline=True)

	

	
start(name, attrs=None, newline=True)

	

	
class robot.utils.markupwriters.NullMarkupWriter(**kwargs)[source]

	Bases: object

Null implementation of the _MarkupWriter interface.

	
start(**kwargs)

	

	
content(**kwargs)

	

	
element(**kwargs)

	

	
end(**kwargs)

	

	
close(**kwargs)

	

robot.utils.match module

	
robot.utils.match.eq(str1, str2, ignore=(), caseless=True, spaceless=True)[source]

	

	
class robot.utils.match.Matcher(pattern, ignore=(), caseless=True, spaceless=True, regexp=False)[source]

	Bases: object

	
match(string)[source]

	

	
match_any(strings)[source]

	

	
class robot.utils.match.MultiMatcher(patterns=None, ignore=(), caseless=True, spaceless=True, match_if_no_patterns=False, regexp=False)[source]

	Bases: object

	
match(string)[source]

	

	
match_any(strings)[source]

	

robot.utils.misc module

	
robot.utils.misc.roundup(number, ndigits=0, return_type=None)[source]

	Rounds number to the given number of digits.

Numbers equally close to a certain precision are always rounded away from
zero. By default return value is float when ndigits is positive and
int otherwise, but that can be controlled with return_type.

With the built-in round() rounding equally close numbers as well as
the return type depends on the Python version.

	
robot.utils.misc.printable_name(string, code_style=False)[source]

	Generates and returns printable name from the given string.

Examples:
‘simple’ -> ‘Simple’
‘name with spaces’ -> ‘Name With Spaces’
‘more spaces’ -> ‘More Spaces’
‘Cases AND spaces’ -> ‘Cases AND Spaces’
‘’ -> ‘’

If ‘code_style’ is True:

‘mixedCAPSCamel’ -> ‘Mixed CAPS Camel’
‘camelCaseName’ -> ‘Camel Case Name’
‘under_score_name’ -> ‘Under Score Name’
‘under_and space’ -> ‘Under And Space’
‘miXed_CAPS_nAMe’ -> ‘MiXed CAPS NAMe’
‘’ -> ‘’

	
robot.utils.misc.plural_or_not(item)[source]

	

	
robot.utils.misc.seq2str(sequence, quote="'", sep=', ', lastsep=' and ')[source]

	Returns sequence in format ‘item 1’, ‘item 2’ and ‘item 3’.

	
robot.utils.misc.seq2str2(sequence)[source]

	Returns sequence in format [item 1 | item 2 | …].

	
robot.utils.misc.test_or_task(text, rpa=False)[source]

	Replaces {test} in text with test or task depending on rpa.

robot.utils.normalizing module

	
robot.utils.normalizing.normalize(string, ignore=(), caseless=True, spaceless=True)[source]

	Normalizes given string according to given spec.

By default string is turned to lower case and all whitespace is removed.
Additional characters can be removed by giving them in ignore list.

	
robot.utils.normalizing.normalize_whitespace(string)[source]

	

	
robot.utils.normalizing.lower(string)[source]

	

	
class robot.utils.normalizing.NormalizedDict(initial=None, ignore=(), caseless=True, spaceless=True)[source]

	Bases: _abcoll.MutableMapping

Custom dictionary implementation automatically normalizing keys.

Initialized with possible initial value and normalizing spec.

Initial values can be either a dictionary or an iterable of name/value
pairs. In the latter case items are added in the given order.

Normalizing spec has exact same semantics as with the normalize()
function.

	
copy()[source]

	

	
clear() → None. Remove all items from D.[source]

	

	
get(k[, d]) → D[k] if k in D, else d. d defaults to None.

	

	
items() → list of D's (key, value) pairs, as 2-tuples

	

	
iteritems() → an iterator over the (key, value) items of D

	

	
iterkeys() → an iterator over the keys of D

	

	
itervalues() → an iterator over the values of D

	

	
keys() → list of D's keys

	

	
pop(k[, d]) → v, remove specified key and return the corresponding value.

	If key is not found, d is returned if given, otherwise KeyError is raised.

	
popitem() → (k, v), remove and return some (key, value) pair

	as a 2-tuple; but raise KeyError if D is empty.

	
setdefault(k[, d]) → D.get(k,d), also set D[k]=d if k not in D

	

	
update([E,]**F) → None. Update D from mapping/iterable E and F.

	If E present and has a .keys() method, does: for k in E: D[k] = E[k]
If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v
In either case, this is followed by: for k, v in F.items(): D[k] = v

	
values() → list of D's values

	

robot.utils.platform module

robot.utils.recommendations module

	
class robot.utils.recommendations.RecommendationFinder(normalizer=None)[source]

	Bases: object

	
find_and_format(name, candidates, message, max_matches=10)[source]

	

	
find(name, candidates, max_matches=10)[source]

	Return a list of close matches to name from candidates.

	
format(message, recommendations=None)[source]

	Add recommendations to the given message.

The recommendation string looks like:

<message> Did you mean:
 <recommendations[0]>
 <recommendations[1]>
 <recommendations[2]>

robot.utils.restreader module

robot.utils.robotenv module

robot.utils.robotinspect module

robot.utils.robotio module

robot.utils.robotpath module

robot.utils.robottime module

robot.utils.robottypes module

robot.utils.robottypes2 module

robot.utils.robottypes3 module

robot.utils.setter module

robot.utils.sortable module

robot.utils.text module

robot.utils.unic module

robot.variables package

Implements storing and resolving variables.

This package is mainly for internal usage, but utilities for finding
variables can be used externally as well.

	
robot.variables.is_var(string, identifiers='$@&')[source]

	Deprecated since RF 3.2. Use is_variable instead.

	
robot.variables.is_scalar_var(string)[source]

	Deprecated since RF 3.2. Use is_scalar_variable instead.

	
robot.variables.is_list_var(string)[source]

	Deprecated since RF 3.2. Use is_list_variable instead.

	
robot.variables.is_dict_var(string)[source]

	Deprecated since RF 3.2. Use is_dict_variable instead.

	
robot.variables.contains_var(string, identifiers='$@&')[source]

	Deprecated since RF 3.2. Use contains_variable instead.

Submodules

robot.variables.assigner module

	
class robot.variables.assigner.VariableAssignment(assignment)[source]

	Bases: object

	
validate_assignment()[source]

	

	
assigner(context)[source]

	

	
class robot.variables.assigner.AssignmentValidator[source]

	Bases: object

	
validate(variable)[source]

	

	
class robot.variables.assigner.VariableAssigner(assignment, context)[source]

	Bases: object

	
assign(return_value)[source]

	

	
robot.variables.assigner.ReturnValueResolver(assignment)[source]

	

	
class robot.variables.assigner.NoReturnValueResolver[source]

	Bases: object

	
resolve(return_value)[source]

	

	
class robot.variables.assigner.OneReturnValueResolver(variable)[source]

	Bases: object

	
resolve(return_value)[source]

	

	
class robot.variables.assigner.ScalarsOnlyReturnValueResolver(variables)[source]

	Bases: robot.variables.assigner._MultiReturnValueResolver

	
resolve(return_value)

	

	
class robot.variables.assigner.ScalarsAndListReturnValueResolver(variables)[source]

	Bases: robot.variables.assigner._MultiReturnValueResolver

	
resolve(return_value)

	

robot.variables.evaluation module

	
robot.variables.evaluation.evaluate_expression(expression, variable_store, modules=None, namespace=None)[source]

	

	
class robot.variables.evaluation.EvaluationNamespace(variable_store, namespace)[source]

	Bases: _abcoll.MutableMapping

	
clear() → None. Remove all items from D.

	

	
get(k[, d]) → D[k] if k in D, else d. d defaults to None.

	

	
items() → list of D's (key, value) pairs, as 2-tuples

	

	
iteritems() → an iterator over the (key, value) items of D

	

	
iterkeys() → an iterator over the keys of D

	

	
itervalues() → an iterator over the values of D

	

	
keys() → list of D's keys

	

	
pop(k[, d]) → v, remove specified key and return the corresponding value.

	If key is not found, d is returned if given, otherwise KeyError is raised.

	
popitem() → (k, v), remove and return some (key, value) pair

	as a 2-tuple; but raise KeyError if D is empty.

	
setdefault(k[, d]) → D.get(k,d), also set D[k]=d if k not in D

	

	
update([E,]**F) → None. Update D from mapping/iterable E and F.

	If E present and has a .keys() method, does: for k in E: D[k] = E[k]
If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v
In either case, this is followed by: for k, v in F.items(): D[k] = v

	
values() → list of D's values

	

robot.variables.filesetter module

	
class robot.variables.filesetter.VariableFileSetter(store)[source]

	Bases: object

	
set(path_or_variables, args=None, overwrite=False)[source]

	

	
class robot.variables.filesetter.YamlImporter[source]

	Bases: object

	
import_variables(path, args=None)[source]

	

	
class robot.variables.filesetter.PythonImporter[source]

	Bases: object

	
import_variables(path, args=None)[source]

	

robot.variables.finders module

	
robot.variables.finders.get_java_property(name)

	

	
robot.variables.finders.get_java_properties()

	

	
class robot.variables.finders.VariableFinder(variable_store)[source]

	Bases: object

	
find(variable)[source]

	

	
class robot.variables.finders.StoredFinder(store)[source]

	Bases: object

	
identifiers = '$@&'

	

	
find(name)[source]

	

	
class robot.variables.finders.NumberFinder[source]

	Bases: object

	
identifiers = '$'

	

	
find(name)[source]

	

	
class robot.variables.finders.EmptyFinder[source]

	Bases: object

	
identifiers = '$@&'

	

	
empty = <robot.utils.normalizing.NormalizedDict object>

	

	
find(name)[source]

	

	
class robot.variables.finders.InlinePythonFinder(variables)[source]

	Bases: object

	
identifiers = '$@&'

	

	
find(name)[source]

	

	
class robot.variables.finders.ExtendedFinder(finder)[source]

	Bases: object

	
identifiers = '$@&'

	

	
find(name)[source]

	

	
class robot.variables.finders.EnvironmentFinder[source]

	Bases: object

	
identifiers = '%'

	

	
find(name)[source]

	

robot.variables.notfound module

	
robot.variables.notfound.variable_not_found(name, candidates, message=None, deco_braces=True)[source]

	Raise DataError for missing variable name.

Return recommendations for similar variable names if any are found.

robot.variables.replacer module

	
class robot.variables.replacer.VariableReplacer(variable_store)[source]

	Bases: object

	
replace_list(items, replace_until=None, ignore_errors=False)[source]

	Replaces variables from a list of items.

If an item in a list is a @{list} variable its value is returned.
Possible variables from other items are replaced using ‘replace_scalar’.
Result is always a list.

‘replace_until’ can be used to limit replacing arguments to certain
index from the beginning. Used with Run Keyword variants that only
want to resolve some of the arguments in the beginning and pass others
to called keywords unmodified.

	
replace_scalar(item, ignore_errors=False)[source]

	Replaces variables from a scalar item.

If the item is not a string it is returned as is. If it is a variable,
its value is returned. Otherwise possible variables are replaced with
‘replace_string’. Result may be any object.

	
replace_string(item, custom_unescaper=None, ignore_errors=False)[source]

	Replaces variables from a string. Result is always a string.

Input can also be an already found VariableMatch.

robot.variables.scopes module

	
class robot.variables.scopes.VariableScopes(settings)[source]

	Bases: object

	
current

	

	
start_suite()[source]

	

	
end_suite()[source]

	

	
start_test()[source]

	

	
end_test()[source]

	

	
start_keyword()[source]

	

	
end_keyword()[source]

	

	
replace_list(items, replace_until=None, ignore_errors=False)[source]

	

	
replace_scalar(items, ignore_errors=False)[source]

	

	
replace_string(string, custom_unescaper=None, ignore_errors=False)[source]

	

	
set_from_file(path, args, overwrite=False)[source]

	

	
set_from_variable_table(variables, overwrite=False)[source]

	

	
resolve_delayed()[source]

	

	
set_global(name, value)[source]

	

	
set_suite(name, value, top=False, children=False)[source]

	

	
set_test(name, value)[source]

	

	
set_keyword(name, value)[source]

	

	
set_local_variable(name, value)[source]

	

	
as_dict(decoration=True)[source]

	

	
class robot.variables.scopes.GlobalVariables(settings)[source]

	Bases: robot.variables.variables.Variables

	
as_dict(decoration=True)

	

	
clear()

	

	
copy()

	

	
replace_list(items, replace_until=None, ignore_errors=False)

	

	
replace_scalar(item, ignore_errors=False)

	

	
replace_string(item, custom_unescaper=None, ignore_errors=False)

	

	
resolve_delayed()

	

	
set_from_file(path_or_variables, args=None, overwrite=False)

	

	
set_from_variable_table(variables, overwrite=False)

	

	
update(variables)

	

	
class robot.variables.scopes.SetVariables[source]

	Bases: object

	
start_suite()[source]

	

	
end_suite()[source]

	

	
start_test()[source]

	

	
end_test()[source]

	

	
start_keyword()[source]

	

	
end_keyword()[source]

	

	
set_global(name, value)[source]

	

	
set_suite(name, value)[source]

	

	
set_test(name, value)[source]

	

	
set_keyword(name, value)[source]

	

	
update(variables)[source]

	

robot.variables.search module

	
robot.variables.search.search_variable(string, identifiers='$@&%*', ignore_errors=False)[source]

	

	
robot.variables.search.contains_variable(string, identifiers='$@&')[source]

	

	
robot.variables.search.is_variable(string, identifiers='$@&')[source]

	

	
robot.variables.search.is_scalar_variable(string)[source]

	

	
robot.variables.search.is_list_variable(string)[source]

	

	
robot.variables.search.is_dict_variable(string)[source]

	

	
robot.variables.search.is_assign(string, identifiers='$@&', allow_assign_mark=False)[source]

	

	
robot.variables.search.is_scalar_assign(string, allow_assign_mark=False)[source]

	

	
robot.variables.search.is_list_assign(string, allow_assign_mark=False)[source]

	

	
robot.variables.search.is_dict_assign(string, allow_assign_mark=False)[source]

	

	
class robot.variables.search.VariableMatch(string, identifier=None, base=None, items=(), start=-1, end=-1)[source]

	Bases: object

	
resolve_base(variables, ignore_errors=False)[source]

	

	
name

	

	
before

	

	
match

	

	
after

	

	
is_variable()[source]

	

	
is_scalar_variable()[source]

	

	
is_list_variable()[source]

	

	
is_dict_variable()[source]

	

	
is_assign(allow_assign_mark=False)[source]

	

	
is_scalar_assign(allow_assign_mark=False)[source]

	

	
is_list_assign(allow_assign_mark=False)[source]

	

	
is_dict_assign(allow_assign_mark=False)[source]

	

	
class robot.variables.search.VariableSearcher(identifiers, ignore_errors=False)[source]

	Bases: object

	
search(string)[source]

	

	
variable_state(char)[source]

	

	
waiting_item_state(char)[source]

	

	
item_state(char)[source]

	

	
robot.variables.search.unescape_variable_syntax(item)[source]

	

	
class robot.variables.search.VariableIterator(string, identifiers='$@&%', ignore_errors=False)[source]

	Bases: object

robot.variables.store module

	
class robot.variables.store.VariableStore(variables)[source]

	Bases: object

	
resolve_delayed(item=None)[source]

	

	
get(name, default=<object object>, decorated=True)[source]

	

	
update(store)[source]

	

	
clear()[source]

	

	
add(name, value, overwrite=True, decorated=True)[source]

	

	
as_dict(decoration=True)[source]

	

robot.variables.tablesetter module

	
class robot.variables.tablesetter.VariableTableSetter(store)[source]

	Bases: object

	
set(variables, overwrite=False)[source]

	

	
robot.variables.tablesetter.VariableTableValue(value, name, error_reporter=None)[source]

	

	
class robot.variables.tablesetter.VariableTableValueBase(values, error_reporter=None)[source]

	Bases: object

	
resolve(variables)[source]

	

	
report_error(error)[source]

	

	
class robot.variables.tablesetter.ScalarVariableTableValue(values, error_reporter=None)[source]

	Bases: robot.variables.tablesetter.VariableTableValueBase

	
report_error(error)

	

	
resolve(variables)

	

	
class robot.variables.tablesetter.ListVariableTableValue(values, error_reporter=None)[source]

	Bases: robot.variables.tablesetter.VariableTableValueBase

	
report_error(error)

	

	
resolve(variables)

	

	
class robot.variables.tablesetter.DictVariableTableValue(values, error_reporter=None)[source]

	Bases: robot.variables.tablesetter.VariableTableValueBase

	
report_error(error)

	

	
resolve(variables)

	

robot.variables.variables module

	
class robot.variables.variables.Variables[source]

	Bases: object

Represents a set of variables.

Contains methods for replacing variables from list, scalars, and strings.
On top of ${scalar}, @{list} and &{dict} variables, these methods handle
also %{environment} variables.

	
resolve_delayed()[source]

	

	
replace_list(items, replace_until=None, ignore_errors=False)[source]

	

	
replace_scalar(item, ignore_errors=False)[source]

	

	
replace_string(item, custom_unescaper=None, ignore_errors=False)[source]

	

	
set_from_file(path_or_variables, args=None, overwrite=False)[source]

	

	
set_from_variable_table(variables, overwrite=False)[source]

	

	
clear()[source]

	

	
copy()[source]

	

	
update(variables)[source]

	

	
as_dict(decoration=True)[source]

	

 Python Module Index

 r

 		 	

 		
 r	

 	[image: -]
 	
 robot	

 	
 	
 robot.api	

 	
 	
 robot.api.deco	

 	
 	
 robot.api.exceptions	

 	
 	
 robot.api.logger	

 	
 	
 robot.api.parsing	

 	
 	
 robot.conf	

 	
 	
 robot.conf.gatherfailed	

 	
 	
 robot.conf.settings	

 	
 	
 robot.errors	

 	
 	
 robot.htmldata	

 	
 	
 robot.htmldata.htmlfilewriter	

 	
 	
 robot.htmldata.jsonwriter	

 	
 	
 robot.htmldata.normaltemplate	

 	
 	
 robot.htmldata.template	

 	
 	
 robot.libdoc	

 	
 	
 robot.libdocpkg	

 	
 	
 robot.libdocpkg.builder	

 	
 	
 robot.libdocpkg.consoleviewer	

 	
 	
 robot.libdocpkg.datatypes	

 	
 	
 robot.libdocpkg.htmlutils	

 	
 	
 robot.libdocpkg.htmlwriter	

 	
 	
 robot.libdocpkg.javabuilder	

 	
 	
 robot.libdocpkg.jsonbuilder	

 	
 	
 robot.libdocpkg.jsonwriter	

 	
 	
 robot.libdocpkg.model	

 	
 	
 robot.libdocpkg.output	

 	
 	
 robot.libdocpkg.robotbuilder	

 	
 	
 robot.libdocpkg.specbuilder	

 	
 	
 robot.libdocpkg.writer	

 	
 	
 robot.libdocpkg.xmlwriter	

 	
 	
 robot.libraries	

 	
 	
 robot.libraries.BuiltIn	

 	
 	
 robot.libraries.Collections	

 	
 	
 robot.libraries.DateTime	

 	
 	
 robot.libraries.Dialogs	

 	
 	
 robot.libraries.dialogs_py	

 	
 	
 robot.libraries.Easter	

 	
 	
 robot.libraries.OperatingSystem	

 	
 	
 robot.libraries.Process	

 	
 	
 robot.libraries.Remote	

 	
 	
 robot.libraries.Reserved	

 	
 	
 robot.libraries.Screenshot	

 	
 	
 robot.libraries.String	

 	
 	
 robot.libraries.Telnet	

 	
 	
 robot.libraries.XML	

 	
 	
 robot.model	

 	
 	
 robot.model.body	

 	
 	
 robot.model.configurer	

 	
 	
 robot.model.control	

 	
 	
 robot.model.filter	

 	
 	
 robot.model.fixture	

 	
 	
 robot.model.itemlist	

 	
 	
 robot.model.keyword	

 	
 	
 robot.model.message	

 	
 	
 robot.model.metadata	

 	
 	
 robot.model.modelobject	

 	
 	
 robot.model.modifier	

 	
 	
 robot.model.namepatterns	

 	
 	
 robot.model.statistics	

 	
 	
 robot.model.stats	

 	
 	
 robot.model.suitestatistics	

 	
 	
 robot.model.tags	

 	
 	
 robot.model.tagsetter	

 	
 	
 robot.model.tagstatistics	

 	
 	
 robot.model.testcase	

 	
 	
 robot.model.testsuite	

 	
 	
 robot.model.totalstatistics	

 	
 	
 robot.model.visitor	

 	
 	
 robot.output	

 	
 	
 robot.output.console	

 	
 	
 robot.output.console.dotted	

 	
 	
 robot.output.console.highlighting	

 	
 	
 robot.output.console.quiet	

 	
 	
 robot.output.console.verbose	

 	
 	
 robot.output.debugfile	

 	
 	
 robot.output.filelogger	

 	
 	
 robot.output.librarylogger	

 	
 	
 robot.output.listenerarguments	

 	
 	
 robot.output.listenermethods	

 	
 	
 robot.output.listeners	

 	
 	
 robot.output.logger	

 	
 	
 robot.output.loggerhelper	

 	
 	
 robot.output.output	

 	
 	
 robot.output.pyloggingconf	

 	
 	
 robot.output.stdoutlogsplitter	

 	
 	
 robot.output.xmllogger	

 	
 	
 robot.parsing	

 	
 	
 robot.parsing.lexer	

 	
 	
 robot.parsing.lexer.blocklexers	

 	
 	
 robot.parsing.lexer.context	

 	
 	
 robot.parsing.lexer.lexer	

 	
 	
 robot.parsing.lexer.sections	

 	
 	
 robot.parsing.lexer.settings	

 	
 	
 robot.parsing.lexer.statementlexers	

 	
 	
 robot.parsing.lexer.tokenizer	

 	
 	
 robot.parsing.lexer.tokens	

 	
 	
 robot.parsing.model	

 	
 	
 robot.parsing.model.blocks	

 	
 	
 robot.parsing.model.statements	

 	
 	
 robot.parsing.model.visitor	

 	
 	
 robot.parsing.parser	

 	
 	
 robot.parsing.parser.blockparsers	

 	
 	
 robot.parsing.parser.fileparser	

 	
 	
 robot.parsing.parser.parser	

 	
 	
 robot.parsing.suitestructure	

 	
 	
 robot.pythonpathsetter	

 	
 	
 robot.rebot	

 	
 	
 robot.reporting	

 	
 	
 robot.reporting.expandkeywordmatcher	

 	
 	
 robot.reporting.jsbuildingcontext	

 	
 	
 robot.reporting.jsexecutionresult	

 	
 	
 robot.reporting.jsmodelbuilders	

 	
 	
 robot.reporting.jswriter	

 	
 	
 robot.reporting.logreportwriters	

 	
 	
 robot.reporting.outputwriter	

 	
 	
 robot.reporting.resultwriter	

 	
 	
 robot.reporting.stringcache	

 	
 	
 robot.reporting.xunitwriter	

 	
 	
 robot.result	

 	
 	
 robot.result.configurer	

 	
 	
 robot.result.executionerrors	

 	
 	
 robot.result.executionresult	

 	
 	
 robot.result.flattenkeywordmatcher	

 	
 	
 robot.result.keywordremover	

 	
 	
 robot.result.merger	

 	
 	
 robot.result.messagefilter	

 	
 	
 robot.result.model	

 	
 	
 robot.result.modeldeprecation	

 	
 	
 robot.result.resultbuilder	

 	
 	
 robot.result.suiteteardownfailed	

 	
 	
 robot.result.visitor	

 	
 	
 robot.result.xmlelementhandlers	

 	
 	
 robot.run	

 	
 	
 robot.running	

 	
 	
 robot.running.arguments	

 	
 	
 robot.running.arguments.argumentconverter	

 	
 	
 robot.running.arguments.argumentmapper	

 	
 	
 robot.running.arguments.argumentparser	

 	
 	
 robot.running.arguments.argumentresolver	

 	
 	
 robot.running.arguments.argumentspec	

 	
 	
 robot.running.arguments.argumentvalidator	

 	
 	
 robot.running.arguments.embedded	

 	
 	
 robot.running.arguments.py2argumentparser	

 	
 	
 robot.running.arguments.typeconverters	

 	
 	
 robot.running.arguments.typevalidator	

 	
 	
 robot.running.bodyrunner	

 	
 	
 robot.running.builder	

 	
 	
 robot.running.builder.builders	

 	
 	
 robot.running.builder.parsers	

 	
 	
 robot.running.builder.testsettings	

 	
 	
 robot.running.builder.transformers	

 	
 	
 robot.running.context	

 	
 	
 robot.running.dynamicmethods	

 	
 	
 robot.running.handlers	

 	
 	
 robot.running.handlerstore	

 	
 	
 robot.running.importer	

 	
 	
 robot.running.librarykeywordrunner	

 	
 	
 robot.running.libraryscopes	

 	
 	
 robot.running.model	

 	
 	
 robot.running.modelcombiner	

 	
 	
 robot.running.namespace	

 	
 	
 robot.running.outputcapture	

 	
 	
 robot.running.randomizer	

 	
 	
 robot.running.runkwregister	

 	
 	
 robot.running.signalhandler	

 	
 	
 robot.running.status	

 	
 	
 robot.running.statusreporter	

 	
 	
 robot.running.suiterunner	

 	
 	
 robot.running.testlibraries	

 	
 	
 robot.running.timeouts	

 	
 	
 robot.running.timeouts.posix	

 	
 	
 robot.running.timeouts.windows	

 	
 	
 robot.running.usererrorhandler	

 	
 	
 robot.running.userkeyword	

 	
 	
 robot.running.userkeywordrunner	

 	
 	
 robot.testdoc	

 	
 	
 robot.tidy	

 	
 	
 robot.tidypkg	

 	
 	
 robot.tidypkg.transformers	

 	
 	
 robot.utils	

 	
 	
 robot.utils.application	

 	
 	
 robot.utils.argumentparser	

 	
 	
 robot.utils.asserts	

 	
 	
 robot.utils.charwidth	

 	
 	
 robot.utils.compat	

 	
 	
 robot.utils.compress	

 	
 	
 robot.utils.connectioncache	

 	
 	
 robot.utils.dotdict	

 	
 	
 robot.utils.encoding	

 	
 	
 robot.utils.encodingsniffer	

 	
 	
 robot.utils.error	

 	
 	
 robot.utils.escaping	

 	
 	
 robot.utils.etreewrapper	

 	
 	
 robot.utils.filereader	

 	
 	
 robot.utils.frange	

 	
 	
 robot.utils.htmlformatters	

 	
 	
 robot.utils.importer	

 	
 	
 robot.utils.markuputils	

 	
 	
 robot.utils.markupwriters	

 	
 	
 robot.utils.match	

 	
 	
 robot.utils.misc	

 	
 	
 robot.utils.normalizing	

 	
 	
 robot.utils.platform	

 	
 	
 robot.utils.recommendations	

 	
 	
 robot.variables	

 	
 	
 robot.variables.assigner	

 	
 	
 robot.variables.evaluation	

 	
 	
 robot.variables.filesetter	

 	
 	
 robot.variables.finders	

 	
 	
 robot.variables.notfound	

 	
 	
 robot.variables.replacer	

 	
 	
 robot.variables.scopes	

 	
 	
 robot.variables.search	

 	
 	
 robot.variables.store	

 	
 	
 robot.variables.tablesetter	

 	
 	
 robot.variables.variables	

 	
 	
 robot.version	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y

A

 	
 	abc (robot.running.arguments.typeconverters.BooleanConverter attribute)

 	(robot.running.arguments.typeconverters.ByteArrayConverter attribute)

 	(robot.running.arguments.typeconverters.BytesConverter attribute)

 	(robot.running.arguments.typeconverters.CombinedConverter attribute)

 	(robot.running.arguments.typeconverters.DateConverter attribute)

 	(robot.running.arguments.typeconverters.DateTimeConverter attribute)

 	(robot.running.arguments.typeconverters.DecimalConverter attribute)

 	(robot.running.arguments.typeconverters.DictionaryConverter attribute)

 	(robot.running.arguments.typeconverters.EnumConverter attribute)

 	(robot.running.arguments.typeconverters.FloatConverter attribute)

 	(robot.running.arguments.typeconverters.FrozenSetConverter attribute)

 	(robot.running.arguments.typeconverters.IntegerConverter attribute)

 	(robot.running.arguments.typeconverters.ListConverter attribute)

 	(robot.running.arguments.typeconverters.NoneConverter attribute)

 	(robot.running.arguments.typeconverters.SetConverter attribute)

 	(robot.running.arguments.typeconverters.StringConverter attribute)

 	(robot.running.arguments.typeconverters.TimeDeltaConverter attribute)

 	(robot.running.arguments.typeconverters.TupleConverter attribute)

 	(robot.running.arguments.typeconverters.TypeConverter attribute)

 	AbstractLogger (class in robot.output.loggerhelper)

 	AbstractLoggerProxy (class in robot.output.loggerhelper)

 	accept_gzip_encoding (robot.libraries.Remote.TimeoutHTTPSTransport attribute)

 	(robot.libraries.Remote.TimeoutHTTPTransport attribute)

 	accepts_more() (robot.parsing.lexer.blocklexers.BlockLexer method)

 	(robot.parsing.lexer.blocklexers.CommentSectionLexer method)

 	(robot.parsing.lexer.blocklexers.ErrorSectionLexer method)

 	(robot.parsing.lexer.blocklexers.FileLexer method)

 	(robot.parsing.lexer.blocklexers.ForLexer method)

 	(robot.parsing.lexer.blocklexers.IfLexer method)

 	(robot.parsing.lexer.blocklexers.ImplicitCommentSectionLexer method)

 	(robot.parsing.lexer.blocklexers.KeywordLexer method)

 	(robot.parsing.lexer.blocklexers.KeywordSectionLexer method)

 	(robot.parsing.lexer.blocklexers.NestedBlockLexer method)

 	(robot.parsing.lexer.blocklexers.SectionLexer method)

 	(robot.parsing.lexer.blocklexers.SettingSectionLexer method)

 	(robot.parsing.lexer.blocklexers.TestCaseLexer method)

 	(robot.parsing.lexer.blocklexers.TestCaseSectionLexer method)

 	(robot.parsing.lexer.blocklexers.TestOrKeywordLexer method)

 	(robot.parsing.lexer.blocklexers.VariableSectionLexer method)

 	(robot.parsing.lexer.statementlexers.CommentLexer method)

 	(robot.parsing.lexer.statementlexers.CommentSectionHeaderLexer method)

 	(robot.parsing.lexer.statementlexers.ElseHeaderLexer method)

 	(robot.parsing.lexer.statementlexers.ElseIfHeaderLexer method)

 	(robot.parsing.lexer.statementlexers.EndLexer method)

 	(robot.parsing.lexer.statementlexers.ErrorSectionHeaderLexer method)

 	(robot.parsing.lexer.statementlexers.ForHeaderLexer method)

 	(robot.parsing.lexer.statementlexers.IfHeaderLexer method)

 	(robot.parsing.lexer.statementlexers.KeywordCallLexer method)

 	(robot.parsing.lexer.statementlexers.KeywordSectionHeaderLexer method)

 	(robot.parsing.lexer.statementlexers.Lexer method)

 	(robot.parsing.lexer.statementlexers.SectionHeaderLexer method)

 	(robot.parsing.lexer.statementlexers.SettingLexer method)

 	(robot.parsing.lexer.statementlexers.SettingSectionHeaderLexer method)

 	(robot.parsing.lexer.statementlexers.StatementLexer method)

 	(robot.parsing.lexer.statementlexers.TestCaseSectionHeaderLexer method)

 	(robot.parsing.lexer.statementlexers.TestOrKeywordSettingLexer method)

 	(robot.parsing.lexer.statementlexers.VariableLexer method)

 	(robot.parsing.lexer.statementlexers.VariableSectionHeaderLexer method)

 	acquire() (robot.output.pyloggingconf.RobotHandler method)

 	active (robot.running.timeouts.KeywordTimeout attribute)

 	(robot.running.timeouts.TestTimeout attribute)

 	add() (robot.model.tags.Tags method)

 	(robot.reporting.stringcache.StringCache method)

 	(robot.result.executionerrors.ExecutionErrors method)

 	(robot.running.handlerstore.HandlerStore method)

 	(robot.running.importer.ImportCache method)

 	(robot.utils.htmlformatters.HeaderFormatter method)

 	(robot.utils.htmlformatters.ListFormatter method)

 	(robot.utils.htmlformatters.ParagraphFormatter method)

 	(robot.utils.htmlformatters.PreformattedFormatter method)

 	(robot.utils.htmlformatters.RulerFormatter method)

 	(robot.utils.htmlformatters.TableFormatter method)

 	(robot.variables.store.VariableStore method)

 	add_element() (robot.libraries.XML.XML method)

 	add_path() (in module robot.pythonpathsetter)

 	add_result() (robot.result.executionresult.CombinedResult method)

 	add_stat() (robot.model.stats.SuiteStat method)

 	add_tags (robot.model.configurer.SuiteConfigurer attribute)

 	(robot.result.configurer.SuiteConfigurer attribute)

 	add_test() (robot.model.stats.CombinedTagStat method)

 	(robot.model.stats.Stat method)

 	(robot.model.stats.SuiteStat method)

 	(robot.model.stats.TagStat method)

 	(robot.model.stats.TotalStat method)

 	(robot.model.suitestatistics.SuiteStatisticsBuilder method)

 	(robot.model.tagstatistics.TagStatisticsBuilder method)

 	(robot.model.totalstatistics.TotalStatistics method)

 	(robot.model.totalstatistics.TotalStatisticsBuilder method)

 	add_time_to_date() (in module robot.libraries.DateTime)

 	add_time_to_time() (in module robot.libraries.DateTime)

 	addFilter() (robot.output.pyloggingconf.RobotHandler method)

 	after (robot.variables.search.VariableMatch attribute)

 	after() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	after_cancel() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	after_idle() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	alias (robot.parsing.model.statements.LibraryImport attribute)

 	aliases (robot.parsing.lexer.settings.InitFileSettings attribute)

 	(robot.parsing.lexer.settings.KeywordSettings attribute)

 	(robot.parsing.lexer.settings.ResourceFileSettings attribute)

 	(robot.parsing.lexer.settings.Settings attribute)

 	(robot.parsing.lexer.settings.TestCaseFileSettings attribute)

 	(robot.parsing.lexer.settings.TestCaseSettings attribute)

 	(robot.running.arguments.typeconverters.BooleanConverter attribute)

 	(robot.running.arguments.typeconverters.ByteArrayConverter attribute)

 	(robot.running.arguments.typeconverters.BytesConverter attribute)

 	(robot.running.arguments.typeconverters.CombinedConverter attribute)

 	(robot.running.arguments.typeconverters.DateConverter attribute)

 	(robot.running.arguments.typeconverters.DateTimeConverter attribute)

 	(robot.running.arguments.typeconverters.DecimalConverter attribute)

 	(robot.running.arguments.typeconverters.DictionaryConverter attribute)

 	(robot.running.arguments.typeconverters.EnumConverter attribute)

 	(robot.running.arguments.typeconverters.FloatConverter attribute)

 	(robot.running.arguments.typeconverters.FrozenSetConverter attribute)

 	(robot.running.arguments.typeconverters.IntegerConverter attribute)

 	(robot.running.arguments.typeconverters.ListConverter attribute)

 	(robot.running.arguments.typeconverters.NoneConverter attribute)

 	(robot.running.arguments.typeconverters.SetConverter attribute)

 	(robot.running.arguments.typeconverters.StringConverter attribute)

 	(robot.running.arguments.typeconverters.TimeDeltaConverter attribute)

 	(robot.running.arguments.typeconverters.TupleConverter attribute)

 	(robot.running.arguments.typeconverters.TypeConverter attribute)

 	align_header() (robot.tidypkg.transformers.ColumnAligner method)

 	align_statement() (robot.tidypkg.transformers.ColumnAligner method)

 	Aligner (class in robot.tidypkg.transformers)

 	
 	all (robot.model.keyword.Keywords attribute)

 	all_tags (robot.libdocpkg.model.LibraryDoc attribute)

 	AllKeywordsRemover (class in robot.result.keywordremover)

 	ALLOW_VARIABLES (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	ALLOWED_TYPES (robot.running.model.Import attribute)

 	also_teardown_message (robot.running.status.ParentMessage attribute)

 	(robot.running.status.SuiteMessage attribute)

 	(robot.running.status.TestMessage attribute)

 	also_teardown_skip_message (robot.running.status.ParentMessage attribute)

 	(robot.running.status.SuiteMessage attribute)

 	(robot.running.status.TestMessage attribute)

 	AndTagPattern (class in robot.model.tags)

 	AnsiHighlighter (class in robot.output.console.highlighting)

 	any_timeout_occurred() (robot.running.timeouts.TestTimeout method)

 	append() (robot.model.body.Body method)

 	(robot.model.body.IfBranches method)

 	(robot.model.itemlist.ItemList method)

 	(robot.model.keyword.Keywords method)

 	(robot.model.message.Messages method)

 	(robot.model.testcase.TestCases method)

 	(robot.model.testsuite.TestSuites method)

 	(robot.result.model.Body method)

 	(robot.result.model.ForIterations method)

 	(robot.result.model.IfBranches method)

 	(robot.running.model.Body method)

 	(robot.running.model.IfBranches method)

 	(robot.running.model.Imports method)

 	append_to_environment_variable() (robot.libraries.OperatingSystem.OperatingSystem method)

 	append_to_file() (robot.libraries.OperatingSystem.OperatingSystem method)

 	append_to_list() (robot.libraries.Collections.Collections method)

 	Application (class in robot.utils.application)

 	ArgFileParser (class in robot.utils.argumentparser)

 	ArgInfo (class in robot.running.arguments.argumentspec)

 	ArgLimitValidator (class in robot.utils.argumentparser)

 	args (robot.api.exceptions.ContinuableFailure attribute)

 	(robot.api.exceptions.Error attribute)

 	(robot.api.exceptions.Failure attribute)

 	(robot.api.exceptions.FatalError attribute)

 	(robot.api.exceptions.SkipExecution attribute)

 	(robot.errors.ContinueForLoop attribute)

 	(robot.errors.DataError attribute)

 	(robot.errors.ExecutionFailed attribute)

 	(robot.errors.ExecutionFailures attribute)

 	(robot.errors.ExecutionPassed attribute)

 	(robot.errors.ExecutionStatus attribute)

 	(robot.errors.ExitForLoop attribute)

 	(robot.errors.FrameworkError attribute)

 	(robot.errors.HandlerExecutionFailed attribute)

 	(robot.errors.Information attribute)

 	(robot.errors.KeywordError attribute)

 	(robot.errors.PassExecution attribute)

 	(robot.errors.RemoteError attribute)

 	(robot.errors.ReturnFromKeyword attribute)

 	(robot.errors.RobotError attribute)

 	(robot.errors.TimeoutError attribute)

 	(robot.errors.UserKeywordExecutionFailed attribute)

 	(robot.errors.VariableError attribute)

 	(robot.libraries.BuiltIn.RobotNotRunningError attribute)

 	(robot.libraries.Telnet.NoMatchError attribute)

 	(robot.model.keyword.Keyword attribute)

 	(robot.parsing.model.statements.Fixture attribute)

 	(robot.parsing.model.statements.KeywordCall attribute)

 	(robot.parsing.model.statements.LibraryImport attribute)

 	(robot.parsing.model.statements.Setup attribute)

 	(robot.parsing.model.statements.SuiteSetup attribute)

 	(robot.parsing.model.statements.SuiteTeardown attribute)

 	(robot.parsing.model.statements.Teardown attribute)

 	(robot.parsing.model.statements.TemplateArguments attribute)

 	(robot.parsing.model.statements.TestSetup attribute)

 	(robot.parsing.model.statements.TestTeardown attribute)

 	(robot.parsing.model.statements.VariablesImport attribute)

 	(robot.result.model.For attribute)

 	(robot.result.model.ForIteration attribute)

 	(robot.result.model.If attribute)

 	(robot.result.model.IfBranch attribute)

 	(robot.result.model.Keyword attribute)

 	(robot.result.modeldeprecation.DeprecatedAttributesMixin attribute)

 	(robot.running.model.Keyword attribute)

 	ARGUMENT (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	argument_names (robot.running.arguments.argumentspec.ArgumentSpec attribute)

 	ArgumentCoercer (class in robot.libraries.Remote)

 	ArgumentConverter (class in robot.running.arguments.argumentconverter)

 	ArgumentHandler (class in robot.result.xmlelementhandlers)

 	ArgumentMapper (class in robot.running.arguments.argumentmapper)

 	ArgumentParser (class in robot.utils.argumentparser)

 	ArgumentResolver (class in robot.running.arguments.argumentresolver)

 	Arguments (class in robot.parsing.model.statements)

 	ARGUMENTS (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	arguments (robot.running.userkeywordrunner.EmbeddedArgumentsRunner attribute)

 	(robot.running.userkeywordrunner.UserKeywordRunner attribute)

 	ArgumentsHandler (class in robot.result.xmlelementhandlers)

 	ArgumentSpec (class in robot.running.arguments.argumentspec)

 	ArgumentValidator (class in robot.running.arguments.argumentvalidator)

 	(class in robot.tidy)

 	as_dict() (robot.variables.scopes.GlobalVariables method)

 	(robot.variables.scopes.VariableScopes method)

 	(robot.variables.store.VariableStore method)

 	(robot.variables.variables.Variables method)

 	aspect() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	assert_almost_equal() (in module robot.utils.asserts)

 	assert_equal() (in module robot.utils.asserts)

 	assert_false() (in module robot.utils.asserts)

 	assert_none() (in module robot.utils.asserts)

 	assert_not_almost_equal() (in module robot.utils.asserts)

 	assert_not_equal() (in module robot.utils.asserts)

 	assert_not_none() (in module robot.utils.asserts)

 	assert_raises() (in module robot.utils.asserts)

 	assert_raises_with_msg() (in module robot.utils.asserts)

 	assert_true() (in module robot.utils.asserts)

 	assign (robot.model.keyword.Keyword attribute)

 	ASSIGN (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	assign (robot.parsing.model.statements.KeywordCall attribute)

 	(robot.result.model.For attribute)

 	(robot.result.model.ForIteration attribute)

 	(robot.result.model.If attribute)

 	(robot.result.model.IfBranch attribute)

 	(robot.result.model.Keyword attribute)

 	(robot.result.modeldeprecation.DeprecatedAttributesMixin attribute)

 	(robot.running.model.Keyword attribute)

 	assign() (robot.variables.assigner.VariableAssigner method)

 	assigner() (robot.variables.assigner.VariableAssignment method)

 	AssignHandler (class in robot.result.xmlelementhandlers)

 	AssignmentValidator (class in robot.variables.assigner)

 	attribute_escape() (in module robot.utils.markuputils)

 	attributes() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

B

 	
 	BaseParser (class in robot.running.builder.parsers)

 	bbox() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	before (robot.variables.search.VariableMatch attribute)

 	bell() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	binary (robot.libraries.Remote.ArgumentCoercer attribute)

 	bind() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	bind_all() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	bind_class() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	bindtags() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	bit_length() (robot.reporting.stringcache.StringIndex method)

 	Block (class in robot.parsing.model.blocks)

 	BlockLexer (class in robot.parsing.lexer.blocklexers)

 	BlockParser (class in robot.parsing.parser.blockparsers)

 	Body (class in robot.model.body)

 	(class in robot.result.model)

 	(class in robot.running.model)

 	body (robot.model.control.For attribute)

 	(robot.model.control.If attribute)

 	(robot.model.control.IfBranch attribute)

 	(robot.model.testcase.TestCase attribute)

 	(robot.result.model.For attribute)

 	(robot.result.model.ForIteration attribute)

 	(robot.result.model.If attribute)

 	(robot.result.model.IfBranch attribute)

 	(robot.result.model.Keyword attribute)

 	(robot.result.model.TestCase attribute)

 	(robot.running.model.For attribute)

 	(robot.running.model.If attribute)

 	(robot.running.model.IfBranch attribute)

 	(robot.running.model.TestCase attribute)

 	(robot.running.model.UserKeyword attribute)

 	
 	body_class (robot.model.control.For attribute)

 	(robot.model.control.If attribute)

 	(robot.model.control.IfBranch attribute)

 	(robot.model.testcase.TestCase attribute)

 	(robot.result.model.For attribute)

 	(robot.result.model.ForIteration attribute)

 	(robot.result.model.If attribute)

 	(robot.result.model.IfBranch attribute)

 	(robot.result.model.Keyword attribute)

 	(robot.result.model.TestCase attribute)

 	(robot.running.model.For attribute)

 	(robot.running.model.If attribute)

 	(robot.running.model.IfBranch attribute)

 	(robot.running.model.TestCase attribute)

 	BodyItem (class in robot.model.body)

 	BodyRunner (class in robot.running.bodyrunner)

 	BooleanConverter (class in robot.running.arguments.typeconverters)

 	build() (robot.libdocpkg.javabuilder.JavaDocBuilder method)

 	(robot.libdocpkg.jsonbuilder.JsonDocBuilder method)

 	(robot.libdocpkg.robotbuilder.LibraryDocBuilder method)

 	(robot.libdocpkg.robotbuilder.ResourceDocBuilder method)

 	(robot.libdocpkg.specbuilder.SpecDocBuilder method)

 	(robot.parsing.suitestructure.SuiteStructureBuilder method)

 	(robot.reporting.jsmodelbuilders.ErrorMessageBuilder method)

 	(robot.reporting.jsmodelbuilders.ErrorsBuilder method)

 	(robot.reporting.jsmodelbuilders.KeywordBuilder method)

 	(robot.reporting.jsmodelbuilders.MessageBuilder method)

 	(robot.reporting.jsmodelbuilders.StatisticsBuilder method)

 	(robot.reporting.jsmodelbuilders.SuiteBuilder method)

 	(robot.reporting.jsmodelbuilders.TestBuilder method)

 	(robot.result.resultbuilder.ExecutionResultBuilder method)

 	(robot.running.builder.builders.ResourceFileBuilder method)

 	(robot.running.builder.builders.TestSuiteBuilder method)

 	(robot.running.builder.transformers.ForBuilder method)

 	(robot.running.builder.transformers.IfBuilder method)

 	build_from() (robot.reporting.jsmodelbuilders.JsModelBuilder method)

 	build_from_dict() (robot.libdocpkg.jsonbuilder.JsonDocBuilder method)

 	build_keyword() (robot.libdocpkg.robotbuilder.KeywordDocBuilder method)

 	(robot.reporting.jsmodelbuilders.KeywordBuilder method)

 	build_keywords() (robot.libdocpkg.robotbuilder.KeywordDocBuilder method)

 	build_suite() (robot.running.builder.parsers.RestParser method)

 	(robot.running.builder.parsers.RobotParser method)

 	BuiltIn (class in robot.libraries.BuiltIn)

 	by_method_name() (robot.output.listenerarguments.EndKeywordArguments class method)

 	(robot.output.listenerarguments.EndSuiteArguments class method)

 	(robot.output.listenerarguments.EndTestArguments class method)

 	(robot.output.listenerarguments.ListenerArguments class method)

 	(robot.output.listenerarguments.MessageArguments class method)

 	(robot.output.listenerarguments.StartKeywordArguments class method)

 	(robot.output.listenerarguments.StartSuiteArguments class method)

 	(robot.output.listenerarguments.StartTestArguments class method)

 	ByNameKeywordRemover (class in robot.result.keywordremover)

 	ByPathImporter (class in robot.utils.importer)

 	ByTagKeywordRemover (class in robot.result.keywordremover)

 	ByteArrayConverter (class in robot.running.arguments.typeconverters)

 	BytesConverter (class in robot.running.arguments.typeconverters)

C

 	
 	cache_only (robot.output.logger.Logger attribute)

 	call_method() (robot.libraries.BuiltIn.BuiltIn method)

 	called (robot.output.listenermethods.ListenerMethod attribute)

 	can_continue() (robot.errors.ContinueForLoop method)

 	(robot.errors.ExecutionFailed method)

 	(robot.errors.ExecutionFailures method)

 	(robot.errors.ExecutionPassed method)

 	(robot.errors.ExecutionStatus method)

 	(robot.errors.ExitForLoop method)

 	(robot.errors.HandlerExecutionFailed method)

 	(robot.errors.PassExecution method)

 	(robot.errors.ReturnFromKeyword method)

 	(robot.errors.UserKeywordExecutionFailed method)

 	catenate() (robot.libraries.BuiltIn.BuiltIn method)

 	cget() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	check_expansion() (robot.reporting.jsbuildingcontext.JsBuildingContext method)

 	child() (robot.libraries.XML.Location method)

 	children (robot.result.model.Keyword attribute)

 	(robot.result.xmlelementhandlers.ArgumentHandler attribute)

 	(robot.result.xmlelementhandlers.ArgumentsHandler attribute)

 	(robot.result.xmlelementhandlers.AssignHandler attribute)

 	(robot.result.xmlelementhandlers.DocHandler attribute)

 	(robot.result.xmlelementhandlers.ElementHandler attribute)

 	(robot.result.xmlelementhandlers.ErrorMessageHandler attribute)

 	(robot.result.xmlelementhandlers.ErrorsHandler attribute)

 	(robot.result.xmlelementhandlers.ForHandler attribute)

 	(robot.result.xmlelementhandlers.ForIterationHandler attribute)

 	(robot.result.xmlelementhandlers.IfBranchHandler attribute)

 	(robot.result.xmlelementhandlers.IfHandler attribute)

 	(robot.result.xmlelementhandlers.KeywordHandler attribute)

 	(robot.result.xmlelementhandlers.MessageHandler attribute)

 	(robot.result.xmlelementhandlers.MetaHandler attribute)

 	(robot.result.xmlelementhandlers.MetadataHandler attribute)

 	(robot.result.xmlelementhandlers.MetadataItemHandler attribute)

 	(robot.result.xmlelementhandlers.RobotHandler attribute)

 	(robot.result.xmlelementhandlers.RootHandler attribute)

 	(robot.result.xmlelementhandlers.StatisticsHandler attribute)

 	(robot.result.xmlelementhandlers.StatusHandler attribute)

 	(robot.result.xmlelementhandlers.SuiteHandler attribute)

 	(robot.result.xmlelementhandlers.TagHandler attribute)

 	(robot.result.xmlelementhandlers.TagsHandler attribute)

 	(robot.result.xmlelementhandlers.TestHandler attribute)

 	(robot.result.xmlelementhandlers.TimeoutHandler attribute)

 	(robot.result.xmlelementhandlers.ValueHandler attribute)

 	(robot.result.xmlelementhandlers.VarHandler attribute)

 	ClassDoc() (in module robot.libdocpkg.javabuilder)

 	Cleaner (class in robot.tidypkg.transformers)

 	clear() (robot.model.body.Body method)

 	(robot.model.body.IfBranches method)

 	(robot.model.itemlist.ItemList method)

 	(robot.model.keyword.Keywords method)

 	(robot.model.message.Messages method)

 	(robot.model.metadata.Metadata method)

 	(robot.model.testcase.TestCases method)

 	(robot.model.testsuite.TestSuites method)

 	(robot.result.model.Body method)

 	(robot.result.model.ForIterations method)

 	(robot.result.model.IfBranches method)

 	(robot.running.model.Body method)

 	(robot.running.model.IfBranches method)

 	(robot.running.model.Imports method)

 	(robot.utils.dotdict.DotDict method)

 	(robot.utils.normalizing.NormalizedDict method)

 	(robot.variables.evaluation.EvaluationNamespace method)

 	(robot.variables.scopes.GlobalVariables method)

 	(robot.variables.store.VariableStore method)

 	(robot.variables.variables.Variables method)

 	clear_element() (robot.libraries.XML.XML method)

 	client() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	clipboard_append() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	clipboard_clear() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	clipboard_get() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	close() (robot.libraries.Remote.TimeoutHTTPSTransport method)

 	(robot.libraries.Remote.TimeoutHTTPTransport method)

 	(robot.libraries.Telnet.TelnetConnection method)

 	(robot.output.filelogger.FileLogger method)

 	(robot.output.logger.Logger method)

 	(robot.output.output.Output method)

 	(robot.output.pyloggingconf.RobotHandler method)

 	(robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.utils.application.DefaultLogger method)

 	(robot.utils.markupwriters.HtmlWriter method)

 	(robot.utils.markupwriters.NullMarkupWriter method)

 	(robot.utils.markupwriters.XmlWriter method)

 	close_all() (robot.utils.connectioncache.ConnectionCache method)

 	close_all_connections() (robot.libraries.Telnet.Telnet method)

 	close_connection() (robot.libraries.Telnet.TelnetConnection method)

 	close_global_library_listeners() (robot.running.importer.Importer method)

 	close_streams() (robot.libraries.Process.ExecutionResult method)

 	cmdline2list() (in module robot.utils.argumentparser)

 	coerce() (robot.libraries.Remote.ArgumentCoercer method)

 	col_offset (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	(robot.parsing.model.blocks.Block attribute)

 	(robot.parsing.model.blocks.CommentSection attribute)

 	(robot.parsing.model.blocks.File attribute)

 	(robot.parsing.model.blocks.For attribute)

 	(robot.parsing.model.blocks.If attribute)

 	(robot.parsing.model.blocks.Keyword attribute)

 	(robot.parsing.model.blocks.KeywordSection attribute)

 	(robot.parsing.model.blocks.Section attribute)

 	(robot.parsing.model.blocks.SettingSection attribute)

 	(robot.parsing.model.blocks.TestCase attribute)

 	(robot.parsing.model.blocks.TestCaseSection attribute)

 	(robot.parsing.model.blocks.VariableSection attribute)

 	(robot.parsing.model.statements.Arguments attribute)

 	(robot.parsing.model.statements.Comment attribute)

 	(robot.parsing.model.statements.DefaultTags attribute)

 	(robot.parsing.model.statements.Documentation attribute)

 	(robot.parsing.model.statements.DocumentationOrMetadata attribute)

 	(robot.parsing.model.statements.ElseHeader attribute)

 	(robot.parsing.model.statements.ElseIfHeader attribute)

 	(robot.parsing.model.statements.EmptyLine attribute)

 	(robot.parsing.model.statements.End attribute)

 	(robot.parsing.model.statements.Error attribute)

 	(robot.parsing.model.statements.Fixture attribute)

 	(robot.parsing.model.statements.ForHeader attribute)

 	(robot.parsing.model.statements.ForceTags attribute)

 	(robot.parsing.model.statements.IfHeader attribute)

 	(robot.parsing.model.statements.KeywordCall attribute)

 	(robot.parsing.model.statements.KeywordName attribute)

 	(robot.parsing.model.statements.LibraryImport attribute)

 	(robot.parsing.model.statements.Metadata attribute)

 	(robot.parsing.model.statements.MultiValue attribute)

 	(robot.parsing.model.statements.ResourceImport attribute)

 	(robot.parsing.model.statements.Return attribute)

 	(robot.parsing.model.statements.SectionHeader attribute)

 	(robot.parsing.model.statements.Setup attribute)

 	(robot.parsing.model.statements.SingleValue attribute)

 	(robot.parsing.model.statements.Statement attribute)

 	(robot.parsing.model.statements.SuiteSetup attribute)

 	(robot.parsing.model.statements.SuiteTeardown attribute)

 	(robot.parsing.model.statements.Tags attribute)

 	(robot.parsing.model.statements.Teardown attribute)

 	(robot.parsing.model.statements.Template attribute)

 	(robot.parsing.model.statements.TemplateArguments attribute)

 	(robot.parsing.model.statements.TestCaseName attribute)

 	(robot.parsing.model.statements.TestSetup attribute)

 	(robot.parsing.model.statements.TestTeardown attribute)

 	(robot.parsing.model.statements.TestTemplate attribute)

 	(robot.parsing.model.statements.TestTimeout attribute)

 	(robot.parsing.model.statements.Timeout attribute)

 	(robot.parsing.model.statements.Variable attribute)

 	(robot.parsing.model.statements.VariablesImport attribute)

 	Collections (class in robot.libraries.Collections)

 	colormapwindows() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	colormodel() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	ColumnAligner (class in robot.tidypkg.transformers)

 	columnconfigure() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	ColumnWidthCounter (class in robot.tidypkg.transformers)

 	combine_lists() (robot.libraries.Collections.Collections method)

 	combined (robot.model.stats.TagStat attribute)

 	(robot.model.tagstatistics.TagStatistics attribute)

 	CombinedConverter (class in robot.running.arguments.typeconverters)

 	CombinedResult (class in robot.result.executionresult)

 	CombinedTagStat (class in robot.model.stats)

 	command() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	Comment (class in robot.parsing.model.statements)

 	COMMENT (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	comment() (robot.libraries.BuiltIn.BuiltIn method)

 	(robot.parsing.lexer.sections.InitFileSections method)

 	(robot.parsing.lexer.sections.ResourceFileSections method)

 	(robot.parsing.lexer.sections.Sections method)

 	(robot.parsing.lexer.sections.TestCaseFileSections method)

 	COMMENT_HEADER (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	comment_markers (robot.parsing.lexer.sections.InitFileSections attribute)

 	(robot.parsing.lexer.sections.ResourceFileSections attribute)

 	(robot.parsing.lexer.sections.Sections attribute)

 	(robot.parsing.lexer.sections.TestCaseFileSections attribute)

 	comment_section() (robot.parsing.lexer.context.FileContext method)

 	(robot.parsing.lexer.context.InitFileContext method)

 	(robot.parsing.lexer.context.ResourceFileContext method)

 	(robot.parsing.lexer.context.TestCaseFileContext method)

 	CommentLexer (class in robot.parsing.lexer.statementlexers)

 	CommentSection (class in robot.parsing.model.blocks)

 	CommentSectionHeaderLexer (class in robot.parsing.lexer.statementlexers)

 	CommentSectionLexer (class in robot.parsing.lexer.blocklexers)

 	CommentSectionParser (class in robot.parsing.parser.fileparser)

 	compare() (robot.libraries.XML.ElementComparator method)

 	compress_text() (in module robot.utils.compress)

 	condition (robot.model.control.IfBranch attribute)

 	(robot.parsing.model.blocks.If attribute)

 	(robot.parsing.model.statements.ElseHeader attribute)

 	(robot.parsing.model.statements.ElseIfHeader attribute)

 	(robot.parsing.model.statements.IfHeader attribute)

 	(robot.result.model.IfBranch attribute)

 	(robot.running.model.IfBranch attribute)

 	config() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	(robot.model.body.BodyItem method)

 	(robot.model.control.For method)

 	(robot.model.control.If method)

 	(robot.model.control.IfBranch method)

 	(robot.model.keyword.Keyword method)

 	(robot.model.message.Message method)

 	(robot.model.modelobject.ModelObject method)

 	(robot.model.testcase.TestCase method)

 	(robot.model.testsuite.TestSuite method)

 	(robot.output.loggerhelper.Message method)

 	(robot.result.model.For method)

 	(robot.result.model.ForIteration method)

 	(robot.result.model.If method)

 	(robot.result.model.IfBranch method)

 	(robot.result.model.Keyword method)

 	(robot.result.model.Message method)

 	(robot.result.model.TestCase method)

 	(robot.result.model.TestSuite method)

 	(robot.running.model.For method)

 	(robot.running.model.If method)

 	(robot.running.model.IfBranch method)

 	(robot.running.model.Keyword method)

 	(robot.running.model.TestCase method)

 	(robot.running.model.TestSuite method)

 	
 	configure() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	(robot.model.testsuite.TestSuite method)

 	(robot.result.executionresult.CombinedResult method)

 	(robot.result.executionresult.Result method)

 	(robot.result.model.TestSuite method)

 	(robot.running.model.TestSuite method)

 	conjugate() (robot.reporting.stringcache.StringIndex method)

 	ConnectionCache (class in robot.utils.connectioncache)

 	console() (in module robot.api.logger)

 	(in module robot.output.librarylogger)

 	(robot.libdoc.LibDoc method)

 	(robot.rebot.Rebot method)

 	(robot.run.RobotFramework method)

 	(robot.testdoc.TestDoc method)

 	(robot.tidy.TidyCommandLine method)

 	(robot.utils.application.Application method)

 	console_colors (robot.conf.settings.RebotSettings attribute)

 	(robot.conf.settings.RobotSettings attribute)

 	console_decode() (in module robot.utils.encoding)

 	console_encode() (in module robot.utils.encoding)

 	console_markers (robot.conf.settings.RobotSettings attribute)

 	console_output_config (robot.conf.settings.RebotSettings attribute)

 	(robot.conf.settings.RobotSettings attribute)

 	console_type (robot.conf.settings.RobotSettings attribute)

 	console_width (robot.conf.settings.RobotSettings attribute)

 	ConsoleOutput() (in module robot.output.console)

 	ConsoleViewer (class in robot.libdocpkg.consoleviewer)

 	contains_var() (in module robot.variables)

 	contains_variable() (in module robot.variables.search)

 	content() (robot.utils.markupwriters.HtmlWriter method)

 	(robot.utils.markupwriters.NullMarkupWriter method)

 	(robot.utils.markupwriters.XmlWriter method)

 	ContinuableFailure

 	CONTINUATION (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	continue_for_loop() (robot.libraries.BuiltIn.BuiltIn method)

 	continue_for_loop_if() (robot.libraries.BuiltIn.BuiltIn method)

 	continue_on_failure (robot.errors.ContinueForLoop attribute)

 	(robot.errors.ExecutionFailed attribute)

 	(robot.errors.ExecutionFailures attribute)

 	(robot.errors.ExecutionPassed attribute)

 	(robot.errors.ExecutionStatus attribute)

 	(robot.errors.ExitForLoop attribute)

 	(robot.errors.HandlerExecutionFailed attribute)

 	(robot.errors.PassExecution attribute)

 	(robot.errors.ReturnFromKeyword attribute)

 	(robot.errors.UserKeywordExecutionFailed attribute)

 	ContinueForLoop

 	convert() (robot.running.arguments.argumentconverter.ArgumentConverter method)

 	(robot.running.arguments.typeconverters.BooleanConverter method)

 	(robot.running.arguments.typeconverters.ByteArrayConverter method)

 	(robot.running.arguments.typeconverters.BytesConverter method)

 	(robot.running.arguments.typeconverters.CombinedConverter method)

 	(robot.running.arguments.typeconverters.DateConverter method)

 	(robot.running.arguments.typeconverters.DateTimeConverter method)

 	(robot.running.arguments.typeconverters.DecimalConverter method)

 	(robot.running.arguments.typeconverters.DictionaryConverter method)

 	(robot.running.arguments.typeconverters.EnumConverter method)

 	(robot.running.arguments.typeconverters.FloatConverter method)

 	(robot.running.arguments.typeconverters.FrozenSetConverter method)

 	(robot.running.arguments.typeconverters.IntegerConverter method)

 	(robot.running.arguments.typeconverters.ListConverter method)

 	(robot.running.arguments.typeconverters.NoneConverter method)

 	(robot.running.arguments.typeconverters.SetConverter method)

 	(robot.running.arguments.typeconverters.StringConverter method)

 	(robot.running.arguments.typeconverters.TimeDeltaConverter method)

 	(robot.running.arguments.typeconverters.TupleConverter method)

 	(robot.running.arguments.typeconverters.TypeConverter method)

 	(robot.testdoc.JsonConverter method)

 	convert_date() (in module robot.libraries.DateTime)

 	convert_docs_to_html() (robot.libdocpkg.model.LibraryDoc method)

 	convert_time() (in module robot.libraries.DateTime)

 	convert_to_binary() (robot.libraries.BuiltIn.BuiltIn method)

 	convert_to_boolean() (robot.libraries.BuiltIn.BuiltIn method)

 	convert_to_bytes() (robot.libraries.BuiltIn.BuiltIn method)

 	convert_to_dictionary() (robot.libraries.Collections.Collections method)

 	convert_to_hex() (robot.libraries.BuiltIn.BuiltIn method)

 	convert_to_integer() (robot.libraries.BuiltIn.BuiltIn method)

 	convert_to_list() (robot.libraries.Collections.Collections method)

 	convert_to_lower_case() (robot.libraries.String.String method)

 	convert_to_number() (robot.libraries.BuiltIn.BuiltIn method)

 	convert_to_octal() (robot.libraries.BuiltIn.BuiltIn method)

 	convert_to_string() (robot.libraries.BuiltIn.BuiltIn method)

 	convert_to_title_case() (robot.libraries.String.String method)

 	convert_to_upper_case() (robot.libraries.String.String method)

 	convert_type_list_to_dict() (robot.running.arguments.typevalidator.TypeValidator method)

 	converter_for() (robot.running.arguments.typeconverters.BooleanConverter class method)

 	(robot.running.arguments.typeconverters.ByteArrayConverter class method)

 	(robot.running.arguments.typeconverters.BytesConverter class method)

 	(robot.running.arguments.typeconverters.CombinedConverter class method)

 	(robot.running.arguments.typeconverters.DateConverter class method)

 	(robot.running.arguments.typeconverters.DateTimeConverter class method)

 	(robot.running.arguments.typeconverters.DecimalConverter class method)

 	(robot.running.arguments.typeconverters.DictionaryConverter class method)

 	(robot.running.arguments.typeconverters.EnumConverter class method)

 	(robot.running.arguments.typeconverters.FloatConverter class method)

 	(robot.running.arguments.typeconverters.FrozenSetConverter class method)

 	(robot.running.arguments.typeconverters.IntegerConverter class method)

 	(robot.running.arguments.typeconverters.ListConverter class method)

 	(robot.running.arguments.typeconverters.NoneConverter class method)

 	(robot.running.arguments.typeconverters.SetConverter class method)

 	(robot.running.arguments.typeconverters.StringConverter class method)

 	(robot.running.arguments.typeconverters.TimeDeltaConverter class method)

 	(robot.running.arguments.typeconverters.TupleConverter class method)

 	(robot.running.arguments.typeconverters.TypeConverter class method)

 	copy() (robot.model.body.BodyItem method)

 	(robot.model.control.For method)

 	(robot.model.control.If method)

 	(robot.model.control.IfBranch method)

 	(robot.model.keyword.Keyword method)

 	(robot.model.message.Message method)

 	(robot.model.metadata.Metadata method)

 	(robot.model.modelobject.ModelObject method)

 	(robot.model.testcase.TestCase method)

 	(robot.model.testsuite.TestSuite method)

 	(robot.output.loggerhelper.Message method)

 	(robot.result.model.For method)

 	(robot.result.model.ForIteration method)

 	(robot.result.model.If method)

 	(robot.result.model.IfBranch method)

 	(robot.result.model.Keyword method)

 	(robot.result.model.Message method)

 	(robot.result.model.TestCase method)

 	(robot.result.model.TestSuite method)

 	(robot.running.model.For method)

 	(robot.running.model.If method)

 	(robot.running.model.IfBranch method)

 	(robot.running.model.Keyword method)

 	(robot.running.model.TestCase method)

 	(robot.running.model.TestSuite method)

 	(robot.utils.dotdict.DotDict method)

 	(robot.utils.normalizing.NormalizedDict method)

 	(robot.variables.scopes.GlobalVariables method)

 	(robot.variables.variables.Variables method)

 	copy_dictionary() (robot.libraries.Collections.Collections method)

 	copy_directory() (robot.libraries.OperatingSystem.OperatingSystem method)

 	copy_element() (robot.libraries.XML.XML method)

 	copy_file() (robot.libraries.OperatingSystem.OperatingSystem method)

 	copy_files() (robot.libraries.OperatingSystem.OperatingSystem method)

 	copy_list() (robot.libraries.Collections.Collections method)

 	count() (robot.model.body.Body method)

 	(robot.model.body.IfBranches method)

 	(robot.model.itemlist.ItemList method)

 	(robot.model.keyword.Keywords method)

 	(robot.model.message.Messages method)

 	(robot.model.testcase.TestCases method)

 	(robot.model.testsuite.TestSuites method)

 	(robot.result.model.Body method)

 	(robot.result.model.ForIterations method)

 	(robot.result.model.IfBranches method)

 	(robot.running.model.Body method)

 	(robot.running.model.IfBranches method)

 	(robot.running.model.Imports method)

 	count_directories_in_directory() (robot.libraries.OperatingSystem.OperatingSystem method)

 	count_files_in_directory() (robot.libraries.OperatingSystem.OperatingSystem method)

 	count_items_in_directory() (robot.libraries.OperatingSystem.OperatingSystem method)

 	count_values_in_list() (robot.libraries.Collections.Collections method)

 	create (robot.model.body.Body attribute)

 	(robot.model.body.IfBranches attribute)

 	(robot.result.model.Body attribute)

 	(robot.result.model.ForIterations attribute)

 	(robot.result.model.IfBranches attribute)

 	(robot.running.model.Body attribute)

 	(robot.running.model.IfBranches attribute)

 	create() (robot.model.itemlist.ItemList method)

 	(robot.model.keyword.Keywords method)

 	(robot.model.message.Messages method)

 	(robot.model.testcase.TestCases method)

 	(robot.model.testsuite.TestSuites method)

 	(robot.running.model.Imports method)

 	create_binary_file() (robot.libraries.OperatingSystem.OperatingSystem method)

 	create_branch() (robot.model.body.IfBranches method)

 	(robot.result.model.IfBranches method)

 	(robot.running.model.IfBranches method)

 	create_dictionary() (robot.libraries.BuiltIn.BuiltIn method)

 	create_directory() (robot.libraries.OperatingSystem.OperatingSystem method)

 	create_file() (robot.libraries.OperatingSystem.OperatingSystem method)

 	create_fixture() (in module robot.model.fixture)

 	create_for() (robot.model.body.Body method)

 	(robot.model.body.IfBranches method)

 	(robot.result.model.Body method)

 	(robot.result.model.ForIterations method)

 	(robot.result.model.IfBranches method)

 	(robot.running.model.Body method)

 	(robot.running.model.IfBranches method)

 	create_if() (robot.model.body.Body method)

 	(robot.model.body.IfBranches method)

 	(robot.result.model.Body method)

 	(robot.result.model.ForIterations method)

 	(robot.result.model.IfBranches method)

 	(robot.running.model.Body method)

 	(robot.running.model.IfBranches method)

 	create_iteration() (robot.result.model.ForIterations method)

 	create_keyword() (robot.model.body.Body method)

 	(robot.model.body.IfBranches method)

 	(robot.result.model.Body method)

 	(robot.result.model.ForIterations method)

 	(robot.result.model.IfBranches method)

 	(robot.running.model.Body method)

 	(robot.running.model.IfBranches method)

 	create_link_target() (robot.reporting.jsbuildingcontext.JsBuildingContext method)

 	create_list() (robot.libraries.BuiltIn.BuiltIn method)

 	create_message() (robot.result.model.Body method)

 	(robot.result.model.ForIterations method)

 	(robot.result.model.IfBranches method)

 	create_runner() (robot.running.handlers.EmbeddedArgumentsHandler method)

 	(robot.running.handlerstore.HandlerStore method)

 	(robot.running.usererrorhandler.UserErrorHandler method)

 	(robot.running.userkeyword.EmbeddedArgumentsHandler method)

 	(robot.running.userkeyword.UserKeywordHandler method)

 	create_setup() (robot.model.keyword.Keywords method)

 	create_teardown() (robot.model.keyword.Keywords method)

 	createLock() (robot.output.pyloggingconf.RobotHandler method)

 	critical (robot.result.model.TestCase attribute)

 	critical_tags (robot.conf.settings.RebotSettings attribute)

 	(robot.conf.settings.RobotSettings attribute)

 	CssFileWriter (class in robot.htmldata.htmlfilewriter)

 	current (robot.model.suitestatistics.SuiteStatisticsBuilder attribute)

 	(robot.running.context.ExecutionContexts attribute)

 	(robot.utils.connectioncache.ConnectionCache attribute)

 	(robot.variables.scopes.VariableScopes attribute)

 	current_index (robot.utils.connectioncache.ConnectionCache attribute)

 	current_output (robot.libraries.Telnet.TerminalEmulator attribute)

D

 	
 	data (robot.running.modelcombiner.ModelCombiner attribute)

 	data_tokens (robot.parsing.model.statements.Arguments attribute)

 	(robot.parsing.model.statements.Comment attribute)

 	(robot.parsing.model.statements.DefaultTags attribute)

 	(robot.parsing.model.statements.Documentation attribute)

 	(robot.parsing.model.statements.DocumentationOrMetadata attribute)

 	(robot.parsing.model.statements.ElseHeader attribute)

 	(robot.parsing.model.statements.ElseIfHeader attribute)

 	(robot.parsing.model.statements.EmptyLine attribute)

 	(robot.parsing.model.statements.End attribute)

 	(robot.parsing.model.statements.Error attribute)

 	(robot.parsing.model.statements.Fixture attribute)

 	(robot.parsing.model.statements.ForHeader attribute)

 	(robot.parsing.model.statements.ForceTags attribute)

 	(robot.parsing.model.statements.IfHeader attribute)

 	(robot.parsing.model.statements.KeywordCall attribute)

 	(robot.parsing.model.statements.KeywordName attribute)

 	(robot.parsing.model.statements.LibraryImport attribute)

 	(robot.parsing.model.statements.Metadata attribute)

 	(robot.parsing.model.statements.MultiValue attribute)

 	(robot.parsing.model.statements.ResourceImport attribute)

 	(robot.parsing.model.statements.Return attribute)

 	(robot.parsing.model.statements.SectionHeader attribute)

 	(robot.parsing.model.statements.Setup attribute)

 	(robot.parsing.model.statements.SingleValue attribute)

 	(robot.parsing.model.statements.Statement attribute)

 	(robot.parsing.model.statements.SuiteSetup attribute)

 	(robot.parsing.model.statements.SuiteTeardown attribute)

 	(robot.parsing.model.statements.Tags attribute)

 	(robot.parsing.model.statements.Teardown attribute)

 	(robot.parsing.model.statements.Template attribute)

 	(robot.parsing.model.statements.TemplateArguments attribute)

 	(robot.parsing.model.statements.TestCaseName attribute)

 	(robot.parsing.model.statements.TestSetup attribute)

 	(robot.parsing.model.statements.TestTeardown attribute)

 	(robot.parsing.model.statements.TestTemplate attribute)

 	(robot.parsing.model.statements.TestTimeout attribute)

 	(robot.parsing.model.statements.Timeout attribute)

 	(robot.parsing.model.statements.Variable attribute)

 	(robot.parsing.model.statements.VariablesImport attribute)

 	DataError

 	DataTypeCatalog (class in robot.libdocpkg.datatypes)

 	DateConverter (class in robot.running.arguments.typeconverters)

 	DateTimeConverter (class in robot.running.arguments.typeconverters)

 	debug() (in module robot.api.logger)

 	(in module robot.output.librarylogger)

 	(robot.output.filelogger.FileLogger method)

 	(robot.output.logger.Logger method)

 	(robot.output.loggerhelper.AbstractLogger method)

 	(robot.output.output.Output method)

 	(robot.utils.importer.NoLogger method)

 	debug_file (robot.conf.settings.RobotSettings attribute)

 	DebugFile() (in module robot.output.debugfile)

 	DecimalConverter (class in robot.running.arguments.typeconverters)

 	decode_bytes_to_string() (robot.libraries.String.String method)

 	deepcopy() (robot.model.body.BodyItem method)

 	(robot.model.control.For method)

 	(robot.model.control.If method)

 	(robot.model.control.IfBranch method)

 	(robot.model.keyword.Keyword method)

 	(robot.model.message.Message method)

 	(robot.model.modelobject.ModelObject method)

 	(robot.model.testcase.TestCase method)

 	(robot.model.testsuite.TestSuite method)

 	(robot.output.loggerhelper.Message method)

 	(robot.result.model.For method)

 	(robot.result.model.ForIteration method)

 	(robot.result.model.If method)

 	(robot.result.model.IfBranch method)

 	(robot.result.model.Keyword method)

 	(robot.result.model.Message method)

 	(robot.result.model.TestCase method)

 	(robot.result.model.TestSuite method)

 	(robot.running.model.For method)

 	(robot.running.model.If method)

 	(robot.running.model.IfBranch method)

 	(robot.running.model.Keyword method)

 	(robot.running.model.TestCase method)

 	(robot.running.model.TestSuite method)

 	default_repr (robot.running.arguments.argumentspec.ArgInfo attribute)

 	DEFAULT_TAGS (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	DefaultLogger (class in robot.utils.application)

 	DefaultTags (class in robot.parsing.model.statements)

 	DefaultValue (class in robot.running.arguments.argumentmapper)

 	deiconify() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	delayed_logging (robot.output.logger.Logger attribute)

 	
 	deletecommand() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	denominator (robot.reporting.stringcache.StringIndex attribute)

 	deprecated (robot.libdocpkg.model.KeywordDoc attribute)

 	deprecated() (in module robot.result.modeldeprecation)

 	DeprecatedAttributesMixin (class in robot.result.modeldeprecation)

 	deprecation_message (robot.model.keyword.Keywords attribute)

 	destroy() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	DictDumper (class in robot.htmldata.jsonwriter)

 	dictionaries_should_be_equal() (robot.libraries.Collections.Collections method)

 	dictionary_should_contain_item() (robot.libraries.Collections.Collections method)

 	dictionary_should_contain_key() (robot.libraries.Collections.Collections method)

 	dictionary_should_contain_sub_dictionary() (robot.libraries.Collections.Collections method)

 	dictionary_should_contain_value() (robot.libraries.Collections.Collections method)

 	dictionary_should_not_contain_key() (robot.libraries.Collections.Collections method)

 	dictionary_should_not_contain_value() (robot.libraries.Collections.Collections method)

 	DictionaryConverter (class in robot.running.arguments.typeconverters)

 	DictToKwargs (class in robot.running.arguments.argumentresolver)

 	DictVariableTableValue (class in robot.variables.tablesetter)

 	directory (robot.running.model.Import attribute)

 	directory() (robot.tidy.Tidy method)

 	directory_should_be_empty() (robot.libraries.OperatingSystem.OperatingSystem method)

 	directory_should_exist() (robot.libraries.OperatingSystem.OperatingSystem method)

 	directory_should_not_be_empty() (robot.libraries.OperatingSystem.OperatingSystem method)

 	directory_should_not_exist() (robot.libraries.OperatingSystem.OperatingSystem method)

 	disable_library_import_logging() (robot.output.logger.Logger method)

 	disable_message_cache() (robot.output.logger.Logger method)

 	discard_suite_scope() (robot.output.listenermethods.LibraryListenerMethods method)

 	(robot.output.listeners.LibraryListeners method)

 	doc (robot.libdocpkg.model.LibraryDoc attribute)

 	(robot.model.keyword.Keyword attribute)

 	(robot.model.stats.TagStat attribute)

 	(robot.model.testcase.TestCase attribute)

 	(robot.model.testsuite.TestSuite attribute)

 	(robot.result.model.For attribute)

 	(robot.result.model.ForIteration attribute)

 	(robot.result.model.If attribute)

 	(robot.result.model.IfBranch attribute)

 	(robot.result.model.Keyword attribute)

 	(robot.result.model.TestCase attribute)

 	(robot.result.model.TestSuite attribute)

 	(robot.running.model.Keyword attribute)

 	(robot.running.model.TestCase attribute)

 	(robot.running.model.TestSuite attribute)

 	(robot.running.usererrorhandler.UserErrorHandler attribute)

 	doc_format (robot.libdocpkg.model.LibraryDoc attribute)

 	DocFormatter (class in robot.libdocpkg.htmlutils)

 	DocHandler (class in robot.result.xmlelementhandlers)

 	DocToHtml (class in robot.libdocpkg.htmlutils)

 	Documentation (class in robot.parsing.model.statements)

 	DOCUMENTATION (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	DocumentationBuilder() (in module robot.libdocpkg.builder)

 	DocumentationOrMetadata (class in robot.parsing.model.statements)

 	dont_continue (robot.errors.ContinueForLoop attribute)

 	(robot.errors.ExecutionFailed attribute)

 	(robot.errors.ExecutionFailures attribute)

 	(robot.errors.ExecutionPassed attribute)

 	(robot.errors.ExecutionStatus attribute)

 	(robot.errors.ExitForLoop attribute)

 	(robot.errors.HandlerExecutionFailed attribute)

 	(robot.errors.PassExecution attribute)

 	(robot.errors.ReturnFromKeyword attribute)

 	(robot.errors.UserKeywordExecutionFailed attribute)

 	DosHighlighter (class in robot.output.console.highlighting)

 	DotDict (class in robot.utils.dotdict)

 	DottedImporter (class in robot.utils.importer)

 	DottedOutput (class in robot.output.console.dotted)

 	dry_run (robot.conf.settings.RobotSettings attribute)

 	dry_run() (robot.running.librarykeywordrunner.EmbeddedArgumentsRunner method)

 	(robot.running.librarykeywordrunner.LibraryKeywordRunner method)

 	(robot.running.librarykeywordrunner.RunKeywordRunner method)

 	(robot.running.usererrorhandler.UserErrorHandler method)

 	(robot.running.userkeywordrunner.EmbeddedArgumentsRunner method)

 	(robot.running.userkeywordrunner.UserKeywordRunner method)

 	dump() (robot.htmldata.jsonwriter.DictDumper method)

 	(robot.htmldata.jsonwriter.IntegerDumper method)

 	(robot.htmldata.jsonwriter.JsonDumper method)

 	(robot.htmldata.jsonwriter.MappingDumper method)

 	(robot.htmldata.jsonwriter.NoneDumper method)

 	(robot.htmldata.jsonwriter.StringDumper method)

 	(robot.htmldata.jsonwriter.TupleListDumper method)

 	(robot.reporting.stringcache.StringCache method)

 	DynamicArgumentParser (class in robot.running.arguments.argumentparser)

 	DynamicHandler() (in module robot.running.handlers)

E

 	
 	earlier_failures (robot.errors.ContinueForLoop attribute)

 	(robot.errors.ExecutionPassed attribute)

 	(robot.errors.ExitForLoop attribute)

 	(robot.errors.PassExecution attribute)

 	(robot.errors.ReturnFromKeyword attribute)

 	elapsed (robot.model.stats.Stat attribute)

 	(robot.model.stats.SuiteStat attribute)

 	elapsedtime (robot.result.model.For attribute)

 	(robot.result.model.ForIteration attribute)

 	(robot.result.model.If attribute)

 	(robot.result.model.IfBranch attribute)

 	(robot.result.model.Keyword attribute)

 	(robot.result.model.StatusMixin attribute)

 	(robot.result.model.TestCase attribute)

 	(robot.result.model.TestSuite attribute)

 	element() (robot.utils.markupwriters.HtmlWriter method)

 	(robot.utils.markupwriters.NullMarkupWriter method)

 	(robot.utils.markupwriters.XmlWriter method)

 	element_attribute_should_be() (robot.libraries.XML.XML method)

 	element_attribute_should_match() (robot.libraries.XML.XML method)

 	element_handlers (robot.result.xmlelementhandlers.ArgumentHandler attribute)

 	(robot.result.xmlelementhandlers.ArgumentsHandler attribute)

 	(robot.result.xmlelementhandlers.AssignHandler attribute)

 	(robot.result.xmlelementhandlers.DocHandler attribute)

 	(robot.result.xmlelementhandlers.ElementHandler attribute)

 	(robot.result.xmlelementhandlers.ErrorMessageHandler attribute)

 	(robot.result.xmlelementhandlers.ErrorsHandler attribute)

 	(robot.result.xmlelementhandlers.ForHandler attribute)

 	(robot.result.xmlelementhandlers.ForIterationHandler attribute)

 	(robot.result.xmlelementhandlers.IfBranchHandler attribute)

 	(robot.result.xmlelementhandlers.IfHandler attribute)

 	(robot.result.xmlelementhandlers.KeywordHandler attribute)

 	(robot.result.xmlelementhandlers.MessageHandler attribute)

 	(robot.result.xmlelementhandlers.MetaHandler attribute)

 	(robot.result.xmlelementhandlers.MetadataHandler attribute)

 	(robot.result.xmlelementhandlers.MetadataItemHandler attribute)

 	(robot.result.xmlelementhandlers.RobotHandler attribute)

 	(robot.result.xmlelementhandlers.RootHandler attribute)

 	(robot.result.xmlelementhandlers.StatisticsHandler attribute)

 	(robot.result.xmlelementhandlers.StatusHandler attribute)

 	(robot.result.xmlelementhandlers.SuiteHandler attribute)

 	(robot.result.xmlelementhandlers.TagHandler attribute)

 	(robot.result.xmlelementhandlers.TagsHandler attribute)

 	(robot.result.xmlelementhandlers.TestHandler attribute)

 	(robot.result.xmlelementhandlers.TimeoutHandler attribute)

 	(robot.result.xmlelementhandlers.ValueHandler attribute)

 	(robot.result.xmlelementhandlers.VarHandler attribute)

 	element_should_exist() (robot.libraries.XML.XML method)

 	element_should_not_exist() (robot.libraries.XML.XML method)

 	element_should_not_have_attribute() (robot.libraries.XML.XML method)

 	element_text_should_be() (robot.libraries.XML.XML method)

 	element_text_should_match() (robot.libraries.XML.XML method)

 	element_to_string() (robot.libraries.XML.XML method)

 	ElementComparator (class in robot.libraries.XML)

 	ElementFinder (class in robot.libraries.XML)

 	ElementHandler (class in robot.result.xmlelementhandlers)

 	elements_should_be_equal() (robot.libraries.XML.XML method)

 	elements_should_match() (robot.libraries.XML.XML method)

 	ELSE (robot.model.body.BodyItem attribute)

 	(robot.model.control.For attribute)

 	(robot.model.control.If attribute)

 	(robot.model.control.IfBranch attribute)

 	(robot.model.keyword.Keyword attribute)

 	(robot.model.message.Message attribute)

 	(robot.output.loggerhelper.Message attribute)

 	(robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	(robot.result.model.For attribute)

 	(robot.result.model.ForIteration attribute)

 	(robot.result.model.If attribute)

 	(robot.result.model.IfBranch attribute)

 	(robot.result.model.Keyword attribute)

 	(robot.result.model.Message attribute)

 	(robot.running.model.For attribute)

 	(robot.running.model.If attribute)

 	(robot.running.model.IfBranch attribute)

 	(robot.running.model.Keyword attribute)

 	ELSE_IF (robot.model.body.BodyItem attribute)

 	(robot.model.control.For attribute)

 	(robot.model.control.If attribute)

 	(robot.model.control.IfBranch attribute)

 	(robot.model.keyword.Keyword attribute)

 	(robot.model.message.Message attribute)

 	(robot.output.loggerhelper.Message attribute)

 	(robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	(robot.result.model.For attribute)

 	(robot.result.model.ForIteration attribute)

 	(robot.result.model.If attribute)

 	(robot.result.model.IfBranch attribute)

 	(robot.result.model.Keyword attribute)

 	(robot.result.model.Message attribute)

 	(robot.running.model.For attribute)

 	(robot.running.model.If attribute)

 	(robot.running.model.IfBranch attribute)

 	(robot.running.model.Keyword attribute)

 	ElseHeader (class in robot.parsing.model.statements)

 	ElseHeaderLexer (class in robot.parsing.lexer.statementlexers)

 	ElseIfHeader (class in robot.parsing.model.statements)

 	ElseIfHeaderLexer (class in robot.parsing.lexer.statementlexers)

 	EmbeddedArgumentParser (class in robot.running.arguments.embedded)

 	EmbeddedArguments (class in robot.running.arguments.embedded)

 	EmbeddedArgumentsHandler (class in robot.running.handlers)

 	(class in robot.running.userkeyword)

 	EmbeddedArgumentsRunner (class in robot.running.librarykeywordrunner)

 	(class in robot.running.userkeywordrunner)

 	emit() (robot.output.pyloggingconf.RobotHandler method)

 	empty (robot.variables.finders.EmptyFinder attribute)

 	empty_cache() (robot.utils.connectioncache.ConnectionCache method)

 	empty_directory() (robot.libraries.OperatingSystem.OperatingSystem method)

 	EmptyFinder (class in robot.variables.finders)

 	EmptyLine (class in robot.parsing.model.statements)

 	EmptySuiteRemover (class in robot.model.filter)

 	enable_library_import_logging() (robot.output.logger.Logger method)

 	encode_string_to_bytes() (robot.libraries.String.String method)

 	encode_threshold (robot.libraries.Remote.TimeoutHTTPSTransport attribute)

 	(robot.libraries.Remote.TimeoutHTTPTransport attribute)

 	End (class in robot.parsing.model.statements)

 	END (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	end() (robot.result.xmlelementhandlers.ArgumentHandler method)

 	(robot.result.xmlelementhandlers.ArgumentsHandler method)

 	(robot.result.xmlelementhandlers.AssignHandler method)

 	(robot.result.xmlelementhandlers.DocHandler method)

 	(robot.result.xmlelementhandlers.ElementHandler method)

 	(robot.result.xmlelementhandlers.ErrorMessageHandler method)

 	(robot.result.xmlelementhandlers.ErrorsHandler method)

 	(robot.result.xmlelementhandlers.ForHandler method)

 	(robot.result.xmlelementhandlers.ForIterationHandler method)

 	(robot.result.xmlelementhandlers.IfBranchHandler method)

 	(robot.result.xmlelementhandlers.IfHandler method)

 	(robot.result.xmlelementhandlers.KeywordHandler method)

 	(robot.result.xmlelementhandlers.MessageHandler method)

 	(robot.result.xmlelementhandlers.MetaHandler method)

 	(robot.result.xmlelementhandlers.MetadataHandler method)

 	(robot.result.xmlelementhandlers.MetadataItemHandler method)

 	(robot.result.xmlelementhandlers.RobotHandler method)

 	(robot.result.xmlelementhandlers.RootHandler method)

 	(robot.result.xmlelementhandlers.StatisticsHandler method)

 	(robot.result.xmlelementhandlers.StatusHandler method)

 	(robot.result.xmlelementhandlers.SuiteHandler method)

 	(robot.result.xmlelementhandlers.TagHandler method)

 	(robot.result.xmlelementhandlers.TagsHandler method)

 	(robot.result.xmlelementhandlers.TestHandler method)

 	(robot.result.xmlelementhandlers.TimeoutHandler method)

 	(robot.result.xmlelementhandlers.ValueHandler method)

 	(robot.result.xmlelementhandlers.VarHandler method)

 	(robot.result.xmlelementhandlers.XmlElementHandler method)

 	(robot.utils.htmlformatters.HeaderFormatter method)

 	(robot.utils.htmlformatters.ListFormatter method)

 	(robot.utils.htmlformatters.ParagraphFormatter method)

 	(robot.utils.htmlformatters.PreformattedFormatter method)

 	(robot.utils.htmlformatters.RulerFormatter method)

 	(robot.utils.htmlformatters.TableFormatter method)

 	(robot.utils.markupwriters.HtmlWriter method)

 	(robot.utils.markupwriters.NullMarkupWriter method)

 	(robot.utils.markupwriters.XmlWriter method)

 	end_col_offset (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	(robot.parsing.model.blocks.Block attribute)

 	(robot.parsing.model.blocks.CommentSection attribute)

 	(robot.parsing.model.blocks.File attribute)

 	(robot.parsing.model.blocks.For attribute)

 	(robot.parsing.model.blocks.If attribute)

 	(robot.parsing.model.blocks.Keyword attribute)

 	(robot.parsing.model.blocks.KeywordSection attribute)

 	(robot.parsing.model.blocks.Section attribute)

 	(robot.parsing.model.blocks.SettingSection attribute)

 	(robot.parsing.model.blocks.TestCase attribute)

 	(robot.parsing.model.blocks.TestCaseSection attribute)

 	(robot.parsing.model.blocks.VariableSection attribute)

 	(robot.parsing.model.statements.Arguments attribute)

 	(robot.parsing.model.statements.Comment attribute)

 	(robot.parsing.model.statements.DefaultTags attribute)

 	(robot.parsing.model.statements.Documentation attribute)

 	(robot.parsing.model.statements.DocumentationOrMetadata attribute)

 	(robot.parsing.model.statements.ElseHeader attribute)

 	(robot.parsing.model.statements.ElseIfHeader attribute)

 	(robot.parsing.model.statements.EmptyLine attribute)

 	(robot.parsing.model.statements.End attribute)

 	(robot.parsing.model.statements.Error attribute)

 	(robot.parsing.model.statements.Fixture attribute)

 	(robot.parsing.model.statements.ForHeader attribute)

 	(robot.parsing.model.statements.ForceTags attribute)

 	(robot.parsing.model.statements.IfHeader attribute)

 	(robot.parsing.model.statements.KeywordCall attribute)

 	(robot.parsing.model.statements.KeywordName attribute)

 	(robot.parsing.model.statements.LibraryImport attribute)

 	(robot.parsing.model.statements.Metadata attribute)

 	(robot.parsing.model.statements.MultiValue attribute)

 	(robot.parsing.model.statements.ResourceImport attribute)

 	(robot.parsing.model.statements.Return attribute)

 	(robot.parsing.model.statements.SectionHeader attribute)

 	(robot.parsing.model.statements.Setup attribute)

 	(robot.parsing.model.statements.SingleValue attribute)

 	(robot.parsing.model.statements.Statement attribute)

 	(robot.parsing.model.statements.SuiteSetup attribute)

 	(robot.parsing.model.statements.SuiteTeardown attribute)

 	(robot.parsing.model.statements.Tags attribute)

 	(robot.parsing.model.statements.Teardown attribute)

 	(robot.parsing.model.statements.Template attribute)

 	(robot.parsing.model.statements.TemplateArguments attribute)

 	(robot.parsing.model.statements.TestCaseName attribute)

 	(robot.parsing.model.statements.TestSetup attribute)

 	(robot.parsing.model.statements.TestTeardown attribute)

 	(robot.parsing.model.statements.TestTemplate attribute)

 	(robot.parsing.model.statements.TestTimeout attribute)

 	(robot.parsing.model.statements.Timeout attribute)

 	(robot.parsing.model.statements.Variable attribute)

 	(robot.parsing.model.statements.VariablesImport attribute)

 	end_directory() (robot.parsing.suitestructure.SuiteStructureVisitor method)

 	(robot.running.builder.builders.SuiteStructureParser method)

 	(robot.tidy.Tidy method)

 	end_errors() (robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.visitor.ResultVisitor method)

 	end_for() (robot.conf.gatherfailed.GatherFailedSuites method)

 	(robot.conf.gatherfailed.GatherFailedTests method)

 	(robot.model.configurer.SuiteConfigurer method)

 	(robot.model.filter.EmptySuiteRemover method)

 	(robot.model.filter.Filter method)

 	(robot.model.modifier.ModelModifier method)

 	(robot.model.statistics.StatisticsBuilder method)

 	(robot.model.tagsetter.TagSetter method)

 	(robot.model.totalstatistics.TotalStatisticsBuilder method)

 	(robot.model.visitor.SuiteVisitor method)

 	(robot.output.console.dotted.StatusReporter method)

 	(robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.configurer.SuiteConfigurer method)

 	(robot.result.keywordremover.AllKeywordsRemover method)

 	(robot.result.keywordremover.ByNameKeywordRemover method)

 	(robot.result.keywordremover.ByTagKeywordRemover method)

 	(robot.result.keywordremover.ForLoopItemsRemover method)

 	(robot.result.keywordremover.PassedKeywordRemover method)

 	(robot.result.keywordremover.WaitUntilKeywordSucceedsRemover method)

 	(robot.result.keywordremover.WarningAndErrorFinder method)

 	(robot.result.merger.Merger method)

 	(robot.result.messagefilter.MessageFilter method)

 	(robot.result.resultbuilder.RemoveKeywords method)

 	(robot.result.suiteteardownfailed.SuiteTeardownFailed method)

 	(robot.result.suiteteardownfailed.SuiteTeardownFailureHandler method)

 	(robot.result.visitor.ResultVisitor method)

 	(robot.running.randomizer.Randomizer method)

 	(robot.running.suiterunner.SuiteRunner method)

 	end_for_iteration() (robot.conf.gatherfailed.GatherFailedSuites method)

 	(robot.conf.gatherfailed.GatherFailedTests method)

 	(robot.model.configurer.SuiteConfigurer method)

 	(robot.model.filter.EmptySuiteRemover method)

 	(robot.model.filter.Filter method)

 	(robot.model.modifier.ModelModifier method)

 	(robot.model.statistics.StatisticsBuilder method)

 	(robot.model.tagsetter.TagSetter method)

 	(robot.model.totalstatistics.TotalStatisticsBuilder method)

 	(robot.model.visitor.SuiteVisitor method)

 	(robot.output.console.dotted.StatusReporter method)

 	(robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.configurer.SuiteConfigurer method)

 	(robot.result.keywordremover.AllKeywordsRemover method)

 	(robot.result.keywordremover.ByNameKeywordRemover method)

 	(robot.result.keywordremover.ByTagKeywordRemover method)

 	(robot.result.keywordremover.ForLoopItemsRemover method)

 	(robot.result.keywordremover.PassedKeywordRemover method)

 	(robot.result.keywordremover.WaitUntilKeywordSucceedsRemover method)

 	(robot.result.keywordremover.WarningAndErrorFinder method)

 	(robot.result.merger.Merger method)

 	(robot.result.messagefilter.MessageFilter method)

 	(robot.result.resultbuilder.RemoveKeywords method)

 	(robot.result.suiteteardownfailed.SuiteTeardownFailed method)

 	(robot.result.suiteteardownfailed.SuiteTeardownFailureHandler method)

 	(robot.result.visitor.ResultVisitor method)

 	(robot.running.randomizer.Randomizer method)

 	(robot.running.suiterunner.SuiteRunner method)

 	end_if() (robot.conf.gatherfailed.GatherFailedSuites method)

 	(robot.conf.gatherfailed.GatherFailedTests method)

 	(robot.model.configurer.SuiteConfigurer method)

 	(robot.model.filter.EmptySuiteRemover method)

 	(robot.model.filter.Filter method)

 	(robot.model.modifier.ModelModifier method)

 	(robot.model.statistics.StatisticsBuilder method)

 	(robot.model.tagsetter.TagSetter method)

 	(robot.model.totalstatistics.TotalStatisticsBuilder method)

 	(robot.model.visitor.SuiteVisitor method)

 	(robot.output.console.dotted.StatusReporter method)

 	(robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.configurer.SuiteConfigurer method)

 	(robot.result.keywordremover.AllKeywordsRemover method)

 	(robot.result.keywordremover.ByNameKeywordRemover method)

 	(robot.result.keywordremover.ByTagKeywordRemover method)

 	(robot.result.keywordremover.ForLoopItemsRemover method)

 	(robot.result.keywordremover.PassedKeywordRemover method)

 	(robot.result.keywordremover.WaitUntilKeywordSucceedsRemover method)

 	(robot.result.keywordremover.WarningAndErrorFinder method)

 	(robot.result.merger.Merger method)

 	(robot.result.messagefilter.MessageFilter method)

 	(robot.result.resultbuilder.RemoveKeywords method)

 	(robot.result.suiteteardownfailed.SuiteTeardownFailed method)

 	(robot.result.suiteteardownfailed.SuiteTeardownFailureHandler method)

 	(robot.result.visitor.ResultVisitor method)

 	(robot.running.randomizer.Randomizer method)

 	(robot.running.suiterunner.SuiteRunner method)

 	end_if_branch() (robot.conf.gatherfailed.GatherFailedSuites method)

 	(robot.conf.gatherfailed.GatherFailedTests method)

 	(robot.model.configurer.SuiteConfigurer method)

 	(robot.model.filter.EmptySuiteRemover method)

 	(robot.model.filter.Filter method)

 	(robot.model.modifier.ModelModifier method)

 	(robot.model.statistics.StatisticsBuilder method)

 	(robot.model.tagsetter.TagSetter method)

 	(robot.model.totalstatistics.TotalStatisticsBuilder method)

 	(robot.model.visitor.SuiteVisitor method)

 	(robot.output.console.dotted.StatusReporter method)

 	(robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.configurer.SuiteConfigurer method)

 	(robot.result.keywordremover.AllKeywordsRemover method)

 	(robot.result.keywordremover.ByNameKeywordRemover method)

 	(robot.result.keywordremover.ByTagKeywordRemover method)

 	(robot.result.keywordremover.ForLoopItemsRemover method)

 	(robot.result.keywordremover.PassedKeywordRemover method)

 	(robot.result.keywordremover.WaitUntilKeywordSucceedsRemover method)

 	(robot.result.keywordremover.WarningAndErrorFinder method)

 	(robot.result.merger.Merger method)

 	(robot.result.messagefilter.MessageFilter method)

 	(robot.result.resultbuilder.RemoveKeywords method)

 	(robot.result.suiteteardownfailed.SuiteTeardownFailed method)

 	(robot.result.suiteteardownfailed.SuiteTeardownFailureHandler method)

 	(robot.result.visitor.ResultVisitor method)

 	(robot.running.randomizer.Randomizer method)

 	(robot.running.suiterunner.SuiteRunner method)

 	end_keyword() (robot.conf.gatherfailed.GatherFailedSuites method)

 	(robot.conf.gatherfailed.GatherFailedTests method)

 	(robot.model.configurer.SuiteConfigurer method)

 	(robot.model.filter.EmptySuiteRemover method)

 	(robot.model.filter.Filter method)

 	(robot.model.modifier.ModelModifier method)

 	(robot.model.statistics.StatisticsBuilder method)

 	(robot.model.tagsetter.TagSetter method)

 	(robot.model.totalstatistics.TotalStatisticsBuilder method)

 	(robot.model.visitor.SuiteVisitor method)

 	(robot.output.console.dotted.StatusReporter method)

 	(robot.output.console.verbose.VerboseOutput method)

 	(robot.output.filelogger.FileLogger method)

 	(robot.output.listeners.Listeners method)

 	(robot.output.logger.Logger method)

 	(robot.output.logger.LoggerProxy method)

 	(robot.output.output.Output method)

 	(robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.configurer.SuiteConfigurer method)

 	(robot.result.keywordremover.AllKeywordsRemover method)

 	(robot.result.keywordremover.ByNameKeywordRemover method)

 	(robot.result.keywordremover.ByTagKeywordRemover method)

 	(robot.result.keywordremover.ForLoopItemsRemover method)

 	(robot.result.keywordremover.PassedKeywordRemover method)

 	(robot.result.keywordremover.WaitUntilKeywordSucceedsRemover method)

 	(robot.result.keywordremover.WarningAndErrorFinder method)

 	(robot.result.merger.Merger method)

 	(robot.result.messagefilter.MessageFilter method)

 	(robot.result.resultbuilder.RemoveKeywords method)

 	(robot.result.suiteteardownfailed.SuiteTeardownFailed method)

 	(robot.result.suiteteardownfailed.SuiteTeardownFailureHandler method)

 	(robot.result.visitor.ResultVisitor method)

 	(robot.running.randomizer.Randomizer method)

 	(robot.running.suiterunner.SuiteRunner method)

 	(robot.variables.scopes.SetVariables method)

 	(robot.variables.scopes.VariableScopes method)

 	
 	end_lineno (robot.parsing.model.blocks.Block attribute)

 	(robot.parsing.model.blocks.CommentSection attribute)

 	(robot.parsing.model.blocks.File attribute)

 	(robot.parsing.model.blocks.For attribute)

 	(robot.parsing.model.blocks.If attribute)

 	(robot.parsing.model.blocks.Keyword attribute)

 	(robot.parsing.model.blocks.KeywordSection attribute)

 	(robot.parsing.model.blocks.Section attribute)

 	(robot.parsing.model.blocks.SettingSection attribute)

 	(robot.parsing.model.blocks.TestCase attribute)

 	(robot.parsing.model.blocks.TestCaseSection attribute)

 	(robot.parsing.model.blocks.VariableSection attribute)

 	(robot.parsing.model.statements.Arguments attribute)

 	(robot.parsing.model.statements.Comment attribute)

 	(robot.parsing.model.statements.DefaultTags attribute)

 	(robot.parsing.model.statements.Documentation attribute)

 	(robot.parsing.model.statements.DocumentationOrMetadata attribute)

 	(robot.parsing.model.statements.ElseHeader attribute)

 	(robot.parsing.model.statements.ElseIfHeader attribute)

 	(robot.parsing.model.statements.EmptyLine attribute)

 	(robot.parsing.model.statements.End attribute)

 	(robot.parsing.model.statements.Error attribute)

 	(robot.parsing.model.statements.Fixture attribute)

 	(robot.parsing.model.statements.ForHeader attribute)

 	(robot.parsing.model.statements.ForceTags attribute)

 	(robot.parsing.model.statements.IfHeader attribute)

 	(robot.parsing.model.statements.KeywordCall attribute)

 	(robot.parsing.model.statements.KeywordName attribute)

 	(robot.parsing.model.statements.LibraryImport attribute)

 	(robot.parsing.model.statements.Metadata attribute)

 	(robot.parsing.model.statements.MultiValue attribute)

 	(robot.parsing.model.statements.ResourceImport attribute)

 	(robot.parsing.model.statements.Return attribute)

 	(robot.parsing.model.statements.SectionHeader attribute)

 	(robot.parsing.model.statements.Setup attribute)

 	(robot.parsing.model.statements.SingleValue attribute)

 	(robot.parsing.model.statements.Statement attribute)

 	(robot.parsing.model.statements.SuiteSetup attribute)

 	(robot.parsing.model.statements.SuiteTeardown attribute)

 	(robot.parsing.model.statements.Tags attribute)

 	(robot.parsing.model.statements.Teardown attribute)

 	(robot.parsing.model.statements.Template attribute)

 	(robot.parsing.model.statements.TemplateArguments attribute)

 	(robot.parsing.model.statements.TestCaseName attribute)

 	(robot.parsing.model.statements.TestSetup attribute)

 	(robot.parsing.model.statements.TestTeardown attribute)

 	(robot.parsing.model.statements.TestTemplate attribute)

 	(robot.parsing.model.statements.TestTimeout attribute)

 	(robot.parsing.model.statements.Timeout attribute)

 	(robot.parsing.model.statements.Variable attribute)

 	(robot.parsing.model.statements.VariablesImport attribute)

 	end_loggers (robot.output.logger.Logger attribute)

 	end_message() (robot.conf.gatherfailed.GatherFailedSuites method)

 	(robot.conf.gatherfailed.GatherFailedTests method)

 	(robot.model.configurer.SuiteConfigurer method)

 	(robot.model.filter.EmptySuiteRemover method)

 	(robot.model.filter.Filter method)

 	(robot.model.modifier.ModelModifier method)

 	(robot.model.statistics.StatisticsBuilder method)

 	(robot.model.tagsetter.TagSetter method)

 	(robot.model.totalstatistics.TotalStatisticsBuilder method)

 	(robot.model.visitor.SuiteVisitor method)

 	(robot.output.console.dotted.StatusReporter method)

 	(robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.configurer.SuiteConfigurer method)

 	(robot.result.keywordremover.AllKeywordsRemover method)

 	(robot.result.keywordremover.ByNameKeywordRemover method)

 	(robot.result.keywordremover.ByTagKeywordRemover method)

 	(robot.result.keywordremover.ForLoopItemsRemover method)

 	(robot.result.keywordremover.PassedKeywordRemover method)

 	(robot.result.keywordremover.WaitUntilKeywordSucceedsRemover method)

 	(robot.result.keywordremover.WarningAndErrorFinder method)

 	(robot.result.merger.Merger method)

 	(robot.result.messagefilter.MessageFilter method)

 	(robot.result.resultbuilder.RemoveKeywords method)

 	(robot.result.suiteteardownfailed.SuiteTeardownFailed method)

 	(robot.result.suiteteardownfailed.SuiteTeardownFailureHandler method)

 	(robot.result.visitor.ResultVisitor method)

 	(robot.running.randomizer.Randomizer method)

 	(robot.running.suiterunner.SuiteRunner method)

 	end_result() (robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.visitor.ResultVisitor method)

 	end_splitting() (robot.reporting.jsbuildingcontext.JsBuildingContext method)

 	end_stat() (robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.visitor.ResultVisitor method)

 	end_statistics() (robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.visitor.ResultVisitor method)

 	end_suite() (robot.conf.gatherfailed.GatherFailedSuites method)

 	(robot.conf.gatherfailed.GatherFailedTests method)

 	(robot.model.configurer.SuiteConfigurer method)

 	(robot.model.filter.EmptySuiteRemover method)

 	(robot.model.filter.Filter method)

 	(robot.model.modifier.ModelModifier method)

 	(robot.model.statistics.StatisticsBuilder method)

 	(robot.model.suitestatistics.SuiteStatisticsBuilder method)

 	(robot.model.tagsetter.TagSetter method)

 	(robot.model.totalstatistics.TotalStatisticsBuilder method)

 	(robot.model.visitor.SuiteVisitor method)

 	(robot.output.console.dotted.DottedOutput method)

 	(robot.output.console.dotted.StatusReporter method)

 	(robot.output.console.verbose.VerboseOutput method)

 	(robot.output.filelogger.FileLogger method)

 	(robot.output.logger.Logger method)

 	(robot.output.output.Output method)

 	(robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.configurer.SuiteConfigurer method)

 	(robot.result.keywordremover.AllKeywordsRemover method)

 	(robot.result.keywordremover.ByNameKeywordRemover method)

 	(robot.result.keywordremover.ByTagKeywordRemover method)

 	(robot.result.keywordremover.ForLoopItemsRemover method)

 	(robot.result.keywordremover.PassedKeywordRemover method)

 	(robot.result.keywordremover.WaitUntilKeywordSucceedsRemover method)

 	(robot.result.keywordremover.WarningAndErrorFinder method)

 	(robot.result.merger.Merger method)

 	(robot.result.messagefilter.MessageFilter method)

 	(robot.result.resultbuilder.RemoveKeywords method)

 	(robot.result.suiteteardownfailed.SuiteTeardownFailed method)

 	(robot.result.suiteteardownfailed.SuiteTeardownFailureHandler method)

 	(robot.result.visitor.ResultVisitor method)

 	(robot.running.context.ExecutionContexts method)

 	(robot.running.libraryscopes.GlobalScope method)

 	(robot.running.libraryscopes.TestCaseScope method)

 	(robot.running.libraryscopes.TestSuiteScope method)

 	(robot.running.namespace.Namespace method)

 	(robot.running.randomizer.Randomizer method)

 	(robot.running.suiterunner.SuiteRunner method)

 	(robot.variables.scopes.SetVariables method)

 	(robot.variables.scopes.VariableScopes method)

 	end_suite_statistics() (robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.visitor.ResultVisitor method)

 	end_tag_statistics() (robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.visitor.ResultVisitor method)

 	end_test() (robot.conf.gatherfailed.GatherFailedSuites method)

 	(robot.conf.gatherfailed.GatherFailedTests method)

 	(robot.model.configurer.SuiteConfigurer method)

 	(robot.model.filter.EmptySuiteRemover method)

 	(robot.model.filter.Filter method)

 	(robot.model.modifier.ModelModifier method)

 	(robot.model.statistics.StatisticsBuilder method)

 	(robot.model.tagsetter.TagSetter method)

 	(robot.model.totalstatistics.TotalStatisticsBuilder method)

 	(robot.model.visitor.SuiteVisitor method)

 	(robot.output.console.dotted.DottedOutput method)

 	(robot.output.console.dotted.StatusReporter method)

 	(robot.output.console.verbose.VerboseOutput method)

 	(robot.output.filelogger.FileLogger method)

 	(robot.output.logger.Logger method)

 	(robot.output.output.Output method)

 	(robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.configurer.SuiteConfigurer method)

 	(robot.result.keywordremover.AllKeywordsRemover method)

 	(robot.result.keywordremover.ByNameKeywordRemover method)

 	(robot.result.keywordremover.ByTagKeywordRemover method)

 	(robot.result.keywordremover.ForLoopItemsRemover method)

 	(robot.result.keywordremover.PassedKeywordRemover method)

 	(robot.result.keywordremover.WaitUntilKeywordSucceedsRemover method)

 	(robot.result.keywordremover.WarningAndErrorFinder method)

 	(robot.result.merger.Merger method)

 	(robot.result.messagefilter.MessageFilter method)

 	(robot.result.resultbuilder.RemoveKeywords method)

 	(robot.result.suiteteardownfailed.SuiteTeardownFailed method)

 	(robot.result.suiteteardownfailed.SuiteTeardownFailureHandler method)

 	(robot.result.visitor.ResultVisitor method)

 	(robot.running.libraryscopes.GlobalScope method)

 	(robot.running.libraryscopes.TestCaseScope method)

 	(robot.running.libraryscopes.TestSuiteScope method)

 	(robot.running.namespace.Namespace method)

 	(robot.running.randomizer.Randomizer method)

 	(robot.running.suiterunner.SuiteRunner method)

 	(robot.variables.scopes.SetVariables method)

 	(robot.variables.scopes.VariableScopes method)

 	end_total_statistics() (robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.visitor.ResultVisitor method)

 	end_user_keyword() (robot.running.namespace.Namespace method)

 	EndKeywordArguments (class in robot.output.listenerarguments)

 	EndLexer (class in robot.parsing.lexer.statementlexers)

 	EndSuiteArguments (class in robot.output.listenerarguments)

 	EndTestArguments (class in robot.output.listenerarguments)

 	endtime (robot.result.model.For attribute)

 	(robot.result.model.ForIteration attribute)

 	(robot.result.model.If attribute)

 	(robot.result.model.IfBranch attribute)

 	(robot.result.model.Keyword attribute)

 	(robot.result.model.TestCase attribute)

 	(robot.result.model.TestSuite attribute)

 	Enum (class in robot.running.arguments.argumentspec)

 	(class in robot.running.arguments.typeconverters)

 	EnumConverter (class in robot.running.arguments.typeconverters)

 	EnumDoc (class in robot.libdocpkg.datatypes)

 	enums (robot.libdocpkg.datatypes.DataTypeCatalog attribute)

 	EnumType (class in robot.libdocpkg.datatypes)

 	environment_variable_should_be_set() (robot.libraries.OperatingSystem.OperatingSystem method)

 	environment_variable_should_not_be_set() (robot.libraries.OperatingSystem.OperatingSystem method)

 	EnvironmentFinder (class in robot.variables.finders)

 	EOL (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	EOS (class in robot.parsing.lexer.tokens)

 	(robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	eq() (in module robot.utils.match)

 	Error

 	(class in robot.parsing.model.statements)

 	ERROR (robot.parsing.lexer.tokens.EOS attribute)

 	error (robot.parsing.lexer.tokens.EOS attribute)

 	ERROR (robot.parsing.lexer.tokens.Token attribute)

 	error (robot.parsing.lexer.tokens.Token attribute)

 	(robot.running.model.For attribute)

 	(robot.running.model.If attribute)

 	error() (in module robot.api.logger)

 	(in module robot.output.librarylogger)

 	(robot.output.console.highlighting.HighlightingStream method)

 	(robot.output.console.verbose.VerboseWriter method)

 	(robot.output.filelogger.FileLogger method)

 	(robot.output.logger.Logger method)

 	(robot.output.loggerhelper.AbstractLogger method)

 	(robot.output.output.Output method)

 	(robot.utils.application.DefaultLogger method)

 	(robot.utils.importer.NoLogger method)

 	error_occurred() (robot.running.status.Exit method)

 	(robot.running.status.SuiteStatus method)

 	(robot.running.status.TestStatus method)

 	ErrorDetails() (in module robot.utils.error)

 	ErrorMessageBuilder (class in robot.reporting.jsmodelbuilders)

 	ErrorMessageHandler (class in robot.result.xmlelementhandlers)

 	ErrorReporter (class in robot.running.builder.parsers)

 	errors (robot.parsing.model.blocks.Block attribute)

 	(robot.parsing.model.blocks.CommentSection attribute)

 	(robot.parsing.model.blocks.File attribute)

 	(robot.parsing.model.blocks.For attribute)

 	(robot.parsing.model.blocks.If attribute)

 	(robot.parsing.model.blocks.Keyword attribute)

 	(robot.parsing.model.blocks.KeywordSection attribute)

 	(robot.parsing.model.blocks.Section attribute)

 	(robot.parsing.model.blocks.SettingSection attribute)

 	(robot.parsing.model.blocks.TestCase attribute)

 	(robot.parsing.model.blocks.TestCaseSection attribute)

 	(robot.parsing.model.blocks.VariableSection attribute)

 	(robot.parsing.model.statements.Error attribute)

 	(robot.result.executionresult.Result attribute)

 	ErrorsBuilder (class in robot.reporting.jsmodelbuilders)

 	ErrorSectionHeaderLexer (class in robot.parsing.lexer.statementlexers)

 	ErrorSectionLexer (class in robot.parsing.lexer.blocklexers)

 	ErrorsHandler (class in robot.result.xmlelementhandlers)

 	escape() (in module robot.utils.escaping)

 	ETSource (class in robot.utils.etreewrapper)

 	evaluate() (robot.libraries.BuiltIn.BuiltIn method)

 	evaluate_expression() (in module robot.variables.evaluation)

 	evaluate_xpath() (robot.libraries.XML.XML method)

 	EvaluationNamespace (class in robot.variables.evaluation)

 	event_add() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	event_delete() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	event_generate() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	event_info() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	exclude_tags (robot.model.filter.Filter attribute)

 	execute() (robot.libdoc.LibDoc method)

 	(robot.rebot.Rebot method)

 	(robot.run.RobotFramework method)

 	(robot.running.timeouts.posix.Timeout method)

 	(robot.running.timeouts.windows.Timeout method)

 	(robot.testdoc.TestDoc method)

 	(robot.tidy.TidyCommandLine method)

 	(robot.utils.application.Application method)

 	execute_cli() (robot.libdoc.LibDoc method)

 	(robot.rebot.Rebot method)

 	(robot.run.RobotFramework method)

 	(robot.testdoc.TestDoc method)

 	(robot.tidy.TidyCommandLine method)

 	(robot.utils.application.Application method)

 	execute_command() (robot.libraries.Telnet.TelnetConnection method)

 	execute_manual_step() (in module robot.libraries.Dialogs)

 	ExecutionContexts (class in robot.running.context)

 	ExecutionErrors (class in robot.result.executionerrors)

 	ExecutionFailed

 	ExecutionFailures

 	ExecutionPassed

 	ExecutionResult (class in robot.libraries.Process)

 	ExecutionResult() (in module robot.result.resultbuilder)

 	ExecutionResultBuilder (class in robot.result.resultbuilder)

 	ExecutionStatus

 	Exit (class in robot.running.status)

 	exit_for_loop() (robot.libraries.BuiltIn.BuiltIn method)

 	exit_for_loop_if() (robot.libraries.BuiltIn.BuiltIn method)

 	exit_on_error (robot.conf.settings.RobotSettings attribute)

 	exit_on_error_message (robot.running.status.TestMessage attribute)

 	exit_on_failure (robot.conf.settings.RobotSettings attribute)

 	exit_on_failure_message (robot.running.status.TestMessage attribute)

 	exit_on_fatal_message (robot.running.status.TestMessage attribute)

 	ExitForLoop

 	expand_keywords (robot.conf.settings.RebotSettings attribute)

 	(robot.reporting.jsbuildingcontext.JsBuildingContext attribute)

 	ExpandKeywordMatcher (class in robot.reporting.expandkeywordmatcher)

 	expect() (robot.libraries.Telnet.TelnetConnection method)

 	extend() (robot.model.body.Body method)

 	(robot.model.body.IfBranches method)

 	(robot.model.itemlist.ItemList method)

 	(robot.model.keyword.Keywords method)

 	(robot.model.message.Messages method)

 	(robot.model.testcase.TestCases method)

 	(robot.model.testsuite.TestSuites method)

 	(robot.result.model.Body method)

 	(robot.result.model.ForIterations method)

 	(robot.result.model.IfBranches method)

 	(robot.running.model.Body method)

 	(robot.running.model.IfBranches method)

 	(robot.running.model.Imports method)

 	ExtendedFinder (class in robot.variables.finders)

 	extension (robot.conf.settings.RobotSettings attribute)

F

 	
 	FAIL (robot.result.model.For attribute)

 	(robot.result.model.ForIteration attribute)

 	(robot.result.model.If attribute)

 	(robot.result.model.IfBranch attribute)

 	(robot.result.model.Keyword attribute)

 	(robot.result.model.StatusMixin attribute)

 	(robot.result.model.TestCase attribute)

 	(robot.result.model.TestSuite attribute)

 	fail() (in module robot.utils.asserts)

 	(robot.libraries.BuiltIn.BuiltIn method)

 	(robot.output.filelogger.FileLogger method)

 	(robot.output.logger.Logger method)

 	(robot.output.loggerhelper.AbstractLogger method)

 	(robot.output.output.Output method)

 	failed (robot.model.stats.Stat attribute)

 	(robot.model.totalstatistics.TotalStatistics attribute)

 	(robot.result.model.For attribute)

 	(robot.result.model.ForIteration attribute)

 	(robot.result.model.If attribute)

 	(robot.result.model.IfBranch attribute)

 	(robot.result.model.Keyword attribute)

 	(robot.result.model.StatusMixin attribute)

 	(robot.result.model.TestCase attribute)

 	(robot.result.model.TestSuite attribute)

 	(robot.running.status.SuiteStatus attribute)

 	(robot.running.status.TestStatus attribute)

 	Failure

 	(class in robot.running.status)

 	failure_occurred() (robot.running.status.Exit method)

 	(robot.running.status.SuiteStatus method)

 	(robot.running.status.TestStatus method)

 	FATAL_ERROR (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	fatal_error() (robot.libraries.BuiltIn.BuiltIn method)

 	FatalError

 	feed() (robot.libraries.Telnet.TerminalEmulator method)

 	fetch_from_left() (robot.libraries.String.String method)

 	fetch_from_right() (robot.libraries.String.String method)

 	File (class in robot.parsing.model.blocks)

 	file() (robot.tidy.Tidy method)

 	file_should_be_empty() (robot.libraries.OperatingSystem.OperatingSystem method)

 	file_should_exist() (robot.libraries.OperatingSystem.OperatingSystem method)

 	file_should_not_be_empty() (robot.libraries.OperatingSystem.OperatingSystem method)

 	file_should_not_exist() (robot.libraries.OperatingSystem.OperatingSystem method)

 	FileContext (class in robot.parsing.lexer.context)

 	FileLexer (class in robot.parsing.lexer.blocklexers)

 	FileLogger (class in robot.output.filelogger)

 	fileno() (robot.libraries.Telnet.TelnetConnection method)

 	FileParser (class in robot.parsing.parser.fileparser)

 	FileReader (class in robot.utils.filereader)

 	fill_named() (robot.running.arguments.argumentmapper.KeywordCallTemplate method)

 	fill_positional() (robot.running.arguments.argumentmapper.KeywordCallTemplate method)

 	fill_rawq() (robot.libraries.Telnet.TelnetConnection method)

 	Filter (class in robot.model.filter)

 	filter() (robot.model.body.Body method)

 	(robot.model.body.IfBranches method)

 	(robot.model.testsuite.TestSuite method)

 	(robot.output.pyloggingconf.RobotHandler method)

 	(robot.result.model.Body method)

 	(robot.result.model.ForIterations method)

 	(robot.result.model.IfBranches method)

 	(robot.result.model.TestSuite method)

 	(robot.running.model.Body method)

 	(robot.running.model.IfBranches method)

 	(robot.running.model.TestSuite method)

 	filter_messages() (robot.result.model.TestSuite method)

 	find() (robot.utils.recommendations.RecommendationFinder method)

 	(robot.variables.finders.EmptyFinder method)

 	(robot.variables.finders.EnvironmentFinder method)

 	(robot.variables.finders.ExtendedFinder method)

 	(robot.variables.finders.InlinePythonFinder method)

 	(robot.variables.finders.NumberFinder method)

 	(robot.variables.finders.StoredFinder method)

 	(robot.variables.finders.VariableFinder method)

 	find_all() (robot.libraries.XML.ElementFinder method)

 	find_and_format() (robot.utils.recommendations.RecommendationFinder method)

 	find_from() (robot.parsing.model.blocks.FirstStatementFinder class method)

 	(robot.parsing.model.blocks.LastStatementFinder class method)

 	FirstStatementFinder (class in robot.parsing.model.blocks)

 	Fixture (class in robot.parsing.model.statements)

 	fixture_class (robot.model.testcase.TestCase attribute)

 	(robot.model.testsuite.TestSuite attribute)

 	(robot.result.model.TestCase attribute)

 	(robot.result.model.TestSuite attribute)

 	(robot.running.model.TestCase attribute)

 	(robot.running.model.TestSuite attribute)

 	flatten_keywords (robot.conf.settings.RebotSettings attribute)

 	(robot.conf.settings.RobotSettings attribute)

 	FlattenByNameMatcher (class in robot.result.flattenkeywordmatcher)

 	FlattenByTagMatcher (class in robot.result.flattenkeywordmatcher)

 	FlattenByTypeMatcher (class in robot.result.flattenkeywordmatcher)

 	flavor (robot.model.control.For attribute)

 	(robot.parsing.model.blocks.For attribute)

 	(robot.parsing.model.statements.ForHeader attribute)

 	(robot.result.model.For attribute)

 	(robot.running.bodyrunner.ForInEnumerateRunner attribute)

 	(robot.running.bodyrunner.ForInRangeRunner attribute)

 	(robot.running.bodyrunner.ForInRunner attribute)

 	(robot.running.bodyrunner.ForInZipRunner attribute)

 	(robot.running.model.For attribute)

 	FloatConverter (class in robot.running.arguments.typeconverters)

 	flush() (robot.output.console.highlighting.HighlightingStream method)

 	(robot.output.pyloggingconf.RobotHandler method)

 	focus() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	focus_displayof() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	focus_force() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	focus_get() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	focus_lastfor() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	focus_set() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	focusmodel() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	For (class in robot.model.control)

 	(class in robot.parsing.model.blocks)

 	(class in robot.result.model)

 	(class in robot.running.model)

 	FOR (robot.model.body.BodyItem attribute)

 	(robot.model.control.For attribute)

 	(robot.model.control.If attribute)

 	(robot.model.control.IfBranch attribute)

 	(robot.model.keyword.Keyword attribute)

 	(robot.model.message.Message attribute)

 	(robot.output.loggerhelper.Message attribute)

 	(robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	(robot.result.model.For attribute)

 	(robot.result.model.ForIteration attribute)

 	(robot.result.model.If attribute)

 	(robot.result.model.IfBranch attribute)

 	(robot.result.model.Keyword attribute)

 	(robot.result.model.Message attribute)

 	(robot.running.model.For attribute)

 	(robot.running.model.If attribute)

 	(robot.running.model.IfBranch attribute)

 	(robot.running.model.Keyword attribute)

 	
 	for_class (robot.model.body.Body attribute)

 	(robot.model.body.IfBranches attribute)

 	(robot.result.model.Body attribute)

 	(robot.result.model.ForIterations attribute)

 	(robot.result.model.IfBranches attribute)

 	(robot.running.model.Body attribute)

 	(robot.running.model.IfBranches attribute)

 	FOR_ITERATION (robot.model.body.BodyItem attribute)

 	(robot.model.control.For attribute)

 	(robot.model.control.If attribute)

 	(robot.model.control.IfBranch attribute)

 	(robot.model.keyword.Keyword attribute)

 	(robot.model.message.Message attribute)

 	(robot.output.loggerhelper.Message attribute)

 	(robot.result.model.For attribute)

 	(robot.result.model.ForIteration attribute)

 	(robot.result.model.If attribute)

 	(robot.result.model.IfBranch attribute)

 	(robot.result.model.Keyword attribute)

 	(robot.result.model.Message attribute)

 	(robot.running.model.For attribute)

 	(robot.running.model.If attribute)

 	(robot.running.model.IfBranch attribute)

 	(robot.running.model.Keyword attribute)

 	for_iteration_class (robot.result.model.ForIterations attribute)

 	FOR_SEPARATOR (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	ForBuilder (class in robot.running.builder.transformers)

 	FORCE_TAGS (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	force_tags (robot.running.builder.testsettings.TestDefaults attribute)

 	ForceTags (class in robot.parsing.model.statements)

 	ForHandler (class in robot.result.xmlelementhandlers)

 	ForHeader (class in robot.parsing.model.statements)

 	ForHeaderLexer (class in robot.parsing.lexer.statementlexers)

 	ForInEnumerateRunner (class in robot.running.bodyrunner)

 	ForInRangeRunner (class in robot.running.bodyrunner)

 	ForInRunner (class in robot.running.bodyrunner)

 	ForInZipRunner (class in robot.running.bodyrunner)

 	ForIteration (class in robot.result.model)

 	ForIterationHandler (class in robot.result.xmlelementhandlers)

 	ForIterations (class in robot.result.model)

 	ForLexer (class in robot.parsing.lexer.blocklexers)

 	ForLoopItemsRemover (class in robot.result.keywordremover)

 	format() (robot.output.pyloggingconf.RobotHandler method)

 	(robot.utils.htmlformatters.HeaderFormatter method)

 	(robot.utils.htmlformatters.HtmlFormatter method)

 	(robot.utils.htmlformatters.LineFormatter method)

 	(robot.utils.htmlformatters.ListFormatter method)

 	(robot.utils.htmlformatters.ParagraphFormatter method)

 	(robot.utils.htmlformatters.PreformattedFormatter method)

 	(robot.utils.htmlformatters.RulerFormatter method)

 	(robot.utils.htmlformatters.TableFormatter method)

 	(robot.utils.recommendations.RecommendationFinder method)

 	format_error() (in module robot.running.builder.transformers)

 	format_line() (robot.utils.htmlformatters.HeaderFormatter method)

 	(robot.utils.htmlformatters.RulerFormatter method)

 	format_link() (robot.utils.htmlformatters.LinkFormatter method)

 	format_name() (in module robot.running.builder.parsers)

 	format_recommendations() (robot.running.namespace.KeywordRecommendationFinder static method)

 	format_string() (robot.libraries.String.String method)

 	format_url() (robot.utils.htmlformatters.LinkFormatter method)

 	ForParser (class in robot.parsing.parser.blockparsers)

 	ForRunner() (in module robot.running.bodyrunner)

 	frame() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	FrameworkError

 	frange() (in module robot.utils.frange)

 	from_Enum() (robot.libdocpkg.datatypes.EnumDoc class method)

 	from_file_system() (robot.running.model.TestSuite class method)

 	from_model() (robot.running.model.TestSuite class method)

 	from_params() (robot.parsing.model.statements.Arguments class method)

 	(robot.parsing.model.statements.Comment class method)

 	(robot.parsing.model.statements.DefaultTags class method)

 	(robot.parsing.model.statements.Documentation class method)

 	(robot.parsing.model.statements.DocumentationOrMetadata class method)

 	(robot.parsing.model.statements.ElseHeader class method)

 	(robot.parsing.model.statements.ElseIfHeader class method)

 	(robot.parsing.model.statements.EmptyLine class method)

 	(robot.parsing.model.statements.End class method)

 	(robot.parsing.model.statements.Error class method)

 	(robot.parsing.model.statements.Fixture class method)

 	(robot.parsing.model.statements.ForHeader class method)

 	(robot.parsing.model.statements.ForceTags class method)

 	(robot.parsing.model.statements.IfHeader class method)

 	(robot.parsing.model.statements.KeywordCall class method)

 	(robot.parsing.model.statements.KeywordName class method)

 	(robot.parsing.model.statements.LibraryImport class method)

 	(robot.parsing.model.statements.Metadata class method)

 	(robot.parsing.model.statements.MultiValue class method)

 	(robot.parsing.model.statements.ResourceImport class method)

 	(robot.parsing.model.statements.Return class method)

 	(robot.parsing.model.statements.SectionHeader class method)

 	(robot.parsing.model.statements.Setup class method)

 	(robot.parsing.model.statements.SingleValue class method)

 	(robot.parsing.model.statements.Statement class method)

 	(robot.parsing.model.statements.SuiteSetup class method)

 	(robot.parsing.model.statements.SuiteTeardown class method)

 	(robot.parsing.model.statements.Tags class method)

 	(robot.parsing.model.statements.Teardown class method)

 	(robot.parsing.model.statements.Template class method)

 	(robot.parsing.model.statements.TemplateArguments class method)

 	(robot.parsing.model.statements.TestCaseName class method)

 	(robot.parsing.model.statements.TestSetup class method)

 	(robot.parsing.model.statements.TestTeardown class method)

 	(robot.parsing.model.statements.TestTemplate class method)

 	(robot.parsing.model.statements.TestTimeout class method)

 	(robot.parsing.model.statements.Timeout class method)

 	(robot.parsing.model.statements.Variable class method)

 	(robot.parsing.model.statements.VariablesImport class method)

 	from_token() (robot.parsing.lexer.tokens.EOS class method)

 	from_tokens() (robot.parsing.model.statements.Arguments class method)

 	(robot.parsing.model.statements.Comment class method)

 	(robot.parsing.model.statements.DefaultTags class method)

 	(robot.parsing.model.statements.Documentation class method)

 	(robot.parsing.model.statements.DocumentationOrMetadata class method)

 	(robot.parsing.model.statements.ElseHeader class method)

 	(robot.parsing.model.statements.ElseIfHeader class method)

 	(robot.parsing.model.statements.EmptyLine class method)

 	(robot.parsing.model.statements.End class method)

 	(robot.parsing.model.statements.Error class method)

 	(robot.parsing.model.statements.Fixture class method)

 	(robot.parsing.model.statements.ForHeader class method)

 	(robot.parsing.model.statements.ForceTags class method)

 	(robot.parsing.model.statements.IfHeader class method)

 	(robot.parsing.model.statements.KeywordCall class method)

 	(robot.parsing.model.statements.KeywordName class method)

 	(robot.parsing.model.statements.LibraryImport class method)

 	(robot.parsing.model.statements.Metadata class method)

 	(robot.parsing.model.statements.MultiValue class method)

 	(robot.parsing.model.statements.ResourceImport class method)

 	(robot.parsing.model.statements.Return class method)

 	(robot.parsing.model.statements.SectionHeader class method)

 	(robot.parsing.model.statements.Setup class method)

 	(robot.parsing.model.statements.SingleValue class method)

 	(robot.parsing.model.statements.Statement class method)

 	(robot.parsing.model.statements.SuiteSetup class method)

 	(robot.parsing.model.statements.SuiteTeardown class method)

 	(robot.parsing.model.statements.Tags class method)

 	(robot.parsing.model.statements.Teardown class method)

 	(robot.parsing.model.statements.Template class method)

 	(robot.parsing.model.statements.TemplateArguments class method)

 	(robot.parsing.model.statements.TestCaseName class method)

 	(robot.parsing.model.statements.TestSetup class method)

 	(robot.parsing.model.statements.TestTeardown class method)

 	(robot.parsing.model.statements.TestTemplate class method)

 	(robot.parsing.model.statements.TestTimeout class method)

 	(robot.parsing.model.statements.Timeout class method)

 	(robot.parsing.model.statements.Variable class method)

 	(robot.parsing.model.statements.VariablesImport class method)

 	from_TypedDict() (robot.libdocpkg.datatypes.TypedDictDoc class method)

 	fromkeys() (robot.utils.dotdict.DotDict class method)

 	FrozenSetConverter (class in robot.running.arguments.typeconverters)

 	full_message (robot.result.model.TestSuite attribute)

G

 	
 	gather_failed_suites() (in module robot.conf.gatherfailed)

 	gather_failed_tests() (in module robot.conf.gatherfailed)

 	GatherFailedSuites (class in robot.conf.gatherfailed)

 	GatherFailedTests (class in robot.conf.gatherfailed)

 	generate_random_string() (robot.libraries.String.String method)

 	generate_shortdoc() (robot.libdocpkg.model.KeywordDoc method)

 	GeneratorWriter (class in robot.htmldata.htmlfilewriter)

 	generic_visit() (robot.parsing.model.blocks.FirstStatementFinder method)

 	(robot.parsing.model.blocks.LastStatementFinder method)

 	(robot.parsing.model.blocks.ModelValidator method)

 	(robot.parsing.model.blocks.ModelWriter method)

 	(robot.parsing.model.visitor.ModelTransformer method)

 	(robot.parsing.model.visitor.ModelVisitor method)

 	(robot.running.builder.parsers.ErrorReporter method)

 	(robot.running.builder.transformers.ForBuilder method)

 	(robot.running.builder.transformers.IfBuilder method)

 	(robot.running.builder.transformers.KeywordBuilder method)

 	(robot.running.builder.transformers.ResourceBuilder method)

 	(robot.running.builder.transformers.SettingsBuilder method)

 	(robot.running.builder.transformers.SuiteBuilder method)

 	(robot.running.builder.transformers.TestCaseBuilder method)

 	(robot.tidypkg.transformers.Aligner method)

 	(robot.tidypkg.transformers.Cleaner method)

 	(robot.tidypkg.transformers.ColumnAligner method)

 	(robot.tidypkg.transformers.ColumnWidthCounter method)

 	(robot.tidypkg.transformers.NewlineNormalizer method)

 	(robot.tidypkg.transformers.SeparatorNormalizer method)

 	geometry() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	get() (robot.model.metadata.Metadata method)

 	(robot.utils.dotdict.DotDict method)

 	(robot.utils.normalizing.NormalizedDict method)

 	(robot.variables.evaluation.EvaluationNamespace method)

 	(robot.variables.store.VariableStore method)

 	get_arguments() (robot.output.listenerarguments.EndKeywordArguments method)

 	(robot.output.listenerarguments.EndSuiteArguments method)

 	(robot.output.listenerarguments.EndTestArguments method)

 	(robot.output.listenerarguments.ListenerArguments method)

 	(robot.output.listenerarguments.MessageArguments method)

 	(robot.output.listenerarguments.StartKeywordArguments method)

 	(robot.output.listenerarguments.StartSuiteArguments method)

 	(robot.output.listenerarguments.StartTestArguments method)

 	get_attributes() (robot.model.stats.CombinedTagStat method)

 	(robot.model.stats.Stat method)

 	(robot.model.stats.SuiteStat method)

 	(robot.model.stats.TagStat method)

 	(robot.model.stats.TotalStat method)

 	get_binary_file() (robot.libraries.OperatingSystem.OperatingSystem method)

 	get_char_width() (in module robot.utils.charwidth)

 	get_child_elements() (robot.libraries.XML.XML method)

 	get_child_handler() (robot.result.xmlelementhandlers.ArgumentHandler method)

 	(robot.result.xmlelementhandlers.ArgumentsHandler method)

 	(robot.result.xmlelementhandlers.AssignHandler method)

 	(robot.result.xmlelementhandlers.DocHandler method)

 	(robot.result.xmlelementhandlers.ElementHandler method)

 	(robot.result.xmlelementhandlers.ErrorMessageHandler method)

 	(robot.result.xmlelementhandlers.ErrorsHandler method)

 	(robot.result.xmlelementhandlers.ForHandler method)

 	(robot.result.xmlelementhandlers.ForIterationHandler method)

 	(robot.result.xmlelementhandlers.IfBranchHandler method)

 	(robot.result.xmlelementhandlers.IfHandler method)

 	(robot.result.xmlelementhandlers.KeywordHandler method)

 	(robot.result.xmlelementhandlers.MessageHandler method)

 	(robot.result.xmlelementhandlers.MetaHandler method)

 	(robot.result.xmlelementhandlers.MetadataHandler method)

 	(robot.result.xmlelementhandlers.MetadataItemHandler method)

 	(robot.result.xmlelementhandlers.RobotHandler method)

 	(robot.result.xmlelementhandlers.RootHandler method)

 	(robot.result.xmlelementhandlers.StatisticsHandler method)

 	(robot.result.xmlelementhandlers.StatusHandler method)

 	(robot.result.xmlelementhandlers.SuiteHandler method)

 	(robot.result.xmlelementhandlers.TagHandler method)

 	(robot.result.xmlelementhandlers.TagsHandler method)

 	(robot.result.xmlelementhandlers.TestHandler method)

 	(robot.result.xmlelementhandlers.TimeoutHandler method)

 	(robot.result.xmlelementhandlers.ValueHandler method)

 	(robot.result.xmlelementhandlers.VarHandler method)

 	get_combined_stats() (robot.model.tagstatistics.TagStatInfo method)

 	get_command() (robot.libraries.Process.ProcessConfiguration method)

 	get_connection() (robot.utils.connectioncache.ConnectionCache method)

 	get_console_encoding() (in module robot.utils.encodingsniffer)

 	get_count() (robot.libraries.BuiltIn.BuiltIn method)

 	get_current_date() (in module robot.libraries.DateTime)

 	get_dictionary_items() (robot.libraries.Collections.Collections method)

 	get_dictionary_keys() (robot.libraries.Collections.Collections method)

 	get_dictionary_values() (robot.libraries.Collections.Collections method)

 	get_doc() (robot.model.tagstatistics.TagStatInfo method)

 	get_element() (robot.libraries.XML.XML method)

 	get_element_attribute() (robot.libraries.XML.XML method)

 	get_element_attributes() (robot.libraries.XML.XML method)

 	get_element_count() (robot.libraries.XML.XML method)

 	get_element_text() (robot.libraries.XML.XML method)

 	get_elements() (robot.libraries.XML.XML method)

 	get_elements_texts() (robot.libraries.XML.XML method)

 	get_environment_variable() (robot.libraries.OperatingSystem.OperatingSystem method)

 	get_environment_variables() (robot.libraries.OperatingSystem.OperatingSystem method)

 	get_error_details() (in module robot.utils.error)

 	get_error_message() (in module robot.utils.error)

 	get_errors() (robot.errors.ContinueForLoop method)

 	(robot.errors.ExecutionFailed method)

 	(robot.errors.ExecutionFailures method)

 	(robot.errors.ExecutionPassed method)

 	(robot.errors.ExecutionStatus method)

 	(robot.errors.ExitForLoop method)

 	(robot.errors.HandlerExecutionFailed method)

 	(robot.errors.PassExecution method)

 	(robot.errors.ReturnFromKeyword method)

 	(robot.errors.UserKeywordExecutionFailed method)

 	get_file() (robot.libraries.OperatingSystem.OperatingSystem method)

 	get_file_size() (robot.libraries.OperatingSystem.OperatingSystem method)

 	get_from_dictionary() (robot.libraries.Collections.Collections method)

 	get_from_list() (robot.libraries.Collections.Collections method)

 	get_full_version() (in module robot.version)

 	get_host_info() (robot.libraries.Remote.TimeoutHTTPSTransport method)

 	(robot.libraries.Remote.TimeoutHTTPTransport method)

 	get_index_from_list() (robot.libraries.Collections.Collections method)

 	get_init_model() (in module robot.parsing.parser.parser)

 	get_init_tokens() (in module robot.parsing.lexer.lexer)

 	get_interpreter() (in module robot.version)

 	get_java_properties() (in module robot.variables.finders)

 	get_java_property() (in module robot.variables.finders)

 	get_keyword_arguments() (robot.libraries.Remote.Remote method)

 	(robot.libraries.Remote.XmlRpcRemoteClient method)

 	get_keyword_documentation() (robot.libraries.Remote.Remote method)

 	(robot.libraries.Remote.XmlRpcRemoteClient method)

 	get_keyword_names() (robot.libraries.Remote.Remote method)

 	(robot.libraries.Remote.XmlRpcRemoteClient method)

 	(robot.libraries.Telnet.Telnet method)

 	get_keyword_tags() (robot.libraries.Remote.Remote method)

 	(robot.libraries.Remote.XmlRpcRemoteClient method)

 	get_keyword_types() (robot.libraries.Remote.Remote method)

 	(robot.libraries.Remote.XmlRpcRemoteClient method)

 	get_length() (robot.libraries.BuiltIn.BuiltIn method)

 	get_library() (robot.running.namespace.KeywordStore method)

 	get_library_information() (robot.libraries.Remote.XmlRpcRemoteClient method)

 	get_library_instance() (robot.libraries.BuiltIn.BuiltIn method)

 	(robot.running.namespace.Namespace method)

 	get_library_instances() (robot.running.namespace.Namespace method)

 	get_line() (robot.libraries.String.String method)

 	get_line_count() (robot.libraries.String.String method)

 	get_lines_containing_string() (robot.libraries.String.String method)

 	get_lines_matching_pattern() (robot.libraries.String.String method)

 	get_lines_matching_regexp() (robot.libraries.String.String method)

 	get_link() (robot.model.tagstatistics.TagStatLink method)

 	get_links() (robot.model.tagstatistics.TagStatInfo method)

 	get_match_count() (robot.libraries.Collections.Collections method)

 	get_matches() (robot.libraries.Collections.Collections method)

 	get_message() (robot.running.timeouts.KeywordTimeout method)

 	(robot.running.timeouts.TestTimeout method)

 	get_model() (in module robot.parsing.parser.parser)

 	get_modified_time() (robot.libraries.OperatingSystem.OperatingSystem method)

 	get_name() (robot.output.pyloggingconf.RobotHandler method)

 	get_process_id() (robot.libraries.Process.Process method)

 	get_process_object() (robot.libraries.Process.Process method)

 	get_process_result() (robot.libraries.Process.Process method)

 	get_rebot_settings() (robot.conf.settings.RobotSettings method)

 	get_regexp_matches() (robot.libraries.String.String method)

 	get_resource_model() (in module robot.parsing.parser.parser)

 	get_resource_tokens() (in module robot.parsing.lexer.lexer)

 	get_runner() (robot.running.namespace.KeywordStore method)

 	(robot.running.namespace.Namespace method)

 	get_selection_from_user() (in module robot.libraries.Dialogs)

 	get_selections_from_user() (in module robot.libraries.Dialogs)

 	get_shortdoc_from_html() (robot.libdocpkg.htmlutils.HtmlToText method)

 	get_slice_from_list() (robot.libraries.Collections.Collections method)

 	get_socket() (robot.libraries.Telnet.TelnetConnection method)

 	get_stat() (robot.model.tagstatistics.TagStatInfo method)

 	get_substring() (robot.libraries.String.String method)

 	get_system_encoding() (in module robot.utils.encodingsniffer)

 	get_time() (robot.libraries.BuiltIn.BuiltIn method)

 	get_token() (robot.parsing.model.statements.Arguments method)

 	(robot.parsing.model.statements.Comment method)

 	(robot.parsing.model.statements.DefaultTags method)

 	(robot.parsing.model.statements.Documentation method)

 	(robot.parsing.model.statements.DocumentationOrMetadata method)

 	(robot.parsing.model.statements.ElseHeader method)

 	(robot.parsing.model.statements.ElseIfHeader method)

 	(robot.parsing.model.statements.EmptyLine method)

 	(robot.parsing.model.statements.End method)

 	(robot.parsing.model.statements.Error method)

 	(robot.parsing.model.statements.Fixture method)

 	(robot.parsing.model.statements.ForHeader method)

 	(robot.parsing.model.statements.ForceTags method)

 	(robot.parsing.model.statements.IfHeader method)

 	(robot.parsing.model.statements.KeywordCall method)

 	(robot.parsing.model.statements.KeywordName method)

 	(robot.parsing.model.statements.LibraryImport method)

 	(robot.parsing.model.statements.Metadata method)

 	(robot.parsing.model.statements.MultiValue method)

 	(robot.parsing.model.statements.ResourceImport method)

 	(robot.parsing.model.statements.Return method)

 	(robot.parsing.model.statements.SectionHeader method)

 	(robot.parsing.model.statements.Setup method)

 	(robot.parsing.model.statements.SingleValue method)

 	(robot.parsing.model.statements.Statement method)

 	(robot.parsing.model.statements.SuiteSetup method)

 	(robot.parsing.model.statements.SuiteTeardown method)

 	(robot.parsing.model.statements.Tags method)

 	(robot.parsing.model.statements.Teardown method)

 	(robot.parsing.model.statements.Template method)

 	(robot.parsing.model.statements.TemplateArguments method)

 	(robot.parsing.model.statements.TestCaseName method)

 	(robot.parsing.model.statements.TestSetup method)

 	(robot.parsing.model.statements.TestTeardown method)

 	(robot.parsing.model.statements.TestTemplate method)

 	(robot.parsing.model.statements.TestTimeout method)

 	(robot.parsing.model.statements.Timeout method)

 	(robot.parsing.model.statements.Variable method)

 	(robot.parsing.model.statements.VariablesImport method)

 	get_tokens() (in module robot.parsing.lexer.lexer)

 	(robot.parsing.lexer.lexer.Lexer method)

 	(robot.parsing.model.statements.Arguments method)

 	(robot.parsing.model.statements.Comment method)

 	(robot.parsing.model.statements.DefaultTags method)

 	(robot.parsing.model.statements.Documentation method)

 	(robot.parsing.model.statements.DocumentationOrMetadata method)

 	(robot.parsing.model.statements.ElseHeader method)

 	(robot.parsing.model.statements.ElseIfHeader method)

 	(robot.parsing.model.statements.EmptyLine method)

 	(robot.parsing.model.statements.End method)

 	(robot.parsing.model.statements.Error method)

 	(robot.parsing.model.statements.Fixture method)

 	(robot.parsing.model.statements.ForHeader method)

 	(robot.parsing.model.statements.ForceTags method)

 	(robot.parsing.model.statements.IfHeader method)

 	(robot.parsing.model.statements.KeywordCall method)

 	(robot.parsing.model.statements.KeywordName method)

 	(robot.parsing.model.statements.LibraryImport method)

 	(robot.parsing.model.statements.Metadata method)

 	(robot.parsing.model.statements.MultiValue method)

 	(robot.parsing.model.statements.ResourceImport method)

 	(robot.parsing.model.statements.Return method)

 	(robot.parsing.model.statements.SectionHeader method)

 	(robot.parsing.model.statements.Setup method)

 	(robot.parsing.model.statements.SingleValue method)

 	(robot.parsing.model.statements.Statement method)

 	(robot.parsing.model.statements.SuiteSetup method)

 	(robot.parsing.model.statements.SuiteTeardown method)

 	(robot.parsing.model.statements.Tags method)

 	(robot.parsing.model.statements.Teardown method)

 	(robot.parsing.model.statements.Template method)

 	(robot.parsing.model.statements.TemplateArguments method)

 	(robot.parsing.model.statements.TestCaseName method)

 	(robot.parsing.model.statements.TestSetup method)

 	(robot.parsing.model.statements.TestTeardown method)

 	(robot.parsing.model.statements.TestTemplate method)

 	(robot.parsing.model.statements.TestTimeout method)

 	(robot.parsing.model.statements.Timeout method)

 	(robot.parsing.model.statements.Variable method)

 	(robot.parsing.model.statements.VariablesImport method)

 	
 	get_value() (robot.parsing.model.statements.Arguments method)

 	(robot.parsing.model.statements.Comment method)

 	(robot.parsing.model.statements.DefaultTags method)

 	(robot.parsing.model.statements.Documentation method)

 	(robot.parsing.model.statements.DocumentationOrMetadata method)

 	(robot.parsing.model.statements.ElseHeader method)

 	(robot.parsing.model.statements.ElseIfHeader method)

 	(robot.parsing.model.statements.EmptyLine method)

 	(robot.parsing.model.statements.End method)

 	(robot.parsing.model.statements.Error method)

 	(robot.parsing.model.statements.Fixture method)

 	(robot.parsing.model.statements.ForHeader method)

 	(robot.parsing.model.statements.ForceTags method)

 	(robot.parsing.model.statements.IfHeader method)

 	(robot.parsing.model.statements.KeywordCall method)

 	(robot.parsing.model.statements.KeywordName method)

 	(robot.parsing.model.statements.LibraryImport method)

 	(robot.parsing.model.statements.Metadata method)

 	(robot.parsing.model.statements.MultiValue method)

 	(robot.parsing.model.statements.ResourceImport method)

 	(robot.parsing.model.statements.Return method)

 	(robot.parsing.model.statements.SectionHeader method)

 	(robot.parsing.model.statements.Setup method)

 	(robot.parsing.model.statements.SingleValue method)

 	(robot.parsing.model.statements.Statement method)

 	(robot.parsing.model.statements.SuiteSetup method)

 	(robot.parsing.model.statements.SuiteTeardown method)

 	(robot.parsing.model.statements.Tags method)

 	(robot.parsing.model.statements.Teardown method)

 	(robot.parsing.model.statements.Template method)

 	(robot.parsing.model.statements.TemplateArguments method)

 	(robot.parsing.model.statements.TestCaseName method)

 	(robot.parsing.model.statements.TestSetup method)

 	(robot.parsing.model.statements.TestTeardown method)

 	(robot.parsing.model.statements.TestTemplate method)

 	(robot.parsing.model.statements.TestTimeout method)

 	(robot.parsing.model.statements.Timeout method)

 	(robot.parsing.model.statements.Variable method)

 	(robot.parsing.model.statements.VariablesImport method)

 	get_value_from_user() (in module robot.libraries.Dialogs)

 	get_values() (robot.parsing.model.statements.Arguments method)

 	(robot.parsing.model.statements.Comment method)

 	(robot.parsing.model.statements.DefaultTags method)

 	(robot.parsing.model.statements.Documentation method)

 	(robot.parsing.model.statements.DocumentationOrMetadata method)

 	(robot.parsing.model.statements.ElseHeader method)

 	(robot.parsing.model.statements.ElseIfHeader method)

 	(robot.parsing.model.statements.EmptyLine method)

 	(robot.parsing.model.statements.End method)

 	(robot.parsing.model.statements.Error method)

 	(robot.parsing.model.statements.Fixture method)

 	(robot.parsing.model.statements.ForHeader method)

 	(robot.parsing.model.statements.ForceTags method)

 	(robot.parsing.model.statements.IfHeader method)

 	(robot.parsing.model.statements.KeywordCall method)

 	(robot.parsing.model.statements.KeywordName method)

 	(robot.parsing.model.statements.LibraryImport method)

 	(robot.parsing.model.statements.Metadata method)

 	(robot.parsing.model.statements.MultiValue method)

 	(robot.parsing.model.statements.ResourceImport method)

 	(robot.parsing.model.statements.Return method)

 	(robot.parsing.model.statements.SectionHeader method)

 	(robot.parsing.model.statements.Setup method)

 	(robot.parsing.model.statements.SingleValue method)

 	(robot.parsing.model.statements.Statement method)

 	(robot.parsing.model.statements.SuiteSetup method)

 	(robot.parsing.model.statements.SuiteTeardown method)

 	(robot.parsing.model.statements.Tags method)

 	(robot.parsing.model.statements.Teardown method)

 	(robot.parsing.model.statements.Template method)

 	(robot.parsing.model.statements.TemplateArguments method)

 	(robot.parsing.model.statements.TestCaseName method)

 	(robot.parsing.model.statements.TestSetup method)

 	(robot.parsing.model.statements.TestTeardown method)

 	(robot.parsing.model.statements.TestTemplate method)

 	(robot.parsing.model.statements.TestTimeout method)

 	(robot.parsing.model.statements.Timeout method)

 	(robot.parsing.model.statements.Variable method)

 	(robot.parsing.model.statements.VariablesImport method)

 	get_variable_value() (robot.libraries.BuiltIn.BuiltIn method)

 	get_variables() (robot.libraries.BuiltIn.BuiltIn method)

 	get_version() (in module robot.version)

 	getboolean() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	getdouble (robot.libraries.dialogs_py.InputDialog attribute)

 	(robot.libraries.dialogs_py.MessageDialog attribute)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog attribute)

 	(robot.libraries.dialogs_py.PassFailDialog attribute)

 	(robot.libraries.dialogs_py.SelectionDialog attribute)

 	getint (robot.libraries.dialogs_py.InputDialog attribute)

 	(robot.libraries.dialogs_py.MessageDialog attribute)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog attribute)

 	(robot.libraries.dialogs_py.PassFailDialog attribute)

 	(robot.libraries.dialogs_py.SelectionDialog attribute)

 	GetKeywordArguments (class in robot.running.dynamicmethods)

 	GetKeywordDocumentation (class in robot.running.dynamicmethods)

 	GetKeywordNames (class in robot.running.dynamicmethods)

 	GetKeywordSource (class in robot.running.dynamicmethods)

 	GetKeywordTags (class in robot.running.dynamicmethods)

 	GetKeywordTypes (class in robot.running.dynamicmethods)

 	getparser() (robot.libraries.Remote.TimeoutHTTPSTransport method)

 	(robot.libraries.Remote.TimeoutHTTPTransport method)

 	getvar() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	glob_escape() (in module robot.utils.escaping)

 	GlobalScope (class in robot.running.libraryscopes)

 	GlobalVariables (class in robot.variables.scopes)

 	grab_current() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	grab_release() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	grab_set() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	grab_set_global() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	grab_status() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	green() (robot.output.console.highlighting.AnsiHighlighter method)

 	(robot.output.console.highlighting.DosHighlighter method)

 	(robot.output.console.highlighting.NoHighlighting method)

 	grep_file() (robot.libraries.OperatingSystem.OperatingSystem method)

 	grid() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	grid_bbox() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	grid_columnconfigure() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	grid_location() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	grid_propagate() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	grid_rowconfigure() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	grid_size() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	grid_slaves() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	group() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

H

 	
 	handle() (robot.output.pyloggingconf.RobotHandler method)

 	(robot.running.arguments.argumentresolver.DictToKwargs method)

 	handle_imports() (robot.running.namespace.Namespace method)

 	handle_suite_teardown_failures() (robot.result.executionresult.CombinedResult method)

 	(robot.result.executionresult.Result method)

 	(robot.result.model.TestSuite method)

 	handleError() (robot.output.pyloggingconf.RobotHandler method)

 	Handler() (in module robot.running.handlers)

 	HandlerExecutionFailed

 	HandlerStore (class in robot.running.handlerstore)

 	handles() (robot.htmldata.htmlfilewriter.CssFileWriter method)

 	(robot.htmldata.htmlfilewriter.GeneratorWriter method)

 	(robot.htmldata.htmlfilewriter.JsFileWriter method)

 	(robot.htmldata.htmlfilewriter.LineWriter method)

 	(robot.htmldata.htmlfilewriter.ModelWriter method)

 	(robot.htmldata.jsonwriter.DictDumper method)

 	(robot.htmldata.jsonwriter.IntegerDumper method)

 	(robot.htmldata.jsonwriter.MappingDumper method)

 	(robot.htmldata.jsonwriter.NoneDumper method)

 	(robot.htmldata.jsonwriter.StringDumper method)

 	(robot.htmldata.jsonwriter.TupleListDumper method)

 	(robot.libdocpkg.consoleviewer.ConsoleViewer class method)

 	(robot.libdocpkg.htmlwriter.LibdocModelWriter method)

 	(robot.parsing.lexer.blocklexers.BlockLexer method)

 	(robot.parsing.lexer.blocklexers.CommentSectionLexer method)

 	(robot.parsing.lexer.blocklexers.ErrorSectionLexer method)

 	(robot.parsing.lexer.blocklexers.FileLexer method)

 	(robot.parsing.lexer.blocklexers.ForLexer method)

 	(robot.parsing.lexer.blocklexers.IfLexer method)

 	(robot.parsing.lexer.blocklexers.ImplicitCommentSectionLexer method)

 	(robot.parsing.lexer.blocklexers.KeywordLexer method)

 	(robot.parsing.lexer.blocklexers.KeywordSectionLexer method)

 	(robot.parsing.lexer.blocklexers.NestedBlockLexer method)

 	(robot.parsing.lexer.blocklexers.SectionLexer method)

 	(robot.parsing.lexer.blocklexers.SettingSectionLexer method)

 	(robot.parsing.lexer.blocklexers.TestCaseLexer method)

 	(robot.parsing.lexer.blocklexers.TestCaseSectionLexer method)

 	(robot.parsing.lexer.blocklexers.TestOrKeywordLexer method)

 	(robot.parsing.lexer.blocklexers.VariableSectionLexer method)

 	(robot.parsing.lexer.statementlexers.CommentLexer method)

 	(robot.parsing.lexer.statementlexers.CommentSectionHeaderLexer method)

 	(robot.parsing.lexer.statementlexers.ElseHeaderLexer method)

 	(robot.parsing.lexer.statementlexers.ElseIfHeaderLexer method)

 	(robot.parsing.lexer.statementlexers.EndLexer method)

 	(robot.parsing.lexer.statementlexers.ErrorSectionHeaderLexer method)

 	(robot.parsing.lexer.statementlexers.ForHeaderLexer method)

 	(robot.parsing.lexer.statementlexers.IfHeaderLexer method)

 	(robot.parsing.lexer.statementlexers.KeywordCallLexer method)

 	(robot.parsing.lexer.statementlexers.KeywordSectionHeaderLexer method)

 	(robot.parsing.lexer.statementlexers.Lexer method)

 	(robot.parsing.lexer.statementlexers.SectionHeaderLexer method)

 	(robot.parsing.lexer.statementlexers.SettingLexer method)

 	(robot.parsing.lexer.statementlexers.SettingSectionHeaderLexer method)

 	(robot.parsing.lexer.statementlexers.StatementLexer method)

 	(robot.parsing.lexer.statementlexers.TestCaseSectionHeaderLexer method)

 	(robot.parsing.lexer.statementlexers.TestOrKeywordSettingLexer method)

 	(robot.parsing.lexer.statementlexers.VariableLexer method)

 	(robot.parsing.lexer.statementlexers.VariableSectionHeaderLexer method)

 	(robot.parsing.parser.blockparsers.BlockParser method)

 	(robot.parsing.parser.blockparsers.ForParser method)

 	(robot.parsing.parser.blockparsers.IfParser method)

 	(robot.parsing.parser.blockparsers.KeywordParser method)

 	(robot.parsing.parser.blockparsers.NestedBlockParser method)

 	(robot.parsing.parser.blockparsers.OrElseParser method)

 	(robot.parsing.parser.blockparsers.Parser method)

 	(robot.parsing.parser.blockparsers.TestCaseParser method)

 	(robot.parsing.parser.fileparser.CommentSectionParser method)

 	(robot.parsing.parser.fileparser.FileParser method)

 	(robot.parsing.parser.fileparser.ImplicitCommentSectionParser method)

 	(robot.parsing.parser.fileparser.KeywordSectionParser method)

 	(robot.parsing.parser.fileparser.SectionParser method)

 	(robot.parsing.parser.fileparser.SettingSectionParser method)

 	(robot.parsing.parser.fileparser.TestCaseSectionParser method)

 	(robot.parsing.parser.fileparser.VariableSectionParser method)

 	(robot.reporting.logreportwriters.RobotModelWriter method)

 	(robot.running.arguments.typeconverters.BooleanConverter class method)

 	(robot.running.arguments.typeconverters.ByteArrayConverter class method)

 	(robot.running.arguments.typeconverters.BytesConverter class method)

 	(robot.running.arguments.typeconverters.CombinedConverter class method)

 	(robot.running.arguments.typeconverters.DateConverter class method)

 	(robot.running.arguments.typeconverters.DateTimeConverter class method)

 	(robot.running.arguments.typeconverters.DecimalConverter class method)

 	(robot.running.arguments.typeconverters.DictionaryConverter class method)

 	(robot.running.arguments.typeconverters.EnumConverter class method)

 	(robot.running.arguments.typeconverters.FloatConverter class method)

 	(robot.running.arguments.typeconverters.FrozenSetConverter class method)

 	(robot.running.arguments.typeconverters.IntegerConverter class method)

 	(robot.running.arguments.typeconverters.ListConverter class method)

 	(robot.running.arguments.typeconverters.NoneConverter class method)

 	(robot.running.arguments.typeconverters.SetConverter class method)

 	(robot.running.arguments.typeconverters.StringConverter class method)

 	(robot.running.arguments.typeconverters.TimeDeltaConverter class method)

 	(robot.running.arguments.typeconverters.TupleConverter class method)

 	(robot.running.arguments.typeconverters.TypeConverter class method)

 	(robot.testdoc.TestdocModelWriter method)

 	(robot.utils.htmlformatters.HeaderFormatter method)

 	(robot.utils.htmlformatters.LineFormatter method)

 	(robot.utils.htmlformatters.ListFormatter method)

 	(robot.utils.htmlformatters.ParagraphFormatter method)

 	(robot.utils.htmlformatters.PreformattedFormatter method)

 	(robot.utils.htmlformatters.RulerFormatter method)

 	(robot.utils.htmlformatters.TableFormatter method)

 	(robot.utils.importer.ByPathImporter method)

 	(robot.utils.importer.DottedImporter method)

 	(robot.utils.importer.NonDottedImporter method)

 	
 	handles_types (robot.parsing.model.statements.Arguments attribute)

 	(robot.parsing.model.statements.Comment attribute)

 	(robot.parsing.model.statements.DefaultTags attribute)

 	(robot.parsing.model.statements.Documentation attribute)

 	(robot.parsing.model.statements.DocumentationOrMetadata attribute)

 	(robot.parsing.model.statements.ElseHeader attribute)

 	(robot.parsing.model.statements.ElseIfHeader attribute)

 	(robot.parsing.model.statements.EmptyLine attribute)

 	(robot.parsing.model.statements.End attribute)

 	(robot.parsing.model.statements.Error attribute)

 	(robot.parsing.model.statements.Fixture attribute)

 	(robot.parsing.model.statements.ForHeader attribute)

 	(robot.parsing.model.statements.ForceTags attribute)

 	(robot.parsing.model.statements.IfHeader attribute)

 	(robot.parsing.model.statements.KeywordCall attribute)

 	(robot.parsing.model.statements.KeywordName attribute)

 	(robot.parsing.model.statements.LibraryImport attribute)

 	(robot.parsing.model.statements.Metadata attribute)

 	(robot.parsing.model.statements.MultiValue attribute)

 	(robot.parsing.model.statements.ResourceImport attribute)

 	(robot.parsing.model.statements.Return attribute)

 	(robot.parsing.model.statements.SectionHeader attribute)

 	(robot.parsing.model.statements.Setup attribute)

 	(robot.parsing.model.statements.SingleValue attribute)

 	(robot.parsing.model.statements.Statement attribute)

 	(robot.parsing.model.statements.SuiteSetup attribute)

 	(robot.parsing.model.statements.SuiteTeardown attribute)

 	(robot.parsing.model.statements.Tags attribute)

 	(robot.parsing.model.statements.Teardown attribute)

 	(robot.parsing.model.statements.Template attribute)

 	(robot.parsing.model.statements.TemplateArguments attribute)

 	(robot.parsing.model.statements.TestCaseName attribute)

 	(robot.parsing.model.statements.TestSetup attribute)

 	(robot.parsing.model.statements.TestTeardown attribute)

 	(robot.parsing.model.statements.TestTemplate attribute)

 	(robot.parsing.model.statements.TestTimeout attribute)

 	(robot.parsing.model.statements.Timeout attribute)

 	(robot.parsing.model.statements.Variable attribute)

 	(robot.parsing.model.statements.VariablesImport attribute)

 	has_key() (robot.utils.dotdict.DotDict method)

 	has_teardown (robot.model.keyword.Keyword attribute)

 	(robot.result.model.Keyword attribute)

 	(robot.running.model.Keyword attribute)

 	has_tests (robot.model.testsuite.TestSuite attribute)

 	(robot.result.model.TestSuite attribute)

 	(robot.running.model.TestSuite attribute)

 	HEADER_TOKENS (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	HeaderFormatter (class in robot.utils.htmlformatters)

 	highlight() (robot.output.console.highlighting.HighlightingStream method)

 	Highlighter() (in module robot.output.console.highlighting)

 	HighlightingStream (class in robot.output.console.highlighting)

 	html (robot.model.message.Message attribute)

 	(robot.output.loggerhelper.Message attribute)

 	(robot.result.model.Message attribute)

 	html() (robot.libdocpkg.htmlutils.DocFormatter method)

 	(robot.reporting.jsbuildingcontext.JsBuildingContext method)

 	html_chars (robot.libdocpkg.htmlutils.HtmlToText attribute)

 	html_escape() (in module robot.utils.markuputils)

 	html_format() (in module robot.utils.markuputils)

 	html_message (robot.model.message.Message attribute)

 	(robot.output.loggerhelper.Message attribute)

 	(robot.result.model.Message attribute)

 	html_tags (robot.libdocpkg.htmlutils.HtmlToText attribute)

 	html_to_plain_text() (robot.libdocpkg.htmlutils.HtmlToText method)

 	HtmlFileWriter (class in robot.htmldata.htmlfilewriter)

 	HtmlFormatter (class in robot.utils.htmlformatters)

 	HtmlTemplate (class in robot.htmldata.normaltemplate)

 	HtmlToText (class in robot.libdocpkg.htmlutils)

 	HtmlWriter (class in robot.utils.markupwriters)

I

 	
 	iconbitmap() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	iconify() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	iconmask() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	iconname() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	iconposition() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	iconwindow() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	id (robot.model.body.BodyItem attribute)

 	(robot.model.control.For attribute)

 	(robot.model.control.If attribute)

 	(robot.model.control.IfBranch attribute)

 	(robot.model.keyword.Keyword attribute)

 	(robot.model.message.Message attribute)

 	(robot.model.stats.SuiteStat attribute)

 	(robot.model.testcase.TestCase attribute)

 	(robot.model.testsuite.TestSuite attribute)

 	(robot.output.loggerhelper.Message attribute)

 	(robot.result.executionerrors.ExecutionErrors attribute)

 	(robot.result.model.For attribute)

 	(robot.result.model.ForIteration attribute)

 	(robot.result.model.If attribute)

 	(robot.result.model.IfBranch attribute)

 	(robot.result.model.Keyword attribute)

 	(robot.result.model.Message attribute)

 	(robot.result.model.TestCase attribute)

 	(robot.result.model.TestSuite attribute)

 	(robot.running.model.For attribute)

 	(robot.running.model.If attribute)

 	(robot.running.model.IfBranch attribute)

 	(robot.running.model.Keyword attribute)

 	(robot.running.model.TestCase attribute)

 	(robot.running.model.TestSuite attribute)

 	identifiers (robot.variables.finders.EmptyFinder attribute)

 	(robot.variables.finders.EnvironmentFinder attribute)

 	(robot.variables.finders.ExtendedFinder attribute)

 	(robot.variables.finders.InlinePythonFinder attribute)

 	(robot.variables.finders.NumberFinder attribute)

 	(robot.variables.finders.StoredFinder attribute)

 	If (class in robot.model.control)

 	(class in robot.parsing.model.blocks)

 	(class in robot.result.model)

 	(class in robot.running.model)

 	IF (robot.model.body.BodyItem attribute)

 	(robot.model.control.For attribute)

 	(robot.model.control.If attribute)

 	(robot.model.control.IfBranch attribute)

 	(robot.model.keyword.Keyword attribute)

 	(robot.model.message.Message attribute)

 	(robot.output.loggerhelper.Message attribute)

 	(robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	(robot.result.model.For attribute)

 	(robot.result.model.ForIteration attribute)

 	(robot.result.model.If attribute)

 	(robot.result.model.IfBranch attribute)

 	(robot.result.model.Keyword attribute)

 	(robot.result.model.Message attribute)

 	(robot.running.model.For attribute)

 	(robot.running.model.If attribute)

 	(robot.running.model.IfBranch attribute)

 	(robot.running.model.Keyword attribute)

 	if_branch_class (robot.model.body.IfBranches attribute)

 	(robot.result.model.IfBranches attribute)

 	(robot.running.model.IfBranches attribute)

 	if_class (robot.model.body.Body attribute)

 	(robot.model.body.IfBranches attribute)

 	(robot.result.model.Body attribute)

 	(robot.result.model.ForIterations attribute)

 	(robot.result.model.IfBranches attribute)

 	(robot.running.model.Body attribute)

 	(robot.running.model.IfBranches attribute)

 	IF_ELSE_ROOT (robot.model.body.BodyItem attribute)

 	(robot.model.control.For attribute)

 	(robot.model.control.If attribute)

 	(robot.model.control.IfBranch attribute)

 	(robot.model.keyword.Keyword attribute)

 	(robot.model.message.Message attribute)

 	(robot.output.loggerhelper.Message attribute)

 	(robot.result.model.For attribute)

 	(robot.result.model.ForIteration attribute)

 	(robot.result.model.If attribute)

 	(robot.result.model.IfBranch attribute)

 	(robot.result.model.Keyword attribute)

 	(robot.result.model.Message attribute)

 	(robot.running.model.For attribute)

 	(robot.running.model.If attribute)

 	(robot.running.model.IfBranch attribute)

 	(robot.running.model.Keyword attribute)

 	IfBranch (class in robot.model.control)

 	(class in robot.result.model)

 	(class in robot.running.model)

 	IfBranches (class in robot.model.body)

 	(class in robot.result.model)

 	(class in robot.running.model)

 	IfBranchHandler (class in robot.result.xmlelementhandlers)

 	IfBuilder (class in robot.running.builder.transformers)

 	IfHandler (class in robot.result.xmlelementhandlers)

 	IfHeader (class in robot.parsing.model.statements)

 	IfHeaderLexer (class in robot.parsing.lexer.statementlexers)

 	IfLexer (class in robot.parsing.lexer.blocklexers)

 	IfParser (class in robot.parsing.parser.blockparsers)

 	IfRunner (class in robot.running.bodyrunner)

 	ignored_dirs (robot.parsing.suitestructure.SuiteStructureBuilder attribute)

 	ignored_prefixes (robot.parsing.suitestructure.SuiteStructureBuilder attribute)

 	imag (robot.reporting.stringcache.StringIndex attribute)

 	image_names() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	image_types() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	ImplicitCommentSectionLexer (class in robot.parsing.lexer.blocklexers)

 	ImplicitCommentSectionParser (class in robot.parsing.parser.fileparser)

 	Import (class in robot.running.model)

 	import_() (robot.utils.importer.ByPathImporter method)

 	(robot.utils.importer.DottedImporter method)

 	(robot.utils.importer.NonDottedImporter method)

 	import_class_or_module() (robot.utils.importer.Importer method)

 	import_class_or_module_by_path() (robot.utils.importer.Importer method)

 	import_library() (robot.libraries.BuiltIn.BuiltIn method)

 	(robot.running.importer.Importer method)

 	(robot.running.namespace.Namespace method)

 	import_listeners() (robot.output.listeners.ListenerProxy class method)

 	
 	import_resource() (robot.libraries.BuiltIn.BuiltIn method)

 	(robot.running.importer.Importer method)

 	(robot.running.namespace.Namespace method)

 	import_variables() (robot.libraries.BuiltIn.BuiltIn method)

 	(robot.running.namespace.Namespace method)

 	(robot.variables.filesetter.PythonImporter method)

 	(robot.variables.filesetter.YamlImporter method)

 	ImportCache (class in robot.running.importer)

 	imported() (robot.output.listeners.LibraryListeners method)

 	(robot.output.listeners.Listeners method)

 	(robot.output.logger.Logger method)

 	Importer (class in robot.running.importer)

 	(class in robot.utils.importer)

 	Imports (class in robot.running.model)

 	imports (robot.running.model.ResourceFile attribute)

 	include_suites (robot.model.filter.Filter attribute)

 	include_tags (robot.model.filter.Filter attribute)

 	include_tests (robot.model.filter.Filter attribute)

 	index() (robot.model.body.Body method)

 	(robot.model.body.IfBranches method)

 	(robot.model.itemlist.ItemList method)

 	(robot.model.keyword.Keywords method)

 	(robot.model.message.Messages method)

 	(robot.model.testcase.TestCases method)

 	(robot.model.testsuite.TestSuites method)

 	(robot.result.model.Body method)

 	(robot.result.model.ForIterations method)

 	(robot.result.model.IfBranches method)

 	(robot.running.model.Body method)

 	(robot.running.model.IfBranches method)

 	(robot.running.model.Imports method)

 	info (robot.model.stats.CombinedTagStat attribute)

 	(robot.model.stats.TagStat attribute)

 	info() (in module robot.api.logger)

 	(in module robot.output.librarylogger)

 	(robot.output.console.verbose.VerboseWriter method)

 	(robot.output.filelogger.FileLogger method)

 	(robot.output.logger.Logger method)

 	(robot.output.loggerhelper.AbstractLogger method)

 	(robot.output.output.Output method)

 	(robot.utils.application.DefaultLogger method)

 	(robot.utils.importer.NoLogger method)

 	Information

 	InitFileContext (class in robot.parsing.lexer.context)

 	InitFileSections (class in robot.parsing.lexer.sections)

 	InitFileSettings (class in robot.parsing.lexer.settings)

 	InitHandler() (in module robot.running.handlers)

 	inits (robot.libdocpkg.model.LibraryDoc attribute)

 	InlinePythonFinder (class in robot.variables.finders)

 	inplace() (robot.tidy.Tidy method)

 	input() (robot.parsing.lexer.blocklexers.BlockLexer method)

 	(robot.parsing.lexer.blocklexers.CommentSectionLexer method)

 	(robot.parsing.lexer.blocklexers.ErrorSectionLexer method)

 	(robot.parsing.lexer.blocklexers.FileLexer method)

 	(robot.parsing.lexer.blocklexers.ForLexer method)

 	(robot.parsing.lexer.blocklexers.IfLexer method)

 	(robot.parsing.lexer.blocklexers.ImplicitCommentSectionLexer method)

 	(robot.parsing.lexer.blocklexers.KeywordLexer method)

 	(robot.parsing.lexer.blocklexers.KeywordSectionLexer method)

 	(robot.parsing.lexer.blocklexers.NestedBlockLexer method)

 	(robot.parsing.lexer.blocklexers.SectionLexer method)

 	(robot.parsing.lexer.blocklexers.SettingSectionLexer method)

 	(robot.parsing.lexer.blocklexers.TestCaseLexer method)

 	(robot.parsing.lexer.blocklexers.TestCaseSectionLexer method)

 	(robot.parsing.lexer.blocklexers.TestOrKeywordLexer method)

 	(robot.parsing.lexer.blocklexers.VariableSectionLexer method)

 	(robot.parsing.lexer.lexer.Lexer method)

 	(robot.parsing.lexer.statementlexers.CommentLexer method)

 	(robot.parsing.lexer.statementlexers.CommentSectionHeaderLexer method)

 	(robot.parsing.lexer.statementlexers.ElseHeaderLexer method)

 	(robot.parsing.lexer.statementlexers.ElseIfHeaderLexer method)

 	(robot.parsing.lexer.statementlexers.EndLexer method)

 	(robot.parsing.lexer.statementlexers.ErrorSectionHeaderLexer method)

 	(robot.parsing.lexer.statementlexers.ForHeaderLexer method)

 	(robot.parsing.lexer.statementlexers.IfHeaderLexer method)

 	(robot.parsing.lexer.statementlexers.KeywordCallLexer method)

 	(robot.parsing.lexer.statementlexers.KeywordSectionHeaderLexer method)

 	(robot.parsing.lexer.statementlexers.Lexer method)

 	(robot.parsing.lexer.statementlexers.SectionHeaderLexer method)

 	(robot.parsing.lexer.statementlexers.SettingLexer method)

 	(robot.parsing.lexer.statementlexers.SettingSectionHeaderLexer method)

 	(robot.parsing.lexer.statementlexers.StatementLexer method)

 	(robot.parsing.lexer.statementlexers.TestCaseSectionHeaderLexer method)

 	(robot.parsing.lexer.statementlexers.TestOrKeywordSettingLexer method)

 	(robot.parsing.lexer.statementlexers.VariableLexer method)

 	(robot.parsing.lexer.statementlexers.VariableSectionHeaderLexer method)

 	InputDialog (class in robot.libraries.dialogs_py)

 	insert() (robot.model.body.Body method)

 	(robot.model.body.IfBranches method)

 	(robot.model.itemlist.ItemList method)

 	(robot.model.keyword.Keywords method)

 	(robot.model.message.Messages method)

 	(robot.model.testcase.TestCases method)

 	(robot.model.testsuite.TestSuites method)

 	(robot.result.model.Body method)

 	(robot.result.model.ForIterations method)

 	(robot.result.model.IfBranches method)

 	(robot.running.model.Body method)

 	(robot.running.model.IfBranches method)

 	(robot.running.model.Imports method)

 	insert_into_list() (robot.libraries.Collections.Collections method)

 	IntegerConverter (class in robot.running.arguments.typeconverters)

 	IntegerDumper (class in robot.htmldata.jsonwriter)

 	interact() (robot.libraries.Telnet.TelnetConnection method)

 	INTERNAL_UPDATE_FREQUENCY (robot.libraries.Telnet.TelnetConnection attribute)

 	invalidate_import_caches() (in module robot.utils.importer)

 	is_assign() (in module robot.variables.search)

 	(robot.variables.search.VariableMatch method)

 	is_dict_assign() (in module robot.variables.search)

 	(robot.variables.search.VariableMatch method)

 	is_dict_var() (in module robot.variables)

 	is_dict_variable() (in module robot.variables.search)

 	(robot.variables.search.VariableMatch method)

 	is_directory (robot.parsing.suitestructure.SuiteStructure attribute)

 	is_global (robot.running.libraryscopes.GlobalScope attribute)

 	(robot.running.libraryscopes.TestCaseScope attribute)

 	(robot.running.libraryscopes.TestSuiteScope attribute)

 	is_list_assign() (in module robot.variables.search)

 	(robot.variables.search.VariableMatch method)

 	is_list_var() (in module robot.variables)

 	is_list_variable() (in module robot.variables.search)

 	(robot.variables.search.VariableMatch method)

 	is_process_running() (robot.libraries.Process.Process method)

 	is_scalar_assign() (in module robot.variables.search)

 	(robot.variables.search.VariableMatch method)

 	is_scalar_var() (in module robot.variables)

 	is_scalar_variable() (in module robot.variables.search)

 	(robot.variables.search.VariableMatch method)

 	is_var() (in module robot.variables)

 	is_variable() (in module robot.variables.search)

 	(robot.variables.search.VariableMatch method)

 	isatty() (in module robot.utils.compat)

 	IsLogged (class in robot.output.loggerhelper)

 	item_state() (robot.variables.search.VariableSearcher method)

 	ItemList (class in robot.model.itemlist)

 	items() (robot.model.metadata.Metadata method)

 	(robot.utils.dotdict.DotDict method)

 	(robot.utils.normalizing.NormalizedDict method)

 	(robot.variables.evaluation.EvaluationNamespace method)

 	iteritems() (robot.model.metadata.Metadata method)

 	(robot.utils.dotdict.DotDict method)

 	(robot.utils.normalizing.NormalizedDict method)

 	(robot.variables.evaluation.EvaluationNamespace method)

 	iterkeys() (robot.model.metadata.Metadata method)

 	(robot.utils.dotdict.DotDict method)

 	(robot.utils.normalizing.NormalizedDict method)

 	(robot.variables.evaluation.EvaluationNamespace method)

 	itervalues() (robot.model.metadata.Metadata method)

 	(robot.utils.dotdict.DotDict method)

 	(robot.utils.normalizing.NormalizedDict method)

 	(robot.variables.evaluation.EvaluationNamespace method)

J

 	
 	JavaArgumentParser (class in robot.running.arguments.argumentparser)

 	JavaCapturer (class in robot.running.outputcapture)

 	JavaDocBuilder (class in robot.libdocpkg.javabuilder)

 	JavaDocBuilder() (in module robot.libdocpkg.builder)

 	JavaErrorDetails (class in robot.utils.error)

 	join_command_line() (robot.libraries.Process.Process method)

 	join_path() (robot.libraries.OperatingSystem.OperatingSystem method)

 	join_paths() (robot.libraries.OperatingSystem.OperatingSystem method)

 	js_result (robot.reporting.resultwriter.Results attribute)

 	
 	JsBuildingContext (class in robot.reporting.jsbuildingcontext)

 	JsExecutionResult (class in robot.reporting.jsexecutionresult)

 	JsFileWriter (class in robot.htmldata.htmlfilewriter)

 	JsModelBuilder (class in robot.reporting.jsmodelbuilders)

 	JsonConverter (class in robot.testdoc)

 	JsonDocBuilder (class in robot.libdocpkg.jsonbuilder)

 	JsonDumper (class in robot.htmldata.jsonwriter)

 	JsonWriter (class in robot.htmldata.jsonwriter)

 	JsResultWriter (class in robot.reporting.jswriter)

K

 	
 	keep_in_dictionary() (robot.libraries.Collections.Collections method)

 	keys() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	(robot.model.metadata.Metadata method)

 	(robot.utils.dotdict.DotDict method)

 	(robot.utils.normalizing.NormalizedDict method)

 	(robot.variables.evaluation.EvaluationNamespace method)

 	Keyword (class in robot.model.keyword)

 	(class in robot.parsing.model.blocks)

 	(class in robot.result.model)

 	(class in robot.running.model)

 	KEYWORD (robot.model.body.BodyItem attribute)

 	(robot.model.control.For attribute)

 	(robot.model.control.If attribute)

 	(robot.model.control.IfBranch attribute)

 	(robot.model.keyword.Keyword attribute)

 	(robot.model.message.Message attribute)

 	(robot.output.loggerhelper.Message attribute)

 	(robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	keyword (robot.parsing.model.statements.KeywordCall attribute)

 	KEYWORD (robot.result.model.For attribute)

 	(robot.result.model.ForIteration attribute)

 	(robot.result.model.If attribute)

 	(robot.result.model.IfBranch attribute)

 	(robot.result.model.Keyword attribute)

 	(robot.result.model.Message attribute)

 	(robot.running.model.For attribute)

 	(robot.running.model.If attribute)

 	(robot.running.model.IfBranch attribute)

 	(robot.running.model.Keyword attribute)

 	keyword() (in module robot.api.deco)

 	(robot.parsing.lexer.sections.InitFileSections method)

 	(robot.parsing.lexer.sections.ResourceFileSections method)

 	(robot.parsing.lexer.sections.Sections method)

 	(robot.parsing.lexer.sections.TestCaseFileSections method)

 	keyword_class (robot.model.body.Body attribute)

 	(robot.model.body.IfBranches attribute)

 	(robot.result.model.Body attribute)

 	(robot.result.model.ForIterations attribute)

 	(robot.result.model.IfBranches attribute)

 	(robot.running.model.Body attribute)

 	(robot.running.model.IfBranches attribute)

 	keyword_context() (robot.parsing.lexer.context.FileContext method)

 	(robot.parsing.lexer.context.InitFileContext method)

 	(robot.parsing.lexer.context.ResourceFileContext method)

 	(robot.parsing.lexer.context.TestCaseFileContext method)

 	KEYWORD_HEADER (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	keyword_marker() (robot.output.console.verbose.VerboseWriter method)

 	keyword_markers (robot.parsing.lexer.sections.InitFileSections attribute)

 	(robot.parsing.lexer.sections.ResourceFileSections attribute)

 	(robot.parsing.lexer.sections.Sections attribute)

 	(robot.parsing.lexer.sections.TestCaseFileSections attribute)

 	
 	KEYWORD_NAME (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	keyword_section() (robot.parsing.lexer.context.FileContext method)

 	(robot.parsing.lexer.context.InitFileContext method)

 	(robot.parsing.lexer.context.ResourceFileContext method)

 	(robot.parsing.lexer.context.TestCaseFileContext method)

 	keyword_should_exist() (robot.libraries.BuiltIn.BuiltIn method)

 	keyword_timeout (robot.errors.TimeoutError attribute)

 	KeywordBuilder (class in robot.reporting.jsmodelbuilders)

 	(class in robot.running.builder.transformers)

 	KeywordCall (class in robot.parsing.model.statements)

 	KeywordCallLexer (class in robot.parsing.lexer.statementlexers)

 	KeywordCallTemplate (class in robot.running.arguments.argumentmapper)

 	KeywordContext (class in robot.parsing.lexer.context)

 	KeywordDoc (class in robot.libdocpkg.model)

 	KeywordDocBuilder (class in robot.libdocpkg.robotbuilder)

 	KeywordError

 	KeywordHandler (class in robot.result.xmlelementhandlers)

 	KeywordLexer (class in robot.parsing.lexer.blocklexers)

 	KeywordMarker (class in robot.output.console.verbose)

 	KeywordMatcher (class in robot.libdocpkg.consoleviewer)

 	KeywordName (class in robot.parsing.model.statements)

 	KeywordParser (class in robot.parsing.parser.blockparsers)

 	KeywordRecommendationFinder (class in robot.running.namespace)

 	KeywordRemover() (in module robot.result.keywordremover)

 	KeywordRunner (class in robot.running.bodyrunner)

 	Keywords (class in robot.model.keyword)

 	keywords (robot.libdocpkg.model.LibraryDoc attribute)

 	(robot.model.control.For attribute)

 	(robot.model.testcase.TestCase attribute)

 	(robot.model.testsuite.TestSuite attribute)

 	(robot.result.model.For attribute)

 	(robot.result.model.Keyword attribute)

 	(robot.result.model.TestCase attribute)

 	(robot.result.model.TestSuite attribute)

 	(robot.running.model.For attribute)

 	(robot.running.model.ResourceFile attribute)

 	(robot.running.model.TestCase attribute)

 	(robot.running.model.TestSuite attribute)

 	(robot.running.model.UserKeyword attribute)

 	KeywordSection (class in robot.parsing.model.blocks)

 	KeywordSectionHeaderLexer (class in robot.parsing.lexer.statementlexers)

 	KeywordSectionLexer (class in robot.parsing.lexer.blocklexers)

 	KeywordSectionParser (class in robot.parsing.parser.fileparser)

 	KeywordSettings (class in robot.parsing.lexer.settings)

 	KeywordStore (class in robot.running.namespace)

 	KeywordTimeout (class in robot.running.timeouts)

 	KILL_TIMEOUT (robot.libraries.Process.Process attribute)

 	kwname (robot.result.model.For attribute)

 	(robot.result.model.ForIteration attribute)

 	(robot.result.model.If attribute)

 	(robot.result.model.IfBranch attribute)

 	(robot.result.model.Keyword attribute)

 	(robot.result.modeldeprecation.DeprecatedAttributesMixin attribute)

L

 	
 	LastStatementFinder (class in robot.parsing.model.blocks)

 	length_should_be() (robot.libraries.BuiltIn.BuiltIn method)

 	level (robot.model.message.Message attribute)

 	(robot.output.loggerhelper.Message attribute)

 	(robot.result.model.Message attribute)

 	lex() (robot.parsing.lexer.blocklexers.BlockLexer method)

 	(robot.parsing.lexer.blocklexers.CommentSectionLexer method)

 	(robot.parsing.lexer.blocklexers.ErrorSectionLexer method)

 	(robot.parsing.lexer.blocklexers.FileLexer method)

 	(robot.parsing.lexer.blocklexers.ForLexer method)

 	(robot.parsing.lexer.blocklexers.IfLexer method)

 	(robot.parsing.lexer.blocklexers.ImplicitCommentSectionLexer method)

 	(robot.parsing.lexer.blocklexers.KeywordLexer method)

 	(robot.parsing.lexer.blocklexers.KeywordSectionLexer method)

 	(robot.parsing.lexer.blocklexers.NestedBlockLexer method)

 	(robot.parsing.lexer.blocklexers.SectionLexer method)

 	(robot.parsing.lexer.blocklexers.SettingSectionLexer method)

 	(robot.parsing.lexer.blocklexers.TestCaseLexer method)

 	(robot.parsing.lexer.blocklexers.TestCaseSectionLexer method)

 	(robot.parsing.lexer.blocklexers.TestOrKeywordLexer method)

 	(robot.parsing.lexer.blocklexers.VariableSectionLexer method)

 	(robot.parsing.lexer.settings.InitFileSettings method)

 	(robot.parsing.lexer.settings.KeywordSettings method)

 	(robot.parsing.lexer.settings.ResourceFileSettings method)

 	(robot.parsing.lexer.settings.Settings method)

 	(robot.parsing.lexer.settings.TestCaseFileSettings method)

 	(robot.parsing.lexer.settings.TestCaseSettings method)

 	(robot.parsing.lexer.statementlexers.CommentLexer method)

 	(robot.parsing.lexer.statementlexers.CommentSectionHeaderLexer method)

 	(robot.parsing.lexer.statementlexers.ElseHeaderLexer method)

 	(robot.parsing.lexer.statementlexers.ElseIfHeaderLexer method)

 	(robot.parsing.lexer.statementlexers.EndLexer method)

 	(robot.parsing.lexer.statementlexers.ErrorSectionHeaderLexer method)

 	(robot.parsing.lexer.statementlexers.ForHeaderLexer method)

 	(robot.parsing.lexer.statementlexers.IfHeaderLexer method)

 	(robot.parsing.lexer.statementlexers.KeywordCallLexer method)

 	(robot.parsing.lexer.statementlexers.KeywordSectionHeaderLexer method)

 	(robot.parsing.lexer.statementlexers.Lexer method)

 	(robot.parsing.lexer.statementlexers.SectionHeaderLexer method)

 	(robot.parsing.lexer.statementlexers.SettingLexer method)

 	(robot.parsing.lexer.statementlexers.SettingSectionHeaderLexer method)

 	(robot.parsing.lexer.statementlexers.StatementLexer method)

 	(robot.parsing.lexer.statementlexers.TestCaseSectionHeaderLexer method)

 	(robot.parsing.lexer.statementlexers.TestOrKeywordSettingLexer method)

 	(robot.parsing.lexer.statementlexers.VariableLexer method)

 	(robot.parsing.lexer.statementlexers.VariableSectionHeaderLexer method)

 	lex_invalid() (robot.parsing.lexer.sections.InitFileSections method)

 	(robot.parsing.lexer.sections.ResourceFileSections method)

 	(robot.parsing.lexer.sections.Sections method)

 	(robot.parsing.lexer.sections.TestCaseFileSections method)

 	lex_invalid_section() (robot.parsing.lexer.context.FileContext method)

 	(robot.parsing.lexer.context.InitFileContext method)

 	(robot.parsing.lexer.context.ResourceFileContext method)

 	(robot.parsing.lexer.context.TestCaseFileContext method)

 	lex_setting() (robot.parsing.lexer.context.FileContext method)

 	(robot.parsing.lexer.context.InitFileContext method)

 	(robot.parsing.lexer.context.KeywordContext method)

 	(robot.parsing.lexer.context.LexingContext method)

 	(robot.parsing.lexer.context.ResourceFileContext method)

 	(robot.parsing.lexer.context.TestCaseContext method)

 	(robot.parsing.lexer.context.TestCaseFileContext method)

 	Lexer (class in robot.parsing.lexer.lexer)

 	(class in robot.parsing.lexer.statementlexers)

 	lexer_classes() (robot.parsing.lexer.blocklexers.BlockLexer method)

 	(robot.parsing.lexer.blocklexers.CommentSectionLexer method)

 	(robot.parsing.lexer.blocklexers.ErrorSectionLexer method)

 	(robot.parsing.lexer.blocklexers.FileLexer method)

 	(robot.parsing.lexer.blocklexers.ForLexer method)

 	(robot.parsing.lexer.blocklexers.IfLexer method)

 	(robot.parsing.lexer.blocklexers.ImplicitCommentSectionLexer method)

 	(robot.parsing.lexer.blocklexers.KeywordLexer method)

 	(robot.parsing.lexer.blocklexers.KeywordSectionLexer method)

 	(robot.parsing.lexer.blocklexers.NestedBlockLexer method)

 	(robot.parsing.lexer.blocklexers.SectionLexer method)

 	(robot.parsing.lexer.blocklexers.SettingSectionLexer method)

 	(robot.parsing.lexer.blocklexers.TestCaseLexer method)

 	(robot.parsing.lexer.blocklexers.TestCaseSectionLexer method)

 	(robot.parsing.lexer.blocklexers.TestOrKeywordLexer method)

 	(robot.parsing.lexer.blocklexers.VariableSectionLexer method)

 	lexer_for() (robot.parsing.lexer.blocklexers.BlockLexer method)

 	(robot.parsing.lexer.blocklexers.CommentSectionLexer method)

 	(robot.parsing.lexer.blocklexers.ErrorSectionLexer method)

 	(robot.parsing.lexer.blocklexers.FileLexer method)

 	(robot.parsing.lexer.blocklexers.ForLexer method)

 	(robot.parsing.lexer.blocklexers.IfLexer method)

 	(robot.parsing.lexer.blocklexers.ImplicitCommentSectionLexer method)

 	(robot.parsing.lexer.blocklexers.KeywordLexer method)

 	(robot.parsing.lexer.blocklexers.KeywordSectionLexer method)

 	(robot.parsing.lexer.blocklexers.NestedBlockLexer method)

 	(robot.parsing.lexer.blocklexers.SectionLexer method)

 	(robot.parsing.lexer.blocklexers.SettingSectionLexer method)

 	(robot.parsing.lexer.blocklexers.TestCaseLexer method)

 	(robot.parsing.lexer.blocklexers.TestCaseSectionLexer method)

 	(robot.parsing.lexer.blocklexers.TestOrKeywordLexer method)

 	(robot.parsing.lexer.blocklexers.VariableSectionLexer method)

 	LexingContext (class in robot.parsing.lexer.context)

 	LibDoc (class in robot.libdoc)

 	libdoc() (in module robot.libdoc)

 	libdoc_cli() (in module robot.libdoc)

 	LibdocHtmlWriter (class in robot.libdocpkg.htmlwriter)

 	LibdocJsonWriter (class in robot.libdocpkg.jsonwriter)

 	LibdocModelWriter (class in robot.libdocpkg.htmlwriter)

 	LibdocOutput (class in robot.libdocpkg.output)

 	LibdocWriter() (in module robot.libdocpkg.writer)

 	LibdocXmlWriter (class in robot.libdocpkg.xmlwriter)

 	libname (robot.result.model.For attribute)

 	(robot.result.model.ForIteration attribute)

 	(robot.result.model.If attribute)

 	(robot.result.model.IfBranch attribute)

 	(robot.result.model.Keyword attribute)

 	(robot.result.modeldeprecation.DeprecatedAttributesMixin attribute)

 	(robot.running.librarykeywordrunner.EmbeddedArgumentsRunner attribute)

 	(robot.running.librarykeywordrunner.LibraryKeywordRunner attribute)

 	(robot.running.librarykeywordrunner.RunKeywordRunner attribute)

 	(robot.running.userkeywordrunner.EmbeddedArgumentsRunner attribute)

 	(robot.running.userkeywordrunner.UserKeywordRunner attribute)

 	libraries (robot.running.namespace.Namespace attribute)

 	LIBRARY (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	library (robot.running.handlers.EmbeddedArgumentsHandler attribute)

 	(robot.running.librarykeywordrunner.EmbeddedArgumentsRunner attribute)

 	(robot.running.librarykeywordrunner.LibraryKeywordRunner attribute)

 	(robot.running.librarykeywordrunner.RunKeywordRunner attribute)

 	library() (in module robot.api.deco)

 	(robot.running.model.Imports method)

 	LibraryDoc (class in robot.libdocpkg.model)

 	LibraryDocBuilder (class in robot.libdocpkg.robotbuilder)

 	LibraryDocumentation() (in module robot.libdocpkg.builder)

 	LibraryImport (class in robot.parsing.model.statements)

 	LibraryKeywordRunner (class in robot.running.librarykeywordrunner)

 	LibraryListenerMethods (class in robot.output.listenermethods)

 	LibraryListeners (class in robot.output.listeners)

 	LibraryScope() (in module robot.running.libraryscopes)

 	lift() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	line_sep() (robot.tidy.ArgumentValidator method)

 	LineFormatter (class in robot.utils.htmlformatters)

 	lineno (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	(robot.parsing.model.blocks.Block attribute)

 	(robot.parsing.model.blocks.CommentSection attribute)

 	(robot.parsing.model.blocks.File attribute)

 	(robot.parsing.model.blocks.For attribute)

 	(robot.parsing.model.blocks.If attribute)

 	(robot.parsing.model.blocks.Keyword attribute)

 	(robot.parsing.model.blocks.KeywordSection attribute)

 	(robot.parsing.model.blocks.Section attribute)

 	(robot.parsing.model.blocks.SettingSection attribute)

 	(robot.parsing.model.blocks.TestCase attribute)

 	(robot.parsing.model.blocks.TestCaseSection attribute)

 	(robot.parsing.model.blocks.VariableSection attribute)

 	(robot.parsing.model.statements.Arguments attribute)

 	(robot.parsing.model.statements.Comment attribute)

 	(robot.parsing.model.statements.DefaultTags attribute)

 	(robot.parsing.model.statements.Documentation attribute)

 	(robot.parsing.model.statements.DocumentationOrMetadata attribute)

 	(robot.parsing.model.statements.ElseHeader attribute)

 	(robot.parsing.model.statements.ElseIfHeader attribute)

 	(robot.parsing.model.statements.EmptyLine attribute)

 	(robot.parsing.model.statements.End attribute)

 	(robot.parsing.model.statements.Error attribute)

 	(robot.parsing.model.statements.Fixture attribute)

 	(robot.parsing.model.statements.ForHeader attribute)

 	(robot.parsing.model.statements.ForceTags attribute)

 	(robot.parsing.model.statements.IfHeader attribute)

 	(robot.parsing.model.statements.KeywordCall attribute)

 	(robot.parsing.model.statements.KeywordName attribute)

 	(robot.parsing.model.statements.LibraryImport attribute)

 	(robot.parsing.model.statements.Metadata attribute)

 	(robot.parsing.model.statements.MultiValue attribute)

 	(robot.parsing.model.statements.ResourceImport attribute)

 	(robot.parsing.model.statements.Return attribute)

 	(robot.parsing.model.statements.SectionHeader attribute)

 	(robot.parsing.model.statements.Setup attribute)

 	(robot.parsing.model.statements.SingleValue attribute)

 	(robot.parsing.model.statements.Statement attribute)

 	(robot.parsing.model.statements.SuiteSetup attribute)

 	(robot.parsing.model.statements.SuiteTeardown attribute)

 	(robot.parsing.model.statements.Tags attribute)

 	(robot.parsing.model.statements.Teardown attribute)

 	(robot.parsing.model.statements.Template attribute)

 	(robot.parsing.model.statements.TemplateArguments attribute)

 	(robot.parsing.model.statements.TestCaseName attribute)

 	(robot.parsing.model.statements.TestSetup attribute)

 	(robot.parsing.model.statements.TestTeardown attribute)

 	(robot.parsing.model.statements.TestTemplate attribute)

 	(robot.parsing.model.statements.TestTimeout attribute)

 	(robot.parsing.model.statements.Timeout attribute)

 	(robot.parsing.model.statements.Variable attribute)

 	(robot.parsing.model.statements.VariablesImport attribute)

 	(robot.running.model.For attribute)

 	(robot.running.model.If attribute)

 	(robot.running.model.IfBranch attribute)

 	(robot.running.model.Keyword attribute)

 	(robot.running.model.TestCase attribute)

 	
 	lines (robot.parsing.model.statements.Arguments attribute)

 	(robot.parsing.model.statements.Comment attribute)

 	(robot.parsing.model.statements.DefaultTags attribute)

 	(robot.parsing.model.statements.Documentation attribute)

 	(robot.parsing.model.statements.DocumentationOrMetadata attribute)

 	(robot.parsing.model.statements.ElseHeader attribute)

 	(robot.parsing.model.statements.ElseIfHeader attribute)

 	(robot.parsing.model.statements.EmptyLine attribute)

 	(robot.parsing.model.statements.End attribute)

 	(robot.parsing.model.statements.Error attribute)

 	(robot.parsing.model.statements.Fixture attribute)

 	(robot.parsing.model.statements.ForHeader attribute)

 	(robot.parsing.model.statements.ForceTags attribute)

 	(robot.parsing.model.statements.IfHeader attribute)

 	(robot.parsing.model.statements.KeywordCall attribute)

 	(robot.parsing.model.statements.KeywordName attribute)

 	(robot.parsing.model.statements.LibraryImport attribute)

 	(robot.parsing.model.statements.Metadata attribute)

 	(robot.parsing.model.statements.MultiValue attribute)

 	(robot.parsing.model.statements.ResourceImport attribute)

 	(robot.parsing.model.statements.Return attribute)

 	(robot.parsing.model.statements.SectionHeader attribute)

 	(robot.parsing.model.statements.Setup attribute)

 	(robot.parsing.model.statements.SingleValue attribute)

 	(robot.parsing.model.statements.Statement attribute)

 	(robot.parsing.model.statements.SuiteSetup attribute)

 	(robot.parsing.model.statements.SuiteTeardown attribute)

 	(robot.parsing.model.statements.Tags attribute)

 	(robot.parsing.model.statements.Teardown attribute)

 	(robot.parsing.model.statements.Template attribute)

 	(robot.parsing.model.statements.TemplateArguments attribute)

 	(robot.parsing.model.statements.TestCaseName attribute)

 	(robot.parsing.model.statements.TestSetup attribute)

 	(robot.parsing.model.statements.TestTeardown attribute)

 	(robot.parsing.model.statements.TestTemplate attribute)

 	(robot.parsing.model.statements.TestTimeout attribute)

 	(robot.parsing.model.statements.Timeout attribute)

 	(robot.parsing.model.statements.Variable attribute)

 	(robot.parsing.model.statements.VariablesImport attribute)

 	LineWriter (class in robot.htmldata.htmlfilewriter)

 	link() (robot.reporting.jsbuildingcontext.JsBuildingContext method)

 	LinkFormatter (class in robot.utils.htmlformatters)

 	links (robot.model.stats.TagStat attribute)

 	list() (robot.libdocpkg.consoleviewer.ConsoleViewer method)

 	list_directories_in_directory() (robot.libraries.OperatingSystem.OperatingSystem method)

 	list_directory() (robot.libraries.OperatingSystem.OperatingSystem method)

 	list_files_in_directory() (robot.libraries.OperatingSystem.OperatingSystem method)

 	list_should_contain_sub_list() (robot.libraries.Collections.Collections method)

 	list_should_contain_value() (robot.libraries.Collections.Collections method)

 	list_should_not_contain_duplicates() (robot.libraries.Collections.Collections method)

 	list_should_not_contain_value() (robot.libraries.Collections.Collections method)

 	ListConverter (class in robot.running.arguments.typeconverters)

 	listener() (robot.libraries.Telnet.TelnetConnection method)

 	ListenerArguments (class in robot.output.listenerarguments)

 	ListenerMethod (class in robot.output.listenermethods)

 	ListenerMethods (class in robot.output.listenermethods)

 	ListenerProxy (class in robot.output.listeners)

 	Listeners (class in robot.output.listeners)

 	listeners (robot.conf.settings.RobotSettings attribute)

 	ListFormatter (class in robot.utils.htmlformatters)

 	lists_should_be_equal() (robot.libraries.Collections.Collections method)

 	ListVariableTableValue (class in robot.variables.tablesetter)

 	Location (class in robot.libraries.XML)

 	log (robot.conf.settings.RebotSettings attribute)

 	(robot.conf.settings.RobotSettings attribute)

 	log() (robot.libraries.BuiltIn.BuiltIn method)

 	log_config (robot.conf.settings.RebotSettings attribute)

 	log_dictionary() (robot.libraries.Collections.Collections method)

 	log_element() (robot.libraries.XML.XML method)

 	log_environment_variables() (robot.libraries.OperatingSystem.OperatingSystem method)

 	log_file() (robot.libraries.OperatingSystem.OperatingSystem method)

 	log_level (robot.conf.settings.RebotSettings attribute)

 	(robot.conf.settings.RobotSettings attribute)

 	log_list() (robot.libraries.Collections.Collections method)

 	log_many() (robot.libraries.BuiltIn.BuiltIn method)

 	log_message() (robot.output.listeners.LibraryListeners method)

 	(robot.output.listeners.Listeners method)

 	(robot.output.logger.Logger method)

 	(robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	log_output() (robot.output.logger.Logger method)

 	log_to_console() (robot.libraries.BuiltIn.BuiltIn method)

 	log_variables() (robot.libraries.BuiltIn.BuiltIn method)

 	Logger (class in robot.output.logger)

 	LoggerProxy (class in robot.output.logger)

 	login() (robot.libraries.Telnet.TelnetConnection method)

 	LogWriter (class in robot.reporting.logreportwriters)

 	longname (robot.model.testcase.TestCase attribute)

 	(robot.model.testsuite.TestSuite attribute)

 	(robot.result.model.TestCase attribute)

 	(robot.result.model.TestSuite attribute)

 	(robot.running.librarykeywordrunner.EmbeddedArgumentsRunner attribute)

 	(robot.running.librarykeywordrunner.LibraryKeywordRunner attribute)

 	(robot.running.librarykeywordrunner.RunKeywordRunner attribute)

 	(robot.running.model.TestCase attribute)

 	(robot.running.model.TestSuite attribute)

 	(robot.running.usererrorhandler.UserErrorHandler attribute)

 	(robot.running.userkeyword.EmbeddedArgumentsHandler attribute)

 	(robot.running.userkeyword.UserKeywordHandler attribute)

 	(robot.running.userkeywordrunner.EmbeddedArgumentsRunner attribute)

 	(robot.running.userkeywordrunner.UserKeywordRunner attribute)

 	lower() (in module robot.utils.normalizing)

 	(robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

M

 	
 	main() (robot.libdoc.LibDoc method)

 	(robot.rebot.Rebot method)

 	(robot.run.RobotFramework method)

 	(robot.testdoc.TestDoc method)

 	(robot.tidy.TidyCommandLine method)

 	(robot.utils.application.Application method)

 	mainloop() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	make_connection() (robot.libraries.Remote.TimeoutHTTPSTransport method)

 	(robot.libraries.Remote.TimeoutHTTPTransport method)

 	map() (robot.running.arguments.argumentmapper.ArgumentMapper method)

 	(robot.running.arguments.argumentspec.ArgumentSpec method)

 	MappingDumper (class in robot.htmldata.jsonwriter)

 	mark() (robot.output.console.verbose.KeywordMarker method)

 	match (robot.variables.search.VariableMatch attribute)

 	match() (robot.model.namepatterns.SuiteNamePatterns method)

 	(robot.model.namepatterns.TestNamePatterns method)

 	(robot.model.stats.CombinedTagStat method)

 	(robot.model.tags.AndTagPattern method)

 	(robot.model.tags.NotTagPattern method)

 	(robot.model.tags.OrTagPattern method)

 	(robot.model.tags.SingleTagPattern method)

 	(robot.model.tags.TagPatterns method)

 	(robot.model.tags.Tags method)

 	(robot.model.tagstatistics.TagStatDoc method)

 	(robot.model.tagstatistics.TagStatLink method)

 	(robot.reporting.expandkeywordmatcher.ExpandKeywordMatcher method)

 	(robot.result.flattenkeywordmatcher.FlattenByNameMatcher method)

 	(robot.result.flattenkeywordmatcher.FlattenByTagMatcher method)

 	(robot.result.flattenkeywordmatcher.FlattenByTypeMatcher method)

 	(robot.utils.htmlformatters.HeaderFormatter method)

 	(robot.utils.htmlformatters.RulerFormatter method)

 	(robot.utils.match.Matcher method)

 	(robot.utils.match.MultiMatcher method)

 	match_any() (robot.utils.match.Matcher method)

 	(robot.utils.match.MultiMatcher method)

 	Matcher (class in robot.utils.match)

 	matches() (robot.running.handlers.EmbeddedArgumentsHandler method)

 	(robot.running.userkeyword.EmbeddedArgumentsHandler method)

 	max_error_lines (robot.conf.settings.RobotSettings attribute)

 	maxargs (robot.running.arguments.argumentspec.ArgumentSpec attribute)

 	maxsize() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	merge (robot.conf.settings.RebotSettings attribute)

 	merge() (robot.result.merger.Merger method)

 	Merger (class in robot.result.merger)

 	Message (class in robot.model.message)

 	(class in robot.output.loggerhelper)

 	(class in robot.result.model)

 	message (robot.api.exceptions.ContinuableFailure attribute)

 	(robot.api.exceptions.Error attribute)

 	(robot.api.exceptions.Failure attribute)

 	(robot.api.exceptions.FatalError attribute)

 	(robot.api.exceptions.SkipExecution attribute)

 	(robot.errors.ContinueForLoop attribute)

 	(robot.errors.DataError attribute)

 	(robot.errors.ExecutionFailed attribute)

 	(robot.errors.ExecutionFailures attribute)

 	(robot.errors.ExecutionPassed attribute)

 	(robot.errors.ExecutionStatus attribute)

 	(robot.errors.ExitForLoop attribute)

 	(robot.errors.FrameworkError attribute)

 	(robot.errors.HandlerExecutionFailed attribute)

 	(robot.errors.Information attribute)

 	(robot.errors.KeywordError attribute)

 	(robot.errors.PassExecution attribute)

 	(robot.errors.RemoteError attribute)

 	(robot.errors.ReturnFromKeyword attribute)

 	(robot.errors.RobotError attribute)

 	(robot.errors.TimeoutError attribute)

 	(robot.errors.UserKeywordExecutionFailed attribute)

 	(robot.errors.VariableError attribute)

 	(robot.libraries.BuiltIn.RobotNotRunningError attribute)

 	(robot.libraries.Telnet.NoMatchError attribute)

 	MESSAGE (robot.model.body.BodyItem attribute)

 	(robot.model.control.For attribute)

 	(robot.model.control.If attribute)

 	(robot.model.control.IfBranch attribute)

 	(robot.model.keyword.Keyword attribute)

 	(robot.model.message.Message attribute)

 	message (robot.model.message.Message attribute)

 	(robot.model.totalstatistics.TotalStatistics attribute)

 	MESSAGE (robot.output.loggerhelper.Message attribute)

 	message (robot.output.loggerhelper.Message attribute)

 	MESSAGE (robot.result.model.For attribute)

 	message (robot.result.model.For attribute)

 	
 	MESSAGE (robot.result.model.ForIteration attribute)

 	message (robot.result.model.ForIteration attribute)

 	MESSAGE (robot.result.model.If attribute)

 	message (robot.result.model.If attribute)

 	MESSAGE (robot.result.model.IfBranch attribute)

 	message (robot.result.model.IfBranch attribute)

 	MESSAGE (robot.result.model.Keyword attribute)

 	message (robot.result.model.Keyword attribute)

 	MESSAGE (robot.result.model.Message attribute)

 	message (robot.result.model.Message attribute)

 	(robot.result.model.TestCase attribute)

 	(robot.result.model.TestSuite attribute)

 	(robot.result.modeldeprecation.DeprecatedAttributesMixin attribute)

 	MESSAGE (robot.running.model.For attribute)

 	(robot.running.model.If attribute)

 	(robot.running.model.IfBranch attribute)

 	(robot.running.model.Keyword attribute)

 	message (robot.running.status.ParentMessage attribute)

 	(robot.running.status.SuiteMessage attribute)

 	(robot.running.status.SuiteStatus attribute)

 	(robot.running.status.TestMessage attribute)

 	(robot.running.status.TestStatus attribute)

 	(robot.utils.error.JavaErrorDetails attribute)

 	(robot.utils.error.PythonErrorDetails attribute)

 	message() (robot.output.console.dotted.DottedOutput method)

 	(robot.output.console.quiet.QuietOutput method)

 	(robot.output.console.verbose.VerboseOutput method)

 	(robot.output.console.verbose.VerboseWriter method)

 	(robot.output.filelogger.FileLogger method)

 	(robot.output.logger.Logger method)

 	(robot.output.loggerhelper.AbstractLogger method)

 	(robot.output.output.Output method)

 	(robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	message_class (robot.result.model.Body attribute)

 	(robot.result.model.ForIterations attribute)

 	(robot.result.model.IfBranches attribute)

 	message_level() (robot.reporting.jsbuildingcontext.JsBuildingContext method)

 	MessageArguments (class in robot.output.listenerarguments)

 	MessageBuilder (class in robot.reporting.jsmodelbuilders)

 	MessageDialog (class in robot.libraries.dialogs_py)

 	MessageFilter (class in robot.result.messagefilter)

 	MessageHandler (class in robot.result.xmlelementhandlers)

 	Messages (class in robot.model.message)

 	messages (robot.result.executionerrors.ExecutionErrors attribute)

 	(robot.result.model.Keyword attribute)

 	Metadata (class in robot.model.metadata)

 	(class in robot.parsing.model.statements)

 	metadata (robot.model.testsuite.TestSuite attribute)

 	METADATA (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	metadata (robot.result.model.TestSuite attribute)

 	(robot.running.model.TestSuite attribute)

 	MetadataHandler (class in robot.result.xmlelementhandlers)

 	MetadataItemHandler (class in robot.result.xmlelementhandlers)

 	MetaHandler (class in robot.result.xmlelementhandlers)

 	minargs (robot.running.arguments.argumentspec.ArgumentSpec attribute)

 	minsize() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	mode_and_args() (robot.tidy.ArgumentValidator method)

 	model_class (robot.parsing.parser.fileparser.CommentSectionParser attribute)

 	(robot.parsing.parser.fileparser.KeywordSectionParser attribute)

 	(robot.parsing.parser.fileparser.SectionParser attribute)

 	(robot.parsing.parser.fileparser.SettingSectionParser attribute)

 	(robot.parsing.parser.fileparser.TestCaseSectionParser attribute)

 	(robot.parsing.parser.fileparser.VariableSectionParser attribute)

 	model_class() (robot.parsing.parser.fileparser.ImplicitCommentSectionParser method)

 	ModelCombiner (class in robot.running.modelcombiner)

 	ModelModifier (class in robot.model.modifier)

 	ModelObject (class in robot.model.modelobject)

 	ModelTransformer (class in robot.parsing.model.visitor)

 	ModelValidator (class in robot.parsing.model.blocks)

 	ModelVisitor (class in robot.parsing.model.visitor)

 	ModelWriter (class in robot.htmldata.htmlfilewriter)

 	(class in robot.parsing.model.blocks)

 	move_directory() (robot.libraries.OperatingSystem.OperatingSystem method)

 	move_file() (robot.libraries.OperatingSystem.OperatingSystem method)

 	move_files() (robot.libraries.OperatingSystem.OperatingSystem method)

 	msg() (robot.libraries.Telnet.TelnetConnection method)

 	mt_interact() (robot.libraries.Telnet.TelnetConnection method)

 	multi_use (robot.parsing.lexer.settings.InitFileSettings attribute)

 	(robot.parsing.lexer.settings.KeywordSettings attribute)

 	(robot.parsing.lexer.settings.ResourceFileSettings attribute)

 	(robot.parsing.lexer.settings.Settings attribute)

 	(robot.parsing.lexer.settings.TestCaseFileSettings attribute)

 	(robot.parsing.lexer.settings.TestCaseSettings attribute)

 	MultiMatcher (class in robot.utils.match)

 	MultipleSelectionDialog (class in robot.libraries.dialogs_py)

 	MultiValue (class in robot.parsing.model.statements)

N

 	
 	name (robot.model.keyword.Keyword attribute)

 	(robot.model.stats.Stat attribute)

 	(robot.model.testcase.TestCase attribute)

 	(robot.model.testsuite.TestSuite attribute)

 	(robot.output.pyloggingconf.RobotHandler attribute)

 	NAME (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	name (robot.parsing.model.blocks.Keyword attribute)

 	(robot.parsing.model.blocks.TestCase attribute)

 	(robot.parsing.model.statements.Fixture attribute)

 	(robot.parsing.model.statements.KeywordName attribute)

 	(robot.parsing.model.statements.LibraryImport attribute)

 	(robot.parsing.model.statements.Metadata attribute)

 	(robot.parsing.model.statements.ResourceImport attribute)

 	(robot.parsing.model.statements.SectionHeader attribute)

 	(robot.parsing.model.statements.Setup attribute)

 	(robot.parsing.model.statements.SuiteSetup attribute)

 	(robot.parsing.model.statements.SuiteTeardown attribute)

 	(robot.parsing.model.statements.Teardown attribute)

 	(robot.parsing.model.statements.TestCaseName attribute)

 	(robot.parsing.model.statements.TestSetup attribute)

 	(robot.parsing.model.statements.TestTeardown attribute)

 	(robot.parsing.model.statements.Variable attribute)

 	(robot.parsing.model.statements.VariablesImport attribute)

 	(robot.result.model.For attribute)

 	(robot.result.model.ForIteration attribute)

 	(robot.result.model.If attribute)

 	(robot.result.model.IfBranch attribute)

 	(robot.result.model.Keyword attribute)

 	(robot.result.model.TestCase attribute)

 	(robot.result.model.TestSuite attribute)

 	(robot.result.modeldeprecation.DeprecatedAttributesMixin attribute)

 	(robot.running.dynamicmethods.GetKeywordArguments attribute)

 	(robot.running.dynamicmethods.GetKeywordDocumentation attribute)

 	(robot.running.dynamicmethods.GetKeywordNames attribute)

 	(robot.running.dynamicmethods.GetKeywordSource attribute)

 	(robot.running.dynamicmethods.GetKeywordTags attribute)

 	(robot.running.dynamicmethods.GetKeywordTypes attribute)

 	(robot.running.dynamicmethods.RunKeyword attribute)

 	(robot.running.model.Keyword attribute)

 	(robot.running.model.TestCase attribute)

 	(robot.running.model.TestSuite attribute)

 	(robot.variables.search.VariableMatch attribute)

 	name_and_arguments (robot.parsing.lexer.settings.InitFileSettings attribute)

 	(robot.parsing.lexer.settings.KeywordSettings attribute)

 	(robot.parsing.lexer.settings.ResourceFileSettings attribute)

 	(robot.parsing.lexer.settings.Settings attribute)

 	(robot.parsing.lexer.settings.TestCaseFileSettings attribute)

 	(robot.parsing.lexer.settings.TestCaseSettings attribute)

 	name_arguments_and_with_name (robot.parsing.lexer.settings.InitFileSettings attribute)

 	(robot.parsing.lexer.settings.KeywordSettings attribute)

 	(robot.parsing.lexer.settings.ResourceFileSettings attribute)

 	(robot.parsing.lexer.settings.Settings attribute)

 	(robot.parsing.lexer.settings.TestCaseFileSettings attribute)

 	(robot.parsing.lexer.settings.TestCaseSettings attribute)

 	name_type (robot.parsing.lexer.blocklexers.KeywordLexer attribute)

 	(robot.parsing.lexer.blocklexers.TestCaseLexer attribute)

 	(robot.parsing.lexer.blocklexers.TestOrKeywordLexer attribute)

 	NAMED_ONLY (robot.running.arguments.argumentspec.ArgInfo attribute)

 	NAMED_ONLY_MARKER (robot.running.arguments.argumentspec.ArgInfo attribute)

 	NamedArgumentResolver (class in robot.running.arguments.argumentresolver)

 	names (robot.parsing.lexer.settings.InitFileSettings attribute)

 	(robot.parsing.lexer.settings.KeywordSettings attribute)

 	(robot.parsing.lexer.settings.ResourceFileSettings attribute)

 	(robot.parsing.lexer.settings.Settings attribute)

 	(robot.parsing.lexer.settings.TestCaseFileSettings attribute)

 	(robot.parsing.lexer.settings.TestCaseSettings attribute)

 	Namespace (class in robot.running.namespace)

 	namespaces (robot.running.context.ExecutionContexts attribute)

 	NameSpaceStripper (class in robot.libraries.XML)

 	nametowidget() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	NestedBlockLexer (class in robot.parsing.lexer.blocklexers)

 	NestedBlockParser (class in robot.parsing.parser.blockparsers)

 	NEW_ENVIRON_IS (robot.libraries.Telnet.TelnetConnection attribute)

 	
 	NEW_ENVIRON_VALUE (robot.libraries.Telnet.TelnetConnection attribute)

 	NEW_ENVIRON_VAR (robot.libraries.Telnet.TelnetConnection attribute)

 	new_suite_scope() (robot.output.listenermethods.LibraryListenerMethods method)

 	(robot.output.listeners.LibraryListeners method)

 	newline (robot.utils.htmlformatters.LineFormatter attribute)

 	NewlineNormalizer (class in robot.tidypkg.transformers)

 	no_conversion_needed() (robot.running.arguments.typeconverters.BooleanConverter method)

 	(robot.running.arguments.typeconverters.ByteArrayConverter method)

 	(robot.running.arguments.typeconverters.BytesConverter method)

 	(robot.running.arguments.typeconverters.CombinedConverter method)

 	(robot.running.arguments.typeconverters.DateConverter method)

 	(robot.running.arguments.typeconverters.DateTimeConverter method)

 	(robot.running.arguments.typeconverters.DecimalConverter method)

 	(robot.running.arguments.typeconverters.DictionaryConverter method)

 	(robot.running.arguments.typeconverters.EnumConverter method)

 	(robot.running.arguments.typeconverters.FloatConverter method)

 	(robot.running.arguments.typeconverters.FrozenSetConverter method)

 	(robot.running.arguments.typeconverters.IntegerConverter method)

 	(robot.running.arguments.typeconverters.ListConverter method)

 	(robot.running.arguments.typeconverters.NoneConverter method)

 	(robot.running.arguments.typeconverters.SetConverter method)

 	(robot.running.arguments.typeconverters.StringConverter method)

 	(robot.running.arguments.typeconverters.TimeDeltaConverter method)

 	(robot.running.arguments.typeconverters.TupleConverter method)

 	(robot.running.arguments.typeconverters.TypeConverter method)

 	no_dynamic_method() (in module robot.running.dynamicmethods)

 	no_operation() (robot.libraries.BuiltIn.BuiltIn method)

 	NoConnection (class in robot.utils.connectioncache)

 	NoHighlighting (class in robot.output.console.highlighting)

 	NoInitFileDirectoryParser (class in robot.running.builder.parsers)

 	NoLogger (class in robot.utils.importer)

 	NoMatchError

 	non_ascii (robot.libraries.Remote.ArgumentCoercer attribute)

 	NON_DATA_TOKENS (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	NonDottedImporter (class in robot.utils.importer)

 	none_shall_pass() (in module robot.libraries.Easter)

 	NoneConverter (class in robot.running.arguments.typeconverters)

 	NoneDumper (class in robot.htmldata.jsonwriter)

 	NoOutput (class in robot.output.console.quiet)

 	NoReturnValueResolver (class in robot.variables.assigner)

 	normal (robot.model.keyword.Keywords attribute)

 	normalize() (in module robot.utils.normalizing)

 	normalize_path() (robot.libraries.OperatingSystem.OperatingSystem method)

 	normalize_whitespace() (in module robot.utils.normalizing)

 	NormalizedDict (class in robot.utils.normalizing)

 	not_keyword() (in module robot.api.deco)

 	NOT_RUN (robot.result.model.For attribute)

 	not_run (robot.result.model.For attribute)

 	NOT_RUN (robot.result.model.ForIteration attribute)

 	not_run (robot.result.model.ForIteration attribute)

 	NOT_RUN (robot.result.model.If attribute)

 	not_run (robot.result.model.If attribute)

 	NOT_RUN (robot.result.model.IfBranch attribute)

 	not_run (robot.result.model.IfBranch attribute)

 	NOT_RUN (robot.result.model.Keyword attribute)

 	not_run (robot.result.model.Keyword attribute)

 	NOT_RUN (robot.result.model.StatusMixin attribute)

 	not_run (robot.result.model.StatusMixin attribute)

 	NOT_RUN (robot.result.model.TestCase attribute)

 	not_run (robot.result.model.TestCase attribute)

 	NOT_RUN (robot.result.model.TestSuite attribute)

 	not_run (robot.result.model.TestSuite attribute)

 	NOT_SET (robot.result.model.For attribute)

 	(robot.result.model.ForIteration attribute)

 	(robot.result.model.If attribute)

 	(robot.result.model.IfBranch attribute)

 	(robot.result.model.Keyword attribute)

 	(robot.result.model.StatusMixin attribute)

 	(robot.result.model.TestCase attribute)

 	(robot.result.model.TestSuite attribute)

 	NotSet (class in robot.libraries.Collections)

 	NOTSET (robot.running.arguments.argumentspec.ArgInfo attribute)

 	NotTagPattern (class in robot.model.tags)

 	NullMarkupWriter (class in robot.utils.markupwriters)

 	NullNamedArgumentResolver (class in robot.running.arguments.argumentresolver)

 	NumberFinder (class in robot.variables.finders)

 	numerator (robot.reporting.stringcache.StringIndex attribute)

O

 	
 	OneReturnValueResolver (class in robot.variables.assigner)

 	open() (robot.libraries.Telnet.TelnetConnection method)

 	open_connection() (robot.libraries.Telnet.Telnet method)

 	OperatingSystem (class in robot.libraries.OperatingSystem)

 	option_add() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	option_clear() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	option_get() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	option_readfile() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	
 	OrElseParser (class in robot.parsing.parser.blockparsers)

 	OrTagPattern (class in robot.model.tags)

 	Output (class in robot.output.output)

 	output (robot.conf.settings.RebotSettings attribute)

 	(robot.conf.settings.RobotSettings attribute)

 	output() (robot.output.console.verbose.VerboseWriter method)

 	output_directory (robot.conf.settings.RebotSettings attribute)

 	(robot.conf.settings.RobotSettings attribute)

 	output_file() (robot.output.console.dotted.DottedOutput method)

 	(robot.output.console.verbose.VerboseOutput method)

 	(robot.output.filelogger.FileLogger method)

 	(robot.output.listeners.LibraryListeners method)

 	(robot.output.listeners.Listeners method)

 	(robot.output.logger.Logger method)

 	OutputCapturer (class in robot.running.outputcapture)

 	OutputWriter (class in robot.reporting.outputwriter)

 	overrideredirect() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

P

 	
 	pack_propagate() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	pack_slaves() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	ParagraphFormatter (class in robot.utils.htmlformatters)

 	parent (robot.model.body.BodyItem attribute)

 	(robot.model.control.For attribute)

 	(robot.model.control.If attribute)

 	(robot.model.control.IfBranch attribute)

 	(robot.model.keyword.Keyword attribute)

 	(robot.model.message.Message attribute)

 	(robot.model.testcase.TestCase attribute)

 	(robot.model.testsuite.TestSuite attribute)

 	(robot.output.loggerhelper.Message attribute)

 	(robot.result.model.For attribute)

 	(robot.result.model.ForIteration attribute)

 	(robot.result.model.If attribute)

 	(robot.result.model.IfBranch attribute)

 	(robot.result.model.Keyword attribute)

 	(robot.result.model.Message attribute)

 	(robot.result.model.TestCase attribute)

 	(robot.result.model.TestSuite attribute)

 	(robot.running.model.For attribute)

 	(robot.running.model.If attribute)

 	(robot.running.model.IfBranch attribute)

 	(robot.running.model.Keyword attribute)

 	(robot.running.model.TestCase attribute)

 	(robot.running.model.TestSuite attribute)

 	ParentMessage (class in robot.running.status)

 	parse() (robot.parsing.parser.blockparsers.BlockParser method)

 	(robot.parsing.parser.blockparsers.ForParser method)

 	(robot.parsing.parser.blockparsers.IfParser method)

 	(robot.parsing.parser.blockparsers.KeywordParser method)

 	(robot.parsing.parser.blockparsers.NestedBlockParser method)

 	(robot.parsing.parser.blockparsers.OrElseParser method)

 	(robot.parsing.parser.blockparsers.Parser method)

 	(robot.parsing.parser.blockparsers.TestCaseParser method)

 	(robot.parsing.parser.fileparser.CommentSectionParser method)

 	(robot.parsing.parser.fileparser.FileParser method)

 	(robot.parsing.parser.fileparser.ImplicitCommentSectionParser method)

 	(robot.parsing.parser.fileparser.KeywordSectionParser method)

 	(robot.parsing.parser.fileparser.SectionParser method)

 	(robot.parsing.parser.fileparser.SettingSectionParser method)

 	(robot.parsing.parser.fileparser.TestCaseSectionParser method)

 	(robot.parsing.parser.fileparser.VariableSectionParser method)

 	(robot.running.arguments.argumentparser.DynamicArgumentParser method)

 	(robot.running.arguments.argumentparser.JavaArgumentParser method)

 	(robot.running.arguments.argumentparser.UserKeywordArgumentParser method)

 	(robot.running.arguments.embedded.EmbeddedArgumentParser method)

 	(robot.running.arguments.py2argumentparser.PythonArgumentParser method)

 	(robot.running.builder.builders.SuiteStructureParser method)

 	parse_args() (robot.utils.argumentparser.ArgumentParser method)

 	parse_arguments() (robot.libdoc.LibDoc method)

 	(robot.rebot.Rebot method)

 	(robot.run.RobotFramework method)

 	(robot.testdoc.TestDoc method)

 	(robot.tidy.TidyCommandLine method)

 	(robot.utils.application.Application method)

 	parse_init_file() (robot.running.builder.parsers.BaseParser method)

 	(robot.running.builder.parsers.NoInitFileDirectoryParser method)

 	(robot.running.builder.parsers.RestParser method)

 	(robot.running.builder.parsers.RobotParser method)

 	parse_resource_file() (robot.running.builder.parsers.BaseParser method)

 	(robot.running.builder.parsers.NoInitFileDirectoryParser method)

 	(robot.running.builder.parsers.RestParser method)

 	(robot.running.builder.parsers.RobotParser method)

 	parse_response() (robot.libraries.Remote.TimeoutHTTPSTransport method)

 	(robot.libraries.Remote.TimeoutHTTPTransport method)

 	parse_suite_file() (robot.running.builder.parsers.BaseParser method)

 	(robot.running.builder.parsers.NoInitFileDirectoryParser method)

 	(robot.running.builder.parsers.RestParser method)

 	(robot.running.builder.parsers.RobotParser method)

 	parse_xml() (robot.libraries.XML.XML method)

 	Parser (class in robot.parsing.parser.blockparsers)

 	PASS (robot.result.model.For attribute)

 	(robot.result.model.ForIteration attribute)

 	(robot.result.model.If attribute)

 	(robot.result.model.IfBranch attribute)

 	(robot.result.model.Keyword attribute)

 	(robot.result.model.StatusMixin attribute)

 	(robot.result.model.TestCase attribute)

 	(robot.result.model.TestSuite attribute)

 	
 	pass_execution() (robot.libraries.BuiltIn.BuiltIn method)

 	pass_execution_if() (robot.libraries.BuiltIn.BuiltIn method)

 	passed (robot.model.stats.Stat attribute)

 	(robot.model.totalstatistics.TotalStatistics attribute)

 	(robot.result.model.For attribute)

 	(robot.result.model.ForIteration attribute)

 	(robot.result.model.If attribute)

 	(robot.result.model.IfBranch attribute)

 	(robot.result.model.Keyword attribute)

 	(robot.result.model.StatusMixin attribute)

 	(robot.result.model.TestCase attribute)

 	(robot.result.model.TestSuite attribute)

 	PassedKeywordRemover (class in robot.result.keywordremover)

 	PassExecution

 	PassFailDialog (class in robot.libraries.dialogs_py)

 	pause_execution() (in module robot.libraries.Dialogs)

 	place_slaves() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	plural_or_not() (in module robot.utils.misc)

 	pop() (robot.model.body.Body method)

 	(robot.model.body.IfBranches method)

 	(robot.model.itemlist.ItemList method)

 	(robot.model.keyword.Keywords method)

 	(robot.model.message.Messages method)

 	(robot.model.metadata.Metadata method)

 	(robot.model.testcase.TestCases method)

 	(robot.model.testsuite.TestSuites method)

 	(robot.result.model.Body method)

 	(robot.result.model.ForIterations method)

 	(robot.result.model.IfBranches method)

 	(robot.running.model.Body method)

 	(robot.running.model.IfBranches method)

 	(robot.running.model.Imports method)

 	(robot.utils.dotdict.DotDict method)

 	(robot.utils.normalizing.NormalizedDict method)

 	(robot.variables.evaluation.EvaluationNamespace method)

 	pop_from_dictionary() (robot.libraries.Collections.Collections method)

 	popen_config (robot.libraries.Process.ProcessConfiguration attribute)

 	popitem() (robot.model.metadata.Metadata method)

 	(robot.utils.dotdict.DotDict method)

 	(robot.utils.normalizing.NormalizedDict method)

 	(robot.variables.evaluation.EvaluationNamespace method)

 	positional (robot.running.arguments.argumentspec.ArgumentSpec attribute)

 	POSITIONAL_ONLY (robot.running.arguments.argumentspec.ArgInfo attribute)

 	POSITIONAL_ONLY_MARKER (robot.running.arguments.argumentspec.ArgInfo attribute)

 	POSITIONAL_OR_NAMED (robot.running.arguments.argumentspec.ArgInfo attribute)

 	positionfrom() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	pre_rebot_modifiers (robot.conf.settings.RebotSettings attribute)

 	(robot.conf.settings.RobotSettings attribute)

 	pre_run_modifiers (robot.conf.settings.RobotSettings attribute)

 	PreformattedFormatter (class in robot.utils.htmlformatters)

 	printable_name() (in module robot.utils.misc)

 	priority (robot.running.modelcombiner.ModelCombiner attribute)

 	Process (class in robot.libraries.Process)

 	process() (robot.utils.argumentparser.ArgFileParser method)

 	process_empty_suite (robot.conf.settings.RebotSettings attribute)

 	process_rawq() (robot.libraries.Telnet.TelnetConnection method)

 	process_should_be_running() (robot.libraries.Process.Process method)

 	process_should_be_stopped() (robot.libraries.Process.Process method)

 	ProcessConfiguration (class in robot.libraries.Process)

 	propagate() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	protocol() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	prune_input() (robot.reporting.jsbuildingcontext.JsBuildingContext method)

 	py2to3() (in module robot.utils.compat)

 	py3to2() (in module robot.utils.compat)

 	PythonArgumentParser (class in robot.running.arguments.py2argumentparser)

 	PythonCapturer (class in robot.running.outputcapture)

 	PythonErrorDetails (class in robot.utils.error)

 	PythonImporter (class in robot.variables.filesetter)

Q

 	
 	QuietOutput (class in robot.output.console.quiet)

 	quit() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

R

 	
 	raise_deprecation_error() (robot.model.keyword.Keywords class method)

 	raise_error() (robot.utils.connectioncache.NoConnection method)

 	randomize() (robot.running.model.TestSuite method)

 	randomize_seed (robot.conf.settings.RobotSettings attribute)

 	randomize_suites (robot.conf.settings.RobotSettings attribute)

 	randomize_tests (robot.conf.settings.RobotSettings attribute)

 	Randomizer (class in robot.running.randomizer)

 	rawq_getchar() (robot.libraries.Telnet.TelnetConnection method)

 	read() (robot.libraries.Telnet.TelnetConnection method)

 	(robot.libraries.Telnet.TerminalEmulator method)

 	(robot.utils.filereader.FileReader method)

 	read_all() (robot.libraries.Telnet.TelnetConnection method)

 	read_eager() (robot.libraries.Telnet.TelnetConnection method)

 	read_lazy() (robot.libraries.Telnet.TelnetConnection method)

 	read_rest_data() (in module robot.utils)

 	read_sb_data() (robot.libraries.Telnet.TelnetConnection method)

 	read_some() (robot.libraries.Telnet.TelnetConnection method)

 	read_until() (robot.libraries.Telnet.TelnetConnection method)

 	(robot.libraries.Telnet.TerminalEmulator method)

 	read_until_prompt() (robot.libraries.Telnet.TelnetConnection method)

 	read_until_regexp() (robot.libraries.Telnet.TelnetConnection method)

 	(robot.libraries.Telnet.TerminalEmulator method)

 	read_very_eager() (robot.libraries.Telnet.TelnetConnection method)

 	read_very_lazy() (robot.libraries.Telnet.TelnetConnection method)

 	readlines() (robot.utils.filereader.FileReader method)

 	real (robot.reporting.stringcache.StringIndex attribute)

 	Rebot (class in robot.rebot)

 	rebot() (in module robot)

 	(in module robot.rebot)

 	rebot_cli() (in module robot)

 	(in module robot.rebot)

 	RebotSettings (class in robot.conf.settings)

 	recommend_similar_keywords() (robot.running.namespace.KeywordRecommendationFinder method)

 	RecommendationFinder (class in robot.utils.recommendations)

 	red() (robot.output.console.highlighting.AnsiHighlighter method)

 	(robot.output.console.highlighting.DosHighlighter method)

 	(robot.output.console.highlighting.NoHighlighting method)

 	regexp_escape() (robot.libraries.BuiltIn.BuiltIn method)

 	register() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	(robot.model.body.Body class method)

 	(robot.model.body.IfBranches class method)

 	(robot.output.listenermethods.LibraryListenerMethods method)

 	(robot.output.listeners.LibraryListeners method)

 	(robot.parsing.model.statements.Arguments class method)

 	(robot.parsing.model.statements.Comment class method)

 	(robot.parsing.model.statements.DefaultTags class method)

 	(robot.parsing.model.statements.Documentation class method)

 	(robot.parsing.model.statements.DocumentationOrMetadata class method)

 	(robot.parsing.model.statements.ElseHeader class method)

 	(robot.parsing.model.statements.ElseIfHeader class method)

 	(robot.parsing.model.statements.EmptyLine class method)

 	(robot.parsing.model.statements.End class method)

 	(robot.parsing.model.statements.Error class method)

 	(robot.parsing.model.statements.Fixture class method)

 	(robot.parsing.model.statements.ForHeader class method)

 	(robot.parsing.model.statements.ForceTags class method)

 	(robot.parsing.model.statements.IfHeader class method)

 	(robot.parsing.model.statements.KeywordCall class method)

 	(robot.parsing.model.statements.KeywordName class method)

 	(robot.parsing.model.statements.LibraryImport class method)

 	(robot.parsing.model.statements.Metadata class method)

 	(robot.parsing.model.statements.MultiValue class method)

 	(robot.parsing.model.statements.ResourceImport class method)

 	(robot.parsing.model.statements.Return class method)

 	(robot.parsing.model.statements.SectionHeader class method)

 	(robot.parsing.model.statements.Setup class method)

 	(robot.parsing.model.statements.SingleValue class method)

 	(robot.parsing.model.statements.Statement class method)

 	(robot.parsing.model.statements.SuiteSetup class method)

 	(robot.parsing.model.statements.SuiteTeardown class method)

 	(robot.parsing.model.statements.Tags class method)

 	(robot.parsing.model.statements.Teardown class method)

 	(robot.parsing.model.statements.Template class method)

 	(robot.parsing.model.statements.TemplateArguments class method)

 	(robot.parsing.model.statements.TestCaseName class method)

 	(robot.parsing.model.statements.TestSetup class method)

 	(robot.parsing.model.statements.TestTeardown class method)

 	(robot.parsing.model.statements.TestTemplate class method)

 	(robot.parsing.model.statements.TestTimeout class method)

 	(robot.parsing.model.statements.Timeout class method)

 	(robot.parsing.model.statements.Variable class method)

 	(robot.parsing.model.statements.VariablesImport class method)

 	(robot.result.model.Body class method)

 	(robot.result.model.ForIterations class method)

 	(robot.result.model.IfBranches class method)

 	(robot.result.xmlelementhandlers.ArgumentHandler class method)

 	(robot.result.xmlelementhandlers.ArgumentsHandler class method)

 	(robot.result.xmlelementhandlers.AssignHandler class method)

 	(robot.result.xmlelementhandlers.DocHandler class method)

 	(robot.result.xmlelementhandlers.ElementHandler class method)

 	(robot.result.xmlelementhandlers.ErrorMessageHandler class method)

 	(robot.result.xmlelementhandlers.ErrorsHandler class method)

 	(robot.result.xmlelementhandlers.ForHandler class method)

 	(robot.result.xmlelementhandlers.ForIterationHandler class method)

 	(robot.result.xmlelementhandlers.IfBranchHandler class method)

 	(robot.result.xmlelementhandlers.IfHandler class method)

 	(robot.result.xmlelementhandlers.KeywordHandler class method)

 	(robot.result.xmlelementhandlers.MessageHandler class method)

 	(robot.result.xmlelementhandlers.MetaHandler class method)

 	(robot.result.xmlelementhandlers.MetadataHandler class method)

 	(robot.result.xmlelementhandlers.MetadataItemHandler class method)

 	(robot.result.xmlelementhandlers.RobotHandler class method)

 	(robot.result.xmlelementhandlers.RootHandler class method)

 	(robot.result.xmlelementhandlers.StatisticsHandler class method)

 	(robot.result.xmlelementhandlers.StatusHandler class method)

 	(robot.result.xmlelementhandlers.SuiteHandler class method)

 	(robot.result.xmlelementhandlers.TagHandler class method)

 	(robot.result.xmlelementhandlers.TagsHandler class method)

 	(robot.result.xmlelementhandlers.TestHandler class method)

 	(robot.result.xmlelementhandlers.TimeoutHandler class method)

 	(robot.result.xmlelementhandlers.ValueHandler class method)

 	(robot.result.xmlelementhandlers.VarHandler class method)

 	(robot.running.arguments.typeconverters.BooleanConverter class method)

 	(robot.running.arguments.typeconverters.ByteArrayConverter class method)

 	(robot.running.arguments.typeconverters.BytesConverter class method)

 	(robot.running.arguments.typeconverters.CombinedConverter class method)

 	(robot.running.arguments.typeconverters.DateConverter class method)

 	(robot.running.arguments.typeconverters.DateTimeConverter class method)

 	(robot.running.arguments.typeconverters.DecimalConverter class method)

 	(robot.running.arguments.typeconverters.DictionaryConverter class method)

 	(robot.running.arguments.typeconverters.EnumConverter class method)

 	(robot.running.arguments.typeconverters.FloatConverter class method)

 	(robot.running.arguments.typeconverters.FrozenSetConverter class method)

 	(robot.running.arguments.typeconverters.IntegerConverter class method)

 	(robot.running.arguments.typeconverters.ListConverter class method)

 	(robot.running.arguments.typeconverters.NoneConverter class method)

 	(robot.running.arguments.typeconverters.SetConverter class method)

 	(robot.running.arguments.typeconverters.StringConverter class method)

 	(robot.running.arguments.typeconverters.TimeDeltaConverter class method)

 	(robot.running.arguments.typeconverters.TupleConverter class method)

 	(robot.running.arguments.typeconverters.TypeConverter class method)

 	(robot.running.model.Body class method)

 	(robot.running.model.IfBranches class method)

 	(robot.utils.connectioncache.ConnectionCache method)

 	register_console_logger() (robot.output.logger.Logger method)

 	register_error_listener() (robot.output.logger.Logger method)

 	(robot.output.output.Output method)

 	register_listeners() (robot.output.logger.Logger method)

 	register_logger() (robot.output.logger.Logger method)

 	register_run_keyword() (in module robot.libraries.BuiltIn)

 	register_syslog() (robot.output.logger.Logger method)

 	register_xml_logger() (robot.output.logger.Logger method)

 	relative_source() (robot.reporting.jsbuildingcontext.JsBuildingContext method)

 	release() (robot.output.pyloggingconf.RobotHandler method)

 	(robot.running.outputcapture.JavaCapturer method)

 	(robot.running.outputcapture.PythonCapturer method)

 	reload_library() (robot.libraries.BuiltIn.BuiltIn method)

 	(robot.running.namespace.Namespace method)

 	Remote (class in robot.libraries.Remote)

 	RemoteError

 	RemoteResult (class in robot.libraries.Remote)

 	RemovalMessage (class in robot.result.keywordremover)

 	remove() (robot.model.body.Body method)

 	(robot.model.body.IfBranches method)

 	(robot.model.itemlist.ItemList method)

 	(robot.model.keyword.Keywords method)

 	(robot.model.message.Messages method)

 	(robot.model.tags.Tags method)

 	(robot.model.testcase.TestCases method)

 	(robot.model.testsuite.TestSuites method)

 	(robot.result.model.Body method)

 	(robot.result.model.ForIterations method)

 	(robot.result.model.IfBranches method)

 	(robot.running.model.Body method)

 	(robot.running.model.IfBranches method)

 	(robot.running.model.Imports method)

 	remove_data_not_needed_in_report() (robot.reporting.jsexecutionresult.JsExecutionResult method)

 	remove_directory() (robot.libraries.OperatingSystem.OperatingSystem method)

 	remove_duplicates() (robot.libraries.Collections.Collections method)

 	remove_element() (robot.libraries.XML.XML method)

 	remove_element_attribute() (robot.libraries.XML.XML method)

 	remove_element_attributes() (robot.libraries.XML.XML method)

 	remove_elements() (robot.libraries.XML.XML method)

 	remove_elements_attribute() (robot.libraries.XML.XML method)

 	remove_elements_attributes() (robot.libraries.XML.XML method)

 	remove_empty_suites() (robot.model.testsuite.TestSuite method)

 	(robot.result.model.TestSuite method)

 	(robot.running.model.TestSuite method)

 	remove_environment_variable() (robot.libraries.OperatingSystem.OperatingSystem method)

 	remove_file() (robot.libraries.OperatingSystem.OperatingSystem method)

 	remove_files() (robot.libraries.OperatingSystem.OperatingSystem method)

 	remove_from_dictionary() (robot.libraries.Collections.Collections method)

 	remove_from_list() (robot.libraries.Collections.Collections method)

 	remove_keywords (robot.conf.settings.RebotSettings attribute)

 	(robot.conf.settings.RobotSettings attribute)

 	remove_keywords() (robot.result.model.TestSuite method)

 	remove_path() (in module robot.pythonpathsetter)

 	remove_string() (robot.libraries.String.String method)

 	remove_string_using_regexp() (robot.libraries.String.String method)

 	remove_tags (robot.model.configurer.SuiteConfigurer attribute)

 	(robot.result.configurer.SuiteConfigurer attribute)

 	remove_tags() (robot.libraries.BuiltIn.BuiltIn method)

 	remove_values_from_list() (robot.libraries.Collections.Collections method)

 	removeFilter() (robot.output.pyloggingconf.RobotHandler method)

 	RemoveKeywords (class in robot.result.resultbuilder)

 	repeat_keyword() (robot.libraries.BuiltIn.BuiltIn method)

 	replace() (robot.running.arguments.argumentresolver.VariableReplacer method)

 	replace_defaults() (robot.running.arguments.argumentmapper.KeywordCallTemplate method)

 	replace_list() (robot.variables.replacer.VariableReplacer method)

 	(robot.variables.scopes.GlobalVariables method)

 	(robot.variables.scopes.VariableScopes method)

 	(robot.variables.variables.Variables method)

 	replace_scalar() (robot.variables.replacer.VariableReplacer method)

 	(robot.variables.scopes.GlobalVariables method)

 	(robot.variables.scopes.VariableScopes method)

 	(robot.variables.variables.Variables method)

 	replace_string() (robot.libraries.String.String method)

 	(robot.variables.replacer.VariableReplacer method)

 	(robot.variables.scopes.GlobalVariables method)

 	(robot.variables.scopes.VariableScopes method)

 	(robot.variables.variables.Variables method)

 	replace_string_using_regexp() (robot.libraries.String.String method)

 	replace_variables() (robot.libraries.BuiltIn.BuiltIn method)

 	(robot.running.timeouts.KeywordTimeout method)

 	(robot.running.timeouts.TestTimeout method)

 	report (robot.conf.settings.RebotSettings attribute)

 	(robot.conf.settings.RobotSettings attribute)

 	report() (robot.output.console.dotted.StatusReporter method)

 	report_config (robot.conf.settings.RebotSettings attribute)

 	report_error() (robot.variables.tablesetter.DictVariableTableValue method)

 	(robot.variables.tablesetter.ListVariableTableValue method)

 	(robot.variables.tablesetter.ScalarVariableTableValue method)

 	(robot.variables.tablesetter.VariableTableValueBase method)

 	report_invalid_syntax() (robot.running.model.Import method)

 	(robot.running.model.Variable method)

 	ReportWriter (class in robot.reporting.logreportwriters)

 	repr_args (robot.model.body.BodyItem attribute)

 	(robot.model.control.For attribute)

 	(robot.model.control.If attribute)

 	(robot.model.control.IfBranch attribute)

 	(robot.model.keyword.Keyword attribute)

 	(robot.model.message.Message attribute)

 	(robot.model.modelobject.ModelObject attribute)

 	(robot.model.testcase.TestCase attribute)

 	(robot.model.testsuite.TestSuite attribute)

 	(robot.output.loggerhelper.Message attribute)

 	(robot.result.model.For attribute)

 	(robot.result.model.ForIteration attribute)

 	(robot.result.model.If attribute)

 	(robot.result.model.IfBranch attribute)

 	(robot.result.model.Keyword attribute)

 	(robot.result.model.Message attribute)

 	(robot.result.model.TestCase attribute)

 	(robot.result.model.TestSuite attribute)

 	(robot.running.model.For attribute)

 	(robot.running.model.If attribute)

 	(robot.running.model.IfBranch attribute)

 	(robot.running.model.Keyword attribute)

 	(robot.running.model.TestCase attribute)

 	(robot.running.model.TestSuite attribute)

 	request() (robot.libraries.Remote.TimeoutHTTPSTransport method)

 	(robot.libraries.Remote.TimeoutHTTPTransport method)

 	required (robot.running.arguments.argumentspec.ArgInfo attribute)

 	Reserved (class in robot.libraries.Reserved)

 	reset() (robot.output.console.highlighting.AnsiHighlighter method)

 	(robot.output.console.highlighting.DosHighlighter method)

 	(robot.output.console.highlighting.NoHighlighting method)

 	(robot.running.importer.Importer method)

 	reset_count() (robot.output.console.verbose.KeywordMarker method)

 	resizable() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	resolve() (robot.running.arguments.argumentmapper.DefaultValue method)

 	(robot.running.arguments.argumentresolver.ArgumentResolver method)

 	(robot.running.arguments.argumentresolver.NamedArgumentResolver method)

 	(robot.running.arguments.argumentresolver.NullNamedArgumentResolver method)

 	(robot.running.arguments.argumentspec.ArgumentSpec method)

 	(robot.variables.assigner.NoReturnValueResolver method)

 	(robot.variables.assigner.OneReturnValueResolver method)

 	(robot.variables.assigner.ScalarsAndListReturnValueResolver method)

 	(robot.variables.assigner.ScalarsOnlyReturnValueResolver method)

 	(robot.variables.tablesetter.DictVariableTableValue method)

 	(robot.variables.tablesetter.ListVariableTableValue method)

 	(robot.variables.tablesetter.ScalarVariableTableValue method)

 	(robot.variables.tablesetter.VariableTableValueBase method)

 	resolve_alias_or_index() (robot.utils.connectioncache.ConnectionCache method)

 	resolve_base() (robot.variables.search.VariableMatch method)

 	resolve_delayed() (robot.variables.scopes.GlobalVariables method)

 	(robot.variables.scopes.VariableScopes method)

 	(robot.variables.store.VariableStore method)

 	(robot.variables.variables.Variables method)

 	resolve_delayed_message() (robot.output.loggerhelper.Message method)

 	RESOURCE (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	resource (robot.running.model.TestSuite attribute)

 	resource() (robot.running.model.Imports method)

 	RESOURCE_FILE_TYPE (robot.running.handlerstore.HandlerStore attribute)

 	(robot.running.userkeyword.UserLibrary attribute)

 	ResourceBuilder (class in robot.running.builder.transformers)

 	ResourceDocBuilder (class in robot.libdocpkg.robotbuilder)

 	ResourceFile (class in robot.running.model)

 	ResourceFileBuilder (class in robot.running.builder.builders)

 	ResourceFileContext (class in robot.parsing.lexer.context)

 	ResourceFileSections (class in robot.parsing.lexer.sections)

 	ResourceFileSettings (class in robot.parsing.lexer.settings)

 	ResourceImport (class in robot.parsing.model.statements)

 	RestParser (class in robot.running.builder.parsers)

 	Result (class in robot.result.executionresult)

 	result (robot.reporting.resultwriter.Results attribute)

 	(robot.running.modelcombiner.ModelCombiner attribute)

 	result_config (robot.libraries.Process.ProcessConfiguration attribute)

 	Results (class in robot.reporting.resultwriter)

 	ResultVisitor (class in robot.result.visitor)

 	ResultWriter (class in robot.reporting.resultwriter)

 	Return (class in robot.parsing.model.statements)

 	RETURN (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	return_code (robot.result.executionresult.CombinedResult attribute)

 	(robot.result.executionresult.Result attribute)

 	return_from_keyword() (robot.libraries.BuiltIn.BuiltIn method)

 	return_from_keyword_if() (robot.libraries.BuiltIn.BuiltIn method)

 	ReturnFromKeyword

 	ReturnValueResolver() (in module robot.variables.assigner)

 	reverse() (robot.model.body.Body method)

 	(robot.model.body.IfBranches method)

 	(robot.model.itemlist.ItemList method)

 	(robot.model.keyword.Keywords method)

 	(robot.model.message.Messages method)

 	(robot.model.testcase.TestCases method)

 	(robot.model.testsuite.TestSuites method)

 	(robot.result.model.Body method)

 	(robot.result.model.ForIterations method)

 	(robot.result.model.IfBranches method)

 	(robot.running.model.Body method)

 	(robot.running.model.IfBranches method)

 	(robot.running.model.Imports method)

 	
 	reverse_list() (robot.libraries.Collections.Collections method)

 	robot (module)

 	robot.api (module), [1]

 	robot.api.deco (module)

 	robot.api.exceptions (module)

 	robot.api.logger (module)

 	robot.api.parsing (module)

 	robot.conf (module)

 	robot.conf.gatherfailed (module)

 	robot.conf.settings (module)

 	robot.errors (module)

 	robot.htmldata (module)

 	robot.htmldata.htmlfilewriter (module)

 	robot.htmldata.jsonwriter (module)

 	robot.htmldata.normaltemplate (module)

 	robot.htmldata.template (module)

 	robot.libdoc (module)

 	robot.libdocpkg (module)

 	robot.libdocpkg.builder (module)

 	robot.libdocpkg.consoleviewer (module)

 	robot.libdocpkg.datatypes (module)

 	robot.libdocpkg.htmlutils (module)

 	robot.libdocpkg.htmlwriter (module)

 	robot.libdocpkg.javabuilder (module)

 	robot.libdocpkg.jsonbuilder (module)

 	robot.libdocpkg.jsonwriter (module)

 	robot.libdocpkg.model (module)

 	robot.libdocpkg.output (module)

 	robot.libdocpkg.robotbuilder (module)

 	robot.libdocpkg.specbuilder (module)

 	robot.libdocpkg.writer (module)

 	robot.libdocpkg.xmlwriter (module)

 	robot.libraries (module)

 	robot.libraries.BuiltIn (module)

 	robot.libraries.Collections (module)

 	robot.libraries.DateTime (module)

 	robot.libraries.Dialogs (module)

 	robot.libraries.dialogs_py (module)

 	robot.libraries.Easter (module)

 	robot.libraries.OperatingSystem (module)

 	robot.libraries.Process (module)

 	robot.libraries.Remote (module)

 	robot.libraries.Reserved (module)

 	robot.libraries.Screenshot (module)

 	robot.libraries.String (module)

 	robot.libraries.Telnet (module)

 	robot.libraries.XML (module)

 	robot.model (module)

 	robot.model.body (module)

 	robot.model.configurer (module)

 	robot.model.control (module)

 	robot.model.filter (module)

 	robot.model.fixture (module)

 	robot.model.itemlist (module)

 	robot.model.keyword (module)

 	robot.model.message (module)

 	robot.model.metadata (module)

 	robot.model.modelobject (module)

 	robot.model.modifier (module)

 	robot.model.namepatterns (module)

 	robot.model.statistics (module)

 	robot.model.stats (module)

 	robot.model.suitestatistics (module)

 	robot.model.tags (module)

 	robot.model.tagsetter (module)

 	robot.model.tagstatistics (module)

 	robot.model.testcase (module)

 	robot.model.testsuite (module)

 	robot.model.totalstatistics (module)

 	robot.model.visitor (module)

 	robot.output (module)

 	robot.output.console (module)

 	robot.output.console.dotted (module)

 	robot.output.console.highlighting (module)

 	robot.output.console.quiet (module)

 	robot.output.console.verbose (module)

 	robot.output.debugfile (module)

 	robot.output.filelogger (module)

 	robot.output.librarylogger (module)

 	robot.output.listenerarguments (module)

 	robot.output.listenermethods (module)

 	robot.output.listeners (module)

 	robot.output.logger (module)

 	robot.output.loggerhelper (module)

 	robot.output.output (module)

 	robot.output.pyloggingconf (module)

 	robot.output.stdoutlogsplitter (module)

 	robot.output.xmllogger (module)

 	robot.parsing (module)

 	robot.parsing.lexer (module)

 	robot.parsing.lexer.blocklexers (module)

 	robot.parsing.lexer.context (module)

 	robot.parsing.lexer.lexer (module)

 	robot.parsing.lexer.sections (module)

 	robot.parsing.lexer.settings (module)

 	robot.parsing.lexer.statementlexers (module)

 	robot.parsing.lexer.tokenizer (module)

 	robot.parsing.lexer.tokens (module)

 	robot.parsing.model (module)

 	robot.parsing.model.blocks (module)

 	robot.parsing.model.statements (module)

 	robot.parsing.model.visitor (module)

 	robot.parsing.parser (module)

 	robot.parsing.parser.blockparsers (module)

 	robot.parsing.parser.fileparser (module)

 	robot.parsing.parser.parser (module)

 	robot.parsing.suitestructure (module)

 	robot.pythonpathsetter (module)

 	robot.rebot (module)

 	robot.reporting (module)

 	robot.reporting.expandkeywordmatcher (module)

 	robot.reporting.jsbuildingcontext (module)

 	robot.reporting.jsexecutionresult (module)

 	robot.reporting.jsmodelbuilders (module)

 	robot.reporting.jswriter (module)

 	robot.reporting.logreportwriters (module)

 	robot.reporting.outputwriter (module)

 	robot.reporting.resultwriter (module)

 	robot.reporting.stringcache (module)

 	robot.reporting.xunitwriter (module)

 	robot.result (module)

 	robot.result.configurer (module)

 	robot.result.executionerrors (module)

 	robot.result.executionresult (module)

 	robot.result.flattenkeywordmatcher (module)

 	robot.result.keywordremover (module)

 	robot.result.merger (module)

 	robot.result.messagefilter (module)

 	robot.result.model (module)

 	robot.result.modeldeprecation (module)

 	robot.result.resultbuilder (module)

 	robot.result.suiteteardownfailed (module)

 	robot.result.visitor (module)

 	robot.result.xmlelementhandlers (module)

 	robot.run (module)

 	robot.running (module)

 	robot.running.arguments (module)

 	robot.running.arguments.argumentconverter (module)

 	robot.running.arguments.argumentmapper (module)

 	robot.running.arguments.argumentparser (module)

 	robot.running.arguments.argumentresolver (module)

 	robot.running.arguments.argumentspec (module)

 	robot.running.arguments.argumentvalidator (module)

 	robot.running.arguments.embedded (module)

 	robot.running.arguments.py2argumentparser (module)

 	robot.running.arguments.typeconverters (module)

 	robot.running.arguments.typevalidator (module)

 	robot.running.bodyrunner (module)

 	robot.running.builder (module)

 	robot.running.builder.builders (module)

 	robot.running.builder.parsers (module)

 	robot.running.builder.testsettings (module)

 	robot.running.builder.transformers (module)

 	robot.running.context (module)

 	robot.running.dynamicmethods (module)

 	robot.running.handlers (module)

 	robot.running.handlerstore (module)

 	robot.running.importer (module)

 	robot.running.librarykeywordrunner (module)

 	robot.running.libraryscopes (module)

 	robot.running.model (module)

 	robot.running.modelcombiner (module)

 	robot.running.namespace (module)

 	robot.running.outputcapture (module)

 	robot.running.randomizer (module)

 	robot.running.runkwregister (module)

 	robot.running.signalhandler (module)

 	robot.running.status (module)

 	robot.running.statusreporter (module)

 	robot.running.suiterunner (module)

 	robot.running.testlibraries (module)

 	robot.running.timeouts (module)

 	robot.running.timeouts.posix (module)

 	robot.running.timeouts.windows (module)

 	robot.running.usererrorhandler (module)

 	robot.running.userkeyword (module)

 	robot.running.userkeywordrunner (module)

 	robot.testdoc (module)

 	robot.tidy (module)

 	robot.tidypkg (module)

 	robot.tidypkg.transformers (module)

 	robot.utils (module)

 	robot.utils.application (module)

 	robot.utils.argumentparser (module)

 	robot.utils.asserts (module)

 	robot.utils.charwidth (module)

 	robot.utils.compat (module)

 	robot.utils.compress (module)

 	robot.utils.connectioncache (module)

 	robot.utils.dotdict (module)

 	robot.utils.encoding (module)

 	robot.utils.encodingsniffer (module)

 	robot.utils.error (module)

 	robot.utils.escaping (module)

 	robot.utils.etreewrapper (module)

 	robot.utils.filereader (module)

 	robot.utils.frange (module)

 	robot.utils.htmlformatters (module)

 	robot.utils.importer (module)

 	robot.utils.markuputils (module)

 	robot.utils.markupwriters (module)

 	robot.utils.match (module)

 	robot.utils.misc (module)

 	robot.utils.normalizing (module)

 	robot.utils.platform (module)

 	robot.utils.recommendations (module)

 	robot.variables (module)

 	robot.variables.assigner (module)

 	robot.variables.evaluation (module)

 	robot.variables.filesetter (module)

 	robot.variables.finders (module)

 	robot.variables.notfound (module)

 	robot.variables.replacer (module)

 	robot.variables.scopes (module)

 	robot.variables.search (module)

 	robot.variables.store (module)

 	robot.variables.tablesetter (module)

 	robot.variables.variables (module)

 	robot.version (module)

 	ROBOT_CONTINUE_ON_FAILURE (robot.api.exceptions.ContinuableFailure attribute)

 	ROBOT_EXIT_ON_FAILURE (robot.api.exceptions.FatalError attribute)

 	robot_handler_enabled() (in module robot.output.pyloggingconf)

 	ROBOT_LIBRARY_SCOPE (robot.libraries.BuiltIn.BuiltIn attribute)

 	(robot.libraries.Collections.Collections attribute)

 	(robot.libraries.OperatingSystem.OperatingSystem attribute)

 	(robot.libraries.Process.Process attribute)

 	(robot.libraries.Remote.Remote attribute)

 	(robot.libraries.Reserved.Reserved attribute)

 	(robot.libraries.Screenshot.Screenshot attribute)

 	(robot.libraries.String.String attribute)

 	(robot.libraries.Telnet.Telnet attribute)

 	(robot.libraries.XML.XML attribute)

 	ROBOT_LIBRARY_VERSION (robot.libraries.BuiltIn.BuiltIn attribute)

 	(robot.libraries.Collections.Collections attribute)

 	(robot.libraries.OperatingSystem.OperatingSystem attribute)

 	(robot.libraries.Process.Process attribute)

 	(robot.libraries.Screenshot.Screenshot attribute)

 	(robot.libraries.String.String attribute)

 	(robot.libraries.Telnet.Telnet attribute)

 	(robot.libraries.XML.XML attribute)

 	ROBOT_SKIP_EXECUTION (robot.api.exceptions.SkipExecution attribute)

 	ROBOT_SUPPRESS_NAME (robot.api.exceptions.ContinuableFailure attribute)

 	(robot.api.exceptions.Error attribute)

 	(robot.api.exceptions.Failure attribute)

 	(robot.api.exceptions.FatalError attribute)

 	(robot.api.exceptions.SkipExecution attribute)

 	(robot.libraries.Telnet.NoMatchError attribute)

 	RobotError

 	RobotFramework (class in robot.run)

 	RobotHandler (class in robot.output.pyloggingconf)

 	(class in robot.result.xmlelementhandlers)

 	RobotModelWriter (class in robot.reporting.logreportwriters)

 	RobotNotRunningError

 	RobotParser (class in robot.running.builder.parsers)

 	RobotSettings (class in robot.conf.settings)

 	RootHandler (class in robot.result.xmlelementhandlers)

 	roundup() (in module robot.utils.misc)

 	rowconfigure() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	rpa (robot.conf.settings.RebotSettings attribute)

 	(robot.conf.settings.RobotSettings attribute)

 	(robot.model.testsuite.TestSuite attribute)

 	(robot.result.model.TestSuite attribute)

 	(robot.running.model.TestSuite attribute)

 	RulerFormatter (class in robot.utils.htmlformatters)

 	run() (in module robot)

 	(in module robot.run)

 	(robot.libraries.OperatingSystem.OperatingSystem method)

 	(robot.running.bodyrunner.BodyRunner method)

 	(robot.running.bodyrunner.ForInEnumerateRunner method)

 	(robot.running.bodyrunner.ForInRangeRunner method)

 	(robot.running.bodyrunner.ForInRunner method)

 	(robot.running.bodyrunner.ForInZipRunner method)

 	(robot.running.bodyrunner.IfRunner method)

 	(robot.running.bodyrunner.KeywordRunner method)

 	(robot.running.librarykeywordrunner.EmbeddedArgumentsRunner method)

 	(robot.running.librarykeywordrunner.LibraryKeywordRunner method)

 	(robot.running.librarykeywordrunner.RunKeywordRunner method)

 	(robot.running.model.For method)

 	(robot.running.model.If method)

 	(robot.running.model.Keyword method)

 	(robot.running.model.TestSuite method)

 	(robot.running.timeouts.KeywordTimeout method)

 	(robot.running.timeouts.TestTimeout method)

 	(robot.running.usererrorhandler.UserErrorHandler method)

 	(robot.running.userkeywordrunner.EmbeddedArgumentsRunner method)

 	(robot.running.userkeywordrunner.UserKeywordRunner method)

 	run_and_return_rc() (robot.libraries.OperatingSystem.OperatingSystem method)

 	run_and_return_rc_and_output() (robot.libraries.OperatingSystem.OperatingSystem method)

 	run_cli() (in module robot)

 	(in module robot.run)

 	run_empty_suite (robot.conf.settings.RobotSettings attribute)

 	run_keyword() (robot.libraries.BuiltIn.BuiltIn method)

 	(robot.libraries.Remote.Remote method)

 	(robot.libraries.Remote.XmlRpcRemoteClient method)

 	run_keyword_and_continue_on_failure() (robot.libraries.BuiltIn.BuiltIn method)

 	run_keyword_and_expect_error() (robot.libraries.BuiltIn.BuiltIn method)

 	run_keyword_and_ignore_error() (robot.libraries.BuiltIn.BuiltIn method)

 	run_keyword_and_return() (robot.libraries.BuiltIn.BuiltIn method)

 	run_keyword_and_return_if() (robot.libraries.BuiltIn.BuiltIn method)

 	run_keyword_and_return_status() (robot.libraries.BuiltIn.BuiltIn method)

 	run_keyword_and_warn_on_failure() (robot.libraries.BuiltIn.BuiltIn method)

 	run_keyword_if() (robot.libraries.BuiltIn.BuiltIn method)

 	run_keyword_if_all_critical_tests_passed() (robot.libraries.BuiltIn.BuiltIn method)

 	run_keyword_if_all_tests_passed() (robot.libraries.BuiltIn.BuiltIn method)

 	run_keyword_if_any_critical_tests_failed() (robot.libraries.BuiltIn.BuiltIn method)

 	run_keyword_if_any_tests_failed() (robot.libraries.BuiltIn.BuiltIn method)

 	run_keyword_if_test_failed() (robot.libraries.BuiltIn.BuiltIn method)

 	run_keyword_if_test_passed() (robot.libraries.BuiltIn.BuiltIn method)

 	run_keyword_if_timeout_occurred() (robot.libraries.BuiltIn.BuiltIn method)

 	run_keyword_unless() (robot.libraries.BuiltIn.BuiltIn method)

 	run_keyword_variant() (in module robot.libraries.BuiltIn)

 	run_keywords() (robot.libraries.BuiltIn.BuiltIn method)

 	run_process() (robot.libraries.Process.Process method)

 	RunKeyword (class in robot.running.dynamicmethods)

 	RunKeywordRunner (class in robot.running.librarykeywordrunner)

S

 	
 	save() (robot.libdocpkg.model.LibraryDoc method)

 	(robot.parsing.model.blocks.File method)

 	(robot.result.executionresult.CombinedResult method)

 	(robot.result.executionresult.Result method)

 	save_xml() (robot.libraries.XML.XML method)

 	ScalarsAndListReturnValueResolver (class in robot.variables.assigner)

 	ScalarsOnlyReturnValueResolver (class in robot.variables.assigner)

 	ScalarVariableTableValue (class in robot.variables.tablesetter)

 	Screenshot (class in robot.libraries.Screenshot)

 	ScreenshotTaker (class in robot.libraries.Screenshot)

 	search() (robot.libdocpkg.consoleviewer.KeywordMatcher method)

 	(robot.variables.search.VariableSearcher method)

 	search_variable() (in module robot.variables.search)

 	Section (class in robot.parsing.model.blocks)

 	SectionHeader (class in robot.parsing.model.statements)

 	SectionHeaderLexer (class in robot.parsing.lexer.statementlexers)

 	SectionLexer (class in robot.parsing.lexer.blocklexers)

 	SectionParser (class in robot.parsing.parser.fileparser)

 	Sections (class in robot.parsing.lexer.sections)

 	sections_class (robot.parsing.lexer.context.FileContext attribute)

 	(robot.parsing.lexer.context.InitFileContext attribute)

 	(robot.parsing.lexer.context.ResourceFileContext attribute)

 	(robot.parsing.lexer.context.TestCaseFileContext attribute)

 	selection_clear() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	selection_get() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	selection_handle() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	selection_own() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	selection_own_get() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	SelectionDialog (class in robot.libraries.dialogs_py)

 	send() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	send_content() (robot.libraries.Remote.TimeoutHTTPSTransport method)

 	(robot.libraries.Remote.TimeoutHTTPTransport method)

 	send_host() (robot.libraries.Remote.TimeoutHTTPSTransport method)

 	(robot.libraries.Remote.TimeoutHTTPTransport method)

 	send_request() (robot.libraries.Remote.TimeoutHTTPSTransport method)

 	(robot.libraries.Remote.TimeoutHTTPTransport method)

 	send_signal_to_process() (robot.libraries.Process.Process method)

 	send_user_agent() (robot.libraries.Remote.TimeoutHTTPSTransport method)

 	(robot.libraries.Remote.TimeoutHTTPTransport method)

 	SEPARATOR (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	SeparatorNormalizer (class in robot.tidypkg.transformers)

 	separators (robot.parsing.lexer.statementlexers.ForHeaderLexer attribute)

 	seq2str() (in module robot.utils.misc)

 	seq2str2() (in module robot.utils.misc)

 	set() (robot.result.keywordremover.RemovalMessage method)

 	(robot.variables.filesetter.VariableFileSetter method)

 	(robot.variables.tablesetter.VariableTableSetter method)

 	set_debuglevel() (robot.libraries.Telnet.TelnetConnection method)

 	set_default_log_level() (robot.libraries.Telnet.TelnetConnection method)

 	set_earlier_failures() (robot.errors.ContinueForLoop method)

 	(robot.errors.ExecutionPassed method)

 	(robot.errors.ExitForLoop method)

 	(robot.errors.PassExecution method)

 	(robot.errors.ReturnFromKeyword method)

 	set_element_attribute() (robot.libraries.XML.XML method)

 	set_element_tag() (robot.libraries.XML.XML method)

 	set_element_text() (robot.libraries.XML.XML method)

 	set_elements_attribute() (robot.libraries.XML.XML method)

 	set_elements_tag() (robot.libraries.XML.XML method)

 	set_elements_text() (robot.libraries.XML.XML method)

 	set_encoding() (robot.libraries.Telnet.TelnetConnection method)

 	set_environment_variable() (robot.libraries.OperatingSystem.OperatingSystem method)

 	set_error() (robot.parsing.lexer.tokens.EOS method)

 	(robot.parsing.lexer.tokens.Token method)

 	set_execution_mode() (robot.result.executionresult.CombinedResult method)

 	(robot.result.executionresult.Result method)

 	set_from_file() (robot.variables.scopes.GlobalVariables method)

 	(robot.variables.scopes.VariableScopes method)

 	(robot.variables.variables.Variables method)

 	set_from_variable_table() (robot.variables.scopes.GlobalVariables method)

 	(robot.variables.scopes.VariableScopes method)

 	(robot.variables.variables.Variables method)

 	set_global() (robot.variables.scopes.SetVariables method)

 	(robot.variables.scopes.VariableScopes method)

 	set_global_variable() (robot.libraries.BuiltIn.BuiltIn method)

 	set_if_removed() (robot.result.keywordremover.RemovalMessage method)

 	set_keyword() (robot.variables.scopes.SetVariables method)

 	(robot.variables.scopes.VariableScopes method)

 	set_keyword_timeout() (robot.running.timeouts.TestTimeout method)

 	set_level() (in module robot.output.pyloggingconf)

 	(robot.output.filelogger.FileLogger method)

 	(robot.output.logger.Logger method)

 	(robot.output.loggerhelper.AbstractLogger method)

 	(robot.output.loggerhelper.IsLogged method)

 	(robot.output.output.Output method)

 	set_library_search_order() (robot.libraries.BuiltIn.BuiltIn method)

 	set_list_value() (robot.libraries.Collections.Collections method)

 	set_local_variable() (robot.libraries.BuiltIn.BuiltIn method)

 	(robot.variables.scopes.VariableScopes method)

 	set_log_level() (robot.libraries.BuiltIn.BuiltIn method)

 	(robot.output.listeners.LibraryListeners method)

 	(robot.output.listeners.Listeners method)

 	(robot.output.output.Output method)

 	(robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	set_modified_time() (robot.libraries.OperatingSystem.OperatingSystem method)

 	set_name() (robot.output.pyloggingconf.RobotHandler method)

 	set_newline() (robot.libraries.Telnet.TelnetConnection method)

 	set_option_negotiation_callback() (robot.libraries.Telnet.TelnetConnection method)

 	set_prompt() (robot.libraries.Telnet.TelnetConnection method)

 	set_screenshot_directory() (robot.libraries.Screenshot.Screenshot method)

 	set_search_order() (robot.running.namespace.Namespace method)

 	set_suite() (robot.variables.scopes.SetVariables method)

 	(robot.variables.scopes.VariableScopes method)

 	set_suite_documentation() (robot.libraries.BuiltIn.BuiltIn method)

 	set_suite_metadata() (robot.libraries.BuiltIn.BuiltIn method)

 	set_suite_variable() (robot.libraries.BuiltIn.BuiltIn method)

 	set_tags() (robot.libraries.BuiltIn.BuiltIn method)

 	(robot.model.testsuite.TestSuite method)

 	(robot.result.model.TestSuite method)

 	(robot.running.model.TestSuite method)

 	set_task_variable() (robot.libraries.BuiltIn.BuiltIn method)

 	set_telnetlib_log_level() (robot.libraries.Telnet.TelnetConnection method)

 	set_test() (robot.variables.scopes.SetVariables method)

 	(robot.variables.scopes.VariableScopes method)

 	set_test_documentation() (robot.libraries.BuiltIn.BuiltIn method)

 	set_test_message() (robot.libraries.BuiltIn.BuiltIn method)

 	set_test_variable() (robot.libraries.BuiltIn.BuiltIn method)

 	set_timeout() (robot.libraries.Telnet.TelnetConnection method)

 	set_to_dictionary() (robot.libraries.Collections.Collections method)

 	set_variable() (robot.libraries.BuiltIn.BuiltIn method)

 	set_variable_if() (robot.libraries.BuiltIn.BuiltIn method)

 	SetConverter (class in robot.running.arguments.typeconverters)

 	setdefault() (robot.model.metadata.Metadata method)

 	(robot.utils.dotdict.DotDict method)

 	(robot.utils.normalizing.NormalizedDict method)

 	(robot.variables.evaluation.EvaluationNamespace method)

 	setFormatter() (robot.output.pyloggingconf.RobotHandler method)

 	setLevel() (robot.output.pyloggingconf.RobotHandler method)

 	setting() (robot.parsing.lexer.sections.InitFileSections method)

 	(robot.parsing.lexer.sections.ResourceFileSections method)

 	(robot.parsing.lexer.sections.Sections method)

 	(robot.parsing.lexer.sections.TestCaseFileSections method)

 	SETTING_HEADER (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	setting_markers (robot.parsing.lexer.sections.InitFileSections attribute)

 	(robot.parsing.lexer.sections.ResourceFileSections attribute)

 	(robot.parsing.lexer.sections.Sections attribute)

 	(robot.parsing.lexer.sections.TestCaseFileSections attribute)

 	setting_section() (robot.parsing.lexer.context.FileContext method)

 	(robot.parsing.lexer.context.InitFileContext method)

 	(robot.parsing.lexer.context.ResourceFileContext method)

 	(robot.parsing.lexer.context.TestCaseFileContext method)

 	SETTING_TOKENS (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	SettingLexer (class in robot.parsing.lexer.statementlexers)

 	Settings (class in robot.parsing.lexer.settings)

 	settings_class (robot.parsing.lexer.context.FileContext attribute)

 	(robot.parsing.lexer.context.InitFileContext attribute)

 	(robot.parsing.lexer.context.KeywordContext attribute)

 	(robot.parsing.lexer.context.LexingContext attribute)

 	(robot.parsing.lexer.context.ResourceFileContext attribute)

 	(robot.parsing.lexer.context.TestCaseContext attribute)

 	(robot.parsing.lexer.context.TestCaseFileContext attribute)

 	SettingsBuilder (class in robot.running.builder.transformers)

 	SettingSection (class in robot.parsing.model.blocks)

 	SettingSectionHeaderLexer (class in robot.parsing.lexer.statementlexers)

 	SettingSectionLexer (class in robot.parsing.lexer.blocklexers)

 	SettingSectionParser (class in robot.parsing.parser.fileparser)

 	Setup (class in robot.parsing.model.statements)

 	SETUP (robot.model.body.BodyItem attribute)

 	(robot.model.control.For attribute)

 	(robot.model.control.If attribute)

 	(robot.model.control.IfBranch attribute)

 	(robot.model.keyword.Keyword attribute)

 	setup (robot.model.keyword.Keywords attribute)

 	SETUP (robot.model.message.Message attribute)

 	setup (robot.model.testcase.TestCase attribute)

 	(robot.model.testsuite.TestSuite attribute)

 	SETUP (robot.output.loggerhelper.Message attribute)

 	(robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	(robot.result.model.For attribute)

 	(robot.result.model.ForIteration attribute)

 	(robot.result.model.If attribute)

 	(robot.result.model.IfBranch attribute)

 	(robot.result.model.Keyword attribute)

 	(robot.result.model.Message attribute)

 	setup (robot.result.model.TestCase attribute)

 	(robot.result.model.TestSuite attribute)

 	(robot.running.builder.testsettings.TestDefaults attribute)

 	(robot.running.builder.testsettings.TestSettings attribute)

 	SETUP (robot.running.model.For attribute)

 	(robot.running.model.If attribute)

 	(robot.running.model.IfBranch attribute)

 	(robot.running.model.Keyword attribute)

 	setup (robot.running.model.TestCase attribute)

 	(robot.running.model.TestSuite attribute)

 	setup_executed() (robot.running.status.SuiteStatus method)

 	(robot.running.status.TestStatus method)

 	setup_message (robot.running.status.ParentMessage attribute)

 	(robot.running.status.SuiteMessage attribute)

 	(robot.running.status.TestMessage attribute)

 	setup_skipped_message (robot.running.status.ParentMessage attribute)

 	(robot.running.status.SuiteMessage attribute)

 	(robot.running.status.TestMessage attribute)

 	setvar() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	SetVariables (class in robot.variables.scopes)

 	shortdoc (robot.libdocpkg.model.KeywordDoc attribute)

 	(robot.running.usererrorhandler.UserErrorHandler attribute)

 	(robot.running.userkeyword.EmbeddedArgumentsHandler attribute)

 	(robot.running.userkeyword.UserKeywordHandler attribute)

 	should_be_byte_string() (robot.libraries.String.String method)

 	should_be_empty() (robot.libraries.BuiltIn.BuiltIn method)

 	should_be_equal() (robot.libraries.BuiltIn.BuiltIn method)

 	should_be_equal_as_integers() (robot.libraries.BuiltIn.BuiltIn method)

 	should_be_equal_as_numbers() (robot.libraries.BuiltIn.BuiltIn method)

 	should_be_equal_as_strings() (robot.libraries.BuiltIn.BuiltIn method)

 	should_be_lower_case() (robot.libraries.String.String method)

 	should_be_string() (robot.libraries.String.String method)

 	should_be_title_case() (robot.libraries.String.String method)

 	should_be_true() (robot.libraries.BuiltIn.BuiltIn method)

 	should_be_unicode_string() (robot.libraries.String.String method)

 	should_be_upper_case() (robot.libraries.String.String method)

 	should_contain() (robot.libraries.BuiltIn.BuiltIn method)

 	should_contain_any() (robot.libraries.BuiltIn.BuiltIn method)

 	should_contain_match() (robot.libraries.Collections.Collections method)

 	should_contain_x_times() (robot.libraries.BuiltIn.BuiltIn method)

 	should_end_with() (robot.libraries.BuiltIn.BuiltIn method)

 	should_exist() (robot.libraries.OperatingSystem.OperatingSystem method)

 	should_match() (robot.libraries.BuiltIn.BuiltIn method)

 	should_match_regexp() (robot.libraries.BuiltIn.BuiltIn method)

 	should_not_be_empty() (robot.libraries.BuiltIn.BuiltIn method)

 	should_not_be_equal() (robot.libraries.BuiltIn.BuiltIn method)

 	should_not_be_equal_as_integers() (robot.libraries.BuiltIn.BuiltIn method)

 	should_not_be_equal_as_numbers() (robot.libraries.BuiltIn.BuiltIn method)

 	should_not_be_equal_as_strings() (robot.libraries.BuiltIn.BuiltIn method)

 	should_not_be_string() (robot.libraries.String.String method)

 	should_not_be_true() (robot.libraries.BuiltIn.BuiltIn method)

 	should_not_contain() (robot.libraries.BuiltIn.BuiltIn method)

 	should_not_contain_any() (robot.libraries.BuiltIn.BuiltIn method)

 	should_not_contain_match() (robot.libraries.Collections.Collections method)

 	should_not_end_with() (robot.libraries.BuiltIn.BuiltIn method)

 	should_not_exist() (robot.libraries.OperatingSystem.OperatingSystem method)

 	should_not_match() (robot.libraries.BuiltIn.BuiltIn method)

 	should_not_match_regexp() (robot.libraries.BuiltIn.BuiltIn method)

 	should_not_start_with() (robot.libraries.BuiltIn.BuiltIn method)

 	should_start_with() (robot.libraries.BuiltIn.BuiltIn method)

 	should_write_content_after_name() (robot.tidypkg.transformers.ColumnAligner method)

 	show() (robot.libdocpkg.consoleviewer.ConsoleViewer method)

 	(robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	single_request() (robot.libraries.Remote.TimeoutHTTPSTransport method)

 	(robot.libraries.Remote.TimeoutHTTPTransport method)

 	single_value (robot.parsing.lexer.settings.InitFileSettings attribute)

 	(robot.parsing.lexer.settings.KeywordSettings attribute)

 	(robot.parsing.lexer.settings.ResourceFileSettings attribute)

 	(robot.parsing.lexer.settings.Settings attribute)

 	(robot.parsing.lexer.settings.TestCaseFileSettings attribute)

 	(robot.parsing.lexer.settings.TestCaseSettings attribute)

 	SingleTagPattern (class in robot.model.tags)

 	SingleValue (class in robot.parsing.model.statements)

 	size() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	sizefrom() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	SKIP (robot.result.model.For attribute)

 	(robot.result.model.ForIteration attribute)

 	(robot.result.model.If attribute)

 	(robot.result.model.IfBranch attribute)

 	(robot.result.model.Keyword attribute)

 	(robot.result.model.StatusMixin attribute)

 	(robot.result.model.TestCase attribute)

 	(robot.result.model.TestSuite attribute)

 	skip() (robot.libraries.BuiltIn.BuiltIn method)

 	(robot.output.filelogger.FileLogger method)

 	(robot.output.logger.Logger method)

 	(robot.output.loggerhelper.AbstractLogger method)

 	(robot.output.output.Output method)

 	skip_if() (robot.libraries.BuiltIn.BuiltIn method)

 	skip_if_needed() (robot.running.status.TestStatus method)

 	skip_on_failure (robot.conf.settings.RobotSettings attribute)

 	skip_teardown_on_exit (robot.conf.settings.RobotSettings attribute)

 	SkipExecution

 	skipped (robot.model.stats.Stat attribute)

 	(robot.model.totalstatistics.TotalStatistics attribute)

 	(robot.result.model.For attribute)

 	(robot.result.model.ForIteration attribute)

 	(robot.result.model.If attribute)

 	(robot.result.model.IfBranch attribute)

 	(robot.result.model.Keyword attribute)

 	(robot.result.model.StatusMixin attribute)

 	(robot.result.model.TestCase attribute)

 	(robot.result.model.TestSuite attribute)

 	skipped_tags (robot.conf.settings.RobotSettings attribute)

 	slaves() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	sleep() (robot.libraries.BuiltIn.BuiltIn method)

 	sock_avail() (robot.libraries.Telnet.TelnetConnection method)

 	sort() (robot.model.body.Body method)

 	(robot.model.body.IfBranches method)

 	(robot.model.itemlist.ItemList method)

 	(robot.model.keyword.Keywords method)

 	(robot.model.message.Messages method)

 	(robot.model.testcase.TestCases method)

 	(robot.model.testsuite.TestSuites method)

 	(robot.result.model.Body method)

 	(robot.result.model.ForIterations method)

 	(robot.result.model.IfBranches method)

 	(robot.running.model.Body method)

 	(robot.running.model.IfBranches method)

 	(robot.running.model.Imports method)

 	sort_list() (robot.libraries.Collections.Collections method)

 	source (robot.model.testcase.TestCase attribute)

 	(robot.model.testsuite.TestSuite attribute)

 	(robot.result.executionresult.Result attribute)

 	(robot.result.model.TestCase attribute)

 	(robot.result.model.TestSuite attribute)

 	(robot.running.model.For attribute)

 	(robot.running.model.If attribute)

 	(robot.running.model.IfBranch attribute)

 	(robot.running.model.Keyword attribute)

 	(robot.running.model.TestCase attribute)

 	(robot.running.model.TestSuite attribute)

 	(robot.running.model.UserKeyword attribute)

 	sourcename (robot.result.model.Keyword attribute)

 	spacecount() (robot.tidy.ArgumentValidator method)

 	SpecDocBuilder (class in robot.libdocpkg.specbuilder)

 	split_command_line() (robot.libraries.Process.Process method)

 	split_extension() (robot.libraries.OperatingSystem.OperatingSystem method)

 	split_from_equals() (in module robot.utils.escaping)

 	split_log (robot.conf.settings.RebotSettings attribute)

 	(robot.conf.settings.RobotSettings attribute)

 	split_path() (robot.libraries.OperatingSystem.OperatingSystem method)

 	split_string() (robot.libraries.String.String method)

 	split_string_from_right() (robot.libraries.String.String method)

 	split_string_to_characters() (robot.libraries.String.String method)

 	split_to_lines() (robot.libraries.String.String method)

 	SplitLogWriter (class in robot.reporting.jswriter)

 	start() (robot.result.xmlelementhandlers.ArgumentHandler method)

 	(robot.result.xmlelementhandlers.ArgumentsHandler method)

 	(robot.result.xmlelementhandlers.AssignHandler method)

 	(robot.result.xmlelementhandlers.DocHandler method)

 	(robot.result.xmlelementhandlers.ElementHandler method)

 	(robot.result.xmlelementhandlers.ErrorMessageHandler method)

 	(robot.result.xmlelementhandlers.ErrorsHandler method)

 	(robot.result.xmlelementhandlers.ForHandler method)

 	(robot.result.xmlelementhandlers.ForIterationHandler method)

 	(robot.result.xmlelementhandlers.IfBranchHandler method)

 	(robot.result.xmlelementhandlers.IfHandler method)

 	(robot.result.xmlelementhandlers.KeywordHandler method)

 	(robot.result.xmlelementhandlers.MessageHandler method)

 	(robot.result.xmlelementhandlers.MetaHandler method)

 	(robot.result.xmlelementhandlers.MetadataHandler method)

 	(robot.result.xmlelementhandlers.MetadataItemHandler method)

 	(robot.result.xmlelementhandlers.RobotHandler method)

 	(robot.result.xmlelementhandlers.RootHandler method)

 	(robot.result.xmlelementhandlers.StatisticsHandler method)

 	(robot.result.xmlelementhandlers.StatusHandler method)

 	(robot.result.xmlelementhandlers.SuiteHandler method)

 	(robot.result.xmlelementhandlers.TagHandler method)

 	(robot.result.xmlelementhandlers.TagsHandler method)

 	(robot.result.xmlelementhandlers.TestHandler method)

 	(robot.result.xmlelementhandlers.TimeoutHandler method)

 	(robot.result.xmlelementhandlers.ValueHandler method)

 	(robot.result.xmlelementhandlers.VarHandler method)

 	(robot.result.xmlelementhandlers.XmlElementHandler method)

 	(robot.running.timeouts.KeywordTimeout method)

 	(robot.running.timeouts.TestTimeout method)

 	(robot.utils.markupwriters.HtmlWriter method)

 	(robot.utils.markupwriters.NullMarkupWriter method)

 	(robot.utils.markupwriters.XmlWriter method)

 	start_directory() (robot.parsing.suitestructure.SuiteStructureVisitor method)

 	(robot.running.builder.builders.SuiteStructureParser method)

 	(robot.tidy.Tidy method)

 	start_errors() (robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.visitor.ResultVisitor method)

 	start_for() (robot.conf.gatherfailed.GatherFailedSuites method)

 	(robot.conf.gatherfailed.GatherFailedTests method)

 	(robot.model.configurer.SuiteConfigurer method)

 	(robot.model.filter.EmptySuiteRemover method)

 	(robot.model.filter.Filter method)

 	(robot.model.modifier.ModelModifier method)

 	(robot.model.statistics.StatisticsBuilder method)

 	(robot.model.tagsetter.TagSetter method)

 	(robot.model.totalstatistics.TotalStatisticsBuilder method)

 	(robot.model.visitor.SuiteVisitor method)

 	(robot.output.console.dotted.StatusReporter method)

 	(robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.configurer.SuiteConfigurer method)

 	(robot.result.keywordremover.AllKeywordsRemover method)

 	(robot.result.keywordremover.ByNameKeywordRemover method)

 	(robot.result.keywordremover.ByTagKeywordRemover method)

 	(robot.result.keywordremover.ForLoopItemsRemover method)

 	(robot.result.keywordremover.PassedKeywordRemover method)

 	(robot.result.keywordremover.WaitUntilKeywordSucceedsRemover method)

 	(robot.result.keywordremover.WarningAndErrorFinder method)

 	(robot.result.merger.Merger method)

 	(robot.result.messagefilter.MessageFilter method)

 	(robot.result.resultbuilder.RemoveKeywords method)

 	(robot.result.suiteteardownfailed.SuiteTeardownFailed method)

 	(robot.result.suiteteardownfailed.SuiteTeardownFailureHandler method)

 	(robot.result.visitor.ResultVisitor method)

 	(robot.running.randomizer.Randomizer method)

 	(robot.running.suiterunner.SuiteRunner method)

 	
 	start_for_iteration() (robot.conf.gatherfailed.GatherFailedSuites method)

 	(robot.conf.gatherfailed.GatherFailedTests method)

 	(robot.model.configurer.SuiteConfigurer method)

 	(robot.model.filter.EmptySuiteRemover method)

 	(robot.model.filter.Filter method)

 	(robot.model.modifier.ModelModifier method)

 	(robot.model.statistics.StatisticsBuilder method)

 	(robot.model.tagsetter.TagSetter method)

 	(robot.model.totalstatistics.TotalStatisticsBuilder method)

 	(robot.model.visitor.SuiteVisitor method)

 	(robot.output.console.dotted.StatusReporter method)

 	(robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.configurer.SuiteConfigurer method)

 	(robot.result.keywordremover.AllKeywordsRemover method)

 	(robot.result.keywordremover.ByNameKeywordRemover method)

 	(robot.result.keywordremover.ByTagKeywordRemover method)

 	(robot.result.keywordremover.ForLoopItemsRemover method)

 	(robot.result.keywordremover.PassedKeywordRemover method)

 	(robot.result.keywordremover.WaitUntilKeywordSucceedsRemover method)

 	(robot.result.keywordremover.WarningAndErrorFinder method)

 	(robot.result.merger.Merger method)

 	(robot.result.messagefilter.MessageFilter method)

 	(robot.result.resultbuilder.RemoveKeywords method)

 	(robot.result.suiteteardownfailed.SuiteTeardownFailed method)

 	(robot.result.suiteteardownfailed.SuiteTeardownFailureHandler method)

 	(robot.result.visitor.ResultVisitor method)

 	(robot.running.randomizer.Randomizer method)

 	(robot.running.suiterunner.SuiteRunner method)

 	start_if() (robot.conf.gatherfailed.GatherFailedSuites method)

 	(robot.conf.gatherfailed.GatherFailedTests method)

 	(robot.model.configurer.SuiteConfigurer method)

 	(robot.model.filter.EmptySuiteRemover method)

 	(robot.model.filter.Filter method)

 	(robot.model.modifier.ModelModifier method)

 	(robot.model.statistics.StatisticsBuilder method)

 	(robot.model.tagsetter.TagSetter method)

 	(robot.model.totalstatistics.TotalStatisticsBuilder method)

 	(robot.model.visitor.SuiteVisitor method)

 	(robot.output.console.dotted.StatusReporter method)

 	(robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.configurer.SuiteConfigurer method)

 	(robot.result.keywordremover.AllKeywordsRemover method)

 	(robot.result.keywordremover.ByNameKeywordRemover method)

 	(robot.result.keywordremover.ByTagKeywordRemover method)

 	(robot.result.keywordremover.ForLoopItemsRemover method)

 	(robot.result.keywordremover.PassedKeywordRemover method)

 	(robot.result.keywordremover.WaitUntilKeywordSucceedsRemover method)

 	(robot.result.keywordremover.WarningAndErrorFinder method)

 	(robot.result.merger.Merger method)

 	(robot.result.messagefilter.MessageFilter method)

 	(robot.result.resultbuilder.RemoveKeywords method)

 	(robot.result.suiteteardownfailed.SuiteTeardownFailed method)

 	(robot.result.suiteteardownfailed.SuiteTeardownFailureHandler method)

 	(robot.result.visitor.ResultVisitor method)

 	(robot.running.randomizer.Randomizer method)

 	(robot.running.suiterunner.SuiteRunner method)

 	start_if_branch() (robot.conf.gatherfailed.GatherFailedSuites method)

 	(robot.conf.gatherfailed.GatherFailedTests method)

 	(robot.model.configurer.SuiteConfigurer method)

 	(robot.model.filter.EmptySuiteRemover method)

 	(robot.model.filter.Filter method)

 	(robot.model.modifier.ModelModifier method)

 	(robot.model.statistics.StatisticsBuilder method)

 	(robot.model.tagsetter.TagSetter method)

 	(robot.model.totalstatistics.TotalStatisticsBuilder method)

 	(robot.model.visitor.SuiteVisitor method)

 	(robot.output.console.dotted.StatusReporter method)

 	(robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.configurer.SuiteConfigurer method)

 	(robot.result.keywordremover.AllKeywordsRemover method)

 	(robot.result.keywordremover.ByNameKeywordRemover method)

 	(robot.result.keywordremover.ByTagKeywordRemover method)

 	(robot.result.keywordremover.ForLoopItemsRemover method)

 	(robot.result.keywordremover.PassedKeywordRemover method)

 	(robot.result.keywordremover.WaitUntilKeywordSucceedsRemover method)

 	(robot.result.keywordremover.WarningAndErrorFinder method)

 	(robot.result.merger.Merger method)

 	(robot.result.messagefilter.MessageFilter method)

 	(robot.result.resultbuilder.RemoveKeywords method)

 	(robot.result.suiteteardownfailed.SuiteTeardownFailed method)

 	(robot.result.suiteteardownfailed.SuiteTeardownFailureHandler method)

 	(robot.result.visitor.ResultVisitor method)

 	(robot.running.randomizer.Randomizer method)

 	(robot.running.suiterunner.SuiteRunner method)

 	start_keyword() (robot.conf.gatherfailed.GatherFailedSuites method)

 	(robot.conf.gatherfailed.GatherFailedTests method)

 	(robot.model.configurer.SuiteConfigurer method)

 	(robot.model.filter.EmptySuiteRemover method)

 	(robot.model.filter.Filter method)

 	(robot.model.modifier.ModelModifier method)

 	(robot.model.statistics.StatisticsBuilder method)

 	(robot.model.tagsetter.TagSetter method)

 	(robot.model.totalstatistics.TotalStatisticsBuilder method)

 	(robot.model.visitor.SuiteVisitor method)

 	(robot.output.console.dotted.StatusReporter method)

 	(robot.output.console.verbose.VerboseOutput method)

 	(robot.output.filelogger.FileLogger method)

 	(robot.output.listeners.Listeners method)

 	(robot.output.logger.Logger method)

 	(robot.output.logger.LoggerProxy method)

 	(robot.output.output.Output method)

 	(robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.configurer.SuiteConfigurer method)

 	(robot.result.keywordremover.AllKeywordsRemover method)

 	(robot.result.keywordremover.ByNameKeywordRemover method)

 	(robot.result.keywordremover.ByTagKeywordRemover method)

 	(robot.result.keywordremover.ForLoopItemsRemover method)

 	(robot.result.keywordremover.PassedKeywordRemover method)

 	(robot.result.keywordremover.WaitUntilKeywordSucceedsRemover method)

 	(robot.result.keywordremover.WarningAndErrorFinder method)

 	(robot.result.merger.Merger method)

 	(robot.result.messagefilter.MessageFilter method)

 	(robot.result.resultbuilder.RemoveKeywords method)

 	(robot.result.suiteteardownfailed.SuiteTeardownFailed method)

 	(robot.result.suiteteardownfailed.SuiteTeardownFailureHandler method)

 	(robot.result.visitor.ResultVisitor method)

 	(robot.running.randomizer.Randomizer method)

 	(robot.running.suiterunner.SuiteRunner method)

 	(robot.variables.scopes.SetVariables method)

 	(robot.variables.scopes.VariableScopes method)

 	start_loggers (robot.output.logger.Logger attribute)

 	start_message() (robot.conf.gatherfailed.GatherFailedSuites method)

 	(robot.conf.gatherfailed.GatherFailedTests method)

 	(robot.model.configurer.SuiteConfigurer method)

 	(robot.model.filter.EmptySuiteRemover method)

 	(robot.model.filter.Filter method)

 	(robot.model.modifier.ModelModifier method)

 	(robot.model.statistics.StatisticsBuilder method)

 	(robot.model.tagsetter.TagSetter method)

 	(robot.model.totalstatistics.TotalStatisticsBuilder method)

 	(robot.model.visitor.SuiteVisitor method)

 	(robot.output.console.dotted.StatusReporter method)

 	(robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.configurer.SuiteConfigurer method)

 	(robot.result.keywordremover.AllKeywordsRemover method)

 	(robot.result.keywordremover.ByNameKeywordRemover method)

 	(robot.result.keywordremover.ByTagKeywordRemover method)

 	(robot.result.keywordremover.ForLoopItemsRemover method)

 	(robot.result.keywordremover.PassedKeywordRemover method)

 	(robot.result.keywordremover.WaitUntilKeywordSucceedsRemover method)

 	(robot.result.keywordremover.WarningAndErrorFinder method)

 	(robot.result.merger.Merger method)

 	(robot.result.messagefilter.MessageFilter method)

 	(robot.result.resultbuilder.RemoveKeywords method)

 	(robot.result.suiteteardownfailed.SuiteTeardownFailed method)

 	(robot.result.suiteteardownfailed.SuiteTeardownFailureHandler method)

 	(robot.result.visitor.ResultVisitor method)

 	(robot.running.randomizer.Randomizer method)

 	(robot.running.suiterunner.SuiteRunner method)

 	start_process() (robot.libraries.Process.Process method)

 	start_result() (robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.visitor.ResultVisitor method)

 	start_splitting_if_needed() (robot.reporting.jsbuildingcontext.JsBuildingContext method)

 	start_stat() (robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.visitor.ResultVisitor method)

 	start_statistics() (robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.visitor.ResultVisitor method)

 	start_suite() (robot.conf.gatherfailed.GatherFailedSuites method)

 	(robot.conf.gatherfailed.GatherFailedTests method)

 	(robot.model.configurer.SuiteConfigurer method)

 	(robot.model.filter.EmptySuiteRemover method)

 	(robot.model.filter.Filter method)

 	(robot.model.modifier.ModelModifier method)

 	(robot.model.statistics.StatisticsBuilder method)

 	(robot.model.suitestatistics.SuiteStatisticsBuilder method)

 	(robot.model.tagsetter.TagSetter method)

 	(robot.model.totalstatistics.TotalStatisticsBuilder method)

 	(robot.model.visitor.SuiteVisitor method)

 	(robot.output.console.dotted.DottedOutput method)

 	(robot.output.console.dotted.StatusReporter method)

 	(robot.output.console.verbose.VerboseOutput method)

 	(robot.output.filelogger.FileLogger method)

 	(robot.output.logger.Logger method)

 	(robot.output.output.Output method)

 	(robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.configurer.SuiteConfigurer method)

 	(robot.result.keywordremover.AllKeywordsRemover method)

 	(robot.result.keywordremover.ByNameKeywordRemover method)

 	(robot.result.keywordremover.ByTagKeywordRemover method)

 	(robot.result.keywordremover.ForLoopItemsRemover method)

 	(robot.result.keywordremover.PassedKeywordRemover method)

 	(robot.result.keywordremover.WaitUntilKeywordSucceedsRemover method)

 	(robot.result.keywordremover.WarningAndErrorFinder method)

 	(robot.result.merger.Merger method)

 	(robot.result.messagefilter.MessageFilter method)

 	(robot.result.resultbuilder.RemoveKeywords method)

 	(robot.result.suiteteardownfailed.SuiteTeardownFailed method)

 	(robot.result.suiteteardownfailed.SuiteTeardownFailureHandler method)

 	(robot.result.visitor.ResultVisitor method)

 	(robot.running.context.ExecutionContexts method)

 	(robot.running.libraryscopes.GlobalScope method)

 	(robot.running.libraryscopes.TestCaseScope method)

 	(robot.running.libraryscopes.TestSuiteScope method)

 	(robot.running.namespace.Namespace method)

 	(robot.running.randomizer.Randomizer method)

 	(robot.running.suiterunner.SuiteRunner method)

 	(robot.variables.scopes.SetVariables method)

 	(robot.variables.scopes.VariableScopes method)

 	start_suite_statistics() (robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.visitor.ResultVisitor method)

 	start_tag_statistics() (robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.visitor.ResultVisitor method)

 	start_test() (robot.conf.gatherfailed.GatherFailedSuites method)

 	(robot.conf.gatherfailed.GatherFailedTests method)

 	(robot.model.configurer.SuiteConfigurer method)

 	(robot.model.filter.EmptySuiteRemover method)

 	(robot.model.filter.Filter method)

 	(robot.model.modifier.ModelModifier method)

 	(robot.model.statistics.StatisticsBuilder method)

 	(robot.model.tagsetter.TagSetter method)

 	(robot.model.totalstatistics.TotalStatisticsBuilder method)

 	(robot.model.visitor.SuiteVisitor method)

 	(robot.output.console.dotted.StatusReporter method)

 	(robot.output.console.verbose.VerboseOutput method)

 	(robot.output.filelogger.FileLogger method)

 	(robot.output.logger.Logger method)

 	(robot.output.output.Output method)

 	(robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.configurer.SuiteConfigurer method)

 	(robot.result.keywordremover.AllKeywordsRemover method)

 	(robot.result.keywordremover.ByNameKeywordRemover method)

 	(robot.result.keywordremover.ByTagKeywordRemover method)

 	(robot.result.keywordremover.ForLoopItemsRemover method)

 	(robot.result.keywordremover.PassedKeywordRemover method)

 	(robot.result.keywordremover.WaitUntilKeywordSucceedsRemover method)

 	(robot.result.keywordremover.WarningAndErrorFinder method)

 	(robot.result.merger.Merger method)

 	(robot.result.messagefilter.MessageFilter method)

 	(robot.result.resultbuilder.RemoveKeywords method)

 	(robot.result.suiteteardownfailed.SuiteTeardownFailed method)

 	(robot.result.suiteteardownfailed.SuiteTeardownFailureHandler method)

 	(robot.result.visitor.ResultVisitor method)

 	(robot.running.libraryscopes.GlobalScope method)

 	(robot.running.libraryscopes.TestCaseScope method)

 	(robot.running.libraryscopes.TestSuiteScope method)

 	(robot.running.namespace.Namespace method)

 	(robot.running.randomizer.Randomizer method)

 	(robot.running.suiterunner.SuiteRunner method)

 	(robot.variables.scopes.SetVariables method)

 	(robot.variables.scopes.VariableScopes method)

 	start_total_statistics() (robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.visitor.ResultVisitor method)

 	start_user_keyword() (robot.running.namespace.Namespace method)

 	StartKeywordArguments (class in robot.output.listenerarguments)

 	StartSuiteArguments (class in robot.output.listenerarguments)

 	StartTestArguments (class in robot.output.listenerarguments)

 	starttime (robot.result.model.For attribute)

 	(robot.result.model.ForIteration attribute)

 	(robot.result.model.If attribute)

 	(robot.result.model.IfBranch attribute)

 	(robot.result.model.Keyword attribute)

 	(robot.result.model.TestCase attribute)

 	(robot.result.model.TestSuite attribute)

 	Stat (class in robot.model.stats)

 	stat (robot.model.suitestatistics.SuiteStatistics attribute)

 	stat_message (robot.result.model.TestSuite attribute)

 	state() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	Statement (class in robot.parsing.model.statements)

 	StatementLexer (class in robot.parsing.lexer.statementlexers)

 	Statistics (class in robot.model.statistics)

 	statistics (robot.result.executionresult.CombinedResult attribute)

 	(robot.result.executionresult.Result attribute)

 	(robot.result.model.TestSuite attribute)

 	statistics_config (robot.conf.settings.RebotSettings attribute)

 	(robot.conf.settings.RobotSettings attribute)

 	StatisticsBuilder (class in robot.model.statistics)

 	(class in robot.reporting.jsmodelbuilders)

 	StatisticsHandler (class in robot.result.xmlelementhandlers)

 	status (robot.errors.ContinueForLoop attribute)

 	(robot.errors.ExecutionFailed attribute)

 	(robot.errors.ExecutionFailures attribute)

 	(robot.errors.ExecutionPassed attribute)

 	(robot.errors.ExecutionStatus attribute)

 	(robot.errors.ExitForLoop attribute)

 	(robot.errors.HandlerExecutionFailed attribute)

 	(robot.errors.PassExecution attribute)

 	(robot.errors.ReturnFromKeyword attribute)

 	(robot.errors.UserKeywordExecutionFailed attribute)

 	(robot.result.model.For attribute)

 	(robot.result.model.ForIteration attribute)

 	(robot.result.model.If attribute)

 	(robot.result.model.IfBranch attribute)

 	(robot.result.model.Keyword attribute)

 	(robot.result.model.TestCase attribute)

 	(robot.result.model.TestSuite attribute)

 	(robot.running.status.SuiteStatus attribute)

 	(robot.running.status.TestStatus attribute)

 	status() (robot.output.console.verbose.VerboseWriter method)

 	status_rc (robot.conf.settings.RebotSettings attribute)

 	(robot.conf.settings.RobotSettings attribute)

 	StatusHandler (class in robot.result.xmlelementhandlers)

 	StatusMixin (class in robot.result.model)

 	StatusReporter (class in robot.output.console.dotted)

 	(class in robot.running.statusreporter)

 	stderr (robot.libraries.Process.ExecutionResult attribute)

 	stdout (robot.libraries.Process.ExecutionResult attribute)

 	StdoutLogSplitter (class in robot.output.stdoutlogsplitter)

 	StoredFinder (class in robot.variables.finders)

 	String (class in robot.libraries.String)

 	string() (robot.reporting.jsbuildingcontext.JsBuildingContext method)

 	StringCache (class in robot.reporting.stringcache)

 	StringConverter (class in robot.running.arguments.typeconverters)

 	StringDumper (class in robot.htmldata.jsonwriter)

 	StringIndex (class in robot.reporting.stringcache)

 	strings (robot.reporting.jsbuildingcontext.JsBuildingContext attribute)

 	strip() (robot.libraries.XML.NameSpaceStripper method)

 	strip_string() (robot.libraries.String.String method)

 	subtract_date_from_date() (in module robot.libraries.DateTime)

 	subtract_time_from_date() (in module robot.libraries.DateTime)

 	subtract_time_from_time() (in module robot.libraries.DateTime)

 	suite (robot.model.statistics.Statistics attribute)

 	(robot.result.executionresult.Result attribute)

 	suite_config (robot.conf.settings.RebotSettings attribute)

 	(robot.conf.settings.RobotSettings attribute)

 	suite_separator() (robot.output.console.verbose.VerboseWriter method)

 	SUITE_SETUP (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	SUITE_TEARDOWN (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	suite_teardown_failed() (robot.result.model.TestSuite method)

 	suite_teardown_skipped() (robot.result.model.TestSuite method)

 	SuiteBuilder (class in robot.reporting.jsmodelbuilders)

 	(class in robot.running.builder.transformers)

 	SuiteConfigurer (class in robot.model.configurer)

 	(class in robot.result.configurer)

 	SuiteHandler (class in robot.result.xmlelementhandlers)

 	SuiteMessage (class in robot.running.status)

 	SuiteNamePatterns (class in robot.model.namepatterns)

 	SuiteRunner (class in robot.running.suiterunner)

 	suites (robot.model.suitestatistics.SuiteStatistics attribute)

 	(robot.model.testsuite.TestSuite attribute)

 	(robot.result.model.TestSuite attribute)

 	(robot.running.model.TestSuite attribute)

 	SuiteSetup (class in robot.parsing.model.statements)

 	SuiteStat (class in robot.model.stats)

 	SuiteStatistics (class in robot.model.suitestatistics)

 	SuiteStatisticsBuilder (class in robot.model.suitestatistics)

 	SuiteStatus (class in robot.running.status)

 	SuiteStructure (class in robot.parsing.suitestructure)

 	SuiteStructureBuilder (class in robot.parsing.suitestructure)

 	SuiteStructureParser (class in robot.running.builder.builders)

 	SuiteStructureVisitor (class in robot.parsing.suitestructure)

 	SuiteTeardown (class in robot.parsing.model.statements)

 	SuiteTeardownFailed (class in robot.result.suiteteardownfailed)

 	SuiteTeardownFailureHandler (class in robot.result.suiteteardownfailed)

 	SuiteVisitor (class in robot.model.visitor)

 	SuiteWriter (class in robot.reporting.jswriter)

 	supports_kwargs (robot.running.dynamicmethods.RunKeyword attribute)

 	switch() (robot.utils.connectioncache.ConnectionCache method)

 	switch_connection() (robot.libraries.Telnet.Telnet method)

 	switch_process() (robot.libraries.Process.Process method)

 	system_decode() (in module robot.utils.encoding)

 	system_encode() (in module robot.utils.encoding)

T

 	
 	TableFormatter (class in robot.utils.htmlformatters)

 	tag (robot.result.xmlelementhandlers.ArgumentHandler attribute)

 	(robot.result.xmlelementhandlers.ArgumentsHandler attribute)

 	(robot.result.xmlelementhandlers.AssignHandler attribute)

 	(robot.result.xmlelementhandlers.DocHandler attribute)

 	(robot.result.xmlelementhandlers.ElementHandler attribute)

 	(robot.result.xmlelementhandlers.ErrorMessageHandler attribute)

 	(robot.result.xmlelementhandlers.ErrorsHandler attribute)

 	(robot.result.xmlelementhandlers.ForHandler attribute)

 	(robot.result.xmlelementhandlers.ForIterationHandler attribute)

 	(robot.result.xmlelementhandlers.IfBranchHandler attribute)

 	(robot.result.xmlelementhandlers.IfHandler attribute)

 	(robot.result.xmlelementhandlers.KeywordHandler attribute)

 	(robot.result.xmlelementhandlers.MessageHandler attribute)

 	(robot.result.xmlelementhandlers.MetaHandler attribute)

 	(robot.result.xmlelementhandlers.MetadataHandler attribute)

 	(robot.result.xmlelementhandlers.MetadataItemHandler attribute)

 	(robot.result.xmlelementhandlers.RobotHandler attribute)

 	(robot.result.xmlelementhandlers.RootHandler attribute)

 	(robot.result.xmlelementhandlers.StatisticsHandler attribute)

 	(robot.result.xmlelementhandlers.StatusHandler attribute)

 	(robot.result.xmlelementhandlers.SuiteHandler attribute)

 	(robot.result.xmlelementhandlers.TagHandler attribute)

 	(robot.result.xmlelementhandlers.TagsHandler attribute)

 	(robot.result.xmlelementhandlers.TestHandler attribute)

 	(robot.result.xmlelementhandlers.TimeoutHandler attribute)

 	(robot.result.xmlelementhandlers.ValueHandler attribute)

 	(robot.result.xmlelementhandlers.VarHandler attribute)

 	TagHandler (class in robot.result.xmlelementhandlers)

 	TagPattern() (in module robot.model.tags)

 	TagPatterns (class in robot.model.tags)

 	Tags (class in robot.model.tags)

 	(class in robot.parsing.model.statements)

 	tags (robot.model.keyword.Keyword attribute)

 	(robot.model.statistics.Statistics attribute)

 	(robot.model.tagstatistics.TagStatistics attribute)

 	(robot.model.testcase.TestCase attribute)

 	TAGS (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	tags (robot.result.model.For attribute)

 	(robot.result.model.ForIteration attribute)

 	(robot.result.model.If attribute)

 	(robot.result.model.IfBranch attribute)

 	(robot.result.model.Keyword attribute)

 	(robot.result.model.TestCase attribute)

 	(robot.result.modeldeprecation.DeprecatedAttributesMixin attribute)

 	(robot.running.builder.testsettings.TestSettings attribute)

 	(robot.running.model.Keyword attribute)

 	(robot.running.model.TestCase attribute)

 	(robot.running.model.UserKeyword attribute)

 	TagSetter (class in robot.model.tagsetter)

 	TagsHandler (class in robot.result.xmlelementhandlers)

 	TagStat (class in robot.model.stats)

 	TagStatDoc (class in robot.model.tagstatistics)

 	TagStatInfo (class in robot.model.tagstatistics)

 	TagStatistics (class in robot.model.tagstatistics)

 	TagStatisticsBuilder (class in robot.model.tagstatistics)

 	TagStatLink (class in robot.model.tagstatistics)

 	take_screenshot() (robot.libraries.Screenshot.Screenshot method)

 	take_screenshot_without_embedding() (robot.libraries.Screenshot.Screenshot method)

 	tasks (robot.parsing.model.blocks.TestCaseSection attribute)

 	Teardown (class in robot.parsing.model.statements)

 	TEARDOWN (robot.model.body.BodyItem attribute)

 	(robot.model.control.For attribute)

 	(robot.model.control.If attribute)

 	(robot.model.control.IfBranch attribute)

 	(robot.model.keyword.Keyword attribute)

 	teardown (robot.model.keyword.Keyword attribute)

 	(robot.model.keyword.Keywords attribute)

 	TEARDOWN (robot.model.message.Message attribute)

 	teardown (robot.model.testcase.TestCase attribute)

 	(robot.model.testsuite.TestSuite attribute)

 	TEARDOWN (robot.output.loggerhelper.Message attribute)

 	(robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	(robot.result.model.For attribute)

 	(robot.result.model.ForIteration attribute)

 	(robot.result.model.If attribute)

 	(robot.result.model.IfBranch attribute)

 	(robot.result.model.Keyword attribute)

 	teardown (robot.result.model.Keyword attribute)

 	TEARDOWN (robot.result.model.Message attribute)

 	teardown (robot.result.model.TestCase attribute)

 	(robot.result.model.TestSuite attribute)

 	(robot.running.builder.testsettings.TestDefaults attribute)

 	(robot.running.builder.testsettings.TestSettings attribute)

 	TEARDOWN (robot.running.model.For attribute)

 	(robot.running.model.If attribute)

 	(robot.running.model.IfBranch attribute)

 	(robot.running.model.Keyword attribute)

 	teardown (robot.running.model.Keyword attribute)

 	(robot.running.model.TestCase attribute)

 	(robot.running.model.TestSuite attribute)

 	(robot.running.model.UserKeyword attribute)

 	teardown_allowed (robot.running.status.Exit attribute)

 	(robot.running.status.SuiteStatus attribute)

 	(robot.running.status.TestStatus attribute)

 	teardown_executed() (robot.running.status.SuiteStatus method)

 	(robot.running.status.TestStatus method)

 	teardown_message (robot.running.status.ParentMessage attribute)

 	(robot.running.status.SuiteMessage attribute)

 	(robot.running.status.TestMessage attribute)

 	teardown_skipped_message (robot.running.status.ParentMessage attribute)

 	(robot.running.status.SuiteMessage attribute)

 	(robot.running.status.TestMessage attribute)

 	Telnet (class in robot.libraries.Telnet)

 	TelnetConnection (class in robot.libraries.Telnet)

 	Template (class in robot.parsing.model.statements)

 	TEMPLATE (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	template (robot.running.builder.testsettings.TestSettings attribute)

 	(robot.running.model.TestCase attribute)

 	template_set (robot.parsing.lexer.context.KeywordContext attribute)

 	(robot.parsing.lexer.context.TestCaseContext attribute)

 	(robot.parsing.lexer.settings.TestCaseSettings attribute)

 	TemplateArguments (class in robot.parsing.model.statements)

 	TerminalEmulator (class in robot.libraries.Telnet)

 	terminate_all_processes() (robot.libraries.Process.Process method)

 	terminate_process() (robot.libraries.Process.Process method)

 	TERMINATE_TIMEOUT (robot.libraries.Process.Process attribute)

 	test() (robot.libraries.Screenshot.ScreenshotTaker method)

 	test_case() (robot.parsing.lexer.sections.InitFileSections method)

 	(robot.parsing.lexer.sections.ResourceFileSections method)

 	(robot.parsing.lexer.sections.Sections method)

 	(robot.parsing.lexer.sections.TestCaseFileSections method)

 	test_case_context() (robot.parsing.lexer.context.TestCaseFileContext method)

 	TEST_CASE_FILE_TYPE (robot.running.handlerstore.HandlerStore attribute)

 	(robot.running.userkeyword.UserLibrary attribute)

 	test_case_markers (robot.parsing.lexer.sections.InitFileSections attribute)

 	(robot.parsing.lexer.sections.ResourceFileSections attribute)

 	(robot.parsing.lexer.sections.Sections attribute)

 	(robot.parsing.lexer.sections.TestCaseFileSections attribute)

 	test_case_section() (robot.parsing.lexer.context.FileContext method)

 	(robot.parsing.lexer.context.InitFileContext method)

 	(robot.parsing.lexer.context.ResourceFileContext method)

 	(robot.parsing.lexer.context.TestCaseFileContext method)

 	test_class (robot.model.testsuite.TestSuite attribute)

 	(robot.result.model.TestSuite attribute)

 	(robot.running.model.TestSuite attribute)

 	test_count (robot.model.testsuite.TestSuite attribute)

 	(robot.result.model.TestSuite attribute)

 	(robot.running.model.TestSuite attribute)

 	test_failed() (robot.running.status.TestStatus method)

 	TEST_LIBRARY_TYPE (robot.running.handlerstore.HandlerStore attribute)

 	test_or_task() (in module robot.utils.misc)

 	test_separator() (robot.output.console.verbose.VerboseWriter method)

 	TEST_SETUP (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	test_skipped() (robot.running.status.TestStatus method)

 	TEST_TEARDOWN (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	TEST_TEMPLATE (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	TEST_TIMEOUT (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	TestBuilder (class in robot.reporting.jsmodelbuilders)

 	TestCase (class in robot.model.testcase)

 	(class in robot.parsing.model.blocks)

 	(class in robot.result.model)

 	(class in robot.running.model)

 	TESTCASE_HEADER (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	TESTCASE_NAME (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	TestCaseBuilder (class in robot.running.builder.transformers)

 	TestCaseContext (class in robot.parsing.lexer.context)

 	TestCaseFileContext (class in robot.parsing.lexer.context)

 	TestCaseFileSections (class in robot.parsing.lexer.sections)

 	TestCaseFileSettings (class in robot.parsing.lexer.settings)

 	TestCaseLexer (class in robot.parsing.lexer.blocklexers)

 	TestCaseName (class in robot.parsing.model.statements)

 	TestCaseParser (class in robot.parsing.parser.blockparsers)

 	TestCases (class in robot.model.testcase)

 	TestCaseScope (class in robot.running.libraryscopes)

 	TestCaseSection (class in robot.parsing.model.blocks)

 	TestCaseSectionHeaderLexer (class in robot.parsing.lexer.statementlexers)

 	TestCaseSectionLexer (class in robot.parsing.lexer.blocklexers)

 	TestCaseSectionParser (class in robot.parsing.parser.fileparser)

 	TestCaseSettings (class in robot.parsing.lexer.settings)

 	TestDefaults (class in robot.running.builder.testsettings)

 	TestDoc (class in robot.testdoc)

 	testdoc() (in module robot.testdoc)

 	testdoc_cli() (in module robot.testdoc)

 	TestdocModelWriter (class in robot.testdoc)

 	TestHandler (class in robot.result.xmlelementhandlers)

 	TestLibrary() (in module robot.running.testlibraries)

 	TestMessage (class in robot.running.status)

 	TestNamePatterns (class in robot.model.namepatterns)

 	TestOrKeywordLexer (class in robot.parsing.lexer.blocklexers)

 	TestOrKeywordSettingLexer (class in robot.parsing.lexer.statementlexers)

 	tests (robot.model.testsuite.TestSuite attribute)

 	(robot.result.model.TestSuite attribute)

 	(robot.running.model.TestSuite attribute)

 	TestSettings (class in robot.running.builder.testsettings)

 	TestSetup (class in robot.parsing.model.statements)

 	TestStatus (class in robot.running.status)

 	TestSuite (class in robot.model.testsuite)

 	(class in robot.result.model)

 	(class in robot.running.model)

 	TestSuiteBuilder (class in robot.running.builder.builders)

 	TestSuiteFactory() (in module robot.testdoc)

 	TestSuites (class in robot.model.testsuite)

 	TestSuiteScope (class in robot.running.libraryscopes)

 	TestTeardown (class in robot.parsing.model.statements)

 	TestTemplate (class in robot.parsing.model.statements)

 	TestTimeout (class in robot.parsing.model.statements)

 	(class in robot.running.timeouts)

 	Tidy (class in robot.tidy)

 	tidy_cli() (in module robot.tidy)

 	TidyCommandLine (class in robot.tidy)

 	time_left() (robot.running.timeouts.KeywordTimeout method)

 	(robot.running.timeouts.TestTimeout method)

 	timed_out() (robot.running.timeouts.KeywordTimeout method)

 	(robot.running.timeouts.TestTimeout method)

 	TimeDeltaConverter (class in robot.running.arguments.typeconverters)

 	Timeout (class in robot.parsing.model.statements)

 	(class in robot.running.timeouts.posix)

 	(class in robot.running.timeouts.windows)

 	timeout (robot.errors.ContinueForLoop attribute)

 	(robot.errors.ExecutionFailed attribute)

 	(robot.errors.ExecutionFailures attribute)

 	(robot.errors.ExecutionPassed attribute)

 	(robot.errors.ExecutionStatus attribute)

 	(robot.errors.ExitForLoop attribute)

 	(robot.errors.HandlerExecutionFailed attribute)

 	(robot.errors.PassExecution attribute)

 	(robot.errors.ReturnFromKeyword attribute)

 	(robot.errors.UserKeywordExecutionFailed attribute)

 	(robot.model.keyword.Keyword attribute)

 	(robot.model.testcase.TestCase attribute)

 	TIMEOUT (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	
 	timeout (robot.result.model.For attribute)

 	(robot.result.model.ForIteration attribute)

 	(robot.result.model.If attribute)

 	(robot.result.model.IfBranch attribute)

 	(robot.result.model.Keyword attribute)

 	(robot.result.model.TestCase attribute)

 	(robot.result.modeldeprecation.DeprecatedAttributesMixin attribute)

 	(robot.running.builder.testsettings.TestDefaults attribute)

 	(robot.running.builder.testsettings.TestSettings attribute)

 	(robot.running.model.Keyword attribute)

 	(robot.running.model.TestCase attribute)

 	TimeoutError

 	TimeoutHandler (class in robot.result.xmlelementhandlers)

 	TimeoutHTTPSTransport (class in robot.libraries.Remote)

 	TimeoutHTTPTransport (class in robot.libraries.Remote)

 	timestamp (robot.model.message.Message attribute)

 	(robot.output.loggerhelper.Message attribute)

 	(robot.result.model.Message attribute)

 	timestamp() (robot.reporting.jsbuildingcontext.JsBuildingContext method)

 	title() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	tk_bisque() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	tk_focusFollowsMouse() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	tk_focusNext() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	tk_focusPrev() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	tk_menuBar() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	tk_setPalette() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	tk_strictMotif() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	tkraise() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	to_dictionary() (robot.libdocpkg.datatypes.DataTypeCatalog method)

 	(robot.libdocpkg.datatypes.EnumDoc method)

 	(robot.libdocpkg.datatypes.TypedDictDoc method)

 	(robot.libdocpkg.model.KeywordDoc method)

 	(robot.libdocpkg.model.LibraryDoc method)

 	to_json() (robot.libdocpkg.model.LibraryDoc method)

 	Token (class in robot.parsing.lexer.tokens)

 	token_type (robot.parsing.lexer.statementlexers.CommentLexer attribute)

 	(robot.parsing.lexer.statementlexers.CommentSectionHeaderLexer attribute)

 	(robot.parsing.lexer.statementlexers.ElseHeaderLexer attribute)

 	(robot.parsing.lexer.statementlexers.ElseIfHeaderLexer attribute)

 	(robot.parsing.lexer.statementlexers.EndLexer attribute)

 	(robot.parsing.lexer.statementlexers.ErrorSectionHeaderLexer attribute)

 	(robot.parsing.lexer.statementlexers.ForHeaderLexer attribute)

 	(robot.parsing.lexer.statementlexers.IfHeaderLexer attribute)

 	(robot.parsing.lexer.statementlexers.KeywordCallLexer attribute)

 	(robot.parsing.lexer.statementlexers.KeywordSectionHeaderLexer attribute)

 	(robot.parsing.lexer.statementlexers.SectionHeaderLexer attribute)

 	(robot.parsing.lexer.statementlexers.SettingLexer attribute)

 	(robot.parsing.lexer.statementlexers.SettingSectionHeaderLexer attribute)

 	(robot.parsing.lexer.statementlexers.StatementLexer attribute)

 	(robot.parsing.lexer.statementlexers.TestCaseSectionHeaderLexer attribute)

 	(robot.parsing.lexer.statementlexers.TestOrKeywordSettingLexer attribute)

 	(robot.parsing.lexer.statementlexers.VariableLexer attribute)

 	(robot.parsing.lexer.statementlexers.VariableSectionHeaderLexer attribute)

 	tokenize() (robot.parsing.lexer.tokenizer.Tokenizer method)

 	tokenize_variables() (robot.parsing.lexer.tokens.EOS method)

 	(robot.parsing.lexer.tokens.Token method)

 	Tokenizer (class in robot.parsing.lexer.tokenizer)

 	top (robot.running.context.ExecutionContexts attribute)

 	total (robot.model.statistics.Statistics attribute)

 	(robot.model.stats.CombinedTagStat attribute)

 	(robot.model.stats.Stat attribute)

 	(robot.model.stats.SuiteStat attribute)

 	(robot.model.stats.TagStat attribute)

 	(robot.model.stats.TotalStat attribute)

 	(robot.model.totalstatistics.TotalStatistics attribute)

 	TotalStat (class in robot.model.stats)

 	TotalStatistics (class in robot.model.totalstatistics)

 	TotalStatisticsBuilder (class in robot.model.totalstatistics)

 	touch() (robot.libraries.OperatingSystem.OperatingSystem method)

 	trace() (in module robot.api.logger)

 	(in module robot.output.librarylogger)

 	(robot.output.filelogger.FileLogger method)

 	(robot.output.logger.Logger method)

 	(robot.output.loggerhelper.AbstractLogger method)

 	(robot.output.output.Output method)

 	(robot.utils.importer.NoLogger method)

 	traceback (robot.utils.error.JavaErrorDetails attribute)

 	(robot.utils.error.PythonErrorDetails attribute)

 	transient() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	TupleConverter (class in robot.running.arguments.typeconverters)

 	TupleListDumper (class in robot.htmldata.jsonwriter)

 	type (robot.model.body.BodyItem attribute)

 	(robot.model.control.For attribute)

 	(robot.model.control.If attribute)

 	(robot.model.control.IfBranch attribute)

 	(robot.model.keyword.Keyword attribute)

 	(robot.model.message.Message attribute)

 	(robot.model.stats.CombinedTagStat attribute)

 	(robot.model.stats.SuiteStat attribute)

 	(robot.model.stats.TagStat attribute)

 	(robot.model.stats.TotalStat attribute)

 	(robot.output.loggerhelper.Message attribute)

 	(robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	(robot.parsing.model.blocks.If attribute)

 	(robot.parsing.model.statements.Arguments attribute)

 	(robot.parsing.model.statements.Comment attribute)

 	(robot.parsing.model.statements.DefaultTags attribute)

 	(robot.parsing.model.statements.Documentation attribute)

 	(robot.parsing.model.statements.DocumentationOrMetadata attribute)

 	(robot.parsing.model.statements.ElseHeader attribute)

 	(robot.parsing.model.statements.ElseIfHeader attribute)

 	(robot.parsing.model.statements.EmptyLine attribute)

 	(robot.parsing.model.statements.End attribute)

 	(robot.parsing.model.statements.Error attribute)

 	(robot.parsing.model.statements.Fixture attribute)

 	(robot.parsing.model.statements.ForHeader attribute)

 	(robot.parsing.model.statements.ForceTags attribute)

 	(robot.parsing.model.statements.IfHeader attribute)

 	(robot.parsing.model.statements.KeywordCall attribute)

 	(robot.parsing.model.statements.KeywordName attribute)

 	(robot.parsing.model.statements.LibraryImport attribute)

 	(robot.parsing.model.statements.Metadata attribute)

 	(robot.parsing.model.statements.MultiValue attribute)

 	(robot.parsing.model.statements.ResourceImport attribute)

 	(robot.parsing.model.statements.Return attribute)

 	(robot.parsing.model.statements.SectionHeader attribute)

 	(robot.parsing.model.statements.Setup attribute)

 	(robot.parsing.model.statements.SingleValue attribute)

 	(robot.parsing.model.statements.Statement attribute)

 	(robot.parsing.model.statements.SuiteSetup attribute)

 	(robot.parsing.model.statements.SuiteTeardown attribute)

 	(robot.parsing.model.statements.Tags attribute)

 	(robot.parsing.model.statements.Teardown attribute)

 	(robot.parsing.model.statements.Template attribute)

 	(robot.parsing.model.statements.TemplateArguments attribute)

 	(robot.parsing.model.statements.TestCaseName attribute)

 	(robot.parsing.model.statements.TestSetup attribute)

 	(robot.parsing.model.statements.TestTeardown attribute)

 	(robot.parsing.model.statements.TestTemplate attribute)

 	(robot.parsing.model.statements.TestTimeout attribute)

 	(robot.parsing.model.statements.Timeout attribute)

 	(robot.parsing.model.statements.Variable attribute)

 	(robot.parsing.model.statements.VariablesImport attribute)

 	(robot.result.model.For attribute)

 	(robot.result.model.ForIteration attribute)

 	(robot.result.model.If attribute)

 	(robot.result.model.IfBranch attribute)

 	(robot.result.model.Keyword attribute)

 	(robot.result.model.Message attribute)

 	(robot.running.arguments.typeconverters.BooleanConverter attribute)

 	(robot.running.arguments.typeconverters.ByteArrayConverter attribute)

 	(robot.running.arguments.typeconverters.BytesConverter attribute)

 	(robot.running.arguments.typeconverters.CombinedConverter attribute)

 	(robot.running.arguments.typeconverters.DateConverter attribute)

 	(robot.running.arguments.typeconverters.DateTimeConverter attribute)

 	(robot.running.arguments.typeconverters.DecimalConverter attribute)

 	(robot.running.arguments.typeconverters.DictionaryConverter attribute)

 	(robot.running.arguments.typeconverters.EnumConverter attribute)

 	(robot.running.arguments.typeconverters.FloatConverter attribute)

 	(robot.running.arguments.typeconverters.FrozenSetConverter attribute)

 	(robot.running.arguments.typeconverters.IntegerConverter attribute)

 	(robot.running.arguments.typeconverters.ListConverter attribute)

 	(robot.running.arguments.typeconverters.NoneConverter attribute)

 	(robot.running.arguments.typeconverters.SetConverter attribute)

 	(robot.running.arguments.typeconverters.StringConverter attribute)

 	(robot.running.arguments.typeconverters.TimeDeltaConverter attribute)

 	(robot.running.arguments.typeconverters.TupleConverter attribute)

 	(robot.running.arguments.typeconverters.TypeConverter attribute)

 	(robot.running.model.For attribute)

 	(robot.running.model.If attribute)

 	(robot.running.model.IfBranch attribute)

 	(robot.running.model.Keyword attribute)

 	(robot.running.timeouts.KeywordTimeout attribute)

 	(robot.running.timeouts.TestTimeout attribute)

 	type_name (robot.running.arguments.typeconverters.BooleanConverter attribute)

 	(robot.running.arguments.typeconverters.ByteArrayConverter attribute)

 	(robot.running.arguments.typeconverters.BytesConverter attribute)

 	(robot.running.arguments.typeconverters.CombinedConverter attribute)

 	(robot.running.arguments.typeconverters.DateConverter attribute)

 	(robot.running.arguments.typeconverters.DateTimeConverter attribute)

 	(robot.running.arguments.typeconverters.DecimalConverter attribute)

 	(robot.running.arguments.typeconverters.DictionaryConverter attribute)

 	(robot.running.arguments.typeconverters.EnumConverter attribute)

 	(robot.running.arguments.typeconverters.FloatConverter attribute)

 	(robot.running.arguments.typeconverters.FrozenSetConverter attribute)

 	(robot.running.arguments.typeconverters.IntegerConverter attribute)

 	(robot.running.arguments.typeconverters.ListConverter attribute)

 	(robot.running.arguments.typeconverters.NoneConverter attribute)

 	(robot.running.arguments.typeconverters.SetConverter attribute)

 	(robot.running.arguments.typeconverters.StringConverter attribute)

 	(robot.running.arguments.typeconverters.TimeDeltaConverter attribute)

 	(robot.running.arguments.typeconverters.TupleConverter attribute)

 	(robot.running.arguments.typeconverters.TypeConverter attribute)

 	TypeConverter (class in robot.running.arguments.typeconverters)

 	typed_dicts (robot.libdocpkg.datatypes.DataTypeCatalog attribute)

 	TypedDictDoc (class in robot.libdocpkg.datatypes)

 	types (robot.running.arguments.argumentspec.ArgInfo attribute)

 	(robot.running.arguments.argumentspec.ArgumentSpec attribute)

 	types_reprs (robot.running.arguments.argumentspec.ArgInfo attribute)

 	TypeValidator (class in robot.running.arguments.typevalidator)

U

 	
 	unbind() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	unbind_all() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	unbind_class() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	unescape() (robot.utils.escaping.Unescaper method)

 	unescape_variable_syntax() (in module robot.variables.search)

 	Unescaper (class in robot.utils.escaping)

 	unhandled_tokens (robot.parsing.parser.blockparsers.BlockParser attribute)

 	(robot.parsing.parser.blockparsers.ForParser attribute)

 	(robot.parsing.parser.blockparsers.IfParser attribute)

 	(robot.parsing.parser.blockparsers.KeywordParser attribute)

 	(robot.parsing.parser.blockparsers.NestedBlockParser attribute)

 	(robot.parsing.parser.blockparsers.OrElseParser attribute)

 	(robot.parsing.parser.blockparsers.TestCaseParser attribute)

 	unicode_to_str() (in module robot.utils.compat)

 	unregister() (robot.output.listenermethods.LibraryListenerMethods method)

 	(robot.output.listeners.LibraryListeners method)

 	unregister_console_logger() (robot.output.logger.Logger method)

 	unregister_logger() (robot.output.logger.Logger method)

 	unregister_xml_logger() (robot.output.logger.Logger method)

 	
 	unstrip() (robot.libraries.XML.NameSpaceStripper method)

 	unwrap() (in module robot.utils.compat)

 	update() (robot.libdocpkg.datatypes.DataTypeCatalog method)

 	(robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	(robot.model.metadata.Metadata method)

 	(robot.utils.dotdict.DotDict method)

 	(robot.utils.normalizing.NormalizedDict method)

 	(robot.variables.evaluation.EvaluationNamespace method)

 	(robot.variables.scopes.GlobalVariables method)

 	(robot.variables.scopes.SetVariables method)

 	(robot.variables.store.VariableStore method)

 	(robot.variables.variables.Variables method)

 	update_idletasks() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	usage (robot.reporting.logreportwriters.LogWriter attribute)

 	(robot.reporting.logreportwriters.ReportWriter attribute)

 	user_agent (robot.libraries.Remote.TimeoutHTTPSTransport attribute)

 	(robot.libraries.Remote.TimeoutHTTPTransport attribute)

 	UserErrorHandler (class in robot.running.usererrorhandler)

 	UserKeyword (class in robot.running.model)

 	UserKeywordArgumentParser (class in robot.running.arguments.argumentparser)

 	UserKeywordExecutionFailed

 	UserKeywordHandler (class in robot.running.userkeyword)

 	UserKeywordRunner (class in robot.running.userkeywordrunner)

 	UserLibrary (class in robot.running.userkeyword)

V

 	
 	validate() (robot.libdoc.LibDoc method)

 	(robot.parsing.model.blocks.Block method)

 	(robot.parsing.model.blocks.CommentSection method)

 	(robot.parsing.model.blocks.File method)

 	(robot.parsing.model.blocks.For method)

 	(robot.parsing.model.blocks.If method)

 	(robot.parsing.model.blocks.Keyword method)

 	(robot.parsing.model.blocks.KeywordSection method)

 	(robot.parsing.model.blocks.Section method)

 	(robot.parsing.model.blocks.SettingSection method)

 	(robot.parsing.model.blocks.TestCase method)

 	(robot.parsing.model.blocks.TestCaseSection method)

 	(robot.parsing.model.blocks.VariableSection method)

 	(robot.parsing.model.statements.Arguments method)

 	(robot.parsing.model.statements.Comment method)

 	(robot.parsing.model.statements.DefaultTags method)

 	(robot.parsing.model.statements.Documentation method)

 	(robot.parsing.model.statements.DocumentationOrMetadata method)

 	(robot.parsing.model.statements.ElseHeader method)

 	(robot.parsing.model.statements.ElseIfHeader method)

 	(robot.parsing.model.statements.EmptyLine method)

 	(robot.parsing.model.statements.End method)

 	(robot.parsing.model.statements.Error method)

 	(robot.parsing.model.statements.Fixture method)

 	(robot.parsing.model.statements.ForHeader method)

 	(robot.parsing.model.statements.ForceTags method)

 	(robot.parsing.model.statements.IfHeader method)

 	(robot.parsing.model.statements.KeywordCall method)

 	(robot.parsing.model.statements.KeywordName method)

 	(robot.parsing.model.statements.LibraryImport method)

 	(robot.parsing.model.statements.Metadata method)

 	(robot.parsing.model.statements.MultiValue method)

 	(robot.parsing.model.statements.ResourceImport method)

 	(robot.parsing.model.statements.Return method)

 	(robot.parsing.model.statements.SectionHeader method)

 	(robot.parsing.model.statements.Setup method)

 	(robot.parsing.model.statements.SingleValue method)

 	(robot.parsing.model.statements.Statement method)

 	(robot.parsing.model.statements.SuiteSetup method)

 	(robot.parsing.model.statements.SuiteTeardown method)

 	(robot.parsing.model.statements.Tags method)

 	(robot.parsing.model.statements.Teardown method)

 	(robot.parsing.model.statements.Template method)

 	(robot.parsing.model.statements.TemplateArguments method)

 	(robot.parsing.model.statements.TestCaseName method)

 	(robot.parsing.model.statements.TestSetup method)

 	(robot.parsing.model.statements.TestTeardown method)

 	(robot.parsing.model.statements.TestTemplate method)

 	(robot.parsing.model.statements.TestTimeout method)

 	(robot.parsing.model.statements.Timeout method)

 	(robot.parsing.model.statements.Variable method)

 	(robot.parsing.model.statements.VariablesImport method)

 	(robot.rebot.Rebot method)

 	(robot.run.RobotFramework method)

 	(robot.running.arguments.argumentvalidator.ArgumentValidator method)

 	(robot.running.arguments.typevalidator.TypeValidator method)

 	(robot.testdoc.TestDoc method)

 	(robot.tidy.TidyCommandLine method)

 	(robot.utils.application.Application method)

 	(robot.variables.assigner.AssignmentValidator method)

 	validate_assignment() (robot.variables.assigner.VariableAssignment method)

 	validate_command() (robot.libdocpkg.consoleviewer.ConsoleViewer class method)

 	validate_flatten_keyword() (in module robot.result.flattenkeywordmatcher)

 	validate_model() (robot.parsing.model.blocks.Block method)

 	(robot.parsing.model.blocks.CommentSection method)

 	(robot.parsing.model.blocks.File method)

 	(robot.parsing.model.blocks.For method)

 	(robot.parsing.model.blocks.If method)

 	(robot.parsing.model.blocks.Keyword method)

 	(robot.parsing.model.blocks.KeywordSection method)

 	(robot.parsing.model.blocks.Section method)

 	(robot.parsing.model.blocks.SettingSection method)

 	(robot.parsing.model.blocks.TestCase method)

 	(robot.parsing.model.blocks.TestCaseSection method)

 	(robot.parsing.model.blocks.VariableSection method)

 	validate_type_dict() (robot.running.arguments.typevalidator.TypeValidator method)

 	value (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	(robot.parsing.model.statements.Documentation attribute)

 	(robot.parsing.model.statements.Metadata attribute)

 	(robot.parsing.model.statements.SingleValue attribute)

 	(robot.parsing.model.statements.Template attribute)

 	(robot.parsing.model.statements.TestTemplate attribute)

 	(robot.parsing.model.statements.TestTimeout attribute)

 	(robot.parsing.model.statements.Timeout attribute)

 	(robot.parsing.model.statements.Variable attribute)

 	value_types (robot.running.arguments.typeconverters.BooleanConverter attribute)

 	(robot.running.arguments.typeconverters.ByteArrayConverter attribute)

 	(robot.running.arguments.typeconverters.BytesConverter attribute)

 	(robot.running.arguments.typeconverters.CombinedConverter attribute)

 	(robot.running.arguments.typeconverters.DateConverter attribute)

 	(robot.running.arguments.typeconverters.DateTimeConverter attribute)

 	(robot.running.arguments.typeconverters.DecimalConverter attribute)

 	(robot.running.arguments.typeconverters.DictionaryConverter attribute)

 	(robot.running.arguments.typeconverters.EnumConverter attribute)

 	(robot.running.arguments.typeconverters.FloatConverter attribute)

 	(robot.running.arguments.typeconverters.FrozenSetConverter attribute)

 	(robot.running.arguments.typeconverters.IntegerConverter attribute)

 	(robot.running.arguments.typeconverters.ListConverter attribute)

 	(robot.running.arguments.typeconverters.NoneConverter attribute)

 	(robot.running.arguments.typeconverters.SetConverter attribute)

 	(robot.running.arguments.typeconverters.StringConverter attribute)

 	(robot.running.arguments.typeconverters.TimeDeltaConverter attribute)

 	(robot.running.arguments.typeconverters.TupleConverter attribute)

 	(robot.running.arguments.typeconverters.TypeConverter attribute)

 	ValueHandler (class in robot.result.xmlelementhandlers)

 	values (robot.model.control.For attribute)

 	(robot.parsing.model.blocks.For attribute)

 	(robot.parsing.model.statements.Arguments attribute)

 	(robot.parsing.model.statements.DefaultTags attribute)

 	(robot.parsing.model.statements.ForHeader attribute)

 	(robot.parsing.model.statements.ForceTags attribute)

 	(robot.parsing.model.statements.MultiValue attribute)

 	(robot.parsing.model.statements.Return attribute)

 	(robot.parsing.model.statements.Tags attribute)

 	(robot.result.model.For attribute)

 	(robot.running.model.For attribute)

 	values() (robot.model.metadata.Metadata method)

 	(robot.running.importer.ImportCache method)

 	(robot.utils.dotdict.DotDict method)

 	(robot.utils.normalizing.NormalizedDict method)

 	(robot.variables.evaluation.EvaluationNamespace method)

 	VAR_NAMED (robot.running.arguments.argumentspec.ArgInfo attribute)

 	VAR_POSITIONAL (robot.running.arguments.argumentspec.ArgInfo attribute)

 	VarHandler (class in robot.result.xmlelementhandlers)

 	Variable (class in robot.parsing.model.statements)

 	(class in robot.running.model)

 	VARIABLE (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	variable() (robot.parsing.lexer.sections.InitFileSections method)

 	(robot.parsing.lexer.sections.ResourceFileSections method)

 	(robot.parsing.lexer.sections.Sections method)

 	(robot.parsing.lexer.sections.TestCaseFileSections method)

 	variable_files (robot.conf.settings.RobotSettings attribute)

 	VARIABLE_HEADER (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	variable_markers (robot.parsing.lexer.sections.InitFileSections attribute)

 	(robot.parsing.lexer.sections.ResourceFileSections attribute)

 	(robot.parsing.lexer.sections.Sections attribute)

 	(robot.parsing.lexer.sections.TestCaseFileSections attribute)

 	variable_not_found() (in module robot.variables.notfound)

 	variable_section() (robot.parsing.lexer.context.FileContext method)

 	(robot.parsing.lexer.context.InitFileContext method)

 	(robot.parsing.lexer.context.ResourceFileContext method)

 	(robot.parsing.lexer.context.TestCaseFileContext method)

 	variable_should_exist() (robot.libraries.BuiltIn.BuiltIn method)

 	variable_should_not_exist() (robot.libraries.BuiltIn.BuiltIn method)

 	variable_state() (robot.variables.search.VariableSearcher method)

 	VariableAssigner (class in robot.variables.assigner)

 	VariableAssignment (class in robot.variables.assigner)

 	VariableError

 	VariableFileSetter (class in robot.variables.filesetter)

 	VariableFinder (class in robot.variables.finders)

 	VariableIterator (class in robot.variables.search)

 	VariableLexer (class in robot.parsing.lexer.statementlexers)

 	VariableMatch (class in robot.variables.search)

 	VariableReplacer (class in robot.running.arguments.argumentresolver)

 	(class in robot.variables.replacer)

 	Variables (class in robot.variables.variables)

 	variables (robot.conf.settings.RobotSettings attribute)

 	(robot.model.control.For attribute)

 	VARIABLES (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	variables (robot.parsing.model.blocks.For attribute)

 	(robot.parsing.model.statements.ForHeader attribute)

 	(robot.result.model.For attribute)

 	(robot.result.model.ForIteration attribute)

 	(robot.running.model.For attribute)

 	(robot.running.model.ResourceFile attribute)

 	variables() (robot.running.model.Imports method)

 	VariableScopes (class in robot.variables.scopes)

 	VariableSearcher (class in robot.variables.search)

 	VariableSection (class in robot.parsing.model.blocks)

 	VariableSectionHeaderLexer (class in robot.parsing.lexer.statementlexers)

 	VariableSectionLexer (class in robot.parsing.lexer.blocklexers)

 	VariableSectionParser (class in robot.parsing.parser.fileparser)

 	VariablesImport (class in robot.parsing.model.statements)

 	VariableStore (class in robot.variables.store)

 	VariableTableSetter (class in robot.variables.tablesetter)

 	VariableTableValue() (in module robot.variables.tablesetter)

 	VariableTableValueBase (class in robot.variables.tablesetter)

 	VerboseOutput (class in robot.output.console.verbose)

 	VerboseWriter (class in robot.output.console.verbose)

 	version() (robot.libdocpkg.consoleviewer.ConsoleViewer method)

 	view() (robot.libdocpkg.consoleviewer.ConsoleViewer method)

 	viewitems() (robot.utils.dotdict.DotDict method)

 	viewkeys() (robot.utils.dotdict.DotDict method)

 	viewvalues() (robot.utils.dotdict.DotDict method)

 	visit() (robot.model.body.Body method)

 	(robot.model.body.IfBranches method)

 	(robot.model.control.For method)

 	(robot.model.control.If method)

 	(robot.model.control.IfBranch method)

 	(robot.model.itemlist.ItemList method)

 	(robot.model.keyword.Keyword method)

 	(robot.model.keyword.Keywords method)

 	(robot.model.message.Message method)

 	(robot.model.message.Messages method)

 	(robot.model.statistics.Statistics method)

 	(robot.model.stats.CombinedTagStat method)

 	(robot.model.stats.Stat method)

 	(robot.model.stats.SuiteStat method)

 	(robot.model.stats.TagStat method)

 	(robot.model.stats.TotalStat method)

 	(robot.model.suitestatistics.SuiteStatistics method)

 	(robot.model.tagstatistics.TagStatistics method)

 	(robot.model.testcase.TestCase method)

 	(robot.model.testcase.TestCases method)

 	(robot.model.testsuite.TestSuite method)

 	(robot.model.testsuite.TestSuites method)

 	(robot.model.totalstatistics.TotalStatistics method)

 	(robot.output.loggerhelper.Message method)

 	(robot.parsing.model.blocks.FirstStatementFinder method)

 	(robot.parsing.model.blocks.LastStatementFinder method)

 	(robot.parsing.model.blocks.ModelValidator method)

 	(robot.parsing.model.blocks.ModelWriter method)

 	(robot.parsing.model.visitor.ModelTransformer method)

 	(robot.parsing.model.visitor.ModelVisitor method)

 	(robot.parsing.suitestructure.SuiteStructure method)

 	(robot.result.executionerrors.ExecutionErrors method)

 	(robot.result.executionresult.CombinedResult method)

 	(robot.result.executionresult.Result method)

 	(robot.result.model.Body method)

 	(robot.result.model.For method)

 	(robot.result.model.ForIteration method)

 	(robot.result.model.ForIterations method)

 	(robot.result.model.If method)

 	(robot.result.model.IfBranch method)

 	(robot.result.model.IfBranches method)

 	(robot.result.model.Keyword method)

 	(robot.result.model.Message method)

 	(robot.result.model.TestCase method)

 	(robot.result.model.TestSuite method)

 	(robot.running.builder.parsers.ErrorReporter method)

 	(robot.running.builder.transformers.ForBuilder method)

 	(robot.running.builder.transformers.IfBuilder method)

 	(robot.running.builder.transformers.KeywordBuilder method)

 	(robot.running.builder.transformers.ResourceBuilder method)

 	(robot.running.builder.transformers.SettingsBuilder method)

 	(robot.running.builder.transformers.SuiteBuilder method)

 	(robot.running.builder.transformers.TestCaseBuilder method)

 	(robot.running.model.Body method)

 	(robot.running.model.For method)

 	(robot.running.model.If method)

 	(robot.running.model.IfBranch method)

 	(robot.running.model.IfBranches method)

 	(robot.running.model.Imports method)

 	(robot.running.model.Keyword method)

 	(robot.running.model.TestCase method)

 	(robot.running.model.TestSuite method)

 	(robot.tidypkg.transformers.Aligner method)

 	(robot.tidypkg.transformers.Cleaner method)

 	(robot.tidypkg.transformers.ColumnAligner method)

 	(robot.tidypkg.transformers.ColumnWidthCounter method)

 	(robot.tidypkg.transformers.NewlineNormalizer method)

 	(robot.tidypkg.transformers.SeparatorNormalizer method)

 	visit_Arguments() (robot.running.builder.transformers.KeywordBuilder method)

 	visit_Block() (robot.parsing.model.blocks.ModelValidator method)

 	visit_CommentSection() (robot.tidypkg.transformers.Cleaner method)

 	(robot.tidypkg.transformers.NewlineNormalizer method)

 	visit_DefaultTags() (robot.running.builder.transformers.SettingsBuilder method)

 	visit_directory() (robot.parsing.suitestructure.SuiteStructureVisitor method)

 	(robot.running.builder.builders.SuiteStructureParser method)

 	(robot.tidy.Tidy method)

 	visit_Documentation() (robot.running.builder.transformers.KeywordBuilder method)

 	(robot.running.builder.transformers.ResourceBuilder method)

 	(robot.running.builder.transformers.SettingsBuilder method)

 	(robot.running.builder.transformers.TestCaseBuilder method)

 	visit_Error() (robot.running.builder.parsers.ErrorReporter method)

 	visit_errors() (robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.visitor.ResultVisitor method)

 	visit_file() (robot.parsing.suitestructure.SuiteStructureVisitor method)

 	(robot.running.builder.builders.SuiteStructureParser method)

 	(robot.tidy.Tidy method)

 	visit_File() (robot.tidypkg.transformers.NewlineNormalizer method)

 	visit_for() (robot.conf.gatherfailed.GatherFailedSuites method)

 	(robot.conf.gatherfailed.GatherFailedTests method)

 	(robot.model.configurer.SuiteConfigurer method)

 	(robot.model.filter.EmptySuiteRemover method)

 	(robot.model.filter.Filter method)

 	(robot.model.modifier.ModelModifier method)

 	(robot.model.statistics.StatisticsBuilder method)

 	(robot.model.tagsetter.TagSetter method)

 	(robot.model.totalstatistics.TotalStatisticsBuilder method)

 	(robot.model.visitor.SuiteVisitor method)

 	(robot.output.console.dotted.StatusReporter method)

 	(robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.configurer.SuiteConfigurer method)

 	(robot.result.keywordremover.AllKeywordsRemover method)

 	(robot.result.keywordremover.ByNameKeywordRemover method)

 	(robot.result.keywordremover.ByTagKeywordRemover method)

 	(robot.result.keywordremover.ForLoopItemsRemover method)

 	(robot.result.keywordremover.PassedKeywordRemover method)

 	(robot.result.keywordremover.WaitUntilKeywordSucceedsRemover method)

 	(robot.result.keywordremover.WarningAndErrorFinder method)

 	(robot.result.merger.Merger method)

 	(robot.result.messagefilter.MessageFilter method)

 	(robot.result.resultbuilder.RemoveKeywords method)

 	(robot.result.suiteteardownfailed.SuiteTeardownFailed method)

 	(robot.result.suiteteardownfailed.SuiteTeardownFailureHandler method)

 	(robot.result.visitor.ResultVisitor method)

 	visit_For() (robot.running.builder.transformers.ForBuilder method)

 	(robot.running.builder.transformers.IfBuilder method)

 	(robot.running.builder.transformers.KeywordBuilder method)

 	(robot.running.builder.transformers.TestCaseBuilder method)

 	
 	visit_for() (robot.running.randomizer.Randomizer method)

 	(robot.running.suiterunner.SuiteRunner method)

 	visit_For() (robot.tidypkg.transformers.Cleaner method)

 	(robot.tidypkg.transformers.ColumnAligner method)

 	(robot.tidypkg.transformers.SeparatorNormalizer method)

 	visit_for_iteration() (robot.conf.gatherfailed.GatherFailedSuites method)

 	(robot.conf.gatherfailed.GatherFailedTests method)

 	(robot.model.configurer.SuiteConfigurer method)

 	(robot.model.filter.EmptySuiteRemover method)

 	(robot.model.filter.Filter method)

 	(robot.model.modifier.ModelModifier method)

 	(robot.model.statistics.StatisticsBuilder method)

 	(robot.model.tagsetter.TagSetter method)

 	(robot.model.totalstatistics.TotalStatisticsBuilder method)

 	(robot.model.visitor.SuiteVisitor method)

 	(robot.output.console.dotted.StatusReporter method)

 	(robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.configurer.SuiteConfigurer method)

 	(robot.result.keywordremover.AllKeywordsRemover method)

 	(robot.result.keywordremover.ByNameKeywordRemover method)

 	(robot.result.keywordremover.ByTagKeywordRemover method)

 	(robot.result.keywordremover.ForLoopItemsRemover method)

 	(robot.result.keywordremover.PassedKeywordRemover method)

 	(robot.result.keywordremover.WaitUntilKeywordSucceedsRemover method)

 	(robot.result.keywordremover.WarningAndErrorFinder method)

 	(robot.result.merger.Merger method)

 	(robot.result.messagefilter.MessageFilter method)

 	(robot.result.resultbuilder.RemoveKeywords method)

 	(robot.result.suiteteardownfailed.SuiteTeardownFailed method)

 	(robot.result.suiteteardownfailed.SuiteTeardownFailureHandler method)

 	(robot.result.visitor.ResultVisitor method)

 	(robot.running.randomizer.Randomizer method)

 	(robot.running.suiterunner.SuiteRunner method)

 	visit_ForceTags() (robot.running.builder.transformers.SettingsBuilder method)

 	visit_if() (robot.conf.gatherfailed.GatherFailedSuites method)

 	(robot.conf.gatherfailed.GatherFailedTests method)

 	(robot.model.configurer.SuiteConfigurer method)

 	(robot.model.filter.EmptySuiteRemover method)

 	(robot.model.filter.Filter method)

 	(robot.model.modifier.ModelModifier method)

 	(robot.model.statistics.StatisticsBuilder method)

 	(robot.model.tagsetter.TagSetter method)

 	(robot.model.totalstatistics.TotalStatisticsBuilder method)

 	(robot.model.visitor.SuiteVisitor method)

 	(robot.output.console.dotted.StatusReporter method)

 	(robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.configurer.SuiteConfigurer method)

 	(robot.result.keywordremover.AllKeywordsRemover method)

 	(robot.result.keywordremover.ByNameKeywordRemover method)

 	(robot.result.keywordremover.ByTagKeywordRemover method)

 	(robot.result.keywordremover.ForLoopItemsRemover method)

 	(robot.result.keywordremover.PassedKeywordRemover method)

 	(robot.result.keywordremover.WaitUntilKeywordSucceedsRemover method)

 	(robot.result.keywordremover.WarningAndErrorFinder method)

 	(robot.result.merger.Merger method)

 	(robot.result.messagefilter.MessageFilter method)

 	(robot.result.resultbuilder.RemoveKeywords method)

 	(robot.result.suiteteardownfailed.SuiteTeardownFailed method)

 	(robot.result.suiteteardownfailed.SuiteTeardownFailureHandler method)

 	(robot.result.visitor.ResultVisitor method)

 	visit_If() (robot.running.builder.transformers.ForBuilder method)

 	(robot.running.builder.transformers.IfBuilder method)

 	(robot.running.builder.transformers.KeywordBuilder method)

 	(robot.running.builder.transformers.TestCaseBuilder method)

 	visit_if() (robot.running.randomizer.Randomizer method)

 	(robot.running.suiterunner.SuiteRunner method)

 	visit_If() (robot.tidypkg.transformers.SeparatorNormalizer method)

 	visit_if_branch() (robot.conf.gatherfailed.GatherFailedSuites method)

 	(robot.conf.gatherfailed.GatherFailedTests method)

 	(robot.model.configurer.SuiteConfigurer method)

 	(robot.model.filter.EmptySuiteRemover method)

 	(robot.model.filter.Filter method)

 	(robot.model.modifier.ModelModifier method)

 	(robot.model.statistics.StatisticsBuilder method)

 	(robot.model.tagsetter.TagSetter method)

 	(robot.model.totalstatistics.TotalStatisticsBuilder method)

 	(robot.model.visitor.SuiteVisitor method)

 	(robot.output.console.dotted.StatusReporter method)

 	(robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.configurer.SuiteConfigurer method)

 	(robot.result.keywordremover.AllKeywordsRemover method)

 	(robot.result.keywordremover.ByNameKeywordRemover method)

 	(robot.result.keywordremover.ByTagKeywordRemover method)

 	(robot.result.keywordremover.ForLoopItemsRemover method)

 	(robot.result.keywordremover.PassedKeywordRemover method)

 	(robot.result.keywordremover.WaitUntilKeywordSucceedsRemover method)

 	(robot.result.keywordremover.WarningAndErrorFinder method)

 	(robot.result.merger.Merger method)

 	(robot.result.messagefilter.MessageFilter method)

 	(robot.result.resultbuilder.RemoveKeywords method)

 	(robot.result.suiteteardownfailed.SuiteTeardownFailed method)

 	(robot.result.suiteteardownfailed.SuiteTeardownFailureHandler method)

 	(robot.result.visitor.ResultVisitor method)

 	(robot.running.randomizer.Randomizer method)

 	(robot.running.suiterunner.SuiteRunner method)

 	visit_keyword() (robot.conf.gatherfailed.GatherFailedSuites method)

 	(robot.conf.gatherfailed.GatherFailedTests method)

 	(robot.model.configurer.SuiteConfigurer method)

 	(robot.model.filter.EmptySuiteRemover method)

 	(robot.model.filter.Filter method)

 	(robot.model.modifier.ModelModifier method)

 	(robot.model.statistics.StatisticsBuilder method)

 	(robot.model.tagsetter.TagSetter method)

 	(robot.model.totalstatistics.TotalStatisticsBuilder method)

 	(robot.model.visitor.SuiteVisitor method)

 	(robot.output.console.dotted.StatusReporter method)

 	(robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.configurer.SuiteConfigurer method)

 	(robot.result.keywordremover.AllKeywordsRemover method)

 	(robot.result.keywordremover.ByNameKeywordRemover method)

 	(robot.result.keywordremover.ByTagKeywordRemover method)

 	(robot.result.keywordremover.ForLoopItemsRemover method)

 	(robot.result.keywordremover.PassedKeywordRemover method)

 	(robot.result.keywordremover.WaitUntilKeywordSucceedsRemover method)

 	(robot.result.keywordremover.WarningAndErrorFinder method)

 	(robot.result.merger.Merger method)

 	(robot.result.messagefilter.MessageFilter method)

 	(robot.result.resultbuilder.RemoveKeywords method)

 	(robot.result.suiteteardownfailed.SuiteTeardownFailed method)

 	(robot.result.suiteteardownfailed.SuiteTeardownFailureHandler method)

 	(robot.result.visitor.ResultVisitor method)

 	visit_Keyword() (robot.running.builder.transformers.KeywordBuilder method)

 	(robot.running.builder.transformers.ResourceBuilder method)

 	(robot.running.builder.transformers.SuiteBuilder method)

 	visit_keyword() (robot.running.randomizer.Randomizer method)

 	(robot.running.suiterunner.SuiteRunner method)

 	visit_Keyword() (robot.tidypkg.transformers.NewlineNormalizer method)

 	(robot.tidypkg.transformers.SeparatorNormalizer method)

 	visit_KeywordCall() (robot.running.builder.transformers.ForBuilder method)

 	(robot.running.builder.transformers.IfBuilder method)

 	(robot.running.builder.transformers.KeywordBuilder method)

 	(robot.running.builder.transformers.TestCaseBuilder method)

 	visit_KeywordSection() (robot.running.builder.transformers.SettingsBuilder method)

 	(robot.tidypkg.transformers.Aligner method)

 	(robot.tidypkg.transformers.NewlineNormalizer method)

 	visit_LibraryImport() (robot.running.builder.transformers.ResourceBuilder method)

 	(robot.running.builder.transformers.SettingsBuilder method)

 	visit_message() (robot.conf.gatherfailed.GatherFailedSuites method)

 	(robot.conf.gatherfailed.GatherFailedTests method)

 	(robot.model.configurer.SuiteConfigurer method)

 	(robot.model.filter.EmptySuiteRemover method)

 	(robot.model.filter.Filter method)

 	(robot.model.modifier.ModelModifier method)

 	(robot.model.statistics.StatisticsBuilder method)

 	(robot.model.tagsetter.TagSetter method)

 	(robot.model.totalstatistics.TotalStatisticsBuilder method)

 	(robot.model.visitor.SuiteVisitor method)

 	(robot.output.console.dotted.StatusReporter method)

 	(robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.configurer.SuiteConfigurer method)

 	(robot.result.keywordremover.AllKeywordsRemover method)

 	(robot.result.keywordremover.ByNameKeywordRemover method)

 	(robot.result.keywordremover.ByTagKeywordRemover method)

 	(robot.result.keywordremover.ForLoopItemsRemover method)

 	(robot.result.keywordremover.PassedKeywordRemover method)

 	(robot.result.keywordremover.WaitUntilKeywordSucceedsRemover method)

 	(robot.result.keywordremover.WarningAndErrorFinder method)

 	(robot.result.merger.Merger method)

 	(robot.result.messagefilter.MessageFilter method)

 	(robot.result.resultbuilder.RemoveKeywords method)

 	(robot.result.suiteteardownfailed.SuiteTeardownFailed method)

 	(robot.result.suiteteardownfailed.SuiteTeardownFailureHandler method)

 	(robot.result.visitor.ResultVisitor method)

 	(robot.running.randomizer.Randomizer method)

 	(robot.running.suiterunner.SuiteRunner method)

 	visit_Metadata() (robot.running.builder.transformers.SettingsBuilder method)

 	visit_ResourceImport() (robot.running.builder.transformers.ResourceBuilder method)

 	(robot.running.builder.transformers.SettingsBuilder method)

 	visit_result() (robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.visitor.ResultVisitor method)

 	visit_Return() (robot.running.builder.transformers.KeywordBuilder method)

 	visit_Section() (robot.tidypkg.transformers.Cleaner method)

 	(robot.tidypkg.transformers.NewlineNormalizer method)

 	visit_SettingSection() (robot.running.builder.transformers.SuiteBuilder method)

 	visit_Setup() (robot.running.builder.transformers.TestCaseBuilder method)

 	visit_stat() (robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.visitor.ResultVisitor method)

 	visit_Statement() (robot.parsing.model.blocks.FirstStatementFinder method)

 	(robot.parsing.model.blocks.LastStatementFinder method)

 	(robot.parsing.model.blocks.ModelValidator method)

 	(robot.parsing.model.blocks.ModelWriter method)

 	(robot.tidypkg.transformers.Aligner method)

 	(robot.tidypkg.transformers.Cleaner method)

 	(robot.tidypkg.transformers.ColumnAligner method)

 	(robot.tidypkg.transformers.ColumnWidthCounter method)

 	(robot.tidypkg.transformers.NewlineNormalizer method)

 	(robot.tidypkg.transformers.SeparatorNormalizer method)

 	visit_statistics() (robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.visitor.ResultVisitor method)

 	visit_suite() (robot.conf.gatherfailed.GatherFailedSuites method)

 	(robot.conf.gatherfailed.GatherFailedTests method)

 	(robot.model.configurer.SuiteConfigurer method)

 	(robot.model.filter.EmptySuiteRemover method)

 	(robot.model.filter.Filter method)

 	(robot.model.modifier.ModelModifier method)

 	(robot.model.statistics.StatisticsBuilder method)

 	(robot.model.tagsetter.TagSetter method)

 	(robot.model.totalstatistics.TotalStatisticsBuilder method)

 	(robot.model.visitor.SuiteVisitor method)

 	(robot.output.console.dotted.StatusReporter method)

 	(robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.configurer.SuiteConfigurer method)

 	(robot.result.keywordremover.AllKeywordsRemover method)

 	(robot.result.keywordremover.ByNameKeywordRemover method)

 	(robot.result.keywordremover.ByTagKeywordRemover method)

 	(robot.result.keywordremover.ForLoopItemsRemover method)

 	(robot.result.keywordremover.PassedKeywordRemover method)

 	(robot.result.keywordremover.WaitUntilKeywordSucceedsRemover method)

 	(robot.result.keywordremover.WarningAndErrorFinder method)

 	(robot.result.merger.Merger method)

 	(robot.result.messagefilter.MessageFilter method)

 	(robot.result.resultbuilder.RemoveKeywords method)

 	(robot.result.suiteteardownfailed.SuiteTeardownFailed method)

 	(robot.result.suiteteardownfailed.SuiteTeardownFailureHandler method)

 	(robot.result.visitor.ResultVisitor method)

 	(robot.running.randomizer.Randomizer method)

 	(robot.running.suiterunner.SuiteRunner method)

 	visit_suite_statistics() (robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.visitor.ResultVisitor method)

 	visit_SuiteSetup() (robot.running.builder.transformers.SettingsBuilder method)

 	visit_SuiteTeardown() (robot.running.builder.transformers.SettingsBuilder method)

 	visit_tag_statistics() (robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.visitor.ResultVisitor method)

 	visit_Tags() (robot.running.builder.transformers.KeywordBuilder method)

 	(robot.running.builder.transformers.TestCaseBuilder method)

 	visit_Teardown() (robot.running.builder.transformers.KeywordBuilder method)

 	(robot.running.builder.transformers.TestCaseBuilder method)

 	visit_Template() (robot.running.builder.transformers.TestCaseBuilder method)

 	visit_TemplateArguments() (robot.running.builder.transformers.ForBuilder method)

 	(robot.running.builder.transformers.IfBuilder method)

 	(robot.running.builder.transformers.TestCaseBuilder method)

 	visit_test() (robot.conf.gatherfailed.GatherFailedSuites method)

 	(robot.conf.gatherfailed.GatherFailedTests method)

 	(robot.model.configurer.SuiteConfigurer method)

 	(robot.model.filter.EmptySuiteRemover method)

 	(robot.model.filter.Filter method)

 	(robot.model.modifier.ModelModifier method)

 	(robot.model.statistics.StatisticsBuilder method)

 	(robot.model.tagsetter.TagSetter method)

 	(robot.model.totalstatistics.TotalStatisticsBuilder method)

 	(robot.model.visitor.SuiteVisitor method)

 	(robot.output.console.dotted.StatusReporter method)

 	(robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.configurer.SuiteConfigurer method)

 	(robot.result.keywordremover.AllKeywordsRemover method)

 	(robot.result.keywordremover.ByNameKeywordRemover method)

 	(robot.result.keywordremover.ByTagKeywordRemover method)

 	(robot.result.keywordremover.ForLoopItemsRemover method)

 	(robot.result.keywordremover.PassedKeywordRemover method)

 	(robot.result.keywordremover.WaitUntilKeywordSucceedsRemover method)

 	(robot.result.keywordremover.WarningAndErrorFinder method)

 	(robot.result.merger.Merger method)

 	(robot.result.messagefilter.MessageFilter method)

 	(robot.result.resultbuilder.RemoveKeywords method)

 	(robot.result.suiteteardownfailed.SuiteTeardownFailed method)

 	(robot.result.suiteteardownfailed.SuiteTeardownFailureHandler method)

 	(robot.result.visitor.ResultVisitor method)

 	(robot.running.randomizer.Randomizer method)

 	(robot.running.suiterunner.SuiteRunner method)

 	visit_TestCase() (robot.running.builder.transformers.SuiteBuilder method)

 	(robot.running.builder.transformers.TestCaseBuilder method)

 	(robot.tidypkg.transformers.ColumnAligner method)

 	(robot.tidypkg.transformers.NewlineNormalizer method)

 	(robot.tidypkg.transformers.SeparatorNormalizer method)

 	visit_TestCaseSection() (robot.running.builder.transformers.SettingsBuilder method)

 	(robot.tidypkg.transformers.Aligner method)

 	(robot.tidypkg.transformers.NewlineNormalizer method)

 	visit_TestSetup() (robot.running.builder.transformers.SettingsBuilder method)

 	visit_TestTeardown() (robot.running.builder.transformers.SettingsBuilder method)

 	visit_TestTemplate() (robot.running.builder.transformers.SettingsBuilder method)

 	visit_TestTimeout() (robot.running.builder.transformers.SettingsBuilder method)

 	visit_Timeout() (robot.running.builder.transformers.KeywordBuilder method)

 	(robot.running.builder.transformers.TestCaseBuilder method)

 	visit_total_statistics() (robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.visitor.ResultVisitor method)

 	visit_Variable() (robot.running.builder.transformers.ResourceBuilder method)

 	(robot.running.builder.transformers.SuiteBuilder method)

 	visit_VariableSection() (robot.running.builder.transformers.SettingsBuilder method)

 	visit_VariablesImport() (robot.running.builder.transformers.ResourceBuilder method)

 	(robot.running.builder.transformers.SettingsBuilder method)

 	VisitorFinder (class in robot.parsing.model.visitor)

W

 	
 	wait_for_process() (robot.libraries.Process.Process method)

 	wait_until_created() (robot.libraries.OperatingSystem.OperatingSystem method)

 	wait_until_keyword_succeeds() (robot.libraries.BuiltIn.BuiltIn method)

 	wait_until_removed() (robot.libraries.OperatingSystem.OperatingSystem method)

 	wait_variable() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	wait_visibility() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	wait_window() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	waiting_item_state() (robot.variables.search.VariableSearcher method)

 	WaitUntilKeywordSucceedsRemover (class in robot.result.keywordremover)

 	waitvar() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	warn() (in module robot.api.logger)

 	(in module robot.output.librarylogger)

 	(robot.output.filelogger.FileLogger method)

 	(robot.output.logger.Logger method)

 	(robot.output.loggerhelper.AbstractLogger method)

 	(robot.output.output.Output method)

 	(robot.utils.importer.NoLogger method)

 	WarningAndErrorFinder (class in robot.result.keywordremover)

 	widths_for_line() (robot.tidypkg.transformers.ColumnAligner method)

 	winfo_atom() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_atomname() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_cells() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_children() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_class() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_colormapfull() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_containing() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_depth() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_exists() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_fpixels() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_geometry() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_height() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_id() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_interps() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_ismapped() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_manager() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_name() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_parent() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_pathname() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_pixels() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_pointerx() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_pointerxy() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_pointery() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_reqheight() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_reqwidth() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_rgb() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_rootx() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_rooty() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_screen() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_screencells() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_screendepth() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_screenheight() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_screenmmheight() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_screenmmwidth() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_screenvisual() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_screenwidth() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_server() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_toplevel() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_viewable() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_visual() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	
 	winfo_visualid() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_visualsavailable() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_vrootheight() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_vrootwidth() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_vrootx() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_vrooty() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_width() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_x() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_y() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	with_metaclass() (in module robot.utils.compat)

 	WITH_NAME (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	withdraw() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	wm_aspect() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	wm_attributes() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	wm_client() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	wm_colormapwindows() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	wm_command() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	wm_deiconify() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	wm_focusmodel() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	wm_frame() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	wm_geometry() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	wm_grid() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	wm_group() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	wm_iconbitmap() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	wm_iconify() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	wm_iconmask() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	wm_iconname() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	wm_iconposition() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	wm_iconwindow() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	wm_maxsize() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	wm_minsize() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	wm_overrideredirect() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	wm_positionfrom() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	wm_protocol() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	wm_resizable() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	wm_sizefrom() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	wm_state() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	wm_title() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	wm_transient() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	wm_withdraw() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	write() (in module robot.api.logger)

 	(in module robot.output.librarylogger)

 	(robot.htmldata.htmlfilewriter.CssFileWriter method)

 	(robot.htmldata.htmlfilewriter.GeneratorWriter method)

 	(robot.htmldata.htmlfilewriter.HtmlFileWriter method)

 	(robot.htmldata.htmlfilewriter.JsFileWriter method)

 	(robot.htmldata.htmlfilewriter.LineWriter method)

 	(robot.htmldata.htmlfilewriter.ModelWriter method)

 	(robot.htmldata.jsonwriter.JsonWriter method)

 	(robot.libdocpkg.htmlwriter.LibdocHtmlWriter method)

 	(robot.libdocpkg.htmlwriter.LibdocModelWriter method)

 	(robot.libdocpkg.jsonwriter.LibdocJsonWriter method)

 	(robot.libdocpkg.xmlwriter.LibdocXmlWriter method)

 	(robot.libraries.Telnet.TelnetConnection method)

 	(robot.output.console.highlighting.HighlightingStream method)

 	(robot.output.filelogger.FileLogger method)

 	(robot.output.logger.Logger method)

 	(robot.output.loggerhelper.AbstractLogger method)

 	(robot.output.output.Output method)

 	(robot.parsing.model.blocks.ModelWriter method)

 	(robot.reporting.jswriter.JsResultWriter method)

 	(robot.reporting.jswriter.SplitLogWriter method)

 	(robot.reporting.jswriter.SuiteWriter method)

 	(robot.reporting.logreportwriters.LogWriter method)

 	(robot.reporting.logreportwriters.ReportWriter method)

 	(robot.reporting.logreportwriters.RobotModelWriter method)

 	(robot.reporting.xunitwriter.XUnitWriter method)

 	(robot.testdoc.TestdocModelWriter method)

 	write_bare() (robot.libraries.Telnet.TelnetConnection method)

 	write_control_character() (robot.libraries.Telnet.TelnetConnection method)

 	write_data() (robot.testdoc.TestdocModelWriter method)

 	write_json() (robot.htmldata.jsonwriter.JsonWriter method)

 	write_results() (robot.reporting.resultwriter.ResultWriter method)

 	write_until_expected_output() (robot.libraries.Telnet.TelnetConnection method)

X

 	
 	XML (class in robot.libraries.XML)

 	xml_escape() (in module robot.utils.markuputils)

 	XmlElementHandler (class in robot.result.xmlelementhandlers)

 	XmlLogger (class in robot.output.xmllogger)

 	XmlRpcRemoteClient (class in robot.libraries.Remote)

 	
 	XmlWriter (class in robot.utils.markupwriters)

 	xunit (robot.conf.settings.RebotSettings attribute)

 	(robot.conf.settings.RobotSettings attribute)

 	XUnitFileWriter (class in robot.reporting.xunitwriter)

 	XUnitWriter (class in robot.reporting.xunitwriter)

Y

 	
 	YamlImporter (class in robot.variables.filesetter)

 	yellow() (robot.output.console.highlighting.AnsiHighlighter method)

 	(robot.output.console.highlighting.DosHighlighter method)

 	(robot.output.console.highlighting.NoHighlighting method)

 Source code for Tkinter

"""Wrapper functions for Tcl/Tk.

Tkinter provides classes which allow the display, positioning and
control of widgets. Toplevel widgets are Tk and Toplevel. Other
widgets are Frame, Label, Entry, Text, Canvas, Button, Radiobutton,
Checkbutton, Scale, Listbox, Scrollbar, OptionMenu, Spinbox
LabelFrame and PanedWindow.

Properties of the widgets are specified with keyword arguments.
Keyword arguments have the same name as the corresponding resource
under Tk.

Widgets are positioned with one of the geometry managers Place, Pack
or Grid. These managers can be called with methods place, pack, grid
available in every Widget.

Actions are bound to events by resources (e.g. keyword argument
command) or with the method bind.

Example (Hello, World):
import Tkinter
from Tkconstants import *
tk = Tkinter.Tk()
frame = Tkinter.Frame(tk, relief=RIDGE, borderwidth=2)
frame.pack(fill=BOTH,expand=1)
label = Tkinter.Label(frame, text="Hello, World")
label.pack(fill=X, expand=1)
button = Tkinter.Button(frame,text="Exit",command=tk.destroy)
button.pack(side=BOTTOM)
tk.mainloop()
"""

__version__ = "$Revision: 81008 $"

import sys
if sys.platform == "win32":
 # Attempt to configure Tcl/Tk without requiring PATH
 import FixTk
import _tkinter # If this fails your Python may not be configured for Tk
tkinter = _tkinter # b/w compat for export
TclError = _tkinter.TclError
from types import *
from Tkconstants import *
import re

wantobjects = 1

TkVersion = float(_tkinter.TK_VERSION)
TclVersion = float(_tkinter.TCL_VERSION)

READABLE = _tkinter.READABLE
WRITABLE = _tkinter.WRITABLE
EXCEPTION = _tkinter.EXCEPTION

These are not always defined, e.g. not on Win32 with Tk 8.0 :-(
try: _tkinter.createfilehandler
except AttributeError: _tkinter.createfilehandler = None
try: _tkinter.deletefilehandler
except AttributeError: _tkinter.deletefilehandler = None

_magic_re = re.compile(r'([\\{}])')
_space_re = re.compile(r'([\s])')

def _join(value):
 """Internal function."""
 return ' '.join(map(_stringify, value))

def _stringify(value):
 """Internal function."""
 if isinstance(value, (list, tuple)):
 if len(value) == 1:
 value = _stringify(value[0])
 if _magic_re.search(value):
 value = '{%s}' % value
 else:
 value = '{%s}' % _join(value)
 else:
 if isinstance(value, str):
 value = unicode(value, 'utf-8')
 elif not isinstance(value, unicode):
 value = str(value)
 if not value:
 value = '{}'
 elif _magic_re.search(value):
 # add '\' before special characters and spaces
 value = _magic_re.sub(r'\\\1', value)
 value = value.replace('\n', r'\n')
 value = _space_re.sub(r'\\\1', value)
 if value[0] == '"':
 value = '\\' + value
 elif value[0] == '"' or _space_re.search(value):
 value = '{%s}' % value
 return value

def _flatten(tuple):
 """Internal function."""
 res = ()
 for item in tuple:
 if type(item) in (TupleType, ListType):
 res = res + _flatten(item)
 elif item is not None:
 res = res + (item,)
 return res

try: _flatten = _tkinter._flatten
except AttributeError: pass

def _cnfmerge(cnfs):
 """Internal function."""
 if type(cnfs) is DictionaryType:
 return cnfs
 elif type(cnfs) in (NoneType, StringType):
 return cnfs
 else:
 cnf = {}
 for c in _flatten(cnfs):
 try:
 cnf.update(c)
 except (AttributeError, TypeError), msg:
 print "_cnfmerge: fallback due to:", msg
 for k, v in c.items():
 cnf[k] = v
 return cnf

try: _cnfmerge = _tkinter._cnfmerge
except AttributeError: pass

def _splitdict(tk, v, cut_minus=True, conv=None):
 """Return a properly formatted dict built from Tcl list pairs.

 If cut_minus is True, the supposed '-' prefix will be removed from
 keys. If conv is specified, it is used to convert values.

 Tcl list is expected to contain an even number of elements.
 """
 t = tk.splitlist(v)
 if len(t) % 2:
 raise RuntimeError('Tcl list representing a dict is expected '
 'to contain an even number of elements')
 it = iter(t)
 dict = {}
 for key, value in zip(it, it):
 key = str(key)
 if cut_minus and key[0] == '-':
 key = key[1:]
 if conv:
 value = conv(value)
 dict[key] = value
 return dict

class Event:
 """Container for the properties of an event.

 Instances of this type are generated if one of the following events occurs:

 KeyPress, KeyRelease - for keyboard events
 ButtonPress, ButtonRelease, Motion, Enter, Leave, MouseWheel - for mouse events
 Visibility, Unmap, Map, Expose, FocusIn, FocusOut, Circulate,
 Colormap, Gravity, Reparent, Property, Destroy, Activate,
 Deactivate - for window events.

 If a callback function for one of these events is registered
 using bind, bind_all, bind_class, or tag_bind, the callback is
 called with an Event as first argument. It will have the
 following attributes (in braces are the event types for which
 the attribute is valid):

 serial - serial number of event
 num - mouse button pressed (ButtonPress, ButtonRelease)
 focus - whether the window has the focus (Enter, Leave)
 height - height of the exposed window (Configure, Expose)
 width - width of the exposed window (Configure, Expose)
 keycode - keycode of the pressed key (KeyPress, KeyRelease)
 state - state of the event as a number (ButtonPress, ButtonRelease,
 Enter, KeyPress, KeyRelease,
 Leave, Motion)
 state - state as a string (Visibility)
 time - when the event occurred
 x - x-position of the mouse
 y - y-position of the mouse
 x_root - x-position of the mouse on the screen
 (ButtonPress, ButtonRelease, KeyPress, KeyRelease, Motion)
 y_root - y-position of the mouse on the screen
 (ButtonPress, ButtonRelease, KeyPress, KeyRelease, Motion)
 char - pressed character (KeyPress, KeyRelease)
 send_event - see X/Windows documentation
 keysym - keysym of the event as a string (KeyPress, KeyRelease)
 keysym_num - keysym of the event as a number (KeyPress, KeyRelease)
 type - type of the event as a number
 widget - widget in which the event occurred
 delta - delta of wheel movement (MouseWheel)
 """
 pass

_support_default_root = 1
_default_root = None

def NoDefaultRoot():
 """Inhibit setting of default root window.

 Call this function to inhibit that the first instance of
 Tk is used for windows without an explicit parent window.
 """
 global _support_default_root
 _support_default_root = 0
 global _default_root
 _default_root = None
 del _default_root

def _tkerror(err):
 """Internal function."""
 pass

def _exit(code=0):
 """Internal function. Calling it will raise the exception SystemExit."""
 try:
 code = int(code)
 except ValueError:
 pass
 raise SystemExit, code

_varnum = 0
class Variable:
 """Class to define value holders for e.g. buttons.

 Subclasses StringVar, IntVar, DoubleVar, BooleanVar are specializations
 that constrain the type of the value returned from get()."""
 _default = ""
 _tclCommands = None
 def __init__(self, master=None, value=None, name=None):
 """Construct a variable

 MASTER can be given as master widget.
 VALUE is an optional value (defaults to "")
 NAME is an optional Tcl name (defaults to PY_VARnum).

 If NAME matches an existing variable and VALUE is omitted
 then the existing value is retained.
 """
 global _varnum
 if not master:
 master = _default_root
 self._root = master._root()
 self._tk = master.tk
 if name:
 self._name = name
 else:
 self._name = 'PY_VAR' + repr(_varnum)
 _varnum += 1
 if value is not None:
 self.set(value)
 elif not self._tk.getboolean(self._tk.call("info", "exists", self._name)):
 self.set(self._default)
 def __del__(self):
 """Unset the variable in Tcl."""
 if self._tk is None:
 return
 if self._tk.getboolean(self._tk.call("info", "exists", self._name)):
 self._tk.globalunsetvar(self._name)
 if self._tclCommands is not None:
 for name in self._tclCommands:
 #print '- Tkinter: deleted command', name
 self._tk.deletecommand(name)
 self._tclCommands = None
 def __str__(self):
 """Return the name of the variable in Tcl."""
 return self._name
 def set(self, value):
 """Set the variable to VALUE."""
 return self._tk.globalsetvar(self._name, value)
 def get(self):
 """Return value of variable."""
 return self._tk.globalgetvar(self._name)
 def trace_variable(self, mode, callback):
 """Define a trace callback for the variable.

 MODE is one of "r", "w", "u" for read, write, undefine.
 CALLBACK must be a function which is called when
 the variable is read, written or undefined.

 Return the name of the callback.
 """
 f = CallWrapper(callback, None, self._root).__call__
 cbname = repr(id(f))
 try:
 callback = callback.im_func
 except AttributeError:
 pass
 try:
 cbname = cbname + callback.__name__
 except AttributeError:
 pass
 self._tk.createcommand(cbname, f)
 if self._tclCommands is None:
 self._tclCommands = []
 self._tclCommands.append(cbname)
 self._tk.call("trace", "variable", self._name, mode, cbname)
 return cbname
 trace = trace_variable
 def trace_vdelete(self, mode, cbname):
 """Delete the trace callback for a variable.

 MODE is one of "r", "w", "u" for read, write, undefine.
 CBNAME is the name of the callback returned from trace_variable or trace.
 """
 self._tk.call("trace", "vdelete", self._name, mode, cbname)
 cbname = self._tk.splitlist(cbname)[0]
 for m, ca in self.trace_vinfo():
 if self._tk.splitlist(ca)[0] == cbname:
 break
 else:
 self._tk.deletecommand(cbname)
 try:
 self._tclCommands.remove(cbname)
 except ValueError:
 pass
 def trace_vinfo(self):
 """Return all trace callback information."""
 return map(self._tk.splitlist, self._tk.splitlist(
 self._tk.call("trace", "vinfo", self._name)))
 def __eq__(self, other):
 """Comparison for equality (==).

 Note: if the Variable's master matters to behavior
 also compare self._master == other._master
 """
 return self.__class__.__name__ == other.__class__.__name__ \
 and self._name == other._name

class StringVar(Variable):
 """Value holder for strings variables."""
 _default = ""
 def __init__(self, master=None, value=None, name=None):
 """Construct a string variable.

 MASTER can be given as master widget.
 VALUE is an optional value (defaults to "")
 NAME is an optional Tcl name (defaults to PY_VARnum).

 If NAME matches an existing variable and VALUE is omitted
 then the existing value is retained.
 """
 Variable.__init__(self, master, value, name)

 def get(self):
 """Return value of variable as string."""
 value = self._tk.globalgetvar(self._name)
 if isinstance(value, basestring):
 return value
 return str(value)

class IntVar(Variable):
 """Value holder for integer variables."""
 _default = 0
 def __init__(self, master=None, value=None, name=None):
 """Construct an integer variable.

 MASTER can be given as master widget.
 VALUE is an optional value (defaults to 0)
 NAME is an optional Tcl name (defaults to PY_VARnum).

 If NAME matches an existing variable and VALUE is omitted
 then the existing value is retained.
 """
 Variable.__init__(self, master, value, name)

 def set(self, value):
 """Set the variable to value, converting booleans to integers."""
 if isinstance(value, bool):
 value = int(value)
 return Variable.set(self, value)

 def get(self):
 """Return the value of the variable as an integer."""
 return getint(self._tk.globalgetvar(self._name))

class DoubleVar(Variable):
 """Value holder for float variables."""
 _default = 0.0
 def __init__(self, master=None, value=None, name=None):
 """Construct a float variable.

 MASTER can be given as master widget.
 VALUE is an optional value (defaults to 0.0)
 NAME is an optional Tcl name (defaults to PY_VARnum).

 If NAME matches an existing variable and VALUE is omitted
 then the existing value is retained.
 """
 Variable.__init__(self, master, value, name)

 def get(self):
 """Return the value of the variable as a float."""
 return getdouble(self._tk.globalgetvar(self._name))

class BooleanVar(Variable):
 """Value holder for boolean variables."""
 _default = False
 def __init__(self, master=None, value=None, name=None):
 """Construct a boolean variable.

 MASTER can be given as master widget.
 VALUE is an optional value (defaults to False)
 NAME is an optional Tcl name (defaults to PY_VARnum).

 If NAME matches an existing variable and VALUE is omitted
 then the existing value is retained.
 """
 Variable.__init__(self, master, value, name)

 def set(self, value):
 """Set the variable to VALUE."""
 return self._tk.globalsetvar(self._name, self._tk.getboolean(value))

 def get(self):
 """Return the value of the variable as a bool."""
 return self._tk.getboolean(self._tk.globalgetvar(self._name))

def mainloop(n=0):
 """Run the main loop of Tcl."""
 _default_root.tk.mainloop(n)

getint = int

getdouble = float

def getboolean(s):
 """Convert true and false to integer values 1 and 0."""
 return _default_root.tk.getboolean(s)

Methods defined on both toplevel and interior widgets
class Misc:
 """Internal class.

 Base class which defines methods common for interior widgets."""

 # XXX font command?
 _tclCommands = None
 def destroy(self):
 """Internal function.

 Delete all Tcl commands created for
 this widget in the Tcl interpreter."""
 if self._tclCommands is not None:
 for name in self._tclCommands:
 #print '- Tkinter: deleted command', name
 self.tk.deletecommand(name)
 self._tclCommands = None
 def deletecommand(self, name):
 """Internal function.

 Delete the Tcl command provided in NAME."""
 #print '- Tkinter: deleted command', name
 self.tk.deletecommand(name)
 try:
 self._tclCommands.remove(name)
 except ValueError:
 pass
 def tk_strictMotif(self, boolean=None):
 """Set Tcl internal variable, whether the look and feel
 should adhere to Motif.

 A parameter of 1 means adhere to Motif (e.g. no color
 change if mouse passes over slider).
 Returns the set value."""
 return self.tk.getboolean(self.tk.call(
 'set', 'tk_strictMotif', boolean))
 def tk_bisque(self):
 """Change the color scheme to light brown as used in Tk 3.6 and before."""
 self.tk.call('tk_bisque')
 def tk_setPalette(self, *args, **kw):
 """Set a new color scheme for all widget elements.

 A single color as argument will cause that all colors of Tk
 widget elements are derived from this.
 Alternatively several keyword parameters and its associated
 colors can be given. The following keywords are valid:
 activeBackground, foreground, selectColor,
 activeForeground, highlightBackground, selectBackground,
 background, highlightColor, selectForeground,
 disabledForeground, insertBackground, troughColor."""
 self.tk.call(('tk_setPalette',)
 + _flatten(args) + _flatten(kw.items()))
 def tk_menuBar(self, *args):
 """Do not use. Needed in Tk 3.6 and earlier."""
 # obsolete since Tk 4.0
 import warnings
 warnings.warn('tk_menuBar() does nothing and will be removed in 3.6',
 DeprecationWarning, stacklevel=2)
 def wait_variable(self, name='PY_VAR'):
 """Wait until the variable is modified.

 A parameter of type IntVar, StringVar, DoubleVar or
 BooleanVar must be given."""
 self.tk.call('tkwait', 'variable', name)
 waitvar = wait_variable # XXX b/w compat
 def wait_window(self, window=None):
 """Wait until a WIDGET is destroyed.

 If no parameter is given self is used."""
 if window is None:
 window = self
 self.tk.call('tkwait', 'window', window._w)
 def wait_visibility(self, window=None):
 """Wait until the visibility of a WIDGET changes
 (e.g. it appears).

 If no parameter is given self is used."""
 if window is None:
 window = self
 self.tk.call('tkwait', 'visibility', window._w)
 def setvar(self, name='PY_VAR', value='1'):
 """Set Tcl variable NAME to VALUE."""
 self.tk.setvar(name, value)
 def getvar(self, name='PY_VAR'):
 """Return value of Tcl variable NAME."""
 return self.tk.getvar(name)
 getint = int
 getdouble = float
 def getboolean(self, s):
 """Return a boolean value for Tcl boolean values true and false given as parameter."""
 return self.tk.getboolean(s)
 def focus_set(self):
 """Direct input focus to this widget.

 If the application currently does not have the focus
 this widget will get the focus if the application gets
 the focus through the window manager."""
 self.tk.call('focus', self._w)
 focus = focus_set # XXX b/w compat?
 def focus_force(self):
 """Direct input focus to this widget even if the
 application does not have the focus. Use with
 caution!"""
 self.tk.call('focus', '-force', self._w)
 def focus_get(self):
 """Return the widget which has currently the focus in the
 application.

 Use focus_displayof to allow working with several
 displays. Return None if application does not have
 the focus."""
 name = self.tk.call('focus')
 if name == 'none' or not name: return None
 return self._nametowidget(name)
 def focus_displayof(self):
 """Return the widget which has currently the focus on the
 display where this widget is located.

 Return None if the application does not have the focus."""
 name = self.tk.call('focus', '-displayof', self._w)
 if name == 'none' or not name: return None
 return self._nametowidget(name)
 def focus_lastfor(self):
 """Return the widget which would have the focus if top level
 for this widget gets the focus from the window manager."""
 name = self.tk.call('focus', '-lastfor', self._w)
 if name == 'none' or not name: return None
 return self._nametowidget(name)
 def tk_focusFollowsMouse(self):
 """The widget under mouse will get automatically focus. Can not
 be disabled easily."""
 self.tk.call('tk_focusFollowsMouse')
 def tk_focusNext(self):
 """Return the next widget in the focus order which follows
 widget which has currently the focus.

 The focus order first goes to the next child, then to
 the children of the child recursively and then to the
 next sibling which is higher in the stacking order. A
 widget is omitted if it has the takefocus resource set
 to 0."""
 name = self.tk.call('tk_focusNext', self._w)
 if not name: return None
 return self._nametowidget(name)
 def tk_focusPrev(self):
 """Return previous widget in the focus order. See tk_focusNext for details."""
 name = self.tk.call('tk_focusPrev', self._w)
 if not name: return None
 return self._nametowidget(name)
 def after(self, ms, func=None, *args):
 """Call function once after given time.

 MS specifies the time in milliseconds. FUNC gives the
 function which shall be called. Additional parameters
 are given as parameters to the function call. Return
 identifier to cancel scheduling with after_cancel."""
 if not func:
 # I'd rather use time.sleep(ms*0.001)
 self.tk.call('after', ms)
 return None
 else:
 def callit():
 try:
 func(*args)
 finally:
 try:
 self.deletecommand(name)
 except TclError:
 pass
 callit.__name__ = func.__name__
 name = self._register(callit)
 return self.tk.call('after', ms, name)
 def after_idle(self, func, *args):
 """Call FUNC once if the Tcl main loop has no event to
 process.

 Return an identifier to cancel the scheduling with
 after_cancel."""
 return self.after('idle', func, *args)
 def after_cancel(self, id):
 """Cancel scheduling of function identified with ID.

 Identifier returned by after or after_idle must be
 given as first parameter.
 """
 if not id:
 raise ValueError('id must be a valid identifier returned from '
 'after or after_idle')
 try:
 data = self.tk.call('after', 'info', id)
 script = self.tk.splitlist(data)[0]
 self.deletecommand(script)
 except TclError:
 pass
 self.tk.call('after', 'cancel', id)
 def bell(self, displayof=0):
 """Ring a display's bell."""
 self.tk.call(('bell',) + self._displayof(displayof))

 # Clipboard handling:
 def clipboard_get(self, **kw):
 """Retrieve data from the clipboard on window's display.

 The window keyword defaults to the root window of the Tkinter
 application.

 The type keyword specifies the form in which the data is
 to be returned and should be an atom name such as STRING
 or FILE_NAME. Type defaults to STRING, except on X11, where the default
 is to try UTF8_STRING and fall back to STRING.

 This command is equivalent to:

 selection_get(CLIPBOARD)
 """
 if 'type' not in kw and self._windowingsystem == 'x11':
 try:
 kw['type'] = 'UTF8_STRING'
 return self.tk.call(('clipboard', 'get') + self._options(kw))
 except TclError:
 del kw['type']
 return self.tk.call(('clipboard', 'get') + self._options(kw))

 def clipboard_clear(self, **kw):
 """Clear the data in the Tk clipboard.

 A widget specified for the optional displayof keyword
 argument specifies the target display."""
 if 'displayof' not in kw: kw['displayof'] = self._w
 self.tk.call(('clipboard', 'clear') + self._options(kw))
 def clipboard_append(self, string, **kw):
 """Append STRING to the Tk clipboard.

 A widget specified at the optional displayof keyword
 argument specifies the target display. The clipboard
 can be retrieved with selection_get."""
 if 'displayof' not in kw: kw['displayof'] = self._w
 self.tk.call(('clipboard', 'append') + self._options(kw)
 + ('--', string))
 # XXX grab current w/o window argument
 def grab_current(self):
 """Return widget which has currently the grab in this application
 or None."""
 name = self.tk.call('grab', 'current', self._w)
 if not name: return None
 return self._nametowidget(name)
 def grab_release(self):
 """Release grab for this widget if currently set."""
 self.tk.call('grab', 'release', self._w)
 def grab_set(self):
 """Set grab for this widget.

 A grab directs all events to this and descendant
 widgets in the application."""
 self.tk.call('grab', 'set', self._w)
 def grab_set_global(self):
 """Set global grab for this widget.

 A global grab directs all events to this and
 descendant widgets on the display. Use with caution -
 other applications do not get events anymore."""
 self.tk.call('grab', 'set', '-global', self._w)
 def grab_status(self):
 """Return None, "local" or "global" if this widget has
 no, a local or a global grab."""
 status = self.tk.call('grab', 'status', self._w)
 if status == 'none': status = None
 return status
 def option_add(self, pattern, value, priority = None):
 """Set a VALUE (second parameter) for an option
 PATTERN (first parameter).

 An optional third parameter gives the numeric priority
 (defaults to 80)."""
 self.tk.call('option', 'add', pattern, value, priority)
 def option_clear(self):
 """Clear the option database.

 It will be reloaded if option_add is called."""
 self.tk.call('option', 'clear')
 def option_get(self, name, className):
 """Return the value for an option NAME for this widget
 with CLASSNAME.

 Values with higher priority override lower values."""
 return self.tk.call('option', 'get', self._w, name, className)
 def option_readfile(self, fileName, priority = None):
 """Read file FILENAME into the option database.

 An optional second parameter gives the numeric
 priority."""
 self.tk.call('option', 'readfile', fileName, priority)
 def selection_clear(self, **kw):
 """Clear the current X selection."""
 if 'displayof' not in kw: kw['displayof'] = self._w
 self.tk.call(('selection', 'clear') + self._options(kw))
 def selection_get(self, **kw):
 """Return the contents of the current X selection.

 A keyword parameter selection specifies the name of
 the selection and defaults to PRIMARY. A keyword
 parameter displayof specifies a widget on the display
 to use. A keyword parameter type specifies the form of data to be
 fetched, defaulting to STRING except on X11, where UTF8_STRING is tried
 before STRING."""
 if 'displayof' not in kw: kw['displayof'] = self._w
 if 'type' not in kw and self._windowingsystem == 'x11':
 try:
 kw['type'] = 'UTF8_STRING'
 return self.tk.call(('selection', 'get') + self._options(kw))
 except TclError:
 del kw['type']
 return self.tk.call(('selection', 'get') + self._options(kw))
 def selection_handle(self, command, **kw):
 """Specify a function COMMAND to call if the X
 selection owned by this widget is queried by another
 application.

 This function must return the contents of the
 selection. The function will be called with the
 arguments OFFSET and LENGTH which allows the chunking
 of very long selections. The following keyword
 parameters can be provided:
 selection - name of the selection (default PRIMARY),
 type - type of the selection (e.g. STRING, FILE_NAME)."""
 name = self._register(command)
 self.tk.call(('selection', 'handle') + self._options(kw)
 + (self._w, name))
 def selection_own(self, **kw):
 """Become owner of X selection.

 A keyword parameter selection specifies the name of
 the selection (default PRIMARY)."""
 self.tk.call(('selection', 'own') +
 self._options(kw) + (self._w,))
 def selection_own_get(self, **kw):
 """Return owner of X selection.

 The following keyword parameter can
 be provided:
 selection - name of the selection (default PRIMARY),
 type - type of the selection (e.g. STRING, FILE_NAME)."""
 if 'displayof' not in kw: kw['displayof'] = self._w
 name = self.tk.call(('selection', 'own') + self._options(kw))
 if not name: return None
 return self._nametowidget(name)
 def send(self, interp, cmd, *args):
 """Send Tcl command CMD to different interpreter INTERP to be executed."""
 return self.tk.call(('send', interp, cmd) + args)
 def lower(self, belowThis=None):
 """Lower this widget in the stacking order."""
 self.tk.call('lower', self._w, belowThis)
 def tkraise(self, aboveThis=None):
 """Raise this widget in the stacking order."""
 self.tk.call('raise', self._w, aboveThis)
 lift = tkraise
 def colormodel(self, value=None):
 """Useless. Not implemented in Tk."""
 return self.tk.call('tk', 'colormodel', self._w, value)
 def winfo_atom(self, name, displayof=0):
 """Return integer which represents atom NAME."""
 args = ('winfo', 'atom') + self._displayof(displayof) + (name,)
 return getint(self.tk.call(args))
 def winfo_atomname(self, id, displayof=0):
 """Return name of atom with identifier ID."""
 args = ('winfo', 'atomname') \
 + self._displayof(displayof) + (id,)
 return self.tk.call(args)
 def winfo_cells(self):
 """Return number of cells in the colormap for this widget."""
 return getint(
 self.tk.call('winfo', 'cells', self._w))
 def winfo_children(self):
 """Return a list of all widgets which are children of this widget."""
 result = []
 for child in self.tk.splitlist(
 self.tk.call('winfo', 'children', self._w)):
 try:
 # Tcl sometimes returns extra windows, e.g. for
 # menus; those need to be skipped
 result.append(self._nametowidget(child))
 except KeyError:
 pass
 return result

 def winfo_class(self):
 """Return window class name of this widget."""
 return self.tk.call('winfo', 'class', self._w)
 def winfo_colormapfull(self):
 """Return true if at the last color request the colormap was full."""
 return self.tk.getboolean(
 self.tk.call('winfo', 'colormapfull', self._w))
 def winfo_containing(self, rootX, rootY, displayof=0):
 """Return the widget which is at the root coordinates ROOTX, ROOTY."""
 args = ('winfo', 'containing') \
 + self._displayof(displayof) + (rootX, rootY)
 name = self.tk.call(args)
 if not name: return None
 return self._nametowidget(name)
 def winfo_depth(self):
 """Return the number of bits per pixel."""
 return getint(self.tk.call('winfo', 'depth', self._w))
 def winfo_exists(self):
 """Return true if this widget exists."""
 return getint(
 self.tk.call('winfo', 'exists', self._w))
 def winfo_fpixels(self, number):
 """Return the number of pixels for the given distance NUMBER
 (e.g. "3c") as float."""
 return getdouble(self.tk.call(
 'winfo', 'fpixels', self._w, number))
 def winfo_geometry(self):
 """Return geometry string for this widget in the form "widthxheight+X+Y"."""
 return self.tk.call('winfo', 'geometry', self._w)
 def winfo_height(self):
 """Return height of this widget."""
 return getint(
 self.tk.call('winfo', 'height', self._w))
 def winfo_id(self):
 """Return identifier ID for this widget."""
 return int(self.tk.call('winfo', 'id', self._w), 0)
 def winfo_interps(self, displayof=0):
 """Return the name of all Tcl interpreters for this display."""
 args = ('winfo', 'interps') + self._displayof(displayof)
 return self.tk.splitlist(self.tk.call(args))
 def winfo_ismapped(self):
 """Return true if this widget is mapped."""
 return getint(
 self.tk.call('winfo', 'ismapped', self._w))
 def winfo_manager(self):
 """Return the window manager name for this widget."""
 return self.tk.call('winfo', 'manager', self._w)
 def winfo_name(self):
 """Return the name of this widget."""
 return self.tk.call('winfo', 'name', self._w)
 def winfo_parent(self):
 """Return the name of the parent of this widget."""
 return self.tk.call('winfo', 'parent', self._w)
 def winfo_pathname(self, id, displayof=0):
 """Return the pathname of the widget given by ID."""
 args = ('winfo', 'pathname') \
 + self._displayof(displayof) + (id,)
 return self.tk.call(args)
 def winfo_pixels(self, number):
 """Rounded integer value of winfo_fpixels."""
 return getint(
 self.tk.call('winfo', 'pixels', self._w, number))
 def winfo_pointerx(self):
 """Return the x coordinate of the pointer on the root window."""
 return getint(
 self.tk.call('winfo', 'pointerx', self._w))
 def winfo_pointerxy(self):
 """Return a tuple of x and y coordinates of the pointer on the root window."""
 return self._getints(
 self.tk.call('winfo', 'pointerxy', self._w))
 def winfo_pointery(self):
 """Return the y coordinate of the pointer on the root window."""
 return getint(
 self.tk.call('winfo', 'pointery', self._w))
 def winfo_reqheight(self):
 """Return requested height of this widget."""
 return getint(
 self.tk.call('winfo', 'reqheight', self._w))
 def winfo_reqwidth(self):
 """Return requested width of this widget."""
 return getint(
 self.tk.call('winfo', 'reqwidth', self._w))
 def winfo_rgb(self, color):
 """Return tuple of decimal values for red, green, blue for
 COLOR in this widget."""
 return self._getints(
 self.tk.call('winfo', 'rgb', self._w, color))
 def winfo_rootx(self):
 """Return x coordinate of upper left corner of this widget on the
 root window."""
 return getint(
 self.tk.call('winfo', 'rootx', self._w))
 def winfo_rooty(self):
 """Return y coordinate of upper left corner of this widget on the
 root window."""
 return getint(
 self.tk.call('winfo', 'rooty', self._w))
 def winfo_screen(self):
 """Return the screen name of this widget."""
 return self.tk.call('winfo', 'screen', self._w)
 def winfo_screencells(self):
 """Return the number of the cells in the colormap of the screen
 of this widget."""
 return getint(
 self.tk.call('winfo', 'screencells', self._w))
 def winfo_screendepth(self):
 """Return the number of bits per pixel of the root window of the
 screen of this widget."""
 return getint(
 self.tk.call('winfo', 'screendepth', self._w))
 def winfo_screenheight(self):
 """Return the number of pixels of the height of the screen of this widget
 in pixel."""
 return getint(
 self.tk.call('winfo', 'screenheight', self._w))
 def winfo_screenmmheight(self):
 """Return the number of pixels of the height of the screen of
 this widget in mm."""
 return getint(
 self.tk.call('winfo', 'screenmmheight', self._w))
 def winfo_screenmmwidth(self):
 """Return the number of pixels of the width of the screen of
 this widget in mm."""
 return getint(
 self.tk.call('winfo', 'screenmmwidth', self._w))
 def winfo_screenvisual(self):
 """Return one of the strings directcolor, grayscale, pseudocolor,
 staticcolor, staticgray, or truecolor for the default
 colormodel of this screen."""
 return self.tk.call('winfo', 'screenvisual', self._w)
 def winfo_screenwidth(self):
 """Return the number of pixels of the width of the screen of
 this widget in pixel."""
 return getint(
 self.tk.call('winfo', 'screenwidth', self._w))
 def winfo_server(self):
 """Return information of the X-Server of the screen of this widget in
 the form "XmajorRminor vendor vendorVersion"."""
 return self.tk.call('winfo', 'server', self._w)
 def winfo_toplevel(self):
 """Return the toplevel widget of this widget."""
 return self._nametowidget(self.tk.call(
 'winfo', 'toplevel', self._w))
 def winfo_viewable(self):
 """Return true if the widget and all its higher ancestors are mapped."""
 return getint(
 self.tk.call('winfo', 'viewable', self._w))
 def winfo_visual(self):
 """Return one of the strings directcolor, grayscale, pseudocolor,
 staticcolor, staticgray, or truecolor for the
 colormodel of this widget."""
 return self.tk.call('winfo', 'visual', self._w)
 def winfo_visualid(self):
 """Return the X identifier for the visual for this widget."""
 return self.tk.call('winfo', 'visualid', self._w)
 def winfo_visualsavailable(self, includeids=0):
 """Return a list of all visuals available for the screen
 of this widget.

 Each item in the list consists of a visual name (see winfo_visual), a
 depth and if INCLUDEIDS=1 is given also the X identifier."""
 data = self.tk.split(
 self.tk.call('winfo', 'visualsavailable', self._w,
 includeids and 'includeids' or None))
 if type(data) is StringType:
 data = [self.tk.split(data)]
 return map(self.__winfo_parseitem, data)
 def __winfo_parseitem(self, t):
 """Internal function."""
 return t[:1] + tuple(map(self.__winfo_getint, t[1:]))
 def __winfo_getint(self, x):
 """Internal function."""
 return int(x, 0)
 def winfo_vrootheight(self):
 """Return the height of the virtual root window associated with this
 widget in pixels. If there is no virtual root window return the
 height of the screen."""
 return getint(
 self.tk.call('winfo', 'vrootheight', self._w))
 def winfo_vrootwidth(self):
 """Return the width of the virtual root window associated with this
 widget in pixel. If there is no virtual root window return the
 width of the screen."""
 return getint(
 self.tk.call('winfo', 'vrootwidth', self._w))
 def winfo_vrootx(self):
 """Return the x offset of the virtual root relative to the root
 window of the screen of this widget."""
 return getint(
 self.tk.call('winfo', 'vrootx', self._w))
 def winfo_vrooty(self):
 """Return the y offset of the virtual root relative to the root
 window of the screen of this widget."""
 return getint(
 self.tk.call('winfo', 'vrooty', self._w))
 def winfo_width(self):
 """Return the width of this widget."""
 return getint(
 self.tk.call('winfo', 'width', self._w))
 def winfo_x(self):
 """Return the x coordinate of the upper left corner of this widget
 in the parent."""
 return getint(
 self.tk.call('winfo', 'x', self._w))
 def winfo_y(self):
 """Return the y coordinate of the upper left corner of this widget
 in the parent."""
 return getint(
 self.tk.call('winfo', 'y', self._w))
 def update(self):
 """Enter event loop until all pending events have been processed by Tcl."""
 self.tk.call('update')
 def update_idletasks(self):
 """Enter event loop until all idle callbacks have been called. This
 will update the display of windows but not process events caused by
 the user."""
 self.tk.call('update', 'idletasks')
 def bindtags(self, tagList=None):
 """Set or get the list of bindtags for this widget.

 With no argument return the list of all bindtags associated with
 this widget. With a list of strings as argument the bindtags are
 set to this list. The bindtags determine in which order events are
 processed (see bind)."""
 if tagList is None:
 return self.tk.splitlist(
 self.tk.call('bindtags', self._w))
 else:
 self.tk.call('bindtags', self._w, tagList)
 def _bind(self, what, sequence, func, add, needcleanup=1):
 """Internal function."""
 if type(func) is StringType:
 self.tk.call(what + (sequence, func))
 elif func:
 funcid = self._register(func, self._substitute,
 needcleanup)
 cmd = ('%sif {"[%s %s]" == "break"} break\n'
 %
 (add and '+' or '',
 funcid, self._subst_format_str))
 self.tk.call(what + (sequence, cmd))
 return funcid
 elif sequence:
 return self.tk.call(what + (sequence,))
 else:
 return self.tk.splitlist(self.tk.call(what))
 def bind(self, sequence=None, func=None, add=None):
 """Bind to this widget at event SEQUENCE a call to function FUNC.

 SEQUENCE is a string of concatenated event
 patterns. An event pattern is of the form
 <MODIFIER-MODIFIER-TYPE-DETAIL> where MODIFIER is one
 of Control, Mod2, M2, Shift, Mod3, M3, Lock, Mod4, M4,
 Button1, B1, Mod5, M5 Button2, B2, Meta, M, Button3,
 B3, Alt, Button4, B4, Double, Button5, B5 Triple,
 Mod1, M1. TYPE is one of Activate, Enter, Map,
 ButtonPress, Button, Expose, Motion, ButtonRelease
 FocusIn, MouseWheel, Circulate, FocusOut, Property,
 Colormap, Gravity Reparent, Configure, KeyPress, Key,
 Unmap, Deactivate, KeyRelease Visibility, Destroy,
 Leave and DETAIL is the button number for ButtonPress,
 ButtonRelease and DETAIL is the Keysym for KeyPress and
 KeyRelease. Examples are
 <Control-Button-1> for pressing Control and mouse button 1 or
 <Alt-A> for pressing A and the Alt key (KeyPress can be omitted).
 An event pattern can also be a virtual event of the form
 <<AString>> where AString can be arbitrary. This
 event can be generated by event_generate.
 If events are concatenated they must appear shortly
 after each other.

 FUNC will be called if the event sequence occurs with an
 instance of Event as argument. If the return value of FUNC is
 "break" no further bound function is invoked.

 An additional boolean parameter ADD specifies whether FUNC will
 be called additionally to the other bound function or whether
 it will replace the previous function.

 Bind will return an identifier to allow deletion of the bound function with
 unbind without memory leak.

 If FUNC or SEQUENCE is omitted the bound function or list
 of bound events are returned."""

 return self._bind(('bind', self._w), sequence, func, add)
 def unbind(self, sequence, funcid=None):
 """Unbind for this widget for event SEQUENCE the
 function identified with FUNCID."""
 self.tk.call('bind', self._w, sequence, '')
 if funcid:
 self.deletecommand(funcid)
 def bind_all(self, sequence=None, func=None, add=None):
 """Bind to all widgets at an event SEQUENCE a call to function FUNC.
 An additional boolean parameter ADD specifies whether FUNC will
 be called additionally to the other bound function or whether
 it will replace the previous function. See bind for the return value."""
 return self._bind(('bind', 'all'), sequence, func, add, 0)
 def unbind_all(self, sequence):
 """Unbind for all widgets for event SEQUENCE all functions."""
 self.tk.call('bind', 'all' , sequence, '')
 def bind_class(self, className, sequence=None, func=None, add=None):

 """Bind to widgets with bindtag CLASSNAME at event
 SEQUENCE a call of function FUNC. An additional
 boolean parameter ADD specifies whether FUNC will be
 called additionally to the other bound function or
 whether it will replace the previous function. See bind for
 the return value."""

 return self._bind(('bind', className), sequence, func, add, 0)
 def unbind_class(self, className, sequence):
 """Unbind for all widgets with bindtag CLASSNAME for event SEQUENCE
 all functions."""
 self.tk.call('bind', className , sequence, '')
 def mainloop(self, n=0):
 """Call the mainloop of Tk."""
 self.tk.mainloop(n)
 def quit(self):
 """Quit the Tcl interpreter. All widgets will be destroyed."""
 self.tk.quit()
 def _getints(self, string):
 """Internal function."""
 if string:
 return tuple(map(getint, self.tk.splitlist(string)))
 def _getdoubles(self, string):
 """Internal function."""
 if string:
 return tuple(map(getdouble, self.tk.splitlist(string)))
 def _getboolean(self, string):
 """Internal function."""
 if string:
 return self.tk.getboolean(string)
 def _displayof(self, displayof):
 """Internal function."""
 if displayof:
 return ('-displayof', displayof)
 if displayof is None:
 return ('-displayof', self._w)
 return ()
 @property
 def _windowingsystem(self):
 """Internal function."""
 try:
 return self._root()._windowingsystem_cached
 except AttributeError:
 ws = self._root()._windowingsystem_cached = \
 self.tk.call('tk', 'windowingsystem')
 return ws
 def _options(self, cnf, kw = None):
 """Internal function."""
 if kw:
 cnf = _cnfmerge((cnf, kw))
 else:
 cnf = _cnfmerge(cnf)
 res = ()
 for k, v in cnf.items():
 if v is not None:
 if k[-1] == '_': k = k[:-1]
 if hasattr(v, '__call__'):
 v = self._register(v)
 elif isinstance(v, (tuple, list)):
 nv = []
 for item in v:
 if not isinstance(item, (basestring, int, long)):
 break
 elif isinstance(item, (int, long)):
 nv.append('%d' % item)
 else:
 # format it to proper Tcl code if it contains space
 nv.append(_stringify(item))
 else:
 v = ' '.join(nv)
 res = res + ('-'+k, v)
 return res
 def nametowidget(self, name):
 """Return the Tkinter instance of a widget identified by
 its Tcl name NAME."""
 name = str(name).split('.')
 w = self

 if not name[0]:
 w = w._root()
 name = name[1:]

 for n in name:
 if not n:
 break
 w = w.children[n]

 return w
 _nametowidget = nametowidget
 def _register(self, func, subst=None, needcleanup=1):
 """Return a newly created Tcl function. If this
 function is called, the Python function FUNC will
 be executed. An optional function SUBST can
 be given which will be executed before FUNC."""
 f = CallWrapper(func, subst, self).__call__
 name = repr(id(f))
 try:
 func = func.im_func
 except AttributeError:
 pass
 try:
 name = name + func.__name__
 except AttributeError:
 pass
 self.tk.createcommand(name, f)
 if needcleanup:
 if self._tclCommands is None:
 self._tclCommands = []
 self._tclCommands.append(name)
 return name
 register = _register
 def _root(self):
 """Internal function."""
 w = self
 while w.master: w = w.master
 return w
 _subst_format = ('%#', '%b', '%f', '%h', '%k',
 '%s', '%t', '%w', '%x', '%y',
 '%A', '%E', '%K', '%N', '%W', '%T', '%X', '%Y', '%D')
 _subst_format_str = " ".join(_subst_format)
 def _substitute(self, *args):
 """Internal function."""
 if len(args) != len(self._subst_format): return args
 getboolean = self.tk.getboolean

 getint = int
 def getint_event(s):
 """Tk changed behavior in 8.4.2, returning "??" rather more often."""
 try:
 return int(s)
 except ValueError:
 return s

 nsign, b, f, h, k, s, t, w, x, y, A, E, K, N, W, T, X, Y, D = args
 # Missing: (a, c, d, m, o, v, B, R)
 e = Event()
 # serial field: valid for all events
 # number of button: ButtonPress and ButtonRelease events only
 # height field: Configure, ConfigureRequest, Create,
 # ResizeRequest, and Expose events only
 # keycode field: KeyPress and KeyRelease events only
 # time field: "valid for events that contain a time field"
 # width field: Configure, ConfigureRequest, Create, ResizeRequest,
 # and Expose events only
 # x field: "valid for events that contain an x field"
 # y field: "valid for events that contain a y field"
 # keysym as decimal: KeyPress and KeyRelease events only
 # x_root, y_root fields: ButtonPress, ButtonRelease, KeyPress,
 # KeyRelease, and Motion events
 e.serial = getint(nsign)
 e.num = getint_event(b)
 try: e.focus = getboolean(f)
 except TclError: pass
 e.height = getint_event(h)
 e.keycode = getint_event(k)
 e.state = getint_event(s)
 e.time = getint_event(t)
 e.width = getint_event(w)
 e.x = getint_event(x)
 e.y = getint_event(y)
 e.char = A
 try: e.send_event = getboolean(E)
 except TclError: pass
 e.keysym = K
 e.keysym_num = getint_event(N)
 e.type = T
 try:
 e.widget = self._nametowidget(W)
 except KeyError:
 e.widget = W
 e.x_root = getint_event(X)
 e.y_root = getint_event(Y)
 try:
 e.delta = getint(D)
 except ValueError:
 e.delta = 0
 return (e,)
 def _report_exception(self):
 """Internal function."""
 import sys
 exc, val, tb = sys.exc_type, sys.exc_value, sys.exc_traceback
 root = self._root()
 root.report_callback_exception(exc, val, tb)

 def _getconfigure(self, *args):
 """Call Tcl configure command and return the result as a dict."""
 cnf = {}
 for x in self.tk.splitlist(self.tk.call(*args)):
 x = self.tk.splitlist(x)
 cnf[x[0][1:]] = (x[0][1:],) + x[1:]
 return cnf

 def _getconfigure1(self, *args):
 x = self.tk.splitlist(self.tk.call(*args))
 return (x[0][1:],) + x[1:]

 def _configure(self, cmd, cnf, kw):
 """Internal function."""
 if kw:
 cnf = _cnfmerge((cnf, kw))
 elif cnf:
 cnf = _cnfmerge(cnf)
 if cnf is None:
 return self._getconfigure(_flatten((self._w, cmd)))
 if type(cnf) is StringType:
 return self._getconfigure1(_flatten((self._w, cmd, '-'+cnf)))
 self.tk.call(_flatten((self._w, cmd)) + self._options(cnf))
 # These used to be defined in Widget:
 def configure(self, cnf=None, **kw):
 """Configure resources of a widget.

 The values for resources are specified as keyword
 arguments. To get an overview about
 the allowed keyword arguments call the method keys.
 """
 return self._configure('configure', cnf, kw)
 config = configure
 def cget(self, key):
 """Return the resource value for a KEY given as string."""
 return self.tk.call(self._w, 'cget', '-' + key)
 __getitem__ = cget
 def __setitem__(self, key, value):
 self.configure({key: value})
 def __contains__(self, key):
 raise TypeError("Tkinter objects don't support 'in' tests.")
 def keys(self):
 """Return a list of all resource names of this widget."""
 splitlist = self.tk.splitlist
 return [splitlist(x)[0][1:] for x in
 splitlist(self.tk.call(self._w, 'configure'))]
 def __str__(self):
 """Return the window path name of this widget."""
 return self._w
 # Pack methods that apply to the master
 noarg = ['_noarg_']
 def pack_propagate(self, flag=_noarg_):
 """Set or get the status for propagation of geometry information.

 A boolean argument specifies whether the geometry information
 of the slaves will determine the size of this widget. If no argument
 is given the current setting will be returned.
 """
 if flag is Misc._noarg_:
 return self._getboolean(self.tk.call(
 'pack', 'propagate', self._w))
 else:
 self.tk.call('pack', 'propagate', self._w, flag)
 propagate = pack_propagate
 def pack_slaves(self):
 """Return a list of all slaves of this widget
 in its packing order."""
 return map(self._nametowidget,
 self.tk.splitlist(
 self.tk.call('pack', 'slaves', self._w)))
 slaves = pack_slaves
 # Place method that applies to the master
 def place_slaves(self):
 """Return a list of all slaves of this widget
 in its packing order."""
 return map(self._nametowidget,
 self.tk.splitlist(
 self.tk.call(
 'place', 'slaves', self._w)))
 # Grid methods that apply to the master
 def grid_bbox(self, column=None, row=None, col2=None, row2=None):
 """Return a tuple of integer coordinates for the bounding
 box of this widget controlled by the geometry manager grid.

 If COLUMN, ROW is given the bounding box applies from
 the cell with row and column 0 to the specified
 cell. If COL2 and ROW2 are given the bounding box
 starts at that cell.

 The returned integers specify the offset of the upper left
 corner in the master widget and the width and height.
 """
 args = ('grid', 'bbox', self._w)
 if column is not None and row is not None:
 args = args + (column, row)
 if col2 is not None and row2 is not None:
 args = args + (col2, row2)
 return self._getints(self.tk.call(*args)) or None

 bbox = grid_bbox

 def _gridconvvalue(self, value):
 if isinstance(value, (str, _tkinter.Tcl_Obj)):
 try:
 svalue = str(value)
 if not svalue:
 return None
 elif '.' in svalue:
 return getdouble(svalue)
 else:
 return getint(svalue)
 except ValueError:
 pass
 return value

 def _grid_configure(self, command, index, cnf, kw):
 """Internal function."""
 if type(cnf) is StringType and not kw:
 if cnf[-1:] == '_':
 cnf = cnf[:-1]
 if cnf[:1] != '-':
 cnf = '-'+cnf
 options = (cnf,)
 else:
 options = self._options(cnf, kw)
 if not options:
 return _splitdict(
 self.tk,
 self.tk.call('grid', command, self._w, index),
 conv=self._gridconvvalue)
 res = self.tk.call(
 ('grid', command, self._w, index)
 + options)
 if len(options) == 1:
 return self._gridconvvalue(res)

 def grid_columnconfigure(self, index, cnf={}, **kw):
 """Configure column INDEX of a grid.

 Valid resources are minsize (minimum size of the column),
 weight (how much does additional space propagate to this column)
 and pad (how much space to let additionally)."""
 return self._grid_configure('columnconfigure', index, cnf, kw)
 columnconfigure = grid_columnconfigure
 def grid_location(self, x, y):
 """Return a tuple of column and row which identify the cell
 at which the pixel at position X and Y inside the master
 widget is located."""
 return self._getints(
 self.tk.call(
 'grid', 'location', self._w, x, y)) or None
 def grid_propagate(self, flag=_noarg_):
 """Set or get the status for propagation of geometry information.

 A boolean argument specifies whether the geometry information
 of the slaves will determine the size of this widget. If no argument
 is given, the current setting will be returned.
 """
 if flag is Misc._noarg_:
 return self._getboolean(self.tk.call(
 'grid', 'propagate', self._w))
 else:
 self.tk.call('grid', 'propagate', self._w, flag)
 def grid_rowconfigure(self, index, cnf={}, **kw):
 """Configure row INDEX of a grid.

 Valid resources are minsize (minimum size of the row),
 weight (how much does additional space propagate to this row)
 and pad (how much space to let additionally)."""
 return self._grid_configure('rowconfigure', index, cnf, kw)
 rowconfigure = grid_rowconfigure
 def grid_size(self):
 """Return a tuple of the number of column and rows in the grid."""
 return self._getints(
 self.tk.call('grid', 'size', self._w)) or None
 size = grid_size
 def grid_slaves(self, row=None, column=None):
 """Return a list of all slaves of this widget
 in its packing order."""
 args = ()
 if row is not None:
 args = args + ('-row', row)
 if column is not None:
 args = args + ('-column', column)
 return map(self._nametowidget,
 self.tk.splitlist(self.tk.call(
 ('grid', 'slaves', self._w) + args)))

 # Support for the "event" command, new in Tk 4.2.
 # By Case Roole.

 def event_add(self, virtual, *sequences):
 """Bind a virtual event VIRTUAL (of the form <<Name>>)
 to an event SEQUENCE such that the virtual event is triggered
 whenever SEQUENCE occurs."""
 args = ('event', 'add', virtual) + sequences
 self.tk.call(args)

 def event_delete(self, virtual, *sequences):
 """Unbind a virtual event VIRTUAL from SEQUENCE."""
 args = ('event', 'delete', virtual) + sequences
 self.tk.call(args)

 def event_generate(self, sequence, **kw):
 """Generate an event SEQUENCE. Additional
 keyword arguments specify parameter of the event
 (e.g. x, y, rootx, rooty)."""
 args = ('event', 'generate', self._w, sequence)
 for k, v in kw.items():
 args = args + ('-%s' % k, str(v))
 self.tk.call(args)

 def event_info(self, virtual=None):
 """Return a list of all virtual events or the information
 about the SEQUENCE bound to the virtual event VIRTUAL."""
 return self.tk.splitlist(
 self.tk.call('event', 'info', virtual))

 # Image related commands

 def image_names(self):
 """Return a list of all existing image names."""
 return self.tk.splitlist(self.tk.call('image', 'names'))

 def image_types(self):
 """Return a list of all available image types (e.g. photo bitmap)."""
 return self.tk.splitlist(self.tk.call('image', 'types'))

class CallWrapper:
 """Internal class. Stores function to call when some user
 defined Tcl function is called e.g. after an event occurred."""
 def __init__(self, func, subst, widget):
 """Store FUNC, SUBST and WIDGET as members."""
 self.func = func
 self.subst = subst
 self.widget = widget
 def __call__(self, *args):
 """Apply first function SUBST to arguments, than FUNC."""
 try:
 if self.subst:
 args = self.subst(*args)
 return self.func(*args)
 except SystemExit, msg:
 raise SystemExit, msg
 except:
 self.widget._report_exception()

class XView:
 """Mix-in class for querying and changing the horizontal position
 of a widget's window."""

 def xview(self, *args):
 """Query and change the horizontal position of the view."""
 res = self.tk.call(self._w, 'xview', *args)
 if not args:
 return self._getdoubles(res)

 def xview_moveto(self, fraction):
 """Adjusts the view in the window so that FRACTION of the
 total width of the canvas is off-screen to the left."""
 self.tk.call(self._w, 'xview', 'moveto', fraction)

 def xview_scroll(self, number, what):
 """Shift the x-view according to NUMBER which is measured in "units"
 or "pages" (WHAT)."""
 self.tk.call(self._w, 'xview', 'scroll', number, what)

class YView:
 """Mix-in class for querying and changing the vertical position
 of a widget's window."""

 def yview(self, *args):
 """Query and change the vertical position of the view."""
 res = self.tk.call(self._w, 'yview', *args)
 if not args:
 return self._getdoubles(res)

 def yview_moveto(self, fraction):
 """Adjusts the view in the window so that FRACTION of the
 total height of the canvas is off-screen to the top."""
 self.tk.call(self._w, 'yview', 'moveto', fraction)

 def yview_scroll(self, number, what):
 """Shift the y-view according to NUMBER which is measured in
 "units" or "pages" (WHAT)."""
 self.tk.call(self._w, 'yview', 'scroll', number, what)

class Wm:
 """Provides functions for the communication with the window manager."""

 def wm_aspect(self,
 minNumer=None, minDenom=None,
 maxNumer=None, maxDenom=None):
 """Instruct the window manager to set the aspect ratio (width/height)
 of this widget to be between MINNUMER/MINDENOM and MAXNUMER/MAXDENOM. Return a tuple
 of the actual values if no argument is given."""
 return self._getints(
 self.tk.call('wm', 'aspect', self._w,
 minNumer, minDenom,
 maxNumer, maxDenom))
 aspect = wm_aspect

 def wm_attributes(self, *args):
 """This subcommand returns or sets platform specific attributes

 The first form returns a list of the platform specific flags and
 their values. The second form returns the value for the specific
 option. The third form sets one or more of the values. The values
 are as follows:

 On Windows, -disabled gets or sets whether the window is in a
 disabled state. -toolwindow gets or sets the style of the window
 to toolwindow (as defined in the MSDN). -topmost gets or sets
 whether this is a topmost window (displays above all other
 windows).

 On Macintosh, XXXXX

 On Unix, there are currently no special attribute values.
 """
 args = ('wm', 'attributes', self._w) + args
 return self.tk.call(args)
 attributes=wm_attributes

 def wm_client(self, name=None):
 """Store NAME in WM_CLIENT_MACHINE property of this widget. Return
 current value."""
 return self.tk.call('wm', 'client', self._w, name)
 client = wm_client
 def wm_colormapwindows(self, *wlist):
 """Store list of window names (WLIST) into WM_COLORMAPWINDOWS property
 of this widget. This list contains windows whose colormaps differ from their
 parents. Return current list of widgets if WLIST is empty."""
 if len(wlist) > 1:
 wlist = (wlist,) # Tk needs a list of windows here
 args = ('wm', 'colormapwindows', self._w) + wlist
 if wlist:
 self.tk.call(args)
 else:
 return map(self._nametowidget, self.tk.splitlist(self.tk.call(args)))
 colormapwindows = wm_colormapwindows
 def wm_command(self, value=None):
 """Store VALUE in WM_COMMAND property. It is the command
 which shall be used to invoke the application. Return current
 command if VALUE is None."""
 return self.tk.call('wm', 'command', self._w, value)
 command = wm_command
 def wm_deiconify(self):
 """Deiconify this widget. If it was never mapped it will not be mapped.
 On Windows it will raise this widget and give it the focus."""
 return self.tk.call('wm', 'deiconify', self._w)
 deiconify = wm_deiconify
 def wm_focusmodel(self, model=None):
 """Set focus model to MODEL. "active" means that this widget will claim
 the focus itself, "passive" means that the window manager shall give
 the focus. Return current focus model if MODEL is None."""
 return self.tk.call('wm', 'focusmodel', self._w, model)
 focusmodel = wm_focusmodel
 def wm_frame(self):
 """Return identifier for decorative frame of this widget if present."""
 return self.tk.call('wm', 'frame', self._w)
 frame = wm_frame
 def wm_geometry(self, newGeometry=None):
 """Set geometry to NEWGEOMETRY of the form =widthxheight+x+y. Return
 current value if None is given."""
 return self.tk.call('wm', 'geometry', self._w, newGeometry)
 geometry = wm_geometry
 def wm_grid(self,
 baseWidth=None, baseHeight=None,
 widthInc=None, heightInc=None):
 """Instruct the window manager that this widget shall only be
 resized on grid boundaries. WIDTHINC and HEIGHTINC are the width and
 height of a grid unit in pixels. BASEWIDTH and BASEHEIGHT are the
 number of grid units requested in Tk_GeometryRequest."""
 return self._getints(self.tk.call(
 'wm', 'grid', self._w,
 baseWidth, baseHeight, widthInc, heightInc))
 grid = wm_grid
 def wm_group(self, pathName=None):
 """Set the group leader widgets for related widgets to PATHNAME. Return
 the group leader of this widget if None is given."""
 return self.tk.call('wm', 'group', self._w, pathName)
 group = wm_group
 def wm_iconbitmap(self, bitmap=None, default=None):
 """Set bitmap for the iconified widget to BITMAP. Return
 the bitmap if None is given.

 Under Windows, the DEFAULT parameter can be used to set the icon
 for the widget and any descendents that don't have an icon set
 explicitly. DEFAULT can be the relative path to a .ico file
 (example: root.iconbitmap(default='myicon.ico')). See Tk
 documentation for more information."""
 if default:
 return self.tk.call('wm', 'iconbitmap', self._w, '-default', default)
 else:
 return self.tk.call('wm', 'iconbitmap', self._w, bitmap)
 iconbitmap = wm_iconbitmap
 def wm_iconify(self):
 """Display widget as icon."""
 return self.tk.call('wm', 'iconify', self._w)
 iconify = wm_iconify
 def wm_iconmask(self, bitmap=None):
 """Set mask for the icon bitmap of this widget. Return the
 mask if None is given."""
 return self.tk.call('wm', 'iconmask', self._w, bitmap)
 iconmask = wm_iconmask
 def wm_iconname(self, newName=None):
 """Set the name of the icon for this widget. Return the name if
 None is given."""
 return self.tk.call('wm', 'iconname', self._w, newName)
 iconname = wm_iconname
 def wm_iconposition(self, x=None, y=None):
 """Set the position of the icon of this widget to X and Y. Return
 a tuple of the current values of X and X if None is given."""
 return self._getints(self.tk.call(
 'wm', 'iconposition', self._w, x, y))
 iconposition = wm_iconposition
 def wm_iconwindow(self, pathName=None):
 """Set widget PATHNAME to be displayed instead of icon. Return the current
 value if None is given."""
 return self.tk.call('wm', 'iconwindow', self._w, pathName)
 iconwindow = wm_iconwindow
 def wm_maxsize(self, width=None, height=None):
 """Set max WIDTH and HEIGHT for this widget. If the window is gridded
 the values are given in grid units. Return the current values if None
 is given."""
 return self._getints(self.tk.call(
 'wm', 'maxsize', self._w, width, height))
 maxsize = wm_maxsize
 def wm_minsize(self, width=None, height=None):
 """Set min WIDTH and HEIGHT for this widget. If the window is gridded
 the values are given in grid units. Return the current values if None
 is given."""
 return self._getints(self.tk.call(
 'wm', 'minsize', self._w, width, height))
 minsize = wm_minsize
 def wm_overrideredirect(self, boolean=None):
 """Instruct the window manager to ignore this widget
 if BOOLEAN is given with 1. Return the current value if None
 is given."""
 return self._getboolean(self.tk.call(
 'wm', 'overrideredirect', self._w, boolean))
 overrideredirect = wm_overrideredirect
 def wm_positionfrom(self, who=None):
 """Instruct the window manager that the position of this widget shall
 be defined by the user if WHO is "user", and by its own policy if WHO is
 "program"."""
 return self.tk.call('wm', 'positionfrom', self._w, who)
 positionfrom = wm_positionfrom
 def wm_protocol(self, name=None, func=None):
 """Bind function FUNC to command NAME for this widget.
 Return the function bound to NAME if None is given. NAME could be
 e.g. "WM_SAVE_YOURSELF" or "WM_DELETE_WINDOW"."""
 if hasattr(func, '__call__'):
 command = self._register(func)
 else:
 command = func
 return self.tk.call(
 'wm', 'protocol', self._w, name, command)
 protocol = wm_protocol
 def wm_resizable(self, width=None, height=None):
 """Instruct the window manager whether this width can be resized
 in WIDTH or HEIGHT. Both values are boolean values."""
 return self.tk.call('wm', 'resizable', self._w, width, height)
 resizable = wm_resizable
 def wm_sizefrom(self, who=None):
 """Instruct the window manager that the size of this widget shall
 be defined by the user if WHO is "user", and by its own policy if WHO is
 "program"."""
 return self.tk.call('wm', 'sizefrom', self._w, who)
 sizefrom = wm_sizefrom
 def wm_state(self, newstate=None):
 """Query or set the state of this widget as one of normal, icon,
 iconic (see wm_iconwindow), withdrawn, or zoomed (Windows only)."""
 return self.tk.call('wm', 'state', self._w, newstate)
 state = wm_state
 def wm_title(self, string=None):
 """Set the title of this widget."""
 return self.tk.call('wm', 'title', self._w, string)
 title = wm_title
 def wm_transient(self, master=None):
 """Instruct the window manager that this widget is transient
 with regard to widget MASTER."""
 return self.tk.call('wm', 'transient', self._w, master)
 transient = wm_transient
 def wm_withdraw(self):
 """Withdraw this widget from the screen such that it is unmapped
 and forgotten by the window manager. Re-draw it with wm_deiconify."""
 return self.tk.call('wm', 'withdraw', self._w)
 withdraw = wm_withdraw

class Tk(Misc, Wm):
 """Toplevel widget of Tk which represents mostly the main window
 of an application. It has an associated Tcl interpreter."""
 _w = '.'
 def __init__(self, screenName=None, baseName=None, className='Tk',
 useTk=1, sync=0, use=None):
 """Return a new Toplevel widget on screen SCREENNAME. A new Tcl interpreter will
 be created. BASENAME will be used for the identification of the profile file (see
 readprofile).
 It is constructed from sys.argv[0] without extensions if None is given. CLASSNAME
 is the name of the widget class."""
 self.master = None
 self.children = {}
 self._tkloaded = 0
 # to avoid recursions in the getattr code in case of failure, we
 # ensure that self.tk is always _something_.
 self.tk = None
 if baseName is None:
 import os
 baseName = os.path.basename(sys.argv[0])
 baseName, ext = os.path.splitext(baseName)
 if ext not in ('.py', '.pyc', '.pyo'):
 baseName = baseName + ext
 interactive = 0
 self.tk = _tkinter.create(screenName, baseName, className, interactive, wantobjects, useTk, sync, use)
 if useTk:
 self._loadtk()
 if not sys.flags.ignore_environment:
 # Issue #16248: Honor the -E flag to avoid code injection.
 self.readprofile(baseName, className)
 def loadtk(self):
 if not self._tkloaded:
 self.tk.loadtk()
 self._loadtk()
 def _loadtk(self):
 self._tkloaded = 1
 global _default_root
 # Version sanity checks
 tk_version = self.tk.getvar('tk_version')
 if tk_version != _tkinter.TK_VERSION:
 raise RuntimeError, \
 "tk.h version (%s) doesn't match libtk.a version (%s)" \
 % (_tkinter.TK_VERSION, tk_version)
 # Under unknown circumstances, tcl_version gets coerced to float
 tcl_version = str(self.tk.getvar('tcl_version'))
 if tcl_version != _tkinter.TCL_VERSION:
 raise RuntimeError, \
 "tcl.h version (%s) doesn't match libtcl.a version (%s)" \
 % (_tkinter.TCL_VERSION, tcl_version)
 if TkVersion < 4.0:
 raise RuntimeError, \
 "Tk 4.0 or higher is required; found Tk %s" \
 % str(TkVersion)
 # Create and register the tkerror and exit commands
 # We need to inline parts of _register here, _ register
 # would register differently-named commands.
 if self._tclCommands is None:
 self._tclCommands = []
 self.tk.createcommand('tkerror', _tkerror)
 self.tk.createcommand('exit', _exit)
 self._tclCommands.append('tkerror')
 self._tclCommands.append('exit')
 if _support_default_root and not _default_root:
 _default_root = self
 self.protocol("WM_DELETE_WINDOW", self.destroy)
 def destroy(self):
 """Destroy this and all descendants widgets. This will
 end the application of this Tcl interpreter."""
 for c in self.children.values(): c.destroy()
 self.tk.call('destroy', self._w)
 Misc.destroy(self)
 global _default_root
 if _support_default_root and _default_root is self:
 _default_root = None
 def readprofile(self, baseName, className):
 """Internal function. It reads BASENAME.tcl and CLASSNAME.tcl into
 the Tcl Interpreter and calls execfile on BASENAME.py and CLASSNAME.py if
 such a file exists in the home directory."""
 import os
 if 'HOME' in os.environ: home = os.environ['HOME']
 else: home = os.curdir
 class_tcl = os.path.join(home, '.%s.tcl' % className)
 class_py = os.path.join(home, '.%s.py' % className)
 base_tcl = os.path.join(home, '.%s.tcl' % baseName)
 base_py = os.path.join(home, '.%s.py' % baseName)
 dir = {'self': self}
 exec 'from Tkinter import *' in dir
 if os.path.isfile(class_tcl):
 self.tk.call('source', class_tcl)
 if os.path.isfile(class_py):
 execfile(class_py, dir)
 if os.path.isfile(base_tcl):
 self.tk.call('source', base_tcl)
 if os.path.isfile(base_py):
 execfile(base_py, dir)
 def report_callback_exception(self, exc, val, tb):
 """Report callback exception on sys.stderr.

 Applications may want to override this internal function, and
 should when sys.stderr is None."""
 import traceback, sys
 print >>sys.stderr, "Exception in Tkinter callback"
 sys.last_type = exc
 sys.last_value = val
 sys.last_traceback = tb
 traceback.print_exception(exc, val, tb)
 def __getattr__(self, attr):
 "Delegate attribute access to the interpreter object"
 return getattr(self.tk, attr)

Ideally, the classes Pack, Place and Grid disappear, the
pack/place/grid methods are defined on the Widget class, and
everybody uses w.pack_whatever(...) instead of Pack.whatever(w,
...), with pack(), place() and grid() being short for
pack_configure(), place_configure() and grid_columnconfigure(), and
forget() being short for pack_forget(). As a practical matter, I'm
afraid that there is too much code out there that may be using the
Pack, Place or Grid class, so I leave them intact -- but only as
backwards compatibility features. Also note that those methods that
take a master as argument (e.g. pack_propagate) have been moved to
the Misc class (which now incorporates all methods common between
toplevel and interior widgets). Again, for compatibility, these are
copied into the Pack, Place or Grid class.

def Tcl(screenName=None, baseName=None, className='Tk', useTk=0):
 return Tk(screenName, baseName, className, useTk)

class Pack:
 """Geometry manager Pack.

 Base class to use the methods pack_* in every widget."""
 def pack_configure(self, cnf={}, **kw):
 """Pack a widget in the parent widget. Use as options:
 after=widget - pack it after you have packed widget
 anchor=NSEW (or subset) - position widget according to
 given direction
 before=widget - pack it before you will pack widget
 expand=bool - expand widget if parent size grows
 fill=NONE or X or Y or BOTH - fill widget if widget grows
 in=master - use master to contain this widget
 in_=master - see 'in' option description
 ipadx=amount - add internal padding in x direction
 ipady=amount - add internal padding in y direction
 padx=amount - add padding in x direction
 pady=amount - add padding in y direction
 side=TOP or BOTTOM or LEFT or RIGHT - where to add this widget.
 """
 self.tk.call(
 ('pack', 'configure', self._w)
 + self._options(cnf, kw))
 pack = configure = config = pack_configure
 def pack_forget(self):
 """Unmap this widget and do not use it for the packing order."""
 self.tk.call('pack', 'forget', self._w)
 forget = pack_forget
 def pack_info(self):
 """Return information about the packing options
 for this widget."""
 d = _splitdict(self.tk, self.tk.call('pack', 'info', self._w))
 if 'in' in d:
 d['in'] = self.nametowidget(d['in'])
 return d
 info = pack_info
 propagate = pack_propagate = Misc.pack_propagate
 slaves = pack_slaves = Misc.pack_slaves

class Place:
 """Geometry manager Place.

 Base class to use the methods place_* in every widget."""
 def place_configure(self, cnf={}, **kw):
 """Place a widget in the parent widget. Use as options:
 in=master - master relative to which the widget is placed
 in_=master - see 'in' option description
 x=amount - locate anchor of this widget at position x of master
 y=amount - locate anchor of this widget at position y of master
 relx=amount - locate anchor of this widget between 0.0 and 1.0
 relative to width of master (1.0 is right edge)
 rely=amount - locate anchor of this widget between 0.0 and 1.0
 relative to height of master (1.0 is bottom edge)
 anchor=NSEW (or subset) - position anchor according to given direction
 width=amount - width of this widget in pixel
 height=amount - height of this widget in pixel
 relwidth=amount - width of this widget between 0.0 and 1.0
 relative to width of master (1.0 is the same width
 as the master)
 relheight=amount - height of this widget between 0.0 and 1.0
 relative to height of master (1.0 is the same
 height as the master)
 bordermode="inside" or "outside" - whether to take border width of
 master widget into account
 """
 self.tk.call(
 ('place', 'configure', self._w)
 + self._options(cnf, kw))
 place = configure = config = place_configure
 def place_forget(self):
 """Unmap this widget."""
 self.tk.call('place', 'forget', self._w)
 forget = place_forget
 def place_info(self):
 """Return information about the placing options
 for this widget."""
 d = _splitdict(self.tk, self.tk.call('place', 'info', self._w))
 if 'in' in d:
 d['in'] = self.nametowidget(d['in'])
 return d
 info = place_info
 slaves = place_slaves = Misc.place_slaves

class Grid:
 """Geometry manager Grid.

 Base class to use the methods grid_* in every widget."""
 # Thanks to Masazumi Yoshikawa (yosikawa@isi.edu)
 def grid_configure(self, cnf={}, **kw):
 """Position a widget in the parent widget in a grid. Use as options:
 column=number - use cell identified with given column (starting with 0)
 columnspan=number - this widget will span several columns
 in=master - use master to contain this widget
 in_=master - see 'in' option description
 ipadx=amount - add internal padding in x direction
 ipady=amount - add internal padding in y direction
 padx=amount - add padding in x direction
 pady=amount - add padding in y direction
 row=number - use cell identified with given row (starting with 0)
 rowspan=number - this widget will span several rows
 sticky=NSEW - if cell is larger on which sides will this
 widget stick to the cell boundary
 """
 self.tk.call(
 ('grid', 'configure', self._w)
 + self._options(cnf, kw))
 grid = configure = config = grid_configure
 bbox = grid_bbox = Misc.grid_bbox
 columnconfigure = grid_columnconfigure = Misc.grid_columnconfigure
 def grid_forget(self):
 """Unmap this widget."""
 self.tk.call('grid', 'forget', self._w)
 forget = grid_forget
 def grid_remove(self):
 """Unmap this widget but remember the grid options."""
 self.tk.call('grid', 'remove', self._w)
 def grid_info(self):
 """Return information about the options
 for positioning this widget in a grid."""
 d = _splitdict(self.tk, self.tk.call('grid', 'info', self._w))
 if 'in' in d:
 d['in'] = self.nametowidget(d['in'])
 return d
 info = grid_info
 location = grid_location = Misc.grid_location
 propagate = grid_propagate = Misc.grid_propagate
 rowconfigure = grid_rowconfigure = Misc.grid_rowconfigure
 size = grid_size = Misc.grid_size
 slaves = grid_slaves = Misc.grid_slaves

class BaseWidget(Misc):
 """Internal class."""
 def _setup(self, master, cnf):
 """Internal function. Sets up information about children."""
 if _support_default_root:
 global _default_root
 if not master:
 if not _default_root:
 _default_root = Tk()
 master = _default_root
 self.master = master
 self.tk = master.tk
 name = None
 if 'name' in cnf:
 name = cnf['name']
 del cnf['name']
 if not name:
 name = repr(id(self))
 self._name = name
 if master._w=='.':
 self._w = '.' + name
 else:
 self._w = master._w + '.' + name
 self.children = {}
 if self._name in self.master.children:
 self.master.children[self._name].destroy()
 self.master.children[self._name] = self
 def __init__(self, master, widgetName, cnf={}, kw={}, extra=()):
 """Construct a widget with the parent widget MASTER, a name WIDGETNAME
 and appropriate options."""
 if kw:
 cnf = _cnfmerge((cnf, kw))
 self.widgetName = widgetName
 BaseWidget._setup(self, master, cnf)
 if self._tclCommands is None:
 self._tclCommands = []
 classes = []
 for k in cnf.keys():
 if type(k) is ClassType:
 classes.append((k, cnf[k]))
 del cnf[k]
 self.tk.call(
 (widgetName, self._w) + extra + self._options(cnf))
 for k, v in classes:
 k.configure(self, v)
 def destroy(self):
 """Destroy this and all descendants widgets."""
 for c in self.children.values(): c.destroy()
 self.tk.call('destroy', self._w)
 if self._name in self.master.children:
 del self.master.children[self._name]
 Misc.destroy(self)
 def _do(self, name, args=()):
 # XXX Obsolete -- better use self.tk.call directly!
 return self.tk.call((self._w, name) + args)

class Widget(BaseWidget, Pack, Place, Grid):
 """Internal class.

 Base class for a widget which can be positioned with the geometry managers
 Pack, Place or Grid."""
 pass

class Toplevel(BaseWidget, Wm):
 """Toplevel widget, e.g. for dialogs."""
 def __init__(self, master=None, cnf={}, **kw):
 """Construct a toplevel widget with the parent MASTER.

 Valid resource names: background, bd, bg, borderwidth, class,
 colormap, container, cursor, height, highlightbackground,
 highlightcolor, highlightthickness, menu, relief, screen, takefocus,
 use, visual, width."""
 if kw:
 cnf = _cnfmerge((cnf, kw))
 extra = ()
 for wmkey in ['screen', 'class_', 'class', 'visual',
 'colormap']:
 if wmkey in cnf:
 val = cnf[wmkey]
 # TBD: a hack needed because some keys
 # are not valid as keyword arguments
 if wmkey[-1] == '_': opt = '-'+wmkey[:-1]
 else: opt = '-'+wmkey
 extra = extra + (opt, val)
 del cnf[wmkey]
 BaseWidget.__init__(self, master, 'toplevel', cnf, {}, extra)
 root = self._root()
 self.iconname(root.iconname())
 self.title(root.title())
 self.protocol("WM_DELETE_WINDOW", self.destroy)

class Button(Widget):
 """Button widget."""
 def __init__(self, master=None, cnf={}, **kw):
 """Construct a button widget with the parent MASTER.

 STANDARD OPTIONS

 activebackground, activeforeground, anchor,
 background, bitmap, borderwidth, cursor,
 disabledforeground, font, foreground
 highlightbackground, highlightcolor,
 highlightthickness, image, justify,
 padx, pady, relief, repeatdelay,
 repeatinterval, takefocus, text,
 textvariable, underline, wraplength

 WIDGET-SPECIFIC OPTIONS

 command, compound, default, height,
 overrelief, state, width
 """
 Widget.__init__(self, master, 'button', cnf, kw)

 def tkButtonEnter(self, *dummy):
 self.tk.call('tkButtonEnter', self._w)

 def tkButtonLeave(self, *dummy):
 self.tk.call('tkButtonLeave', self._w)

 def tkButtonDown(self, *dummy):
 self.tk.call('tkButtonDown', self._w)

 def tkButtonUp(self, *dummy):
 self.tk.call('tkButtonUp', self._w)

 def tkButtonInvoke(self, *dummy):
 self.tk.call('tkButtonInvoke', self._w)

 def flash(self):
 """Flash the button.

 This is accomplished by redisplaying
 the button several times, alternating between active and
 normal colors. At the end of the flash the button is left
 in the same normal/active state as when the command was
 invoked. This command is ignored if the button's state is
 disabled.
 """
 self.tk.call(self._w, 'flash')

 def invoke(self):
 """Invoke the command associated with the button.

 The return value is the return value from the command,
 or an empty string if there is no command associated with
 the button. This command is ignored if the button's state
 is disabled.
 """
 return self.tk.call(self._w, 'invoke')

Indices:
XXX I don't like these -- take them away
def AtEnd():
 return 'end'
def AtInsert(*args):
 s = 'insert'
 for a in args:
 if a: s = s + (' ' + a)
 return s
def AtSelFirst():
 return 'sel.first'
def AtSelLast():
 return 'sel.last'
def At(x, y=None):
 if y is None:
 return '@%r' % (x,)
 else:
 return '@%r,%r' % (x, y)

class Canvas(Widget, XView, YView):
 """Canvas widget to display graphical elements like lines or text."""
 def __init__(self, master=None, cnf={}, **kw):
 """Construct a canvas widget with the parent MASTER.

 Valid resource names: background, bd, bg, borderwidth, closeenough,
 confine, cursor, height, highlightbackground, highlightcolor,
 highlightthickness, insertbackground, insertborderwidth,
 insertofftime, insertontime, insertwidth, offset, relief,
 scrollregion, selectbackground, selectborderwidth, selectforeground,
 state, takefocus, width, xscrollcommand, xscrollincrement,
 yscrollcommand, yscrollincrement."""
 Widget.__init__(self, master, 'canvas', cnf, kw)
 def addtag(self, *args):
 """Internal function."""
 self.tk.call((self._w, 'addtag') + args)
 def addtag_above(self, newtag, tagOrId):
 """Add tag NEWTAG to all items above TAGORID."""
 self.addtag(newtag, 'above', tagOrId)
 def addtag_all(self, newtag):
 """Add tag NEWTAG to all items."""
 self.addtag(newtag, 'all')
 def addtag_below(self, newtag, tagOrId):
 """Add tag NEWTAG to all items below TAGORID."""
 self.addtag(newtag, 'below', tagOrId)
 def addtag_closest(self, newtag, x, y, halo=None, start=None):
 """Add tag NEWTAG to item which is closest to pixel at X, Y.
 If several match take the top-most.
 All items closer than HALO are considered overlapping (all are
 closests). If START is specified the next below this tag is taken."""
 self.addtag(newtag, 'closest', x, y, halo, start)
 def addtag_enclosed(self, newtag, x1, y1, x2, y2):
 """Add tag NEWTAG to all items in the rectangle defined
 by X1,Y1,X2,Y2."""
 self.addtag(newtag, 'enclosed', x1, y1, x2, y2)
 def addtag_overlapping(self, newtag, x1, y1, x2, y2):
 """Add tag NEWTAG to all items which overlap the rectangle
 defined by X1,Y1,X2,Y2."""
 self.addtag(newtag, 'overlapping', x1, y1, x2, y2)
 def addtag_withtag(self, newtag, tagOrId):
 """Add tag NEWTAG to all items with TAGORID."""
 self.addtag(newtag, 'withtag', tagOrId)
 def bbox(self, *args):
 """Return a tuple of X1,Y1,X2,Y2 coordinates for a rectangle
 which encloses all items with tags specified as arguments."""
 return self._getints(
 self.tk.call((self._w, 'bbox') + args)) or None
 def tag_unbind(self, tagOrId, sequence, funcid=None):
 """Unbind for all items with TAGORID for event SEQUENCE the
 function identified with FUNCID."""
 self.tk.call(self._w, 'bind', tagOrId, sequence, '')
 if funcid:
 self.deletecommand(funcid)
 def tag_bind(self, tagOrId, sequence=None, func=None, add=None):
 """Bind to all items with TAGORID at event SEQUENCE a call to function FUNC.

 An additional boolean parameter ADD specifies whether FUNC will be
 called additionally to the other bound function or whether it will
 replace the previous function. See bind for the return value."""
 return self._bind((self._w, 'bind', tagOrId),
 sequence, func, add)
 def canvasx(self, screenx, gridspacing=None):
 """Return the canvas x coordinate of pixel position SCREENX rounded
 to nearest multiple of GRIDSPACING units."""
 return getdouble(self.tk.call(
 self._w, 'canvasx', screenx, gridspacing))
 def canvasy(self, screeny, gridspacing=None):
 """Return the canvas y coordinate of pixel position SCREENY rounded
 to nearest multiple of GRIDSPACING units."""
 return getdouble(self.tk.call(
 self._w, 'canvasy', screeny, gridspacing))
 def coords(self, *args):
 """Return a list of coordinates for the item given in ARGS."""
 # XXX Should use _flatten on args
 return map(getdouble,
 self.tk.splitlist(
 self.tk.call((self._w, 'coords') + args)))
 def _create(self, itemType, args, kw): # Args: (val, val, ..., cnf={})
 """Internal function."""
 args = _flatten(args)
 cnf = args[-1]
 if type(cnf) in (DictionaryType, TupleType):
 args = args[:-1]
 else:
 cnf = {}
 return getint(self.tk.call(
 self._w, 'create', itemType,
 *(args + self._options(cnf, kw))))
 def create_arc(self, *args, **kw):
 """Create arc shaped region with coordinates x1,y1,x2,y2."""
 return self._create('arc', args, kw)
 def create_bitmap(self, *args, **kw):
 """Create bitmap with coordinates x1,y1."""
 return self._create('bitmap', args, kw)
 def create_image(self, *args, **kw):
 """Create image item with coordinates x1,y1."""
 return self._create('image', args, kw)
 def create_line(self, *args, **kw):
 """Create line with coordinates x1,y1,...,xn,yn."""
 return self._create('line', args, kw)
 def create_oval(self, *args, **kw):
 """Create oval with coordinates x1,y1,x2,y2."""
 return self._create('oval', args, kw)
 def create_polygon(self, *args, **kw):
 """Create polygon with coordinates x1,y1,...,xn,yn."""
 return self._create('polygon', args, kw)
 def create_rectangle(self, *args, **kw):
 """Create rectangle with coordinates x1,y1,x2,y2."""
 return self._create('rectangle', args, kw)
 def create_text(self, *args, **kw):
 """Create text with coordinates x1,y1."""
 return self._create('text', args, kw)
 def create_window(self, *args, **kw):
 """Create window with coordinates x1,y1,x2,y2."""
 return self._create('window', args, kw)
 def dchars(self, *args):
 """Delete characters of text items identified by tag or id in ARGS (possibly
 several times) from FIRST to LAST character (including)."""
 self.tk.call((self._w, 'dchars') + args)
 def delete(self, *args):
 """Delete items identified by all tag or ids contained in ARGS."""
 self.tk.call((self._w, 'delete') + args)
 def dtag(self, *args):
 """Delete tag or id given as last arguments in ARGS from items
 identified by first argument in ARGS."""
 self.tk.call((self._w, 'dtag') + args)
 def find(self, *args):
 """Internal function."""
 return self._getints(
 self.tk.call((self._w, 'find') + args)) or ()
 def find_above(self, tagOrId):
 """Return items above TAGORID."""
 return self.find('above', tagOrId)
 def find_all(self):
 """Return all items."""
 return self.find('all')
 def find_below(self, tagOrId):
 """Return all items below TAGORID."""
 return self.find('below', tagOrId)
 def find_closest(self, x, y, halo=None, start=None):
 """Return item which is closest to pixel at X, Y.
 If several match take the top-most.
 All items closer than HALO are considered overlapping (all are
 closest). If START is specified the next below this tag is taken."""
 return self.find('closest', x, y, halo, start)
 def find_enclosed(self, x1, y1, x2, y2):
 """Return all items in rectangle defined
 by X1,Y1,X2,Y2."""
 return self.find('enclosed', x1, y1, x2, y2)
 def find_overlapping(self, x1, y1, x2, y2):
 """Return all items which overlap the rectangle
 defined by X1,Y1,X2,Y2."""
 return self.find('overlapping', x1, y1, x2, y2)
 def find_withtag(self, tagOrId):
 """Return all items with TAGORID."""
 return self.find('withtag', tagOrId)
 def focus(self, *args):
 """Set focus to the first item specified in ARGS."""
 return self.tk.call((self._w, 'focus') + args)
 def gettags(self, *args):
 """Return tags associated with the first item specified in ARGS."""
 return self.tk.splitlist(
 self.tk.call((self._w, 'gettags') + args))
 def icursor(self, *args):
 """Set cursor at position POS in the item identified by TAGORID.
 In ARGS TAGORID must be first."""
 self.tk.call((self._w, 'icursor') + args)
 def index(self, *args):
 """Return position of cursor as integer in item specified in ARGS."""
 return getint(self.tk.call((self._w, 'index') + args))
 def insert(self, *args):
 """Insert TEXT in item TAGORID at position POS. ARGS must
 be TAGORID POS TEXT."""
 self.tk.call((self._w, 'insert') + args)
 def itemcget(self, tagOrId, option):
 """Return the resource value for an OPTION for item TAGORID."""
 return self.tk.call(
 (self._w, 'itemcget') + (tagOrId, '-'+option))
 def itemconfigure(self, tagOrId, cnf=None, **kw):
 """Configure resources of an item TAGORID.

 The values for resources are specified as keyword
 arguments. To get an overview about
 the allowed keyword arguments call the method without arguments.
 """
 return self._configure(('itemconfigure', tagOrId), cnf, kw)
 itemconfig = itemconfigure
 # lower, tkraise/lift hide Misc.lower, Misc.tkraise/lift,
 # so the preferred name for them is tag_lower, tag_raise
 # (similar to tag_bind, and similar to the Text widget);
 # unfortunately can't delete the old ones yet (maybe in 1.6)
 def tag_lower(self, *args):
 """Lower an item TAGORID given in ARGS
 (optional below another item)."""
 self.tk.call((self._w, 'lower') + args)
 lower = tag_lower
 def move(self, *args):
 """Move an item TAGORID given in ARGS."""
 self.tk.call((self._w, 'move') + args)
 def postscript(self, cnf={}, **kw):
 """Print the contents of the canvas to a postscript
 file. Valid options: colormap, colormode, file, fontmap,
 height, pageanchor, pageheight, pagewidth, pagex, pagey,
 rotate, width, x, y."""
 return self.tk.call((self._w, 'postscript') +
 self._options(cnf, kw))
 def tag_raise(self, *args):
 """Raise an item TAGORID given in ARGS
 (optional above another item)."""
 self.tk.call((self._w, 'raise') + args)
 lift = tkraise = tag_raise
 def scale(self, *args):
 """Scale item TAGORID with XORIGIN, YORIGIN, XSCALE, YSCALE."""
 self.tk.call((self._w, 'scale') + args)
 def scan_mark(self, x, y):
 """Remember the current X, Y coordinates."""
 self.tk.call(self._w, 'scan', 'mark', x, y)
 def scan_dragto(self, x, y, gain=10):
 """Adjust the view of the canvas to GAIN times the
 difference between X and Y and the coordinates given in
 scan_mark."""
 self.tk.call(self._w, 'scan', 'dragto', x, y, gain)
 def select_adjust(self, tagOrId, index):
 """Adjust the end of the selection near the cursor of an item TAGORID to index."""
 self.tk.call(self._w, 'select', 'adjust', tagOrId, index)
 def select_clear(self):
 """Clear the selection if it is in this widget."""
 self.tk.call(self._w, 'select', 'clear')
 def select_from(self, tagOrId, index):
 """Set the fixed end of a selection in item TAGORID to INDEX."""
 self.tk.call(self._w, 'select', 'from', tagOrId, index)
 def select_item(self):
 """Return the item which has the selection."""
 return self.tk.call(self._w, 'select', 'item') or None
 def select_to(self, tagOrId, index):
 """Set the variable end of a selection in item TAGORID to INDEX."""
 self.tk.call(self._w, 'select', 'to', tagOrId, index)
 def type(self, tagOrId):
 """Return the type of the item TAGORID."""
 return self.tk.call(self._w, 'type', tagOrId) or None

class Checkbutton(Widget):
 """Checkbutton widget which is either in on- or off-state."""
 def __init__(self, master=None, cnf={}, **kw):
 """Construct a checkbutton widget with the parent MASTER.

 Valid resource names: activebackground, activeforeground, anchor,
 background, bd, bg, bitmap, borderwidth, command, cursor,
 disabledforeground, fg, font, foreground, height,
 highlightbackground, highlightcolor, highlightthickness, image,
 indicatoron, justify, offvalue, onvalue, padx, pady, relief,
 selectcolor, selectimage, state, takefocus, text, textvariable,
 underline, variable, width, wraplength."""
 Widget.__init__(self, master, 'checkbutton', cnf, kw)
 def deselect(self):
 """Put the button in off-state."""
 self.tk.call(self._w, 'deselect')
 def flash(self):
 """Flash the button."""
 self.tk.call(self._w, 'flash')
 def invoke(self):
 """Toggle the button and invoke a command if given as resource."""
 return self.tk.call(self._w, 'invoke')
 def select(self):
 """Put the button in on-state."""
 self.tk.call(self._w, 'select')
 def toggle(self):
 """Toggle the button."""
 self.tk.call(self._w, 'toggle')

class Entry(Widget, XView):
 """Entry widget which allows displaying simple text."""
 def __init__(self, master=None, cnf={}, **kw):
 """Construct an entry widget with the parent MASTER.

 Valid resource names: background, bd, bg, borderwidth, cursor,
 exportselection, fg, font, foreground, highlightbackground,
 highlightcolor, highlightthickness, insertbackground,
 insertborderwidth, insertofftime, insertontime, insertwidth,
 invalidcommand, invcmd, justify, relief, selectbackground,
 selectborderwidth, selectforeground, show, state, takefocus,
 textvariable, validate, validatecommand, vcmd, width,
 xscrollcommand."""
 Widget.__init__(self, master, 'entry', cnf, kw)
 def delete(self, first, last=None):
 """Delete text from FIRST to LAST (not included)."""
 self.tk.call(self._w, 'delete', first, last)
 def get(self):
 """Return the text."""
 return self.tk.call(self._w, 'get')
 def icursor(self, index):
 """Insert cursor at INDEX."""
 self.tk.call(self._w, 'icursor', index)
 def index(self, index):
 """Return position of cursor."""
 return getint(self.tk.call(
 self._w, 'index', index))
 def insert(self, index, string):
 """Insert STRING at INDEX."""
 self.tk.call(self._w, 'insert', index, string)
 def scan_mark(self, x):
 """Remember the current X, Y coordinates."""
 self.tk.call(self._w, 'scan', 'mark', x)
 def scan_dragto(self, x):
 """Adjust the view of the canvas to 10 times the
 difference between X and Y and the coordinates given in
 scan_mark."""
 self.tk.call(self._w, 'scan', 'dragto', x)
 def selection_adjust(self, index):
 """Adjust the end of the selection near the cursor to INDEX."""
 self.tk.call(self._w, 'selection', 'adjust', index)
 select_adjust = selection_adjust
 def selection_clear(self):
 """Clear the selection if it is in this widget."""
 self.tk.call(self._w, 'selection', 'clear')
 select_clear = selection_clear
 def selection_from(self, index):
 """Set the fixed end of a selection to INDEX."""
 self.tk.call(self._w, 'selection', 'from', index)
 select_from = selection_from
 def selection_present(self):
 """Return True if there are characters selected in the entry, False
 otherwise."""
 return self.tk.getboolean(
 self.tk.call(self._w, 'selection', 'present'))
 select_present = selection_present
 def selection_range(self, start, end):
 """Set the selection from START to END (not included)."""
 self.tk.call(self._w, 'selection', 'range', start, end)
 select_range = selection_range
 def selection_to(self, index):
 """Set the variable end of a selection to INDEX."""
 self.tk.call(self._w, 'selection', 'to', index)
 select_to = selection_to

class Frame(Widget):
 """Frame widget which may contain other widgets and can have a 3D border."""
 def __init__(self, master=None, cnf={}, **kw):
 """Construct a frame widget with the parent MASTER.

 Valid resource names: background, bd, bg, borderwidth, class,
 colormap, container, cursor, height, highlightbackground,
 highlightcolor, highlightthickness, relief, takefocus, visual, width."""
 cnf = _cnfmerge((cnf, kw))
 extra = ()
 if 'class_' in cnf:
 extra = ('-class', cnf['class_'])
 del cnf['class_']
 elif 'class' in cnf:
 extra = ('-class', cnf['class'])
 del cnf['class']
 Widget.__init__(self, master, 'frame', cnf, {}, extra)

class Label(Widget):
 """Label widget which can display text and bitmaps."""
 def __init__(self, master=None, cnf={}, **kw):
 """Construct a label widget with the parent MASTER.

 STANDARD OPTIONS

 activebackground, activeforeground, anchor,
 background, bitmap, borderwidth, cursor,
 disabledforeground, font, foreground,
 highlightbackground, highlightcolor,
 highlightthickness, image, justify,
 padx, pady, relief, takefocus, text,
 textvariable, underline, wraplength

 WIDGET-SPECIFIC OPTIONS

 height, state, width

 """
 Widget.__init__(self, master, 'label', cnf, kw)

class Listbox(Widget, XView, YView):
 """Listbox widget which can display a list of strings."""
 def __init__(self, master=None, cnf={}, **kw):
 """Construct a listbox widget with the parent MASTER.

 Valid resource names: background, bd, bg, borderwidth, cursor,
 exportselection, fg, font, foreground, height, highlightbackground,
 highlightcolor, highlightthickness, relief, selectbackground,
 selectborderwidth, selectforeground, selectmode, setgrid, takefocus,
 width, xscrollcommand, yscrollcommand, listvariable."""
 Widget.__init__(self, master, 'listbox', cnf, kw)
 def activate(self, index):
 """Activate item identified by INDEX."""
 self.tk.call(self._w, 'activate', index)
 def bbox(self, index):
 """Return a tuple of X1,Y1,X2,Y2 coordinates for a rectangle
 which encloses the item identified by the given index."""
 return self._getints(self.tk.call(self._w, 'bbox', index)) or None
 def curselection(self):
 """Return the indices of currently selected item."""
 return self._getints(self.tk.call(self._w, 'curselection')) or ()
 def delete(self, first, last=None):
 """Delete items from FIRST to LAST (included)."""
 self.tk.call(self._w, 'delete', first, last)
 def get(self, first, last=None):
 """Get list of items from FIRST to LAST (included)."""
 if last is not None:
 return self.tk.splitlist(self.tk.call(
 self._w, 'get', first, last))
 else:
 return self.tk.call(self._w, 'get', first)
 def index(self, index):
 """Return index of item identified with INDEX."""
 i = self.tk.call(self._w, 'index', index)
 if i == 'none': return None
 return getint(i)
 def insert(self, index, *elements):
 """Insert ELEMENTS at INDEX."""
 self.tk.call((self._w, 'insert', index) + elements)
 def nearest(self, y):
 """Get index of item which is nearest to y coordinate Y."""
 return getint(self.tk.call(
 self._w, 'nearest', y))
 def scan_mark(self, x, y):
 """Remember the current X, Y coordinates."""
 self.tk.call(self._w, 'scan', 'mark', x, y)
 def scan_dragto(self, x, y):
 """Adjust the view of the listbox to 10 times the
 difference between X and Y and the coordinates given in
 scan_mark."""
 self.tk.call(self._w, 'scan', 'dragto', x, y)
 def see(self, index):
 """Scroll such that INDEX is visible."""
 self.tk.call(self._w, 'see', index)
 def selection_anchor(self, index):
 """Set the fixed end oft the selection to INDEX."""
 self.tk.call(self._w, 'selection', 'anchor', index)
 select_anchor = selection_anchor
 def selection_clear(self, first, last=None):
 """Clear the selection from FIRST to LAST (included)."""
 self.tk.call(self._w,
 'selection', 'clear', first, last)
 select_clear = selection_clear
 def selection_includes(self, index):
 """Return 1 if INDEX is part of the selection."""
 return self.tk.getboolean(self.tk.call(
 self._w, 'selection', 'includes', index))
 select_includes = selection_includes
 def selection_set(self, first, last=None):
 """Set the selection from FIRST to LAST (included) without
 changing the currently selected elements."""
 self.tk.call(self._w, 'selection', 'set', first, last)
 select_set = selection_set
 def size(self):
 """Return the number of elements in the listbox."""
 return getint(self.tk.call(self._w, 'size'))
 def itemcget(self, index, option):
 """Return the resource value for an ITEM and an OPTION."""
 return self.tk.call(
 (self._w, 'itemcget') + (index, '-'+option))
 def itemconfigure(self, index, cnf=None, **kw):
 """Configure resources of an ITEM.

 The values for resources are specified as keyword arguments.
 To get an overview about the allowed keyword arguments
 call the method without arguments.
 Valid resource names: background, bg, foreground, fg,
 selectbackground, selectforeground."""
 return self._configure(('itemconfigure', index), cnf, kw)
 itemconfig = itemconfigure

class Menu(Widget):
 """Menu widget which allows displaying menu bars, pull-down menus and pop-up menus."""
 def __init__(self, master=None, cnf={}, **kw):
 """Construct menu widget with the parent MASTER.

 Valid resource names: activebackground, activeborderwidth,
 activeforeground, background, bd, bg, borderwidth, cursor,
 disabledforeground, fg, font, foreground, postcommand, relief,
 selectcolor, takefocus, tearoff, tearoffcommand, title, type."""
 Widget.__init__(self, master, 'menu', cnf, kw)
 def tk_bindForTraversal(self):
 # obsolete since Tk 4.0
 import warnings
 warnings.warn('tk_bindForTraversal() does nothing and '
 'will be removed in 3.6',
 DeprecationWarning, stacklevel=2)
 def tk_mbPost(self):
 self.tk.call('tk_mbPost', self._w)
 def tk_mbUnpost(self):
 self.tk.call('tk_mbUnpost')
 def tk_traverseToMenu(self, char):
 self.tk.call('tk_traverseToMenu', self._w, char)
 def tk_traverseWithinMenu(self, char):
 self.tk.call('tk_traverseWithinMenu', self._w, char)
 def tk_getMenuButtons(self):
 return self.tk.call('tk_getMenuButtons', self._w)
 def tk_nextMenu(self, count):
 self.tk.call('tk_nextMenu', count)
 def tk_nextMenuEntry(self, count):
 self.tk.call('tk_nextMenuEntry', count)
 def tk_invokeMenu(self):
 self.tk.call('tk_invokeMenu', self._w)
 def tk_firstMenu(self):
 self.tk.call('tk_firstMenu', self._w)
 def tk_mbButtonDown(self):
 self.tk.call('tk_mbButtonDown', self._w)
 def tk_popup(self, x, y, entry=""):
 """Post the menu at position X,Y with entry ENTRY."""
 self.tk.call('tk_popup', self._w, x, y, entry)
 def activate(self, index):
 """Activate entry at INDEX."""
 self.tk.call(self._w, 'activate', index)
 def add(self, itemType, cnf={}, **kw):
 """Internal function."""
 self.tk.call((self._w, 'add', itemType) +
 self._options(cnf, kw))
 def add_cascade(self, cnf={}, **kw):
 """Add hierarchical menu item."""
 self.add('cascade', cnf or kw)
 def add_checkbutton(self, cnf={}, **kw):
 """Add checkbutton menu item."""
 self.add('checkbutton', cnf or kw)
 def add_command(self, cnf={}, **kw):
 """Add command menu item."""
 self.add('command', cnf or kw)
 def add_radiobutton(self, cnf={}, **kw):
 """Addd radio menu item."""
 self.add('radiobutton', cnf or kw)
 def add_separator(self, cnf={}, **kw):
 """Add separator."""
 self.add('separator', cnf or kw)
 def insert(self, index, itemType, cnf={}, **kw):
 """Internal function."""
 self.tk.call((self._w, 'insert', index, itemType) +
 self._options(cnf, kw))
 def insert_cascade(self, index, cnf={}, **kw):
 """Add hierarchical menu item at INDEX."""
 self.insert(index, 'cascade', cnf or kw)
 def insert_checkbutton(self, index, cnf={}, **kw):
 """Add checkbutton menu item at INDEX."""
 self.insert(index, 'checkbutton', cnf or kw)
 def insert_command(self, index, cnf={}, **kw):
 """Add command menu item at INDEX."""
 self.insert(index, 'command', cnf or kw)
 def insert_radiobutton(self, index, cnf={}, **kw):
 """Addd radio menu item at INDEX."""
 self.insert(index, 'radiobutton', cnf or kw)
 def insert_separator(self, index, cnf={}, **kw):
 """Add separator at INDEX."""
 self.insert(index, 'separator', cnf or kw)
 def delete(self, index1, index2=None):
 """Delete menu items between INDEX1 and INDEX2 (included)."""
 if index2 is None:
 index2 = index1

 num_index1, num_index2 = self.index(index1), self.index(index2)
 if (num_index1 is None) or (num_index2 is None):
 num_index1, num_index2 = 0, -1

 for i in range(num_index1, num_index2 + 1):
 if 'command' in self.entryconfig(i):
 c = str(self.entrycget(i, 'command'))
 if c:
 self.deletecommand(c)
 self.tk.call(self._w, 'delete', index1, index2)
 def entrycget(self, index, option):
 """Return the resource value of a menu item for OPTION at INDEX."""
 return self.tk.call(self._w, 'entrycget', index, '-' + option)
 def entryconfigure(self, index, cnf=None, **kw):
 """Configure a menu item at INDEX."""
 return self._configure(('entryconfigure', index), cnf, kw)
 entryconfig = entryconfigure
 def index(self, index):
 """Return the index of a menu item identified by INDEX."""
 i = self.tk.call(self._w, 'index', index)
 if i == 'none': return None
 return getint(i)
 def invoke(self, index):
 """Invoke a menu item identified by INDEX and execute
 the associated command."""
 return self.tk.call(self._w, 'invoke', index)
 def post(self, x, y):
 """Display a menu at position X,Y."""
 self.tk.call(self._w, 'post', x, y)
 def type(self, index):
 """Return the type of the menu item at INDEX."""
 return self.tk.call(self._w, 'type', index)
 def unpost(self):
 """Unmap a menu."""
 self.tk.call(self._w, 'unpost')
 def yposition(self, index):
 """Return the y-position of the topmost pixel of the menu item at INDEX."""
 return getint(self.tk.call(
 self._w, 'yposition', index))

class Menubutton(Widget):
 """Menubutton widget, obsolete since Tk8.0."""
 def __init__(self, master=None, cnf={}, **kw):
 Widget.__init__(self, master, 'menubutton', cnf, kw)

class Message(Widget):
 """Message widget to display multiline text. Obsolete since Label does it too."""
 def __init__(self, master=None, cnf={}, **kw):
 Widget.__init__(self, master, 'message', cnf, kw)

class Radiobutton(Widget):
 """Radiobutton widget which shows only one of several buttons in on-state."""
 def __init__(self, master=None, cnf={}, **kw):
 """Construct a radiobutton widget with the parent MASTER.

 Valid resource names: activebackground, activeforeground, anchor,
 background, bd, bg, bitmap, borderwidth, command, cursor,
 disabledforeground, fg, font, foreground, height,
 highlightbackground, highlightcolor, highlightthickness, image,
 indicatoron, justify, padx, pady, relief, selectcolor, selectimage,
 state, takefocus, text, textvariable, underline, value, variable,
 width, wraplength."""
 Widget.__init__(self, master, 'radiobutton', cnf, kw)
 def deselect(self):
 """Put the button in off-state."""

 self.tk.call(self._w, 'deselect')
 def flash(self):
 """Flash the button."""
 self.tk.call(self._w, 'flash')
 def invoke(self):
 """Toggle the button and invoke a command if given as resource."""
 return self.tk.call(self._w, 'invoke')
 def select(self):
 """Put the button in on-state."""
 self.tk.call(self._w, 'select')

class Scale(Widget):
 """Scale widget which can display a numerical scale."""
 def __init__(self, master=None, cnf={}, **kw):
 """Construct a scale widget with the parent MASTER.

 Valid resource names: activebackground, background, bigincrement, bd,
 bg, borderwidth, command, cursor, digits, fg, font, foreground, from,
 highlightbackground, highlightcolor, highlightthickness, label,
 length, orient, relief, repeatdelay, repeatinterval, resolution,
 showvalue, sliderlength, sliderrelief, state, takefocus,
 tickinterval, to, troughcolor, variable, width."""
 Widget.__init__(self, master, 'scale', cnf, kw)
 def get(self):
 """Get the current value as integer or float."""
 value = self.tk.call(self._w, 'get')
 try:
 return getint(value)
 except ValueError:
 return getdouble(value)
 def set(self, value):
 """Set the value to VALUE."""
 self.tk.call(self._w, 'set', value)
 def coords(self, value=None):
 """Return a tuple (X,Y) of the point along the centerline of the
 trough that corresponds to VALUE or the current value if None is
 given."""

 return self._getints(self.tk.call(self._w, 'coords', value))
 def identify(self, x, y):
 """Return where the point X,Y lies. Valid return values are "slider",
 "though1" and "though2"."""
 return self.tk.call(self._w, 'identify', x, y)

class Scrollbar(Widget):
 """Scrollbar widget which displays a slider at a certain position."""
 def __init__(self, master=None, cnf={}, **kw):
 """Construct a scrollbar widget with the parent MASTER.

 Valid resource names: activebackground, activerelief,
 background, bd, bg, borderwidth, command, cursor,
 elementborderwidth, highlightbackground,
 highlightcolor, highlightthickness, jump, orient,
 relief, repeatdelay, repeatinterval, takefocus,
 troughcolor, width."""
 Widget.__init__(self, master, 'scrollbar', cnf, kw)
 def activate(self, index):
 """Display the element at INDEX with activebackground and activerelief.
 INDEX can be "arrow1","slider" or "arrow2"."""
 self.tk.call(self._w, 'activate', index)
 def delta(self, deltax, deltay):
 """Return the fractional change of the scrollbar setting if it
 would be moved by DELTAX or DELTAY pixels."""
 return getdouble(
 self.tk.call(self._w, 'delta', deltax, deltay))
 def fraction(self, x, y):
 """Return the fractional value which corresponds to a slider
 position of X,Y."""
 return getdouble(self.tk.call(self._w, 'fraction', x, y))
 def identify(self, x, y):
 """Return the element under position X,Y as one of
 "arrow1","slider","arrow2" or ""."""
 return self.tk.call(self._w, 'identify', x, y)
 def get(self):
 """Return the current fractional values (upper and lower end)
 of the slider position."""
 return self._getdoubles(self.tk.call(self._w, 'get'))
 def set(self, *args):
 """Set the fractional values of the slider position (upper and
 lower ends as value between 0 and 1)."""
 self.tk.call((self._w, 'set') + args)

class Text(Widget, XView, YView):
 """Text widget which can display text in various forms."""
 def __init__(self, master=None, cnf={}, **kw):
 """Construct a text widget with the parent MASTER.

 STANDARD OPTIONS

 background, borderwidth, cursor,
 exportselection, font, foreground,
 highlightbackground, highlightcolor,
 highlightthickness, insertbackground,
 insertborderwidth, insertofftime,
 insertontime, insertwidth, padx, pady,
 relief, selectbackground,
 selectborderwidth, selectforeground,
 setgrid, takefocus,
 xscrollcommand, yscrollcommand,

 WIDGET-SPECIFIC OPTIONS

 autoseparators, height, maxundo,
 spacing1, spacing2, spacing3,
 state, tabs, undo, width, wrap,

 """
 Widget.__init__(self, master, 'text', cnf, kw)
 def bbox(self, *args):
 """Return a tuple of (x,y,width,height) which gives the bounding
 box of the visible part of the character at the index in ARGS."""
 return self._getints(
 self.tk.call((self._w, 'bbox') + args)) or None
 def tk_textSelectTo(self, index):
 self.tk.call('tk_textSelectTo', self._w, index)
 def tk_textBackspace(self):
 self.tk.call('tk_textBackspace', self._w)
 def tk_textIndexCloser(self, a, b, c):
 self.tk.call('tk_textIndexCloser', self._w, a, b, c)
 def tk_textResetAnchor(self, index):
 self.tk.call('tk_textResetAnchor', self._w, index)
 def compare(self, index1, op, index2):
 """Return whether between index INDEX1 and index INDEX2 the
 relation OP is satisfied. OP is one of <, <=, ==, >=, >, or !=."""
 return self.tk.getboolean(self.tk.call(
 self._w, 'compare', index1, op, index2))
 def debug(self, boolean=None):
 """Turn on the internal consistency checks of the B-Tree inside the text
 widget according to BOOLEAN."""
 if boolean is None:
 return self.tk.getboolean(self.tk.call(self._w, 'debug'))
 self.tk.call(self._w, 'debug', boolean)
 def delete(self, index1, index2=None):
 """Delete the characters between INDEX1 and INDEX2 (not included)."""
 self.tk.call(self._w, 'delete', index1, index2)
 def dlineinfo(self, index):
 """Return tuple (x,y,width,height,baseline) giving the bounding box
 and baseline position of the visible part of the line containing
 the character at INDEX."""
 return self._getints(self.tk.call(self._w, 'dlineinfo', index))
 def dump(self, index1, index2=None, command=None, **kw):
 """Return the contents of the widget between index1 and index2.

 The type of contents returned in filtered based on the keyword
 parameters; if 'all', 'image', 'mark', 'tag', 'text', or 'window' are
 given and true, then the corresponding items are returned. The result
 is a list of triples of the form (key, value, index). If none of the
 keywords are true then 'all' is used by default.

 If the 'command' argument is given, it is called once for each element
 of the list of triples, with the values of each triple serving as the
 arguments to the function. In this case the list is not returned."""
 args = []
 func_name = None
 result = None
 if not command:
 # Never call the dump command without the -command flag, since the
 # output could involve Tcl quoting and would be a pain to parse
 # right. Instead just set the command to build a list of triples
 # as if we had done the parsing.
 result = []
 def append_triple(key, value, index, result=result):
 result.append((key, value, index))
 command = append_triple
 try:
 if not isinstance(command, str):
 func_name = command = self._register(command)
 args += ["-command", command]
 for key in kw:
 if kw[key]: args.append("-" + key)
 args.append(index1)
 if index2:
 args.append(index2)
 self.tk.call(self._w, "dump", *args)
 return result
 finally:
 if func_name:
 self.deletecommand(func_name)

 ## new in tk8.4
 def edit(self, *args):
 """Internal method

 This method controls the undo mechanism and
 the modified flag. The exact behavior of the
 command depends on the option argument that
 follows the edit argument. The following forms
 of the command are currently supported:

 edit_modified, edit_redo, edit_reset, edit_separator
 and edit_undo

 """
 return self.tk.call(self._w, 'edit', *args)

 def edit_modified(self, arg=None):
 """Get or Set the modified flag

 If arg is not specified, returns the modified
 flag of the widget. The insert, delete, edit undo and
 edit redo commands or the user can set or clear the
 modified flag. If boolean is specified, sets the
 modified flag of the widget to arg.
 """
 return self.edit("modified", arg)

 def edit_redo(self):
 """Redo the last undone edit

 When the undo option is true, reapplies the last
 undone edits provided no other edits were done since
 then. Generates an error when the redo stack is empty.
 Does nothing when the undo option is false.
 """
 return self.edit("redo")

 def edit_reset(self):
 """Clears the undo and redo stacks
 """
 return self.edit("reset")

 def edit_separator(self):
 """Inserts a separator (boundary) on the undo stack.

 Does nothing when the undo option is false
 """
 return self.edit("separator")

 def edit_undo(self):
 """Undoes the last edit action

 If the undo option is true. An edit action is defined
 as all the insert and delete commands that are recorded
 on the undo stack in between two separators. Generates
 an error when the undo stack is empty. Does nothing
 when the undo option is false
 """
 return self.edit("undo")

 def get(self, index1, index2=None):
 """Return the text from INDEX1 to INDEX2 (not included)."""
 return self.tk.call(self._w, 'get', index1, index2)
 # (Image commands are new in 8.0)
 def image_cget(self, index, option):
 """Return the value of OPTION of an embedded image at INDEX."""
 if option[:1] != "-":
 option = "-" + option
 if option[-1:] == "_":
 option = option[:-1]
 return self.tk.call(self._w, "image", "cget", index, option)
 def image_configure(self, index, cnf=None, **kw):
 """Configure an embedded image at INDEX."""
 return self._configure(('image', 'configure', index), cnf, kw)
 def image_create(self, index, cnf={}, **kw):
 """Create an embedded image at INDEX."""
 return self.tk.call(
 self._w, "image", "create", index,
 *self._options(cnf, kw))
 def image_names(self):
 """Return all names of embedded images in this widget."""
 return self.tk.call(self._w, "image", "names")
 def index(self, index):
 """Return the index in the form line.char for INDEX."""
 return str(self.tk.call(self._w, 'index', index))
 def insert(self, index, chars, *args):
 """Insert CHARS before the characters at INDEX. An additional
 tag can be given in ARGS. Additional CHARS and tags can follow in ARGS."""
 self.tk.call((self._w, 'insert', index, chars) + args)
 def mark_gravity(self, markName, direction=None):
 """Change the gravity of a mark MARKNAME to DIRECTION (LEFT or RIGHT).
 Return the current value if None is given for DIRECTION."""
 return self.tk.call(
 (self._w, 'mark', 'gravity', markName, direction))
 def mark_names(self):
 """Return all mark names."""
 return self.tk.splitlist(self.tk.call(
 self._w, 'mark', 'names'))
 def mark_set(self, markName, index):
 """Set mark MARKNAME before the character at INDEX."""
 self.tk.call(self._w, 'mark', 'set', markName, index)
 def mark_unset(self, *markNames):
 """Delete all marks in MARKNAMES."""
 self.tk.call((self._w, 'mark', 'unset') + markNames)
 def mark_next(self, index):
 """Return the name of the next mark after INDEX."""
 return self.tk.call(self._w, 'mark', 'next', index) or None
 def mark_previous(self, index):
 """Return the name of the previous mark before INDEX."""
 return self.tk.call(self._w, 'mark', 'previous', index) or None
 def scan_mark(self, x, y):
 """Remember the current X, Y coordinates."""
 self.tk.call(self._w, 'scan', 'mark', x, y)
 def scan_dragto(self, x, y):
 """Adjust the view of the text to 10 times the
 difference between X and Y and the coordinates given in
 scan_mark."""
 self.tk.call(self._w, 'scan', 'dragto', x, y)
 def search(self, pattern, index, stopindex=None,
 forwards=None, backwards=None, exact=None,
 regexp=None, nocase=None, count=None, elide=None):
 """Search PATTERN beginning from INDEX until STOPINDEX.
 Return the index of the first character of a match or an
 empty string."""
 args = [self._w, 'search']
 if forwards: args.append('-forwards')
 if backwards: args.append('-backwards')
 if exact: args.append('-exact')
 if regexp: args.append('-regexp')
 if nocase: args.append('-nocase')
 if elide: args.append('-elide')
 if count: args.append('-count'); args.append(count)
 if pattern and pattern[0] == '-': args.append('--')
 args.append(pattern)
 args.append(index)
 if stopindex: args.append(stopindex)
 return str(self.tk.call(tuple(args)))
 def see(self, index):
 """Scroll such that the character at INDEX is visible."""
 self.tk.call(self._w, 'see', index)
 def tag_add(self, tagName, index1, *args):
 """Add tag TAGNAME to all characters between INDEX1 and index2 in ARGS.
 Additional pairs of indices may follow in ARGS."""
 self.tk.call(
 (self._w, 'tag', 'add', tagName, index1) + args)
 def tag_unbind(self, tagName, sequence, funcid=None):
 """Unbind for all characters with TAGNAME for event SEQUENCE the
 function identified with FUNCID."""
 self.tk.call(self._w, 'tag', 'bind', tagName, sequence, '')
 if funcid:
 self.deletecommand(funcid)
 def tag_bind(self, tagName, sequence, func, add=None):
 """Bind to all characters with TAGNAME at event SEQUENCE a call to function FUNC.

 An additional boolean parameter ADD specifies whether FUNC will be
 called additionally to the other bound function or whether it will
 replace the previous function. See bind for the return value."""
 return self._bind((self._w, 'tag', 'bind', tagName),
 sequence, func, add)
 def tag_cget(self, tagName, option):
 """Return the value of OPTION for tag TAGNAME."""
 if option[:1] != '-':
 option = '-' + option
 if option[-1:] == '_':
 option = option[:-1]
 return self.tk.call(self._w, 'tag', 'cget', tagName, option)
 def tag_configure(self, tagName, cnf=None, **kw):
 """Configure a tag TAGNAME."""
 return self._configure(('tag', 'configure', tagName), cnf, kw)
 tag_config = tag_configure
 def tag_delete(self, *tagNames):
 """Delete all tags in TAGNAMES."""
 self.tk.call((self._w, 'tag', 'delete') + tagNames)
 def tag_lower(self, tagName, belowThis=None):
 """Change the priority of tag TAGNAME such that it is lower
 than the priority of BELOWTHIS."""
 self.tk.call(self._w, 'tag', 'lower', tagName, belowThis)
 def tag_names(self, index=None):
 """Return a list of all tag names."""
 return self.tk.splitlist(
 self.tk.call(self._w, 'tag', 'names', index))
 def tag_nextrange(self, tagName, index1, index2=None):
 """Return a list of start and end index for the first sequence of
 characters between INDEX1 and INDEX2 which all have tag TAGNAME.
 The text is searched forward from INDEX1."""
 return self.tk.splitlist(self.tk.call(
 self._w, 'tag', 'nextrange', tagName, index1, index2))
 def tag_prevrange(self, tagName, index1, index2=None):
 """Return a list of start and end index for the first sequence of
 characters between INDEX1 and INDEX2 which all have tag TAGNAME.
 The text is searched backwards from INDEX1."""
 return self.tk.splitlist(self.tk.call(
 self._w, 'tag', 'prevrange', tagName, index1, index2))
 def tag_raise(self, tagName, aboveThis=None):
 """Change the priority of tag TAGNAME such that it is higher
 than the priority of ABOVETHIS."""
 self.tk.call(
 self._w, 'tag', 'raise', tagName, aboveThis)
 def tag_ranges(self, tagName):
 """Return a list of ranges of text which have tag TAGNAME."""
 return self.tk.splitlist(self.tk.call(
 self._w, 'tag', 'ranges', tagName))
 def tag_remove(self, tagName, index1, index2=None):
 """Remove tag TAGNAME from all characters between INDEX1 and INDEX2."""
 self.tk.call(
 self._w, 'tag', 'remove', tagName, index1, index2)
 def window_cget(self, index, option):
 """Return the value of OPTION of an embedded window at INDEX."""
 if option[:1] != '-':
 option = '-' + option
 if option[-1:] == '_':
 option = option[:-1]
 return self.tk.call(self._w, 'window', 'cget', index, option)
 def window_configure(self, index, cnf=None, **kw):
 """Configure an embedded window at INDEX."""
 return self._configure(('window', 'configure', index), cnf, kw)
 window_config = window_configure
 def window_create(self, index, cnf={}, **kw):
 """Create a window at INDEX."""
 self.tk.call(
 (self._w, 'window', 'create', index)
 + self._options(cnf, kw))
 def window_names(self):
 """Return all names of embedded windows in this widget."""
 return self.tk.splitlist(
 self.tk.call(self._w, 'window', 'names'))
 def yview_pickplace(self, *what):
 """Obsolete function, use see."""
 self.tk.call((self._w, 'yview', '-pickplace') + what)

class _setit:
 """Internal class. It wraps the command in the widget OptionMenu."""
 def __init__(self, var, value, callback=None):
 self.__value = value
 self.__var = var
 self.__callback = callback
 def __call__(self, *args):
 self.__var.set(self.__value)
 if self.__callback:
 self.__callback(self.__value, *args)

class OptionMenu(Menubutton):
 """OptionMenu which allows the user to select a value from a menu."""
 def __init__(self, master, variable, value, *values, **kwargs):
 """Construct an optionmenu widget with the parent MASTER, with
 the resource textvariable set to VARIABLE, the initially selected
 value VALUE, the other menu values VALUES and an additional
 keyword argument command."""
 kw = {"borderwidth": 2, "textvariable": variable,
 "indicatoron": 1, "relief": RAISED, "anchor": "c",
 "highlightthickness": 2}
 Widget.__init__(self, master, "menubutton", kw)
 self.widgetName = 'tk_optionMenu'
 menu = self.__menu = Menu(self, name="menu", tearoff=0)
 self.menuname = menu._w
 # 'command' is the only supported keyword
 callback = kwargs.get('command')
 if 'command' in kwargs:
 del kwargs['command']
 if kwargs:
 raise TclError, 'unknown option -'+kwargs.keys()[0]
 menu.add_command(label=value,
 command=_setit(variable, value, callback))
 for v in values:
 menu.add_command(label=v,
 command=_setit(variable, v, callback))
 self["menu"] = menu

 def __getitem__(self, name):
 if name == 'menu':
 return self.__menu
 return Widget.__getitem__(self, name)

 def destroy(self):
 """Destroy this widget and the associated menu."""
 Menubutton.destroy(self)
 self.__menu = None

class Image:
 """Base class for images."""
 _last_id = 0
 def __init__(self, imgtype, name=None, cnf={}, master=None, **kw):
 self.name = None
 if not master:
 master = _default_root
 if not master:
 raise RuntimeError, 'Too early to create image'
 self.tk = getattr(master, 'tk', master)
 if not name:
 Image._last_id += 1
 name = "pyimage%r" % (Image._last_id,) # tk itself would use image<x>
 # The following is needed for systems where id(x)
 # can return a negative number, such as Linux/m68k:
 if name[0] == '-': name = '_' + name[1:]
 if kw and cnf: cnf = _cnfmerge((cnf, kw))
 elif kw: cnf = kw
 options = ()
 for k, v in cnf.items():
 if hasattr(v, '__call__'):
 v = self._register(v)
 elif k in ('data', 'maskdata'):
 v = self.tk._createbytearray(v)
 options = options + ('-'+k, v)
 self.tk.call(('image', 'create', imgtype, name,) + options)
 self.name = name
 def __str__(self): return self.name
 def __del__(self):
 if self.name:
 try:
 self.tk.call('image', 'delete', self.name)
 except TclError:
 # May happen if the root was destroyed
 pass
 def __setitem__(self, key, value):
 self.tk.call(self.name, 'configure', '-'+key, value)
 def __getitem__(self, key):
 return self.tk.call(self.name, 'configure', '-'+key)
 def configure(self, **kw):
 """Configure the image."""
 res = ()
 for k, v in _cnfmerge(kw).items():
 if v is not None:
 if k[-1] == '_': k = k[:-1]
 if hasattr(v, '__call__'):
 v = self._register(v)
 elif k in ('data', 'maskdata'):
 v = self.tk._createbytearray(v)
 res = res + ('-'+k, v)
 self.tk.call((self.name, 'config') + res)
 config = configure
 def height(self):
 """Return the height of the image."""
 return getint(
 self.tk.call('image', 'height', self.name))
 def type(self):
 """Return the type of the image, e.g. "photo" or "bitmap"."""
 return self.tk.call('image', 'type', self.name)
 def width(self):
 """Return the width of the image."""
 return getint(
 self.tk.call('image', 'width', self.name))

class PhotoImage(Image):
 """Widget which can display images in PGM, PPM, GIF, PNG format."""
 def __init__(self, name=None, cnf={}, master=None, **kw):
 """Create an image with NAME.

 Valid resource names: data, format, file, gamma, height, palette,
 width."""
 Image.__init__(self, 'photo', name, cnf, master, **kw)
 def blank(self):
 """Display a transparent image."""
 self.tk.call(self.name, 'blank')
 def cget(self, option):
 """Return the value of OPTION."""
 return self.tk.call(self.name, 'cget', '-' + option)
 # XXX config
 def __getitem__(self, key):
 return self.tk.call(self.name, 'cget', '-' + key)
 # XXX copy -from, -to, ...?
 def copy(self):
 """Return a new PhotoImage with the same image as this widget."""
 destImage = PhotoImage(master=self.tk)
 self.tk.call(destImage, 'copy', self.name)
 return destImage
 def zoom(self, x, y=''):
 """Return a new PhotoImage with the same image as this widget
 but zoom it with a factor of x in the X direction and y in the Y
 direction. If y is not given, the default value is the same as x.
 """
 destImage = PhotoImage(master=self.tk)
 if y=='': y=x
 self.tk.call(destImage, 'copy', self.name, '-zoom',x,y)
 return destImage
 def subsample(self, x, y=''):
 """Return a new PhotoImage based on the same image as this widget
 but use only every Xth or Yth pixel. If y is not given, the
 default value is the same as x.
 """
 destImage = PhotoImage(master=self.tk)
 if y=='': y=x
 self.tk.call(destImage, 'copy', self.name, '-subsample',x,y)
 return destImage
 def get(self, x, y):
 """Return the color (red, green, blue) of the pixel at X,Y."""
 return self.tk.call(self.name, 'get', x, y)
 def put(self, data, to=None):
 """Put row formatted colors to image starting from
 position TO, e.g. image.put("{red green} {blue yellow}", to=(4,6))"""
 args = (self.name, 'put', data)
 if to:
 if to[0] == '-to':
 to = to[1:]
 args = args + ('-to',) + tuple(to)
 self.tk.call(args)
 # XXX read
 def write(self, filename, format=None, from_coords=None):
 """Write image to file FILENAME in FORMAT starting from
 position FROM_COORDS."""
 args = (self.name, 'write', filename)
 if format:
 args = args + ('-format', format)
 if from_coords:
 args = args + ('-from',) + tuple(from_coords)
 self.tk.call(args)

class BitmapImage(Image):
 """Widget which can display images in XBM format."""
 def __init__(self, name=None, cnf={}, master=None, **kw):
 """Create a bitmap with NAME.

 Valid resource names: background, data, file, foreground, maskdata, maskfile."""
 Image.__init__(self, 'bitmap', name, cnf, master, **kw)

def image_names():
 return _default_root.tk.splitlist(_default_root.tk.call('image', 'names'))

def image_types():
 return _default_root.tk.splitlist(_default_root.tk.call('image', 'types'))

class Spinbox(Widget, XView):
 """spinbox widget."""
 def __init__(self, master=None, cnf={}, **kw):
 """Construct a spinbox widget with the parent MASTER.

 STANDARD OPTIONS

 activebackground, background, borderwidth,
 cursor, exportselection, font, foreground,
 highlightbackground, highlightcolor,
 highlightthickness, insertbackground,
 insertborderwidth, insertofftime,
 insertontime, insertwidth, justify, relief,
 repeatdelay, repeatinterval,
 selectbackground, selectborderwidth
 selectforeground, takefocus, textvariable
 xscrollcommand.

 WIDGET-SPECIFIC OPTIONS

 buttonbackground, buttoncursor,
 buttondownrelief, buttonuprelief,
 command, disabledbackground,
 disabledforeground, format, from,
 invalidcommand, increment,
 readonlybackground, state, to,
 validate, validatecommand values,
 width, wrap,
 """
 Widget.__init__(self, master, 'spinbox', cnf, kw)

 def bbox(self, index):
 """Return a tuple of X1,Y1,X2,Y2 coordinates for a
 rectangle which encloses the character given by index.

 The first two elements of the list give the x and y
 coordinates of the upper-left corner of the screen
 area covered by the character (in pixels relative
 to the widget) and the last two elements give the
 width and height of the character, in pixels. The
 bounding box may refer to a region outside the
 visible area of the window.
 """
 return self._getints(self.tk.call(self._w, 'bbox', index)) or None

 def delete(self, first, last=None):
 """Delete one or more elements of the spinbox.

 First is the index of the first character to delete,
 and last is the index of the character just after
 the last one to delete. If last isn't specified it
 defaults to first+1, i.e. a single character is
 deleted. This command returns an empty string.
 """
 return self.tk.call(self._w, 'delete', first, last)

 def get(self):
 """Returns the spinbox's string"""
 return self.tk.call(self._w, 'get')

 def icursor(self, index):
 """Alter the position of the insertion cursor.

 The insertion cursor will be displayed just before
 the character given by index. Returns an empty string
 """
 return self.tk.call(self._w, 'icursor', index)

 def identify(self, x, y):
 """Returns the name of the widget at position x, y

 Return value is one of: none, buttondown, buttonup, entry
 """
 return self.tk.call(self._w, 'identify', x, y)

 def index(self, index):
 """Returns the numerical index corresponding to index
 """
 return self.tk.call(self._w, 'index', index)

 def insert(self, index, s):
 """Insert string s at index

 Returns an empty string.
 """
 return self.tk.call(self._w, 'insert', index, s)

 def invoke(self, element):
 """Causes the specified element to be invoked

 The element could be buttondown or buttonup
 triggering the action associated with it.
 """
 return self.tk.call(self._w, 'invoke', element)

 def scan(self, *args):
 """Internal function."""
 return self._getints(
 self.tk.call((self._w, 'scan') + args)) or ()

 def scan_mark(self, x):
 """Records x and the current view in the spinbox window;

 used in conjunction with later scan dragto commands.
 Typically this command is associated with a mouse button
 press in the widget. It returns an empty string.
 """
 return self.scan("mark", x)

 def scan_dragto(self, x):
 """Compute the difference between the given x argument
 and the x argument to the last scan mark command

 It then adjusts the view left or right by 10 times the
 difference in x-coordinates. This command is typically
 associated with mouse motion events in the widget, to
 produce the effect of dragging the spinbox at high speed
 through the window. The return value is an empty string.
 """
 return self.scan("dragto", x)

 def selection(self, *args):
 """Internal function."""
 return self._getints(
 self.tk.call((self._w, 'selection') + args)) or ()

 def selection_adjust(self, index):
 """Locate the end of the selection nearest to the character
 given by index,

 Then adjust that end of the selection to be at index
 (i.e including but not going beyond index). The other
 end of the selection is made the anchor point for future
 select to commands. If the selection isn't currently in
 the spinbox, then a new selection is created to include
 the characters between index and the most recent selection
 anchor point, inclusive.
 """
 return self.selection("adjust", index)

 def selection_clear(self):
 """Clear the selection

 If the selection isn't in this widget then the
 command has no effect.
 """
 return self.selection("clear")

 def selection_element(self, element=None):
 """Sets or gets the currently selected element.

 If a spinbutton element is specified, it will be
 displayed depressed.
 """
 return self.tk.call(self._w, 'selection', 'element', element)

###

class LabelFrame(Widget):
 """labelframe widget."""
 def __init__(self, master=None, cnf={}, **kw):
 """Construct a labelframe widget with the parent MASTER.

 STANDARD OPTIONS

 borderwidth, cursor, font, foreground,
 highlightbackground, highlightcolor,
 highlightthickness, padx, pady, relief,
 takefocus, text

 WIDGET-SPECIFIC OPTIONS

 background, class, colormap, container,
 height, labelanchor, labelwidget,
 visual, width
 """
 Widget.__init__(self, master, 'labelframe', cnf, kw)

##

class PanedWindow(Widget):
 """panedwindow widget."""
 def __init__(self, master=None, cnf={}, **kw):
 """Construct a panedwindow widget with the parent MASTER.

 STANDARD OPTIONS

 background, borderwidth, cursor, height,
 orient, relief, width

 WIDGET-SPECIFIC OPTIONS

 handlepad, handlesize, opaqueresize,
 sashcursor, sashpad, sashrelief,
 sashwidth, showhandle,
 """
 Widget.__init__(self, master, 'panedwindow', cnf, kw)

 def add(self, child, **kw):
 """Add a child widget to the panedwindow in a new pane.

 The child argument is the name of the child widget
 followed by pairs of arguments that specify how to
 manage the windows. The possible options and values
 are the ones accepted by the paneconfigure method.
 """
 self.tk.call((self._w, 'add', child) + self._options(kw))

 def remove(self, child):
 """Remove the pane containing child from the panedwindow

 All geometry management options for child will be forgotten.
 """
 self.tk.call(self._w, 'forget', child)
 forget=remove

 def identify(self, x, y):
 """Identify the panedwindow component at point x, y

 If the point is over a sash or a sash handle, the result
 is a two element list containing the index of the sash or
 handle, and a word indicating whether it is over a sash
 or a handle, such as {0 sash} or {2 handle}. If the point
 is over any other part of the panedwindow, the result is
 an empty list.
 """
 return self.tk.call(self._w, 'identify', x, y)

 def proxy(self, *args):
 """Internal function."""
 return self._getints(
 self.tk.call((self._w, 'proxy') + args)) or ()

 def proxy_coord(self):
 """Return the x and y pair of the most recent proxy location
 """
 return self.proxy("coord")

 def proxy_forget(self):
 """Remove the proxy from the display.
 """
 return self.proxy("forget")

 def proxy_place(self, x, y):
 """Place the proxy at the given x and y coordinates.
 """
 return self.proxy("place", x, y)

 def sash(self, *args):
 """Internal function."""
 return self._getints(
 self.tk.call((self._w, 'sash') + args)) or ()

 def sash_coord(self, index):
 """Return the current x and y pair for the sash given by index.

 Index must be an integer between 0 and 1 less than the
 number of panes in the panedwindow. The coordinates given are
 those of the top left corner of the region containing the sash.
 pathName sash dragto index x y This command computes the
 difference between the given coordinates and the coordinates
 given to the last sash coord command for the given sash. It then
 moves that sash the computed difference. The return value is the
 empty string.
 """
 return self.sash("coord", index)

 def sash_mark(self, index):
 """Records x and y for the sash given by index;

 Used in conjunction with later dragto commands to move the sash.
 """
 return self.sash("mark", index)

 def sash_place(self, index, x, y):
 """Place the sash given by index at the given coordinates
 """
 return self.sash("place", index, x, y)

 def panecget(self, child, option):
 """Query a management option for window.

 Option may be any value allowed by the paneconfigure subcommand
 """
 return self.tk.call(
 (self._w, 'panecget') + (child, '-'+option))

 def paneconfigure(self, tagOrId, cnf=None, **kw):
 """Query or modify the management options for window.

 If no option is specified, returns a list describing all
 of the available options for pathName. If option is
 specified with no value, then the command returns a list
 describing the one named option (this list will be identical
 to the corresponding sublist of the value returned if no
 option is specified). If one or more option-value pairs are
 specified, then the command modifies the given widget
 option(s) to have the given value(s); in this case the
 command returns an empty string. The following options
 are supported:

 after window
 Insert the window after the window specified. window
 should be the name of a window already managed by pathName.
 before window
 Insert the window before the window specified. window
 should be the name of a window already managed by pathName.
 height size
 Specify a height for the window. The height will be the
 outer dimension of the window including its border, if
 any. If size is an empty string, or if -height is not
 specified, then the height requested internally by the
 window will be used initially; the height may later be
 adjusted by the movement of sashes in the panedwindow.
 Size may be any value accepted by Tk_GetPixels.
 minsize n
 Specifies that the size of the window cannot be made
 less than n. This constraint only affects the size of
 the widget in the paned dimension -- the x dimension
 for horizontal panedwindows, the y dimension for
 vertical panedwindows. May be any value accepted by
 Tk_GetPixels.
 padx n
 Specifies a non-negative value indicating how much
 extra space to leave on each side of the window in
 the X-direction. The value may have any of the forms
 accepted by Tk_GetPixels.
 pady n
 Specifies a non-negative value indicating how much
 extra space to leave on each side of the window in
 the Y-direction. The value may have any of the forms
 accepted by Tk_GetPixels.
 sticky style
 If a window's pane is larger than the requested
 dimensions of the window, this option may be used
 to position (or stretch) the window within its pane.
 Style is a string that contains zero or more of the
 characters n, s, e or w. The string can optionally
 contains spaces or commas, but they are ignored. Each
 letter refers to a side (north, south, east, or west)
 that the window will "stick" to. If both n and s
 (or e and w) are specified, the window will be
 stretched to fill the entire height (or width) of
 its cavity.
 width size
 Specify a width for the window. The width will be
 the outer dimension of the window including its
 border, if any. If size is an empty string, or
 if -width is not specified, then the width requested
 internally by the window will be used initially; the
 width may later be adjusted by the movement of sashes
 in the panedwindow. Size may be any value accepted by
 Tk_GetPixels.

 """
 if cnf is None and not kw:
 return self._getconfigure(self._w, 'paneconfigure', tagOrId)
 if type(cnf) == StringType and not kw:
 return self._getconfigure1(
 self._w, 'paneconfigure', tagOrId, '-'+cnf)
 self.tk.call((self._w, 'paneconfigure', tagOrId) +
 self._options(cnf, kw))
 paneconfig = paneconfigure

 def panes(self):
 """Returns an ordered list of the child panes."""
 return self.tk.splitlist(self.tk.call(self._w, 'panes'))

##
Extensions:

class Studbutton(Button):
 def __init__(self, master=None, cnf={}, **kw):
 Widget.__init__(self, master, 'studbutton', cnf, kw)
 self.bind('<Any-Enter>', self.tkButtonEnter)
 self.bind('<Any-Leave>', self.tkButtonLeave)
 self.bind('<1>', self.tkButtonDown)
 self.bind('<ButtonRelease-1>', self.tkButtonUp)

class Tributton(Button):
 def __init__(self, master=None, cnf={}, **kw):
 Widget.__init__(self, master, 'tributton', cnf, kw)
 self.bind('<Any-Enter>', self.tkButtonEnter)
 self.bind('<Any-Leave>', self.tkButtonLeave)
 self.bind('<1>', self.tkButtonDown)
 self.bind('<ButtonRelease-1>', self.tkButtonUp)
 self['fg'] = self['bg']
 self['activebackground'] = self['bg']

##
Test:

def _test():
 root = Tk()
 text = "This is Tcl/Tk version %s" % TclVersion
 if TclVersion >= 8.1:
 try:
 text = text + unicode("\nThis should be a cedilla: \347",
 "iso-8859-1")
 except NameError:
 pass # no unicode support
 label = Label(root, text=text)
 label.pack()
 test = Button(root, text="Click me!",
 command=lambda root=root: root.test.configure(
 text="[%s]" % root.test['text']))
 test.pack()
 root.test = test
 quit = Button(root, text="QUIT", command=root.destroy)
 quit.pack()
 # The following three commands are needed so the window pops
 # up on top on Windows...
 root.iconify()
 root.update()
 root.deiconify()
 root.mainloop()

if __name__ == '__main__':
 _test()

 Source code for _abcoll

Copyright 2007 Google, Inc. All Rights Reserved.
Licensed to PSF under a Contributor Agreement.

"""Abstract Base Classes (ABCs) for collections, according to PEP 3119.

DON'T USE THIS MODULE DIRECTLY! The classes here should be imported
via collections; they are defined here only to alleviate certain
bootstrapping issues. Unit tests are in test_collections.
"""

from abc import ABCMeta, abstractmethod
import sys

__all__ = ["Hashable", "Iterable", "Iterator",
 "Sized", "Container", "Callable",
 "Set", "MutableSet",
 "Mapping", "MutableMapping",
 "MappingView", "KeysView", "ItemsView", "ValuesView",
 "Sequence", "MutableSequence",
]

ONE-TRICK PONIES

def _hasattr(C, attr):
 try:
 return any(attr in B.__dict__ for B in C.__mro__)
 except AttributeError:
 # Old-style class
 return hasattr(C, attr)

class Hashable:
 __metaclass__ = ABCMeta

 @abstractmethod
 def __hash__(self):
 return 0

 @classmethod
 def __subclasshook__(cls, C):
 if cls is Hashable:
 try:
 for B in C.__mro__:
 if "__hash__" in B.__dict__:
 if B.__dict__["__hash__"]:
 return True
 break
 except AttributeError:
 # Old-style class
 if getattr(C, "__hash__", None):
 return True
 return NotImplemented

class Iterable:
 __metaclass__ = ABCMeta

 @abstractmethod
 def __iter__(self):
 while False:
 yield None

 @classmethod
 def __subclasshook__(cls, C):
 if cls is Iterable:
 if _hasattr(C, "__iter__"):
 return True
 return NotImplemented

Iterable.register(str)

class Iterator(Iterable):

 @abstractmethod
 def next(self):
 'Return the next item from the iterator. When exhausted, raise StopIteration'
 raise StopIteration

 def __iter__(self):
 return self

 @classmethod
 def __subclasshook__(cls, C):
 if cls is Iterator:
 if _hasattr(C, "next") and _hasattr(C, "__iter__"):
 return True
 return NotImplemented

class Sized:
 __metaclass__ = ABCMeta

 @abstractmethod
 def __len__(self):
 return 0

 @classmethod
 def __subclasshook__(cls, C):
 if cls is Sized:
 if _hasattr(C, "__len__"):
 return True
 return NotImplemented

class Container:
 __metaclass__ = ABCMeta

 @abstractmethod
 def __contains__(self, x):
 return False

 @classmethod
 def __subclasshook__(cls, C):
 if cls is Container:
 if _hasattr(C, "__contains__"):
 return True
 return NotImplemented

class Callable:
 __metaclass__ = ABCMeta

 @abstractmethod
 def __call__(self, *args, **kwds):
 return False

 @classmethod
 def __subclasshook__(cls, C):
 if cls is Callable:
 if _hasattr(C, "__call__"):
 return True
 return NotImplemented

SETS

class Set(Sized, Iterable, Container):
 """A set is a finite, iterable container.

 This class provides concrete generic implementations of all
 methods except for __contains__, __iter__ and __len__.

 To override the comparisons (presumably for speed, as the
 semantics are fixed), redefine __le__ and __ge__,
 then the other operations will automatically follow suit.
 """

 def __le__(self, other):
 if not isinstance(other, Set):
 return NotImplemented
 if len(self) > len(other):
 return False
 for elem in self:
 if elem not in other:
 return False
 return True

 def __lt__(self, other):
 if not isinstance(other, Set):
 return NotImplemented
 return len(self) < len(other) and self.__le__(other)

 def __gt__(self, other):
 if not isinstance(other, Set):
 return NotImplemented
 return len(self) > len(other) and self.__ge__(other)

 def __ge__(self, other):
 if not isinstance(other, Set):
 return NotImplemented
 if len(self) < len(other):
 return False
 for elem in other:
 if elem not in self:
 return False
 return True

 def __eq__(self, other):
 if not isinstance(other, Set):
 return NotImplemented
 return len(self) == len(other) and self.__le__(other)

 def __ne__(self, other):
 return not (self == other)

 @classmethod
 def _from_iterable(cls, it):
 '''Construct an instance of the class from any iterable input.

 Must override this method if the class constructor signature
 does not accept an iterable for an input.
 '''
 return cls(it)

 def __and__(self, other):
 if not isinstance(other, Iterable):
 return NotImplemented
 return self._from_iterable(value for value in other if value in self)

 __rand__ = __and__

 def isdisjoint(self, other):
 'Return True if two sets have a null intersection.'
 for value in other:
 if value in self:
 return False
 return True

 def __or__(self, other):
 if not isinstance(other, Iterable):
 return NotImplemented
 chain = (e for s in (self, other) for e in s)
 return self._from_iterable(chain)

 __ror__ = __or__

 def __sub__(self, other):
 if not isinstance(other, Set):
 if not isinstance(other, Iterable):
 return NotImplemented
 other = self._from_iterable(other)
 return self._from_iterable(value for value in self
 if value not in other)

 def __rsub__(self, other):
 if not isinstance(other, Set):
 if not isinstance(other, Iterable):
 return NotImplemented
 other = self._from_iterable(other)
 return self._from_iterable(value for value in other
 if value not in self)

 def __xor__(self, other):
 if not isinstance(other, Set):
 if not isinstance(other, Iterable):
 return NotImplemented
 other = self._from_iterable(other)
 return (self - other) | (other - self)

 __rxor__ = __xor__

 # Sets are not hashable by default, but subclasses can change this
 __hash__ = None

 def _hash(self):
 """Compute the hash value of a set.

 Note that we don't define __hash__: not all sets are hashable.
 But if you define a hashable set type, its __hash__ should
 call this function.

 This must be compatible __eq__.

 All sets ought to compare equal if they contain the same
 elements, regardless of how they are implemented, and
 regardless of the order of the elements; so there's not much
 freedom for __eq__ or __hash__. We match the algorithm used
 by the built-in frozenset type.
 """
 MAX = sys.maxint
 MASK = 2 * MAX + 1
 n = len(self)
 h = 1927868237 * (n + 1)
 h &= MASK
 for x in self:
 hx = hash(x)
 h ^= (hx ^ (hx << 16) ^ 89869747) * 3644798167
 h &= MASK
 h = h * 69069 + 907133923
 h &= MASK
 if h > MAX:
 h -= MASK + 1
 if h == -1:
 h = 590923713
 return h

Set.register(frozenset)

class MutableSet(Set):
 """A mutable set is a finite, iterable container.

 This class provides concrete generic implementations of all
 methods except for __contains__, __iter__, __len__,
 add(), and discard().

 To override the comparisons (presumably for speed, as the
 semantics are fixed), all you have to do is redefine __le__ and
 then the other operations will automatically follow suit.
 """

 @abstractmethod
 def add(self, value):
 """Add an element."""
 raise NotImplementedError

 @abstractmethod
 def discard(self, value):
 """Remove an element. Do not raise an exception if absent."""
 raise NotImplementedError

 def remove(self, value):
 """Remove an element. If not a member, raise a KeyError."""
 if value not in self:
 raise KeyError(value)
 self.discard(value)

 def pop(self):
 """Return the popped value. Raise KeyError if empty."""
 it = iter(self)
 try:
 value = next(it)
 except StopIteration:
 raise KeyError
 self.discard(value)
 return value

 def clear(self):
 """This is slow (creates N new iterators!) but effective."""
 try:
 while True:
 self.pop()
 except KeyError:
 pass

 def __ior__(self, it):
 for value in it:
 self.add(value)
 return self

 def __iand__(self, it):
 for value in (self - it):
 self.discard(value)
 return self

 def __ixor__(self, it):
 if it is self:
 self.clear()
 else:
 if not isinstance(it, Set):
 it = self._from_iterable(it)
 for value in it:
 if value in self:
 self.discard(value)
 else:
 self.add(value)
 return self

 def __isub__(self, it):
 if it is self:
 self.clear()
 else:
 for value in it:
 self.discard(value)
 return self

MutableSet.register(set)

MAPPINGS

class Mapping(Sized, Iterable, Container):

 """A Mapping is a generic container for associating key/value
 pairs.

 This class provides concrete generic implementations of all
 methods except for __getitem__, __iter__, and __len__.

 """

 @abstractmethod
 def __getitem__(self, key):
 raise KeyError

 def get(self, key, default=None):
 'D.get(k[,d]) -> D[k] if k in D, else d. d defaults to None.'
 try:
 return self[key]
 except KeyError:
 return default

 def __contains__(self, key):
 try:
 self[key]
 except KeyError:
 return False
 else:
 return True

 def iterkeys(self):
 'D.iterkeys() -> an iterator over the keys of D'
 return iter(self)

 def itervalues(self):
 'D.itervalues() -> an iterator over the values of D'
 for key in self:
 yield self[key]

 def iteritems(self):
 'D.iteritems() -> an iterator over the (key, value) items of D'
 for key in self:
 yield (key, self[key])

 def keys(self):
 "D.keys() -> list of D's keys"
 return list(self)

 def items(self):
 "D.items() -> list of D's (key, value) pairs, as 2-tuples"
 return [(key, self[key]) for key in self]

 def values(self):
 "D.values() -> list of D's values"
 return [self[key] for key in self]

 # Mappings are not hashable by default, but subclasses can change this
 __hash__ = None

 def __eq__(self, other):
 if not isinstance(other, Mapping):
 return NotImplemented
 return dict(self.items()) == dict(other.items())

 def __ne__(self, other):
 return not (self == other)

class MappingView(Sized):

 def __init__(self, mapping):
 self._mapping = mapping

 def __len__(self):
 return len(self._mapping)

 def __repr__(self):
 return '{0.__class__.__name__}({0._mapping!r})'.format(self)

class KeysView(MappingView, Set):

 @classmethod
 def _from_iterable(self, it):
 return set(it)

 def __contains__(self, key):
 return key in self._mapping

 def __iter__(self):
 for key in self._mapping:
 yield key

KeysView.register(type({}.viewkeys()))

class ItemsView(MappingView, Set):

 @classmethod
 def _from_iterable(self, it):
 return set(it)

 def __contains__(self, item):
 key, value = item
 try:
 v = self._mapping[key]
 except KeyError:
 return False
 else:
 return v == value

 def __iter__(self):
 for key in self._mapping:
 yield (key, self._mapping[key])

ItemsView.register(type({}.viewitems()))

class ValuesView(MappingView):

 def __contains__(self, value):
 for key in self._mapping:
 if value == self._mapping[key]:
 return True
 return False

 def __iter__(self):
 for key in self._mapping:
 yield self._mapping[key]

ValuesView.register(type({}.viewvalues()))

class MutableMapping(Mapping):

 """A MutableMapping is a generic container for associating
 key/value pairs.

 This class provides concrete generic implementations of all
 methods except for __getitem__, __setitem__, __delitem__,
 __iter__, and __len__.

 """

 @abstractmethod
 def __setitem__(self, key, value):
 raise KeyError

 @abstractmethod
 def __delitem__(self, key):
 raise KeyError

 __marker = object()

 def pop(self, key, default=__marker):
 '''D.pop(k[,d]) -> v, remove specified key and return the corresponding value.
 If key is not found, d is returned if given, otherwise KeyError is raised.
 '''
 try:
 value = self[key]
 except KeyError:
 if default is self.__marker:
 raise
 return default
 else:
 del self[key]
 return value

 def popitem(self):
 '''D.popitem() -> (k, v), remove and return some (key, value) pair
 as a 2-tuple; but raise KeyError if D is empty.
 '''
 try:
 key = next(iter(self))
 except StopIteration:
 raise KeyError
 value = self[key]
 del self[key]
 return key, value

 def clear(self):
 'D.clear() -> None. Remove all items from D.'
 try:
 while True:
 self.popitem()
 except KeyError:
 pass

 def update(*args, **kwds):
 ''' D.update([E,]**F) -> None. Update D from mapping/iterable E and F.
 If E present and has a .keys() method, does: for k in E: D[k] = E[k]
 If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v
 In either case, this is followed by: for k, v in F.items(): D[k] = v
 '''
 if not args:
 raise TypeError("descriptor 'update' of 'MutableMapping' object "
 "needs an argument")
 self = args[0]
 args = args[1:]
 if len(args) > 1:
 raise TypeError('update expected at most 1 arguments, got %d' %
 len(args))
 if args:
 other = args[0]
 if isinstance(other, Mapping):
 for key in other:
 self[key] = other[key]
 elif hasattr(other, "keys"):
 for key in other.keys():
 self[key] = other[key]
 else:
 for key, value in other:
 self[key] = value
 for key, value in kwds.items():
 self[key] = value

 def setdefault(self, key, default=None):
 'D.setdefault(k[,d]) -> D.get(k,d), also set D[k]=d if k not in D'
 try:
 return self[key]
 except KeyError:
 self[key] = default
 return default

MutableMapping.register(dict)

SEQUENCES

class Sequence(Sized, Iterable, Container):
 """All the operations on a read-only sequence.

 Concrete subclasses must override __new__ or __init__,
 __getitem__, and __len__.
 """

 @abstractmethod
 def __getitem__(self, index):
 raise IndexError

 def __iter__(self):
 i = 0
 try:
 while True:
 v = self[i]
 yield v
 i += 1
 except IndexError:
 return

 def __contains__(self, value):
 for v in self:
 if v == value:
 return True
 return False

 def __reversed__(self):
 for i in reversed(range(len(self))):
 yield self[i]

 def index(self, value):
 '''S.index(value) -> integer -- return first index of value.
 Raises ValueError if the value is not present.
 '''
 for i, v in enumerate(self):
 if v == value:
 return i
 raise ValueError

 def count(self, value):
 'S.count(value) -> integer -- return number of occurrences of value'
 return sum(1 for v in self if v == value)

Sequence.register(tuple)
Sequence.register(basestring)
Sequence.register(buffer)
Sequence.register(xrange)

class MutableSequence(Sequence):

 """All the operations on a read-only sequence.

 Concrete subclasses must provide __new__ or __init__,
 __getitem__, __setitem__, __delitem__, __len__, and insert().

 """

 @abstractmethod
 def __setitem__(self, index, value):
 raise IndexError

 @abstractmethod
 def __delitem__(self, index):
 raise IndexError

 @abstractmethod
 def insert(self, index, value):
 'S.insert(index, object) -- insert object before index'
 raise IndexError

 def append(self, value):
 'S.append(object) -- append object to the end of the sequence'
 self.insert(len(self), value)

 def reverse(self):
 'S.reverse() -- reverse *IN PLACE*'
 n = len(self)
 for i in range(n//2):
 self[i], self[n-i-1] = self[n-i-1], self[i]

 def extend(self, values):
 'S.extend(iterable) -- extend sequence by appending elements from the iterable'
 for v in values:
 self.append(v)

 def pop(self, index=-1):
 '''S.pop([index]) -> item -- remove and return item at index (default last).
 Raise IndexError if list is empty or index is out of range.
 '''
 v = self[index]
 del self[index]
 return v

 def remove(self, value):
 '''S.remove(value) -- remove first occurrence of value.
 Raise ValueError if the value is not present.
 '''
 del self[self.index(value)]

 def __iadd__(self, values):
 self.extend(values)
 return self

MutableSequence.register(list)

 Source code for ast

-*- coding: utf-8 -*-
"""
 ast
    ~~~

    The `ast` module helps Python applications to process trees of the Python
    abstract syntax grammar.  The abstract syntax itself might change with
    each Python release; this module helps to find out programmatically what
    the current grammar looks like and allows modifications of it.

    An abstract syntax tree can be generated by passing `ast.PyCF_ONLY_AST` as
    a flag to the `compile()` builtin function or by using the `parse()`
    function from this module.  The result will be a tree of objects whose
    classes all inherit from `ast.AST`.

    A modified abstract syntax tree can be compiled into a Python code object
    using the built-in `compile()` function.

    Additionally various helper functions are provided that make working with
    the trees simpler.  The main intention of the helper functions and this
    module in general is to provide an easy to use interface for libraries
    that work tightly with the python syntax (template engines for example).


    :copyright: Copyright 2008 by Armin Ronacher.
    :license: Python License.
"""
from _ast import *
from _ast import __version__


def parse(source, filename='<unknown>', mode='exec'):
    """
    Parse the source into an AST node.
    Equivalent to compile(source, filename, mode, PyCF_ONLY_AST).
    """
    return compile(source, filename, mode, PyCF_ONLY_AST)


def literal_eval(node_or_string):
    """
    Safely evaluate an expression node or a string containing a Python
    expression.  The string or node provided may only consist of the following
    Python literal structures: strings, numbers, tuples, lists, dicts, booleans,
    and None.
    """
    _safe_names = {'None': None, 'True': True, 'False': False}
    if isinstance(node_or_string, basestring):
        node_or_string = parse(node_or_string, mode='eval')
    if isinstance(node_or_string, Expression):
        node_or_string = node_or_string.body
    def _convert(node):
        if isinstance(node, Str):
            return node.s
        elif isinstance(node, Num):
            return node.n
        elif isinstance(node, Tuple):
            return tuple(map(_convert, node.elts))
        elif isinstance(node, List):
            return list(map(_convert, node.elts))
        elif isinstance(node, Dict):
            return dict((_convert(k), _convert(v)) for k, v
                        in zip(node.keys, node.values))
        elif isinstance(node, Name):
            if node.id in _safe_names:
                return _safe_names[node.id]
        elif isinstance(node, BinOp) and \
             isinstance(node.op, (Add, Sub)) and \
             isinstance(node.right, Num) and \
             isinstance(node.right.n, complex) and \
             isinstance(node.left, Num) and \
             isinstance(node.left.n, (int, long, float)):
            left = node.left.n
            right = node.right.n
            if isinstance(node.op, Add):
                return left + right
            else:
                return left - right
        raise ValueError('malformed string')
    return _convert(node_or_string)


def dump(node, annotate_fields=True, include_attributes=False):
    """
    Return a formatted dump of the tree in *node*.  This is mainly useful for
    debugging purposes.  The returned string will show the names and the values
    for fields.  This makes the code impossible to evaluate, so if evaluation is
    wanted *annotate_fields* must be set to False.  Attributes such as line
    numbers and column offsets are not dumped by default.  If this is wanted,
    *include_attributes* can be set to True.
    """
    def _format(node):
        if isinstance(node, AST):
            fields = [(a, _format(b)) for a, b in iter_fields(node)]
            rv = '%s(%s' % (node.__class__.__name__, ', '.join(
                ('%s=%s' % field for field in fields)
                if annotate_fields else
                (b for a, b in fields)
            ))
            if include_attributes and node._attributes:
                rv += fields and ', ' or ' '
                rv += ', '.join('%s=%s' % (a, _format(getattr(node, a)))
                                for a in node._attributes)
            return rv + ')'
        elif isinstance(node, list):
            return '[%s]' % ', '.join(_format(x) for x in node)
        return repr(node)
    if not isinstance(node, AST):
        raise TypeError('expected AST, got %r' % node.__class__.__name__)
    return _format(node)


def copy_location(new_node, old_node):
    """
    Copy source location (`lineno` and `col_offset` attributes) from
    *old_node* to *new_node* if possible, and return *new_node*.
    """
    for attr in 'lineno', 'col_offset':
        if attr in old_node._attributes and attr in new_node._attributes \
           and hasattr(old_node, attr):
            setattr(new_node, attr, getattr(old_node, attr))
    return new_node


def fix_missing_locations(node):
    """
    When you compile a node tree with compile(), the compiler expects lineno and
    col_offset attributes for every node that supports them.  This is rather
    tedious to fill in for generated nodes, so this helper adds these attributes
    recursively where not already set, by setting them to the values of the
    parent node.  It works recursively starting at *node*.
    """
    def _fix(node, lineno, col_offset):
        if 'lineno' in node._attributes:
            if not hasattr(node, 'lineno'):
                node.lineno = lineno
            else:
                lineno = node.lineno
        if 'col_offset' in node._attributes:
            if not hasattr(node, 'col_offset'):
                node.col_offset = col_offset
            else:
                col_offset = node.col_offset
        for child in iter_child_nodes(node):
            _fix(child, lineno, col_offset)
    _fix(node, 1, 0)
    return node


def increment_lineno(node, n=1):
    """
    Increment the line number of each node in the tree starting at *node* by *n*.
    This is useful to "move code" to a different location in a file.
    """
    for child in walk(node):
        if 'lineno' in child._attributes:
            child.lineno = getattr(child, 'lineno', 0) + n
    return node


def iter_fields(node):
    """
    Yield a tuple of ``(fieldname, value)`` for each field in ``node._fields``
    that is present on *node*.
    """
    for field in node._fields:
        try:
            yield field, getattr(node, field)
        except AttributeError:
            pass


def iter_child_nodes(node):
    """
    Yield all direct child nodes of *node*, that is, all fields that are nodes
    and all items of fields that are lists of nodes.
    """
    for name, field in iter_fields(node):
        if isinstance(field, AST):
            yield field
        elif isinstance(field, list):
            for item in field:
                if isinstance(item, AST):
                    yield item


def get_docstring(node, clean=True):
    """
    Return the docstring for the given node or None if no docstring can
    be found.  If the node provided does not have docstrings a TypeError
    will be raised.
    """
    if not isinstance(node, (FunctionDef, ClassDef, Module)):
        raise TypeError("%r can't have docstrings" % node.__class__.__name__)
    if node.body and isinstance(node.body[0], Expr) and \
       isinstance(node.body[0].value, Str):
        if clean:
            import inspect
            return inspect.cleandoc(node.body[0].value.s)
        return node.body[0].value.s


def walk(node):
    """
    Recursively yield all descendant nodes in the tree starting at *node*
    (including *node* itself), in no specified order.  This is useful if you
    only want to modify nodes in place and don't care about the context.
    """
    from collections import deque
    todo = deque([node])
    while todo:
        node = todo.popleft()
        todo.extend(iter_child_nodes(node))
        yield node


class NodeVisitor(object):
    """
    A node visitor base class that walks the abstract syntax tree and calls a
    visitor function for every node found.  This function may return a value
    which is forwarded by the `visit` method.

    This class is meant to be subclassed, with the subclass adding visitor
    methods.

    Per default the visitor functions for the nodes are ``'visit_'`` +
    class name of the node.  So a `TryFinally` node visit function would
    be `visit_TryFinally`.  This behavior can be changed by overriding
    the `visit` method.  If no visitor function exists for a node
    (return value `None`) the `generic_visit` visitor is used instead.

    Don't use the `NodeVisitor` if you want to apply changes to nodes during
    traversing.  For this a special visitor exists (`NodeTransformer`) that
    allows modifications.
    """

    def visit(self, node):
        """Visit a node."""
        method = 'visit_' + node.__class__.__name__
        visitor = getattr(self, method, self.generic_visit)
        return visitor(node)

    def generic_visit(self, node):
        """Called if no explicit visitor function exists for a node."""
        for field, value in iter_fields(node):
            if isinstance(value, list):
                for item in value:
                    if isinstance(item, AST):
                        self.visit(item)
            elif isinstance(value, AST):
                self.visit(value)


class NodeTransformer(NodeVisitor):
    """
    A :class:`NodeVisitor` subclass that walks the abstract syntax tree and
    allows modification of nodes.

    The `NodeTransformer` will walk the AST and use the return value of the
    visitor methods to replace or remove the old node.  If the return value of
    the visitor method is ``None``, the node will be removed from its location,
    otherwise it is replaced with the return value.  The return value may be the
    original node in which case no replacement takes place.

    Here is an example transformer that rewrites all occurrences of name lookups
    (``foo``) to ``data['foo']``::

       class RewriteName(NodeTransformer):

           def visit_Name(self, node):
               return copy_location(Subscript(
                   value=Name(id='data', ctx=Load()),
                   slice=Index(value=Str(s=node.id)),
                   ctx=node.ctx
               ), node)

    Keep in mind that if the node you're operating on has child nodes you must
    either transform the child nodes yourself or call the :meth:`generic_visit`
    method for the node first.

    For nodes that were part of a collection of statements (that applies to all
    statement nodes), the visitor may also return a list of nodes rather than
    just a single node.

    Usually you use the transformer like this::

       node = YourTransformer().visit(node)
    """

    def generic_visit(self, node):
        for field, old_value in iter_fields(node):
            old_value = getattr(node, field, None)
            if isinstance(old_value, list):
                new_values = []
                for value in old_value:
                    if isinstance(value, AST):
                        value = self.visit(value)
                        if value is None:
                            continue
                        elif not isinstance(value, AST):
                            new_values.extend(value)
                            continue
                    new_values.append(value)
                old_value[:] = new_values
            elif isinstance(old_value, AST):
                new_node = self.visit(old_value)
                if new_node is None:
                    delattr(node, field)
                else:
                    setattr(node, field, new_node)
        return node




          

      

      

    

  

    
      
          
            
  Source code for collections

'''This module implements specialized container datatypes providing
alternatives to Python's general purpose built-in containers, dict,
list, set, and tuple.

* namedtuple   factory function for creating tuple subclasses with named fields
* deque        list-like container with fast appends and pops on either end
* Counter      dict subclass for counting hashable objects
* OrderedDict  dict subclass that remembers the order entries were added
* defaultdict  dict subclass that calls a factory function to supply missing values

'''

__all__ = ['Counter', 'deque', 'defaultdict', 'namedtuple', 'OrderedDict']
# For bootstrapping reasons, the collection ABCs are defined in _abcoll.py.
# They should however be considered an integral part of collections.py.
from _abcoll import *
import _abcoll
__all__ += _abcoll.__all__

from _collections import deque, defaultdict
from operator import itemgetter as _itemgetter, eq as _eq
from keyword import iskeyword as _iskeyword
import sys as _sys
import heapq as _heapq
from itertools import repeat as _repeat, chain as _chain, starmap as _starmap
from itertools import imap as _imap

try:
    from thread import get_ident as _get_ident
except ImportError:
    from dummy_thread import get_ident as _get_ident


################################################################################
### OrderedDict
################################################################################

class OrderedDict(dict):
    'Dictionary that remembers insertion order'
    # An inherited dict maps keys to values.
    # The inherited dict provides __getitem__, __len__, __contains__, and get.
    # The remaining methods are order-aware.
    # Big-O running times for all methods are the same as regular dictionaries.

    # The internal self.__map dict maps keys to links in a doubly linked list.
    # The circular doubly linked list starts and ends with a sentinel element.
    # The sentinel element never gets deleted (this simplifies the algorithm).
    # Each link is stored as a list of length three:  [PREV, NEXT, KEY].

    def __init__(*args, **kwds):
        '''Initialize an ordered dictionary.  The signature is the same as
        regular dictionaries, but keyword arguments are not recommended because
        their insertion order is arbitrary.

        '''
        if not args:
            raise TypeError("descriptor '__init__' of 'OrderedDict' object "
                            "needs an argument")
        self = args[0]
        args = args[1:]
        if len(args) > 1:
            raise TypeError('expected at most 1 arguments, got %d' % len(args))
        try:
            self.__root
        except AttributeError:
            self.__root = root = []                     # sentinel node
            root[:] = [root, root, None]
            self.__map = {}
        self.__update(*args, **kwds)

    def __setitem__(self, key, value, dict_setitem=dict.__setitem__):
        'od.__setitem__(i, y) <==> od[i]=y'
        # Setting a new item creates a new link at the end of the linked list,
        # and the inherited dictionary is updated with the new key/value pair.
        if key not in self:
            root = self.__root
            last = root[0]
            last[1] = root[0] = self.__map[key] = [last, root, key]
        return dict_setitem(self, key, value)

    def __delitem__(self, key, dict_delitem=dict.__delitem__):
        'od.__delitem__(y) <==> del od[y]'
        # Deleting an existing item uses self.__map to find the link which gets
        # removed by updating the links in the predecessor and successor nodes.
        dict_delitem(self, key)
        link_prev, link_next, _ = self.__map.pop(key)
        link_prev[1] = link_next                        # update link_prev[NEXT]
        link_next[0] = link_prev                        # update link_next[PREV]

    def __iter__(self):
        'od.__iter__() <==> iter(od)'
        # Traverse the linked list in order.
        root = self.__root
        curr = root[1]                                  # start at the first node
        while curr is not root:
            yield curr[2]                               # yield the curr[KEY]
            curr = curr[1]                              # move to next node

    def __reversed__(self):
        'od.__reversed__() <==> reversed(od)'
        # Traverse the linked list in reverse order.
        root = self.__root
        curr = root[0]                                  # start at the last node
        while curr is not root:
            yield curr[2]                               # yield the curr[KEY]
            curr = curr[0]                              # move to previous node

    def clear(self):
        'od.clear() -> None.  Remove all items from od.'
        root = self.__root
        root[:] = [root, root, None]
        self.__map.clear()
        dict.clear(self)

    # -- the following methods do not depend on the internal structure --

    def keys(self):
        'od.keys() -> list of keys in od'
        return list(self)

    def values(self):
        'od.values() -> list of values in od'
        return [self[key] for key in self]

    def items(self):
        'od.items() -> list of (key, value) pairs in od'
        return [(key, self[key]) for key in self]

    def iterkeys(self):
        'od.iterkeys() -> an iterator over the keys in od'
        return iter(self)

    def itervalues(self):
        'od.itervalues -> an iterator over the values in od'
        for k in self:
            yield self[k]

    def iteritems(self):
        'od.iteritems -> an iterator over the (key, value) pairs in od'
        for k in self:
            yield (k, self[k])

    update = MutableMapping.update

    __update = update # let subclasses override update without breaking __init__

    __marker = object()

    def pop(self, key, default=__marker):
        '''od.pop(k[,d]) -> v, remove specified key and return the corresponding
        value.  If key is not found, d is returned if given, otherwise KeyError
        is raised.

        '''
        if key in self:
            result = self[key]
            del self[key]
            return result
        if default is self.__marker:
            raise KeyError(key)
        return default

    def setdefault(self, key, default=None):
        'od.setdefault(k[,d]) -> od.get(k,d), also set od[k]=d if k not in od'
        if key in self:
            return self[key]
        self[key] = default
        return default

    def popitem(self, last=True):
        '''od.popitem() -> (k, v), return and remove a (key, value) pair.
        Pairs are returned in LIFO order if last is true or FIFO order if false.

        '''
        if not self:
            raise KeyError('dictionary is empty')
        key = next(reversed(self) if last else iter(self))
        value = self.pop(key)
        return key, value

    def __repr__(self, _repr_running={}):
        'od.__repr__() <==> repr(od)'
        call_key = id(self), _get_ident()
        if call_key in _repr_running:
            return '...'
        _repr_running[call_key] = 1
        try:
            if not self:
                return '%s()' % (self.__class__.__name__,)
            return '%s(%r)' % (self.__class__.__name__, self.items())
        finally:
            del _repr_running[call_key]

    def __reduce__(self):
        'Return state information for pickling'
        items = [[k, self[k]] for k in self]
        inst_dict = vars(self).copy()
        for k in vars(OrderedDict()):
            inst_dict.pop(k, None)
        if inst_dict:
            return (self.__class__, (items,), inst_dict)
        return self.__class__, (items,)

    def copy(self):
        'od.copy() -> a shallow copy of od'
        return self.__class__(self)

    @classmethod
    def fromkeys(cls, iterable, value=None):
        '''OD.fromkeys(S[, v]) -> New ordered dictionary with keys from S.
        If not specified, the value defaults to None.

        '''
        self = cls()
        for key in iterable:
            self[key] = value
        return self

    def __eq__(self, other):
        '''od.__eq__(y) <==> od==y.  Comparison to another OD is order-sensitive
        while comparison to a regular mapping is order-insensitive.

        '''
        if isinstance(other, OrderedDict):
            return dict.__eq__(self, other) and all(_imap(_eq, self, other))
        return dict.__eq__(self, other)

    def __ne__(self, other):
        'od.__ne__(y) <==> od!=y'
        return not self == other

    # -- the following methods support python 3.x style dictionary views --

    def viewkeys(self):
        "od.viewkeys() -> a set-like object providing a view on od's keys"
        return KeysView(self)

    def viewvalues(self):
        "od.viewvalues() -> an object providing a view on od's values"
        return ValuesView(self)

    def viewitems(self):
        "od.viewitems() -> a set-like object providing a view on od's items"
        return ItemsView(self)


################################################################################
### namedtuple
################################################################################

_class_template = '''\
class {typename}(tuple):
    '{typename}({arg_list})'

    __slots__ = ()

    _fields = {field_names!r}

    def __new__(_cls, {arg_list}):
        'Create new instance of {typename}({arg_list})'
        return _tuple.__new__(_cls, ({arg_list}))

    @classmethod
    def _make(cls, iterable, new=tuple.__new__, len=len):
        'Make a new {typename} object from a sequence or iterable'
        result = new(cls, iterable)
        if len(result) != {num_fields:d}:
            raise TypeError('Expected {num_fields:d} arguments, got %d' % len(result))
        return result

    def __repr__(self):
        'Return a nicely formatted representation string'
        return '{typename}({repr_fmt})' % self

    def _asdict(self):
        'Return a new OrderedDict which maps field names to their values'
        return OrderedDict(zip(self._fields, self))

    def _replace(_self, **kwds):
        'Return a new {typename} object replacing specified fields with new values'
        result = _self._make(map(kwds.pop, {field_names!r}, _self))
        if kwds:
            raise ValueError('Got unexpected field names: %r' % kwds.keys())
        return result

    def __getnewargs__(self):
        'Return self as a plain tuple.  Used by copy and pickle.'
        return tuple(self)

    __dict__ = _property(_asdict)

    def __getstate__(self):
        'Exclude the OrderedDict from pickling'
        pass

{field_defs}
'''

_repr_template = '{name}=%r'

_field_template = '''\
    {name} = _property(_itemgetter({index:d}), doc='Alias for field number {index:d}')
'''

def namedtuple(typename, field_names, verbose=False, rename=False):
    """Returns a new subclass of tuple with named fields.

    >>> Point = namedtuple('Point', ['x', 'y'])
    >>> Point.__doc__                   # docstring for the new class
    'Point(x, y)'
    >>> p = Point(11, y=22)             # instantiate with positional args or keywords
    >>> p[0] + p[1]                     # indexable like a plain tuple
    33
    >>> x, y = p                        # unpack like a regular tuple
    >>> x, y
    (11, 22)
    >>> p.x + p.y                       # fields also accessible by name
    33
    >>> d = p._asdict()                 # convert to a dictionary
    >>> d['x']
    11
    >>> Point(**d)                      # convert from a dictionary
    Point(x=11, y=22)
    >>> p._replace(x=100)               # _replace() is like str.replace() but targets named fields
    Point(x=100, y=22)

    """

    # Validate the field names.  At the user's option, either generate an error
    # message or automatically replace the field name with a valid name.
    if isinstance(field_names, basestring):
        field_names = field_names.replace(',', ' ').split()
    field_names = map(str, field_names)
    typename = str(typename)
    if rename:
        seen = set()
        for index, name in enumerate(field_names):
            if (not all(c.isalnum() or c=='_' for c in name)
                or _iskeyword(name)
                or not name
                or name[0].isdigit()
                or name.startswith('_')
                or name in seen):
                field_names[index] = '_%d' % index
            seen.add(name)
    for name in [typename] + field_names:
        if type(name) != str:
            raise TypeError('Type names and field names must be strings')
        if not all(c.isalnum() or c=='_' for c in name):
            raise ValueError('Type names and field names can only contain '
                             'alphanumeric characters and underscores: %r' % name)
        if _iskeyword(name):
            raise ValueError('Type names and field names cannot be a '
                             'keyword: %r' % name)
        if name[0].isdigit():
            raise ValueError('Type names and field names cannot start with '
                             'a number: %r' % name)
    seen = set()
    for name in field_names:
        if name.startswith('_') and not rename:
            raise ValueError('Field names cannot start with an underscore: '
                             '%r' % name)
        if name in seen:
            raise ValueError('Encountered duplicate field name: %r' % name)
        seen.add(name)

    # Fill-in the class template
    class_definition = _class_template.format(
        typename = typename,
        field_names = tuple(field_names),
        num_fields = len(field_names),
        arg_list = repr(tuple(field_names)).replace("'", "")[1:-1],
        repr_fmt = ', '.join(_repr_template.format(name=name)
                             for name in field_names),
        field_defs = '\n'.join(_field_template.format(index=index, name=name)
                               for index, name in enumerate(field_names))
    )
    if verbose:
        print class_definition

    # Execute the template string in a temporary namespace and support
    # tracing utilities by setting a value for frame.f_globals['__name__']
    namespace = dict(_itemgetter=_itemgetter, __name__='namedtuple_%s' % typename,
                     OrderedDict=OrderedDict, _property=property, _tuple=tuple)
    try:
        exec class_definition in namespace
    except SyntaxError as e:
        raise SyntaxError(e.message + ':\n' + class_definition)
    result = namespace[typename]

    # For pickling to work, the __module__ variable needs to be set to the frame
    # where the named tuple is created.  Bypass this step in environments where
    # sys._getframe is not defined (Jython for example) or sys._getframe is not
    # defined for arguments greater than 0 (IronPython).
    try:
        result.__module__ = _sys._getframe(1).f_globals.get('__name__', '__main__')
    except (AttributeError, ValueError):
        pass

    return result


########################################################################
###  Counter
########################################################################

class Counter(dict):
    '''Dict subclass for counting hashable items.  Sometimes called a bag
    or multiset.  Elements are stored as dictionary keys and their counts
    are stored as dictionary values.

    >>> c = Counter('abcdeabcdabcaba')  # count elements from a string

    >>> c.most_common(3)                # three most common elements
    [('a', 5), ('b', 4), ('c', 3)]
    >>> sorted(c)                       # list all unique elements
    ['a', 'b', 'c', 'd', 'e']
    >>> ''.join(sorted(c.elements()))   # list elements with repetitions
    'aaaaabbbbcccdde'
    >>> sum(c.values())                 # total of all counts
    15

    >>> c['a']                          # count of letter 'a'
    5
    >>> for elem in 'shazam':           # update counts from an iterable
    ...     c[elem] += 1                # by adding 1 to each element's count
    >>> c['a']                          # now there are seven 'a'
    7
    >>> del c['b']                      # remove all 'b'
    >>> c['b']                          # now there are zero 'b'
    0

    >>> d = Counter('simsalabim')       # make another counter
    >>> c.update(d)                     # add in the second counter
    >>> c['a']                          # now there are nine 'a'
    9

    >>> c.clear()                       # empty the counter
    >>> c
    Counter()

    Note:  If a count is set to zero or reduced to zero, it will remain
    in the counter until the entry is deleted or the counter is cleared:

    >>> c = Counter('aaabbc')
    >>> c['b'] -= 2                     # reduce the count of 'b' by two
    >>> c.most_common()                 # 'b' is still in, but its count is zero
    [('a', 3), ('c', 1), ('b', 0)]

    '''
    # References:
    #   http://en.wikipedia.org/wiki/Multiset
    #   http://www.gnu.org/software/smalltalk/manual-base/html_node/Bag.html
    #   http://www.demo2s.com/Tutorial/Cpp/0380__set-multiset/Catalog0380__set-multiset.htm
    #   http://code.activestate.com/recipes/259174/
    #   Knuth, TAOCP Vol. II section 4.6.3

    def __init__(*args, **kwds):
        '''Create a new, empty Counter object.  And if given, count elements
        from an input iterable.  Or, initialize the count from another mapping
        of elements to their counts.

        >>> c = Counter()                           # a new, empty counter
        >>> c = Counter('gallahad')                 # a new counter from an iterable
        >>> c = Counter({'a': 4, 'b': 2})           # a new counter from a mapping
        >>> c = Counter(a=4, b=2)                   # a new counter from keyword args

        '''
        if not args:
            raise TypeError("descriptor '__init__' of 'Counter' object "
                            "needs an argument")
        self = args[0]
        args = args[1:]
        if len(args) > 1:
            raise TypeError('expected at most 1 arguments, got %d' % len(args))
        super(Counter, self).__init__()
        self.update(*args, **kwds)

    def __missing__(self, key):
        'The count of elements not in the Counter is zero.'
        # Needed so that self[missing_item] does not raise KeyError
        return 0

    def most_common(self, n=None):
        '''List the n most common elements and their counts from the most
        common to the least.  If n is None, then list all element counts.

        >>> Counter('abcdeabcdabcaba').most_common(3)
        [('a', 5), ('b', 4), ('c', 3)]

        '''
        # Emulate Bag.sortedByCount from Smalltalk
        if n is None:
            return sorted(self.iteritems(), key=_itemgetter(1), reverse=True)
        return _heapq.nlargest(n, self.iteritems(), key=_itemgetter(1))

    def elements(self):
        '''Iterator over elements repeating each as many times as its count.

        >>> c = Counter('ABCABC')
        >>> sorted(c.elements())
        ['A', 'A', 'B', 'B', 'C', 'C']

        # Knuth's example for prime factors of 1836:  2**2 * 3**3 * 17**1
        >>> prime_factors = Counter({2: 2, 3: 3, 17: 1})
        >>> product = 1
        >>> for factor in prime_factors.elements():     # loop over factors
        ...     product *= factor                       # and multiply them
        >>> product
        1836

        Note, if an element's count has been set to zero or is a negative
        number, elements() will ignore it.

        '''
        # Emulate Bag.do from Smalltalk and Multiset.begin from C++.
        return _chain.from_iterable(_starmap(_repeat, self.iteritems()))

    # Override dict methods where necessary

    @classmethod
    def fromkeys(cls, iterable, v=None):
        # There is no equivalent method for counters because setting v=1
        # means that no element can have a count greater than one.
        raise NotImplementedError(
            'Counter.fromkeys() is undefined.  Use Counter(iterable) instead.')

    def update(*args, **kwds):
        '''Like dict.update() but add counts instead of replacing them.

        Source can be an iterable, a dictionary, or another Counter instance.

        >>> c = Counter('which')
        >>> c.update('witch')           # add elements from another iterable
        >>> d = Counter('watch')
        >>> c.update(d)                 # add elements from another counter
        >>> c['h']                      # four 'h' in which, witch, and watch
        4

        '''
        # The regular dict.update() operation makes no sense here because the
        # replace behavior results in the some of original untouched counts
        # being mixed-in with all of the other counts for a mismash that
        # doesn't have a straight-forward interpretation in most counting
        # contexts.  Instead, we implement straight-addition.  Both the inputs
        # and outputs are allowed to contain zero and negative counts.

        if not args:
            raise TypeError("descriptor 'update' of 'Counter' object "
                            "needs an argument")
        self = args[0]
        args = args[1:]
        if len(args) > 1:
            raise TypeError('expected at most 1 arguments, got %d' % len(args))
        iterable = args[0] if args else None
        if iterable is not None:
            if isinstance(iterable, Mapping):
                if self:
                    self_get = self.get
                    for elem, count in iterable.iteritems():
                        self[elem] = self_get(elem, 0) + count
                else:
                    super(Counter, self).update(iterable) # fast path when counter is empty
            else:
                self_get = self.get
                for elem in iterable:
                    self[elem] = self_get(elem, 0) + 1
        if kwds:
            self.update(kwds)

    def subtract(*args, **kwds):
        '''Like dict.update() but subtracts counts instead of replacing them.
        Counts can be reduced below zero.  Both the inputs and outputs are
        allowed to contain zero and negative counts.

        Source can be an iterable, a dictionary, or another Counter instance.

        >>> c = Counter('which')
        >>> c.subtract('witch')             # subtract elements from another iterable
        >>> c.subtract(Counter('watch'))    # subtract elements from another counter
        >>> c['h']                          # 2 in which, minus 1 in witch, minus 1 in watch
        0
        >>> c['w']                          # 1 in which, minus 1 in witch, minus 1 in watch
        -1

        '''
        if not args:
            raise TypeError("descriptor 'subtract' of 'Counter' object "
                            "needs an argument")
        self = args[0]
        args = args[1:]
        if len(args) > 1:
            raise TypeError('expected at most 1 arguments, got %d' % len(args))
        iterable = args[0] if args else None
        if iterable is not None:
            self_get = self.get
            if isinstance(iterable, Mapping):
                for elem, count in iterable.items():
                    self[elem] = self_get(elem, 0) - count
            else:
                for elem in iterable:
                    self[elem] = self_get(elem, 0) - 1
        if kwds:
            self.subtract(kwds)

    def copy(self):
        'Return a shallow copy.'
        return self.__class__(self)

    def __reduce__(self):
        return self.__class__, (dict(self),)

    def __delitem__(self, elem):
        'Like dict.__delitem__() but does not raise KeyError for missing values.'
        if elem in self:
            super(Counter, self).__delitem__(elem)

    def __repr__(self):
        if not self:
            return '%s()' % self.__class__.__name__
        items = ', '.join(map('%r: %r'.__mod__, self.most_common()))
        return '%s({%s})' % (self.__class__.__name__, items)

    # Multiset-style mathematical operations discussed in:
    #       Knuth TAOCP Volume II section 4.6.3 exercise 19
    #       and at http://en.wikipedia.org/wiki/Multiset
    #
    # Outputs guaranteed to only include positive counts.
    #
    # To strip negative and zero counts, add-in an empty counter:
    #       c += Counter()

    def __add__(self, other):
        '''Add counts from two counters.

        >>> Counter('abbb') + Counter('bcc')
        Counter({'b': 4, 'c': 2, 'a': 1})

        '''
        if not isinstance(other, Counter):
            return NotImplemented
        result = Counter()
        for elem, count in self.items():
            newcount = count + other[elem]
            if newcount > 0:
                result[elem] = newcount
        for elem, count in other.items():
            if elem not in self and count > 0:
                result[elem] = count
        return result

    def __sub__(self, other):
        ''' Subtract count, but keep only results with positive counts.

        >>> Counter('abbbc') - Counter('bccd')
        Counter({'b': 2, 'a': 1})

        '''
        if not isinstance(other, Counter):
            return NotImplemented
        result = Counter()
        for elem, count in self.items():
            newcount = count - other[elem]
            if newcount > 0:
                result[elem] = newcount
        for elem, count in other.items():
            if elem not in self and count < 0:
                result[elem] = 0 - count
        return result

    def __or__(self, other):
        '''Union is the maximum of value in either of the input counters.

        >>> Counter('abbb') | Counter('bcc')
        Counter({'b': 3, 'c': 2, 'a': 1})

        '''
        if not isinstance(other, Counter):
            return NotImplemented
        result = Counter()
        for elem, count in self.items():
            other_count = other[elem]
            newcount = other_count if count < other_count else count
            if newcount > 0:
                result[elem] = newcount
        for elem, count in other.items():
            if elem not in self and count > 0:
                result[elem] = count
        return result

    def __and__(self, other):
        ''' Intersection is the minimum of corresponding counts.

        >>> Counter('abbb') & Counter('bcc')
        Counter({'b': 1})

        '''
        if not isinstance(other, Counter):
            return NotImplemented
        result = Counter()
        for elem, count in self.items():
            other_count = other[elem]
            newcount = count if count < other_count else other_count
            if newcount > 0:
                result[elem] = newcount
        return result


if __name__ == '__main__':
    # verify that instances can be pickled
    from cPickle import loads, dumps
    Point = namedtuple('Point', 'x, y', True)
    p = Point(x=10, y=20)
    assert p == loads(dumps(p))

    # test and demonstrate ability to override methods
    class Point(namedtuple('Point', 'x y')):
        __slots__ = ()
        @property
        def hypot(self):
            return (self.x ** 2 + self.y ** 2) ** 0.5
        def __str__(self):
            return 'Point: x=%6.3f  y=%6.3f  hypot=%6.3f' % (self.x, self.y, self.hypot)

    for p in Point(3, 4), Point(14, 5/7.):
        print p

    class Point(namedtuple('Point', 'x y')):
        'Point class with optimized _make() and _replace() without error-checking'
        __slots__ = ()
        _make = classmethod(tuple.__new__)
        def _replace(self, _map=map, **kwds):
            return self._make(_map(kwds.get, ('x', 'y'), self))

    print Point(11, 22)._replace(x=100)

    Point3D = namedtuple('Point3D', Point._fields + ('z',))
    print Point3D.__doc__

    import doctest
    TestResults = namedtuple('TestResults', 'failed attempted')
    print TestResults(*doctest.testmod())




          

      

      

    

  

    
      
          
            
  Source code for decimal

# Copyright (c) 2004 Python Software Foundation.
# All rights reserved.

# Written by Eric Price <eprice at tjhsst.edu>
#    and Facundo Batista <facundo at taniquetil.com.ar>
#    and Raymond Hettinger <python at rcn.com>
#    and Aahz <aahz at pobox.com>
#    and Tim Peters

# This module is currently Py2.3 compatible and should be kept that way
# unless a major compelling advantage arises.  IOW, 2.3 compatibility is
# strongly preferred, but not guaranteed.

# Also, this module should be kept in sync with the latest updates of
# the IBM specification as it evolves.  Those updates will be treated
# as bug fixes (deviation from the spec is a compatibility, usability
# bug) and will be backported.  At this point the spec is stabilizing
# and the updates are becoming fewer, smaller, and less significant.

"""
This is a Py2.3 implementation of decimal floating point arithmetic based on
the General Decimal Arithmetic Specification:

    http://speleotrove.com/decimal/decarith.html

and IEEE standard 854-1987:

    http://en.wikipedia.org/wiki/IEEE_854-1987

Decimal floating point has finite precision with arbitrarily large bounds.

The purpose of this module is to support arithmetic using familiar
"schoolhouse" rules and to avoid some of the tricky representation
issues associated with binary floating point.  The package is especially
useful for financial applications or for contexts where users have
expectations that are at odds with binary floating point (for instance,
in binary floating point, 1.00 % 0.1 gives 0.09999999999999995 instead
of the expected Decimal('0.00') returned by decimal floating point).

Here are some examples of using the decimal module:

>>> from decimal import *
>>> setcontext(ExtendedContext)
>>> Decimal(0)
Decimal('0')
>>> Decimal('1')
Decimal('1')
>>> Decimal('-.0123')
Decimal('-0.0123')
>>> Decimal(123456)
Decimal('123456')
>>> Decimal('123.45e12345678901234567890')
Decimal('1.2345E+12345678901234567892')
>>> Decimal('1.33') + Decimal('1.27')
Decimal('2.60')
>>> Decimal('12.34') + Decimal('3.87') - Decimal('18.41')
Decimal('-2.20')
>>> dig = Decimal(1)
>>> print dig / Decimal(3)
0.333333333
>>> getcontext().prec = 18
>>> print dig / Decimal(3)
0.333333333333333333
>>> print dig.sqrt()
1
>>> print Decimal(3).sqrt()
1.73205080756887729
>>> print Decimal(3) ** 123
4.85192780976896427E+58
>>> inf = Decimal(1) / Decimal(0)
>>> print inf
Infinity
>>> neginf = Decimal(-1) / Decimal(0)
>>> print neginf
-Infinity
>>> print neginf + inf
NaN
>>> print neginf * inf
-Infinity
>>> print dig / 0
Infinity
>>> getcontext().traps[DivisionByZero] = 1
>>> print dig / 0
Traceback (most recent call last):
  ...
  ...
  ...
DivisionByZero: x / 0
>>> c = Context()
>>> c.traps[InvalidOperation] = 0
>>> print c.flags[InvalidOperation]
0
>>> c.divide(Decimal(0), Decimal(0))
Decimal('NaN')
>>> c.traps[InvalidOperation] = 1
>>> print c.flags[InvalidOperation]
1
>>> c.flags[InvalidOperation] = 0
>>> print c.flags[InvalidOperation]
0
>>> print c.divide(Decimal(0), Decimal(0))
Traceback (most recent call last):
  ...
  ...
  ...
InvalidOperation: 0 / 0
>>> print c.flags[InvalidOperation]
1
>>> c.flags[InvalidOperation] = 0
>>> c.traps[InvalidOperation] = 0
>>> print c.divide(Decimal(0), Decimal(0))
NaN
>>> print c.flags[InvalidOperation]
1
>>>
"""

__all__ = [
    # Two major classes
    'Decimal', 'Context',

    # Contexts
    'DefaultContext', 'BasicContext', 'ExtendedContext',

    # Exceptions
    'DecimalException', 'Clamped', 'InvalidOperation', 'DivisionByZero',
    'Inexact', 'Rounded', 'Subnormal', 'Overflow', 'Underflow',

    # Constants for use in setting up contexts
    'ROUND_DOWN', 'ROUND_HALF_UP', 'ROUND_HALF_EVEN', 'ROUND_CEILING',
    'ROUND_FLOOR', 'ROUND_UP', 'ROUND_HALF_DOWN', 'ROUND_05UP',

    # Functions for manipulating contexts
    'setcontext', 'getcontext', 'localcontext'
]

__version__ = '1.70'    # Highest version of the spec this complies with

import math as _math
import numbers as _numbers

try:
    from collections import namedtuple as _namedtuple
    DecimalTuple = _namedtuple('DecimalTuple', 'sign digits exponent')
except ImportError:
    DecimalTuple = lambda *args: args

# Rounding
ROUND_DOWN = 'ROUND_DOWN'
ROUND_HALF_UP = 'ROUND_HALF_UP'
ROUND_HALF_EVEN = 'ROUND_HALF_EVEN'
ROUND_CEILING = 'ROUND_CEILING'
ROUND_FLOOR = 'ROUND_FLOOR'
ROUND_UP = 'ROUND_UP'
ROUND_HALF_DOWN = 'ROUND_HALF_DOWN'
ROUND_05UP = 'ROUND_05UP'

# Errors

class DecimalException(ArithmeticError):
    """Base exception class.

    Used exceptions derive from this.
    If an exception derives from another exception besides this (such as
    Underflow (Inexact, Rounded, Subnormal) that indicates that it is only
    called if the others are present.  This isn't actually used for
    anything, though.

    handle  -- Called when context._raise_error is called and the
               trap_enabler is not set.  First argument is self, second is the
               context.  More arguments can be given, those being after
               the explanation in _raise_error (For example,
               context._raise_error(NewError, '(-x)!', self._sign) would
               call NewError().handle(context, self._sign).)

    To define a new exception, it should be sufficient to have it derive
    from DecimalException.
    """
    def handle(self, context, *args):
        pass


class Clamped(DecimalException):
    """Exponent of a 0 changed to fit bounds.

    This occurs and signals clamped if the exponent of a result has been
    altered in order to fit the constraints of a specific concrete
    representation.  This may occur when the exponent of a zero result would
    be outside the bounds of a representation, or when a large normal
    number would have an encoded exponent that cannot be represented.  In
    this latter case, the exponent is reduced to fit and the corresponding
    number of zero digits are appended to the coefficient ("fold-down").
    """

class InvalidOperation(DecimalException):
    """An invalid operation was performed.

    Various bad things cause this:

    Something creates a signaling NaN
    -INF + INF
    0 * (+-)INF
    (+-)INF / (+-)INF
    x % 0
    (+-)INF % x
    x._rescale( non-integer )
    sqrt(-x) , x > 0
    0 ** 0
    x ** (non-integer)
    x ** (+-)INF
    An operand is invalid

    The result of the operation after these is a quiet positive NaN,
    except when the cause is a signaling NaN, in which case the result is
    also a quiet NaN, but with the original sign, and an optional
    diagnostic information.
    """
    def handle(self, context, *args):
        if args:
            ans = _dec_from_triple(args[0]._sign, args[0]._int, 'n', True)
            return ans._fix_nan(context)
        return _NaN

class ConversionSyntax(InvalidOperation):
    """Trying to convert badly formed string.

    This occurs and signals invalid-operation if a string is being
    converted to a number and it does not conform to the numeric string
    syntax.  The result is [0,qNaN].
    """
    def handle(self, context, *args):
        return _NaN

class DivisionByZero(DecimalException, ZeroDivisionError):
    """Division by 0.

    This occurs and signals division-by-zero if division of a finite number
    by zero was attempted (during a divide-integer or divide operation, or a
    power operation with negative right-hand operand), and the dividend was
    not zero.

    The result of the operation is [sign,inf], where sign is the exclusive
    or of the signs of the operands for divide, or is 1 for an odd power of
    -0, for power.
    """

    def handle(self, context, sign, *args):
        return _SignedInfinity[sign]

class DivisionImpossible(InvalidOperation):
    """Cannot perform the division adequately.

    This occurs and signals invalid-operation if the integer result of a
    divide-integer or remainder operation had too many digits (would be
    longer than precision).  The result is [0,qNaN].
    """

    def handle(self, context, *args):
        return _NaN

class DivisionUndefined(InvalidOperation, ZeroDivisionError):
    """Undefined result of division.

    This occurs and signals invalid-operation if division by zero was
    attempted (during a divide-integer, divide, or remainder operation), and
    the dividend is also zero.  The result is [0,qNaN].
    """

    def handle(self, context, *args):
        return _NaN

class Inexact(DecimalException):
    """Had to round, losing information.

    This occurs and signals inexact whenever the result of an operation is
    not exact (that is, it needed to be rounded and any discarded digits
    were non-zero), or if an overflow or underflow condition occurs.  The
    result in all cases is unchanged.

    The inexact signal may be tested (or trapped) to determine if a given
    operation (or sequence of operations) was inexact.
    """

class InvalidContext(InvalidOperation):
    """Invalid context.  Unknown rounding, for example.

    This occurs and signals invalid-operation if an invalid context was
    detected during an operation.  This can occur if contexts are not checked
    on creation and either the precision exceeds the capability of the
    underlying concrete representation or an unknown or unsupported rounding
    was specified.  These aspects of the context need only be checked when
    the values are required to be used.  The result is [0,qNaN].
    """

    def handle(self, context, *args):
        return _NaN

class Rounded(DecimalException):
    """Number got rounded (not  necessarily changed during rounding).

    This occurs and signals rounded whenever the result of an operation is
    rounded (that is, some zero or non-zero digits were discarded from the
    coefficient), or if an overflow or underflow condition occurs.  The
    result in all cases is unchanged.

    The rounded signal may be tested (or trapped) to determine if a given
    operation (or sequence of operations) caused a loss of precision.
    """

class Subnormal(DecimalException):
    """Exponent < Emin before rounding.

    This occurs and signals subnormal whenever the result of a conversion or
    operation is subnormal (that is, its adjusted exponent is less than
    Emin, before any rounding).  The result in all cases is unchanged.

    The subnormal signal may be tested (or trapped) to determine if a given
    or operation (or sequence of operations) yielded a subnormal result.
    """

class Overflow(Inexact, Rounded):
    """Numerical overflow.

    This occurs and signals overflow if the adjusted exponent of a result
    (from a conversion or from an operation that is not an attempt to divide
    by zero), after rounding, would be greater than the largest value that
    can be handled by the implementation (the value Emax).

    The result depends on the rounding mode:

    For round-half-up and round-half-even (and for round-half-down and
    round-up, if implemented), the result of the operation is [sign,inf],
    where sign is the sign of the intermediate result.  For round-down, the
    result is the largest finite number that can be represented in the
    current precision, with the sign of the intermediate result.  For
    round-ceiling, the result is the same as for round-down if the sign of
    the intermediate result is 1, or is [0,inf] otherwise.  For round-floor,
    the result is the same as for round-down if the sign of the intermediate
    result is 0, or is [1,inf] otherwise.  In all cases, Inexact and Rounded
    will also be raised.
    """

    def handle(self, context, sign, *args):
        if context.rounding in (ROUND_HALF_UP, ROUND_HALF_EVEN,
                                ROUND_HALF_DOWN, ROUND_UP):
            return _SignedInfinity[sign]
        if sign == 0:
            if context.rounding == ROUND_CEILING:
                return _SignedInfinity[sign]
            return _dec_from_triple(sign, '9'*context.prec,
                            context.Emax-context.prec+1)
        if sign == 1:
            if context.rounding == ROUND_FLOOR:
                return _SignedInfinity[sign]
            return _dec_from_triple(sign, '9'*context.prec,
                             context.Emax-context.prec+1)


class Underflow(Inexact, Rounded, Subnormal):
    """Numerical underflow with result rounded to 0.

    This occurs and signals underflow if a result is inexact and the
    adjusted exponent of the result would be smaller (more negative) than
    the smallest value that can be handled by the implementation (the value
    Emin).  That is, the result is both inexact and subnormal.

    The result after an underflow will be a subnormal number rounded, if
    necessary, so that its exponent is not less than Etiny.  This may result
    in 0 with the sign of the intermediate result and an exponent of Etiny.

    In all cases, Inexact, Rounded, and Subnormal will also be raised.
    """

# List of public traps and flags
_signals = [Clamped, DivisionByZero, Inexact, Overflow, Rounded,
           Underflow, InvalidOperation, Subnormal]

# Map conditions (per the spec) to signals
_condition_map = {ConversionSyntax:InvalidOperation,
                  DivisionImpossible:InvalidOperation,
                  DivisionUndefined:InvalidOperation,
                  InvalidContext:InvalidOperation}

##### Context Functions ##################################################

# The getcontext() and setcontext() function manage access to a thread-local
# current context.  Py2.4 offers direct support for thread locals.  If that
# is not available, use threading.currentThread() which is slower but will
# work for older Pythons.  If threads are not part of the build, create a
# mock threading object with threading.local() returning the module namespace.

try:
    import threading
except ImportError:
    # Python was compiled without threads; create a mock object instead
    import sys
    class MockThreading(object):
        def local(self, sys=sys):
            return sys.modules[__name__]
    threading = MockThreading()
    del sys, MockThreading

try:
    threading.local

except AttributeError:

    # To fix reloading, force it to create a new context
    # Old contexts have different exceptions in their dicts, making problems.
    if hasattr(threading.currentThread(), '__decimal_context__'):
        del threading.currentThread().__decimal_context__

    def setcontext(context):
        """Set this thread's context to context."""
        if context in (DefaultContext, BasicContext, ExtendedContext):
            context = context.copy()
            context.clear_flags()
        threading.currentThread().__decimal_context__ = context

    def getcontext():
        """Returns this thread's context.

        If this thread does not yet have a context, returns
        a new context and sets this thread's context.
        New contexts are copies of DefaultContext.
        """
        try:
            return threading.currentThread().__decimal_context__
        except AttributeError:
            context = Context()
            threading.currentThread().__decimal_context__ = context
            return context

else:

    local = threading.local()
    if hasattr(local, '__decimal_context__'):
        del local.__decimal_context__

    def getcontext(_local=local):
        """Returns this thread's context.

        If this thread does not yet have a context, returns
        a new context and sets this thread's context.
        New contexts are copies of DefaultContext.
        """
        try:
            return _local.__decimal_context__
        except AttributeError:
            context = Context()
            _local.__decimal_context__ = context
            return context

    def setcontext(context, _local=local):
        """Set this thread's context to context."""
        if context in (DefaultContext, BasicContext, ExtendedContext):
            context = context.copy()
            context.clear_flags()
        _local.__decimal_context__ = context

    del threading, local        # Don't contaminate the namespace

def localcontext(ctx=None):
    """Return a context manager for a copy of the supplied context

    Uses a copy of the current context if no context is specified
    The returned context manager creates a local decimal context
    in a with statement:
        def sin(x):
             with localcontext() as ctx:
                 ctx.prec += 2
                 # Rest of sin calculation algorithm
                 # uses a precision 2 greater than normal
             return +s  # Convert result to normal precision

         def sin(x):
             with localcontext(ExtendedContext):
                 # Rest of sin calculation algorithm
                 # uses the Extended Context from the
                 # General Decimal Arithmetic Specification
             return +s  # Convert result to normal context

    >>> setcontext(DefaultContext)
    >>> print getcontext().prec
    28
    >>> with localcontext():
    ...     ctx = getcontext()
    ...     ctx.prec += 2
    ...     print ctx.prec
    ...
    30
    >>> with localcontext(ExtendedContext):
    ...     print getcontext().prec
    ...
    9
    >>> print getcontext().prec
    28
    """
    if ctx is None: ctx = getcontext()
    return _ContextManager(ctx)


##### Decimal class #######################################################

class Decimal(object):
    """Floating point class for decimal arithmetic."""

    __slots__ = ('_exp','_int','_sign', '_is_special')
    # Generally, the value of the Decimal instance is given by
    #  (-1)**_sign * _int * 10**_exp
    # Special values are signified by _is_special == True

    # We're immutable, so use __new__ not __init__
    def __new__(cls, value="0", context=None):
        """Create a decimal point instance.

        >>> Decimal('3.14')              # string input
        Decimal('3.14')
        >>> Decimal((0, (3, 1, 4), -2))  # tuple (sign, digit_tuple, exponent)
        Decimal('3.14')
        >>> Decimal(314)                 # int or long
        Decimal('314')
        >>> Decimal(Decimal(314))        # another decimal instance
        Decimal('314')
        >>> Decimal('  3.14  \\n')        # leading and trailing whitespace okay
        Decimal('3.14')
        """

        # Note that the coefficient, self._int, is actually stored as
        # a string rather than as a tuple of digits.  This speeds up
        # the "digits to integer" and "integer to digits" conversions
        # that are used in almost every arithmetic operation on
        # Decimals.  This is an internal detail: the as_tuple function
        # and the Decimal constructor still deal with tuples of
        # digits.

        self = object.__new__(cls)

        # From a string
        # REs insist on real strings, so we can too.
        if isinstance(value, basestring):
            m = _parser(value.strip())
            if m is None:
                if context is None:
                    context = getcontext()
                return context._raise_error(ConversionSyntax,
                                "Invalid literal for Decimal: %r" % value)

            if m.group('sign') == "-":
                self._sign = 1
            else:
                self._sign = 0
            intpart = m.group('int')
            if intpart is not None:
                # finite number
                fracpart = m.group('frac') or ''
                exp = int(m.group('exp') or '0')
                self._int = str(int(intpart+fracpart))
                self._exp = exp - len(fracpart)
                self._is_special = False
            else:
                diag = m.group('diag')
                if diag is not None:
                    # NaN
                    self._int = str(int(diag or '0')).lstrip('0')
                    if m.group('signal'):
                        self._exp = 'N'
                    else:
                        self._exp = 'n'
                else:
                    # infinity
                    self._int = '0'
                    self._exp = 'F'
                self._is_special = True
            return self

        # From an integer
        if isinstance(value, (int,long)):
            if value >= 0:
                self._sign = 0
            else:
                self._sign = 1
            self._exp = 0
            self._int = str(abs(value))
            self._is_special = False
            return self

        # From another decimal
        if isinstance(value, Decimal):
            self._exp  = value._exp
            self._sign = value._sign
            self._int  = value._int
            self._is_special  = value._is_special
            return self

        # From an internal working value
        if isinstance(value, _WorkRep):
            self._sign = value.sign
            self._int = str(value.int)
            self._exp = int(value.exp)
            self._is_special = False
            return self

        # tuple/list conversion (possibly from as_tuple())
        if isinstance(value, (list,tuple)):
            if len(value) != 3:
                raise ValueError('Invalid tuple size in creation of Decimal '
                                 'from list or tuple.  The list or tuple '
                                 'should have exactly three elements.')
            # process sign.  The isinstance test rejects floats
            if not (isinstance(value[0], (int, long)) and value[0] in (0,1)):
                raise ValueError("Invalid sign.  The first value in the tuple "
                                 "should be an integer; either 0 for a "
                                 "positive number or 1 for a negative number.")
            self._sign = value[0]
            if value[2] == 'F':
                # infinity: value[1] is ignored
                self._int = '0'
                self._exp = value[2]
                self._is_special = True
            else:
                # process and validate the digits in value[1]
                digits = []
                for digit in value[1]:
                    if isinstance(digit, (int, long)) and 0 <= digit <= 9:
                        # skip leading zeros
                        if digits or digit != 0:
                            digits.append(digit)
                    else:
                        raise ValueError("The second value in the tuple must "
                                         "be composed of integers in the range "
                                         "0 through 9.")
                if value[2] in ('n', 'N'):
                    # NaN: digits form the diagnostic
                    self._int = ''.join(map(str, digits))
                    self._exp = value[2]
                    self._is_special = True
                elif isinstance(value[2], (int, long)):
                    # finite number: digits give the coefficient
                    self._int = ''.join(map(str, digits or [0]))
                    self._exp = value[2]
                    self._is_special = False
                else:
                    raise ValueError("The third value in the tuple must "
                                     "be an integer, or one of the "
                                     "strings 'F', 'n', 'N'.")
            return self

        if isinstance(value, float):
            value = Decimal.from_float(value)
            self._exp  = value._exp
            self._sign = value._sign
            self._int  = value._int
            self._is_special  = value._is_special
            return self

        raise TypeError("Cannot convert %r to Decimal" % value)

    # @classmethod, but @decorator is not valid Python 2.3 syntax, so
    # don't use it (see notes on Py2.3 compatibility at top of file)
    def from_float(cls, f):
        """Converts a float to a decimal number, exactly.

        Note that Decimal.from_float(0.1) is not the same as Decimal('0.1').
        Since 0.1 is not exactly representable in binary floating point, the
        value is stored as the nearest representable value which is
        0x1.999999999999ap-4.  The exact equivalent of the value in decimal
        is 0.1000000000000000055511151231257827021181583404541015625.

        >>> Decimal.from_float(0.1)
        Decimal('0.1000000000000000055511151231257827021181583404541015625')
        >>> Decimal.from_float(float('nan'))
        Decimal('NaN')
        >>> Decimal.from_float(float('inf'))
        Decimal('Infinity')
        >>> Decimal.from_float(-float('inf'))
        Decimal('-Infinity')
        >>> Decimal.from_float(-0.0)
        Decimal('-0')

        """
        if isinstance(f, (int, long)):        # handle integer inputs
            return cls(f)
        if _math.isinf(f) or _math.isnan(f):  # raises TypeError if not a float
            return cls(repr(f))
        if _math.copysign(1.0, f) == 1.0:
            sign = 0
        else:
            sign = 1
        n, d = abs(f).as_integer_ratio()
        k = d.bit_length() - 1
        result = _dec_from_triple(sign, str(n*5**k), -k)
        if cls is Decimal:
            return result
        else:
            return cls(result)
    from_float = classmethod(from_float)

    def _isnan(self):
        """Returns whether the number is not actually one.

        0 if a number
        1 if NaN
        2 if sNaN
        """
        if self._is_special:
            exp = self._exp
            if exp == 'n':
                return 1
            elif exp == 'N':
                return 2
        return 0

    def _isinfinity(self):
        """Returns whether the number is infinite

        0 if finite or not a number
        1 if +INF
        -1 if -INF
        """
        if self._exp == 'F':
            if self._sign:
                return -1
            return 1
        return 0

    def _check_nans(self, other=None, context=None):
        """Returns whether the number is not actually one.

        if self, other are sNaN, signal
        if self, other are NaN return nan
        return 0

        Done before operations.
        """

        self_is_nan = self._isnan()
        if other is None:
            other_is_nan = False
        else:
            other_is_nan = other._isnan()

        if self_is_nan or other_is_nan:
            if context is None:
                context = getcontext()

            if self_is_nan == 2:
                return context._raise_error(InvalidOperation, 'sNaN',
                                        self)
            if other_is_nan == 2:
                return context._raise_error(InvalidOperation, 'sNaN',
                                        other)
            if self_is_nan:
                return self._fix_nan(context)

            return other._fix_nan(context)
        return 0

    def _compare_check_nans(self, other, context):
        """Version of _check_nans used for the signaling comparisons
        compare_signal, __le__, __lt__, __ge__, __gt__.

        Signal InvalidOperation if either self or other is a (quiet
        or signaling) NaN.  Signaling NaNs take precedence over quiet
        NaNs.

        Return 0 if neither operand is a NaN.

        """
        if context is None:
            context = getcontext()

        if self._is_special or other._is_special:
            if self.is_snan():
                return context._raise_error(InvalidOperation,
                                            'comparison involving sNaN',
                                            self)
            elif other.is_snan():
                return context._raise_error(InvalidOperation,
                                            'comparison involving sNaN',
                                            other)
            elif self.is_qnan():
                return context._raise_error(InvalidOperation,
                                            'comparison involving NaN',
                                            self)
            elif other.is_qnan():
                return context._raise_error(InvalidOperation,
                                            'comparison involving NaN',
                                            other)
        return 0

    def __nonzero__(self):
        """Return True if self is nonzero; otherwise return False.

        NaNs and infinities are considered nonzero.
        """
        return self._is_special or self._int != '0'

    def _cmp(self, other):
        """Compare the two non-NaN decimal instances self and other.

        Returns -1 if self < other, 0 if self == other and 1
        if self > other.  This routine is for internal use only."""

        if self._is_special or other._is_special:
            self_inf = self._isinfinity()
            other_inf = other._isinfinity()
            if self_inf == other_inf:
                return 0
            elif self_inf < other_inf:
                return -1
            else:
                return 1

        # check for zeros;  Decimal('0') == Decimal('-0')
        if not self:
            if not other:
                return 0
            else:
                return -((-1)**other._sign)
        if not other:
            return (-1)**self._sign

        # If different signs, neg one is less
        if other._sign < self._sign:
            return -1
        if self._sign < other._sign:
            return 1

        self_adjusted = self.adjusted()
        other_adjusted = other.adjusted()
        if self_adjusted == other_adjusted:
            self_padded = self._int + '0'*(self._exp - other._exp)
            other_padded = other._int + '0'*(other._exp - self._exp)
            if self_padded == other_padded:
                return 0
            elif self_padded < other_padded:
                return -(-1)**self._sign
            else:
                return (-1)**self._sign
        elif self_adjusted > other_adjusted:
            return (-1)**self._sign
        else: # self_adjusted < other_adjusted
            return -((-1)**self._sign)

    # Note: The Decimal standard doesn't cover rich comparisons for
    # Decimals.  In particular, the specification is silent on the
    # subject of what should happen for a comparison involving a NaN.
    # We take the following approach:
    #
    #   == comparisons involving a quiet NaN always return False
    #   != comparisons involving a quiet NaN always return True
    #   == or != comparisons involving a signaling NaN signal
    #      InvalidOperation, and return False or True as above if the
    #      InvalidOperation is not trapped.
    #   <, >, <= and >= comparisons involving a (quiet or signaling)
    #      NaN signal InvalidOperation, and return False if the
    #      InvalidOperation is not trapped.
    #
    # This behavior is designed to conform as closely as possible to
    # that specified by IEEE 754.

    def __eq__(self, other, context=None):
        other = _convert_other(other, allow_float=True)
        if other is NotImplemented:
            return other
        if self._check_nans(other, context):
            return False
        return self._cmp(other) == 0

    def __ne__(self, other, context=None):
        other = _convert_other(other, allow_float=True)
        if other is NotImplemented:
            return other
        if self._check_nans(other, context):
            return True
        return self._cmp(other) != 0

    def __lt__(self, other, context=None):
        other = _convert_other(other, allow_float=True)
        if other is NotImplemented:
            return other
        ans = self._compare_check_nans(other, context)
        if ans:
            return False
        return self._cmp(other) < 0

    def __le__(self, other, context=None):
        other = _convert_other(other, allow_float=True)
        if other is NotImplemented:
            return other
        ans = self._compare_check_nans(other, context)
        if ans:
            return False
        return self._cmp(other) <= 0

    def __gt__(self, other, context=None):
        other = _convert_other(other, allow_float=True)
        if other is NotImplemented:
            return other
        ans = self._compare_check_nans(other, context)
        if ans:
            return False
        return self._cmp(other) > 0

    def __ge__(self, other, context=None):
        other = _convert_other(other, allow_float=True)
        if other is NotImplemented:
            return other
        ans = self._compare_check_nans(other, context)
        if ans:
            return False
        return self._cmp(other) >= 0

    def compare(self, other, context=None):
        """Compares one to another.

        -1 => a < b
        0  => a = b
        1  => a > b
        NaN => one is NaN
        Like __cmp__, but returns Decimal instances.
        """
        other = _convert_other(other, raiseit=True)

        # Compare(NaN, NaN) = NaN
        if (self._is_special or other and other._is_special):
            ans = self._check_nans(other, context)
            if ans:
                return ans

        return Decimal(self._cmp(other))

    def __hash__(self):
        """x.__hash__() <==> hash(x)"""
        # Decimal integers must hash the same as the ints
        #
        # The hash of a nonspecial noninteger Decimal must depend only
        # on the value of that Decimal, and not on its representation.
        # For example: hash(Decimal('100E-1')) == hash(Decimal('10')).

        # Equality comparisons involving signaling nans can raise an
        # exception; since equality checks are implicitly and
        # unpredictably used when checking set and dict membership, we
        # prevent signaling nans from being used as set elements or
        # dict keys by making __hash__ raise an exception.
        if self._is_special:
            if self.is_snan():
                raise TypeError('Cannot hash a signaling NaN value.')
            elif self.is_nan():
                # 0 to match hash(float('nan'))
                return 0
            else:
                # values chosen to match hash(float('inf')) and
                # hash(float('-inf')).
                if self._sign:
                    return -271828
                else:
                    return 314159

        # In Python 2.7, we're allowing comparisons (but not
        # arithmetic operations) between floats and Decimals;  so if
        # a Decimal instance is exactly representable as a float then
        # its hash should match that of the float.
        self_as_float = float(self)
        if Decimal.from_float(self_as_float) == self:
            return hash(self_as_float)

        if self._isinteger():
            op = _WorkRep(self.to_integral_value())
            # to make computation feasible for Decimals with large
            # exponent, we use the fact that hash(n) == hash(m) for
            # any two nonzero integers n and m such that (i) n and m
            # have the same sign, and (ii) n is congruent to m modulo
            # 2**64-1.  So we can replace hash((-1)**s*c*10**e) with
            # hash((-1)**s*c*pow(10, e, 2**64-1).
            return hash((-1)**op.sign*op.int*pow(10, op.exp, 2**64-1))
        # The value of a nonzero nonspecial Decimal instance is
        # faithfully represented by the triple consisting of its sign,
        # its adjusted exponent, and its coefficient with trailing
        # zeros removed.
        return hash((self._sign,
                     self._exp+len(self._int),
                     self._int.rstrip('0')))

    def as_tuple(self):
        """Represents the number as a triple tuple.

        To show the internals exactly as they are.
        """
        return DecimalTuple(self._sign, tuple(map(int, self._int)), self._exp)

    def __repr__(self):
        """Represents the number as an instance of Decimal."""
        # Invariant:  eval(repr(d)) == d
        return "Decimal('%s')" % str(self)

    def __str__(self, eng=False, context=None):
        """Return string representation of the number in scientific notation.

        Captures all of the information in the underlying representation.
        """

        sign = ['', '-'][self._sign]
        if self._is_special:
            if self._exp == 'F':
                return sign + 'Infinity'
            elif self._exp == 'n':
                return sign + 'NaN' + self._int
            else: # self._exp == 'N'
                return sign + 'sNaN' + self._int

        # number of digits of self._int to left of decimal point
        leftdigits = self._exp + len(self._int)

        # dotplace is number of digits of self._int to the left of the
        # decimal point in the mantissa of the output string (that is,
        # after adjusting the exponent)
        if self._exp <= 0 and leftdigits > -6:
            # no exponent required
            dotplace = leftdigits
        elif not eng:
            # usual scientific notation: 1 digit on left of the point
            dotplace = 1
        elif self._int == '0':
            # engineering notation, zero
            dotplace = (leftdigits + 1) % 3 - 1
        else:
            # engineering notation, nonzero
            dotplace = (leftdigits - 1) % 3 + 1

        if dotplace <= 0:
            intpart = '0'
            fracpart = '.' + '0'*(-dotplace) + self._int
        elif dotplace >= len(self._int):
            intpart = self._int+'0'*(dotplace-len(self._int))
            fracpart = ''
        else:
            intpart = self._int[:dotplace]
            fracpart = '.' + self._int[dotplace:]
        if leftdigits == dotplace:
            exp = ''
        else:
            if context is None:
                context = getcontext()
            exp = ['e', 'E'][context.capitals] + "%+d" % (leftdigits-dotplace)

        return sign + intpart + fracpart + exp

    def to_eng_string(self, context=None):
        """Convert to a string, using engineering notation if an exponent is needed.

        Engineering notation has an exponent which is a multiple of 3.  This
        can leave up to 3 digits to the left of the decimal place and may
        require the addition of either one or two trailing zeros.
        """
        return self.__str__(eng=True, context=context)

    def __neg__(self, context=None):
        """Returns a copy with the sign switched.

        Rounds, if it has reason.
        """
        if self._is_special:
            ans = self._check_nans(context=context)
            if ans:
                return ans

        if context is None:
            context = getcontext()

        if not self and context.rounding != ROUND_FLOOR:
            # -Decimal('0') is Decimal('0'), not Decimal('-0'), except
            # in ROUND_FLOOR rounding mode.
            ans = self.copy_abs()
        else:
            ans = self.copy_negate()

        return ans._fix(context)

    def __pos__(self, context=None):
        """Returns a copy, unless it is a sNaN.

        Rounds the number (if more than precision digits)
        """
        if self._is_special:
            ans = self._check_nans(context=context)
            if ans:
                return ans

        if context is None:
            context = getcontext()

        if not self and context.rounding != ROUND_FLOOR:
            # + (-0) = 0, except in ROUND_FLOOR rounding mode.
            ans = self.copy_abs()
        else:
            ans = Decimal(self)

        return ans._fix(context)

    def __abs__(self, round=True, context=None):
        """Returns the absolute value of self.

        If the keyword argument 'round' is false, do not round.  The
        expression self.__abs__(round=False) is equivalent to
        self.copy_abs().
        """
        if not round:
            return self.copy_abs()

        if self._is_special:
            ans = self._check_nans(context=context)
            if ans:
                return ans

        if self._sign:
            ans = self.__neg__(context=context)
        else:
            ans = self.__pos__(context=context)

        return ans

    def __add__(self, other, context=None):
        """Returns self + other.

        -INF + INF (or the reverse) cause InvalidOperation errors.
        """
        other = _convert_other(other)
        if other is NotImplemented:
            return other

        if context is None:
            context = getcontext()

        if self._is_special or other._is_special:
            ans = self._check_nans(other, context)
            if ans:
                return ans

            if self._isinfinity():
                # If both INF, same sign => same as both, opposite => error.
                if self._sign != other._sign and other._isinfinity():
                    return context._raise_error(InvalidOperation, '-INF + INF')
                return Decimal(self)
            if other._isinfinity():
                return Decimal(other)  # Can't both be infinity here

        exp = min(self._exp, other._exp)
        negativezero = 0
        if context.rounding == ROUND_FLOOR and self._sign != other._sign:
            # If the answer is 0, the sign should be negative, in this case.
            negativezero = 1

        if not self and not other:
            sign = min(self._sign, other._sign)
            if negativezero:
                sign = 1
            ans = _dec_from_triple(sign, '0', exp)
            ans = ans._fix(context)
            return ans
        if not self:
            exp = max(exp, other._exp - context.prec-1)
            ans = other._rescale(exp, context.rounding)
            ans = ans._fix(context)
            return ans
        if not other:
            exp = max(exp, self._exp - context.prec-1)
            ans = self._rescale(exp, context.rounding)
            ans = ans._fix(context)
            return ans

        op1 = _WorkRep(self)
        op2 = _WorkRep(other)
        op1, op2 = _normalize(op1, op2, context.prec)

        result = _WorkRep()
        if op1.sign != op2.sign:
            # Equal and opposite
            if op1.int == op2.int:
                ans = _dec_from_triple(negativezero, '0', exp)
                ans = ans._fix(context)
                return ans
            if op1.int < op2.int:
                op1, op2 = op2, op1
                # OK, now abs(op1) > abs(op2)
            if op1.sign == 1:
                result.sign = 1
                op1.sign, op2.sign = op2.sign, op1.sign
            else:
                result.sign = 0
                # So we know the sign, and op1 > 0.
        elif op1.sign == 1:
            result.sign = 1
            op1.sign, op2.sign = (0, 0)
        else:
            result.sign = 0
        # Now, op1 > abs(op2) > 0

        if op2.sign == 0:
            result.int = op1.int + op2.int
        else:
            result.int = op1.int - op2.int

        result.exp = op1.exp
        ans = Decimal(result)
        ans = ans._fix(context)
        return ans

    __radd__ = __add__

    def __sub__(self, other, context=None):
        """Return self - other"""
        other = _convert_other(other)
        if other is NotImplemented:
            return other

        if self._is_special or other._is_special:
            ans = self._check_nans(other, context=context)
            if ans:
                return ans

        # self - other is computed as self + other.copy_negate()
        return self.__add__(other.copy_negate(), context=context)

    def __rsub__(self, other, context=None):
        """Return other - self"""
        other = _convert_other(other)
        if other is NotImplemented:
            return other

        return other.__sub__(self, context=context)

    def __mul__(self, other, context=None):
        """Return self * other.

        (+-) INF * 0 (or its reverse) raise InvalidOperation.
        """
        other = _convert_other(other)
        if other is NotImplemented:
            return other

        if context is None:
            context = getcontext()

        resultsign = self._sign ^ other._sign

        if self._is_special or other._is_special:
            ans = self._check_nans(other, context)
            if ans:
                return ans

            if self._isinfinity():
                if not other:
                    return context._raise_error(InvalidOperation, '(+-)INF * 0')
                return _SignedInfinity[resultsign]

            if other._isinfinity():
                if not self:
                    return context._raise_error(InvalidOperation, '0 * (+-)INF')
                return _SignedInfinity[resultsign]

        resultexp = self._exp + other._exp

        # Special case for multiplying by zero
        if not self or not other:
            ans = _dec_from_triple(resultsign, '0', resultexp)
            # Fixing in case the exponent is out of bounds
            ans = ans._fix(context)
            return ans

        # Special case for multiplying by power of 10
        if self._int == '1':
            ans = _dec_from_triple(resultsign, other._int, resultexp)
            ans = ans._fix(context)
            return ans
        if other._int == '1':
            ans = _dec_from_triple(resultsign, self._int, resultexp)
            ans = ans._fix(context)
            return ans

        op1 = _WorkRep(self)
        op2 = _WorkRep(other)

        ans = _dec_from_triple(resultsign, str(op1.int * op2.int), resultexp)
        ans = ans._fix(context)

        return ans
    __rmul__ = __mul__

    def __truediv__(self, other, context=None):
        """Return self / other."""
        other = _convert_other(other)
        if other is NotImplemented:
            return NotImplemented

        if context is None:
            context = getcontext()

        sign = self._sign ^ other._sign

        if self._is_special or other._is_special:
            ans = self._check_nans(other, context)
            if ans:
                return ans

            if self._isinfinity() and other._isinfinity():
                return context._raise_error(InvalidOperation, '(+-)INF/(+-)INF')

            if self._isinfinity():
                return _SignedInfinity[sign]

            if other._isinfinity():
                context._raise_error(Clamped, 'Division by infinity')
                return _dec_from_triple(sign, '0', context.Etiny())

        # Special cases for zeroes
        if not other:
            if not self:
                return context._raise_error(DivisionUndefined, '0 / 0')
            return context._raise_error(DivisionByZero, 'x / 0', sign)

        if not self:
            exp = self._exp - other._exp
            coeff = 0
        else:
            # OK, so neither = 0, INF or NaN
            shift = len(other._int) - len(self._int) + context.prec + 1
            exp = self._exp - other._exp - shift
            op1 = _WorkRep(self)
            op2 = _WorkRep(other)
            if shift >= 0:
                coeff, remainder = divmod(op1.int * 10**shift, op2.int)
            else:
                coeff, remainder = divmod(op1.int, op2.int * 10**-shift)
            if remainder:
                # result is not exact; adjust to ensure correct rounding
                if coeff % 5 == 0:
                    coeff += 1
            else:
                # result is exact; get as close to ideal exponent as possible
                ideal_exp = self._exp - other._exp
                while exp < ideal_exp and coeff % 10 == 0:
                    coeff //= 10
                    exp += 1

        ans = _dec_from_triple(sign, str(coeff), exp)
        return ans._fix(context)

    def _divide(self, other, context):
        """Return (self // other, self % other), to context.prec precision.

        Assumes that neither self nor other is a NaN, that self is not
        infinite and that other is nonzero.
        """
        sign = self._sign ^ other._sign
        if other._isinfinity():
            ideal_exp = self._exp
        else:
            ideal_exp = min(self._exp, other._exp)

        expdiff = self.adjusted() - other.adjusted()
        if not self or other._isinfinity() or expdiff <= -2:
            return (_dec_from_triple(sign, '0', 0),
                    self._rescale(ideal_exp, context.rounding))
        if expdiff <= context.prec:
            op1 = _WorkRep(self)
            op2 = _WorkRep(other)
            if op1.exp >= op2.exp:
                op1.int *= 10**(op1.exp - op2.exp)
            else:
                op2.int *= 10**(op2.exp - op1.exp)
            q, r = divmod(op1.int, op2.int)
            if q < 10**context.prec:
                return (_dec_from_triple(sign, str(q), 0),
                        _dec_from_triple(self._sign, str(r), ideal_exp))

        # Here the quotient is too large to be representable
        ans = context._raise_error(DivisionImpossible,
                                   'quotient too large in //, % or divmod')
        return ans, ans

    def __rtruediv__(self, other, context=None):
        """Swaps self/other and returns __truediv__."""
        other = _convert_other(other)
        if other is NotImplemented:
            return other
        return other.__truediv__(self, context=context)

    __div__ = __truediv__
    __rdiv__ = __rtruediv__

    def __divmod__(self, other, context=None):
        """
        Return (self // other, self % other)
        """
        other = _convert_other(other)
        if other is NotImplemented:
            return other

        if context is None:
            context = getcontext()

        ans = self._check_nans(other, context)
        if ans:
            return (ans, ans)

        sign = self._sign ^ other._sign
        if self._isinfinity():
            if other._isinfinity():
                ans = context._raise_error(InvalidOperation, 'divmod(INF, INF)')
                return ans, ans
            else:
                return (_SignedInfinity[sign],
                        context._raise_error(InvalidOperation, 'INF % x'))

        if not other:
            if not self:
                ans = context._raise_error(DivisionUndefined, 'divmod(0, 0)')
                return ans, ans
            else:
                return (context._raise_error(DivisionByZero, 'x // 0', sign),
                        context._raise_error(InvalidOperation, 'x % 0'))

        quotient, remainder = self._divide(other, context)
        remainder = remainder._fix(context)
        return quotient, remainder

    def __rdivmod__(self, other, context=None):
        """Swaps self/other and returns __divmod__."""
        other = _convert_other(other)
        if other is NotImplemented:
            return other
        return other.__divmod__(self, context=context)

    def __mod__(self, other, context=None):
        """
        self % other
        """
        other = _convert_other(other)
        if other is NotImplemented:
            return other

        if context is None:
            context = getcontext()

        ans = self._check_nans(other, context)
        if ans:
            return ans

        if self._isinfinity():
            return context._raise_error(InvalidOperation, 'INF % x')
        elif not other:
            if self:
                return context._raise_error(InvalidOperation, 'x % 0')
            else:
                return context._raise_error(DivisionUndefined, '0 % 0')

        remainder = self._divide(other, context)[1]
        remainder = remainder._fix(context)
        return remainder

    def __rmod__(self, other, context=None):
        """Swaps self/other and returns __mod__."""
        other = _convert_other(other)
        if other is NotImplemented:
            return other
        return other.__mod__(self, context=context)

    def remainder_near(self, other, context=None):
        """
        Remainder nearest to 0-  abs(remainder-near) <= other/2
        """
        if context is None:
            context = getcontext()

        other = _convert_other(other, raiseit=True)

        ans = self._check_nans(other, context)
        if ans:
            return ans

        # self == +/-infinity -> InvalidOperation
        if self._isinfinity():
            return context._raise_error(InvalidOperation,
                                        'remainder_near(infinity, x)')

        # other == 0 -> either InvalidOperation or DivisionUndefined
        if not other:
            if self:
                return context._raise_error(InvalidOperation,
                                            'remainder_near(x, 0)')
            else:
                return context._raise_error(DivisionUndefined,
                                            'remainder_near(0, 0)')

        # other = +/-infinity -> remainder = self
        if other._isinfinity():
            ans = Decimal(self)
            return ans._fix(context)

        # self = 0 -> remainder = self, with ideal exponent
        ideal_exponent = min(self._exp, other._exp)
        if not self:
            ans = _dec_from_triple(self._sign, '0', ideal_exponent)
            return ans._fix(context)

        # catch most cases of large or small quotient
        expdiff = self.adjusted() - other.adjusted()
        if expdiff >= context.prec + 1:
            # expdiff >= prec+1 => abs(self/other) > 10**prec
            return context._raise_error(DivisionImpossible)
        if expdiff <= -2:
            # expdiff <= -2 => abs(self/other) < 0.1
            ans = self._rescale(ideal_exponent, context.rounding)
            return ans._fix(context)

        # adjust both arguments to have the same exponent, then divide
        op1 = _WorkRep(self)
        op2 = _WorkRep(other)
        if op1.exp >= op2.exp:
            op1.int *= 10**(op1.exp - op2.exp)
        else:
            op2.int *= 10**(op2.exp - op1.exp)
        q, r = divmod(op1.int, op2.int)
        # remainder is r*10**ideal_exponent; other is +/-op2.int *
        # 10**ideal_exponent.   Apply correction to ensure that
        # abs(remainder) <= abs(other)/2
        if 2*r + (q&1) > op2.int:
            r -= op2.int
            q += 1

        if q >= 10**context.prec:
            return context._raise_error(DivisionImpossible)

        # result has same sign as self unless r is negative
        sign = self._sign
        if r < 0:
            sign = 1-sign
            r = -r

        ans = _dec_from_triple(sign, str(r), ideal_exponent)
        return ans._fix(context)

    def __floordiv__(self, other, context=None):
        """self // other"""
        other = _convert_other(other)
        if other is NotImplemented:
            return other

        if context is None:
            context = getcontext()

        ans = self._check_nans(other, context)
        if ans:
            return ans

        if self._isinfinity():
            if other._isinfinity():
                return context._raise_error(InvalidOperation, 'INF // INF')
            else:
                return _SignedInfinity[self._sign ^ other._sign]

        if not other:
            if self:
                return context._raise_error(DivisionByZero, 'x // 0',
                                            self._sign ^ other._sign)
            else:
                return context._raise_error(DivisionUndefined, '0 // 0')

        return self._divide(other, context)[0]

    def __rfloordiv__(self, other, context=None):
        """Swaps self/other and returns __floordiv__."""
        other = _convert_other(other)
        if other is NotImplemented:
            return other
        return other.__floordiv__(self, context=context)

    def __float__(self):
        """Float representation."""
        if self._isnan():
            if self.is_snan():
                raise ValueError("Cannot convert signaling NaN to float")
            s = "-nan" if self._sign else "nan"
        else:
            s = str(self)
        return float(s)

    def __int__(self):
        """Converts self to an int, truncating if necessary."""
        if self._is_special:
            if self._isnan():
                raise ValueError("Cannot convert NaN to integer")
            elif self._isinfinity():
                raise OverflowError("Cannot convert infinity to integer")
        s = (-1)**self._sign
        if self._exp >= 0:
            return s*int(self._int)*10**self._exp
        else:
            return s*int(self._int[:self._exp] or '0')

    __trunc__ = __int__

    def real(self):
        return self
    real = property(real)

    def imag(self):
        return Decimal(0)
    imag = property(imag)

    def conjugate(self):
        return self

    def __complex__(self):
        return complex(float(self))

    def __long__(self):
        """Converts to a long.

        Equivalent to long(int(self))
        """
        return long(self.__int__())

    def _fix_nan(self, context):
        """Decapitate the payload of a NaN to fit the context"""
        payload = self._int

        # maximum length of payload is precision if _clamp=0,
        # precision-1 if _clamp=1.
        max_payload_len = context.prec - context._clamp
        if len(payload) > max_payload_len:
            payload = payload[len(payload)-max_payload_len:].lstrip('0')
            return _dec_from_triple(self._sign, payload, self._exp, True)
        return Decimal(self)

    def _fix(self, context):
        """Round if it is necessary to keep self within prec precision.

        Rounds and fixes the exponent.  Does not raise on a sNaN.

        Arguments:
        self - Decimal instance
        context - context used.
        """

        if self._is_special:
            if self._isnan():
                # decapitate payload if necessary
                return self._fix_nan(context)
            else:
                # self is +/-Infinity; return unaltered
                return Decimal(self)

        # if self is zero then exponent should be between Etiny and
        # Emax if _clamp==0, and between Etiny and Etop if _clamp==1.
        Etiny = context.Etiny()
        Etop = context.Etop()
        if not self:
            exp_max = [context.Emax, Etop][context._clamp]
            new_exp = min(max(self._exp, Etiny), exp_max)
            if new_exp != self._exp:
                context._raise_error(Clamped)
                return _dec_from_triple(self._sign, '0', new_exp)
            else:
                return Decimal(self)

        # exp_min is the smallest allowable exponent of the result,
        # equal to max(self.adjusted()-context.prec+1, Etiny)
        exp_min = len(self._int) + self._exp - context.prec
        if exp_min > Etop:
            # overflow: exp_min > Etop iff self.adjusted() > Emax
            ans = context._raise_error(Overflow, 'above Emax', self._sign)
            context._raise_error(Inexact)
            context._raise_error(Rounded)
            return ans

        self_is_subnormal = exp_min < Etiny
        if self_is_subnormal:
            exp_min = Etiny

        # round if self has too many digits
        if self._exp < exp_min:
            digits = len(self._int) + self._exp - exp_min
            if digits < 0:
                self = _dec_from_triple(self._sign, '1', exp_min-1)
                digits = 0
            rounding_method = self._pick_rounding_function[context.rounding]
            changed = rounding_method(self, digits)
            coeff = self._int[:digits] or '0'
            if changed > 0:
                coeff = str(int(coeff)+1)
                if len(coeff) > context.prec:
                    coeff = coeff[:-1]
                    exp_min += 1

            # check whether the rounding pushed the exponent out of range
            if exp_min > Etop:
                ans = context._raise_error(Overflow, 'above Emax', self._sign)
            else:
                ans = _dec_from_triple(self._sign, coeff, exp_min)

            # raise the appropriate signals, taking care to respect
            # the precedence described in the specification
            if changed and self_is_subnormal:
                context._raise_error(Underflow)
            if self_is_subnormal:
                context._raise_error(Subnormal)
            if changed:
                context._raise_error(Inexact)
            context._raise_error(Rounded)
            if not ans:
                # raise Clamped on underflow to 0
                context._raise_error(Clamped)
            return ans

        if self_is_subnormal:
            context._raise_error(Subnormal)

        # fold down if _clamp == 1 and self has too few digits
        if context._clamp == 1 and self._exp > Etop:
            context._raise_error(Clamped)
            self_padded = self._int + '0'*(self._exp - Etop)
            return _dec_from_triple(self._sign, self_padded, Etop)

        # here self was representable to begin with; return unchanged
        return Decimal(self)

    # for each of the rounding functions below:
    #   self is a finite, nonzero Decimal
    #   prec is an integer satisfying 0 <= prec < len(self._int)
    #
    # each function returns either -1, 0, or 1, as follows:
    #   1 indicates that self should be rounded up (away from zero)
    #   0 indicates that self should be truncated, and that all the
    #     digits to be truncated are zeros (so the value is unchanged)
    #  -1 indicates that there are nonzero digits to be truncated

    def _round_down(self, prec):
        """Also known as round-towards-0, truncate."""
        if _all_zeros(self._int, prec):
            return 0
        else:
            return -1

    def _round_up(self, prec):
        """Rounds away from 0."""
        return -self._round_down(prec)

    def _round_half_up(self, prec):
        """Rounds 5 up (away from 0)"""
        if self._int[prec] in '56789':
            return 1
        elif _all_zeros(self._int, prec):
            return 0
        else:
            return -1

    def _round_half_down(self, prec):
        """Round 5 down"""
        if _exact_half(self._int, prec):
            return -1
        else:
            return self._round_half_up(prec)

    def _round_half_even(self, prec):
        """Round 5 to even, rest to nearest."""
        if _exact_half(self._int, prec) and \
                (prec == 0 or self._int[prec-1] in '02468'):
            return -1
        else:
            return self._round_half_up(prec)

    def _round_ceiling(self, prec):
        """Rounds up (not away from 0 if negative.)"""
        if self._sign:
            return self._round_down(prec)
        else:
            return -self._round_down(prec)

    def _round_floor(self, prec):
        """Rounds down (not towards 0 if negative)"""
        if not self._sign:
            return self._round_down(prec)
        else:
            return -self._round_down(prec)

    def _round_05up(self, prec):
        """Round down unless digit prec-1 is 0 or 5."""
        if prec and self._int[prec-1] not in '05':
            return self._round_down(prec)
        else:
            return -self._round_down(prec)

    _pick_rounding_function = dict(
        ROUND_DOWN = _round_down,
        ROUND_UP = _round_up,
        ROUND_HALF_UP = _round_half_up,
        ROUND_HALF_DOWN = _round_half_down,
        ROUND_HALF_EVEN = _round_half_even,
        ROUND_CEILING = _round_ceiling,
        ROUND_FLOOR = _round_floor,
        ROUND_05UP = _round_05up,
    )

    def fma(self, other, third, context=None):
        """Fused multiply-add.

        Returns self*other+third with no rounding of the intermediate
        product self*other.

        self and other are multiplied together, with no rounding of
        the result.  The third operand is then added to the result,
        and a single final rounding is performed.
        """

        other = _convert_other(other, raiseit=True)

        # compute product; raise InvalidOperation if either operand is
        # a signaling NaN or if the product is zero times infinity.
        if self._is_special or other._is_special:
            if context is None:
                context = getcontext()
            if self._exp == 'N':
                return context._raise_error(InvalidOperation, 'sNaN', self)
            if other._exp == 'N':
                return context._raise_error(InvalidOperation, 'sNaN', other)
            if self._exp == 'n':
                product = self
            elif other._exp == 'n':
                product = other
            elif self._exp == 'F':
                if not other:
                    return context._raise_error(InvalidOperation,
                                                'INF * 0 in fma')
                product = _SignedInfinity[self._sign ^ other._sign]
            elif other._exp == 'F':
                if not self:
                    return context._raise_error(InvalidOperation,
                                                '0 * INF in fma')
                product = _SignedInfinity[self._sign ^ other._sign]
        else:
            product = _dec_from_triple(self._sign ^ other._sign,
                                       str(int(self._int) * int(other._int)),
                                       self._exp + other._exp)

        third = _convert_other(third, raiseit=True)
        return product.__add__(third, context)

    def _power_modulo(self, other, modulo, context=None):
        """Three argument version of __pow__"""

        # if can't convert other and modulo to Decimal, raise
        # TypeError; there's no point returning NotImplemented (no
        # equivalent of __rpow__ for three argument pow)
        other = _convert_other(other, raiseit=True)
        modulo = _convert_other(modulo, raiseit=True)

        if context is None:
            context = getcontext()

        # deal with NaNs: if there are any sNaNs then first one wins,
        # (i.e. behaviour for NaNs is identical to that of fma)
        self_is_nan = self._isnan()
        other_is_nan = other._isnan()
        modulo_is_nan = modulo._isnan()
        if self_is_nan or other_is_nan or modulo_is_nan:
            if self_is_nan == 2:
                return context._raise_error(InvalidOperation, 'sNaN',
                                        self)
            if other_is_nan == 2:
                return context._raise_error(InvalidOperation, 'sNaN',
                                        other)
            if modulo_is_nan == 2:
                return context._raise_error(InvalidOperation, 'sNaN',
                                        modulo)
            if self_is_nan:
                return self._fix_nan(context)
            if other_is_nan:
                return other._fix_nan(context)
            return modulo._fix_nan(context)

        # check inputs: we apply same restrictions as Python's pow()
        if not (self._isinteger() and
                other._isinteger() and
                modulo._isinteger()):
            return context._raise_error(InvalidOperation,
                                        'pow() 3rd argument not allowed '
                                        'unless all arguments are integers')
        if other < 0:
            return context._raise_error(InvalidOperation,
                                        'pow() 2nd argument cannot be '
                                        'negative when 3rd argument specified')
        if not modulo:
            return context._raise_error(InvalidOperation,
                                        'pow() 3rd argument cannot be 0')

        # additional restriction for decimal: the modulus must be less
        # than 10**prec in absolute value
        if modulo.adjusted() >= context.prec:
            return context._raise_error(InvalidOperation,
                                        'insufficient precision: pow() 3rd '
                                        'argument must not have more than '
                                        'precision digits')

        # define 0**0 == NaN, for consistency with two-argument pow
        # (even though it hurts!)
        if not other and not self:
            return context._raise_error(InvalidOperation,
                                        'at least one of pow() 1st argument '
                                        'and 2nd argument must be nonzero; '
                                        '0**0 is not defined')

        # compute sign of result
        if other._iseven():
            sign = 0
        else:
            sign = self._sign

        # convert modulo to a Python integer, and self and other to
        # Decimal integers (i.e. force their exponents to be >= 0)
        modulo = abs(int(modulo))
        base = _WorkRep(self.to_integral_value())
        exponent = _WorkRep(other.to_integral_value())

        # compute result using integer pow()
        base = (base.int % modulo * pow(10, base.exp, modulo)) % modulo
        for i in xrange(exponent.exp):
            base = pow(base, 10, modulo)
        base = pow(base, exponent.int, modulo)

        return _dec_from_triple(sign, str(base), 0)

    def _power_exact(self, other, p):
        """Attempt to compute self**other exactly.

        Given Decimals self and other and an integer p, attempt to
        compute an exact result for the power self**other, with p
        digits of precision.  Return None if self**other is not
        exactly representable in p digits.

        Assumes that elimination of special cases has already been
        performed: self and other must both be nonspecial; self must
        be positive and not numerically equal to 1; other must be
        nonzero.  For efficiency, other._exp should not be too large,
        so that 10**abs(other._exp) is a feasible calculation."""

        # In the comments below, we write x for the value of self and y for the
        # value of other.  Write x = xc*10**xe and abs(y) = yc*10**ye, with xc
        # and yc positive integers not divisible by 10.

        # The main purpose of this method is to identify the *failure*
        # of x**y to be exactly representable with as little effort as
        # possible.  So we look for cheap and easy tests that
        # eliminate the possibility of x**y being exact.  Only if all
        # these tests are passed do we go on to actually compute x**y.

        # Here's the main idea.  Express y as a rational number m/n, with m and
        # n relatively prime and n>0.  Then for x**y to be exactly
        # representable (at *any* precision), xc must be the nth power of a
        # positive integer and xe must be divisible by n.  If y is negative
        # then additionally xc must be a power of either 2 or 5, hence a power
        # of 2**n or 5**n.
        #
        # There's a limit to how small |y| can be: if y=m/n as above
        # then:
        #
        #  (1) if xc != 1 then for the result to be representable we
        #      need xc**(1/n) >= 2, and hence also xc**|y| >= 2.  So
        #      if |y| <= 1/nbits(xc) then xc < 2**nbits(xc) <=
        #      2**(1/|y|), hence xc**|y| < 2 and the result is not
        #      representable.
        #
        #  (2) if xe != 0, |xe|*(1/n) >= 1, so |xe|*|y| >= 1.  Hence if
        #      |y| < 1/|xe| then the result is not representable.
        #
        # Note that since x is not equal to 1, at least one of (1) and
        # (2) must apply.  Now |y| < 1/nbits(xc) iff |yc|*nbits(xc) <
        # 10**-ye iff len(str(|yc|*nbits(xc)) <= -ye.
        #
        # There's also a limit to how large y can be, at least if it's
        # positive: the normalized result will have coefficient xc**y,
        # so if it's representable then xc**y < 10**p, and y <
        # p/log10(xc).  Hence if y*log10(xc) >= p then the result is
        # not exactly representable.

        # if len(str(abs(yc*xe)) <= -ye then abs(yc*xe) < 10**-ye,
        # so |y| < 1/xe and the result is not representable.
        # Similarly, len(str(abs(yc)*xc_bits)) <= -ye implies |y|
        # < 1/nbits(xc).

        x = _WorkRep(self)
        xc, xe = x.int, x.exp
        while xc % 10 == 0:
            xc //= 10
            xe += 1

        y = _WorkRep(other)
        yc, ye = y.int, y.exp
        while yc % 10 == 0:
            yc //= 10
            ye += 1

        # case where xc == 1: result is 10**(xe*y), with xe*y
        # required to be an integer
        if xc == 1:
            xe *= yc
            # result is now 10**(xe * 10**ye);  xe * 10**ye must be integral
            while xe % 10 == 0:
                xe //= 10
                ye += 1
            if ye < 0:
                return None
            exponent = xe * 10**ye
            if y.sign == 1:
                exponent = -exponent
            # if other is a nonnegative integer, use ideal exponent
            if other._isinteger() and other._sign == 0:
                ideal_exponent = self._exp*int(other)
                zeros = min(exponent-ideal_exponent, p-1)
            else:
                zeros = 0
            return _dec_from_triple(0, '1' + '0'*zeros, exponent-zeros)

        # case where y is negative: xc must be either a power
        # of 2 or a power of 5.
        if y.sign == 1:
            last_digit = xc % 10
            if last_digit in (2,4,6,8):
                # quick test for power of 2
                if xc & -xc != xc:
                    return None
                # now xc is a power of 2; e is its exponent
                e = _nbits(xc)-1

                # We now have:
                #
                #   x = 2**e * 10**xe, e > 0, and y < 0.
                #
                # The exact result is:
                #
                #   x**y = 5**(-e*y) * 10**(e*y + xe*y)
                #
                # provided that both e*y and xe*y are integers.  Note that if
                # 5**(-e*y) >= 10**p, then the result can't be expressed
                # exactly with p digits of precision.
                #
                # Using the above, we can guard against large values of ye.
                # 93/65 is an upper bound for log(10)/log(5), so if
                #
                #   ye >= len(str(93*p//65))
                #
                # then
                #
                #   -e*y >= -y >= 10**ye > 93*p/65 > p*log(10)/log(5),
                #
                # so 5**(-e*y) >= 10**p, and the coefficient of the result
                # can't be expressed in p digits.

                # emax >= largest e such that 5**e < 10**p.
                emax = p*93//65
                if ye >= len(str(emax)):
                    return None

                # Find -e*y and -xe*y; both must be integers
                e = _decimal_lshift_exact(e * yc, ye)
                xe = _decimal_lshift_exact(xe * yc, ye)
                if e is None or xe is None:
                    return None

                if e > emax:
                    return None
                xc = 5**e

            elif last_digit == 5:
                # e >= log_5(xc) if xc is a power of 5; we have
                # equality all the way up to xc=5**2658
                e = _nbits(xc)*28//65
                xc, remainder = divmod(5**e, xc)
                if remainder:
                    return None
                while xc % 5 == 0:
                    xc //= 5
                    e -= 1

                # Guard against large values of ye, using the same logic as in
                # the 'xc is a power of 2' branch.  10/3 is an upper bound for
                # log(10)/log(2).
                emax = p*10//3
                if ye >= len(str(emax)):
                    return None

                e = _decimal_lshift_exact(e * yc, ye)
                xe = _decimal_lshift_exact(xe * yc, ye)
                if e is None or xe is None:
                    return None

                if e > emax:
                    return None
                xc = 2**e
            else:
                return None

            if xc >= 10**p:
                return None
            xe = -e-xe
            return _dec_from_triple(0, str(xc), xe)

        # now y is positive; find m and n such that y = m/n
        if ye >= 0:
            m, n = yc*10**ye, 1
        else:
            if xe != 0 and len(str(abs(yc*xe))) <= -ye:
                return None
            xc_bits = _nbits(xc)
            if xc != 1 and len(str(abs(yc)*xc_bits)) <= -ye:
                return None
            m, n = yc, 10**(-ye)
            while m % 2 == n % 2 == 0:
                m //= 2
                n //= 2
            while m % 5 == n % 5 == 0:
                m //= 5
                n //= 5

        # compute nth root of xc*10**xe
        if n > 1:
            # if 1 < xc < 2**n then xc isn't an nth power
            if xc != 1 and xc_bits <= n:
                return None

            xe, rem = divmod(xe, n)
            if rem != 0:
                return None

            # compute nth root of xc using Newton's method
            a = 1L << -(-_nbits(xc)//n) # initial estimate
            while True:
                q, r = divmod(xc, a**(n-1))
                if a <= q:
                    break
                else:
                    a = (a*(n-1) + q)//n
            if not (a == q and r == 0):
                return None
            xc = a

        # now xc*10**xe is the nth root of the original xc*10**xe
        # compute mth power of xc*10**xe

        # if m > p*100//_log10_lb(xc) then m > p/log10(xc), hence xc**m >
        # 10**p and the result is not representable.
        if xc > 1 and m > p*100//_log10_lb(xc):
            return None
        xc = xc**m
        xe *= m
        if xc > 10**p:
            return None

        # by this point the result *is* exactly representable
        # adjust the exponent to get as close as possible to the ideal
        # exponent, if necessary
        str_xc = str(xc)
        if other._isinteger() and other._sign == 0:
            ideal_exponent = self._exp*int(other)
            zeros = min(xe-ideal_exponent, p-len(str_xc))
        else:
            zeros = 0
        return _dec_from_triple(0, str_xc+'0'*zeros, xe-zeros)

    def __pow__(self, other, modulo=None, context=None):
        """Return self ** other [ % modulo].

        With two arguments, compute self**other.

        With three arguments, compute (self**other) % modulo.  For the
        three argument form, the following restrictions on the
        arguments hold:

         - all three arguments must be integral
         - other must be nonnegative
         - either self or other (or both) must be nonzero
         - modulo must be nonzero and must have at most p digits,
           where p is the context precision.

        If any of these restrictions is violated the InvalidOperation
        flag is raised.

        The result of pow(self, other, modulo) is identical to the
        result that would be obtained by computing (self**other) %
        modulo with unbounded precision, but is computed more
        efficiently.  It is always exact.
        """

        if modulo is not None:
            return self._power_modulo(other, modulo, context)

        other = _convert_other(other)
        if other is NotImplemented:
            return other

        if context is None:
            context = getcontext()

        # either argument is a NaN => result is NaN
        ans = self._check_nans(other, context)
        if ans:
            return ans

        # 0**0 = NaN (!), x**0 = 1 for nonzero x (including +/-Infinity)
        if not other:
            if not self:
                return context._raise_error(InvalidOperation, '0 ** 0')
            else:
                return _One

        # result has sign 1 iff self._sign is 1 and other is an odd integer
        result_sign = 0
        if self._sign == 1:
            if other._isinteger():
                if not other._iseven():
                    result_sign = 1
            else:
                # -ve**noninteger = NaN
                # (-0)**noninteger = 0**noninteger
                if self:
                    return context._raise_error(InvalidOperation,
                        'x ** y with x negative and y not an integer')
            # negate self, without doing any unwanted rounding
            self = self.copy_negate()

        # 0**(+ve or Inf)= 0; 0**(-ve or -Inf) = Infinity
        if not self:
            if other._sign == 0:
                return _dec_from_triple(result_sign, '0', 0)
            else:
                return _SignedInfinity[result_sign]

        # Inf**(+ve or Inf) = Inf; Inf**(-ve or -Inf) = 0
        if self._isinfinity():
            if other._sign == 0:
                return _SignedInfinity[result_sign]
            else:
                return _dec_from_triple(result_sign, '0', 0)

        # 1**other = 1, but the choice of exponent and the flags
        # depend on the exponent of self, and on whether other is a
        # positive integer, a negative integer, or neither
        if self == _One:
            if other._isinteger():
                # exp = max(self._exp*max(int(other), 0),
                # 1-context.prec) but evaluating int(other) directly
                # is dangerous until we know other is small (other
                # could be 1e999999999)
                if other._sign == 1:
                    multiplier = 0
                elif other > context.prec:
                    multiplier = context.prec
                else:
                    multiplier = int(other)

                exp = self._exp * multiplier
                if exp < 1-context.prec:
                    exp = 1-context.prec
                    context._raise_error(Rounded)
            else:
                context._raise_error(Inexact)
                context._raise_error(Rounded)
                exp = 1-context.prec

            return _dec_from_triple(result_sign, '1'+'0'*-exp, exp)

        # compute adjusted exponent of self
        self_adj = self.adjusted()

        # self ** infinity is infinity if self > 1, 0 if self < 1
        # self ** -infinity is infinity if self < 1, 0 if self > 1
        if other._isinfinity():
            if (other._sign == 0) == (self_adj < 0):
                return _dec_from_triple(result_sign, '0', 0)
            else:
                return _SignedInfinity[result_sign]

        # from here on, the result always goes through the call
        # to _fix at the end of this function.
        ans = None
        exact = False

        # crude test to catch cases of extreme overflow/underflow.  If
        # log10(self)*other >= 10**bound and bound >= len(str(Emax))
        # then 10**bound >= 10**len(str(Emax)) >= Emax+1 and hence
        # self**other >= 10**(Emax+1), so overflow occurs.  The test
        # for underflow is similar.
        bound = self._log10_exp_bound() + other.adjusted()
        if (self_adj >= 0) == (other._sign == 0):
            # self > 1 and other +ve, or self < 1 and other -ve
            # possibility of overflow
            if bound >= len(str(context.Emax)):
                ans = _dec_from_triple(result_sign, '1', context.Emax+1)
        else:
            # self > 1 and other -ve, or self < 1 and other +ve
            # possibility of underflow to 0
            Etiny = context.Etiny()
            if bound >= len(str(-Etiny)):
                ans = _dec_from_triple(result_sign, '1', Etiny-1)

        # try for an exact result with precision +1
        if ans is None:
            ans = self._power_exact(other, context.prec + 1)
            if ans is not None:
                if result_sign == 1:
                    ans = _dec_from_triple(1, ans._int, ans._exp)
                exact = True

        # usual case: inexact result, x**y computed directly as exp(y*log(x))
        if ans is None:
            p = context.prec
            x = _WorkRep(self)
            xc, xe = x.int, x.exp
            y = _WorkRep(other)
            yc, ye = y.int, y.exp
            if y.sign == 1:
                yc = -yc

            # compute correctly rounded result:  start with precision +3,
            # then increase precision until result is unambiguously roundable
            extra = 3
            while True:
                coeff, exp = _dpower(xc, xe, yc, ye, p+extra)
                if coeff % (5*10**(len(str(coeff))-p-1)):
                    break
                extra += 3

            ans = _dec_from_triple(result_sign, str(coeff), exp)

        # unlike exp, ln and log10, the power function respects the
        # rounding mode; no need to switch to ROUND_HALF_EVEN here

        # There's a difficulty here when 'other' is not an integer and
        # the result is exact.  In this case, the specification
        # requires that the Inexact flag be raised (in spite of
        # exactness), but since the result is exact _fix won't do this
        # for us.  (Correspondingly, the Underflow signal should also
        # be raised for subnormal results.)  We can't directly raise
        # these signals either before or after calling _fix, since
        # that would violate the precedence for signals.  So we wrap
        # the ._fix call in a temporary context, and reraise
        # afterwards.
        if exact and not other._isinteger():
            # pad with zeros up to length context.prec+1 if necessary; this
            # ensures that the Rounded signal will be raised.
            if len(ans._int) <= context.prec:
                expdiff = context.prec + 1 - len(ans._int)
                ans = _dec_from_triple(ans._sign, ans._int+'0'*expdiff,
                                       ans._exp-expdiff)

            # create a copy of the current context, with cleared flags/traps
            newcontext = context.copy()
            newcontext.clear_flags()
            for exception in _signals:
                newcontext.traps[exception] = 0

            # round in the new context
            ans = ans._fix(newcontext)

            # raise Inexact, and if necessary, Underflow
            newcontext._raise_error(Inexact)
            if newcontext.flags[Subnormal]:
                newcontext._raise_error(Underflow)

            # propagate signals to the original context; _fix could
            # have raised any of Overflow, Underflow, Subnormal,
            # Inexact, Rounded, Clamped.  Overflow needs the correct
            # arguments.  Note that the order of the exceptions is
            # important here.
            if newcontext.flags[Overflow]:
                context._raise_error(Overflow, 'above Emax', ans._sign)
            for exception in Underflow, Subnormal, Inexact, Rounded, Clamped:
                if newcontext.flags[exception]:
                    context._raise_error(exception)

        else:
            ans = ans._fix(context)

        return ans

    def __rpow__(self, other, context=None):
        """Swaps self/other and returns __pow__."""
        other = _convert_other(other)
        if other is NotImplemented:
            return other
        return other.__pow__(self, context=context)

    def normalize(self, context=None):
        """Normalize- strip trailing 0s, change anything equal to 0 to 0e0"""

        if context is None:
            context = getcontext()

        if self._is_special:
            ans = self._check_nans(context=context)
            if ans:
                return ans

        dup = self._fix(context)
        if dup._isinfinity():
            return dup

        if not dup:
            return _dec_from_triple(dup._sign, '0', 0)
        exp_max = [context.Emax, context.Etop()][context._clamp]
        end = len(dup._int)
        exp = dup._exp
        while dup._int[end-1] == '0' and exp < exp_max:
            exp += 1
            end -= 1
        return _dec_from_triple(dup._sign, dup._int[:end], exp)

    def quantize(self, exp, rounding=None, context=None, watchexp=True):
        """Quantize self so its exponent is the same as that of exp.

        Similar to self._rescale(exp._exp) but with error checking.
        """
        exp = _convert_other(exp, raiseit=True)

        if context is None:
            context = getcontext()
        if rounding is None:
            rounding = context.rounding

        if self._is_special or exp._is_special:
            ans = self._check_nans(exp, context)
            if ans:
                return ans

            if exp._isinfinity() or self._isinfinity():
                if exp._isinfinity() and self._isinfinity():
                    return Decimal(self)  # if both are inf, it is OK
                return context._raise_error(InvalidOperation,
                                        'quantize with one INF')

        # if we're not watching exponents, do a simple rescale
        if not watchexp:
            ans = self._rescale(exp._exp, rounding)
            # raise Inexact and Rounded where appropriate
            if ans._exp > self._exp:
                context._raise_error(Rounded)
                if ans != self:
                    context._raise_error(Inexact)
            return ans

        # exp._exp should be between Etiny and Emax
        if not (context.Etiny() <= exp._exp <= context.Emax):
            return context._raise_error(InvalidOperation,
                   'target exponent out of bounds in quantize')

        if not self:
            ans = _dec_from_triple(self._sign, '0', exp._exp)
            return ans._fix(context)

        self_adjusted = self.adjusted()
        if self_adjusted > context.Emax:
            return context._raise_error(InvalidOperation,
                                        'exponent of quantize result too large for current context')
        if self_adjusted - exp._exp + 1 > context.prec:
            return context._raise_error(InvalidOperation,
                                        'quantize result has too many digits for current context')

        ans = self._rescale(exp._exp, rounding)
        if ans.adjusted() > context.Emax:
            return context._raise_error(InvalidOperation,
                                        'exponent of quantize result too large for current context')
        if len(ans._int) > context.prec:
            return context._raise_error(InvalidOperation,
                                        'quantize result has too many digits for current context')

        # raise appropriate flags
        if ans and ans.adjusted() < context.Emin:
            context._raise_error(Subnormal)
        if ans._exp > self._exp:
            if ans != self:
                context._raise_error(Inexact)
            context._raise_error(Rounded)

        # call to fix takes care of any necessary folddown, and
        # signals Clamped if necessary
        ans = ans._fix(context)
        return ans

    def same_quantum(self, other):
        """Return True if self and other have the same exponent; otherwise
        return False.

        If either operand is a special value, the following rules are used:
           * return True if both operands are infinities
           * return True if both operands are NaNs
           * otherwise, return False.
        """
        other = _convert_other(other, raiseit=True)
        if self._is_special or other._is_special:
            return (self.is_nan() and other.is_nan() or
                    self.is_infinite() and other.is_infinite())
        return self._exp == other._exp

    def _rescale(self, exp, rounding):
        """Rescale self so that the exponent is exp, either by padding with zeros
        or by truncating digits, using the given rounding mode.

        Specials are returned without change.  This operation is
        quiet: it raises no flags, and uses no information from the
        context.

        exp = exp to scale to (an integer)
        rounding = rounding mode
        """
        if self._is_special:
            return Decimal(self)
        if not self:
            return _dec_from_triple(self._sign, '0', exp)

        if self._exp >= exp:
            # pad answer with zeros if necessary
            return _dec_from_triple(self._sign,
                                        self._int + '0'*(self._exp - exp), exp)

        # too many digits; round and lose data.  If self.adjusted() <
        # exp-1, replace self by 10**(exp-1) before rounding
        digits = len(self._int) + self._exp - exp
        if digits < 0:
            self = _dec_from_triple(self._sign, '1', exp-1)
            digits = 0
        this_function = self._pick_rounding_function[rounding]
        changed = this_function(self, digits)
        coeff = self._int[:digits] or '0'
        if changed == 1:
            coeff = str(int(coeff)+1)
        return _dec_from_triple(self._sign, coeff, exp)

    def _round(self, places, rounding):
        """Round a nonzero, nonspecial Decimal to a fixed number of
        significant figures, using the given rounding mode.

        Infinities, NaNs and zeros are returned unaltered.

        This operation is quiet: it raises no flags, and uses no
        information from the context.

        """
        if places <= 0:
            raise ValueError("argument should be at least 1 in _round")
        if self._is_special or not self:
            return Decimal(self)
        ans = self._rescale(self.adjusted()+1-places, rounding)
        # it can happen that the rescale alters the adjusted exponent;
        # for example when rounding 99.97 to 3 significant figures.
        # When this happens we end up with an extra 0 at the end of
        # the number; a second rescale fixes this.
        if ans.adjusted() != self.adjusted():
            ans = ans._rescale(ans.adjusted()+1-places, rounding)
        return ans

    def to_integral_exact(self, rounding=None, context=None):
        """Rounds to a nearby integer.

        If no rounding mode is specified, take the rounding mode from
        the context.  This method raises the Rounded and Inexact flags
        when appropriate.

        See also: to_integral_value, which does exactly the same as
        this method except that it doesn't raise Inexact or Rounded.
        """
        if self._is_special:
            ans = self._check_nans(context=context)
            if ans:
                return ans
            return Decimal(self)
        if self._exp >= 0:
            return Decimal(self)
        if not self:
            return _dec_from_triple(self._sign, '0', 0)
        if context is None:
            context = getcontext()
        if rounding is None:
            rounding = context.rounding
        ans = self._rescale(0, rounding)
        if ans != self:
            context._raise_error(Inexact)
        context._raise_error(Rounded)
        return ans

    def to_integral_value(self, rounding=None, context=None):
        """Rounds to the nearest integer, without raising inexact, rounded."""
        if context is None:
            context = getcontext()
        if rounding is None:
            rounding = context.rounding
        if self._is_special:
            ans = self._check_nans(context=context)
            if ans:
                return ans
            return Decimal(self)
        if self._exp >= 0:
            return Decimal(self)
        else:
            return self._rescale(0, rounding)

    # the method name changed, but we provide also the old one, for compatibility
    to_integral = to_integral_value

    def sqrt(self, context=None):
        """Return the square root of self."""
        if context is None:
            context = getcontext()

        if self._is_special:
            ans = self._check_nans(context=context)
            if ans:
                return ans

            if self._isinfinity() and self._sign == 0:
                return Decimal(self)

        if not self:
            # exponent = self._exp // 2.  sqrt(-0) = -0
            ans = _dec_from_triple(self._sign, '0', self._exp // 2)
            return ans._fix(context)

        if self._sign == 1:
            return context._raise_error(InvalidOperation, 'sqrt(-x), x > 0')

        # At this point self represents a positive number.  Let p be
        # the desired precision and express self in the form c*100**e
        # with c a positive real number and e an integer, c and e
        # being chosen so that 100**(p-1) <= c < 100**p.  Then the
        # (exact) square root of self is sqrt(c)*10**e, and 10**(p-1)
        # <= sqrt(c) < 10**p, so the closest representable Decimal at
        # precision p is n*10**e where n = round_half_even(sqrt(c)),
        # the closest integer to sqrt(c) with the even integer chosen
        # in the case of a tie.
        #
        # To ensure correct rounding in all cases, we use the
        # following trick: we compute the square root to an extra
        # place (precision p+1 instead of precision p), rounding down.
        # Then, if the result is inexact and its last digit is 0 or 5,
        # we increase the last digit to 1 or 6 respectively; if it's
        # exact we leave the last digit alone.  Now the final round to
        # p places (or fewer in the case of underflow) will round
        # correctly and raise the appropriate flags.

        # use an extra digit of precision
        prec = context.prec+1

        # write argument in the form c*100**e where e = self._exp//2
        # is the 'ideal' exponent, to be used if the square root is
        # exactly representable.  l is the number of 'digits' of c in
        # base 100, so that 100**(l-1) <= c < 100**l.
        op = _WorkRep(self)
        e = op.exp >> 1
        if op.exp & 1:
            c = op.int * 10
            l = (len(self._int) >> 1) + 1
        else:
            c = op.int
            l = len(self._int)+1 >> 1

        # rescale so that c has exactly prec base 100 'digits'
        shift = prec-l
        if shift >= 0:
            c *= 100**shift
            exact = True
        else:
            c, remainder = divmod(c, 100**-shift)
            exact = not remainder
        e -= shift

        # find n = floor(sqrt(c)) using Newton's method
        n = 10**prec
        while True:
            q = c//n
            if n <= q:
                break
            else:
                n = n + q >> 1
        exact = exact and n*n == c

        if exact:
            # result is exact; rescale to use ideal exponent e
            if shift >= 0:
                # assert n % 10**shift == 0
                n //= 10**shift
            else:
                n *= 10**-shift
            e += shift
        else:
            # result is not exact; fix last digit as described above
            if n % 5 == 0:
                n += 1

        ans = _dec_from_triple(0, str(n), e)

        # round, and fit to current context
        context = context._shallow_copy()
        rounding = context._set_rounding(ROUND_HALF_EVEN)
        ans = ans._fix(context)
        context.rounding = rounding

        return ans

    def max(self, other, context=None):
        """Returns the larger value.

        Like max(self, other) except if one is not a number, returns
        NaN (and signals if one is sNaN).  Also rounds.
        """
        other = _convert_other(other, raiseit=True)

        if context is None:
            context = getcontext()

        if self._is_special or other._is_special:
            # If one operand is a quiet NaN and the other is number, then the
            # number is always returned
            sn = self._isnan()
            on = other._isnan()
            if sn or on:
                if on == 1 and sn == 0:
                    return self._fix(context)
                if sn == 1 and on == 0:
                    return other._fix(context)
                return self._check_nans(other, context)

        c = self._cmp(other)
        if c == 0:
            # If both operands are finite and equal in numerical value
            # then an ordering is applied:
            #
            # If the signs differ then max returns the operand with the
            # positive sign and min returns the operand with the negative sign
            #
            # If the signs are the same then the exponent is used to select
            # the result.  This is exactly the ordering used in compare_total.
            c = self.compare_total(other)

        if c == -1:
            ans = other
        else:
            ans = self

        return ans._fix(context)

    def min(self, other, context=None):
        """Returns the smaller value.

        Like min(self, other) except if one is not a number, returns
        NaN (and signals if one is sNaN).  Also rounds.
        """
        other = _convert_other(other, raiseit=True)

        if context is None:
            context = getcontext()

        if self._is_special or other._is_special:
            # If one operand is a quiet NaN and the other is number, then the
            # number is always returned
            sn = self._isnan()
            on = other._isnan()
            if sn or on:
                if on == 1 and sn == 0:
                    return self._fix(context)
                if sn == 1 and on == 0:
                    return other._fix(context)
                return self._check_nans(other, context)

        c = self._cmp(other)
        if c == 0:
            c = self.compare_total(other)

        if c == -1:
            ans = self
        else:
            ans = other

        return ans._fix(context)

    def _isinteger(self):
        """Returns whether self is an integer"""
        if self._is_special:
            return False
        if self._exp >= 0:
            return True
        rest = self._int[self._exp:]
        return rest == '0'*len(rest)

    def _iseven(self):
        """Returns True if self is even.  Assumes self is an integer."""
        if not self or self._exp > 0:
            return True
        return self._int[-1+self._exp] in '02468'

    def adjusted(self):
        """Return the adjusted exponent of self"""
        try:
            return self._exp + len(self._int) - 1
        # If NaN or Infinity, self._exp is string
        except TypeError:
            return 0

    def canonical(self, context=None):
        """Returns the same Decimal object.

        As we do not have different encodings for the same number, the
        received object already is in its canonical form.
        """
        return self

    def compare_signal(self, other, context=None):
        """Compares self to the other operand numerically.

        It's pretty much like compare(), but all NaNs signal, with signaling
        NaNs taking precedence over quiet NaNs.
        """
        other = _convert_other(other, raiseit = True)
        ans = self._compare_check_nans(other, context)
        if ans:
            return ans
        return self.compare(other, context=context)

    def compare_total(self, other):
        """Compares self to other using the abstract representations.

        This is not like the standard compare, which use their numerical
        value. Note that a total ordering is defined for all possible abstract
        representations.
        """
        other = _convert_other(other, raiseit=True)

        # if one is negative and the other is positive, it's easy
        if self._sign and not other._sign:
            return _NegativeOne
        if not self._sign and other._sign:
            return _One
        sign = self._sign

        # let's handle both NaN types
        self_nan = self._isnan()
        other_nan = other._isnan()
        if self_nan or other_nan:
            if self_nan == other_nan:
                # compare payloads as though they're integers
                self_key = len(self._int), self._int
                other_key = len(other._int), other._int
                if self_key < other_key:
                    if sign:
                        return _One
                    else:
                        return _NegativeOne
                if self_key > other_key:
                    if sign:
                        return _NegativeOne
                    else:
                        return _One
                return _Zero

            if sign:
                if self_nan == 1:
                    return _NegativeOne
                if other_nan == 1:
                    return _One
                if self_nan == 2:
                    return _NegativeOne
                if other_nan == 2:
                    return _One
            else:
                if self_nan == 1:
                    return _One
                if other_nan == 1:
                    return _NegativeOne
                if self_nan == 2:
                    return _One
                if other_nan == 2:
                    return _NegativeOne

        if self < other:
            return _NegativeOne
        if self > other:
            return _One

        if self._exp < other._exp:
            if sign:
                return _One
            else:
                return _NegativeOne
        if self._exp > other._exp:
            if sign:
                return _NegativeOne
            else:
                return _One
        return _Zero


    def compare_total_mag(self, other):
        """Compares self to other using abstract repr., ignoring sign.

        Like compare_total, but with operand's sign ignored and assumed to be 0.
        """
        other = _convert_other(other, raiseit=True)

        s = self.copy_abs()
        o = other.copy_abs()
        return s.compare_total(o)

    def copy_abs(self):
        """Returns a copy with the sign set to 0. """
        return _dec_from_triple(0, self._int, self._exp, self._is_special)

    def copy_negate(self):
        """Returns a copy with the sign inverted."""
        if self._sign:
            return _dec_from_triple(0, self._int, self._exp, self._is_special)
        else:
            return _dec_from_triple(1, self._int, self._exp, self._is_special)

    def copy_sign(self, other):
        """Returns self with the sign of other."""
        other = _convert_other(other, raiseit=True)
        return _dec_from_triple(other._sign, self._int,
                                self._exp, self._is_special)

    def exp(self, context=None):
        """Returns e ** self."""

        if context is None:
            context = getcontext()

        # exp(NaN) = NaN
        ans = self._check_nans(context=context)
        if ans:
            return ans

        # exp(-Infinity) = 0
        if self._isinfinity() == -1:
            return _Zero

        # exp(0) = 1
        if not self:
            return _One

        # exp(Infinity) = Infinity
        if self._isinfinity() == 1:
            return Decimal(self)

        # the result is now guaranteed to be inexact (the true
        # mathematical result is transcendental). There's no need to
        # raise Rounded and Inexact here---they'll always be raised as
        # a result of the call to _fix.
        p = context.prec
        adj = self.adjusted()

        # we only need to do any computation for quite a small range
        # of adjusted exponents---for example, -29 <= adj <= 10 for
        # the default context.  For smaller exponent the result is
        # indistinguishable from 1 at the given precision, while for
        # larger exponent the result either overflows or underflows.
        if self._sign == 0 and adj > len(str((context.Emax+1)*3)):
            # overflow
            ans = _dec_from_triple(0, '1', context.Emax+1)
        elif self._sign == 1 and adj > len(str((-context.Etiny()+1)*3)):
            # underflow to 0
            ans = _dec_from_triple(0, '1', context.Etiny()-1)
        elif self._sign == 0 and adj < -p:
            # p+1 digits; final round will raise correct flags
            ans = _dec_from_triple(0, '1' + '0'*(p-1) + '1', -p)
        elif self._sign == 1 and adj < -p-1:
            # p+1 digits; final round will raise correct flags
            ans = _dec_from_triple(0, '9'*(p+1), -p-1)
        # general case
        else:
            op = _WorkRep(self)
            c, e = op.int, op.exp
            if op.sign == 1:
                c = -c

            # compute correctly rounded result: increase precision by
            # 3 digits at a time until we get an unambiguously
            # roundable result
            extra = 3
            while True:
                coeff, exp = _dexp(c, e, p+extra)
                if coeff % (5*10**(len(str(coeff))-p-1)):
                    break
                extra += 3

            ans = _dec_from_triple(0, str(coeff), exp)

        # at this stage, ans should round correctly with *any*
        # rounding mode, not just with ROUND_HALF_EVEN
        context = context._shallow_copy()
        rounding = context._set_rounding(ROUND_HALF_EVEN)
        ans = ans._fix(context)
        context.rounding = rounding

        return ans

    def is_canonical(self):
        """Return True if self is canonical; otherwise return False.

        Currently, the encoding of a Decimal instance is always
        canonical, so this method returns True for any Decimal.
        """
        return True

    def is_finite(self):
        """Return True if self is finite; otherwise return False.

        A Decimal instance is considered finite if it is neither
        infinite nor a NaN.
        """
        return not self._is_special

    def is_infinite(self):
        """Return True if self is infinite; otherwise return False."""
        return self._exp == 'F'

    def is_nan(self):
        """Return True if self is a qNaN or sNaN; otherwise return False."""
        return self._exp in ('n', 'N')

    def is_normal(self, context=None):
        """Return True if self is a normal number; otherwise return False."""
        if self._is_special or not self:
            return False
        if context is None:
            context = getcontext()
        return context.Emin <= self.adjusted()

    def is_qnan(self):
        """Return True if self is a quiet NaN; otherwise return False."""
        return self._exp == 'n'

    def is_signed(self):
        """Return True if self is negative; otherwise return False."""
        return self._sign == 1

    def is_snan(self):
        """Return True if self is a signaling NaN; otherwise return False."""
        return self._exp == 'N'

    def is_subnormal(self, context=None):
        """Return True if self is subnormal; otherwise return False."""
        if self._is_special or not self:
            return False
        if context is None:
            context = getcontext()
        return self.adjusted() < context.Emin

    def is_zero(self):
        """Return True if self is a zero; otherwise return False."""
        return not self._is_special and self._int == '0'

    def _ln_exp_bound(self):
        """Compute a lower bound for the adjusted exponent of self.ln().
        In other words, compute r such that self.ln() >= 10**r.  Assumes
        that self is finite and positive and that self != 1.
        """

        # for 0.1 <= x <= 10 we use the inequalities 1-1/x <= ln(x) <= x-1
        adj = self._exp + len(self._int) - 1
        if adj >= 1:
            # argument >= 10; we use 23/10 = 2.3 as a lower bound for ln(10)
            return len(str(adj*23//10)) - 1
        if adj <= -2:
            # argument <= 0.1
            return len(str((-1-adj)*23//10)) - 1
        op = _WorkRep(self)
        c, e = op.int, op.exp
        if adj == 0:
            # 1 < self < 10
            num = str(c-10**-e)
            den = str(c)
            return len(num) - len(den) - (num < den)
        # adj == -1, 0.1 <= self < 1
        return e + len(str(10**-e - c)) - 1


    def ln(self, context=None):
        """Returns the natural (base e) logarithm of self."""

        if context is None:
            context = getcontext()

        # ln(NaN) = NaN
        ans = self._check_nans(context=context)
        if ans:
            return ans

        # ln(0.0) == -Infinity
        if not self:
            return _NegativeInfinity

        # ln(Infinity) = Infinity
        if self._isinfinity() == 1:
            return _Infinity

        # ln(1.0) == 0.0
        if self == _One:
            return _Zero

        # ln(negative) raises InvalidOperation
        if self._sign == 1:
            return context._raise_error(InvalidOperation,
                                        'ln of a negative value')

        # result is irrational, so necessarily inexact
        op = _WorkRep(self)
        c, e = op.int, op.exp
        p = context.prec

        # correctly rounded result: repeatedly increase precision by 3
        # until we get an unambiguously roundable result
        places = p - self._ln_exp_bound() + 2 # at least p+3 places
        while True:
            coeff = _dlog(c, e, places)
            # assert len(str(abs(coeff)))-p >= 1
            if coeff % (5*10**(len(str(abs(coeff)))-p-1)):
                break
            places += 3
        ans = _dec_from_triple(int(coeff<0), str(abs(coeff)), -places)

        context = context._shallow_copy()
        rounding = context._set_rounding(ROUND_HALF_EVEN)
        ans = ans._fix(context)
        context.rounding = rounding
        return ans

    def _log10_exp_bound(self):
        """Compute a lower bound for the adjusted exponent of self.log10().
        In other words, find r such that self.log10() >= 10**r.
        Assumes that self is finite and positive and that self != 1.
        """

        # For x >= 10 or x < 0.1 we only need a bound on the integer
        # part of log10(self), and this comes directly from the
        # exponent of x.  For 0.1 <= x <= 10 we use the inequalities
        # 1-1/x <= log(x) <= x-1. If x > 1 we have |log10(x)| >
        # (1-1/x)/2.31 > 0.  If x < 1 then |log10(x)| > (1-x)/2.31 > 0

        adj = self._exp + len(self._int) - 1
        if adj >= 1:
            # self >= 10
            return len(str(adj))-1
        if adj <= -2:
            # self < 0.1
            return len(str(-1-adj))-1
        op = _WorkRep(self)
        c, e = op.int, op.exp
        if adj == 0:
            # 1 < self < 10
            num = str(c-10**-e)
            den = str(231*c)
            return len(num) - len(den) - (num < den) + 2
        # adj == -1, 0.1 <= self < 1
        num = str(10**-e-c)
        return len(num) + e - (num < "231") - 1

    def log10(self, context=None):
        """Returns the base 10 logarithm of self."""

        if context is None:
            context = getcontext()

        # log10(NaN) = NaN
        ans = self._check_nans(context=context)
        if ans:
            return ans

        # log10(0.0) == -Infinity
        if not self:
            return _NegativeInfinity

        # log10(Infinity) = Infinity
        if self._isinfinity() == 1:
            return _Infinity

        # log10(negative or -Infinity) raises InvalidOperation
        if self._sign == 1:
            return context._raise_error(InvalidOperation,
                                        'log10 of a negative value')

        # log10(10**n) = n
        if self._int[0] == '1' and self._int[1:] == '0'*(len(self._int) - 1):
            # answer may need rounding
            ans = Decimal(self._exp + len(self._int) - 1)
        else:
            # result is irrational, so necessarily inexact
            op = _WorkRep(self)
            c, e = op.int, op.exp
            p = context.prec

            # correctly rounded result: repeatedly increase precision
            # until result is unambiguously roundable
            places = p-self._log10_exp_bound()+2
            while True:
                coeff = _dlog10(c, e, places)
                # assert len(str(abs(coeff)))-p >= 1
                if coeff % (5*10**(len(str(abs(coeff)))-p-1)):
                    break
                places += 3
            ans = _dec_from_triple(int(coeff<0), str(abs(coeff)), -places)

        context = context._shallow_copy()
        rounding = context._set_rounding(ROUND_HALF_EVEN)
        ans = ans._fix(context)
        context.rounding = rounding
        return ans

    def logb(self, context=None):
        """ Returns the exponent of the magnitude of self's MSD.

        The result is the integer which is the exponent of the magnitude
        of the most significant digit of self (as though it were truncated
        to a single digit while maintaining the value of that digit and
        without limiting the resulting exponent).
        """
        # logb(NaN) = NaN
        ans = self._check_nans(context=context)
        if ans:
            return ans

        if context is None:
            context = getcontext()

        # logb(+/-Inf) = +Inf
        if self._isinfinity():
            return _Infinity

        # logb(0) = -Inf, DivisionByZero
        if not self:
            return context._raise_error(DivisionByZero, 'logb(0)', 1)

        # otherwise, simply return the adjusted exponent of self, as a
        # Decimal.  Note that no attempt is made to fit the result
        # into the current context.
        ans = Decimal(self.adjusted())
        return ans._fix(context)

    def _islogical(self):
        """Return True if self is a logical operand.

        For being logical, it must be a finite number with a sign of 0,
        an exponent of 0, and a coefficient whose digits must all be
        either 0 or 1.
        """
        if self._sign != 0 or self._exp != 0:
            return False
        for dig in self._int:
            if dig not in '01':
                return False
        return True

    def _fill_logical(self, context, opa, opb):
        dif = context.prec - len(opa)
        if dif > 0:
            opa = '0'*dif + opa
        elif dif < 0:
            opa = opa[-context.prec:]
        dif = context.prec - len(opb)
        if dif > 0:
            opb = '0'*dif + opb
        elif dif < 0:
            opb = opb[-context.prec:]
        return opa, opb

    def logical_and(self, other, context=None):
        """Applies an 'and' operation between self and other's digits."""
        if context is None:
            context = getcontext()

        other = _convert_other(other, raiseit=True)

        if not self._islogical() or not other._islogical():
            return context._raise_error(InvalidOperation)

        # fill to context.prec
        (opa, opb) = self._fill_logical(context, self._int, other._int)

        # make the operation, and clean starting zeroes
        result = "".join([str(int(a)&int(b)) for a,b in zip(opa,opb)])
        return _dec_from_triple(0, result.lstrip('0') or '0', 0)

    def logical_invert(self, context=None):
        """Invert all its digits."""
        if context is None:
            context = getcontext()
        return self.logical_xor(_dec_from_triple(0,'1'*context.prec,0),
                                context)

    def logical_or(self, other, context=None):
        """Applies an 'or' operation between self and other's digits."""
        if context is None:
            context = getcontext()

        other = _convert_other(other, raiseit=True)

        if not self._islogical() or not other._islogical():
            return context._raise_error(InvalidOperation)

        # fill to context.prec
        (opa, opb) = self._fill_logical(context, self._int, other._int)

        # make the operation, and clean starting zeroes
        result = "".join([str(int(a)|int(b)) for a,b in zip(opa,opb)])
        return _dec_from_triple(0, result.lstrip('0') or '0', 0)

    def logical_xor(self, other, context=None):
        """Applies an 'xor' operation between self and other's digits."""
        if context is None:
            context = getcontext()

        other = _convert_other(other, raiseit=True)

        if not self._islogical() or not other._islogical():
            return context._raise_error(InvalidOperation)

        # fill to context.prec
        (opa, opb) = self._fill_logical(context, self._int, other._int)

        # make the operation, and clean starting zeroes
        result = "".join([str(int(a)^int(b)) for a,b in zip(opa,opb)])
        return _dec_from_triple(0, result.lstrip('0') or '0', 0)

    def max_mag(self, other, context=None):
        """Compares the values numerically with their sign ignored."""
        other = _convert_other(other, raiseit=True)

        if context is None:
            context = getcontext()

        if self._is_special or other._is_special:
            # If one operand is a quiet NaN and the other is number, then the
            # number is always returned
            sn = self._isnan()
            on = other._isnan()
            if sn or on:
                if on == 1 and sn == 0:
                    return self._fix(context)
                if sn == 1 and on == 0:
                    return other._fix(context)
                return self._check_nans(other, context)

        c = self.copy_abs()._cmp(other.copy_abs())
        if c == 0:
            c = self.compare_total(other)

        if c == -1:
            ans = other
        else:
            ans = self

        return ans._fix(context)

    def min_mag(self, other, context=None):
        """Compares the values numerically with their sign ignored."""
        other = _convert_other(other, raiseit=True)

        if context is None:
            context = getcontext()

        if self._is_special or other._is_special:
            # If one operand is a quiet NaN and the other is number, then the
            # number is always returned
            sn = self._isnan()
            on = other._isnan()
            if sn or on:
                if on == 1 and sn == 0:
                    return self._fix(context)
                if sn == 1 and on == 0:
                    return other._fix(context)
                return self._check_nans(other, context)

        c = self.copy_abs()._cmp(other.copy_abs())
        if c == 0:
            c = self.compare_total(other)

        if c == -1:
            ans = self
        else:
            ans = other

        return ans._fix(context)

    def next_minus(self, context=None):
        """Returns the largest representable number smaller than itself."""
        if context is None:
            context = getcontext()

        ans = self._check_nans(context=context)
        if ans:
            return ans

        if self._isinfinity() == -1:
            return _NegativeInfinity
        if self._isinfinity() == 1:
            return _dec_from_triple(0, '9'*context.prec, context.Etop())

        context = context.copy()
        context._set_rounding(ROUND_FLOOR)
        context._ignore_all_flags()
        new_self = self._fix(context)
        if new_self != self:
            return new_self
        return self.__sub__(_dec_from_triple(0, '1', context.Etiny()-1),
                            context)

    def next_plus(self, context=None):
        """Returns the smallest representable number larger than itself."""
        if context is None:
            context = getcontext()

        ans = self._check_nans(context=context)
        if ans:
            return ans

        if self._isinfinity() == 1:
            return _Infinity
        if self._isinfinity() == -1:
            return _dec_from_triple(1, '9'*context.prec, context.Etop())

        context = context.copy()
        context._set_rounding(ROUND_CEILING)
        context._ignore_all_flags()
        new_self = self._fix(context)
        if new_self != self:
            return new_self
        return self.__add__(_dec_from_triple(0, '1', context.Etiny()-1),
                            context)

    def next_toward(self, other, context=None):
        """Returns the number closest to self, in the direction towards other.

        The result is the closest representable number to self
        (excluding self) that is in the direction towards other,
        unless both have the same value.  If the two operands are
        numerically equal, then the result is a copy of self with the
        sign set to be the same as the sign of other.
        """
        other = _convert_other(other, raiseit=True)

        if context is None:
            context = getcontext()

        ans = self._check_nans(other, context)
        if ans:
            return ans

        comparison = self._cmp(other)
        if comparison == 0:
            return self.copy_sign(other)

        if comparison == -1:
            ans = self.next_plus(context)
        else: # comparison == 1
            ans = self.next_minus(context)

        # decide which flags to raise using value of ans
        if ans._isinfinity():
            context._raise_error(Overflow,
                                 'Infinite result from next_toward',
                                 ans._sign)
            context._raise_error(Inexact)
            context._raise_error(Rounded)
        elif ans.adjusted() < context.Emin:
            context._raise_error(Underflow)
            context._raise_error(Subnormal)
            context._raise_error(Inexact)
            context._raise_error(Rounded)
            # if precision == 1 then we don't raise Clamped for a
            # result 0E-Etiny.
            if not ans:
                context._raise_error(Clamped)

        return ans

    def number_class(self, context=None):
        """Returns an indication of the class of self.

        The class is one of the following strings:
          sNaN
          NaN
          -Infinity
          -Normal
          -Subnormal
          -Zero
          +Zero
          +Subnormal
          +Normal
          +Infinity
        """
        if self.is_snan():
            return "sNaN"
        if self.is_qnan():
            return "NaN"
        inf = self._isinfinity()
        if inf == 1:
            return "+Infinity"
        if inf == -1:
            return "-Infinity"
        if self.is_zero():
            if self._sign:
                return "-Zero"
            else:
                return "+Zero"
        if context is None:
            context = getcontext()
        if self.is_subnormal(context=context):
            if self._sign:
                return "-Subnormal"
            else:
                return "+Subnormal"
        # just a normal, regular, boring number, :)
        if self._sign:
            return "-Normal"
        else:
            return "+Normal"

    def radix(self):
        """Just returns 10, as this is Decimal, :)"""
        return Decimal(10)

    def rotate(self, other, context=None):
        """Returns a rotated copy of self, value-of-other times."""
        if context is None:
            context = getcontext()

        other = _convert_other(other, raiseit=True)

        ans = self._check_nans(other, context)
        if ans:
            return ans

        if other._exp != 0:
            return context._raise_error(InvalidOperation)
        if not (-context.prec <= int(other) <= context.prec):
            return context._raise_error(InvalidOperation)

        if self._isinfinity():
            return Decimal(self)

        # get values, pad if necessary
        torot = int(other)
        rotdig = self._int
        topad = context.prec - len(rotdig)
        if topad > 0:
            rotdig = '0'*topad + rotdig
        elif topad < 0:
            rotdig = rotdig[-topad:]

        # let's rotate!
        rotated = rotdig[torot:] + rotdig[:torot]
        return _dec_from_triple(self._sign,
                                rotated.lstrip('0') or '0', self._exp)

    def scaleb(self, other, context=None):
        """Returns self operand after adding the second value to its exp."""
        if context is None:
            context = getcontext()

        other = _convert_other(other, raiseit=True)

        ans = self._check_nans(other, context)
        if ans:
            return ans

        if other._exp != 0:
            return context._raise_error(InvalidOperation)
        liminf = -2 * (context.Emax + context.prec)
        limsup =  2 * (context.Emax + context.prec)
        if not (liminf <= int(other) <= limsup):
            return context._raise_error(InvalidOperation)

        if self._isinfinity():
            return Decimal(self)

        d = _dec_from_triple(self._sign, self._int, self._exp + int(other))
        d = d._fix(context)
        return d

    def shift(self, other, context=None):
        """Returns a shifted copy of self, value-of-other times."""
        if context is None:
            context = getcontext()

        other = _convert_other(other, raiseit=True)

        ans = self._check_nans(other, context)
        if ans:
            return ans

        if other._exp != 0:
            return context._raise_error(InvalidOperation)
        if not (-context.prec <= int(other) <= context.prec):
            return context._raise_error(InvalidOperation)

        if self._isinfinity():
            return Decimal(self)

        # get values, pad if necessary
        torot = int(other)
        rotdig = self._int
        topad = context.prec - len(rotdig)
        if topad > 0:
            rotdig = '0'*topad + rotdig
        elif topad < 0:
            rotdig = rotdig[-topad:]

        # let's shift!
        if torot < 0:
            shifted = rotdig[:torot]
        else:
            shifted = rotdig + '0'*torot
            shifted = shifted[-context.prec:]

        return _dec_from_triple(self._sign,
                                    shifted.lstrip('0') or '0', self._exp)

    # Support for pickling, copy, and deepcopy
    def __reduce__(self):
        return (self.__class__, (str(self),))

    def __copy__(self):
        if type(self) is Decimal:
            return self     # I'm immutable; therefore I am my own clone
        return self.__class__(str(self))

    def __deepcopy__(self, memo):
        if type(self) is Decimal:
            return self     # My components are also immutable
        return self.__class__(str(self))

    # PEP 3101 support.  the _localeconv keyword argument should be
    # considered private: it's provided for ease of testing only.
    def __format__(self, specifier, context=None, _localeconv=None):
        """Format a Decimal instance according to the given specifier.

        The specifier should be a standard format specifier, with the
        form described in PEP 3101.  Formatting types 'e', 'E', 'f',
        'F', 'g', 'G', 'n' and '%' are supported.  If the formatting
        type is omitted it defaults to 'g' or 'G', depending on the
        value of context.capitals.
        """

        # Note: PEP 3101 says that if the type is not present then
        # there should be at least one digit after the decimal point.
        # We take the liberty of ignoring this requirement for
        # Decimal---it's presumably there to make sure that
        # format(float, '') behaves similarly to str(float).
        if context is None:
            context = getcontext()

        spec = _parse_format_specifier(specifier, _localeconv=_localeconv)

        # special values don't care about the type or precision
        if self._is_special:
            sign = _format_sign(self._sign, spec)
            body = str(self.copy_abs())
            if spec['type'] == '%':
                body += '%'
            return _format_align(sign, body, spec)

        # a type of None defaults to 'g' or 'G', depending on context
        if spec['type'] is None:
            spec['type'] = ['g', 'G'][context.capitals]

        # if type is '%', adjust exponent of self accordingly
        if spec['type'] == '%':
            self = _dec_from_triple(self._sign, self._int, self._exp+2)

        # round if necessary, taking rounding mode from the context
        rounding = context.rounding
        precision = spec['precision']
        if precision is not None:
            if spec['type'] in 'eE':
                self = self._round(precision+1, rounding)
            elif spec['type'] in 'fF%':
                self = self._rescale(-precision, rounding)
            elif spec['type'] in 'gG' and len(self._int) > precision:
                self = self._round(precision, rounding)
        # special case: zeros with a positive exponent can't be
        # represented in fixed point; rescale them to 0e0.
        if not self and self._exp > 0 and spec['type'] in 'fF%':
            self = self._rescale(0, rounding)

        # figure out placement of the decimal point
        leftdigits = self._exp + len(self._int)
        if spec['type'] in 'eE':
            if not self and precision is not None:
                dotplace = 1 - precision
            else:
                dotplace = 1
        elif spec['type'] in 'fF%':
            dotplace = leftdigits
        elif spec['type'] in 'gG':
            if self._exp <= 0 and leftdigits > -6:
                dotplace = leftdigits
            else:
                dotplace = 1

        # find digits before and after decimal point, and get exponent
        if dotplace < 0:
            intpart = '0'
            fracpart = '0'*(-dotplace) + self._int
        elif dotplace > len(self._int):
            intpart = self._int + '0'*(dotplace-len(self._int))
            fracpart = ''
        else:
            intpart = self._int[:dotplace] or '0'
            fracpart = self._int[dotplace:]
        exp = leftdigits-dotplace

        # done with the decimal-specific stuff;  hand over the rest
        # of the formatting to the _format_number function
        return _format_number(self._sign, intpart, fracpart, exp, spec)

def _dec_from_triple(sign, coefficient, exponent, special=False):
    """Create a decimal instance directly, without any validation,
    normalization (e.g. removal of leading zeros) or argument
    conversion.

    This function is for *internal use only*.
    """

    self = object.__new__(Decimal)
    self._sign = sign
    self._int = coefficient
    self._exp = exponent
    self._is_special = special

    return self

# Register Decimal as a kind of Number (an abstract base class).
# However, do not register it as Real (because Decimals are not
# interoperable with floats).
_numbers.Number.register(Decimal)


##### Context class #######################################################

class _ContextManager(object):
    """Context manager class to support localcontext().

      Sets a copy of the supplied context in __enter__() and restores
      the previous decimal context in __exit__()
    """
    def __init__(self, new_context):
        self.new_context = new_context.copy()
    def __enter__(self):
        self.saved_context = getcontext()
        setcontext(self.new_context)
        return self.new_context
    def __exit__(self, t, v, tb):
        setcontext(self.saved_context)

class Context(object):
    """Contains the context for a Decimal instance.

    Contains:
    prec - precision (for use in rounding, division, square roots..)
    rounding - rounding type (how you round)
    traps - If traps[exception] = 1, then the exception is
                    raised when it is caused.  Otherwise, a value is
                    substituted in.
    flags  - When an exception is caused, flags[exception] is set.
             (Whether or not the trap_enabler is set)
             Should be reset by user of Decimal instance.
    Emin -   Minimum exponent
    Emax -   Maximum exponent
    capitals -      If 1, 1*10^1 is printed as 1E+1.
                    If 0, printed as 1e1
    _clamp - If 1, change exponents if too high (Default 0)
    """

    def __init__(self, prec=None, rounding=None,
                 traps=None, flags=None,
                 Emin=None, Emax=None,
                 capitals=None, _clamp=0,
                 _ignored_flags=None):
        # Set defaults; for everything except flags and _ignored_flags,
        # inherit from DefaultContext.
        try:
            dc = DefaultContext
        except NameError:
            pass

        self.prec = prec if prec is not None else dc.prec
        self.rounding = rounding if rounding is not None else dc.rounding
        self.Emin = Emin if Emin is not None else dc.Emin
        self.Emax = Emax if Emax is not None else dc.Emax
        self.capitals = capitals if capitals is not None else dc.capitals
        self._clamp = _clamp if _clamp is not None else dc._clamp

        if _ignored_flags is None:
            self._ignored_flags = []
        else:
            self._ignored_flags = _ignored_flags

        if traps is None:
            self.traps = dc.traps.copy()
        elif not isinstance(traps, dict):
            self.traps = dict((s, int(s in traps)) for s in _signals)
        else:
            self.traps = traps

        if flags is None:
            self.flags = dict.fromkeys(_signals, 0)
        elif not isinstance(flags, dict):
            self.flags = dict((s, int(s in flags)) for s in _signals)
        else:
            self.flags = flags

    def __repr__(self):
        """Show the current context."""
        s = []
        s.append('Context(prec=%(prec)d, rounding=%(rounding)s, '
                 'Emin=%(Emin)d, Emax=%(Emax)d, capitals=%(capitals)d'
                 % vars(self))
        names = [f.__name__ for f, v in self.flags.items() if v]
        s.append('flags=[' + ', '.join(names) + ']')
        names = [t.__name__ for t, v in self.traps.items() if v]
        s.append('traps=[' + ', '.join(names) + ']')
        return ', '.join(s) + ')'

    def clear_flags(self):
        """Reset all flags to zero"""
        for flag in self.flags:
            self.flags[flag] = 0

    def _shallow_copy(self):
        """Returns a shallow copy from self."""
        nc = Context(self.prec, self.rounding, self.traps,
                     self.flags, self.Emin, self.Emax,
                     self.capitals, self._clamp, self._ignored_flags)
        return nc

    def copy(self):
        """Returns a deep copy from self."""
        nc = Context(self.prec, self.rounding, self.traps.copy(),
                     self.flags.copy(), self.Emin, self.Emax,
                     self.capitals, self._clamp, self._ignored_flags)
        return nc
    __copy__ = copy

    def _raise_error(self, condition, explanation = None, *args):
        """Handles an error

        If the flag is in _ignored_flags, returns the default response.
        Otherwise, it sets the flag, then, if the corresponding
        trap_enabler is set, it reraises the exception.  Otherwise, it returns
        the default value after setting the flag.
        """
        error = _condition_map.get(condition, condition)
        if error in self._ignored_flags:
            # Don't touch the flag
            return error().handle(self, *args)

        self.flags[error] = 1
        if not self.traps[error]:
            # The errors define how to handle themselves.
            return condition().handle(self, *args)

        # Errors should only be risked on copies of the context
        # self._ignored_flags = []
        raise error(explanation)

    def _ignore_all_flags(self):
        """Ignore all flags, if they are raised"""
        return self._ignore_flags(*_signals)

    def _ignore_flags(self, *flags):
        """Ignore the flags, if they are raised"""
        # Do not mutate-- This way, copies of a context leave the original
        # alone.
        self._ignored_flags = (self._ignored_flags + list(flags))
        return list(flags)

    def _regard_flags(self, *flags):
        """Stop ignoring the flags, if they are raised"""
        if flags and isinstance(flags[0], (tuple,list)):
            flags = flags[0]
        for flag in flags:
            self._ignored_flags.remove(flag)

    # We inherit object.__hash__, so we must deny this explicitly
    __hash__ = None

    def Etiny(self):
        """Returns Etiny (= Emin - prec + 1)"""
        return int(self.Emin - self.prec + 1)

    def Etop(self):
        """Returns maximum exponent (= Emax - prec + 1)"""
        return int(self.Emax - self.prec + 1)

    def _set_rounding(self, type):
        """Sets the rounding type.

        Sets the rounding type, and returns the current (previous)
        rounding type.  Often used like:

        context = context.copy()
        # so you don't change the calling context
        # if an error occurs in the middle.
        rounding = context._set_rounding(ROUND_UP)
        val = self.__sub__(other, context=context)
        context._set_rounding(rounding)

        This will make it round up for that operation.
        """
        rounding = self.rounding
        self.rounding= type
        return rounding

    def create_decimal(self, num='0'):
        """Creates a new Decimal instance but using self as context.

        This method implements the to-number operation of the
        IBM Decimal specification."""

        if isinstance(num, basestring) and num != num.strip():
            return self._raise_error(ConversionSyntax,
                                     "no trailing or leading whitespace is "
                                     "permitted.")

        d = Decimal(num, context=self)
        if d._isnan() and len(d._int) > self.prec - self._clamp:
            return self._raise_error(ConversionSyntax,
                                     "diagnostic info too long in NaN")
        return d._fix(self)

    def create_decimal_from_float(self, f):
        """Creates a new Decimal instance from a float but rounding using self
        as the context.

        >>> context = Context(prec=5, rounding=ROUND_DOWN)
        >>> context.create_decimal_from_float(3.1415926535897932)
        Decimal('3.1415')
        >>> context = Context(prec=5, traps=[Inexact])
        >>> context.create_decimal_from_float(3.1415926535897932)
        Traceback (most recent call last):
            ...
        Inexact: None

        """
        d = Decimal.from_float(f)       # An exact conversion
        return d._fix(self)             # Apply the context rounding

    # Methods
    def abs(self, a):
        """Returns the absolute value of the operand.

        If the operand is negative, the result is the same as using the minus
        operation on the operand.  Otherwise, the result is the same as using
        the plus operation on the operand.

        >>> ExtendedContext.abs(Decimal('2.1'))
        Decimal('2.1')
        >>> ExtendedContext.abs(Decimal('-100'))
        Decimal('100')
        >>> ExtendedContext.abs(Decimal('101.5'))
        Decimal('101.5')
        >>> ExtendedContext.abs(Decimal('-101.5'))
        Decimal('101.5')
        >>> ExtendedContext.abs(-1)
        Decimal('1')
        """
        a = _convert_other(a, raiseit=True)
        return a.__abs__(context=self)

    def add(self, a, b):
        """Return the sum of the two operands.

        >>> ExtendedContext.add(Decimal('12'), Decimal('7.00'))
        Decimal('19.00')
        >>> ExtendedContext.add(Decimal('1E+2'), Decimal('1.01E+4'))
        Decimal('1.02E+4')
        >>> ExtendedContext.add(1, Decimal(2))
        Decimal('3')
        >>> ExtendedContext.add(Decimal(8), 5)
        Decimal('13')
        >>> ExtendedContext.add(5, 5)
        Decimal('10')
        """
        a = _convert_other(a, raiseit=True)
        r = a.__add__(b, context=self)
        if r is NotImplemented:
            raise TypeError("Unable to convert %s to Decimal" % b)
        else:
            return r

    def _apply(self, a):
        return str(a._fix(self))

    def canonical(self, a):
        """Returns the same Decimal object.

        As we do not have different encodings for the same number, the
        received object already is in its canonical form.

        >>> ExtendedContext.canonical(Decimal('2.50'))
        Decimal('2.50')
        """
        return a.canonical(context=self)

    def compare(self, a, b):
        """Compares values numerically.

        If the signs of the operands differ, a value representing each operand
        ('-1' if the operand is less than zero, '0' if the operand is zero or
        negative zero, or '1' if the operand is greater than zero) is used in
        place of that operand for the comparison instead of the actual
        operand.

        The comparison is then effected by subtracting the second operand from
        the first and then returning a value according to the result of the
        subtraction: '-1' if the result is less than zero, '0' if the result is
        zero or negative zero, or '1' if the result is greater than zero.

        >>> ExtendedContext.compare(Decimal('2.1'), Decimal('3'))
        Decimal('-1')
        >>> ExtendedContext.compare(Decimal('2.1'), Decimal('2.1'))
        Decimal('0')
        >>> ExtendedContext.compare(Decimal('2.1'), Decimal('2.10'))
        Decimal('0')
        >>> ExtendedContext.compare(Decimal('3'), Decimal('2.1'))
        Decimal('1')
        >>> ExtendedContext.compare(Decimal('2.1'), Decimal('-3'))
        Decimal('1')
        >>> ExtendedContext.compare(Decimal('-3'), Decimal('2.1'))
        Decimal('-1')
        >>> ExtendedContext.compare(1, 2)
        Decimal('-1')
        >>> ExtendedContext.compare(Decimal(1), 2)
        Decimal('-1')
        >>> ExtendedContext.compare(1, Decimal(2))
        Decimal('-1')
        """
        a = _convert_other(a, raiseit=True)
        return a.compare(b, context=self)

    def compare_signal(self, a, b):
        """Compares the values of the two operands numerically.

        It's pretty much like compare(), but all NaNs signal, with signaling
        NaNs taking precedence over quiet NaNs.

        >>> c = ExtendedContext
        >>> c.compare_signal(Decimal('2.1'), Decimal('3'))
        Decimal('-1')
        >>> c.compare_signal(Decimal('2.1'), Decimal('2.1'))
        Decimal('0')
        >>> c.flags[InvalidOperation] = 0
        >>> print c.flags[InvalidOperation]
        0
        >>> c.compare_signal(Decimal('NaN'), Decimal('2.1'))
        Decimal('NaN')
        >>> print c.flags[InvalidOperation]
        1
        >>> c.flags[InvalidOperation] = 0
        >>> print c.flags[InvalidOperation]
        0
        >>> c.compare_signal(Decimal('sNaN'), Decimal('2.1'))
        Decimal('NaN')
        >>> print c.flags[InvalidOperation]
        1
        >>> c.compare_signal(-1, 2)
        Decimal('-1')
        >>> c.compare_signal(Decimal(-1), 2)
        Decimal('-1')
        >>> c.compare_signal(-1, Decimal(2))
        Decimal('-1')
        """
        a = _convert_other(a, raiseit=True)
        return a.compare_signal(b, context=self)

    def compare_total(self, a, b):
        """Compares two operands using their abstract representation.

        This is not like the standard compare, which use their numerical
        value. Note that a total ordering is defined for all possible abstract
        representations.

        >>> ExtendedContext.compare_total(Decimal('12.73'), Decimal('127.9'))
        Decimal('-1')
        >>> ExtendedContext.compare_total(Decimal('-127'),  Decimal('12'))
        Decimal('-1')
        >>> ExtendedContext.compare_total(Decimal('12.30'), Decimal('12.3'))
        Decimal('-1')
        >>> ExtendedContext.compare_total(Decimal('12.30'), Decimal('12.30'))
        Decimal('0')
        >>> ExtendedContext.compare_total(Decimal('12.3'),  Decimal('12.300'))
        Decimal('1')
        >>> ExtendedContext.compare_total(Decimal('12.3'),  Decimal('NaN'))
        Decimal('-1')
        >>> ExtendedContext.compare_total(1, 2)
        Decimal('-1')
        >>> ExtendedContext.compare_total(Decimal(1), 2)
        Decimal('-1')
        >>> ExtendedContext.compare_total(1, Decimal(2))
        Decimal('-1')
        """
        a = _convert_other(a, raiseit=True)
        return a.compare_total(b)

    def compare_total_mag(self, a, b):
        """Compares two operands using their abstract representation ignoring sign.

        Like compare_total, but with operand's sign ignored and assumed to be 0.
        """
        a = _convert_other(a, raiseit=True)
        return a.compare_total_mag(b)

    def copy_abs(self, a):
        """Returns a copy of the operand with the sign set to 0.

        >>> ExtendedContext.copy_abs(Decimal('2.1'))
        Decimal('2.1')
        >>> ExtendedContext.copy_abs(Decimal('-100'))
        Decimal('100')
        >>> ExtendedContext.copy_abs(-1)
        Decimal('1')
        """
        a = _convert_other(a, raiseit=True)
        return a.copy_abs()

    def copy_decimal(self, a):
        """Returns a copy of the decimal object.

        >>> ExtendedContext.copy_decimal(Decimal('2.1'))
        Decimal('2.1')
        >>> ExtendedContext.copy_decimal(Decimal('-1.00'))
        Decimal('-1.00')
        >>> ExtendedContext.copy_decimal(1)
        Decimal('1')
        """
        a = _convert_other(a, raiseit=True)
        return Decimal(a)

    def copy_negate(self, a):
        """Returns a copy of the operand with the sign inverted.

        >>> ExtendedContext.copy_negate(Decimal('101.5'))
        Decimal('-101.5')
        >>> ExtendedContext.copy_negate(Decimal('-101.5'))
        Decimal('101.5')
        >>> ExtendedContext.copy_negate(1)
        Decimal('-1')
        """
        a = _convert_other(a, raiseit=True)
        return a.copy_negate()

    def copy_sign(self, a, b):
        """Copies the second operand's sign to the first one.

        In detail, it returns a copy of the first operand with the sign
        equal to the sign of the second operand.

        >>> ExtendedContext.copy_sign(Decimal( '1.50'), Decimal('7.33'))
        Decimal('1.50')
        >>> ExtendedContext.copy_sign(Decimal('-1.50'), Decimal('7.33'))
        Decimal('1.50')
        >>> ExtendedContext.copy_sign(Decimal( '1.50'), Decimal('-7.33'))
        Decimal('-1.50')
        >>> ExtendedContext.copy_sign(Decimal('-1.50'), Decimal('-7.33'))
        Decimal('-1.50')
        >>> ExtendedContext.copy_sign(1, -2)
        Decimal('-1')
        >>> ExtendedContext.copy_sign(Decimal(1), -2)
        Decimal('-1')
        >>> ExtendedContext.copy_sign(1, Decimal(-2))
        Decimal('-1')
        """
        a = _convert_other(a, raiseit=True)
        return a.copy_sign(b)

    def divide(self, a, b):
        """Decimal division in a specified context.

        >>> ExtendedContext.divide(Decimal('1'), Decimal('3'))
        Decimal('0.333333333')
        >>> ExtendedContext.divide(Decimal('2'), Decimal('3'))
        Decimal('0.666666667')
        >>> ExtendedContext.divide(Decimal('5'), Decimal('2'))
        Decimal('2.5')
        >>> ExtendedContext.divide(Decimal('1'), Decimal('10'))
        Decimal('0.1')
        >>> ExtendedContext.divide(Decimal('12'), Decimal('12'))
        Decimal('1')
        >>> ExtendedContext.divide(Decimal('8.00'), Decimal('2'))
        Decimal('4.00')
        >>> ExtendedContext.divide(Decimal('2.400'), Decimal('2.0'))
        Decimal('1.20')
        >>> ExtendedContext.divide(Decimal('1000'), Decimal('100'))
        Decimal('10')
        >>> ExtendedContext.divide(Decimal('1000'), Decimal('1'))
        Decimal('1000')
        >>> ExtendedContext.divide(Decimal('2.40E+6'), Decimal('2'))
        Decimal('1.20E+6')
        >>> ExtendedContext.divide(5, 5)
        Decimal('1')
        >>> ExtendedContext.divide(Decimal(5), 5)
        Decimal('1')
        >>> ExtendedContext.divide(5, Decimal(5))
        Decimal('1')
        """
        a = _convert_other(a, raiseit=True)
        r = a.__div__(b, context=self)
        if r is NotImplemented:
            raise TypeError("Unable to convert %s to Decimal" % b)
        else:
            return r

    def divide_int(self, a, b):
        """Divides two numbers and returns the integer part of the result.

        >>> ExtendedContext.divide_int(Decimal('2'), Decimal('3'))
        Decimal('0')
        >>> ExtendedContext.divide_int(Decimal('10'), Decimal('3'))
        Decimal('3')
        >>> ExtendedContext.divide_int(Decimal('1'), Decimal('0.3'))
        Decimal('3')
        >>> ExtendedContext.divide_int(10, 3)
        Decimal('3')
        >>> ExtendedContext.divide_int(Decimal(10), 3)
        Decimal('3')
        >>> ExtendedContext.divide_int(10, Decimal(3))
        Decimal('3')
        """
        a = _convert_other(a, raiseit=True)
        r = a.__floordiv__(b, context=self)
        if r is NotImplemented:
            raise TypeError("Unable to convert %s to Decimal" % b)
        else:
            return r

    def divmod(self, a, b):
        """Return (a // b, a % b).

        >>> ExtendedContext.divmod(Decimal(8), Decimal(3))
        (Decimal('2'), Decimal('2'))
        >>> ExtendedContext.divmod(Decimal(8), Decimal(4))
        (Decimal('2'), Decimal('0'))
        >>> ExtendedContext.divmod(8, 4)
        (Decimal('2'), Decimal('0'))
        >>> ExtendedContext.divmod(Decimal(8), 4)
        (Decimal('2'), Decimal('0'))
        >>> ExtendedContext.divmod(8, Decimal(4))
        (Decimal('2'), Decimal('0'))
        """
        a = _convert_other(a, raiseit=True)
        r = a.__divmod__(b, context=self)
        if r is NotImplemented:
            raise TypeError("Unable to convert %s to Decimal" % b)
        else:
            return r

    def exp(self, a):
        """Returns e ** a.

        >>> c = ExtendedContext.copy()
        >>> c.Emin = -999
        >>> c.Emax = 999
        >>> c.exp(Decimal('-Infinity'))
        Decimal('0')
        >>> c.exp(Decimal('-1'))
        Decimal('0.367879441')
        >>> c.exp(Decimal('0'))
        Decimal('1')
        >>> c.exp(Decimal('1'))
        Decimal('2.71828183')
        >>> c.exp(Decimal('0.693147181'))
        Decimal('2.00000000')
        >>> c.exp(Decimal('+Infinity'))
        Decimal('Infinity')
        >>> c.exp(10)
        Decimal('22026.4658')
        """
        a =_convert_other(a, raiseit=True)
        return a.exp(context=self)

    def fma(self, a, b, c):
        """Returns a multiplied by b, plus c.

        The first two operands are multiplied together, using multiply,
        the third operand is then added to the result of that
        multiplication, using add, all with only one final rounding.

        >>> ExtendedContext.fma(Decimal('3'), Decimal('5'), Decimal('7'))
        Decimal('22')
        >>> ExtendedContext.fma(Decimal('3'), Decimal('-5'), Decimal('7'))
        Decimal('-8')
        >>> ExtendedContext.fma(Decimal('888565290'), Decimal('1557.96930'), Decimal('-86087.7578'))
        Decimal('1.38435736E+12')
        >>> ExtendedContext.fma(1, 3, 4)
        Decimal('7')
        >>> ExtendedContext.fma(1, Decimal(3), 4)
        Decimal('7')
        >>> ExtendedContext.fma(1, 3, Decimal(4))
        Decimal('7')
        """
        a = _convert_other(a, raiseit=True)
        return a.fma(b, c, context=self)

    def is_canonical(self, a):
        """Return True if the operand is canonical; otherwise return False.

        Currently, the encoding of a Decimal instance is always
        canonical, so this method returns True for any Decimal.

        >>> ExtendedContext.is_canonical(Decimal('2.50'))
        True
        """
        return a.is_canonical()

    def is_finite(self, a):
        """Return True if the operand is finite; otherwise return False.

        A Decimal instance is considered finite if it is neither
        infinite nor a NaN.

        >>> ExtendedContext.is_finite(Decimal('2.50'))
        True
        >>> ExtendedContext.is_finite(Decimal('-0.3'))
        True
        >>> ExtendedContext.is_finite(Decimal('0'))
        True
        >>> ExtendedContext.is_finite(Decimal('Inf'))
        False
        >>> ExtendedContext.is_finite(Decimal('NaN'))
        False
        >>> ExtendedContext.is_finite(1)
        True
        """
        a = _convert_other(a, raiseit=True)
        return a.is_finite()

    def is_infinite(self, a):
        """Return True if the operand is infinite; otherwise return False.

        >>> ExtendedContext.is_infinite(Decimal('2.50'))
        False
        >>> ExtendedContext.is_infinite(Decimal('-Inf'))
        True
        >>> ExtendedContext.is_infinite(Decimal('NaN'))
        False
        >>> ExtendedContext.is_infinite(1)
        False
        """
        a = _convert_other(a, raiseit=True)
        return a.is_infinite()

    def is_nan(self, a):
        """Return True if the operand is a qNaN or sNaN;
        otherwise return False.

        >>> ExtendedContext.is_nan(Decimal('2.50'))
        False
        >>> ExtendedContext.is_nan(Decimal('NaN'))
        True
        >>> ExtendedContext.is_nan(Decimal('-sNaN'))
        True
        >>> ExtendedContext.is_nan(1)
        False
        """
        a = _convert_other(a, raiseit=True)
        return a.is_nan()

    def is_normal(self, a):
        """Return True if the operand is a normal number;
        otherwise return False.

        >>> c = ExtendedContext.copy()
        >>> c.Emin = -999
        >>> c.Emax = 999
        >>> c.is_normal(Decimal('2.50'))
        True
        >>> c.is_normal(Decimal('0.1E-999'))
        False
        >>> c.is_normal(Decimal('0.00'))
        False
        >>> c.is_normal(Decimal('-Inf'))
        False
        >>> c.is_normal(Decimal('NaN'))
        False
        >>> c.is_normal(1)
        True
        """
        a = _convert_other(a, raiseit=True)
        return a.is_normal(context=self)

    def is_qnan(self, a):
        """Return True if the operand is a quiet NaN; otherwise return False.

        >>> ExtendedContext.is_qnan(Decimal('2.50'))
        False
        >>> ExtendedContext.is_qnan(Decimal('NaN'))
        True
        >>> ExtendedContext.is_qnan(Decimal('sNaN'))
        False
        >>> ExtendedContext.is_qnan(1)
        False
        """
        a = _convert_other(a, raiseit=True)
        return a.is_qnan()

    def is_signed(self, a):
        """Return True if the operand is negative; otherwise return False.

        >>> ExtendedContext.is_signed(Decimal('2.50'))
        False
        >>> ExtendedContext.is_signed(Decimal('-12'))
        True
        >>> ExtendedContext.is_signed(Decimal('-0'))
        True
        >>> ExtendedContext.is_signed(8)
        False
        >>> ExtendedContext.is_signed(-8)
        True
        """
        a = _convert_other(a, raiseit=True)
        return a.is_signed()

    def is_snan(self, a):
        """Return True if the operand is a signaling NaN;
        otherwise return False.

        >>> ExtendedContext.is_snan(Decimal('2.50'))
        False
        >>> ExtendedContext.is_snan(Decimal('NaN'))
        False
        >>> ExtendedContext.is_snan(Decimal('sNaN'))
        True
        >>> ExtendedContext.is_snan(1)
        False
        """
        a = _convert_other(a, raiseit=True)
        return a.is_snan()

    def is_subnormal(self, a):
        """Return True if the operand is subnormal; otherwise return False.

        >>> c = ExtendedContext.copy()
        >>> c.Emin = -999
        >>> c.Emax = 999
        >>> c.is_subnormal(Decimal('2.50'))
        False
        >>> c.is_subnormal(Decimal('0.1E-999'))
        True
        >>> c.is_subnormal(Decimal('0.00'))
        False
        >>> c.is_subnormal(Decimal('-Inf'))
        False
        >>> c.is_subnormal(Decimal('NaN'))
        False
        >>> c.is_subnormal(1)
        False
        """
        a = _convert_other(a, raiseit=True)
        return a.is_subnormal(context=self)

    def is_zero(self, a):
        """Return True if the operand is a zero; otherwise return False.

        >>> ExtendedContext.is_zero(Decimal('0'))
        True
        >>> ExtendedContext.is_zero(Decimal('2.50'))
        False
        >>> ExtendedContext.is_zero(Decimal('-0E+2'))
        True
        >>> ExtendedContext.is_zero(1)
        False
        >>> ExtendedContext.is_zero(0)
        True
        """
        a = _convert_other(a, raiseit=True)
        return a.is_zero()

    def ln(self, a):
        """Returns the natural (base e) logarithm of the operand.

        >>> c = ExtendedContext.copy()
        >>> c.Emin = -999
        >>> c.Emax = 999
        >>> c.ln(Decimal('0'))
        Decimal('-Infinity')
        >>> c.ln(Decimal('1.000'))
        Decimal('0')
        >>> c.ln(Decimal('2.71828183'))
        Decimal('1.00000000')
        >>> c.ln(Decimal('10'))
        Decimal('2.30258509')
        >>> c.ln(Decimal('+Infinity'))
        Decimal('Infinity')
        >>> c.ln(1)
        Decimal('0')
        """
        a = _convert_other(a, raiseit=True)
        return a.ln(context=self)

    def log10(self, a):
        """Returns the base 10 logarithm of the operand.

        >>> c = ExtendedContext.copy()
        >>> c.Emin = -999
        >>> c.Emax = 999
        >>> c.log10(Decimal('0'))
        Decimal('-Infinity')
        >>> c.log10(Decimal('0.001'))
        Decimal('-3')
        >>> c.log10(Decimal('1.000'))
        Decimal('0')
        >>> c.log10(Decimal('2'))
        Decimal('0.301029996')
        >>> c.log10(Decimal('10'))
        Decimal('1')
        >>> c.log10(Decimal('70'))
        Decimal('1.84509804')
        >>> c.log10(Decimal('+Infinity'))
        Decimal('Infinity')
        >>> c.log10(0)
        Decimal('-Infinity')
        >>> c.log10(1)
        Decimal('0')
        """
        a = _convert_other(a, raiseit=True)
        return a.log10(context=self)

    def logb(self, a):
        """ Returns the exponent of the magnitude of the operand's MSD.

        The result is the integer which is the exponent of the magnitude
        of the most significant digit of the operand (as though the
        operand were truncated to a single digit while maintaining the
        value of that digit and without limiting the resulting exponent).

        >>> ExtendedContext.logb(Decimal('250'))
        Decimal('2')
        >>> ExtendedContext.logb(Decimal('2.50'))
        Decimal('0')
        >>> ExtendedContext.logb(Decimal('0.03'))
        Decimal('-2')
        >>> ExtendedContext.logb(Decimal('0'))
        Decimal('-Infinity')
        >>> ExtendedContext.logb(1)
        Decimal('0')
        >>> ExtendedContext.logb(10)
        Decimal('1')
        >>> ExtendedContext.logb(100)
        Decimal('2')
        """
        a = _convert_other(a, raiseit=True)
        return a.logb(context=self)

    def logical_and(self, a, b):
        """Applies the logical operation 'and' between each operand's digits.

        The operands must be both logical numbers.

        >>> ExtendedContext.logical_and(Decimal('0'), Decimal('0'))
        Decimal('0')
        >>> ExtendedContext.logical_and(Decimal('0'), Decimal('1'))
        Decimal('0')
        >>> ExtendedContext.logical_and(Decimal('1'), Decimal('0'))
        Decimal('0')
        >>> ExtendedContext.logical_and(Decimal('1'), Decimal('1'))
        Decimal('1')
        >>> ExtendedContext.logical_and(Decimal('1100'), Decimal('1010'))
        Decimal('1000')
        >>> ExtendedContext.logical_and(Decimal('1111'), Decimal('10'))
        Decimal('10')
        >>> ExtendedContext.logical_and(110, 1101)
        Decimal('100')
        >>> ExtendedContext.logical_and(Decimal(110), 1101)
        Decimal('100')
        >>> ExtendedContext.logical_and(110, Decimal(1101))
        Decimal('100')
        """
        a = _convert_other(a, raiseit=True)
        return a.logical_and(b, context=self)

    def logical_invert(self, a):
        """Invert all the digits in the operand.

        The operand must be a logical number.

        >>> ExtendedContext.logical_invert(Decimal('0'))
        Decimal('111111111')
        >>> ExtendedContext.logical_invert(Decimal('1'))
        Decimal('111111110')
        >>> ExtendedContext.logical_invert(Decimal('111111111'))
        Decimal('0')
        >>> ExtendedContext.logical_invert(Decimal('101010101'))
        Decimal('10101010')
        >>> ExtendedContext.logical_invert(1101)
        Decimal('111110010')
        """
        a = _convert_other(a, raiseit=True)
        return a.logical_invert(context=self)

    def logical_or(self, a, b):
        """Applies the logical operation 'or' between each operand's digits.

        The operands must be both logical numbers.

        >>> ExtendedContext.logical_or(Decimal('0'), Decimal('0'))
        Decimal('0')
        >>> ExtendedContext.logical_or(Decimal('0'), Decimal('1'))
        Decimal('1')
        >>> ExtendedContext.logical_or(Decimal('1'), Decimal('0'))
        Decimal('1')
        >>> ExtendedContext.logical_or(Decimal('1'), Decimal('1'))
        Decimal('1')
        >>> ExtendedContext.logical_or(Decimal('1100'), Decimal('1010'))
        Decimal('1110')
        >>> ExtendedContext.logical_or(Decimal('1110'), Decimal('10'))
        Decimal('1110')
        >>> ExtendedContext.logical_or(110, 1101)
        Decimal('1111')
        >>> ExtendedContext.logical_or(Decimal(110), 1101)
        Decimal('1111')
        >>> ExtendedContext.logical_or(110, Decimal(1101))
        Decimal('1111')
        """
        a = _convert_other(a, raiseit=True)
        return a.logical_or(b, context=self)

    def logical_xor(self, a, b):
        """Applies the logical operation 'xor' between each operand's digits.

        The operands must be both logical numbers.

        >>> ExtendedContext.logical_xor(Decimal('0'), Decimal('0'))
        Decimal('0')
        >>> ExtendedContext.logical_xor(Decimal('0'), Decimal('1'))
        Decimal('1')
        >>> ExtendedContext.logical_xor(Decimal('1'), Decimal('0'))
        Decimal('1')
        >>> ExtendedContext.logical_xor(Decimal('1'), Decimal('1'))
        Decimal('0')
        >>> ExtendedContext.logical_xor(Decimal('1100'), Decimal('1010'))
        Decimal('110')
        >>> ExtendedContext.logical_xor(Decimal('1111'), Decimal('10'))
        Decimal('1101')
        >>> ExtendedContext.logical_xor(110, 1101)
        Decimal('1011')
        >>> ExtendedContext.logical_xor(Decimal(110), 1101)
        Decimal('1011')
        >>> ExtendedContext.logical_xor(110, Decimal(1101))
        Decimal('1011')
        """
        a = _convert_other(a, raiseit=True)
        return a.logical_xor(b, context=self)

    def max(self, a, b):
        """max compares two values numerically and returns the maximum.

        If either operand is a NaN then the general rules apply.
        Otherwise, the operands are compared as though by the compare
        operation.  If they are numerically equal then the left-hand operand
        is chosen as the result.  Otherwise the maximum (closer to positive
        infinity) of the two operands is chosen as the result.

        >>> ExtendedContext.max(Decimal('3'), Decimal('2'))
        Decimal('3')
        >>> ExtendedContext.max(Decimal('-10'), Decimal('3'))
        Decimal('3')
        >>> ExtendedContext.max(Decimal('1.0'), Decimal('1'))
        Decimal('1')
        >>> ExtendedContext.max(Decimal('7'), Decimal('NaN'))
        Decimal('7')
        >>> ExtendedContext.max(1, 2)
        Decimal('2')
        >>> ExtendedContext.max(Decimal(1), 2)
        Decimal('2')
        >>> ExtendedContext.max(1, Decimal(2))
        Decimal('2')
        """
        a = _convert_other(a, raiseit=True)
        return a.max(b, context=self)

    def max_mag(self, a, b):
        """Compares the values numerically with their sign ignored.

        >>> ExtendedContext.max_mag(Decimal('7'), Decimal('NaN'))
        Decimal('7')
        >>> ExtendedContext.max_mag(Decimal('7'), Decimal('-10'))
        Decimal('-10')
        >>> ExtendedContext.max_mag(1, -2)
        Decimal('-2')
        >>> ExtendedContext.max_mag(Decimal(1), -2)
        Decimal('-2')
        >>> ExtendedContext.max_mag(1, Decimal(-2))
        Decimal('-2')
        """
        a = _convert_other(a, raiseit=True)
        return a.max_mag(b, context=self)

    def min(self, a, b):
        """min compares two values numerically and returns the minimum.

        If either operand is a NaN then the general rules apply.
        Otherwise, the operands are compared as though by the compare
        operation.  If they are numerically equal then the left-hand operand
        is chosen as the result.  Otherwise the minimum (closer to negative
        infinity) of the two operands is chosen as the result.

        >>> ExtendedContext.min(Decimal('3'), Decimal('2'))
        Decimal('2')
        >>> ExtendedContext.min(Decimal('-10'), Decimal('3'))
        Decimal('-10')
        >>> ExtendedContext.min(Decimal('1.0'), Decimal('1'))
        Decimal('1.0')
        >>> ExtendedContext.min(Decimal('7'), Decimal('NaN'))
        Decimal('7')
        >>> ExtendedContext.min(1, 2)
        Decimal('1')
        >>> ExtendedContext.min(Decimal(1), 2)
        Decimal('1')
        >>> ExtendedContext.min(1, Decimal(29))
        Decimal('1')
        """
        a = _convert_other(a, raiseit=True)
        return a.min(b, context=self)

    def min_mag(self, a, b):
        """Compares the values numerically with their sign ignored.

        >>> ExtendedContext.min_mag(Decimal('3'), Decimal('-2'))
        Decimal('-2')
        >>> ExtendedContext.min_mag(Decimal('-3'), Decimal('NaN'))
        Decimal('-3')
        >>> ExtendedContext.min_mag(1, -2)
        Decimal('1')
        >>> ExtendedContext.min_mag(Decimal(1), -2)
        Decimal('1')
        >>> ExtendedContext.min_mag(1, Decimal(-2))
        Decimal('1')
        """
        a = _convert_other(a, raiseit=True)
        return a.min_mag(b, context=self)

    def minus(self, a):
        """Minus corresponds to unary prefix minus in Python.

        The operation is evaluated using the same rules as subtract; the
        operation minus(a) is calculated as subtract('0', a) where the '0'
        has the same exponent as the operand.

        >>> ExtendedContext.minus(Decimal('1.3'))
        Decimal('-1.3')
        >>> ExtendedContext.minus(Decimal('-1.3'))
        Decimal('1.3')
        >>> ExtendedContext.minus(1)
        Decimal('-1')
        """
        a = _convert_other(a, raiseit=True)
        return a.__neg__(context=self)

    def multiply(self, a, b):
        """multiply multiplies two operands.

        If either operand is a special value then the general rules apply.
        Otherwise, the operands are multiplied together
        ('long multiplication'), resulting in a number which may be as long as
        the sum of the lengths of the two operands.

        >>> ExtendedContext.multiply(Decimal('1.20'), Decimal('3'))
        Decimal('3.60')
        >>> ExtendedContext.multiply(Decimal('7'), Decimal('3'))
        Decimal('21')
        >>> ExtendedContext.multiply(Decimal('0.9'), Decimal('0.8'))
        Decimal('0.72')
        >>> ExtendedContext.multiply(Decimal('0.9'), Decimal('-0'))
        Decimal('-0.0')
        >>> ExtendedContext.multiply(Decimal('654321'), Decimal('654321'))
        Decimal('4.28135971E+11')
        >>> ExtendedContext.multiply(7, 7)
        Decimal('49')
        >>> ExtendedContext.multiply(Decimal(7), 7)
        Decimal('49')
        >>> ExtendedContext.multiply(7, Decimal(7))
        Decimal('49')
        """
        a = _convert_other(a, raiseit=True)
        r = a.__mul__(b, context=self)
        if r is NotImplemented:
            raise TypeError("Unable to convert %s to Decimal" % b)
        else:
            return r

    def next_minus(self, a):
        """Returns the largest representable number smaller than a.

        >>> c = ExtendedContext.copy()
        >>> c.Emin = -999
        >>> c.Emax = 999
        >>> ExtendedContext.next_minus(Decimal('1'))
        Decimal('0.999999999')
        >>> c.next_minus(Decimal('1E-1007'))
        Decimal('0E-1007')
        >>> ExtendedContext.next_minus(Decimal('-1.00000003'))
        Decimal('-1.00000004')
        >>> c.next_minus(Decimal('Infinity'))
        Decimal('9.99999999E+999')
        >>> c.next_minus(1)
        Decimal('0.999999999')
        """
        a = _convert_other(a, raiseit=True)
        return a.next_minus(context=self)

    def next_plus(self, a):
        """Returns the smallest representable number larger than a.

        >>> c = ExtendedContext.copy()
        >>> c.Emin = -999
        >>> c.Emax = 999
        >>> ExtendedContext.next_plus(Decimal('1'))
        Decimal('1.00000001')
        >>> c.next_plus(Decimal('-1E-1007'))
        Decimal('-0E-1007')
        >>> ExtendedContext.next_plus(Decimal('-1.00000003'))
        Decimal('-1.00000002')
        >>> c.next_plus(Decimal('-Infinity'))
        Decimal('-9.99999999E+999')
        >>> c.next_plus(1)
        Decimal('1.00000001')
        """
        a = _convert_other(a, raiseit=True)
        return a.next_plus(context=self)

    def next_toward(self, a, b):
        """Returns the number closest to a, in direction towards b.

        The result is the closest representable number from the first
        operand (but not the first operand) that is in the direction
        towards the second operand, unless the operands have the same
        value.

        >>> c = ExtendedContext.copy()
        >>> c.Emin = -999
        >>> c.Emax = 999
        >>> c.next_toward(Decimal('1'), Decimal('2'))
        Decimal('1.00000001')
        >>> c.next_toward(Decimal('-1E-1007'), Decimal('1'))
        Decimal('-0E-1007')
        >>> c.next_toward(Decimal('-1.00000003'), Decimal('0'))
        Decimal('-1.00000002')
        >>> c.next_toward(Decimal('1'), Decimal('0'))
        Decimal('0.999999999')
        >>> c.next_toward(Decimal('1E-1007'), Decimal('-100'))
        Decimal('0E-1007')
        >>> c.next_toward(Decimal('-1.00000003'), Decimal('-10'))
        Decimal('-1.00000004')
        >>> c.next_toward(Decimal('0.00'), Decimal('-0.0000'))
        Decimal('-0.00')
        >>> c.next_toward(0, 1)
        Decimal('1E-1007')
        >>> c.next_toward(Decimal(0), 1)
        Decimal('1E-1007')
        >>> c.next_toward(0, Decimal(1))
        Decimal('1E-1007')
        """
        a = _convert_other(a, raiseit=True)
        return a.next_toward(b, context=self)

    def normalize(self, a):
        """normalize reduces an operand to its simplest form.

        Essentially a plus operation with all trailing zeros removed from the
        result.

        >>> ExtendedContext.normalize(Decimal('2.1'))
        Decimal('2.1')
        >>> ExtendedContext.normalize(Decimal('-2.0'))
        Decimal('-2')
        >>> ExtendedContext.normalize(Decimal('1.200'))
        Decimal('1.2')
        >>> ExtendedContext.normalize(Decimal('-120'))
        Decimal('-1.2E+2')
        >>> ExtendedContext.normalize(Decimal('120.00'))
        Decimal('1.2E+2')
        >>> ExtendedContext.normalize(Decimal('0.00'))
        Decimal('0')
        >>> ExtendedContext.normalize(6)
        Decimal('6')
        """
        a = _convert_other(a, raiseit=True)
        return a.normalize(context=self)

    def number_class(self, a):
        """Returns an indication of the class of the operand.

        The class is one of the following strings:
          -sNaN
          -NaN
          -Infinity
          -Normal
          -Subnormal
          -Zero
          +Zero
          +Subnormal
          +Normal
          +Infinity

        >>> c = Context(ExtendedContext)
        >>> c.Emin = -999
        >>> c.Emax = 999
        >>> c.number_class(Decimal('Infinity'))
        '+Infinity'
        >>> c.number_class(Decimal('1E-10'))
        '+Normal'
        >>> c.number_class(Decimal('2.50'))
        '+Normal'
        >>> c.number_class(Decimal('0.1E-999'))
        '+Subnormal'
        >>> c.number_class(Decimal('0'))
        '+Zero'
        >>> c.number_class(Decimal('-0'))
        '-Zero'
        >>> c.number_class(Decimal('-0.1E-999'))
        '-Subnormal'
        >>> c.number_class(Decimal('-1E-10'))
        '-Normal'
        >>> c.number_class(Decimal('-2.50'))
        '-Normal'
        >>> c.number_class(Decimal('-Infinity'))
        '-Infinity'
        >>> c.number_class(Decimal('NaN'))
        'NaN'
        >>> c.number_class(Decimal('-NaN'))
        'NaN'
        >>> c.number_class(Decimal('sNaN'))
        'sNaN'
        >>> c.number_class(123)
        '+Normal'
        """
        a = _convert_other(a, raiseit=True)
        return a.number_class(context=self)

    def plus(self, a):
        """Plus corresponds to unary prefix plus in Python.

        The operation is evaluated using the same rules as add; the
        operation plus(a) is calculated as add('0', a) where the '0'
        has the same exponent as the operand.

        >>> ExtendedContext.plus(Decimal('1.3'))
        Decimal('1.3')
        >>> ExtendedContext.plus(Decimal('-1.3'))
        Decimal('-1.3')
        >>> ExtendedContext.plus(-1)
        Decimal('-1')
        """
        a = _convert_other(a, raiseit=True)
        return a.__pos__(context=self)

    def power(self, a, b, modulo=None):
        """Raises a to the power of b, to modulo if given.

        With two arguments, compute a**b.  If a is negative then b
        must be integral.  The result will be inexact unless b is
        integral and the result is finite and can be expressed exactly
        in 'precision' digits.

        With three arguments, compute (a**b) % modulo.  For the
        three argument form, the following restrictions on the
        arguments hold:

         - all three arguments must be integral
         - b must be nonnegative
         - at least one of a or b must be nonzero
         - modulo must be nonzero and have at most 'precision' digits

        The result of pow(a, b, modulo) is identical to the result
        that would be obtained by computing (a**b) % modulo with
        unbounded precision, but is computed more efficiently.  It is
        always exact.

        >>> c = ExtendedContext.copy()
        >>> c.Emin = -999
        >>> c.Emax = 999
        >>> c.power(Decimal('2'), Decimal('3'))
        Decimal('8')
        >>> c.power(Decimal('-2'), Decimal('3'))
        Decimal('-8')
        >>> c.power(Decimal('2'), Decimal('-3'))
        Decimal('0.125')
        >>> c.power(Decimal('1.7'), Decimal('8'))
        Decimal('69.7575744')
        >>> c.power(Decimal('10'), Decimal('0.301029996'))
        Decimal('2.00000000')
        >>> c.power(Decimal('Infinity'), Decimal('-1'))
        Decimal('0')
        >>> c.power(Decimal('Infinity'), Decimal('0'))
        Decimal('1')
        >>> c.power(Decimal('Infinity'), Decimal('1'))
        Decimal('Infinity')
        >>> c.power(Decimal('-Infinity'), Decimal('-1'))
        Decimal('-0')
        >>> c.power(Decimal('-Infinity'), Decimal('0'))
        Decimal('1')
        >>> c.power(Decimal('-Infinity'), Decimal('1'))
        Decimal('-Infinity')
        >>> c.power(Decimal('-Infinity'), Decimal('2'))
        Decimal('Infinity')
        >>> c.power(Decimal('0'), Decimal('0'))
        Decimal('NaN')

        >>> c.power(Decimal('3'), Decimal('7'), Decimal('16'))
        Decimal('11')
        >>> c.power(Decimal('-3'), Decimal('7'), Decimal('16'))
        Decimal('-11')
        >>> c.power(Decimal('-3'), Decimal('8'), Decimal('16'))
        Decimal('1')
        >>> c.power(Decimal('3'), Decimal('7'), Decimal('-16'))
        Decimal('11')
        >>> c.power(Decimal('23E12345'), Decimal('67E189'), Decimal('123456789'))
        Decimal('11729830')
        >>> c.power(Decimal('-0'), Decimal('17'), Decimal('1729'))
        Decimal('-0')
        >>> c.power(Decimal('-23'), Decimal('0'), Decimal('65537'))
        Decimal('1')
        >>> ExtendedContext.power(7, 7)
        Decimal('823543')
        >>> ExtendedContext.power(Decimal(7), 7)
        Decimal('823543')
        >>> ExtendedContext.power(7, Decimal(7), 2)
        Decimal('1')
        """
        a = _convert_other(a, raiseit=True)
        r = a.__pow__(b, modulo, context=self)
        if r is NotImplemented:
            raise TypeError("Unable to convert %s to Decimal" % b)
        else:
            return r

    def quantize(self, a, b):
        """Returns a value equal to 'a' (rounded), having the exponent of 'b'.

        The coefficient of the result is derived from that of the left-hand
        operand.  It may be rounded using the current rounding setting (if the
        exponent is being increased), multiplied by a positive power of ten (if
        the exponent is being decreased), or is unchanged (if the exponent is
        already equal to that of the right-hand operand).

        Unlike other operations, if the length of the coefficient after the
        quantize operation would be greater than precision then an Invalid
        operation condition is raised.  This guarantees that, unless there is
        an error condition, the exponent of the result of a quantize is always
        equal to that of the right-hand operand.

        Also unlike other operations, quantize will never raise Underflow, even
        if the result is subnormal and inexact.

        >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.001'))
        Decimal('2.170')
        >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.01'))
        Decimal('2.17')
        >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.1'))
        Decimal('2.2')
        >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('1e+0'))
        Decimal('2')
        >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('1e+1'))
        Decimal('0E+1')
        >>> ExtendedContext.quantize(Decimal('-Inf'), Decimal('Infinity'))
        Decimal('-Infinity')
        >>> ExtendedContext.quantize(Decimal('2'), Decimal('Infinity'))
        Decimal('NaN')
        >>> ExtendedContext.quantize(Decimal('-0.1'), Decimal('1'))
        Decimal('-0')
        >>> ExtendedContext.quantize(Decimal('-0'), Decimal('1e+5'))
        Decimal('-0E+5')
        >>> ExtendedContext.quantize(Decimal('+35236450.6'), Decimal('1e-2'))
        Decimal('NaN')
        >>> ExtendedContext.quantize(Decimal('-35236450.6'), Decimal('1e-2'))
        Decimal('NaN')
        >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e-1'))
        Decimal('217.0')
        >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e-0'))
        Decimal('217')
        >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e+1'))
        Decimal('2.2E+2')
        >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e+2'))
        Decimal('2E+2')
        >>> ExtendedContext.quantize(1, 2)
        Decimal('1')
        >>> ExtendedContext.quantize(Decimal(1), 2)
        Decimal('1')
        >>> ExtendedContext.quantize(1, Decimal(2))
        Decimal('1')
        """
        a = _convert_other(a, raiseit=True)
        return a.quantize(b, context=self)

    def radix(self):
        """Just returns 10, as this is Decimal, :)

        >>> ExtendedContext.radix()
        Decimal('10')
        """
        return Decimal(10)

    def remainder(self, a, b):
        """Returns the remainder from integer division.

        The result is the residue of the dividend after the operation of
        calculating integer division as described for divide-integer, rounded
        to precision digits if necessary.  The sign of the result, if
        non-zero, is the same as that of the original dividend.

        This operation will fail under the same conditions as integer division
        (that is, if integer division on the same two operands would fail, the
        remainder cannot be calculated).

        >>> ExtendedContext.remainder(Decimal('2.1'), Decimal('3'))
        Decimal('2.1')
        >>> ExtendedContext.remainder(Decimal('10'), Decimal('3'))
        Decimal('1')
        >>> ExtendedContext.remainder(Decimal('-10'), Decimal('3'))
        Decimal('-1')
        >>> ExtendedContext.remainder(Decimal('10.2'), Decimal('1'))
        Decimal('0.2')
        >>> ExtendedContext.remainder(Decimal('10'), Decimal('0.3'))
        Decimal('0.1')
        >>> ExtendedContext.remainder(Decimal('3.6'), Decimal('1.3'))
        Decimal('1.0')
        >>> ExtendedContext.remainder(22, 6)
        Decimal('4')
        >>> ExtendedContext.remainder(Decimal(22), 6)
        Decimal('4')
        >>> ExtendedContext.remainder(22, Decimal(6))
        Decimal('4')
        """
        a = _convert_other(a, raiseit=True)
        r = a.__mod__(b, context=self)
        if r is NotImplemented:
            raise TypeError("Unable to convert %s to Decimal" % b)
        else:
            return r

    def remainder_near(self, a, b):
        """Returns to be "a - b * n", where n is the integer nearest the exact
        value of "x / b" (if two integers are equally near then the even one
        is chosen).  If the result is equal to 0 then its sign will be the
        sign of a.

        This operation will fail under the same conditions as integer division
        (that is, if integer division on the same two operands would fail, the
        remainder cannot be calculated).

        >>> ExtendedContext.remainder_near(Decimal('2.1'), Decimal('3'))
        Decimal('-0.9')
        >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('6'))
        Decimal('-2')
        >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('3'))
        Decimal('1')
        >>> ExtendedContext.remainder_near(Decimal('-10'), Decimal('3'))
        Decimal('-1')
        >>> ExtendedContext.remainder_near(Decimal('10.2'), Decimal('1'))
        Decimal('0.2')
        >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('0.3'))
        Decimal('0.1')
        >>> ExtendedContext.remainder_near(Decimal('3.6'), Decimal('1.3'))
        Decimal('-0.3')
        >>> ExtendedContext.remainder_near(3, 11)
        Decimal('3')
        >>> ExtendedContext.remainder_near(Decimal(3), 11)
        Decimal('3')
        >>> ExtendedContext.remainder_near(3, Decimal(11))
        Decimal('3')
        """
        a = _convert_other(a, raiseit=True)
        return a.remainder_near(b, context=self)

    def rotate(self, a, b):
        """Returns a rotated copy of a, b times.

        The coefficient of the result is a rotated copy of the digits in
        the coefficient of the first operand.  The number of places of
        rotation is taken from the absolute value of the second operand,
        with the rotation being to the left if the second operand is
        positive or to the right otherwise.

        >>> ExtendedContext.rotate(Decimal('34'), Decimal('8'))
        Decimal('400000003')
        >>> ExtendedContext.rotate(Decimal('12'), Decimal('9'))
        Decimal('12')
        >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('-2'))
        Decimal('891234567')
        >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('0'))
        Decimal('123456789')
        >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('+2'))
        Decimal('345678912')
        >>> ExtendedContext.rotate(1333333, 1)
        Decimal('13333330')
        >>> ExtendedContext.rotate(Decimal(1333333), 1)
        Decimal('13333330')
        >>> ExtendedContext.rotate(1333333, Decimal(1))
        Decimal('13333330')
        """
        a = _convert_other(a, raiseit=True)
        return a.rotate(b, context=self)

    def same_quantum(self, a, b):
        """Returns True if the two operands have the same exponent.

        The result is never affected by either the sign or the coefficient of
        either operand.

        >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('0.001'))
        False
        >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('0.01'))
        True
        >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('1'))
        False
        >>> ExtendedContext.same_quantum(Decimal('Inf'), Decimal('-Inf'))
        True
        >>> ExtendedContext.same_quantum(10000, -1)
        True
        >>> ExtendedContext.same_quantum(Decimal(10000), -1)
        True
        >>> ExtendedContext.same_quantum(10000, Decimal(-1))
        True
        """
        a = _convert_other(a, raiseit=True)
        return a.same_quantum(b)

    def scaleb (self, a, b):
        """Returns the first operand after adding the second value its exp.

        >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('-2'))
        Decimal('0.0750')
        >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('0'))
        Decimal('7.50')
        >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('3'))
        Decimal('7.50E+3')
        >>> ExtendedContext.scaleb(1, 4)
        Decimal('1E+4')
        >>> ExtendedContext.scaleb(Decimal(1), 4)
        Decimal('1E+4')
        >>> ExtendedContext.scaleb(1, Decimal(4))
        Decimal('1E+4')
        """
        a = _convert_other(a, raiseit=True)
        return a.scaleb(b, context=self)

    def shift(self, a, b):
        """Returns a shifted copy of a, b times.

        The coefficient of the result is a shifted copy of the digits
        in the coefficient of the first operand.  The number of places
        to shift is taken from the absolute value of the second operand,
        with the shift being to the left if the second operand is
        positive or to the right otherwise.  Digits shifted into the
        coefficient are zeros.

        >>> ExtendedContext.shift(Decimal('34'), Decimal('8'))
        Decimal('400000000')
        >>> ExtendedContext.shift(Decimal('12'), Decimal('9'))
        Decimal('0')
        >>> ExtendedContext.shift(Decimal('123456789'), Decimal('-2'))
        Decimal('1234567')
        >>> ExtendedContext.shift(Decimal('123456789'), Decimal('0'))
        Decimal('123456789')
        >>> ExtendedContext.shift(Decimal('123456789'), Decimal('+2'))
        Decimal('345678900')
        >>> ExtendedContext.shift(88888888, 2)
        Decimal('888888800')
        >>> ExtendedContext.shift(Decimal(88888888), 2)
        Decimal('888888800')
        >>> ExtendedContext.shift(88888888, Decimal(2))
        Decimal('888888800')
        """
        a = _convert_other(a, raiseit=True)
        return a.shift(b, context=self)

    def sqrt(self, a):
        """Square root of a non-negative number to context precision.

        If the result must be inexact, it is rounded using the round-half-even
        algorithm.

        >>> ExtendedContext.sqrt(Decimal('0'))
        Decimal('0')
        >>> ExtendedContext.sqrt(Decimal('-0'))
        Decimal('-0')
        >>> ExtendedContext.sqrt(Decimal('0.39'))
        Decimal('0.624499800')
        >>> ExtendedContext.sqrt(Decimal('100'))
        Decimal('10')
        >>> ExtendedContext.sqrt(Decimal('1'))
        Decimal('1')
        >>> ExtendedContext.sqrt(Decimal('1.0'))
        Decimal('1.0')
        >>> ExtendedContext.sqrt(Decimal('1.00'))
        Decimal('1.0')
        >>> ExtendedContext.sqrt(Decimal('7'))
        Decimal('2.64575131')
        >>> ExtendedContext.sqrt(Decimal('10'))
        Decimal('3.16227766')
        >>> ExtendedContext.sqrt(2)
        Decimal('1.41421356')
        >>> ExtendedContext.prec
        9
        """
        a = _convert_other(a, raiseit=True)
        return a.sqrt(context=self)

    def subtract(self, a, b):
        """Return the difference between the two operands.

        >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('1.07'))
        Decimal('0.23')
        >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('1.30'))
        Decimal('0.00')
        >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('2.07'))
        Decimal('-0.77')
        >>> ExtendedContext.subtract(8, 5)
        Decimal('3')
        >>> ExtendedContext.subtract(Decimal(8), 5)
        Decimal('3')
        >>> ExtendedContext.subtract(8, Decimal(5))
        Decimal('3')
        """
        a = _convert_other(a, raiseit=True)
        r = a.__sub__(b, context=self)
        if r is NotImplemented:
            raise TypeError("Unable to convert %s to Decimal" % b)
        else:
            return r

    def to_eng_string(self, a):
        """Convert to a string, using engineering notation if an exponent is needed.

        Engineering notation has an exponent which is a multiple of 3.  This
        can leave up to 3 digits to the left of the decimal place and may
        require the addition of either one or two trailing zeros.

        The operation is not affected by the context.

        >>> ExtendedContext.to_eng_string(Decimal('123E+1'))
        '1.23E+3'
        >>> ExtendedContext.to_eng_string(Decimal('123E+3'))
        '123E+3'
        >>> ExtendedContext.to_eng_string(Decimal('123E-10'))
        '12.3E-9'
        >>> ExtendedContext.to_eng_string(Decimal('-123E-12'))
        '-123E-12'
        >>> ExtendedContext.to_eng_string(Decimal('7E-7'))
        '700E-9'
        >>> ExtendedContext.to_eng_string(Decimal('7E+1'))
        '70'
        >>> ExtendedContext.to_eng_string(Decimal('0E+1'))
        '0.00E+3'

        """
        a = _convert_other(a, raiseit=True)
        return a.to_eng_string(context=self)

    def to_sci_string(self, a):
        """Converts a number to a string, using scientific notation.

        The operation is not affected by the context.
        """
        a = _convert_other(a, raiseit=True)
        return a.__str__(context=self)

    def to_integral_exact(self, a):
        """Rounds to an integer.

        When the operand has a negative exponent, the result is the same
        as using the quantize() operation using the given operand as the
        left-hand-operand, 1E+0 as the right-hand-operand, and the precision
        of the operand as the precision setting; Inexact and Rounded flags
        are allowed in this operation.  The rounding mode is taken from the
        context.

        >>> ExtendedContext.to_integral_exact(Decimal('2.1'))
        Decimal('2')
        >>> ExtendedContext.to_integral_exact(Decimal('100'))
        Decimal('100')
        >>> ExtendedContext.to_integral_exact(Decimal('100.0'))
        Decimal('100')
        >>> ExtendedContext.to_integral_exact(Decimal('101.5'))
        Decimal('102')
        >>> ExtendedContext.to_integral_exact(Decimal('-101.5'))
        Decimal('-102')
        >>> ExtendedContext.to_integral_exact(Decimal('10E+5'))
        Decimal('1.0E+6')
        >>> ExtendedContext.to_integral_exact(Decimal('7.89E+77'))
        Decimal('7.89E+77')
        >>> ExtendedContext.to_integral_exact(Decimal('-Inf'))
        Decimal('-Infinity')
        """
        a = _convert_other(a, raiseit=True)
        return a.to_integral_exact(context=self)

    def to_integral_value(self, a):
        """Rounds to an integer.

        When the operand has a negative exponent, the result is the same
        as using the quantize() operation using the given operand as the
        left-hand-operand, 1E+0 as the right-hand-operand, and the precision
        of the operand as the precision setting, except that no flags will
        be set.  The rounding mode is taken from the context.

        >>> ExtendedContext.to_integral_value(Decimal('2.1'))
        Decimal('2')
        >>> ExtendedContext.to_integral_value(Decimal('100'))
        Decimal('100')
        >>> ExtendedContext.to_integral_value(Decimal('100.0'))
        Decimal('100')
        >>> ExtendedContext.to_integral_value(Decimal('101.5'))
        Decimal('102')
        >>> ExtendedContext.to_integral_value(Decimal('-101.5'))
        Decimal('-102')
        >>> ExtendedContext.to_integral_value(Decimal('10E+5'))
        Decimal('1.0E+6')
        >>> ExtendedContext.to_integral_value(Decimal('7.89E+77'))
        Decimal('7.89E+77')
        >>> ExtendedContext.to_integral_value(Decimal('-Inf'))
        Decimal('-Infinity')
        """
        a = _convert_other(a, raiseit=True)
        return a.to_integral_value(context=self)

    # the method name changed, but we provide also the old one, for compatibility
    to_integral = to_integral_value

class _WorkRep(object):
    __slots__ = ('sign','int','exp')
    # sign: 0 or 1
    # int:  int or long
    # exp:  None, int, or string

    def __init__(self, value=None):
        if value is None:
            self.sign = None
            self.int = 0
            self.exp = None
        elif isinstance(value, Decimal):
            self.sign = value._sign
            self.int = int(value._int)
            self.exp = value._exp
        else:
            # assert isinstance(value, tuple)
            self.sign = value[0]
            self.int = value[1]
            self.exp = value[2]

    def __repr__(self):
        return "(%r, %r, %r)" % (self.sign, self.int, self.exp)

    __str__ = __repr__



def _normalize(op1, op2, prec = 0):
    """Normalizes op1, op2 to have the same exp and length of coefficient.

    Done during addition.
    """
    if op1.exp < op2.exp:
        tmp = op2
        other = op1
    else:
        tmp = op1
        other = op2

    # Let exp = min(tmp.exp - 1, tmp.adjusted() - precision - 1).
    # Then adding 10**exp to tmp has the same effect (after rounding)
    # as adding any positive quantity smaller than 10**exp; similarly
    # for subtraction.  So if other is smaller than 10**exp we replace
    # it with 10**exp.  This avoids tmp.exp - other.exp getting too large.
    tmp_len = len(str(tmp.int))
    other_len = len(str(other.int))
    exp = tmp.exp + min(-1, tmp_len - prec - 2)
    if other_len + other.exp - 1 < exp:
        other.int = 1
        other.exp = exp

    tmp.int *= 10 ** (tmp.exp - other.exp)
    tmp.exp = other.exp
    return op1, op2

##### Integer arithmetic functions used by ln, log10, exp and __pow__ #####

# This function from Tim Peters was taken from here:
# http://mail.python.org/pipermail/python-list/1999-July/007758.html
# The correction being in the function definition is for speed, and
# the whole function is not resolved with math.log because of avoiding
# the use of floats.
def _nbits(n, correction = {
        '0': 4, '1': 3, '2': 2, '3': 2,
        '4': 1, '5': 1, '6': 1, '7': 1,
        '8': 0, '9': 0, 'a': 0, 'b': 0,
        'c': 0, 'd': 0, 'e': 0, 'f': 0}):
    """Number of bits in binary representation of the positive integer n,
    or 0 if n == 0.
    """
    if n < 0:
        raise ValueError("The argument to _nbits should be nonnegative.")
    hex_n = "%x" % n
    return 4*len(hex_n) - correction[hex_n[0]]

def _decimal_lshift_exact(n, e):
    """ Given integers n and e, return n * 10**e if it's an integer, else None.

    The computation is designed to avoid computing large powers of 10
    unnecessarily.

    >>> _decimal_lshift_exact(3, 4)
    30000
    >>> _decimal_lshift_exact(300, -999999999)  # returns None

    """
    if n == 0:
        return 0
    elif e >= 0:
        return n * 10**e
    else:
        # val_n = largest power of 10 dividing n.
        str_n = str(abs(n))
        val_n = len(str_n) - len(str_n.rstrip('0'))
        return None if val_n < -e else n // 10**-e

def _sqrt_nearest(n, a):
    """Closest integer to the square root of the positive integer n.  a is
    an initial approximation to the square root.  Any positive integer
    will do for a, but the closer a is to the square root of n the
    faster convergence will be.

    """
    if n <= 0 or a <= 0:
        raise ValueError("Both arguments to _sqrt_nearest should be positive.")

    b=0
    while a != b:
        b, a = a, a--n//a>>1
    return a

def _rshift_nearest(x, shift):
    """Given an integer x and a nonnegative integer shift, return closest
    integer to x / 2**shift; use round-to-even in case of a tie.

    """
    b, q = 1L << shift, x >> shift
    return q + (2*(x & (b-1)) + (q&1) > b)

def _div_nearest(a, b):
    """Closest integer to a/b, a and b positive integers; rounds to even
    in the case of a tie.

    """
    q, r = divmod(a, b)
    return q + (2*r + (q&1) > b)

def _ilog(x, M, L = 8):
    """Integer approximation to M*log(x/M), with absolute error boundable
    in terms only of x/M.

    Given positive integers x and M, return an integer approximation to
    M * log(x/M).  For L = 8 and 0.1 <= x/M <= 10 the difference
    between the approximation and the exact result is at most 22.  For
    L = 8 and 1.0 <= x/M <= 10.0 the difference is at most 15.  In
    both cases these are upper bounds on the error; it will usually be
    much smaller."""

    # The basic algorithm is the following: let log1p be the function
    # log1p(x) = log(1+x).  Then log(x/M) = log1p((x-M)/M).  We use
    # the reduction
    #
    #    log1p(y) = 2*log1p(y/(1+sqrt(1+y)))
    #
    # repeatedly until the argument to log1p is small (< 2**-L in
    # absolute value).  For small y we can use the Taylor series
    # expansion
    #
    #    log1p(y) ~ y - y**2/2 + y**3/3 - ... - (-y)**T/T
    #
    # truncating at T such that y**T is small enough.  The whole
    # computation is carried out in a form of fixed-point arithmetic,
    # with a real number z being represented by an integer
    # approximation to z*M.  To avoid loss of precision, the y below
    # is actually an integer approximation to 2**R*y*M, where R is the
    # number of reductions performed so far.

    y = x-M
    # argument reduction; R = number of reductions performed
    R = 0
    while (R <= L and long(abs(y)) << L-R >= M or
           R > L and abs(y) >> R-L >= M):
        y = _div_nearest(long(M*y) << 1,
                         M + _sqrt_nearest(M*(M+_rshift_nearest(y, R)), M))
        R += 1

    # Taylor series with T terms
    T = -int(-10*len(str(M))//(3*L))
    yshift = _rshift_nearest(y, R)
    w = _div_nearest(M, T)
    for k in xrange(T-1, 0, -1):
        w = _div_nearest(M, k) - _div_nearest(yshift*w, M)

    return _div_nearest(w*y, M)

def _dlog10(c, e, p):
    """Given integers c, e and p with c > 0, p >= 0, compute an integer
    approximation to 10**p * log10(c*10**e), with an absolute error of
    at most 1.  Assumes that c*10**e is not exactly 1."""

    # increase precision by 2; compensate for this by dividing
    # final result by 100
    p += 2

    # write c*10**e as d*10**f with either:
    #   f >= 0 and 1 <= d <= 10, or
    #   f <= 0 and 0.1 <= d <= 1.
    # Thus for c*10**e close to 1, f = 0
    l = len(str(c))
    f = e+l - (e+l >= 1)

    if p > 0:
        M = 10**p
        k = e+p-f
        if k >= 0:
            c *= 10**k
        else:
            c = _div_nearest(c, 10**-k)

        log_d = _ilog(c, M) # error < 5 + 22 = 27
        log_10 = _log10_digits(p) # error < 1
        log_d = _div_nearest(log_d*M, log_10)
        log_tenpower = f*M # exact
    else:
        log_d = 0  # error < 2.31
        log_tenpower = _div_nearest(f, 10**-p) # error < 0.5

    return _div_nearest(log_tenpower+log_d, 100)

def _dlog(c, e, p):
    """Given integers c, e and p with c > 0, compute an integer
    approximation to 10**p * log(c*10**e), with an absolute error of
    at most 1.  Assumes that c*10**e is not exactly 1."""

    # Increase precision by 2. The precision increase is compensated
    # for at the end with a division by 100.
    p += 2

    # rewrite c*10**e as d*10**f with either f >= 0 and 1 <= d <= 10,
    # or f <= 0 and 0.1 <= d <= 1.  Then we can compute 10**p * log(c*10**e)
    # as 10**p * log(d) + 10**p*f * log(10).
    l = len(str(c))
    f = e+l - (e+l >= 1)

    # compute approximation to 10**p*log(d), with error < 27
    if p > 0:
        k = e+p-f
        if k >= 0:
            c *= 10**k
        else:
            c = _div_nearest(c, 10**-k)  # error of <= 0.5 in c

        # _ilog magnifies existing error in c by a factor of at most 10
        log_d = _ilog(c, 10**p) # error < 5 + 22 = 27
    else:
        # p <= 0: just approximate the whole thing by 0; error < 2.31
        log_d = 0

    # compute approximation to f*10**p*log(10), with error < 11.
    if f:
        extra = len(str(abs(f)))-1
        if p + extra >= 0:
            # error in f * _log10_digits(p+extra) < |f| * 1 = |f|
            # after division, error < |f|/10**extra + 0.5 < 10 + 0.5 < 11
            f_log_ten = _div_nearest(f*_log10_digits(p+extra), 10**extra)
        else:
            f_log_ten = 0
    else:
        f_log_ten = 0

    # error in sum < 11+27 = 38; error after division < 0.38 + 0.5 < 1
    return _div_nearest(f_log_ten + log_d, 100)

class _Log10Memoize(object):
    """Class to compute, store, and allow retrieval of, digits of the
    constant log(10) = 2.302585....  This constant is needed by
    Decimal.ln, Decimal.log10, Decimal.exp and Decimal.__pow__."""
    def __init__(self):
        self.digits = "23025850929940456840179914546843642076011014886"

    def getdigits(self, p):
        """Given an integer p >= 0, return floor(10**p)*log(10).

        For example, self.getdigits(3) returns 2302.
        """
        # digits are stored as a string, for quick conversion to
        # integer in the case that we've already computed enough
        # digits; the stored digits should always be correct
        # (truncated, not rounded to nearest).
        if p < 0:
            raise ValueError("p should be nonnegative")

        if p >= len(self.digits):
            # compute p+3, p+6, p+9, ... digits; continue until at
            # least one of the extra digits is nonzero
            extra = 3
            while True:
                # compute p+extra digits, correct to within 1ulp
                M = 10**(p+extra+2)
                digits = str(_div_nearest(_ilog(10*M, M), 100))
                if digits[-extra:] != '0'*extra:
                    break
                extra += 3
            # keep all reliable digits so far; remove trailing zeros
            # and next nonzero digit
            self.digits = digits.rstrip('0')[:-1]
        return int(self.digits[:p+1])

_log10_digits = _Log10Memoize().getdigits

def _iexp(x, M, L=8):
    """Given integers x and M, M > 0, such that x/M is small in absolute
    value, compute an integer approximation to M*exp(x/M).  For 0 <=
    x/M <= 2.4, the absolute error in the result is bounded by 60 (and
    is usually much smaller)."""

    # Algorithm: to compute exp(z) for a real number z, first divide z
    # by a suitable power R of 2 so that |z/2**R| < 2**-L.  Then
    # compute expm1(z/2**R) = exp(z/2**R) - 1 using the usual Taylor
    # series
    #
    #     expm1(x) = x + x**2/2! + x**3/3! + ...
    #
    # Now use the identity
    #
    #     expm1(2x) = expm1(x)*(expm1(x)+2)
    #
    # R times to compute the sequence expm1(z/2**R),
    # expm1(z/2**(R-1)), ... , exp(z/2), exp(z).

    # Find R such that x/2**R/M <= 2**-L
    R = _nbits((long(x)<<L)//M)

    # Taylor series.  (2**L)**T > M
    T = -int(-10*len(str(M))//(3*L))
    y = _div_nearest(x, T)
    Mshift = long(M)<<R
    for i in xrange(T-1, 0, -1):
        y = _div_nearest(x*(Mshift + y), Mshift * i)

    # Expansion
    for k in xrange(R-1, -1, -1):
        Mshift = long(M)<<(k+2)
        y = _div_nearest(y*(y+Mshift), Mshift)

    return M+y

def _dexp(c, e, p):
    """Compute an approximation to exp(c*10**e), with p decimal places of
    precision.

    Returns integers d, f such that:

      10**(p-1) <= d <= 10**p, and
      (d-1)*10**f < exp(c*10**e) < (d+1)*10**f

    In other words, d*10**f is an approximation to exp(c*10**e) with p
    digits of precision, and with an error in d of at most 1.  This is
    almost, but not quite, the same as the error being < 1ulp: when d
    = 10**(p-1) the error could be up to 10 ulp."""

    # we'll call iexp with M = 10**(p+2), giving p+3 digits of precision
    p += 2

    # compute log(10) with extra precision = adjusted exponent of c*10**e
    extra = max(0, e + len(str(c)) - 1)
    q = p + extra

    # compute quotient c*10**e/(log(10)) = c*10**(e+q)/(log(10)*10**q),
    # rounding down
    shift = e+q
    if shift >= 0:
        cshift = c*10**shift
    else:
        cshift = c//10**-shift
    quot, rem = divmod(cshift, _log10_digits(q))

    # reduce remainder back to original precision
    rem = _div_nearest(rem, 10**extra)

    # error in result of _iexp < 120;  error after division < 0.62
    return _div_nearest(_iexp(rem, 10**p), 1000), quot - p + 3

def _dpower(xc, xe, yc, ye, p):
    """Given integers xc, xe, yc and ye representing Decimals x = xc*10**xe and
    y = yc*10**ye, compute x**y.  Returns a pair of integers (c, e) such that:

      10**(p-1) <= c <= 10**p, and
      (c-1)*10**e < x**y < (c+1)*10**e

    in other words, c*10**e is an approximation to x**y with p digits
    of precision, and with an error in c of at most 1.  (This is
    almost, but not quite, the same as the error being < 1ulp: when c
    == 10**(p-1) we can only guarantee error < 10ulp.)

    We assume that: x is positive and not equal to 1, and y is nonzero.
    """

    # Find b such that 10**(b-1) <= |y| <= 10**b
    b = len(str(abs(yc))) + ye

    # log(x) = lxc*10**(-p-b-1), to p+b+1 places after the decimal point
    lxc = _dlog(xc, xe, p+b+1)

    # compute product y*log(x) = yc*lxc*10**(-p-b-1+ye) = pc*10**(-p-1)
    shift = ye-b
    if shift >= 0:
        pc = lxc*yc*10**shift
    else:
        pc = _div_nearest(lxc*yc, 10**-shift)

    if pc == 0:
        # we prefer a result that isn't exactly 1; this makes it
        # easier to compute a correctly rounded result in __pow__
        if ((len(str(xc)) + xe >= 1) == (yc > 0)): # if x**y > 1:
            coeff, exp = 10**(p-1)+1, 1-p
        else:
            coeff, exp = 10**p-1, -p
    else:
        coeff, exp = _dexp(pc, -(p+1), p+1)
        coeff = _div_nearest(coeff, 10)
        exp += 1

    return coeff, exp

def _log10_lb(c, correction = {
        '1': 100, '2': 70, '3': 53, '4': 40, '5': 31,
        '6': 23, '7': 16, '8': 10, '9': 5}):
    """Compute a lower bound for 100*log10(c) for a positive integer c."""
    if c <= 0:
        raise ValueError("The argument to _log10_lb should be nonnegative.")
    str_c = str(c)
    return 100*len(str_c) - correction[str_c[0]]

##### Helper Functions ####################################################

def _convert_other(other, raiseit=False, allow_float=False):
    """Convert other to Decimal.

    Verifies that it's ok to use in an implicit construction.
    If allow_float is true, allow conversion from float;  this
    is used in the comparison methods (__eq__ and friends).

    """
    if isinstance(other, Decimal):
        return other
    if isinstance(other, (int, long)):
        return Decimal(other)
    if allow_float and isinstance(other, float):
        return Decimal.from_float(other)

    if raiseit:
        raise TypeError("Unable to convert %s to Decimal" % other)
    return NotImplemented

##### Setup Specific Contexts ############################################

# The default context prototype used by Context()
# Is mutable, so that new contexts can have different default values

DefaultContext = Context(
        prec=28, rounding=ROUND_HALF_EVEN,
        traps=[DivisionByZero, Overflow, InvalidOperation],
        flags=[],
        Emax=999999999,
        Emin=-999999999,
        capitals=1
)

# Pre-made alternate contexts offered by the specification
# Don't change these; the user should be able to select these
# contexts and be able to reproduce results from other implementations
# of the spec.

BasicContext = Context(
        prec=9, rounding=ROUND_HALF_UP,
        traps=[DivisionByZero, Overflow, InvalidOperation, Clamped, Underflow],
        flags=[],
)

ExtendedContext = Context(
        prec=9, rounding=ROUND_HALF_EVEN,
        traps=[],
        flags=[],
)


##### crud for parsing strings #############################################
#
# Regular expression used for parsing numeric strings.  Additional
# comments:
#
# 1. Uncomment the two '\s*' lines to allow leading and/or trailing
# whitespace.  But note that the specification disallows whitespace in
# a numeric string.
#
# 2. For finite numbers (not infinities and NaNs) the body of the
# number between the optional sign and the optional exponent must have
# at least one decimal digit, possibly after the decimal point.  The
# lookahead expression '(?=\d|\.\d)' checks this.

import re
_parser = re.compile(r"""        # A numeric string consists of:
#    \s*
    (?P<sign>[-+])?              # an optional sign, followed by either...
    (
        (?=\d|\.\d)              # ...a number (with at least one digit)
        (?P<int>\d*)             # having a (possibly empty) integer part
        (\.(?P<frac>\d*))?       # followed by an optional fractional part
        (E(?P<exp>[-+]?\d+))?    # followed by an optional exponent, or...
    |
        Inf(inity)?              # ...an infinity, or...
    |
        (?P<signal>s)?           # ...an (optionally signaling)
        NaN                      # NaN
        (?P<diag>\d*)            # with (possibly empty) diagnostic info.
    )
#    \s*
    \Z
""", re.VERBOSE | re.IGNORECASE | re.UNICODE).match

_all_zeros = re.compile('0*$').match
_exact_half = re.compile('50*$').match

##### PEP3101 support functions ##############################################
# The functions in this section have little to do with the Decimal
# class, and could potentially be reused or adapted for other pure
# Python numeric classes that want to implement __format__
#
# A format specifier for Decimal looks like:
#
#   [[fill]align][sign][0][minimumwidth][,][.precision][type]

_parse_format_specifier_regex = re.compile(r"""\A
(?:
   (?P<fill>.)?
   (?P<align>[<>=^])
)?
(?P<sign>[-+ ])?
(?P<zeropad>0)?
(?P<minimumwidth>(?!0)\d+)?
(?P<thousands_sep>,)?
(?:\.(?P<precision>0|(?!0)\d+))?
(?P<type>[eEfFgGn%])?
\Z
""", re.VERBOSE)

del re

# The locale module is only needed for the 'n' format specifier.  The
# rest of the PEP 3101 code functions quite happily without it, so we
# don't care too much if locale isn't present.
try:
    import locale as _locale
except ImportError:
    pass

def _parse_format_specifier(format_spec, _localeconv=None):
    """Parse and validate a format specifier.

    Turns a standard numeric format specifier into a dict, with the
    following entries:

      fill: fill character to pad field to minimum width
      align: alignment type, either '<', '>', '=' or '^'
      sign: either '+', '-' or ' '
      minimumwidth: nonnegative integer giving minimum width
      zeropad: boolean, indicating whether to pad with zeros
      thousands_sep: string to use as thousands separator, or ''
      grouping: grouping for thousands separators, in format
        used by localeconv
      decimal_point: string to use for decimal point
      precision: nonnegative integer giving precision, or None
      type: one of the characters 'eEfFgG%', or None
      unicode: boolean (always True for Python 3.x)

    """
    m = _parse_format_specifier_regex.match(format_spec)
    if m is None:
        raise ValueError("Invalid format specifier: " + format_spec)

    # get the dictionary
    format_dict = m.groupdict()

    # zeropad; defaults for fill and alignment.  If zero padding
    # is requested, the fill and align fields should be absent.
    fill = format_dict['fill']
    align = format_dict['align']
    format_dict['zeropad'] = (format_dict['zeropad'] is not None)
    if format_dict['zeropad']:
        if fill is not None:
            raise ValueError("Fill character conflicts with '0'"
                             " in format specifier: " + format_spec)
        if align is not None:
            raise ValueError("Alignment conflicts with '0' in "
                             "format specifier: " + format_spec)
    format_dict['fill'] = fill or ' '
    # PEP 3101 originally specified that the default alignment should
    # be left;  it was later agreed that right-aligned makes more sense
    # for numeric types.  See http://bugs.python.org/issue6857.
    format_dict['align'] = align or '>'

    # default sign handling: '-' for negative, '' for positive
    if format_dict['sign'] is None:
        format_dict['sign'] = '-'

    # minimumwidth defaults to 0; precision remains None if not given
    format_dict['minimumwidth'] = int(format_dict['minimumwidth'] or '0')
    if format_dict['precision'] is not None:
        format_dict['precision'] = int(format_dict['precision'])

    # if format type is 'g' or 'G' then a precision of 0 makes little
    # sense; convert it to 1.  Same if format type is unspecified.
    if format_dict['precision'] == 0:
        if format_dict['type'] is None or format_dict['type'] in 'gG':
            format_dict['precision'] = 1

    # determine thousands separator, grouping, and decimal separator, and
    # add appropriate entries to format_dict
    if format_dict['type'] == 'n':
        # apart from separators, 'n' behaves just like 'g'
        format_dict['type'] = 'g'
        if _localeconv is None:
            _localeconv = _locale.localeconv()
        if format_dict['thousands_sep'] is not None:
            raise ValueError("Explicit thousands separator conflicts with "
                             "'n' type in format specifier: " + format_spec)
        format_dict['thousands_sep'] = _localeconv['thousands_sep']
        format_dict['grouping'] = _localeconv['grouping']
        format_dict['decimal_point'] = _localeconv['decimal_point']
    else:
        if format_dict['thousands_sep'] is None:
            format_dict['thousands_sep'] = ''
        format_dict['grouping'] = [3, 0]
        format_dict['decimal_point'] = '.'

    # record whether return type should be str or unicode
    try:
        format_dict['unicode'] = isinstance(format_spec, unicode)
    except NameError:
        format_dict['unicode'] = False

    return format_dict

def _format_align(sign, body, spec):
    """Given an unpadded, non-aligned numeric string 'body' and sign
    string 'sign', add padding and alignment conforming to the given
    format specifier dictionary 'spec' (as produced by
    parse_format_specifier).

    Also converts result to unicode if necessary.

    """
    # how much extra space do we have to play with?
    minimumwidth = spec['minimumwidth']
    fill = spec['fill']
    padding = fill*(minimumwidth - len(sign) - len(body))

    align = spec['align']
    if align == '<':
        result = sign + body + padding
    elif align == '>':
        result = padding + sign + body
    elif align == '=':
        result = sign + padding + body
    elif align == '^':
        half = len(padding)//2
        result = padding[:half] + sign + body + padding[half:]
    else:
        raise ValueError('Unrecognised alignment field')

    # make sure that result is unicode if necessary
    if spec['unicode']:
        result = unicode(result)

    return result

def _group_lengths(grouping):
    """Convert a localeconv-style grouping into a (possibly infinite)
    iterable of integers representing group lengths.

    """
    # The result from localeconv()['grouping'], and the input to this
    # function, should be a list of integers in one of the
    # following three forms:
    #
    #   (1) an empty list, or
    #   (2) nonempty list of positive integers + [0]
    #   (3) list of positive integers + [locale.CHAR_MAX], or

    from itertools import chain, repeat
    if not grouping:
        return []
    elif grouping[-1] == 0 and len(grouping) >= 2:
        return chain(grouping[:-1], repeat(grouping[-2]))
    elif grouping[-1] == _locale.CHAR_MAX:
        return grouping[:-1]
    else:
        raise ValueError('unrecognised format for grouping')

def _insert_thousands_sep(digits, spec, min_width=1):
    """Insert thousands separators into a digit string.

    spec is a dictionary whose keys should include 'thousands_sep' and
    'grouping'; typically it's the result of parsing the format
    specifier using _parse_format_specifier.

    The min_width keyword argument gives the minimum length of the
    result, which will be padded on the left with zeros if necessary.

    If necessary, the zero padding adds an extra '0' on the left to
    avoid a leading thousands separator.  For example, inserting
    commas every three digits in '123456', with min_width=8, gives
    '0,123,456', even though that has length 9.

    """

    sep = spec['thousands_sep']
    grouping = spec['grouping']

    groups = []
    for l in _group_lengths(grouping):
        if l <= 0:
            raise ValueError("group length should be positive")
        # max(..., 1) forces at least 1 digit to the left of a separator
        l = min(max(len(digits), min_width, 1), l)
        groups.append('0'*(l - len(digits)) + digits[-l:])
        digits = digits[:-l]
        min_width -= l
        if not digits and min_width <= 0:
            break
        min_width -= len(sep)
    else:
        l = max(len(digits), min_width, 1)
        groups.append('0'*(l - len(digits)) + digits[-l:])
    return sep.join(reversed(groups))

def _format_sign(is_negative, spec):
    """Determine sign character."""

    if is_negative:
        return '-'
    elif spec['sign'] in ' +':
        return spec['sign']
    else:
        return ''

def _format_number(is_negative, intpart, fracpart, exp, spec):
    """Format a number, given the following data:

    is_negative: true if the number is negative, else false
    intpart: string of digits that must appear before the decimal point
    fracpart: string of digits that must come after the point
    exp: exponent, as an integer
    spec: dictionary resulting from parsing the format specifier

    This function uses the information in spec to:
      insert separators (decimal separator and thousands separators)
      format the sign
      format the exponent
      add trailing '%' for the '%' type
      zero-pad if necessary
      fill and align if necessary
    """

    sign = _format_sign(is_negative, spec)

    if fracpart:
        fracpart = spec['decimal_point'] + fracpart

    if exp != 0 or spec['type'] in 'eE':
        echar = {'E': 'E', 'e': 'e', 'G': 'E', 'g': 'e'}[spec['type']]
        fracpart += "{0}{1:+}".format(echar, exp)
    if spec['type'] == '%':
        fracpart += '%'

    if spec['zeropad']:
        min_width = spec['minimumwidth'] - len(fracpart) - len(sign)
    else:
        min_width = 0
    intpart = _insert_thousands_sep(intpart, spec, min_width)

    return _format_align(sign, intpart+fracpart, spec)


##### Useful Constants (internal use only) ################################

# Reusable defaults
_Infinity = Decimal('Inf')
_NegativeInfinity = Decimal('-Inf')
_NaN = Decimal('NaN')
_Zero = Decimal(0)
_One = Decimal(1)
_NegativeOne = Decimal(-1)

# _SignedInfinity[sign] is infinity w/ that sign
_SignedInfinity = (_Infinity, _NegativeInfinity)



if __name__ == '__main__':
    import doctest, sys
    doctest.testmod(sys.modules[__name__])




          

      

      

    

  

    
      
          
            
  All modules for which code is available

	Tkinter

	__builtin__

	_abcoll

	ast

	collections

	datetime

	decimal

	logging

	numbers

	robot.api.deco

	robot.api.exceptions

	robot.api.logger

	robot.conf.gatherfailed

	robot.conf.settings

	robot.errors

	robot.htmldata.htmlfilewriter

	robot.htmldata.jsonwriter

	robot.htmldata.normaltemplate

	robot.libdoc

	robot.libdocpkg.builder

	robot.libdocpkg.consoleviewer

	robot.libdocpkg.datatypes

	robot.libdocpkg.htmlutils

	robot.libdocpkg.htmlwriter

	robot.libdocpkg.javabuilder

	robot.libdocpkg.jsonbuilder

	robot.libdocpkg.jsonwriter

	robot.libdocpkg.model

	robot.libdocpkg.output

	robot.libdocpkg.robotbuilder

	robot.libdocpkg.specbuilder

	robot.libdocpkg.writer

	robot.libdocpkg.xmlwriter

	robot.libraries.BuiltIn

	robot.libraries.Collections

	robot.libraries.DateTime

	robot.libraries.Dialogs

	robot.libraries.Easter

	robot.libraries.OperatingSystem

	robot.libraries.Process

	robot.libraries.Remote

	robot.libraries.Reserved

	robot.libraries.Screenshot

	robot.libraries.String

	robot.libraries.Telnet

	robot.libraries.XML

	robot.libraries.dialogs_py

	robot.model.body

	robot.model.configurer

	robot.model.control

	robot.model.filter

	robot.model.fixture

	robot.model.itemlist

	robot.model.keyword

	robot.model.message

	robot.model.metadata

	robot.model.modelobject

	robot.model.modifier

	robot.model.namepatterns

	robot.model.statistics

	robot.model.stats

	robot.model.suitestatistics

	robot.model.tags

	robot.model.tagsetter

	robot.model.tagstatistics

	robot.model.testcase

	robot.model.testsuite

	robot.model.totalstatistics

	robot.model.visitor

	robot.output.console

	robot.output.console.dotted

	robot.output.console.highlighting

	robot.output.console.quiet

	robot.output.console.verbose


	robot.output.debugfile

	robot.output.filelogger

	robot.output.librarylogger

	robot.output.listenerarguments

	robot.output.listenermethods

	robot.output.listeners

	robot.output.logger

	robot.output.loggerhelper

	robot.output.output

	robot.output.pyloggingconf

	robot.output.stdoutlogsplitter

	robot.output.xmllogger

	robot.parsing.lexer.blocklexers

	robot.parsing.lexer.context

	robot.parsing.lexer.lexer

	robot.parsing.lexer.sections

	robot.parsing.lexer.settings

	robot.parsing.lexer.statementlexers

	robot.parsing.lexer.tokenizer

	robot.parsing.lexer.tokens

	robot.parsing.model.blocks

	robot.parsing.model.statements

	robot.parsing.model.visitor

	robot.parsing.parser.blockparsers

	robot.parsing.parser.fileparser

	robot.parsing.parser.parser

	robot.parsing.suitestructure

	robot.pythonpathsetter

	robot.rebot

	robot.reporting.expandkeywordmatcher

	robot.reporting.jsbuildingcontext

	robot.reporting.jsexecutionresult

	robot.reporting.jsmodelbuilders

	robot.reporting.jswriter

	robot.reporting.logreportwriters

	robot.reporting.outputwriter

	robot.reporting.resultwriter

	robot.reporting.stringcache

	robot.reporting.xunitwriter

	robot.result.configurer

	robot.result.executionerrors

	robot.result.executionresult

	robot.result.flattenkeywordmatcher

	robot.result.keywordremover

	robot.result.merger

	robot.result.messagefilter

	robot.result.model

	robot.result.modeldeprecation

	robot.result.resultbuilder

	robot.result.suiteteardownfailed

	robot.result.visitor

	robot.result.xmlelementhandlers

	robot.run

	robot.running.arguments.argumentconverter

	robot.running.arguments.argumentmapper

	robot.running.arguments.argumentparser

	robot.running.arguments.argumentresolver

	robot.running.arguments.argumentspec

	robot.running.arguments.argumentvalidator

	robot.running.arguments.embedded

	robot.running.arguments.py2argumentparser

	robot.running.arguments.typeconverters

	robot.running.arguments.typevalidator

	robot.running.bodyrunner

	robot.running.builder.builders

	robot.running.builder.parsers

	robot.running.builder.testsettings

	robot.running.builder.transformers

	robot.running.context

	robot.running.dynamicmethods

	robot.running.handlers

	robot.running.handlerstore

	robot.running.importer

	robot.running.librarykeywordrunner

	robot.running.libraryscopes

	robot.running.model

	robot.running.modelcombiner

	robot.running.namespace

	robot.running.outputcapture

	robot.running.randomizer

	robot.running.status

	robot.running.statusreporter

	robot.running.suiterunner

	robot.running.testlibraries

	robot.running.timeouts

	robot.running.timeouts.posix

	robot.running.timeouts.windows


	robot.running.usererrorhandler

	robot.running.userkeyword

	robot.running.userkeywordrunner

	robot.testdoc

	robot.tidy

	robot.tidypkg.transformers

	robot.utils

	robot.utils.application

	robot.utils.argumentparser

	robot.utils.asserts

	robot.utils.charwidth

	robot.utils.compat

	robot.utils.compress

	robot.utils.connectioncache

	robot.utils.dotdict

	robot.utils.encoding

	robot.utils.encodingsniffer

	robot.utils.error

	robot.utils.escaping

	robot.utils.etreewrapper

	robot.utils.filereader

	robot.utils.frange

	robot.utils.htmlformatters

	robot.utils.importer

	robot.utils.markuputils

	robot.utils.markupwriters

	robot.utils.match

	robot.utils.misc

	robot.utils.normalizing

	robot.utils.recommendations

	robot.utils.setter


	robot.variables

	robot.variables.assigner

	robot.variables.evaluation

	robot.variables.filesetter

	robot.variables.finders

	robot.variables.notfound

	robot.variables.replacer

	robot.variables.scopes

	robot.variables.search

	robot.variables.store

	robot.variables.tablesetter

	robot.variables.variables


	robot.version

	telnetlib

	typing

	xmlrpclib




          

      

      

    

  

    
      
          
            
  Source code for logging

# Copyright 2001-2014 by Vinay Sajip. All Rights Reserved.
#
# Permission to use, copy, modify, and distribute this software and its
# documentation for any purpose and without fee is hereby granted,
# provided that the above copyright notice appear in all copies and that
# both that copyright notice and this permission notice appear in
# supporting documentation, and that the name of Vinay Sajip
# not be used in advertising or publicity pertaining to distribution
# of the software without specific, written prior permission.
# VINAY SAJIP DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING
# ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL
# VINAY SAJIP BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR
# ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
# IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
# OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

"""
Logging package for Python. Based on PEP 282 and comments thereto in
comp.lang.python.

Copyright (C) 2001-2014 Vinay Sajip. All Rights Reserved.

To use, simply 'import logging' and log away!
"""

import sys, os, time, cStringIO, traceback, warnings, weakref, collections

__all__ = ['BASIC_FORMAT', 'BufferingFormatter', 'CRITICAL', 'DEBUG', 'ERROR',
           'FATAL', 'FileHandler', 'Filter', 'Formatter', 'Handler', 'INFO',
           'LogRecord', 'Logger', 'LoggerAdapter', 'NOTSET', 'NullHandler',
           'StreamHandler', 'WARN', 'WARNING', 'addLevelName', 'basicConfig',
           'captureWarnings', 'critical', 'debug', 'disable', 'error',
           'exception', 'fatal', 'getLevelName', 'getLogger', 'getLoggerClass',
           'info', 'log', 'makeLogRecord', 'setLoggerClass', 'warn', 'warning']

try:
    import codecs
except ImportError:
    codecs = None

try:
    import thread
    import threading
except ImportError:
    thread = None

__author__  = "Vinay Sajip <vinay_sajip@red-dove.com>"
__status__  = "production"
# Note: the attributes below are no longer maintained.
__version__ = "0.5.1.2"
__date__    = "07 February 2010"

#---------------------------------------------------------------------------
#   Miscellaneous module data
#---------------------------------------------------------------------------
try:
    unicode
    _unicode = True
except NameError:
    _unicode = False

# next bit filched from 1.5.2's inspect.py
def currentframe():
    """Return the frame object for the caller's stack frame."""
    try:
        raise Exception
    except:
        return sys.exc_info()[2].tb_frame.f_back

if hasattr(sys, '_getframe'): currentframe = lambda: sys._getframe(3)
# done filching

#
# _srcfile is used when walking the stack to check when we've got the first
# caller stack frame.
#
_srcfile = os.path.normcase(currentframe.__code__.co_filename)

# _srcfile is only used in conjunction with sys._getframe().
# To provide compatibility with older versions of Python, set _srcfile
# to None if _getframe() is not available; this value will prevent
# findCaller() from being called.
#if not hasattr(sys, "_getframe"):
#    _srcfile = None

#
#_startTime is used as the base when calculating the relative time of events
#
_startTime = time.time()

#
#raiseExceptions is used to see if exceptions during handling should be
#propagated
#
raiseExceptions = 1

#
# If you don't want threading information in the log, set this to zero
#
logThreads = 1

#
# If you don't want multiprocessing information in the log, set this to zero
#
logMultiprocessing = 1

#
# If you don't want process information in the log, set this to zero
#
logProcesses = 1

#---------------------------------------------------------------------------
#   Level related stuff
#---------------------------------------------------------------------------
#
# Default levels and level names, these can be replaced with any positive set
# of values having corresponding names. There is a pseudo-level, NOTSET, which
# is only really there as a lower limit for user-defined levels. Handlers and
# loggers are initialized with NOTSET so that they will log all messages, even
# at user-defined levels.
#

CRITICAL = 50
FATAL = CRITICAL
ERROR = 40
WARNING = 30
WARN = WARNING
INFO = 20
DEBUG = 10
NOTSET = 0

_levelNames = {
    CRITICAL : 'CRITICAL',
    ERROR : 'ERROR',
    WARNING : 'WARNING',
    INFO : 'INFO',
    DEBUG : 'DEBUG',
    NOTSET : 'NOTSET',
    'CRITICAL' : CRITICAL,
    'ERROR' : ERROR,
    'WARN' : WARNING,
    'WARNING' : WARNING,
    'INFO' : INFO,
    'DEBUG' : DEBUG,
    'NOTSET' : NOTSET,
}

def getLevelName(level):
    """
    Return the textual representation of logging level 'level'.

    If the level is one of the predefined levels (CRITICAL, ERROR, WARNING,
    INFO, DEBUG) then you get the corresponding string. If you have
    associated levels with names using addLevelName then the name you have
    associated with 'level' is returned.

    If a numeric value corresponding to one of the defined levels is passed
    in, the corresponding string representation is returned.

    Otherwise, the string "Level %s" % level is returned.
    """
    return _levelNames.get(level, ("Level %s" % level))

def addLevelName(level, levelName):
    """
    Associate 'levelName' with 'level'.

    This is used when converting levels to text during message formatting.
    """
    _acquireLock()
    try:    #unlikely to cause an exception, but you never know...
        _levelNames[level] = levelName
        _levelNames[levelName] = level
    finally:
        _releaseLock()

def _checkLevel(level):
    if isinstance(level, (int, long)):
        rv = level
    elif str(level) == level:
        if level not in _levelNames:
            raise ValueError("Unknown level: %r" % level)
        rv = _levelNames[level]
    else:
        raise TypeError("Level not an integer or a valid string: %r" % level)
    return rv

#---------------------------------------------------------------------------
#   Thread-related stuff
#---------------------------------------------------------------------------

#
#_lock is used to serialize access to shared data structures in this module.
#This needs to be an RLock because fileConfig() creates and configures
#Handlers, and so might arbitrary user threads. Since Handler code updates the
#shared dictionary _handlers, it needs to acquire the lock. But if configuring,
#the lock would already have been acquired - so we need an RLock.
#The same argument applies to Loggers and Manager.loggerDict.
#
if thread:
    _lock = threading.RLock()
else:
    _lock = None

def _acquireLock():
    """
    Acquire the module-level lock for serializing access to shared data.

    This should be released with _releaseLock().
    """
    if _lock:
        _lock.acquire()

def _releaseLock():
    """
    Release the module-level lock acquired by calling _acquireLock().
    """
    if _lock:
        _lock.release()

#---------------------------------------------------------------------------
#   The logging record
#---------------------------------------------------------------------------

class LogRecord(object):
    """
    A LogRecord instance represents an event being logged.

    LogRecord instances are created every time something is logged. They
    contain all the information pertinent to the event being logged. The
    main information passed in is in msg and args, which are combined
    using str(msg) % args to create the message field of the record. The
    record also includes information such as when the record was created,
    the source line where the logging call was made, and any exception
    information to be logged.
    """
    def __init__(self, name, level, pathname, lineno,
                 msg, args, exc_info, func=None):
        """
        Initialize a logging record with interesting information.
        """
        ct = time.time()
        self.name = name
        self.msg = msg
        #
        # The following statement allows passing of a dictionary as a sole
        # argument, so that you can do something like
        #  logging.debug("a %(a)d b %(b)s", {'a':1, 'b':2})
        # Suggested by Stefan Behnel.
        # Note that without the test for args[0], we get a problem because
        # during formatting, we test to see if the arg is present using
        # 'if self.args:'. If the event being logged is e.g. 'Value is %d'
        # and if the passed arg fails 'if self.args:' then no formatting
        # is done. For example, logger.warn('Value is %d', 0) would log
        # 'Value is %d' instead of 'Value is 0'.
        # For the use case of passing a dictionary, this should not be a
        # problem.
        # Issue #21172: a request was made to relax the isinstance check
        # to hasattr(args[0], '__getitem__'). However, the docs on string
        # formatting still seem to suggest a mapping object is required.
        # Thus, while not removing the isinstance check, it does now look
        # for collections.Mapping rather than, as before, dict.
        if (args and len(args) == 1 and isinstance(args[0], collections.Mapping)
            and args[0]):
            args = args[0]
        self.args = args
        self.levelname = getLevelName(level)
        self.levelno = level
        self.pathname = pathname
        try:
            self.filename = os.path.basename(pathname)
            self.module = os.path.splitext(self.filename)[0]
        except (TypeError, ValueError, AttributeError):
            self.filename = pathname
            self.module = "Unknown module"
        self.exc_info = exc_info
        self.exc_text = None      # used to cache the traceback text
        self.lineno = lineno
        self.funcName = func
        self.created = ct
        self.msecs = (ct - long(ct)) * 1000
        self.relativeCreated = (self.created - _startTime) * 1000
        if logThreads and thread:
            self.thread = thread.get_ident()
            self.threadName = threading.current_thread().name
        else:
            self.thread = None
            self.threadName = None
        if not logMultiprocessing:
            self.processName = None
        else:
            self.processName = 'MainProcess'
            mp = sys.modules.get('multiprocessing')
            if mp is not None:
                # Errors may occur if multiprocessing has not finished loading
                # yet - e.g. if a custom import hook causes third-party code
                # to run when multiprocessing calls import. See issue 8200
                # for an example
                try:
                    self.processName = mp.current_process().name
                except StandardError:
                    pass
        if logProcesses and hasattr(os, 'getpid'):
            self.process = os.getpid()
        else:
            self.process = None

    def __str__(self):
        return '<LogRecord: %s, %s, %s, %s, "%s">'%(self.name, self.levelno,
            self.pathname, self.lineno, self.msg)

    def getMessage(self):
        """
        Return the message for this LogRecord.

        Return the message for this LogRecord after merging any user-supplied
        arguments with the message.
        """
        if not _unicode: #if no unicode support...
            msg = str(self.msg)
        else:
            msg = self.msg
            if not isinstance(msg, basestring):
                try:
                    msg = str(self.msg)
                except UnicodeError:
                    msg = self.msg      #Defer encoding till later
        if self.args:
            msg = msg % self.args
        return msg

def makeLogRecord(dict):
    """
    Make a LogRecord whose attributes are defined by the specified dictionary,
    This function is useful for converting a logging event received over
    a socket connection (which is sent as a dictionary) into a LogRecord
    instance.
    """
    rv = LogRecord(None, None, "", 0, "", (), None, None)
    rv.__dict__.update(dict)
    return rv

#---------------------------------------------------------------------------
#   Formatter classes and functions
#---------------------------------------------------------------------------

class Formatter(object):
    """
    Formatter instances are used to convert a LogRecord to text.

    Formatters need to know how a LogRecord is constructed. They are
    responsible for converting a LogRecord to (usually) a string which can
    be interpreted by either a human or an external system. The base Formatter
    allows a formatting string to be specified. If none is supplied, the
    default value of "%s(message)\\n" is used.

    The Formatter can be initialized with a format string which makes use of
    knowledge of the LogRecord attributes - e.g. the default value mentioned
    above makes use of the fact that the user's message and arguments are pre-
    formatted into a LogRecord's message attribute. Currently, the useful
    attributes in a LogRecord are described by:

    %(name)s            Name of the logger (logging channel)
    %(levelno)s         Numeric logging level for the message (DEBUG, INFO,
                        WARNING, ERROR, CRITICAL)
    %(levelname)s       Text logging level for the message ("DEBUG", "INFO",
                        "WARNING", "ERROR", "CRITICAL")
    %(pathname)s        Full pathname of the source file where the logging
                        call was issued (if available)
    %(filename)s        Filename portion of pathname
    %(module)s          Module (name portion of filename)
    %(lineno)d          Source line number where the logging call was issued
                        (if available)
    %(funcName)s        Function name
    %(created)f         Time when the LogRecord was created (time.time()
                        return value)
    %(asctime)s         Textual time when the LogRecord was created
    %(msecs)d           Millisecond portion of the creation time
    %(relativeCreated)d Time in milliseconds when the LogRecord was created,
                        relative to the time the logging module was loaded
                        (typically at application startup time)
    %(thread)d          Thread ID (if available)
    %(threadName)s      Thread name (if available)
    %(process)d         Process ID (if available)
    %(message)s         The result of record.getMessage(), computed just as
                        the record is emitted
    """

    converter = time.localtime

    def __init__(self, fmt=None, datefmt=None):
        """
        Initialize the formatter with specified format strings.

        Initialize the formatter either with the specified format string, or a
        default as described above. Allow for specialized date formatting with
        the optional datefmt argument (if omitted, you get the ISO8601 format).
        """
        if fmt:
            self._fmt = fmt
        else:
            self._fmt = "%(message)s"
        self.datefmt = datefmt

    def formatTime(self, record, datefmt=None):
        """
        Return the creation time of the specified LogRecord as formatted text.

        This method should be called from format() by a formatter which
        wants to make use of a formatted time. This method can be overridden
        in formatters to provide for any specific requirement, but the
        basic behaviour is as follows: if datefmt (a string) is specified,
        it is used with time.strftime() to format the creation time of the
        record. Otherwise, the ISO8601 format is used. The resulting
        string is returned. This function uses a user-configurable function
        to convert the creation time to a tuple. By default, time.localtime()
        is used; to change this for a particular formatter instance, set the
        'converter' attribute to a function with the same signature as
        time.localtime() or time.gmtime(). To change it for all formatters,
        for example if you want all logging times to be shown in GMT,
        set the 'converter' attribute in the Formatter class.
        """
        ct = self.converter(record.created)
        if datefmt:
            s = time.strftime(datefmt, ct)
        else:
            t = time.strftime("%Y-%m-%d %H:%M:%S", ct)
            s = "%s,%03d" % (t, record.msecs)
        return s

    def formatException(self, ei):
        """
        Format and return the specified exception information as a string.

        This default implementation just uses
        traceback.print_exception()
        """
        sio = cStringIO.StringIO()
        traceback.print_exception(ei[0], ei[1], ei[2], None, sio)
        s = sio.getvalue()
        sio.close()
        if s[-1:] == "\n":
            s = s[:-1]
        return s

    def usesTime(self):
        """
        Check if the format uses the creation time of the record.
        """
        return self._fmt.find("%(asctime)") >= 0

    def format(self, record):
        """
        Format the specified record as text.

        The record's attribute dictionary is used as the operand to a
        string formatting operation which yields the returned string.
        Before formatting the dictionary, a couple of preparatory steps
        are carried out. The message attribute of the record is computed
        using LogRecord.getMessage(). If the formatting string uses the
        time (as determined by a call to usesTime(), formatTime() is
        called to format the event time. If there is exception information,
        it is formatted using formatException() and appended to the message.
        """
        record.message = record.getMessage()
        if self.usesTime():
            record.asctime = self.formatTime(record, self.datefmt)
        try:
            s = self._fmt % record.__dict__
        except UnicodeDecodeError as e:
            # Issue 25664. The logger name may be Unicode. Try again ...
            try:
                record.name = record.name.decode('utf-8')
                s = self._fmt % record.__dict__
            except UnicodeDecodeError:
                raise e
        if record.exc_info:
            # Cache the traceback text to avoid converting it multiple times
            # (it's constant anyway)
            if not record.exc_text:
                record.exc_text = self.formatException(record.exc_info)
        if record.exc_text:
            if s[-1:] != "\n":
                s = s + "\n"
            try:
                s = s + record.exc_text
            except UnicodeError:
                # Sometimes filenames have non-ASCII chars, which can lead
                # to errors when s is Unicode and record.exc_text is str
                # See issue 8924.
                # We also use replace for when there are multiple
                # encodings, e.g. UTF-8 for the filesystem and latin-1
                # for a script. See issue 13232.
                s = s + record.exc_text.decode(sys.getfilesystemencoding(),
                                               'replace')
        return s

#
#   The default formatter to use when no other is specified
#
_defaultFormatter = Formatter()

class BufferingFormatter(object):
    """
    A formatter suitable for formatting a number of records.
    """
    def __init__(self, linefmt=None):
        """
        Optionally specify a formatter which will be used to format each
        individual record.
        """
        if linefmt:
            self.linefmt = linefmt
        else:
            self.linefmt = _defaultFormatter

    def formatHeader(self, records):
        """
        Return the header string for the specified records.
        """
        return ""

    def formatFooter(self, records):
        """
        Return the footer string for the specified records.
        """
        return ""

    def format(self, records):
        """
        Format the specified records and return the result as a string.
        """
        rv = ""
        if len(records) > 0:
            rv = rv + self.formatHeader(records)
            for record in records:
                rv = rv + self.linefmt.format(record)
            rv = rv + self.formatFooter(records)
        return rv

#---------------------------------------------------------------------------
#   Filter classes and functions
#---------------------------------------------------------------------------

class Filter(object):
    """
    Filter instances are used to perform arbitrary filtering of LogRecords.

    Loggers and Handlers can optionally use Filter instances to filter
    records as desired. The base filter class only allows events which are
    below a certain point in the logger hierarchy. For example, a filter
    initialized with "A.B" will allow events logged by loggers "A.B",
    "A.B.C", "A.B.C.D", "A.B.D" etc. but not "A.BB", "B.A.B" etc. If
    initialized with the empty string, all events are passed.
    """
    def __init__(self, name=''):
        """
        Initialize a filter.

        Initialize with the name of the logger which, together with its
        children, will have its events allowed through the filter. If no
        name is specified, allow every event.
        """
        self.name = name
        self.nlen = len(name)

    def filter(self, record):
        """
        Determine if the specified record is to be logged.

        Is the specified record to be logged? Returns 0 for no, nonzero for
        yes. If deemed appropriate, the record may be modified in-place.
        """
        if self.nlen == 0:
            return 1
        elif self.name == record.name:
            return 1
        elif record.name.find(self.name, 0, self.nlen) != 0:
            return 0
        return (record.name[self.nlen] == ".")

class Filterer(object):
    """
    A base class for loggers and handlers which allows them to share
    common code.
    """
    def __init__(self):
        """
        Initialize the list of filters to be an empty list.
        """
        self.filters = []

    def addFilter(self, filter):
        """
        Add the specified filter to this handler.
        """
        if not (filter in self.filters):
            self.filters.append(filter)

    def removeFilter(self, filter):
        """
        Remove the specified filter from this handler.
        """
        if filter in self.filters:
            self.filters.remove(filter)

    def filter(self, record):
        """
        Determine if a record is loggable by consulting all the filters.

        The default is to allow the record to be logged; any filter can veto
        this and the record is then dropped. Returns a zero value if a record
        is to be dropped, else non-zero.
        """
        rv = 1
        for f in self.filters:
            if not f.filter(record):
                rv = 0
                break
        return rv

#---------------------------------------------------------------------------
#   Handler classes and functions
#---------------------------------------------------------------------------

_handlers = weakref.WeakValueDictionary()  #map of handler names to handlers
_handlerList = [] # added to allow handlers to be removed in reverse of order initialized

def _removeHandlerRef(wr):
    """
    Remove a handler reference from the internal cleanup list.
    """
    # This function can be called during module teardown, when globals are
    # set to None. It can also be called from another thread. So we need to
    # pre-emptively grab the necessary globals and check if they're None,
    # to prevent race conditions and failures during interpreter shutdown.
    acquire, release, handlers = _acquireLock, _releaseLock, _handlerList
    if acquire and release and handlers:
        try:
            acquire()
            try:
                if wr in handlers:
                    handlers.remove(wr)
            finally:
                release()
        except TypeError:
            # https://bugs.python.org/issue21149 - If the RLock object behind
            # acquire() and release() has been partially finalized you may see
            # an error about NoneType not being callable.  Absolutely nothing
            # we can do in this GC during process shutdown situation.  Eat it.
            pass

def _addHandlerRef(handler):
    """
    Add a handler to the internal cleanup list using a weak reference.
    """
    _acquireLock()
    try:
        _handlerList.append(weakref.ref(handler, _removeHandlerRef))
    finally:
        _releaseLock()

class Handler(Filterer):
    """
    Handler instances dispatch logging events to specific destinations.

    The base handler class. Acts as a placeholder which defines the Handler
    interface. Handlers can optionally use Formatter instances to format
    records as desired. By default, no formatter is specified; in this case,
    the 'raw' message as determined by record.message is logged.
    """
    def __init__(self, level=NOTSET):
        """
        Initializes the instance - basically setting the formatter to None
        and the filter list to empty.
        """
        Filterer.__init__(self)
        self._name = None
        self.level = _checkLevel(level)
        self.formatter = None
        # Add the handler to the global _handlerList (for cleanup on shutdown)
        _addHandlerRef(self)
        self.createLock()

    def get_name(self):
        return self._name

    def set_name(self, name):
        _acquireLock()
        try:
            if self._name in _handlers:
                del _handlers[self._name]
            self._name = name
            if name:
                _handlers[name] = self
        finally:
            _releaseLock()

    name = property(get_name, set_name)

    def createLock(self):
        """
        Acquire a thread lock for serializing access to the underlying I/O.
        """
        if thread:
            self.lock = threading.RLock()
        else:
            self.lock = None

    def acquire(self):
        """
        Acquire the I/O thread lock.
        """
        if self.lock:
            self.lock.acquire()

    def release(self):
        """
        Release the I/O thread lock.
        """
        if self.lock:
            self.lock.release()

    def setLevel(self, level):
        """
        Set the logging level of this handler.
        """
        self.level = _checkLevel(level)

    def format(self, record):
        """
        Format the specified record.

        If a formatter is set, use it. Otherwise, use the default formatter
        for the module.
        """
        if self.formatter:
            fmt = self.formatter
        else:
            fmt = _defaultFormatter
        return fmt.format(record)

    def emit(self, record):
        """
        Do whatever it takes to actually log the specified logging record.

        This version is intended to be implemented by subclasses and so
        raises a NotImplementedError.
        """
        raise NotImplementedError('emit must be implemented '
                                  'by Handler subclasses')

    def handle(self, record):
        """
        Conditionally emit the specified logging record.

        Emission depends on filters which may have been added to the handler.
        Wrap the actual emission of the record with acquisition/release of
        the I/O thread lock. Returns whether the filter passed the record for
        emission.
        """
        rv = self.filter(record)
        if rv:
            self.acquire()
            try:
                self.emit(record)
            finally:
                self.release()
        return rv

    def setFormatter(self, fmt):
        """
        Set the formatter for this handler.
        """
        self.formatter = fmt

    def flush(self):
        """
        Ensure all logging output has been flushed.

        This version does nothing and is intended to be implemented by
        subclasses.
        """
        pass

    def close(self):
        """
        Tidy up any resources used by the handler.

        This version removes the handler from an internal map of handlers,
        _handlers, which is used for handler lookup by name. Subclasses
        should ensure that this gets called from overridden close()
        methods.
        """
        #get the module data lock, as we're updating a shared structure.
        _acquireLock()
        try:    #unlikely to raise an exception, but you never know...
            if self._name and self._name in _handlers:
                del _handlers[self._name]
        finally:
            _releaseLock()

    def handleError(self, record):
        """
        Handle errors which occur during an emit() call.

        This method should be called from handlers when an exception is
        encountered during an emit() call. If raiseExceptions is false,
        exceptions get silently ignored. This is what is mostly wanted
        for a logging system - most users will not care about errors in
        the logging system, they are more interested in application errors.
        You could, however, replace this with a custom handler if you wish.
        The record which was being processed is passed in to this method.
        """
        if raiseExceptions and sys.stderr:  # see issue 13807
            ei = sys.exc_info()
            try:
                traceback.print_exception(ei[0], ei[1], ei[2],
                                          None, sys.stderr)
                sys.stderr.write('Logged from file %s, line %s\n' % (
                                 record.filename, record.lineno))
            except IOError:
                pass    # see issue 5971
            finally:
                del ei

class StreamHandler(Handler):
    """
    A handler class which writes logging records, appropriately formatted,
    to a stream. Note that this class does not close the stream, as
    sys.stdout or sys.stderr may be used.
    """

    def __init__(self, stream=None):
        """
        Initialize the handler.

        If stream is not specified, sys.stderr is used.
        """
        Handler.__init__(self)
        if stream is None:
            stream = sys.stderr
        self.stream = stream

    def flush(self):
        """
        Flushes the stream.
        """
        self.acquire()
        try:
            if self.stream and hasattr(self.stream, "flush"):
                self.stream.flush()
        finally:
            self.release()

    def emit(self, record):
        """
        Emit a record.

        If a formatter is specified, it is used to format the record.
        The record is then written to the stream with a trailing newline.  If
        exception information is present, it is formatted using
        traceback.print_exception and appended to the stream.  If the stream
        has an 'encoding' attribute, it is used to determine how to do the
        output to the stream.
        """
        try:
            msg = self.format(record)
            stream = self.stream
            fs = "%s\n"
            if not _unicode: #if no unicode support...
                stream.write(fs % msg)
            else:
                try:
                    if (isinstance(msg, unicode) and
                        getattr(stream, 'encoding', None)):
                        ufs = u'%s\n'
                        try:
                            stream.write(ufs % msg)
                        except UnicodeEncodeError:
                            #Printing to terminals sometimes fails. For example,
                            #with an encoding of 'cp1251', the above write will
                            #work if written to a stream opened or wrapped by
                            #the codecs module, but fail when writing to a
                            #terminal even when the codepage is set to cp1251.
                            #An extra encoding step seems to be needed.
                            stream.write((ufs % msg).encode(stream.encoding))
                    else:
                        stream.write(fs % msg)
                except UnicodeError:
                    stream.write(fs % msg.encode("UTF-8"))
            self.flush()
        except (KeyboardInterrupt, SystemExit):
            raise
        except:
            self.handleError(record)

class FileHandler(StreamHandler):
    """
    A handler class which writes formatted logging records to disk files.
    """
    def __init__(self, filename, mode='a', encoding=None, delay=0):
        """
        Open the specified file and use it as the stream for logging.
        """
        #keep the absolute path, otherwise derived classes which use this
        #may come a cropper when the current directory changes
        if codecs is None:
            encoding = None
        self.baseFilename = os.path.abspath(filename)
        self.mode = mode
        self.encoding = encoding
        self.delay = delay
        if delay:
            #We don't open the stream, but we still need to call the
            #Handler constructor to set level, formatter, lock etc.
            Handler.__init__(self)
            self.stream = None
        else:
            StreamHandler.__init__(self, self._open())

    def close(self):
        """
        Closes the stream.
        """
        self.acquire()
        try:
            try:
                if self.stream:
                    try:
                        self.flush()
                    finally:
                        stream = self.stream
                        self.stream = None
                        if hasattr(stream, "close"):
                            stream.close()
            finally:
                # Issue #19523: call unconditionally to
                # prevent a handler leak when delay is set
                StreamHandler.close(self)
        finally:
            self.release()

    def _open(self):
        """
        Open the current base file with the (original) mode and encoding.
        Return the resulting stream.
        """
        if self.encoding is None:
            stream = open(self.baseFilename, self.mode)
        else:
            stream = codecs.open(self.baseFilename, self.mode, self.encoding)
        return stream

    def emit(self, record):
        """
        Emit a record.

        If the stream was not opened because 'delay' was specified in the
        constructor, open it before calling the superclass's emit.
        """
        if self.stream is None:
            self.stream = self._open()
        StreamHandler.emit(self, record)

#---------------------------------------------------------------------------
#   Manager classes and functions
#---------------------------------------------------------------------------

class PlaceHolder(object):
    """
    PlaceHolder instances are used in the Manager logger hierarchy to take
    the place of nodes for which no loggers have been defined. This class is
    intended for internal use only and not as part of the public API.
    """
    def __init__(self, alogger):
        """
        Initialize with the specified logger being a child of this placeholder.
        """
        #self.loggers = [alogger]
        self.loggerMap = { alogger : None }

    def append(self, alogger):
        """
        Add the specified logger as a child of this placeholder.
        """
        #if alogger not in self.loggers:
        if alogger not in self.loggerMap:
            #self.loggers.append(alogger)
            self.loggerMap[alogger] = None

#
#   Determine which class to use when instantiating loggers.
#
_loggerClass = None

def setLoggerClass(klass):
    """
    Set the class to be used when instantiating a logger. The class should
    define __init__() such that only a name argument is required, and the
    __init__() should call Logger.__init__()
    """
    if klass != Logger:
        if not issubclass(klass, Logger):
            raise TypeError("logger not derived from logging.Logger: "
                            + klass.__name__)
    global _loggerClass
    _loggerClass = klass

def getLoggerClass():
    """
    Return the class to be used when instantiating a logger.
    """

    return _loggerClass

class Manager(object):
    """
    There is [under normal circumstances] just one Manager instance, which
    holds the hierarchy of loggers.
    """
    def __init__(self, rootnode):
        """
        Initialize the manager with the root node of the logger hierarchy.
        """
        self.root = rootnode
        self.disable = 0
        self.emittedNoHandlerWarning = 0
        self.loggerDict = {}
        self.loggerClass = None

    def getLogger(self, name):
        """
        Get a logger with the specified name (channel name), creating it
        if it doesn't yet exist. This name is a dot-separated hierarchical
        name, such as "a", "a.b", "a.b.c" or similar.

        If a PlaceHolder existed for the specified name [i.e. the logger
        didn't exist but a child of it did], replace it with the created
        logger and fix up the parent/child references which pointed to the
        placeholder to now point to the logger.
        """
        rv = None
        if not isinstance(name, basestring):
            raise TypeError('A logger name must be string or Unicode')
        if isinstance(name, unicode):
            name = name.encode('utf-8')
        _acquireLock()
        try:
            if name in self.loggerDict:
                rv = self.loggerDict[name]
                if isinstance(rv, PlaceHolder):
                    ph = rv
                    rv = (self.loggerClass or _loggerClass)(name)
                    rv.manager = self
                    self.loggerDict[name] = rv
                    self._fixupChildren(ph, rv)
                    self._fixupParents(rv)
            else:
                rv = (self.loggerClass or _loggerClass)(name)
                rv.manager = self
                self.loggerDict[name] = rv
                self._fixupParents(rv)
        finally:
            _releaseLock()
        return rv

    def setLoggerClass(self, klass):
        """
        Set the class to be used when instantiating a logger with this Manager.
        """
        if klass != Logger:
            if not issubclass(klass, Logger):
                raise TypeError("logger not derived from logging.Logger: "
                                + klass.__name__)
        self.loggerClass = klass

    def _fixupParents(self, alogger):
        """
        Ensure that there are either loggers or placeholders all the way
        from the specified logger to the root of the logger hierarchy.
        """
        name = alogger.name
        i = name.rfind(".")
        rv = None
        while (i > 0) and not rv:
            substr = name[:i]
            if substr not in self.loggerDict:
                self.loggerDict[substr] = PlaceHolder(alogger)
            else:
                obj = self.loggerDict[substr]
                if isinstance(obj, Logger):
                    rv = obj
                else:
                    assert isinstance(obj, PlaceHolder)
                    obj.append(alogger)
            i = name.rfind(".", 0, i - 1)
        if not rv:
            rv = self.root
        alogger.parent = rv

    def _fixupChildren(self, ph, alogger):
        """
        Ensure that children of the placeholder ph are connected to the
        specified logger.
        """
        name = alogger.name
        namelen = len(name)
        for c in ph.loggerMap.keys():
            #The if means ... if not c.parent.name.startswith(nm)
            if c.parent.name[:namelen] != name:
                alogger.parent = c.parent
                c.parent = alogger

#---------------------------------------------------------------------------
#   Logger classes and functions
#---------------------------------------------------------------------------

class Logger(Filterer):
    """
    Instances of the Logger class represent a single logging channel. A
    "logging channel" indicates an area of an application. Exactly how an
    "area" is defined is up to the application developer. Since an
    application can have any number of areas, logging channels are identified
    by a unique string. Application areas can be nested (e.g. an area
    of "input processing" might include sub-areas "read CSV files", "read
    XLS files" and "read Gnumeric files"). To cater for this natural nesting,
    channel names are organized into a namespace hierarchy where levels are
    separated by periods, much like the Java or Python package namespace. So
    in the instance given above, channel names might be "input" for the upper
    level, and "input.csv", "input.xls" and "input.gnu" for the sub-levels.
    There is no arbitrary limit to the depth of nesting.
    """
    def __init__(self, name, level=NOTSET):
        """
        Initialize the logger with a name and an optional level.
        """
        Filterer.__init__(self)
        self.name = name
        self.level = _checkLevel(level)
        self.parent = None
        self.propagate = 1
        self.handlers = []
        self.disabled = 0

    def setLevel(self, level):
        """
        Set the logging level of this logger.
        """
        self.level = _checkLevel(level)

    def debug(self, msg, *args, **kwargs):
        """
        Log 'msg % args' with severity 'DEBUG'.

        To pass exception information, use the keyword argument exc_info with
        a true value, e.g.

        logger.debug("Houston, we have a %s", "thorny problem", exc_info=1)
        """
        if self.isEnabledFor(DEBUG):
            self._log(DEBUG, msg, args, **kwargs)

    def info(self, msg, *args, **kwargs):
        """
        Log 'msg % args' with severity 'INFO'.

        To pass exception information, use the keyword argument exc_info with
        a true value, e.g.

        logger.info("Houston, we have a %s", "interesting problem", exc_info=1)
        """
        if self.isEnabledFor(INFO):
            self._log(INFO, msg, args, **kwargs)

    def warning(self, msg, *args, **kwargs):
        """
        Log 'msg % args' with severity 'WARNING'.

        To pass exception information, use the keyword argument exc_info with
        a true value, e.g.

        logger.warning("Houston, we have a %s", "bit of a problem", exc_info=1)
        """
        if self.isEnabledFor(WARNING):
            self._log(WARNING, msg, args, **kwargs)

    warn = warning

    def error(self, msg, *args, **kwargs):
        """
        Log 'msg % args' with severity 'ERROR'.

        To pass exception information, use the keyword argument exc_info with
        a true value, e.g.

        logger.error("Houston, we have a %s", "major problem", exc_info=1)
        """
        if self.isEnabledFor(ERROR):
            self._log(ERROR, msg, args, **kwargs)

    def exception(self, msg, *args, **kwargs):
        """
        Convenience method for logging an ERROR with exception information.
        """
        kwargs['exc_info'] = 1
        self.error(msg, *args, **kwargs)

    def critical(self, msg, *args, **kwargs):
        """
        Log 'msg % args' with severity 'CRITICAL'.

        To pass exception information, use the keyword argument exc_info with
        a true value, e.g.

        logger.critical("Houston, we have a %s", "major disaster", exc_info=1)
        """
        if self.isEnabledFor(CRITICAL):
            self._log(CRITICAL, msg, args, **kwargs)

    fatal = critical

    def log(self, level, msg, *args, **kwargs):
        """
        Log 'msg % args' with the integer severity 'level'.

        To pass exception information, use the keyword argument exc_info with
        a true value, e.g.

        logger.log(level, "We have a %s", "mysterious problem", exc_info=1)
        """
        if not isinstance(level, (int, long)):
            if raiseExceptions:
                raise TypeError("level must be an integer")
            else:
                return
        if self.isEnabledFor(level):
            self._log(level, msg, args, **kwargs)

    def findCaller(self):
        """
        Find the stack frame of the caller so that we can note the source
        file name, line number and function name.
        """
        f = currentframe()
        #On some versions of IronPython, currentframe() returns None if
        #IronPython isn't run with -X:Frames.
        if f is not None:
            f = f.f_back
        rv = "(unknown file)", 0, "(unknown function)"
        while hasattr(f, "f_code"):
            co = f.f_code
            filename = os.path.normcase(co.co_filename)
            if filename == _srcfile:
                f = f.f_back
                continue
            rv = (co.co_filename, f.f_lineno, co.co_name)
            break
        return rv

    def makeRecord(self, name, level, fn, lno, msg, args, exc_info, func=None, extra=None):
        """
        A factory method which can be overridden in subclasses to create
        specialized LogRecords.
        """
        rv = LogRecord(name, level, fn, lno, msg, args, exc_info, func)
        if extra is not None:
            for key in extra:
                if (key in ["message", "asctime"]) or (key in rv.__dict__):
                    raise KeyError("Attempt to overwrite %r in LogRecord" % key)
                rv.__dict__[key] = extra[key]
        return rv

    def _log(self, level, msg, args, exc_info=None, extra=None):
        """
        Low-level logging routine which creates a LogRecord and then calls
        all the handlers of this logger to handle the record.
        """
        if _srcfile:
            #IronPython doesn't track Python frames, so findCaller raises an
            #exception on some versions of IronPython. We trap it here so that
            #IronPython can use logging.
            try:
                fn, lno, func = self.findCaller()
            except ValueError:
                fn, lno, func = "(unknown file)", 0, "(unknown function)"
        else:
            fn, lno, func = "(unknown file)", 0, "(unknown function)"
        if exc_info:
            if not isinstance(exc_info, tuple):
                exc_info = sys.exc_info()
        record = self.makeRecord(self.name, level, fn, lno, msg, args, exc_info, func, extra)
        self.handle(record)

    def handle(self, record):
        """
        Call the handlers for the specified record.

        This method is used for unpickled records received from a socket, as
        well as those created locally. Logger-level filtering is applied.
        """
        if (not self.disabled) and self.filter(record):
            self.callHandlers(record)

    def addHandler(self, hdlr):
        """
        Add the specified handler to this logger.
        """
        _acquireLock()
        try:
            if not (hdlr in self.handlers):
                self.handlers.append(hdlr)
        finally:
            _releaseLock()

    def removeHandler(self, hdlr):
        """
        Remove the specified handler from this logger.
        """
        _acquireLock()
        try:
            if hdlr in self.handlers:
                self.handlers.remove(hdlr)
        finally:
            _releaseLock()

    def callHandlers(self, record):
        """
        Pass a record to all relevant handlers.

        Loop through all handlers for this logger and its parents in the
        logger hierarchy. If no handler was found, output a one-off error
        message to sys.stderr. Stop searching up the hierarchy whenever a
        logger with the "propagate" attribute set to zero is found - that
        will be the last logger whose handlers are called.
        """
        c = self
        found = 0
        while c:
            for hdlr in c.handlers:
                found = found + 1
                if record.levelno >= hdlr.level:
                    hdlr.handle(record)
            if not c.propagate:
                c = None    #break out
            else:
                c = c.parent
        if (found == 0) and raiseExceptions and not self.manager.emittedNoHandlerWarning:
            sys.stderr.write("No handlers could be found for logger"
                             " \"%s\"\n" % self.name)
            self.manager.emittedNoHandlerWarning = 1

    def getEffectiveLevel(self):
        """
        Get the effective level for this logger.

        Loop through this logger and its parents in the logger hierarchy,
        looking for a non-zero logging level. Return the first one found.
        """
        logger = self
        while logger:
            if logger.level:
                return logger.level
            logger = logger.parent
        return NOTSET

    def isEnabledFor(self, level):
        """
        Is this logger enabled for level 'level'?
        """
        if self.manager.disable >= level:
            return 0
        return level >= self.getEffectiveLevel()

    def getChild(self, suffix):
        """
        Get a logger which is a descendant to this one.

        This is a convenience method, such that

        logging.getLogger('abc').getChild('def.ghi')

        is the same as

        logging.getLogger('abc.def.ghi')

        It's useful, for example, when the parent logger is named using
        __name__ rather than a literal string.
        """
        if self.root is not self:
            suffix = '.'.join((self.name, suffix))
        return self.manager.getLogger(suffix)

class RootLogger(Logger):
    """
    A root logger is not that different to any other logger, except that
    it must have a logging level and there is only one instance of it in
    the hierarchy.
    """
    def __init__(self, level):
        """
        Initialize the logger with the name "root".
        """
        Logger.__init__(self, "root", level)

_loggerClass = Logger

class LoggerAdapter(object):
    """
    An adapter for loggers which makes it easier to specify contextual
    information in logging output.
    """

    def __init__(self, logger, extra):
        """
        Initialize the adapter with a logger and a dict-like object which
        provides contextual information. This constructor signature allows
        easy stacking of LoggerAdapters, if so desired.

        You can effectively pass keyword arguments as shown in the
        following example:

        adapter = LoggerAdapter(someLogger, dict(p1=v1, p2="v2"))
        """
        self.logger = logger
        self.extra = extra

    def process(self, msg, kwargs):
        """
        Process the logging message and keyword arguments passed in to
        a logging call to insert contextual information. You can either
        manipulate the message itself, the keyword args or both. Return
        the message and kwargs modified (or not) to suit your needs.

        Normally, you'll only need to override this one method in a
        LoggerAdapter subclass for your specific needs.
        """
        kwargs["extra"] = self.extra
        return msg, kwargs

    def debug(self, msg, *args, **kwargs):
        """
        Delegate a debug call to the underlying logger, after adding
        contextual information from this adapter instance.
        """
        msg, kwargs = self.process(msg, kwargs)
        self.logger.debug(msg, *args, **kwargs)

    def info(self, msg, *args, **kwargs):
        """
        Delegate an info call to the underlying logger, after adding
        contextual information from this adapter instance.
        """
        msg, kwargs = self.process(msg, kwargs)
        self.logger.info(msg, *args, **kwargs)

    def warning(self, msg, *args, **kwargs):
        """
        Delegate a warning call to the underlying logger, after adding
        contextual information from this adapter instance.
        """
        msg, kwargs = self.process(msg, kwargs)
        self.logger.warning(msg, *args, **kwargs)

    def error(self, msg, *args, **kwargs):
        """
        Delegate an error call to the underlying logger, after adding
        contextual information from this adapter instance.
        """
        msg, kwargs = self.process(msg, kwargs)
        self.logger.error(msg, *args, **kwargs)

    def exception(self, msg, *args, **kwargs):
        """
        Delegate an exception call to the underlying logger, after adding
        contextual information from this adapter instance.
        """
        msg, kwargs = self.process(msg, kwargs)
        kwargs["exc_info"] = 1
        self.logger.error(msg, *args, **kwargs)

    def critical(self, msg, *args, **kwargs):
        """
        Delegate a critical call to the underlying logger, after adding
        contextual information from this adapter instance.
        """
        msg, kwargs = self.process(msg, kwargs)
        self.logger.critical(msg, *args, **kwargs)

    def log(self, level, msg, *args, **kwargs):
        """
        Delegate a log call to the underlying logger, after adding
        contextual information from this adapter instance.
        """
        msg, kwargs = self.process(msg, kwargs)
        self.logger.log(level, msg, *args, **kwargs)

    def isEnabledFor(self, level):
        """
        See if the underlying logger is enabled for the specified level.
        """
        return self.logger.isEnabledFor(level)

root = RootLogger(WARNING)
Logger.root = root
Logger.manager = Manager(Logger.root)

#---------------------------------------------------------------------------
# Configuration classes and functions
#---------------------------------------------------------------------------

BASIC_FORMAT = "%(levelname)s:%(name)s:%(message)s"

def basicConfig(**kwargs):
    """
    Do basic configuration for the logging system.

    This function does nothing if the root logger already has handlers
    configured. It is a convenience method intended for use by simple scripts
    to do one-shot configuration of the logging package.

    The default behaviour is to create a StreamHandler which writes to
    sys.stderr, set a formatter using the BASIC_FORMAT format string, and
    add the handler to the root logger.

    A number of optional keyword arguments may be specified, which can alter
    the default behaviour.

    filename  Specifies that a FileHandler be created, using the specified
              filename, rather than a StreamHandler.
    filemode  Specifies the mode to open the file, if filename is specified
              (if filemode is unspecified, it defaults to 'a').
    format    Use the specified format string for the handler.
    datefmt   Use the specified date/time format.
    level     Set the root logger level to the specified level.
    stream    Use the specified stream to initialize the StreamHandler. Note
              that this argument is incompatible with 'filename' - if both
              are present, 'stream' is ignored.

    Note that you could specify a stream created using open(filename, mode)
    rather than passing the filename and mode in. However, it should be
    remembered that StreamHandler does not close its stream (since it may be
    using sys.stdout or sys.stderr), whereas FileHandler closes its stream
    when the handler is closed.
    """
    # Add thread safety in case someone mistakenly calls
    # basicConfig() from multiple threads
    _acquireLock()
    try:
        if len(root.handlers) == 0:
            filename = kwargs.get("filename")
            if filename:
                mode = kwargs.get("filemode", 'a')
                hdlr = FileHandler(filename, mode)
            else:
                stream = kwargs.get("stream")
                hdlr = StreamHandler(stream)
            fs = kwargs.get("format", BASIC_FORMAT)
            dfs = kwargs.get("datefmt", None)
            fmt = Formatter(fs, dfs)
            hdlr.setFormatter(fmt)
            root.addHandler(hdlr)
            level = kwargs.get("level")
            if level is not None:
                root.setLevel(level)
    finally:
        _releaseLock()

#---------------------------------------------------------------------------
# Utility functions at module level.
# Basically delegate everything to the root logger.
#---------------------------------------------------------------------------

def getLogger(name=None):
    """
    Return a logger with the specified name, creating it if necessary.

    If no name is specified, return the root logger.
    """
    if name:
        return Logger.manager.getLogger(name)
    else:
        return root

#def getRootLogger():
#    """
#    Return the root logger.
#
#    Note that getLogger('') now does the same thing, so this function is
#    deprecated and may disappear in the future.
#    """
#    return root

def critical(msg, *args, **kwargs):
    """
    Log a message with severity 'CRITICAL' on the root logger.
    """
    if len(root.handlers) == 0:
        basicConfig()
    root.critical(msg, *args, **kwargs)

fatal = critical

def error(msg, *args, **kwargs):
    """
    Log a message with severity 'ERROR' on the root logger.
    """
    if len(root.handlers) == 0:
        basicConfig()
    root.error(msg, *args, **kwargs)

def exception(msg, *args, **kwargs):
    """
    Log a message with severity 'ERROR' on the root logger,
    with exception information.
    """
    kwargs['exc_info'] = 1
    error(msg, *args, **kwargs)

def warning(msg, *args, **kwargs):
    """
    Log a message with severity 'WARNING' on the root logger.
    """
    if len(root.handlers) == 0:
        basicConfig()
    root.warning(msg, *args, **kwargs)

warn = warning

def info(msg, *args, **kwargs):
    """
    Log a message with severity 'INFO' on the root logger.
    """
    if len(root.handlers) == 0:
        basicConfig()
    root.info(msg, *args, **kwargs)

def debug(msg, *args, **kwargs):
    """
    Log a message with severity 'DEBUG' on the root logger.
    """
    if len(root.handlers) == 0:
        basicConfig()
    root.debug(msg, *args, **kwargs)

def log(level, msg, *args, **kwargs):
    """
    Log 'msg % args' with the integer severity 'level' on the root logger.
    """
    if len(root.handlers) == 0:
        basicConfig()
    root.log(level, msg, *args, **kwargs)

def disable(level):
    """
    Disable all logging calls of severity 'level' and below.
    """
    root.manager.disable = level

def shutdown(handlerList=_handlerList):
    """
    Perform any cleanup actions in the logging system (e.g. flushing
    buffers).

    Should be called at application exit.
    """
    for wr in reversed(handlerList[:]):
        #errors might occur, for example, if files are locked
        #we just ignore them if raiseExceptions is not set
        try:
            h = wr()
            if h:
                try:
                    h.acquire()
                    h.flush()
                    h.close()
                except (IOError, ValueError):
                    # Ignore errors which might be caused
                    # because handlers have been closed but
                    # references to them are still around at
                    # application exit.
                    pass
                finally:
                    h.release()
        except:
            if raiseExceptions:
                raise
            #else, swallow

#Let's try and shutdown automatically on application exit...
import atexit
atexit.register(shutdown)

# Null handler

class NullHandler(Handler):
    """
    This handler does nothing. It's intended to be used to avoid the
    "No handlers could be found for logger XXX" one-off warning. This is
    important for library code, which may contain code to log events. If a user
    of the library does not configure logging, the one-off warning might be
    produced; to avoid this, the library developer simply needs to instantiate
    a NullHandler and add it to the top-level logger of the library module or
    package.
    """
    def handle(self, record):
        pass

    def emit(self, record):
        pass

    def createLock(self):
        self.lock = None

# Warnings integration

_warnings_showwarning = None

def _showwarning(message, category, filename, lineno, file=None, line=None):
    """
    Implementation of showwarnings which redirects to logging, which will first
    check to see if the file parameter is None. If a file is specified, it will
    delegate to the original warnings implementation of showwarning. Otherwise,
    it will call warnings.formatwarning and will log the resulting string to a
    warnings logger named "py.warnings" with level logging.WARNING.
    """
    if file is not None:
        if _warnings_showwarning is not None:
            _warnings_showwarning(message, category, filename, lineno, file, line)
    else:
        s = warnings.formatwarning(message, category, filename, lineno, line)
        logger = getLogger("py.warnings")
        if not logger.handlers:
            logger.addHandler(NullHandler())
        logger.warning("%s", s)

def captureWarnings(capture):
    """
    If capture is true, redirect all warnings to the logging package.
    If capture is False, ensure that warnings are not redirected to logging
    but to their original destinations.
    """
    global _warnings_showwarning
    if capture:
        if _warnings_showwarning is None:
            _warnings_showwarning = warnings.showwarning
            warnings.showwarning = _showwarning
    else:
        if _warnings_showwarning is not None:
            warnings.showwarning = _warnings_showwarning
            _warnings_showwarning = None




          

      

      

    

  

    
      
          
            
  Source code for numbers

# Copyright 2007 Google, Inc. All Rights Reserved.
# Licensed to PSF under a Contributor Agreement.

"""Abstract Base Classes (ABCs) for numbers, according to PEP 3141.

TODO: Fill out more detailed documentation on the operators."""

from __future__ import division
from abc import ABCMeta, abstractmethod, abstractproperty

__all__ = ["Number", "Complex", "Real", "Rational", "Integral"]

class Number(object):
    """All numbers inherit from this class.

    If you just want to check if an argument x is a number, without
    caring what kind, use isinstance(x, Number).
    """
    __metaclass__ = ABCMeta
    __slots__ = ()

    # Concrete numeric types must provide their own hash implementation
    __hash__ = None


## Notes on Decimal
## ----------------
## Decimal has all of the methods specified by the Real abc, but it should
## not be registered as a Real because decimals do not interoperate with
## binary floats (i.e.  Decimal('3.14') + 2.71828 is undefined).  But,
## abstract reals are expected to interoperate (i.e. R1 + R2 should be
## expected to work if R1 and R2 are both Reals).

class Complex(Number):
    """Complex defines the operations that work on the builtin complex type.

    In short, those are: a conversion to complex, .real, .imag, +, -,
    *, /, abs(), .conjugate, ==, and !=.

    If it is given heterogenous arguments, and doesn't have special
    knowledge about them, it should fall back to the builtin complex
    type as described below.
    """

    __slots__ = ()

    @abstractmethod
    def __complex__(self):
        """Return a builtin complex instance. Called for complex(self)."""

    # Will be __bool__ in 3.0.
    def __nonzero__(self):
        """True if self != 0. Called for bool(self)."""
        return self != 0

    @abstractproperty
    def real(self):
        """Retrieve the real component of this number.

        This should subclass Real.
        """
        raise NotImplementedError

    @abstractproperty
    def imag(self):
        """Retrieve the imaginary component of this number.

        This should subclass Real.
        """
        raise NotImplementedError

    @abstractmethod
    def __add__(self, other):
        """self + other"""
        raise NotImplementedError

    @abstractmethod
    def __radd__(self, other):
        """other + self"""
        raise NotImplementedError

    @abstractmethod
    def __neg__(self):
        """-self"""
        raise NotImplementedError

    @abstractmethod
    def __pos__(self):
        """+self"""
        raise NotImplementedError

    def __sub__(self, other):
        """self - other"""
        return self + -other

    def __rsub__(self, other):
        """other - self"""
        return -self + other

    @abstractmethod
    def __mul__(self, other):
        """self * other"""
        raise NotImplementedError

    @abstractmethod
    def __rmul__(self, other):
        """other * self"""
        raise NotImplementedError

    @abstractmethod
    def __div__(self, other):
        """self / other without __future__ division

        May promote to float.
        """
        raise NotImplementedError

    @abstractmethod
    def __rdiv__(self, other):
        """other / self without __future__ division"""
        raise NotImplementedError

    @abstractmethod
    def __truediv__(self, other):
        """self / other with __future__ division.

        Should promote to float when necessary.
        """
        raise NotImplementedError

    @abstractmethod
    def __rtruediv__(self, other):
        """other / self with __future__ division"""
        raise NotImplementedError

    @abstractmethod
    def __pow__(self, exponent):
        """self**exponent; should promote to float or complex when necessary."""
        raise NotImplementedError

    @abstractmethod
    def __rpow__(self, base):
        """base ** self"""
        raise NotImplementedError

    @abstractmethod
    def __abs__(self):
        """Returns the Real distance from 0. Called for abs(self)."""
        raise NotImplementedError

    @abstractmethod
    def conjugate(self):
        """(x+y*i).conjugate() returns (x-y*i)."""
        raise NotImplementedError

    @abstractmethod
    def __eq__(self, other):
        """self == other"""
        raise NotImplementedError

    def __ne__(self, other):
        """self != other"""
        # The default __ne__ doesn't negate __eq__ until 3.0.
        return not (self == other)

Complex.register(complex)


class Real(Complex):
    """To Complex, Real adds the operations that work on real numbers.

    In short, those are: a conversion to float, trunc(), divmod,
    %, <, <=, >, and >=.

    Real also provides defaults for the derived operations.
    """

    __slots__ = ()

    @abstractmethod
    def __float__(self):
        """Any Real can be converted to a native float object.

        Called for float(self)."""
        raise NotImplementedError

    @abstractmethod
    def __trunc__(self):
        """trunc(self): Truncates self to an Integral.

        Returns an Integral i such that:
          * i>0 iff self>0;
          * abs(i) <= abs(self);
          * for any Integral j satisfying the first two conditions,
            abs(i) >= abs(j) [i.e. i has "maximal" abs among those].
        i.e. "truncate towards 0".
        """
        raise NotImplementedError

    def __divmod__(self, other):
        """divmod(self, other): The pair (self // other, self % other).

        Sometimes this can be computed faster than the pair of
        operations.
        """
        return (self // other, self % other)

    def __rdivmod__(self, other):
        """divmod(other, self): The pair (self // other, self % other).

        Sometimes this can be computed faster than the pair of
        operations.
        """
        return (other // self, other % self)

    @abstractmethod
    def __floordiv__(self, other):
        """self // other: The floor() of self/other."""
        raise NotImplementedError

    @abstractmethod
    def __rfloordiv__(self, other):
        """other // self: The floor() of other/self."""
        raise NotImplementedError

    @abstractmethod
    def __mod__(self, other):
        """self % other"""
        raise NotImplementedError

    @abstractmethod
    def __rmod__(self, other):
        """other % self"""
        raise NotImplementedError

    @abstractmethod
    def __lt__(self, other):
        """self < other

        < on Reals defines a total ordering, except perhaps for NaN."""
        raise NotImplementedError

    @abstractmethod
    def __le__(self, other):
        """self <= other"""
        raise NotImplementedError

    # Concrete implementations of Complex abstract methods.
    def __complex__(self):
        """complex(self) == complex(float(self), 0)"""
        return complex(float(self))

    @property
    def real(self):
        """Real numbers are their real component."""
        return +self

    @property
    def imag(self):
        """Real numbers have no imaginary component."""
        return 0

    def conjugate(self):
        """Conjugate is a no-op for Reals."""
        return +self

Real.register(float)


class Rational(Real):
    """.numerator and .denominator should be in lowest terms."""

    __slots__ = ()

    @abstractproperty
    def numerator(self):
        raise NotImplementedError

    @abstractproperty
    def denominator(self):
        raise NotImplementedError

    # Concrete implementation of Real's conversion to float.
    def __float__(self):
        """float(self) = self.numerator / self.denominator

        It's important that this conversion use the integer's "true"
        division rather than casting one side to float before dividing
        so that ratios of huge integers convert without overflowing.

        """
        return self.numerator / self.denominator


class Integral(Rational):
    """Integral adds a conversion to long and the bit-string operations."""

    __slots__ = ()

    @abstractmethod
    def __long__(self):
        """long(self)"""
        raise NotImplementedError

    def __index__(self):
        """Called whenever an index is needed, such as in slicing"""
        return long(self)

    @abstractmethod
    def __pow__(self, exponent, modulus=None):
        """self ** exponent % modulus, but maybe faster.

        Accept the modulus argument if you want to support the
        3-argument version of pow(). Raise a TypeError if exponent < 0
        or any argument isn't Integral. Otherwise, just implement the
        2-argument version described in Complex.
        """
        raise NotImplementedError

    @abstractmethod
    def __lshift__(self, other):
        """self << other"""
        raise NotImplementedError

    @abstractmethod
    def __rlshift__(self, other):
        """other << self"""
        raise NotImplementedError

    @abstractmethod
    def __rshift__(self, other):
        """self >> other"""
        raise NotImplementedError

    @abstractmethod
    def __rrshift__(self, other):
        """other >> self"""
        raise NotImplementedError

    @abstractmethod
    def __and__(self, other):
        """self & other"""
        raise NotImplementedError

    @abstractmethod
    def __rand__(self, other):
        """other & self"""
        raise NotImplementedError

    @abstractmethod
    def __xor__(self, other):
        """self ^ other"""
        raise NotImplementedError

    @abstractmethod
    def __rxor__(self, other):
        """other ^ self"""
        raise NotImplementedError

    @abstractmethod
    def __or__(self, other):
        """self | other"""
        raise NotImplementedError

    @abstractmethod
    def __ror__(self, other):
        """other | self"""
        raise NotImplementedError

    @abstractmethod
    def __invert__(self):
        """~self"""
        raise NotImplementedError

    # Concrete implementations of Rational and Real abstract methods.
    def __float__(self):
        """float(self) == float(long(self))"""
        return float(long(self))

    @property
    def numerator(self):
        """Integers are their own numerators."""
        return +self

    @property
    def denominator(self):
        """Integers have a denominator of 1."""
        return 1

Integral.register(int)
Integral.register(long)




          

      

      

    

  

    
      
          
            
  Source code for telnetlib

r"""TELNET client class.

Based on RFC 854: TELNET Protocol Specification, by J. Postel and
J. Reynolds

Example:

>>> from telnetlib import Telnet
>>> tn = Telnet('www.python.org', 79)   # connect to finger port
>>> tn.write('guido\r\n')
>>> print tn.read_all()
Login       Name               TTY         Idle    When    Where
guido    Guido van Rossum      pts/2        <Dec  2 11:10> snag.cnri.reston..

>>>

Note that read_all() won't read until eof -- it just reads some data
-- but it guarantees to read at least one byte unless EOF is hit.

It is possible to pass a Telnet object to select.select() in order to
wait until more data is available.  Note that in this case,
read_eager() may return '' even if there was data on the socket,
because the protocol negotiation may have eaten the data.  This is why
EOFError is needed in some cases to distinguish between "no data" and
"connection closed" (since the socket also appears ready for reading
when it is closed).

To do:
- option negotiation
- timeout should be intrinsic to the connection object instead of an
  option on one of the read calls only

"""


# Imported modules
import errno
import sys
import socket
import select

__all__ = ["Telnet"]

# Tunable parameters
DEBUGLEVEL = 0

# Telnet protocol defaults
TELNET_PORT = 23

# Telnet protocol characters (don't change)
IAC  = chr(255) # "Interpret As Command"
DONT = chr(254)
DO   = chr(253)
WONT = chr(252)
WILL = chr(251)
theNULL = chr(0)

SE  = chr(240)  # Subnegotiation End
NOP = chr(241)  # No Operation
DM  = chr(242)  # Data Mark
BRK = chr(243)  # Break
IP  = chr(244)  # Interrupt process
AO  = chr(245)  # Abort output
AYT = chr(246)  # Are You There
EC  = chr(247)  # Erase Character
EL  = chr(248)  # Erase Line
GA  = chr(249)  # Go Ahead
SB =  chr(250)  # Subnegotiation Begin


# Telnet protocol options code (don't change)
# These ones all come from arpa/telnet.h
BINARY = chr(0) # 8-bit data path
ECHO = chr(1) # echo
RCP = chr(2) # prepare to reconnect
SGA = chr(3) # suppress go ahead
NAMS = chr(4) # approximate message size
STATUS = chr(5) # give status
TM = chr(6) # timing mark
RCTE = chr(7) # remote controlled transmission and echo
NAOL = chr(8) # negotiate about output line width
NAOP = chr(9) # negotiate about output page size
NAOCRD = chr(10) # negotiate about CR disposition
NAOHTS = chr(11) # negotiate about horizontal tabstops
NAOHTD = chr(12) # negotiate about horizontal tab disposition
NAOFFD = chr(13) # negotiate about formfeed disposition
NAOVTS = chr(14) # negotiate about vertical tab stops
NAOVTD = chr(15) # negotiate about vertical tab disposition
NAOLFD = chr(16) # negotiate about output LF disposition
XASCII = chr(17) # extended ascii character set
LOGOUT = chr(18) # force logout
BM = chr(19) # byte macro
DET = chr(20) # data entry terminal
SUPDUP = chr(21) # supdup protocol
SUPDUPOUTPUT = chr(22) # supdup output
SNDLOC = chr(23) # send location
TTYPE = chr(24) # terminal type
EOR = chr(25) # end or record
TUID = chr(26) # TACACS user identification
OUTMRK = chr(27) # output marking
TTYLOC = chr(28) # terminal location number
VT3270REGIME = chr(29) # 3270 regime
X3PAD = chr(30) # X.3 PAD
NAWS = chr(31) # window size
TSPEED = chr(32) # terminal speed
LFLOW = chr(33) # remote flow control
LINEMODE = chr(34) # Linemode option
XDISPLOC = chr(35) # X Display Location
OLD_ENVIRON = chr(36) # Old - Environment variables
AUTHENTICATION = chr(37) # Authenticate
ENCRYPT = chr(38) # Encryption option
NEW_ENVIRON = chr(39) # New - Environment variables
# the following ones come from
# http://www.iana.org/assignments/telnet-options
# Unfortunately, that document does not assign identifiers
# to all of them, so we are making them up
TN3270E = chr(40) # TN3270E
XAUTH = chr(41) # XAUTH
CHARSET = chr(42) # CHARSET
RSP = chr(43) # Telnet Remote Serial Port
COM_PORT_OPTION = chr(44) # Com Port Control Option
SUPPRESS_LOCAL_ECHO = chr(45) # Telnet Suppress Local Echo
TLS = chr(46) # Telnet Start TLS
KERMIT = chr(47) # KERMIT
SEND_URL = chr(48) # SEND-URL
FORWARD_X = chr(49) # FORWARD_X
PRAGMA_LOGON = chr(138) # TELOPT PRAGMA LOGON
SSPI_LOGON = chr(139) # TELOPT SSPI LOGON
PRAGMA_HEARTBEAT = chr(140) # TELOPT PRAGMA HEARTBEAT
EXOPL = chr(255) # Extended-Options-List
NOOPT = chr(0)

class Telnet:

    """Telnet interface class.

    An instance of this class represents a connection to a telnet
    server.  The instance is initially not connected; the open()
    method must be used to establish a connection.  Alternatively, the
    host name and optional port number can be passed to the
    constructor, too.

    Don't try to reopen an already connected instance.

    This class has many read_*() methods.  Note that some of them
    raise EOFError when the end of the connection is read, because
    they can return an empty string for other reasons.  See the
    individual doc strings.

    read_until(expected, [timeout])
        Read until the expected string has been seen, or a timeout is
        hit (default is no timeout); may block.

    read_all()
        Read all data until EOF; may block.

    read_some()
        Read at least one byte or EOF; may block.

    read_very_eager()
        Read all data available already queued or on the socket,
        without blocking.

    read_eager()
        Read either data already queued or some data available on the
        socket, without blocking.

    read_lazy()
        Read all data in the raw queue (processing it first), without
        doing any socket I/O.

    read_very_lazy()
        Reads all data in the cooked queue, without doing any socket
        I/O.

    read_sb_data()
        Reads available data between SB ... SE sequence. Don't block.

    set_option_negotiation_callback(callback)
        Each time a telnet option is read on the input flow, this callback
        (if set) is called with the following parameters :
        callback(telnet socket, command, option)
            option will be chr(0) when there is no option.
        No other action is done afterwards by telnetlib.

    """

    def __init__(self, host=None, port=0,
                 timeout=socket._GLOBAL_DEFAULT_TIMEOUT):
        """Constructor.

        When called without arguments, create an unconnected instance.
        With a hostname argument, it connects the instance; port number
        and timeout are optional.
        """
        self.debuglevel = DEBUGLEVEL
        self.host = host
        self.port = port
        self.timeout = timeout
        self.sock = None
        self.rawq = ''
        self.irawq = 0
        self.cookedq = ''
        self.eof = 0
        self.iacseq = '' # Buffer for IAC sequence.
        self.sb = 0 # flag for SB and SE sequence.
        self.sbdataq = ''
        self.option_callback = None
        self._has_poll = hasattr(select, 'poll')
        if host is not None:
            self.open(host, port, timeout)

    def open(self, host, port=0, timeout=socket._GLOBAL_DEFAULT_TIMEOUT):
        """Connect to a host.

        The optional second argument is the port number, which
        defaults to the standard telnet port (23).

        Don't try to reopen an already connected instance.
        """
        self.eof = 0
        if not port:
            port = TELNET_PORT
        self.host = host
        self.port = port
        self.timeout = timeout
        self.sock = socket.create_connection((host, port), timeout)

    def __del__(self):
        """Destructor -- close the connection."""
        self.close()

    def msg(self, msg, *args):
        """Print a debug message, when the debug level is > 0.

        If extra arguments are present, they are substituted in the
        message using the standard string formatting operator.

        """
        if self.debuglevel > 0:
            print 'Telnet(%s,%s):' % (self.host, self.port),
            if args:
                print msg % args
            else:
                print msg

    def set_debuglevel(self, debuglevel):
        """Set the debug level.

        The higher it is, the more debug output you get (on sys.stdout).

        """
        self.debuglevel = debuglevel

    def close(self):
        """Close the connection."""
        sock = self.sock
        self.sock = 0
        self.eof = 1
        self.iacseq = ''
        self.sb = 0
        if sock:
            sock.close()

    def get_socket(self):
        """Return the socket object used internally."""
        return self.sock

    def fileno(self):
        """Return the fileno() of the socket object used internally."""
        return self.sock.fileno()

    def write(self, buffer):
        """Write a string to the socket, doubling any IAC characters.

        Can block if the connection is blocked.  May raise
        socket.error if the connection is closed.

        """
        if IAC in buffer:
            buffer = buffer.replace(IAC, IAC+IAC)
        self.msg("send %r", buffer)
        self.sock.sendall(buffer)

    def read_until(self, match, timeout=None):
        """Read until a given string is encountered or until timeout.

        When no match is found, return whatever is available instead,
        possibly the empty string.  Raise EOFError if the connection
        is closed and no cooked data is available.

        """
        if self._has_poll:
            return self._read_until_with_poll(match, timeout)
        else:
            return self._read_until_with_select(match, timeout)

    def _read_until_with_poll(self, match, timeout):
        """Read until a given string is encountered or until timeout.

        This method uses select.poll() to implement the timeout.
        """
        n = len(match)
        call_timeout = timeout
        if timeout is not None:
            from time import time
            time_start = time()
        self.process_rawq()
        i = self.cookedq.find(match)
        if i < 0:
            poller = select.poll()
            poll_in_or_priority_flags = select.POLLIN | select.POLLPRI
            poller.register(self, poll_in_or_priority_flags)
            while i < 0 and not self.eof:
                try:
                    # Poll takes its timeout in milliseconds.
                    ready = poller.poll(None if timeout is None
                                        else 1000 * call_timeout)
                except select.error as e:
                    if e[0] == errno.EINTR:
                        if timeout is not None:
                            elapsed = time() - time_start
                            call_timeout = timeout-elapsed
                        continue
                    raise
                for fd, mode in ready:
                    if mode & poll_in_or_priority_flags:
                        i = max(0, len(self.cookedq)-n)
                        self.fill_rawq()
                        self.process_rawq()
                        i = self.cookedq.find(match, i)
                if timeout is not None:
                    elapsed = time() - time_start
                    if elapsed >= timeout:
                        break
                    call_timeout = timeout-elapsed
            poller.unregister(self)
        if i >= 0:
            i = i + n
            buf = self.cookedq[:i]
            self.cookedq = self.cookedq[i:]
            return buf
        return self.read_very_lazy()

    def _read_until_with_select(self, match, timeout=None):
        """Read until a given string is encountered or until timeout.

        The timeout is implemented using select.select().
        """
        n = len(match)
        self.process_rawq()
        i = self.cookedq.find(match)
        if i >= 0:
            i = i+n
            buf = self.cookedq[:i]
            self.cookedq = self.cookedq[i:]
            return buf
        s_reply = ([self], [], [])
        s_args = s_reply
        if timeout is not None:
            s_args = s_args + (timeout,)
            from time import time
            time_start = time()
        while not self.eof and select.select(*s_args) == s_reply:
            i = max(0, len(self.cookedq)-n)
            self.fill_rawq()
            self.process_rawq()
            i = self.cookedq.find(match, i)
            if i >= 0:
                i = i+n
                buf = self.cookedq[:i]
                self.cookedq = self.cookedq[i:]
                return buf
            if timeout is not None:
                elapsed = time() - time_start
                if elapsed >= timeout:
                    break
                s_args = s_reply + (timeout-elapsed,)
        return self.read_very_lazy()

    def read_all(self):
        """Read all data until EOF; block until connection closed."""
        self.process_rawq()
        while not self.eof:
            self.fill_rawq()
            self.process_rawq()
        buf = self.cookedq
        self.cookedq = ''
        return buf

    def read_some(self):
        """Read at least one byte of cooked data unless EOF is hit.

        Return '' if EOF is hit.  Block if no data is immediately
        available.

        """
        self.process_rawq()
        while not self.cookedq and not self.eof:
            self.fill_rawq()
            self.process_rawq()
        buf = self.cookedq
        self.cookedq = ''
        return buf

    def read_very_eager(self):
        """Read everything that's possible without blocking in I/O (eager).

        Raise EOFError if connection closed and no cooked data
        available.  Return '' if no cooked data available otherwise.
        Don't block unless in the midst of an IAC sequence.

        """
        self.process_rawq()
        while not self.eof and self.sock_avail():
            self.fill_rawq()
            self.process_rawq()
        return self.read_very_lazy()

    def read_eager(self):
        """Read readily available data.

        Raise EOFError if connection closed and no cooked data
        available.  Return '' if no cooked data available otherwise.
        Don't block unless in the midst of an IAC sequence.

        """
        self.process_rawq()
        while not self.cookedq and not self.eof and self.sock_avail():
            self.fill_rawq()
            self.process_rawq()
        return self.read_very_lazy()

    def read_lazy(self):
        """Process and return data that's already in the queues (lazy).

        Raise EOFError if connection closed and no data available.
        Return '' if no cooked data available otherwise.  Don't block
        unless in the midst of an IAC sequence.

        """
        self.process_rawq()
        return self.read_very_lazy()

    def read_very_lazy(self):
        """Return any data available in the cooked queue (very lazy).

        Raise EOFError if connection closed and no data available.
        Return '' if no cooked data available otherwise.  Don't block.

        """
        buf = self.cookedq
        self.cookedq = ''
        if not buf and self.eof and not self.rawq:
            raise EOFError, 'telnet connection closed'
        return buf

    def read_sb_data(self):
        """Return any data available in the SB ... SE queue.

        Return '' if no SB ... SE available. Should only be called
        after seeing a SB or SE command. When a new SB command is
        found, old unread SB data will be discarded. Don't block.

        """
        buf = self.sbdataq
        self.sbdataq = ''
        return buf

    def set_option_negotiation_callback(self, callback):
        """Provide a callback function called after each receipt of a telnet option."""
        self.option_callback = callback

    def process_rawq(self):
        """Transfer from raw queue to cooked queue.

        Set self.eof when connection is closed.  Don't block unless in
        the midst of an IAC sequence.

        """
        buf = ['', '']
        try:
            while self.rawq:
                c = self.rawq_getchar()
                if not self.iacseq:
                    if c == theNULL:
                        continue
                    if c == "\021":
                        continue
                    if c != IAC:
                        buf[self.sb] = buf[self.sb] + c
                        continue
                    else:
                        self.iacseq += c
                elif len(self.iacseq) == 1:
                    # 'IAC: IAC CMD [OPTION only for WILL/WONT/DO/DONT]'
                    if c in (DO, DONT, WILL, WONT):
                        self.iacseq += c
                        continue

                    self.iacseq = ''
                    if c == IAC:
                        buf[self.sb] = buf[self.sb] + c
                    else:
                        if c == SB: # SB ... SE start.
                            self.sb = 1
                            self.sbdataq = ''
                        elif c == SE:
                            self.sb = 0
                            self.sbdataq = self.sbdataq + buf[1]
                            buf[1] = ''
                        if self.option_callback:
                            # Callback is supposed to look into
                            # the sbdataq
                            self.option_callback(self.sock, c, NOOPT)
                        else:
                            # We can't offer automatic processing of
                            # suboptions. Alas, we should not get any
                            # unless we did a WILL/DO before.
                            self.msg('IAC %d not recognized' % ord(c))
                elif len(self.iacseq) == 2:
                    cmd = self.iacseq[1]
                    self.iacseq = ''
                    opt = c
                    if cmd in (DO, DONT):
                        self.msg('IAC %s %d',
                            cmd == DO and 'DO' or 'DONT', ord(opt))
                        if self.option_callback:
                            self.option_callback(self.sock, cmd, opt)
                        else:
                            self.sock.sendall(IAC + WONT + opt)
                    elif cmd in (WILL, WONT):
                        self.msg('IAC %s %d',
                            cmd == WILL and 'WILL' or 'WONT', ord(opt))
                        if self.option_callback:
                            self.option_callback(self.sock, cmd, opt)
                        else:
                            self.sock.sendall(IAC + DONT + opt)
        except EOFError: # raised by self.rawq_getchar()
            self.iacseq = '' # Reset on EOF
            self.sb = 0
            pass
        self.cookedq = self.cookedq + buf[0]
        self.sbdataq = self.sbdataq + buf[1]

    def rawq_getchar(self):
        """Get next char from raw queue.

        Block if no data is immediately available.  Raise EOFError
        when connection is closed.

        """
        if not self.rawq:
            self.fill_rawq()
            if self.eof:
                raise EOFError
        c = self.rawq[self.irawq]
        self.irawq = self.irawq + 1
        if self.irawq >= len(self.rawq):
            self.rawq = ''
            self.irawq = 0
        return c

    def fill_rawq(self):
        """Fill raw queue from exactly one recv() system call.

        Block if no data is immediately available.  Set self.eof when
        connection is closed.

        """
        if self.irawq >= len(self.rawq):
            self.rawq = ''
            self.irawq = 0
        # The buffer size should be fairly small so as to avoid quadratic
        # behavior in process_rawq() above
        buf = self.sock.recv(50)
        self.msg("recv %r", buf)
        self.eof = (not buf)
        self.rawq = self.rawq + buf

    def sock_avail(self):
        """Test whether data is available on the socket."""
        return select.select([self], [], [], 0) == ([self], [], [])

    def interact(self):
        """Interaction function, emulates a very dumb telnet client."""
        if sys.platform == "win32":
            self.mt_interact()
            return
        while 1:
            rfd, wfd, xfd = select.select([self, sys.stdin], [], [])
            if self in rfd:
                try:
                    text = self.read_eager()
                except EOFError:
                    print '*** Connection closed by remote host ***'
                    break
                if text:
                    sys.stdout.write(text)
                    sys.stdout.flush()
            if sys.stdin in rfd:
                line = sys.stdin.readline()
                if not line:
                    break
                self.write(line)

    def mt_interact(self):
        """Multithreaded version of interact()."""
        import thread
        thread.start_new_thread(self.listener, ())
        while 1:
            line = sys.stdin.readline()
            if not line:
                break
            self.write(line)

    def listener(self):
        """Helper for mt_interact() -- this executes in the other thread."""
        while 1:
            try:
                data = self.read_eager()
            except EOFError:
                print '*** Connection closed by remote host ***'
                return
            if data:
                sys.stdout.write(data)
            else:
                sys.stdout.flush()

    def expect(self, list, timeout=None):
        """Read until one from a list of a regular expressions matches.

        The first argument is a list of regular expressions, either
        compiled (re.RegexObject instances) or uncompiled (strings).
        The optional second argument is a timeout, in seconds; default
        is no timeout.

        Return a tuple of three items: the index in the list of the
        first regular expression that matches; the match object
        returned; and the text read up till and including the match.

        If EOF is read and no text was read, raise EOFError.
        Otherwise, when nothing matches, return (-1, None, text) where
        text is the text received so far (may be the empty string if a
        timeout happened).

        If a regular expression ends with a greedy match (e.g. '.*')
        or if more than one expression can match the same input, the
        results are undeterministic, and may depend on the I/O timing.

        """
        if self._has_poll:
            return self._expect_with_poll(list, timeout)
        else:
            return self._expect_with_select(list, timeout)

    def _expect_with_poll(self, expect_list, timeout=None):
        """Read until one from a list of a regular expressions matches.

        This method uses select.poll() to implement the timeout.
        """
        re = None
        expect_list = expect_list[:]
        indices = range(len(expect_list))
        for i in indices:
            if not hasattr(expect_list[i], "search"):
                if not re: import re
                expect_list[i] = re.compile(expect_list[i])
        call_timeout = timeout
        if timeout is not None:
            from time import time
            time_start = time()
        self.process_rawq()
        m = None
        for i in indices:
            m = expect_list[i].search(self.cookedq)
            if m:
                e = m.end()
                text = self.cookedq[:e]
                self.cookedq = self.cookedq[e:]
                break
        if not m:
            poller = select.poll()
            poll_in_or_priority_flags = select.POLLIN | select.POLLPRI
            poller.register(self, poll_in_or_priority_flags)
            while not m and not self.eof:
                try:
                    ready = poller.poll(None if timeout is None
                                        else 1000 * call_timeout)
                except select.error as e:
                    if e[0] == errno.EINTR:
                        if timeout is not None:
                            elapsed = time() - time_start
                            call_timeout = timeout-elapsed
                        continue
                    raise
                for fd, mode in ready:
                    if mode & poll_in_or_priority_flags:
                        self.fill_rawq()
                        self.process_rawq()
                        for i in indices:
                            m = expect_list[i].search(self.cookedq)
                            if m:
                                e = m.end()
                                text = self.cookedq[:e]
                                self.cookedq = self.cookedq[e:]
                                break
                if timeout is not None:
                    elapsed = time() - time_start
                    if elapsed >= timeout:
                        break
                    call_timeout = timeout-elapsed
            poller.unregister(self)
        if m:
            return (i, m, text)
        text = self.read_very_lazy()
        if not text and self.eof:
            raise EOFError
        return (-1, None, text)

    def _expect_with_select(self, list, timeout=None):
        """Read until one from a list of a regular expressions matches.

        The timeout is implemented using select.select().
        """
        re = None
        list = list[:]
        indices = range(len(list))
        for i in indices:
            if not hasattr(list[i], "search"):
                if not re: import re
                list[i] = re.compile(list[i])
        if timeout is not None:
            from time import time
            time_start = time()
        while 1:
            self.process_rawq()
            for i in indices:
                m = list[i].search(self.cookedq)
                if m:
                    e = m.end()
                    text = self.cookedq[:e]
                    self.cookedq = self.cookedq[e:]
                    return (i, m, text)
            if self.eof:
                break
            if timeout is not None:
                elapsed = time() - time_start
                if elapsed >= timeout:
                    break
                s_args = ([self.fileno()], [], [], timeout-elapsed)
                r, w, x = select.select(*s_args)
                if not r:
                    break
            self.fill_rawq()
        text = self.read_very_lazy()
        if not text and self.eof:
            raise EOFError
        return (-1, None, text)


def test():
    """Test program for telnetlib.

    Usage: python telnetlib.py [-d] ... [host [port]]

    Default host is localhost; default port is 23.

    """
    debuglevel = 0
    while sys.argv[1:] and sys.argv[1] == '-d':
        debuglevel = debuglevel+1
        del sys.argv[1]
    host = 'localhost'
    if sys.argv[1:]:
        host = sys.argv[1]
    port = 0
    if sys.argv[2:]:
        portstr = sys.argv[2]
        try:
            port = int(portstr)
        except ValueError:
            port = socket.getservbyname(portstr, 'tcp')
    tn = Telnet()
    tn.set_debuglevel(debuglevel)
    tn.open(host, port, timeout=0.5)
    tn.interact()
    tn.close()

if __name__ == '__main__':
    test()




          

      

      

    

  

    
      
          
            
  Source code for typing

from __future__ import absolute_import, unicode_literals

import abc
from abc import abstractmethod, abstractproperty
import collections
import functools
import re as stdlib_re  # Avoid confusion with the re we export.
import sys
import types
import copy
try:
    import collections.abc as collections_abc
except ImportError:
    import collections as collections_abc  # Fallback for PY3.2.


# Please keep __all__ alphabetized within each category.
__all__ = [
    # Super-special typing primitives.
    'Any',
    'Callable',
    'ClassVar',
    'Final',
    'Generic',
    'Literal',
    'Optional',
    'Protocol',
    'Tuple',
    'Type',
    'TypeVar',
    'Union',

    # ABCs (from collections.abc).
    'AbstractSet',  # collections.abc.Set.
    'GenericMeta',  # subclass of abc.ABCMeta and a metaclass
                    # for 'Generic' and ABCs below.
    'ByteString',
    'Container',
    'ContextManager',
    'Hashable',
    'ItemsView',
    'Iterable',
    'Iterator',
    'KeysView',
    'Mapping',
    'MappingView',
    'MutableMapping',
    'MutableSequence',
    'MutableSet',
    'Sequence',
    'Sized',
    'ValuesView',

    # Structural checks, a.k.a. protocols.
    'Reversible',
    'SupportsAbs',
    'SupportsComplex',
    'SupportsFloat',
    'SupportsIndex',
    'SupportsInt',

    # Concrete collection types.
    'Counter',
    'Deque',
    'Dict',
    'DefaultDict',
    'List',
    'Set',
    'FrozenSet',
    'NamedTuple',  # Not really a type.
    'TypedDict',  # Not really a type.
    'Generator',

    # One-off things.
    'AnyStr',
    'cast',
    'final',
    'get_type_hints',
    'NewType',
    'no_type_check',
    'no_type_check_decorator',
    'NoReturn',
    'overload',
    'runtime_checkable',
    'Text',
    'TYPE_CHECKING',
]

# The pseudo-submodules 're' and 'io' are part of the public
# namespace, but excluded from __all__ because they might stomp on
# legitimate imports of those modules.


def _qualname(x):
    if sys.version_info[:2] >= (3, 3):
        return x.__qualname__
    else:
        # Fall back to just name.
        return x.__name__


def _trim_name(nm):
    whitelist = ('_TypeAlias', '_ForwardRef', '_TypingBase', '_FinalTypingBase')
    if nm.startswith('_') and nm not in whitelist:
        nm = nm[1:]
    return nm


class TypingMeta(type):
    """Metaclass for most types defined in typing module
    (not a part of public API).

    This also defines a dummy constructor (all the work for most typing
    constructs is done in __new__) and a nicer repr().
    """

    _is_protocol = False

    def __new__(cls, name, bases, namespace):
        return super(TypingMeta, cls).__new__(cls, str(name), bases, namespace)

    @classmethod
    def assert_no_subclassing(cls, bases):
        for base in bases:
            if isinstance(base, cls):
                raise TypeError("Cannot subclass %s" %
                                (', '.join(map(_type_repr, bases)) or '()'))

    def __init__(self, *args, **kwds):
        pass

    def _eval_type(self, globalns, localns):
        """Override this in subclasses to interpret forward references.

        For example, List['C'] is internally stored as
        List[_ForwardRef('C')], which should evaluate to List[C],
        where C is an object found in globalns or localns (searching
        localns first, of course).
        """
        return self

    def _get_type_vars(self, tvars):
        pass

    def __repr__(self):
        qname = _trim_name(_qualname(self))
        return '%s.%s' % (self.__module__, qname)


class _TypingBase(object):
    """Internal indicator of special typing constructs."""
    __metaclass__ = TypingMeta
    __slots__ = ('__weakref__',)

    def __init__(self, *args, **kwds):
        pass

    def __new__(cls, *args, **kwds):
        """Constructor.

        This only exists to give a better error message in case
        someone tries to subclass a special typing object (not a good idea).
        """
        if (len(args) == 3 and
                isinstance(args[0], str) and
                isinstance(args[1], tuple)):
            # Close enough.
            raise TypeError("Cannot subclass %r" % cls)
        return super(_TypingBase, cls).__new__(cls)

    # Things that are not classes also need these.
    def _eval_type(self, globalns, localns):
        return self

    def _get_type_vars(self, tvars):
        pass

    def __repr__(self):
        cls = type(self)
        qname = _trim_name(_qualname(cls))
        return '%s.%s' % (cls.__module__, qname)

    def __call__(self, *args, **kwds):
        raise TypeError("Cannot instantiate %r" % type(self))


class _FinalTypingBase(_TypingBase):
    """Internal mix-in class to prevent instantiation.

    Prevents instantiation unless _root=True is given in class call.
    It is used to create pseudo-singleton instances Any, Union, Optional, etc.
    """

    __slots__ = ()

    def __new__(cls, *args, **kwds):
        self = super(_FinalTypingBase, cls).__new__(cls, *args, **kwds)
        if '_root' in kwds and kwds['_root'] is True:
            return self
        raise TypeError("Cannot instantiate %r" % cls)

    def __reduce__(self):
        return _trim_name(type(self).__name__)


class _ForwardRef(_TypingBase):
    """Internal wrapper to hold a forward reference."""

    __slots__ = ('__forward_arg__', '__forward_code__',
                 '__forward_evaluated__', '__forward_value__')

    def __init__(self, arg):
        super(_ForwardRef, self).__init__(arg)
        if not isinstance(arg, basestring):
            raise TypeError('Forward reference must be a string -- got %r' % (arg,))
        try:
            code = compile(arg, '<string>', 'eval')
        except SyntaxError:
            raise SyntaxError('Forward reference must be an expression -- got %r' %
                              (arg,))
        self.__forward_arg__ = arg
        self.__forward_code__ = code
        self.__forward_evaluated__ = False
        self.__forward_value__ = None

    def _eval_type(self, globalns, localns):
        if not self.__forward_evaluated__ or localns is not globalns:
            if globalns is None and localns is None:
                globalns = localns = {}
            elif globalns is None:
                globalns = localns
            elif localns is None:
                localns = globalns
            self.__forward_value__ = _type_check(
                eval(self.__forward_code__, globalns, localns),
                "Forward references must evaluate to types.")
            self.__forward_evaluated__ = True
        return self.__forward_value__

    def __eq__(self, other):
        if not isinstance(other, _ForwardRef):
            return NotImplemented
        return (self.__forward_arg__ == other.__forward_arg__ and
                self.__forward_value__ == other.__forward_value__)

    def __hash__(self):
        return hash((self.__forward_arg__, self.__forward_value__))

    def __instancecheck__(self, obj):
        raise TypeError("Forward references cannot be used with isinstance().")

    def __subclasscheck__(self, cls):
        raise TypeError("Forward references cannot be used with issubclass().")

    def __repr__(self):
        return '_ForwardRef(%r)' % (self.__forward_arg__,)


class _TypeAlias(_TypingBase):
    """Internal helper class for defining generic variants of concrete types.

    Note that this is not a type; let's call it a pseudo-type.  It cannot
    be used in instance and subclass checks in parameterized form, i.e.
    ``isinstance(42, Match[str])`` raises ``TypeError`` instead of returning
    ``False``.
    """

    __slots__ = ('name', 'type_var', 'impl_type', 'type_checker')

    def __init__(self, name, type_var, impl_type, type_checker):
        """Initializer.

        Args:
            name: The name, e.g. 'Pattern'.
            type_var: The type parameter, e.g. AnyStr, or the
                specific type, e.g. str.
            impl_type: The implementation type.
            type_checker: Function that takes an impl_type instance.
                and returns a value that should be a type_var instance.
        """
        assert isinstance(name, basestring), repr(name)
        assert isinstance(impl_type, type), repr(impl_type)
        assert not isinstance(impl_type, TypingMeta), repr(impl_type)
        assert isinstance(type_var, (type, _TypingBase)), repr(type_var)
        self.name = name
        self.type_var = type_var
        self.impl_type = impl_type
        self.type_checker = type_checker

    def __repr__(self):
        return "%s[%s]" % (self.name, _type_repr(self.type_var))

    def __getitem__(self, parameter):
        if not isinstance(self.type_var, TypeVar):
            raise TypeError("%s cannot be further parameterized." % self)
        if self.type_var.__constraints__ and isinstance(parameter, type):
            if not issubclass(parameter, self.type_var.__constraints__):
                raise TypeError("%s is not a valid substitution for %s." %
                                (parameter, self.type_var))
        if isinstance(parameter, TypeVar) and parameter is not self.type_var:
            raise TypeError("%s cannot be re-parameterized." % self)
        return self.__class__(self.name, parameter,
                              self.impl_type, self.type_checker)

    def __eq__(self, other):
        if not isinstance(other, _TypeAlias):
            return NotImplemented
        return self.name == other.name and self.type_var == other.type_var

    def __hash__(self):
        return hash((self.name, self.type_var))

    def __instancecheck__(self, obj):
        if not isinstance(self.type_var, TypeVar):
            raise TypeError("Parameterized type aliases cannot be used "
                            "with isinstance().")
        return isinstance(obj, self.impl_type)

    def __subclasscheck__(self, cls):
        if not isinstance(self.type_var, TypeVar):
            raise TypeError("Parameterized type aliases cannot be used "
                            "with issubclass().")
        return issubclass(cls, self.impl_type)


def _get_type_vars(types, tvars):
    for t in types:
        if isinstance(t, TypingMeta) or isinstance(t, _TypingBase):
            t._get_type_vars(tvars)


def _type_vars(types):
    tvars = []
    _get_type_vars(types, tvars)
    return tuple(tvars)


def _eval_type(t, globalns, localns):
    if isinstance(t, TypingMeta) or isinstance(t, _TypingBase):
        return t._eval_type(globalns, localns)
    return t


def _type_check(arg, msg):
    """Check that the argument is a type, and return it (internal helper).

    As a special case, accept None and return type(None) instead.
    Also, _TypeAlias instances (e.g. Match, Pattern) are acceptable.

    The msg argument is a human-readable error message, e.g.

        "Union[arg, ...]: arg should be a type."

    We append the repr() of the actual value (truncated to 100 chars).
    """
    if arg is None:
        return type(None)
    if isinstance(arg, basestring):
        arg = _ForwardRef(arg)
    if (
        isinstance(arg, _TypingBase) and type(arg).__name__ == '_ClassVar' or
        not isinstance(arg, (type, _TypingBase)) and not callable(arg)
    ):
        raise TypeError(msg + " Got %.100r." % (arg,))
    # Bare Union etc. are not valid as type arguments
    if (
        type(arg).__name__ in ('_Union', '_Optional') and
        not getattr(arg, '__origin__', None) or
        isinstance(arg, TypingMeta) and arg._gorg in (Generic, Protocol)
    ):
        raise TypeError("Plain %s is not valid as type argument" % arg)
    return arg


def _type_repr(obj):
    """Return the repr() of an object, special-casing types (internal helper).

    If obj is a type, we return a shorter version than the default
    type.__repr__, based on the module and qualified name, which is
    typically enough to uniquely identify a type.  For everything
    else, we fall back on repr(obj).
    """
    if isinstance(obj, type) and not isinstance(obj, TypingMeta):
        if obj.__module__ == '__builtin__':
            return _qualname(obj)
        return '%s.%s' % (obj.__module__, _qualname(obj))
    if obj is Ellipsis:
        return '...'
    if isinstance(obj, types.FunctionType):
        return obj.__name__
    return repr(obj)


class ClassVarMeta(TypingMeta):
    """Metaclass for _ClassVar"""

    def __new__(cls, name, bases, namespace):
        cls.assert_no_subclassing(bases)
        self = super(ClassVarMeta, cls).__new__(cls, name, bases, namespace)
        return self


class _ClassVar(_FinalTypingBase):
    """Special type construct to mark class variables.

    An annotation wrapped in ClassVar indicates that a given
    attribute is intended to be used as a class variable and
    should not be set on instances of that class. Usage::

      class Starship:
          stats = {}  # type: ClassVar[Dict[str, int]] # class variable
          damage = 10 # type: int                      # instance variable

    ClassVar accepts only types and cannot be further subscribed.

    Note that ClassVar is not a class itself, and should not
    be used with isinstance() or issubclass().
    """

    __metaclass__ = ClassVarMeta
    __slots__ = ('__type__',)

    def __init__(self, tp=None, _root=False):
        self.__type__ = tp

    def __getitem__(self, item):
        cls = type(self)
        if self.__type__ is None:
            return cls(_type_check(item,
                       '{} accepts only types.'.format(cls.__name__[1:])),
                       _root=True)
        raise TypeError('{} cannot be further subscripted'
                        .format(cls.__name__[1:]))

    def _eval_type(self, globalns, localns):
        return type(self)(_eval_type(self.__type__, globalns, localns),
                          _root=True)

    def __repr__(self):
        r = super(_ClassVar, self).__repr__()
        if self.__type__ is not None:
            r += '[{}]'.format(_type_repr(self.__type__))
        return r

    def __hash__(self):
        return hash((type(self).__name__, self.__type__))

    def __eq__(self, other):
        if not isinstance(other, _ClassVar):
            return NotImplemented
        if self.__type__ is not None:
            return self.__type__ == other.__type__
        return self is other


ClassVar = _ClassVar(_root=True)


class _FinalMeta(TypingMeta):
    """Metaclass for _Final"""

    def __new__(cls, name, bases, namespace):
        cls.assert_no_subclassing(bases)
        self = super(_FinalMeta, cls).__new__(cls, name, bases, namespace)
        return self


class _Final(_FinalTypingBase):
    """A special typing construct to indicate that a name
    cannot be re-assigned or overridden in a subclass.
    For example:

        MAX_SIZE: Final = 9000
        MAX_SIZE += 1  # Error reported by type checker

        class Connection:
            TIMEOUT: Final[int] = 10
        class FastConnector(Connection):
            TIMEOUT = 1  # Error reported by type checker

    There is no runtime checking of these properties.
    """

    __metaclass__ = _FinalMeta
    __slots__ = ('__type__',)

    def __init__(self, tp=None, **kwds):
        self.__type__ = tp

    def __getitem__(self, item):
        cls = type(self)
        if self.__type__ is None:
            return cls(_type_check(item,
                       '{} accepts only single type.'.format(cls.__name__[1:])),
                       _root=True)
        raise TypeError('{} cannot be further subscripted'
                        .format(cls.__name__[1:]))

    def _eval_type(self, globalns, localns):
        new_tp = _eval_type(self.__type__, globalns, localns)
        if new_tp == self.__type__:
            return self
        return type(self)(new_tp, _root=True)

    def __repr__(self):
        r = super(_Final, self).__repr__()
        if self.__type__ is not None:
            r += '[{}]'.format(_type_repr(self.__type__))
        return r

    def __hash__(self):
        return hash((type(self).__name__, self.__type__))

    def __eq__(self, other):
        if not isinstance(other, _Final):
            return NotImplemented
        if self.__type__ is not None:
            return self.__type__ == other.__type__
        return self is other


Final = _Final(_root=True)


def final(f):
    """This decorator can be used to indicate to type checkers that
    the decorated method cannot be overridden, and decorated class
    cannot be subclassed. For example:

        class Base:
            @final
            def done(self) -> None:
                ...
        class Sub(Base):
            def done(self) -> None:  # Error reported by type checker
                ...
        @final
        class Leaf:
            ...
        class Other(Leaf):  # Error reported by type checker
            ...

    There is no runtime checking of these properties.
    """
    return f


class _LiteralMeta(TypingMeta):
    """Metaclass for _Literal"""

    def __new__(cls, name, bases, namespace):
        cls.assert_no_subclassing(bases)
        self = super(_LiteralMeta, cls).__new__(cls, name, bases, namespace)
        return self


class _Literal(_FinalTypingBase):
    """A type that can be used to indicate to type checkers that the
    corresponding value has a value literally equivalent to the
    provided parameter. For example:

        var: Literal[4] = 4

    The type checker understands that 'var' is literally equal to the
    value 4 and no other value.

    Literal[...] cannot be subclassed. There is no runtime checking
    verifying that the parameter is actually a value instead of a type.
    """

    __metaclass__ = _LiteralMeta
    __slots__ = ('__values__',)

    def __init__(self, values=None, **kwds):
        self.__values__ = values

    def __getitem__(self, item):
        cls = type(self)
        if self.__values__ is None:
            if not isinstance(item, tuple):
                item = (item,)
            return cls(values=item,
                       _root=True)
        raise TypeError('{} cannot be further subscripted'
                        .format(cls.__name__[1:]))

    def _eval_type(self, globalns, localns):
        return self

    def __repr__(self):
        r = super(_Literal, self).__repr__()
        if self.__values__ is not None:
            r += '[{}]'.format(', '.join(map(_type_repr, self.__values__)))
        return r

    def __hash__(self):
        return hash((type(self).__name__, self.__values__))

    def __eq__(self, other):
        if not isinstance(other, _Literal):
            return NotImplemented
        if self.__values__ is not None:
            return self.__values__ == other.__values__
        return self is other


Literal = _Literal(_root=True)


class AnyMeta(TypingMeta):
    """Metaclass for Any."""

    def __new__(cls, name, bases, namespace):
        cls.assert_no_subclassing(bases)
        self = super(AnyMeta, cls).__new__(cls, name, bases, namespace)
        return self


class _Any(_FinalTypingBase):
    """Special type indicating an unconstrained type.

    - Any is compatible with every type.
    - Any assumed to have all methods.
    - All values assumed to be instances of Any.

    Note that all the above statements are true from the point of view of
    static type checkers. At runtime, Any should not be used with instance
    or class checks.
    """
    __metaclass__ = AnyMeta
    __slots__ = ()

    def __instancecheck__(self, obj):
        raise TypeError("Any cannot be used with isinstance().")

    def __subclasscheck__(self, cls):
        raise TypeError("Any cannot be used with issubclass().")


Any = _Any(_root=True)


class NoReturnMeta(TypingMeta):
    """Metaclass for NoReturn."""

    def __new__(cls, name, bases, namespace):
        cls.assert_no_subclassing(bases)
        self = super(NoReturnMeta, cls).__new__(cls, name, bases, namespace)
        return self


class _NoReturn(_FinalTypingBase):
    """Special type indicating functions that never return.
    Example::

      from typing import NoReturn

      def stop() -> NoReturn:
          raise Exception('no way')

    This type is invalid in other positions, e.g., ``List[NoReturn]``
    will fail in static type checkers.
    """
    __metaclass__ = NoReturnMeta
    __slots__ = ()

    def __instancecheck__(self, obj):
        raise TypeError("NoReturn cannot be used with isinstance().")

    def __subclasscheck__(self, cls):
        raise TypeError("NoReturn cannot be used with issubclass().")


NoReturn = _NoReturn(_root=True)


class TypeVarMeta(TypingMeta):
    def __new__(cls, name, bases, namespace):
        cls.assert_no_subclassing(bases)
        return super(TypeVarMeta, cls).__new__(cls, name, bases, namespace)


class TypeVar(_TypingBase):
    """Type variable.

    Usage::

      T = TypeVar('T')  # Can be anything
      A = TypeVar('A', str, bytes)  # Must be str or bytes

    Type variables exist primarily for the benefit of static type
    checkers.  They serve as the parameters for generic types as well
    as for generic function definitions.  See class Generic for more
    information on generic types.  Generic functions work as follows:

      def repeat(x: T, n: int) -> List[T]:
          '''Return a list containing n references to x.'''
          return [x]*n

      def longest(x: A, y: A) -> A:
          '''Return the longest of two strings.'''
          return x if len(x) >= len(y) else y

    The latter example's signature is essentially the overloading
    of (str, str) -> str and (bytes, bytes) -> bytes.  Also note
    that if the arguments are instances of some subclass of str,
    the return type is still plain str.

    At runtime, isinstance(x, T) and issubclass(C, T) will raise TypeError.

    Type variables defined with covariant=True or contravariant=True
    can be used do declare covariant or contravariant generic types.
    See PEP 484 for more details. By default generic types are invariant
    in all type variables.

    Type variables can be introspected. e.g.:

      T.__name__ == 'T'
      T.__constraints__ == ()
      T.__covariant__ == False
      T.__contravariant__ = False
      A.__constraints__ == (str, bytes)
    """

    __metaclass__ = TypeVarMeta
    __slots__ = ('__name__', '__bound__', '__constraints__',
                 '__covariant__', '__contravariant__')

    def __init__(self, name, *constraints, **kwargs):
        super(TypeVar, self).__init__(name, *constraints, **kwargs)
        bound = kwargs.get('bound', None)
        covariant = kwargs.get('covariant', False)
        contravariant = kwargs.get('contravariant', False)
        self.__name__ = name
        if covariant and contravariant:
            raise ValueError("Bivariant types are not supported.")
        self.__covariant__ = bool(covariant)
        self.__contravariant__ = bool(contravariant)
        if constraints and bound is not None:
            raise TypeError("Constraints cannot be combined with bound=...")
        if constraints and len(constraints) == 1:
            raise TypeError("A single constraint is not allowed")
        msg = "TypeVar(name, constraint, ...): constraints must be types."
        self.__constraints__ = tuple(_type_check(t, msg) for t in constraints)
        if bound:
            self.__bound__ = _type_check(bound, "Bound must be a type.")
        else:
            self.__bound__ = None

    def _get_type_vars(self, tvars):
        if self not in tvars:
            tvars.append(self)

    def __repr__(self):
        if self.__covariant__:
            prefix = '+'
        elif self.__contravariant__:
            prefix = '-'
        else:
            prefix = '~'
        return prefix + self.__name__

    def __instancecheck__(self, instance):
        raise TypeError("Type variables cannot be used with isinstance().")

    def __subclasscheck__(self, cls):
        raise TypeError("Type variables cannot be used with issubclass().")


# Some unconstrained type variables.  These are used by the container types.
# (These are not for export.)
T = TypeVar('T')  # Any type.
KT = TypeVar('KT')  # Key type.
VT = TypeVar('VT')  # Value type.
T_co = TypeVar('T_co', covariant=True)  # Any type covariant containers.
V_co = TypeVar('V_co', covariant=True)  # Any type covariant containers.
VT_co = TypeVar('VT_co', covariant=True)  # Value type covariant containers.
T_contra = TypeVar('T_contra', contravariant=True)  # Ditto contravariant.

# A useful type variable with constraints.  This represents string types.
# (This one *is* for export!)
AnyStr = TypeVar('AnyStr', bytes, unicode)


def _replace_arg(arg, tvars, args):
    """An internal helper function: replace arg if it is a type variable
    found in tvars with corresponding substitution from args or
    with corresponding substitution sub-tree if arg is a generic type.
    """

    if tvars is None:
        tvars = []
    if hasattr(arg, '_subs_tree') and isinstance(arg, (GenericMeta, _TypingBase)):
        return arg._subs_tree(tvars, args)
    if isinstance(arg, TypeVar):
        for i, tvar in enumerate(tvars):
            if arg == tvar:
                return args[i]
    return arg


# Special typing constructs Union, Optional, Generic, Callable and Tuple
# use three special attributes for internal bookkeeping of generic types:
# * __parameters__ is a tuple of unique free type parameters of a generic
#   type, for example, Dict[T, T].__parameters__ == (T,);
# * __origin__ keeps a reference to a type that was subscripted,
#   e.g., Union[T, int].__origin__ == Union;
# * __args__ is a tuple of all arguments used in subscripting,
#   e.g., Dict[T, int].__args__ == (T, int).


def _subs_tree(cls, tvars=None, args=None):
    """An internal helper function: calculate substitution tree
    for generic cls after replacing its type parameters with
    substitutions in tvars -> args (if any).
    Repeat the same following __origin__'s.

    Return a list of arguments with all possible substitutions
    performed. Arguments that are generic classes themselves are represented
    as tuples (so that no new classes are created by this function).
    For example: _subs_tree(List[Tuple[int, T]][str]) == [(Tuple, int, str)]
    """

    if cls.__origin__ is None:
        return cls
    # Make of chain of origins (i.e. cls -> cls.__origin__)
    current = cls.__origin__
    orig_chain = []
    while current.__origin__ is not None:
        orig_chain.append(current)
        current = current.__origin__
    # Replace type variables in __args__ if asked ...
    tree_args = []
    for arg in cls.__args__:
        tree_args.append(_replace_arg(arg, tvars, args))
    # ... then continue replacing down the origin chain.
    for ocls in orig_chain:
        new_tree_args = []
        for arg in ocls.__args__:
            new_tree_args.append(_replace_arg(arg, ocls.__parameters__, tree_args))
        tree_args = new_tree_args
    return tree_args


def _remove_dups_flatten(parameters):
    """An internal helper for Union creation and substitution: flatten Union's
    among parameters, then remove duplicates and strict subclasses.
    """

    # Flatten out Union[Union[...], ...].
    params = []
    for p in parameters:
        if isinstance(p, _Union) and p.__origin__ is Union:
            params.extend(p.__args__)
        elif isinstance(p, tuple) and len(p) > 0 and p[0] is Union:
            params.extend(p[1:])
        else:
            params.append(p)
    # Weed out strict duplicates, preserving the first of each occurrence.
    all_params = set(params)
    if len(all_params) < len(params):
        new_params = []
        for t in params:
            if t in all_params:
                new_params.append(t)
                all_params.remove(t)
        params = new_params
        assert not all_params, all_params
    # Weed out subclasses.
    # E.g. Union[int, Employee, Manager] == Union[int, Employee].
    # If object is present it will be sole survivor among proper classes.
    # Never discard type variables.
    # (In particular, Union[str, AnyStr] != AnyStr.)
    all_params = set(params)
    for t1 in params:
        if not isinstance(t1, type):
            continue
        if any(isinstance(t2, type) and issubclass(t1, t2)
               for t2 in all_params - {t1}
               if not (isinstance(t2, GenericMeta) and
                       t2.__origin__ is not None)):
            all_params.remove(t1)
    return tuple(t for t in params if t in all_params)


def _check_generic(cls, parameters):
    # Check correct count for parameters of a generic cls (internal helper).
    if not cls.__parameters__:
        raise TypeError("%s is not a generic class" % repr(cls))
    alen = len(parameters)
    elen = len(cls.__parameters__)
    if alen != elen:
        raise TypeError("Too %s parameters for %s; actual %s, expected %s" %
                        ("many" if alen > elen else "few", repr(cls), alen, elen))


_cleanups = []


def _tp_cache(func):
    maxsize = 128
    cache = {}
    _cleanups.append(cache.clear)

    @functools.wraps(func)
    def inner(*args):
        key = args
        try:
            return cache[key]
        except TypeError:
            # Assume it's an unhashable argument.
            return func(*args)
        except KeyError:
            value = func(*args)
            if len(cache) >= maxsize:
                # If the cache grows too much, just start over.
                cache.clear()
            cache[key] = value
            return value

    return inner


class UnionMeta(TypingMeta):
    """Metaclass for Union."""

    def __new__(cls, name, bases, namespace):
        cls.assert_no_subclassing(bases)
        return super(UnionMeta, cls).__new__(cls, name, bases, namespace)


class _Union(_FinalTypingBase):
    """Union type; Union[X, Y] means either X or Y.

    To define a union, use e.g. Union[int, str].  Details:

    - The arguments must be types and there must be at least one.

    - None as an argument is a special case and is replaced by
      type(None).

    - Unions of unions are flattened, e.g.::

        Union[Union[int, str], float] == Union[int, str, float]

    - Unions of a single argument vanish, e.g.::

        Union[int] == int  # The constructor actually returns int

    - Redundant arguments are skipped, e.g.::

        Union[int, str, int] == Union[int, str]

    - When comparing unions, the argument order is ignored, e.g.::

        Union[int, str] == Union[str, int]

    - When two arguments have a subclass relationship, the least
      derived argument is kept, e.g.::

        class Employee: pass
        class Manager(Employee): pass
        Union[int, Employee, Manager] == Union[int, Employee]
        Union[Manager, int, Employee] == Union[int, Employee]
        Union[Employee, Manager] == Employee

    - Similar for object::

        Union[int, object] == object

    - You cannot subclass or instantiate a union.

    - You can use Optional[X] as a shorthand for Union[X, None].
    """

    __metaclass__ = UnionMeta
    __slots__ = ('__parameters__', '__args__', '__origin__', '__tree_hash__')

    def __new__(cls, parameters=None, origin=None, *args, **kwds):
        self = super(_Union, cls).__new__(cls, parameters, origin, *args, **kwds)
        if origin is None:
            self.__parameters__ = None
            self.__args__ = None
            self.__origin__ = None
            self.__tree_hash__ = hash(frozenset(('Union',)))
            return self
        if not isinstance(parameters, tuple):
            raise TypeError("Expected parameters=<tuple>")
        if origin is Union:
            parameters = _remove_dups_flatten(parameters)
            # It's not a union if there's only one type left.
            if len(parameters) == 1:
                return parameters[0]
        self.__parameters__ = _type_vars(parameters)
        self.__args__ = parameters
        self.__origin__ = origin
        # Pre-calculate the __hash__ on instantiation.
        # This improves speed for complex substitutions.
        subs_tree = self._subs_tree()
        if isinstance(subs_tree, tuple):
            self.__tree_hash__ = hash(frozenset(subs_tree))
        else:
            self.__tree_hash__ = hash(subs_tree)
        return self

    def _eval_type(self, globalns, localns):
        if self.__args__ is None:
            return self
        ev_args = tuple(_eval_type(t, globalns, localns) for t in self.__args__)
        ev_origin = _eval_type(self.__origin__, globalns, localns)
        if ev_args == self.__args__ and ev_origin == self.__origin__:
            # Everything is already evaluated.
            return self
        return self.__class__(ev_args, ev_origin, _root=True)

    def _get_type_vars(self, tvars):
        if self.__origin__ and self.__parameters__:
            _get_type_vars(self.__parameters__, tvars)

    def __repr__(self):
        if self.__origin__ is None:
            return super(_Union, self).__repr__()
        tree = self._subs_tree()
        if not isinstance(tree, tuple):
            return repr(tree)
        return tree[0]._tree_repr(tree)

    def _tree_repr(self, tree):
        arg_list = []
        for arg in tree[1:]:
            if not isinstance(arg, tuple):
                arg_list.append(_type_repr(arg))
            else:
                arg_list.append(arg[0]._tree_repr(arg))
        return super(_Union, self).__repr__() + '[%s]' % ', '.join(arg_list)

    @_tp_cache
    def __getitem__(self, parameters):
        if parameters == ():
            raise TypeError("Cannot take a Union of no types.")
        if not isinstance(parameters, tuple):
            parameters = (parameters,)
        if self.__origin__ is None:
            msg = "Union[arg, ...]: each arg must be a type."
        else:
            msg = "Parameters to generic types must be types."
        parameters = tuple(_type_check(p, msg) for p in parameters)
        if self is not Union:
            _check_generic(self, parameters)
        return self.__class__(parameters, origin=self, _root=True)

    def _subs_tree(self, tvars=None, args=None):
        if self is Union:
            return Union  # Nothing to substitute
        tree_args = _subs_tree(self, tvars, args)
        tree_args = _remove_dups_flatten(tree_args)
        if len(tree_args) == 1:
            return tree_args[0]  # Union of a single type is that type
        return (Union,) + tree_args

    def __eq__(self, other):
        if isinstance(other, _Union):
            return self.__tree_hash__ == other.__tree_hash__
        elif self is not Union:
            return self._subs_tree() == other
        else:
            return self is other

    def __hash__(self):
        return self.__tree_hash__

    def __instancecheck__(self, obj):
        raise TypeError("Unions cannot be used with isinstance().")

    def __subclasscheck__(self, cls):
        raise TypeError("Unions cannot be used with issubclass().")


Union = _Union(_root=True)


class OptionalMeta(TypingMeta):
    """Metaclass for Optional."""

    def __new__(cls, name, bases, namespace):
        cls.assert_no_subclassing(bases)
        return super(OptionalMeta, cls).__new__(cls, name, bases, namespace)


class _Optional(_FinalTypingBase):
    """Optional type.

    Optional[X] is equivalent to Union[X, None].
    """

    __metaclass__ = OptionalMeta
    __slots__ = ()

    @_tp_cache
    def __getitem__(self, arg):
        arg = _type_check(arg, "Optional[t] requires a single type.")
        return Union[arg, type(None)]


Optional = _Optional(_root=True)


def _next_in_mro(cls):
    """Helper for Generic.__new__.

    Returns the class after the last occurrence of Generic or
    Generic[...] in cls.__mro__.
    """
    next_in_mro = object
    # Look for the last occurrence of Generic or Generic[...].
    for i, c in enumerate(cls.__mro__[:-1]):
        if isinstance(c, GenericMeta) and c._gorg is Generic:
            next_in_mro = cls.__mro__[i + 1]
    return next_in_mro


def _make_subclasshook(cls):
    """Construct a __subclasshook__ callable that incorporates
    the associated __extra__ class in subclass checks performed
    against cls.
    """
    if isinstance(cls.__extra__, abc.ABCMeta):
        # The logic mirrors that of ABCMeta.__subclasscheck__.
        # Registered classes need not be checked here because
        # cls and its extra share the same _abc_registry.
        def __extrahook__(cls, subclass):
            res = cls.__extra__.__subclasshook__(subclass)
            if res is not NotImplemented:
                return res
            if cls.__extra__ in getattr(subclass, '__mro__', ()):
                return True
            for scls in cls.__extra__.__subclasses__():
                if isinstance(scls, GenericMeta):
                    continue
                if issubclass(subclass, scls):
                    return True
            return NotImplemented
    else:
        # For non-ABC extras we'll just call issubclass().
        def __extrahook__(cls, subclass):
            if cls.__extra__ and issubclass(subclass, cls.__extra__):
                return True
            return NotImplemented
    return classmethod(__extrahook__)


class GenericMeta(TypingMeta, abc.ABCMeta):
    """Metaclass for generic types.

    This is a metaclass for typing.Generic and generic ABCs defined in
    typing module. User defined subclasses of GenericMeta can override
    __new__ and invoke super().__new__. Note that GenericMeta.__new__
    has strict rules on what is allowed in its bases argument:
    * plain Generic is disallowed in bases;
    * Generic[...] should appear in bases at most once;
    * if Generic[...] is present, then it should list all type variables
      that appear in other bases.
    In addition, type of all generic bases is erased, e.g., C[int] is
    stripped to plain C.
    """

    def __new__(cls, name, bases, namespace,
                tvars=None, args=None, origin=None, extra=None, orig_bases=None):
        """Create a new generic class. GenericMeta.__new__ accepts
        keyword arguments that are used for internal bookkeeping, therefore
        an override should pass unused keyword arguments to super().
        """
        if tvars is not None:
            # Called from __getitem__() below.
            assert origin is not None
            assert all(isinstance(t, TypeVar) for t in tvars), tvars
        else:
            # Called from class statement.
            assert tvars is None, tvars
            assert args is None, args
            assert origin is None, origin

            # Get the full set of tvars from the bases.
            tvars = _type_vars(bases)
            # Look for Generic[T1, ..., Tn].
            # If found, tvars must be a subset of it.
            # If not found, tvars is it.
            # Also check for and reject plain Generic,
            # and reject multiple Generic[...].
            gvars = None
            for base in bases:
                if base is Generic:
                    raise TypeError("Cannot inherit from plain Generic")
                if (isinstance(base, GenericMeta) and
                        base.__origin__ in (Generic, Protocol)):
                    if gvars is not None:
                        raise TypeError(
                            "Cannot inherit from Generic[...] or"
                            " Protocol[...] multiple times.")
                    gvars = base.__parameters__
            if gvars is None:
                gvars = tvars
            else:
                tvarset = set(tvars)
                gvarset = set(gvars)
                if not tvarset <= gvarset:
                    raise TypeError(
                        "Some type variables (%s) "
                        "are not listed in %s[%s]" %
                        (", ".join(str(t) for t in tvars if t not in gvarset),
                         "Generic" if any(b.__origin__ is Generic
                                          for b in bases) else "Protocol",
                         ", ".join(str(g) for g in gvars)))
                tvars = gvars

        initial_bases = bases
        if extra is None:
            extra = namespace.get('__extra__')
        if extra is not None and type(extra) is abc.ABCMeta and extra not in bases:
            bases = (extra,) + bases
        bases = tuple(b._gorg if isinstance(b, GenericMeta) else b for b in bases)

        # remove bare Generic from bases if there are other generic bases
        if any(isinstance(b, GenericMeta) and b is not Generic for b in bases):
            bases = tuple(b for b in bases if b is not Generic)
        namespace.update({'__origin__': origin, '__extra__': extra})
        self = super(GenericMeta, cls).__new__(cls, name, bases, namespace)
        super(GenericMeta, self).__setattr__('_gorg',
                                             self if not origin else origin._gorg)

        self.__parameters__ = tvars
        # Be prepared that GenericMeta will be subclassed by TupleMeta
        # and CallableMeta, those two allow ..., (), or [] in __args___.
        self.__args__ = tuple(Ellipsis if a is _TypingEllipsis else
                              () if a is _TypingEmpty else
                              a for a in args) if args else None
        # Speed hack (https://github.com/python/typing/issues/196).
        self.__next_in_mro__ = _next_in_mro(self)
        # Preserve base classes on subclassing (__bases__ are type erased now).
        if orig_bases is None:
            self.__orig_bases__ = initial_bases

        # This allows unparameterized generic collections to be used
        # with issubclass() and isinstance() in the same way as their
        # collections.abc counterparts (e.g., isinstance([], Iterable)).
        if (
            '__subclasshook__' not in namespace and extra or
            # allow overriding
            getattr(self.__subclasshook__, '__name__', '') == '__extrahook__'
        ):
            self.__subclasshook__ = _make_subclasshook(self)

        if origin and hasattr(origin, '__qualname__'):  # Fix for Python 3.2.
            self.__qualname__ = origin.__qualname__
        self.__tree_hash__ = (hash(self._subs_tree()) if origin else
                              super(GenericMeta, self).__hash__())
        return self

    def __init__(self, *args, **kwargs):
        super(GenericMeta, self).__init__(*args, **kwargs)
        if isinstance(self.__extra__, abc.ABCMeta):
            self._abc_registry = self.__extra__._abc_registry
            self._abc_cache = self.__extra__._abc_cache
        elif self.__origin__ is not None:
            self._abc_registry = self.__origin__._abc_registry
            self._abc_cache = self.__origin__._abc_cache

    # _abc_negative_cache and _abc_negative_cache_version
    # realised as descriptors, since GenClass[t1, t2, ...] always
    # share subclass info with GenClass.
    # This is an important memory optimization.
    @property
    def _abc_negative_cache(self):
        if isinstance(self.__extra__, abc.ABCMeta):
            return self.__extra__._abc_negative_cache
        return self._gorg._abc_generic_negative_cache

    @_abc_negative_cache.setter
    def _abc_negative_cache(self, value):
        if self.__origin__ is None:
            if isinstance(self.__extra__, abc.ABCMeta):
                self.__extra__._abc_negative_cache = value
            else:
                self._abc_generic_negative_cache = value

    @property
    def _abc_negative_cache_version(self):
        if isinstance(self.__extra__, abc.ABCMeta):
            return self.__extra__._abc_negative_cache_version
        return self._gorg._abc_generic_negative_cache_version

    @_abc_negative_cache_version.setter
    def _abc_negative_cache_version(self, value):
        if self.__origin__ is None:
            if isinstance(self.__extra__, abc.ABCMeta):
                self.__extra__._abc_negative_cache_version = value
            else:
                self._abc_generic_negative_cache_version = value

    def _get_type_vars(self, tvars):
        if self.__origin__ and self.__parameters__:
            _get_type_vars(self.__parameters__, tvars)

    def _eval_type(self, globalns, localns):
        ev_origin = (self.__origin__._eval_type(globalns, localns)
                     if self.__origin__ else None)
        ev_args = tuple(_eval_type(a, globalns, localns) for a
                        in self.__args__) if self.__args__ else None
        if ev_origin == self.__origin__ and ev_args == self.__args__:
            return self
        return self.__class__(self.__name__,
                              self.__bases__,
                              dict(self.__dict__),
                              tvars=_type_vars(ev_args) if ev_args else None,
                              args=ev_args,
                              origin=ev_origin,
                              extra=self.__extra__,
                              orig_bases=self.__orig_bases__)

    def __repr__(self):
        if self.__origin__ is None:
            return super(GenericMeta, self).__repr__()
        return self._tree_repr(self._subs_tree())

    def _tree_repr(self, tree):
        arg_list = []
        for arg in tree[1:]:
            if arg == ():
                arg_list.append('()')
            elif not isinstance(arg, tuple):
                arg_list.append(_type_repr(arg))
            else:
                arg_list.append(arg[0]._tree_repr(arg))
        return super(GenericMeta, self).__repr__() + '[%s]' % ', '.join(arg_list)

    def _subs_tree(self, tvars=None, args=None):
        if self.__origin__ is None:
            return self
        tree_args = _subs_tree(self, tvars, args)
        return (self._gorg,) + tuple(tree_args)

    def __eq__(self, other):
        if not isinstance(other, GenericMeta):
            return NotImplemented
        if self.__origin__ is None or other.__origin__ is None:
            return self is other
        return self.__tree_hash__ == other.__tree_hash__

    def __hash__(self):
        return self.__tree_hash__

    @_tp_cache
    def __getitem__(self, params):
        if not isinstance(params, tuple):
            params = (params,)
        if not params and self._gorg is not Tuple:
            raise TypeError(
                "Parameter list to %s[...] cannot be empty" % _qualname(self))
        msg = "Parameters to generic types must be types."
        params = tuple(_type_check(p, msg) for p in params)
        if self in (Generic, Protocol):
            # Generic can only be subscripted with unique type variables.
            if not all(isinstance(p, TypeVar) for p in params):
                raise TypeError(
                    "Parameters to %s[...] must all be type variables" % self.__name__)
            if len(set(params)) != len(params):
                raise TypeError(
                    "Parameters to %s[...] must all be unique" % self.__name__)
            tvars = params
            args = params
        elif self in (Tuple, Callable):
            tvars = _type_vars(params)
            args = params
        elif self.__origin__ in (Generic, Protocol):
            # Can't subscript Generic[...] or Protocol[...].
            raise TypeError("Cannot subscript already-subscripted %s" %
                            repr(self))
        else:
            # Subscripting a regular Generic subclass.
            _check_generic(self, params)
            tvars = _type_vars(params)
            args = params

        prepend = (self,) if self.__origin__ is None else ()
        return self.__class__(self.__name__,
                              prepend + self.__bases__,
                              dict(self.__dict__),
                              tvars=tvars,
                              args=args,
                              origin=self,
                              extra=self.__extra__,
                              orig_bases=self.__orig_bases__)

    def __subclasscheck__(self, cls):
        if self.__origin__ is not None:
            # These should only be modules within the standard library.
            # singledispatch is an exception, because it's a Python 2 backport
            # of functools.singledispatch.
            whitelist = ['abc', 'functools', 'singledispatch']
            if (sys._getframe(1).f_globals['__name__'] in whitelist or
                    # The second frame is needed for the case where we came
                    # from _ProtocolMeta.__subclasscheck__.
                    sys._getframe(2).f_globals['__name__'] in whitelist):
                return False
            raise TypeError("Parameterized generics cannot be used with class "
                            "or instance checks")
        if self is Generic:
            raise TypeError("Class %r cannot be used with class "
                            "or instance checks" % self)
        return super(GenericMeta, self).__subclasscheck__(cls)

    def __instancecheck__(self, instance):
        # Since we extend ABC.__subclasscheck__ and
        # ABC.__instancecheck__ inlines the cache checking done by the
        # latter, we must extend __instancecheck__ too. For simplicity
        # we just skip the cache check -- instance checks for generic
        # classes are supposed to be rare anyways.
        if hasattr(instance, "__class__"):
            return issubclass(instance.__class__, self)
        return False

    def __setattr__(self, attr, value):
        # We consider all the subscripted genrics as proxies for original class
        if (
            attr.startswith('__') and attr.endswith('__') or
            attr.startswith('_abc_')
        ):
            super(GenericMeta, self).__setattr__(attr, value)
        else:
            super(GenericMeta, self._gorg).__setattr__(attr, value)


def _copy_generic(self):
    """Hack to work around https://bugs.python.org/issue11480 on Python 2"""
    return self.__class__(self.__name__, self.__bases__, dict(self.__dict__),
                          self.__parameters__, self.__args__, self.__origin__,
                          self.__extra__, self.__orig_bases__)


copy._copy_dispatch[GenericMeta] = _copy_generic


# Prevent checks for Generic to crash when defining Generic.
Generic = None


def _generic_new(base_cls, cls, *args, **kwds):
    # Assure type is erased on instantiation,
    # but attempt to store it in __orig_class__
    if cls.__origin__ is None:
        if (base_cls.__new__ is object.__new__ and
                cls.__init__ is not object.__init__):
            return base_cls.__new__(cls)
        else:
            return base_cls.__new__(cls, *args, **kwds)
    else:
        origin = cls._gorg
        if (base_cls.__new__ is object.__new__ and
                cls.__init__ is not object.__init__):
            obj = base_cls.__new__(origin)
        else:
            obj = base_cls.__new__(origin, *args, **kwds)
        try:
            obj.__orig_class__ = cls
        except AttributeError:
            pass
        obj.__init__(*args, **kwds)
        return obj


class Generic(object):
    """Abstract base class for generic types.

    A generic type is typically declared by inheriting from
    this class parameterized with one or more type variables.
    For example, a generic mapping type might be defined as::

      class Mapping(Generic[KT, VT]):
          def __getitem__(self, key: KT) -> VT:
              ...
          # Etc.

    This class can then be used as follows::

      def lookup_name(mapping: Mapping[KT, VT], key: KT, default: VT) -> VT:
          try:
              return mapping[key]
          except KeyError:
              return default
    """

    __metaclass__ = GenericMeta
    __slots__ = ()

    def __new__(cls, *args, **kwds):
        if cls._gorg is Generic:
            raise TypeError("Type Generic cannot be instantiated; "
                            "it can be used only as a base class")
        return _generic_new(cls.__next_in_mro__, cls, *args, **kwds)


class _TypingEmpty(object):
    """Internal placeholder for () or []. Used by TupleMeta and CallableMeta
    to allow empty list/tuple in specific places, without allowing them
    to sneak in where prohibited.
    """


class _TypingEllipsis(object):
    """Internal placeholder for ... (ellipsis)."""


class TupleMeta(GenericMeta):
    """Metaclass for Tuple (internal)."""

    @_tp_cache
    def __getitem__(self, parameters):
        if self.__origin__ is not None or self._gorg is not Tuple:
            # Normal generic rules apply if this is not the first subscription
            # or a subscription of a subclass.
            return super(TupleMeta, self).__getitem__(parameters)
        if parameters == ():
            return super(TupleMeta, self).__getitem__((_TypingEmpty,))
        if not isinstance(parameters, tuple):
            parameters = (parameters,)
        if len(parameters) == 2 and parameters[1] is Ellipsis:
            msg = "Tuple[t, ...]: t must be a type."
            p = _type_check(parameters[0], msg)
            return super(TupleMeta, self).__getitem__((p, _TypingEllipsis))
        msg = "Tuple[t0, t1, ...]: each t must be a type."
        parameters = tuple(_type_check(p, msg) for p in parameters)
        return super(TupleMeta, self).__getitem__(parameters)

    def __instancecheck__(self, obj):
        if self.__args__ is None:
            return isinstance(obj, tuple)
        raise TypeError("Parameterized Tuple cannot be used "
                        "with isinstance().")

    def __subclasscheck__(self, cls):
        if self.__args__ is None:
            return issubclass(cls, tuple)
        raise TypeError("Parameterized Tuple cannot be used "
                        "with issubclass().")


copy._copy_dispatch[TupleMeta] = _copy_generic


class Tuple(tuple):
    """Tuple type; Tuple[X, Y] is the cross-product type of X and Y.

    Example: Tuple[T1, T2] is a tuple of two elements corresponding
    to type variables T1 and T2.  Tuple[int, float, str] is a tuple
    of an int, a float and a string.

    To specify a variable-length tuple of homogeneous type, use Tuple[T, ...].
    """

    __metaclass__ = TupleMeta
    __extra__ = tuple
    __slots__ = ()

    def __new__(cls, *args, **kwds):
        if cls._gorg is Tuple:
            raise TypeError("Type Tuple cannot be instantiated; "
                            "use tuple() instead")
        return _generic_new(tuple, cls, *args, **kwds)


class CallableMeta(GenericMeta):
    """ Metaclass for Callable."""

    def __repr__(self):
        if self.__origin__ is None:
            return super(CallableMeta, self).__repr__()
        return self._tree_repr(self._subs_tree())

    def _tree_repr(self, tree):
        if self._gorg is not Callable:
            return super(CallableMeta, self)._tree_repr(tree)
        # For actual Callable (not its subclass) we override
        # super(CallableMeta, self)._tree_repr() for nice formatting.
        arg_list = []
        for arg in tree[1:]:
            if not isinstance(arg, tuple):
                arg_list.append(_type_repr(arg))
            else:
                arg_list.append(arg[0]._tree_repr(arg))
        if arg_list[0] == '...':
            return repr(tree[0]) + '[..., %s]' % arg_list[1]
        return (repr(tree[0]) +
                '[[%s], %s]' % (', '.join(arg_list[:-1]), arg_list[-1]))

    def __getitem__(self, parameters):
        """A thin wrapper around __getitem_inner__ to provide the latter
        with hashable arguments to improve speed.
        """

        if self.__origin__ is not None or self._gorg is not Callable:
            return super(CallableMeta, self).__getitem__(parameters)
        if not isinstance(parameters, tuple) or len(parameters) != 2:
            raise TypeError("Callable must be used as "
                            "Callable[[arg, ...], result].")
        args, result = parameters
        if args is Ellipsis:
            parameters = (Ellipsis, result)
        else:
            if not isinstance(args, list):
                raise TypeError("Callable[args, result]: args must be a list."
                                " Got %.100r." % (args,))
            parameters = (tuple(args), result)
        return self.__getitem_inner__(parameters)

    @_tp_cache
    def __getitem_inner__(self, parameters):
        args, result = parameters
        msg = "Callable[args, result]: result must be a type."
        result = _type_check(result, msg)
        if args is Ellipsis:
            return super(CallableMeta, self).__getitem__((_TypingEllipsis, result))
        msg = "Callable[[arg, ...], result]: each arg must be a type."
        args = tuple(_type_check(arg, msg) for arg in args)
        parameters = args + (result,)
        return super(CallableMeta, self).__getitem__(parameters)


copy._copy_dispatch[CallableMeta] = _copy_generic


class Callable(object):
    """Callable type; Callable[[int], str] is a function of (int) -> str.

    The subscription syntax must always be used with exactly two
    values: the argument list and the return type.  The argument list
    must be a list of types or ellipsis; the return type must be a single type.

    There is no syntax to indicate optional or keyword arguments,
    such function types are rarely used as callback types.
    """

    __metaclass__ = CallableMeta
    __extra__ = collections_abc.Callable
    __slots__ = ()

    def __new__(cls, *args, **kwds):
        if cls._gorg is Callable:
            raise TypeError("Type Callable cannot be instantiated; "
                            "use a non-abstract subclass instead")
        return _generic_new(cls.__next_in_mro__, cls, *args, **kwds)


def cast(typ, val):
    """Cast a value to a type.

    This returns the value unchanged.  To the type checker this
    signals that the return value has the designated type, but at
    runtime we intentionally don't check anything (we want this
    to be as fast as possible).
    """
    return val


def _get_defaults(func):
    """Internal helper to extract the default arguments, by name."""
    code = func.__code__
    pos_count = code.co_argcount
    arg_names = code.co_varnames
    arg_names = arg_names[:pos_count]
    defaults = func.__defaults__ or ()
    kwdefaults = func.__kwdefaults__
    res = dict(kwdefaults) if kwdefaults else {}
    pos_offset = pos_count - len(defaults)
    for name, value in zip(arg_names[pos_offset:], defaults):
        assert name not in res
        res[name] = value
    return res


def get_type_hints(obj, globalns=None, localns=None):
    """In Python 2 this is not supported and always returns None."""
    return None


def no_type_check(arg):
    """Decorator to indicate that annotations are not type hints.

    The argument must be a class or function; if it is a class, it
    applies recursively to all methods and classes defined in that class
    (but not to methods defined in its superclasses or subclasses).

    This mutates the function(s) or class(es) in place.
    """
    if isinstance(arg, type):
        arg_attrs = arg.__dict__.copy()
        for attr, val in arg.__dict__.items():
            if val in arg.__bases__ + (arg,):
                arg_attrs.pop(attr)
        for obj in arg_attrs.values():
            if isinstance(obj, types.FunctionType):
                obj.__no_type_check__ = True
            if isinstance(obj, type):
                no_type_check(obj)
    try:
        arg.__no_type_check__ = True
    except TypeError:  # built-in classes
        pass
    return arg


def no_type_check_decorator(decorator):
    """Decorator to give another decorator the @no_type_check effect.

    This wraps the decorator with something that wraps the decorated
    function in @no_type_check.
    """

    @functools.wraps(decorator)
    def wrapped_decorator(*args, **kwds):
        func = decorator(*args, **kwds)
        func = no_type_check(func)
        return func

    return wrapped_decorator


def _overload_dummy(*args, **kwds):
    """Helper for @overload to raise when called."""
    raise NotImplementedError(
        "You should not call an overloaded function. "
        "A series of @overload-decorated functions "
        "outside a stub module should always be followed "
        "by an implementation that is not @overload-ed.")


def overload(func):
    """Decorator for overloaded functions/methods.

    In a stub file, place two or more stub definitions for the same
    function in a row, each decorated with @overload.  For example:

      @overload
      def utf8(value: None) -> None: ...
      @overload
      def utf8(value: bytes) -> bytes: ...
      @overload
      def utf8(value: str) -> bytes: ...

    In a non-stub file (i.e. a regular .py file), do the same but
    follow it with an implementation.  The implementation should *not*
    be decorated with @overload.  For example:

      @overload
      def utf8(value: None) -> None: ...
      @overload
      def utf8(value: bytes) -> bytes: ...
      @overload
      def utf8(value: str) -> bytes: ...
      def utf8(value):
          # implementation goes here
    """
    return _overload_dummy


_PROTO_WHITELIST = ['Callable', 'Iterable', 'Iterator',
                    'Hashable', 'Sized', 'Container', 'Collection',
                    'Reversible', 'ContextManager']


class _ProtocolMeta(GenericMeta):
    """Internal metaclass for Protocol.

    This exists so Protocol classes can be generic without deriving
    from Generic.
    """
    def __init__(cls, *args, **kwargs):
        super(_ProtocolMeta, cls).__init__(*args, **kwargs)
        if not cls.__dict__.get('_is_protocol', None):
            cls._is_protocol = any(b is Protocol or
                                   isinstance(b, _ProtocolMeta) and
                                   b.__origin__ is Protocol
                                   for b in cls.__bases__)
        if cls._is_protocol:
            for base in cls.__mro__[1:]:
                if not (base in (object, Generic) or
                        base.__module__ == '_abcoll' and
                        base.__name__ in _PROTO_WHITELIST or
                        isinstance(base, TypingMeta) and base._is_protocol or
                        isinstance(base, GenericMeta) and base.__origin__ is Generic):
                    raise TypeError('Protocols can only inherit from other protocols,'
                                    ' got %r' % base)
            cls._callable_members_only = all(callable(getattr(cls, attr))
                                             for attr in cls._get_protocol_attrs())

            def _no_init(self, *args, **kwargs):
                if type(self)._is_protocol:
                    raise TypeError('Protocols cannot be instantiated')
            cls.__init__ = _no_init

        def _proto_hook(cls, other):
            if not cls.__dict__.get('_is_protocol', None):
                return NotImplemented
            if not isinstance(other, type):
                # Similar error as for issubclass(1, int)
                # (also not a chance for old-style classes)
                raise TypeError('issubclass() arg 1 must be a new-style class')
            for attr in cls._get_protocol_attrs():
                for base in other.__mro__:
                    if attr in base.__dict__:
                        if base.__dict__[attr] is None:
                            return NotImplemented
                        break
                else:
                    return NotImplemented
            return True
        if '__subclasshook__' not in cls.__dict__:
            cls.__subclasshook__ = classmethod(_proto_hook)

    def __instancecheck__(self, instance):
        # We need this method for situations where attributes are assigned in __init__
        if isinstance(instance, type):
            # This looks like a fundamental limitation of Python 2.
            # It cannot support runtime protocol metaclasses, On Python 2 classes
            # cannot be correctly inspected as instances of protocols.
            return False
        if ((not getattr(self, '_is_protocol', False) or
                self._callable_members_only) and
                issubclass(instance.__class__, self)):
            return True
        if self._is_protocol:
            if all(hasattr(instance, attr) and
                    (not callable(getattr(self, attr)) or
                     getattr(instance, attr) is not None)
                    for attr in self._get_protocol_attrs()):
                return True
        return super(GenericMeta, self).__instancecheck__(instance)

    def __subclasscheck__(self, cls):
        if (self.__dict__.get('_is_protocol', None) and
                not self.__dict__.get('_is_runtime_protocol', None)):
            if (sys._getframe(1).f_globals['__name__'] in ['abc', 'functools'] or
                    # This is needed because we remove subclasses from unions on Python 2.
                    sys._getframe(2).f_globals['__name__'] == 'typing'):
                return False
            raise TypeError("Instance and class checks can only be used with"
                            " @runtime_checkable protocols")
        if (self.__dict__.get('_is_runtime_protocol', None) and
                not self._callable_members_only):
            if sys._getframe(1).f_globals['__name__'] in ['abc', 'functools']:
                return super(GenericMeta, self).__subclasscheck__(cls)
            raise TypeError("Protocols with non-method members"
                            " don't support issubclass()")
        return super(_ProtocolMeta, self).__subclasscheck__(cls)

    def _get_protocol_attrs(self):
        attrs = set()
        for base in self.__mro__[:-1]:  # without object
            if base.__name__ in ('Protocol', 'Generic'):
                continue
            annotations = getattr(base, '__annotations__', {})
            for attr in list(base.__dict__.keys()) + list(annotations.keys()):
                if (not attr.startswith('_abc_') and attr not in (
                        '__abstractmethods__', '__annotations__', '__weakref__',
                        '_is_protocol', '_is_runtime_protocol', '__dict__',
                        '__args__', '__slots__', '_get_protocol_attrs',
                        '__next_in_mro__', '__parameters__', '__origin__',
                        '__orig_bases__', '__extra__', '__tree_hash__',
                        '__doc__', '__subclasshook__', '__init__', '__new__',
                        '__module__', '_MutableMapping__marker',
                        '__metaclass__', '_gorg', '_callable_members_only')):
                    attrs.add(attr)
        return attrs


class Protocol(object):
    """Base class for protocol classes. Protocol classes are defined as::

      class Proto(Protocol):
          def meth(self):
              # type: () -> int
              pass

    Such classes are primarily used with static type checkers that recognize
    structural subtyping (static duck-typing), for example::

      class C:
          def meth(self):
              # type: () -> int
              return 0

      def func(x):
          # type: (Proto) -> int
          return x.meth()

      func(C())  # Passes static type check

    See PEP 544 for details. Protocol classes decorated with @typing.runtime_checkable
    act as simple-minded runtime protocols that checks only the presence of
    given attributes, ignoring their type signatures.

    Protocol classes can be generic, they are defined as::

      class GenProto(Protocol[T]):
          def meth(self):
              # type: () -> T
              pass
    """

    __metaclass__ = _ProtocolMeta
    __slots__ = ()
    _is_protocol = True

    def __new__(cls, *args, **kwds):
        if cls._gorg is Protocol:
            raise TypeError("Type Protocol cannot be instantiated; "
                            "it can be used only as a base class")
        return _generic_new(cls.__next_in_mro__, cls, *args, **kwds)


def runtime_checkable(cls):
    """Mark a protocol class as a runtime protocol, so that it
    can be used with isinstance() and issubclass(). Raise TypeError
    if applied to a non-protocol class.

    This allows a simple-minded structural check very similar to the
    one-offs in collections.abc such as Hashable.
    """
    if not isinstance(cls, _ProtocolMeta) or not cls._is_protocol:
        raise TypeError('@runtime_checkable can be only applied to protocol classes,'
                        ' got %r' % cls)
    cls._is_runtime_protocol = True
    return cls


# Various ABCs mimicking those in collections.abc.
# A few are simply re-exported for completeness.

Hashable = collections_abc.Hashable  # Not generic.


class Iterable(Generic[T_co]):
    __slots__ = ()
    __extra__ = collections_abc.Iterable


class Iterator(Iterable[T_co]):
    __slots__ = ()
    __extra__ = collections_abc.Iterator


@runtime_checkable
class SupportsInt(Protocol):
    __slots__ = ()

    @abstractmethod
    def __int__(self):
        pass


@runtime_checkable
class SupportsFloat(Protocol):
    __slots__ = ()

    @abstractmethod
    def __float__(self):
        pass


@runtime_checkable
class SupportsComplex(Protocol):
    __slots__ = ()

    @abstractmethod
    def __complex__(self):
        pass


@runtime_checkable
class SupportsIndex(Protocol):
    __slots__ = ()

    @abstractmethod
    def __index__(self):
        pass


@runtime_checkable
class SupportsAbs(Protocol[T_co]):
    __slots__ = ()

    @abstractmethod
    def __abs__(self):
        pass


if hasattr(collections_abc, 'Reversible'):
    class Reversible(Iterable[T_co]):
        __slots__ = ()
        __extra__ = collections_abc.Reversible
else:
    @runtime_checkable
    class Reversible(Protocol[T_co]):
        __slots__ = ()

        @abstractmethod
        def __reversed__(self):
            pass


Sized = collections_abc.Sized  # Not generic.


class Container(Generic[T_co]):
    __slots__ = ()
    __extra__ = collections_abc.Container


# Callable was defined earlier.


class AbstractSet(Sized, Iterable[T_co], Container[T_co]):
    __slots__ = ()
    __extra__ = collections_abc.Set


class MutableSet(AbstractSet[T]):
    __slots__ = ()
    __extra__ = collections_abc.MutableSet


# NOTE: It is only covariant in the value type.
class Mapping(Sized, Iterable[KT], Container[KT], Generic[KT, VT_co]):
    __slots__ = ()
    __extra__ = collections_abc.Mapping


class MutableMapping(Mapping[KT, VT]):
    __slots__ = ()
    __extra__ = collections_abc.MutableMapping


if hasattr(collections_abc, 'Reversible'):
    class Sequence(Sized, Reversible[T_co], Container[T_co]):
        __slots__ = ()
        __extra__ = collections_abc.Sequence
else:
    class Sequence(Sized, Iterable[T_co], Container[T_co]):
        __slots__ = ()
        __extra__ = collections_abc.Sequence


class MutableSequence(Sequence[T]):
    __slots__ = ()
    __extra__ = collections_abc.MutableSequence


class ByteString(Sequence[int]):
    pass


ByteString.register(str)
ByteString.register(bytearray)


class List(list, MutableSequence[T]):
    __slots__ = ()
    __extra__ = list

    def __new__(cls, *args, **kwds):
        if cls._gorg is List:
            raise TypeError("Type List cannot be instantiated; "
                            "use list() instead")
        return _generic_new(list, cls, *args, **kwds)


class Deque(collections.deque, MutableSequence[T]):
    __slots__ = ()
    __extra__ = collections.deque

    def __new__(cls, *args, **kwds):
        if cls._gorg is Deque:
            return collections.deque(*args, **kwds)
        return _generic_new(collections.deque, cls, *args, **kwds)


class Set(set, MutableSet[T]):
    __slots__ = ()
    __extra__ = set

    def __new__(cls, *args, **kwds):
        if cls._gorg is Set:
            raise TypeError("Type Set cannot be instantiated; "
                            "use set() instead")
        return _generic_new(set, cls, *args, **kwds)


class FrozenSet(frozenset, AbstractSet[T_co]):
    __slots__ = ()
    __extra__ = frozenset

    def __new__(cls, *args, **kwds):
        if cls._gorg is FrozenSet:
            raise TypeError("Type FrozenSet cannot be instantiated; "
                            "use frozenset() instead")
        return _generic_new(frozenset, cls, *args, **kwds)


class MappingView(Sized, Iterable[T_co]):
    __slots__ = ()
    __extra__ = collections_abc.MappingView


class KeysView(MappingView[KT], AbstractSet[KT]):
    __slots__ = ()
    __extra__ = collections_abc.KeysView


class ItemsView(MappingView[Tuple[KT, VT_co]],
                AbstractSet[Tuple[KT, VT_co]],
                Generic[KT, VT_co]):
    __slots__ = ()
    __extra__ = collections_abc.ItemsView


class ValuesView(MappingView[VT_co]):
    __slots__ = ()
    __extra__ = collections_abc.ValuesView


class ContextManager(Generic[T_co]):
    __slots__ = ()

    def __enter__(self):
        return self

    @abc.abstractmethod
    def __exit__(self, exc_type, exc_value, traceback):
        return None

    @classmethod
    def __subclasshook__(cls, C):
        if cls is ContextManager:
            # In Python 3.6+, it is possible to set a method to None to
            # explicitly indicate that the class does not implement an ABC
            # (https://bugs.python.org/issue25958), but we do not support
            # that pattern here because this fallback class is only used
            # in Python 3.5 and earlier.
            if (any("__enter__" in B.__dict__ for B in C.__mro__) and
                any("__exit__" in B.__dict__ for B in C.__mro__)):
                return True
        return NotImplemented


class Dict(dict, MutableMapping[KT, VT]):
    __slots__ = ()
    __extra__ = dict

    def __new__(cls, *args, **kwds):
        if cls._gorg is Dict:
            raise TypeError("Type Dict cannot be instantiated; "
                            "use dict() instead")
        return _generic_new(dict, cls, *args, **kwds)


class DefaultDict(collections.defaultdict, MutableMapping[KT, VT]):
    __slots__ = ()
    __extra__ = collections.defaultdict

    def __new__(cls, *args, **kwds):
        if cls._gorg is DefaultDict:
            return collections.defaultdict(*args, **kwds)
        return _generic_new(collections.defaultdict, cls, *args, **kwds)


class Counter(collections.Counter, Dict[T, int]):
    __slots__ = ()
    __extra__ = collections.Counter

    def __new__(cls, *args, **kwds):
        if cls._gorg is Counter:
            return collections.Counter(*args, **kwds)
        return _generic_new(collections.Counter, cls, *args, **kwds)


# Determine what base class to use for Generator.
if hasattr(collections_abc, 'Generator'):
    # Sufficiently recent versions of 3.5 have a Generator ABC.
    _G_base = collections_abc.Generator
else:
    # Fall back on the exact type.
    _G_base = types.GeneratorType


class Generator(Iterator[T_co], Generic[T_co, T_contra, V_co]):
    __slots__ = ()
    __extra__ = _G_base

    def __new__(cls, *args, **kwds):
        if cls._gorg is Generator:
            raise TypeError("Type Generator cannot be instantiated; "
                            "create a subclass instead")
        return _generic_new(_G_base, cls, *args, **kwds)


# Internal type variable used for Type[].
CT_co = TypeVar('CT_co', covariant=True, bound=type)


# This is not a real generic class.  Don't use outside annotations.
class Type(Generic[CT_co]):
    """A special construct usable to annotate class objects.

    For example, suppose we have the following classes::

      class User: ...  # Abstract base for User classes
      class BasicUser(User): ...
      class ProUser(User): ...
      class TeamUser(User): ...

    And a function that takes a class argument that's a subclass of
    User and returns an instance of the corresponding class::

      U = TypeVar('U', bound=User)
      def new_user(user_class: Type[U]) -> U:
          user = user_class()
          # (Here we could write the user object to a database)
          return user

      joe = new_user(BasicUser)

    At this point the type checker knows that joe has type BasicUser.
    """
    __slots__ = ()
    __extra__ = type


def NamedTuple(typename, fields):
    """Typed version of namedtuple.

    Usage::

        Employee = typing.NamedTuple('Employee', [('name', str), ('id', int)])

    This is equivalent to::

        Employee = collections.namedtuple('Employee', ['name', 'id'])

    The resulting class has one extra attribute: _field_types,
    giving a dict mapping field names to types.  (The field names
    are in the _fields attribute, which is part of the namedtuple
    API.)
    """
    fields = [(n, t) for n, t in fields]
    cls = collections.namedtuple(typename, [n for n, t in fields])
    cls._field_types = dict(fields)
    # Set the module to the caller's module (otherwise it'd be 'typing').
    try:
        cls.__module__ = sys._getframe(1).f_globals.get('__name__', '__main__')
    except (AttributeError, ValueError):
        pass
    return cls


def _check_fails(cls, other):
    try:
        if sys._getframe(1).f_globals['__name__'] not in ['abc', 'functools', 'typing']:
            # Typed dicts are only for static structural subtyping.
            raise TypeError('TypedDict does not support instance and class checks')
    except (AttributeError, ValueError):
        pass
    return False


def _dict_new(cls, *args, **kwargs):
    return dict(*args, **kwargs)


def _typeddict_new(cls, _typename, _fields=None, **kwargs):
    total = kwargs.pop('total', True)
    if _fields is None:
        _fields = kwargs
    elif kwargs:
        raise TypeError("TypedDict takes either a dict or keyword arguments,"
                        " but not both")

    ns = {'__annotations__': dict(_fields), '__total__': total}
    try:
        # Setting correct module is necessary to make typed dict classes pickleable.
        ns['__module__'] = sys._getframe(1).f_globals.get('__name__', '__main__')
    except (AttributeError, ValueError):
        pass

    return _TypedDictMeta(_typename, (), ns)


class _TypedDictMeta(type):
    def __new__(cls, name, bases, ns, total=True):
        # Create new typed dict class object.
        # This method is called directly when TypedDict is subclassed,
        # or via _typeddict_new when TypedDict is instantiated. This way
        # TypedDict supports all three syntaxes described in its docstring.
        # Subclasses and instances of TypedDict return actual dictionaries
        # via _dict_new.
        ns['__new__'] = _typeddict_new if name == b'TypedDict' else _dict_new
        tp_dict = super(_TypedDictMeta, cls).__new__(cls, name, (dict,), ns)

        anns = ns.get('__annotations__', {})
        msg = "TypedDict('Name', {f0: t0, f1: t1, ...}); each t must be a type"
        anns = {n: _type_check(tp, msg) for n, tp in anns.items()}
        for base in bases:
            anns.update(base.__dict__.get('__annotations__', {}))
        tp_dict.__annotations__ = anns
        if not hasattr(tp_dict, '__total__'):
            tp_dict.__total__ = total
        return tp_dict

    __instancecheck__ = __subclasscheck__ = _check_fails


TypedDict = _TypedDictMeta(b'TypedDict', (dict,), {})
TypedDict.__module__ = __name__
TypedDict.__doc__ = \
    """A simple typed name space. At runtime it is equivalent to a plain dict.

    TypedDict creates a dictionary type that expects all of its
    instances to have a certain set of keys, with each key
    associated with a value of a consistent type. This expectation
    is not checked at runtime but is only enforced by type checkers.
    Usage::

        Point2D = TypedDict('Point2D', {'x': int, 'y': int, 'label': str})

        a: Point2D = {'x': 1, 'y': 2, 'label': 'good'}  # OK
        b: Point2D = {'z': 3, 'label': 'bad'}           # Fails type check

        assert Point2D(x=1, y=2, label='first') == dict(x=1, y=2, label='first')

    The type info could be accessed via Point2D.__annotations__. TypedDict
    supports an additional equivalent form::

        Point2D = TypedDict('Point2D', x=int, y=int, label=str)
    """


def NewType(name, tp):
    """NewType creates simple unique types with almost zero
    runtime overhead. NewType(name, tp) is considered a subtype of tp
    by static type checkers. At runtime, NewType(name, tp) returns
    a dummy function that simply returns its argument. Usage::

        UserId = NewType('UserId', int)

        def name_by_id(user_id):
            # type: (UserId) -> str
            ...

        UserId('user')          # Fails type check

        name_by_id(42)          # Fails type check
        name_by_id(UserId(42))  # OK

        num = UserId(5) + 1     # type: int
    """

    def new_type(x):
        return x

    # Some versions of Python 2 complain because of making all strings unicode
    new_type.__name__ = str(name)
    new_type.__supertype__ = tp
    return new_type


# Python-version-specific alias (Python 2: unicode; Python 3: str)
Text = unicode


# Constant that's True when type checking, but False here.
TYPE_CHECKING = False


class IO(Generic[AnyStr]):
    """Generic base class for TextIO and BinaryIO.

    This is an abstract, generic version of the return of open().

    NOTE: This does not distinguish between the different possible
    classes (text vs. binary, read vs. write vs. read/write,
    append-only, unbuffered).  The TextIO and BinaryIO subclasses
    below capture the distinctions between text vs. binary, which is
    pervasive in the interface; however we currently do not offer a
    way to track the other distinctions in the type system.
    """

    __slots__ = ()

    @abstractproperty
    def mode(self):
        pass

    @abstractproperty
    def name(self):
        pass

    @abstractmethod
    def close(self):
        pass

    @abstractproperty
    def closed(self):
        pass

    @abstractmethod
    def fileno(self):
        pass

    @abstractmethod
    def flush(self):
        pass

    @abstractmethod
    def isatty(self):
        pass

    @abstractmethod
    def read(self, n=-1):
        pass

    @abstractmethod
    def readable(self):
        pass

    @abstractmethod
    def readline(self, limit=-1):
        pass

    @abstractmethod
    def readlines(self, hint=-1):
        pass

    @abstractmethod
    def seek(self, offset, whence=0):
        pass

    @abstractmethod
    def seekable(self):
        pass

    @abstractmethod
    def tell(self):
        pass

    @abstractmethod
    def truncate(self, size=None):
        pass

    @abstractmethod
    def writable(self):
        pass

    @abstractmethod
    def write(self, s):
        pass

    @abstractmethod
    def writelines(self, lines):
        pass

    @abstractmethod
    def __enter__(self):
        pass

    @abstractmethod
    def __exit__(self, type, value, traceback):
        pass


class BinaryIO(IO[bytes]):
    """Typed version of the return of open() in binary mode."""

    __slots__ = ()

    @abstractmethod
    def write(self, s):
        pass

    @abstractmethod
    def __enter__(self):
        pass


class TextIO(IO[unicode]):
    """Typed version of the return of open() in text mode."""

    __slots__ = ()

    @abstractproperty
    def buffer(self):
        pass

    @abstractproperty
    def encoding(self):
        pass

    @abstractproperty
    def errors(self):
        pass

    @abstractproperty
    def line_buffering(self):
        pass

    @abstractproperty
    def newlines(self):
        pass

    @abstractmethod
    def __enter__(self):
        pass


class io(object):
    """Wrapper namespace for IO generic classes."""

    __all__ = ['IO', 'TextIO', 'BinaryIO']
    IO = IO
    TextIO = TextIO
    BinaryIO = BinaryIO


io.__name__ = __name__ + b'.io'
sys.modules[io.__name__] = io


Pattern = _TypeAlias('Pattern', AnyStr, type(stdlib_re.compile('')),
                     lambda p: p.pattern)
Match = _TypeAlias('Match', AnyStr, type(stdlib_re.match('', '')),
                   lambda m: m.re.pattern)


class re(object):
    """Wrapper namespace for re type aliases."""

    __all__ = ['Pattern', 'Match']
    Pattern = Pattern
    Match = Match


re.__name__ = __name__ + b'.re'
sys.modules[re.__name__] = re




          

      

      

    

  

    
      
          
            
  Source code for xmlrpclib

#
# XML-RPC CLIENT LIBRARY
# $Id$
#
# an XML-RPC client interface for Python.
#
# the marshalling and response parser code can also be used to
# implement XML-RPC servers.
#
# Notes:
# this version is designed to work with Python 2.1 or newer.
#
# History:
# 1999-01-14 fl  Created
# 1999-01-15 fl  Changed dateTime to use localtime
# 1999-01-16 fl  Added Binary/base64 element, default to RPC2 service
# 1999-01-19 fl  Fixed array data element (from Skip Montanaro)
# 1999-01-21 fl  Fixed dateTime constructor, etc.
# 1999-02-02 fl  Added fault handling, handle empty sequences, etc.
# 1999-02-10 fl  Fixed problem with empty responses (from Skip Montanaro)
# 1999-06-20 fl  Speed improvements, pluggable parsers/transports (0.9.8)
# 2000-11-28 fl  Changed boolean to check the truth value of its argument
# 2001-02-24 fl  Added encoding/Unicode/SafeTransport patches
# 2001-02-26 fl  Added compare support to wrappers (0.9.9/1.0b1)
# 2001-03-28 fl  Make sure response tuple is a singleton
# 2001-03-29 fl  Don't require empty params element (from Nicholas Riley)
# 2001-06-10 fl  Folded in _xmlrpclib accelerator support (1.0b2)
# 2001-08-20 fl  Base xmlrpclib.Error on built-in Exception (from Paul Prescod)
# 2001-09-03 fl  Allow Transport subclass to override getparser
# 2001-09-10 fl  Lazy import of urllib, cgi, xmllib (20x import speedup)
# 2001-10-01 fl  Remove containers from memo cache when done with them
# 2001-10-01 fl  Use faster escape method (80% dumps speedup)
# 2001-10-02 fl  More dumps microtuning
# 2001-10-04 fl  Make sure import expat gets a parser (from Guido van Rossum)
# 2001-10-10 sm  Allow long ints to be passed as ints if they don't overflow
# 2001-10-17 sm  Test for int and long overflow (allows use on 64-bit systems)
# 2001-11-12 fl  Use repr() to marshal doubles (from Paul Felix)
# 2002-03-17 fl  Avoid buffered read when possible (from James Rucker)
# 2002-04-07 fl  Added pythondoc comments
# 2002-04-16 fl  Added __str__ methods to datetime/binary wrappers
# 2002-05-15 fl  Added error constants (from Andrew Kuchling)
# 2002-06-27 fl  Merged with Python CVS version
# 2002-10-22 fl  Added basic authentication (based on code from Phillip Eby)
# 2003-01-22 sm  Add support for the bool type
# 2003-02-27 gvr Remove apply calls
# 2003-04-24 sm  Use cStringIO if available
# 2003-04-25 ak  Add support for nil
# 2003-06-15 gn  Add support for time.struct_time
# 2003-07-12 gp  Correct marshalling of Faults
# 2003-10-31 mvl Add multicall support
# 2004-08-20 mvl Bump minimum supported Python version to 2.1
# 2014-12-02 ch/doko  Add workaround for gzip bomb vulnerability
#
# Copyright (c) 1999-2002 by Secret Labs AB.
# Copyright (c) 1999-2002 by Fredrik Lundh.
#
# info@pythonware.com
# http://www.pythonware.com
#
# --------------------------------------------------------------------
# The XML-RPC client interface is
#
# Copyright (c) 1999-2002 by Secret Labs AB
# Copyright (c) 1999-2002 by Fredrik Lundh
#
# By obtaining, using, and/or copying this software and/or its
# associated documentation, you agree that you have read, understood,
# and will comply with the following terms and conditions:
#
# Permission to use, copy, modify, and distribute this software and
# its associated documentation for any purpose and without fee is
# hereby granted, provided that the above copyright notice appears in
# all copies, and that both that copyright notice and this permission
# notice appear in supporting documentation, and that the name of
# Secret Labs AB or the author not be used in advertising or publicity
# pertaining to distribution of the software without specific, written
# prior permission.
#
# SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
# TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
# ABILITY AND FITNESS.  IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
# BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
# DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
# WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
# ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
# OF THIS SOFTWARE.
# --------------------------------------------------------------------

#
# things to look into some day:

# TODO: sort out True/False/boolean issues for Python 2.3

"""
An XML-RPC client interface for Python.

The marshalling and response parser code can also be used to
implement XML-RPC servers.

Exported exceptions:

  Error          Base class for client errors
  ProtocolError  Indicates an HTTP protocol error
  ResponseError  Indicates a broken response package
  Fault          Indicates an XML-RPC fault package

Exported classes:

  ServerProxy    Represents a logical connection to an XML-RPC server

  MultiCall      Executor of boxcared xmlrpc requests
  Boolean        boolean wrapper to generate a "boolean" XML-RPC value
  DateTime       dateTime wrapper for an ISO 8601 string or time tuple or
                 localtime integer value to generate a "dateTime.iso8601"
                 XML-RPC value
  Binary         binary data wrapper

  SlowParser     Slow but safe standard parser (based on xmllib)
  Marshaller     Generate an XML-RPC params chunk from a Python data structure
  Unmarshaller   Unmarshal an XML-RPC response from incoming XML event message
  Transport      Handles an HTTP transaction to an XML-RPC server
  SafeTransport  Handles an HTTPS transaction to an XML-RPC server

Exported constants:

  True
  False

Exported functions:

  boolean        Convert any Python value to an XML-RPC boolean
  getparser      Create instance of the fastest available parser & attach
                 to an unmarshalling object
  dumps          Convert an argument tuple or a Fault instance to an XML-RPC
                 request (or response, if the methodresponse option is used).
  loads          Convert an XML-RPC packet to unmarshalled data plus a method
                 name (None if not present).
"""

import re, string, time, operator

from types import *
import socket
import errno
import httplib
try:
    import gzip
except ImportError:
    gzip = None #python can be built without zlib/gzip support

# --------------------------------------------------------------------
# Internal stuff

try:
    unicode
except NameError:
    unicode = None # unicode support not available

try:
    import datetime
except ImportError:
    datetime = None

try:
    _bool_is_builtin = False.__class__.__name__ == "bool"
except NameError:
    _bool_is_builtin = 0

def _decode(data, encoding, is8bit=re.compile("[\x80-\xff]").search):
    # decode non-ascii string (if possible)
    if unicode and encoding and is8bit(data):
        data = unicode(data, encoding)
    return data

def escape(s, replace=string.replace):
    s = replace(s, "&", "&amp;")
    s = replace(s, "<", "&lt;")
    return replace(s, ">", "&gt;",)

if unicode:
    def _stringify(string):
        # convert to 7-bit ascii if possible
        try:
            return string.encode("ascii")
        except UnicodeError:
            return string
else:
    def _stringify(string):
        return string

__version__ = "1.0.1"

# xmlrpc integer limits
MAXINT =  2L**31-1
MININT = -2L**31

# --------------------------------------------------------------------
# Error constants (from Dan Libby's specification at
# http://xmlrpc-epi.sourceforge.net/specs/rfc.fault_codes.php)

# Ranges of errors
PARSE_ERROR       = -32700
SERVER_ERROR      = -32600
APPLICATION_ERROR = -32500
SYSTEM_ERROR      = -32400
TRANSPORT_ERROR   = -32300

# Specific errors
NOT_WELLFORMED_ERROR  = -32700
UNSUPPORTED_ENCODING  = -32701
INVALID_ENCODING_CHAR = -32702
INVALID_XMLRPC        = -32600
METHOD_NOT_FOUND      = -32601
INVALID_METHOD_PARAMS = -32602
INTERNAL_ERROR        = -32603

# --------------------------------------------------------------------
# Exceptions

##
# Base class for all kinds of client-side errors.

class Error(Exception):
    """Base class for client errors."""
    def __str__(self):
        return repr(self)

##
# Indicates an HTTP-level protocol error.  This is raised by the HTTP
# transport layer, if the server returns an error code other than 200
# (OK).
#
# @param url The target URL.
# @param errcode The HTTP error code.
# @param errmsg The HTTP error message.
# @param headers The HTTP header dictionary.

class ProtocolError(Error):
    """Indicates an HTTP protocol error."""
    def __init__(self, url, errcode, errmsg, headers):
        Error.__init__(self)
        self.url = url
        self.errcode = errcode
        self.errmsg = errmsg
        self.headers = headers
    def __repr__(self):
        return (
            "<ProtocolError for %s: %s %s>" %
            (self.url, self.errcode, self.errmsg)
            )

##
# Indicates a broken XML-RPC response package.  This exception is
# raised by the unmarshalling layer, if the XML-RPC response is
# malformed.

class ResponseError(Error):
    """Indicates a broken response package."""
    pass

##
# Indicates an XML-RPC fault response package.  This exception is
# raised by the unmarshalling layer, if the XML-RPC response contains
# a fault string.  This exception can also used as a class, to
# generate a fault XML-RPC message.
#
# @param faultCode The XML-RPC fault code.
# @param faultString The XML-RPC fault string.

class Fault(Error):
    """Indicates an XML-RPC fault package."""
    def __init__(self, faultCode, faultString, **extra):
        Error.__init__(self)
        self.faultCode = faultCode
        self.faultString = faultString
    def __repr__(self):
        return (
            "<Fault %s: %s>" %
            (self.faultCode, repr(self.faultString))
            )

# --------------------------------------------------------------------
# Special values

##
# Wrapper for XML-RPC boolean values.  Use the xmlrpclib.True and
# xmlrpclib.False constants, or the xmlrpclib.boolean() function, to
# generate boolean XML-RPC values.
#
# @param value A boolean value.  Any true value is interpreted as True,
#              all other values are interpreted as False.

from sys import modules
mod_dict = modules[__name__].__dict__
if _bool_is_builtin:
    boolean = Boolean = bool
    # to avoid breaking code which references xmlrpclib.{True,False}
    mod_dict['True'] = True
    mod_dict['False'] = False
else:
    class Boolean:
        """Boolean-value wrapper.

        Use True or False to generate a "boolean" XML-RPC value.
        """

        def __init__(self, value = 0):
            self.value = operator.truth(value)

        def encode(self, out):
            out.write("<value><boolean>%d</boolean></value>\n" % self.value)

        def __cmp__(self, other):
            if isinstance(other, Boolean):
                other = other.value
            return cmp(self.value, other)

        def __repr__(self):
            if self.value:
                return "<Boolean True at %x>" % id(self)
            else:
                return "<Boolean False at %x>" % id(self)

        def __int__(self):
            return self.value

        def __nonzero__(self):
            return self.value

    mod_dict['True'] = Boolean(1)
    mod_dict['False'] = Boolean(0)

    ##
    # Map true or false value to XML-RPC boolean values.
    #
    # @def boolean(value)
    # @param value A boolean value.  Any true value is mapped to True,
    #              all other values are mapped to False.
    # @return xmlrpclib.True or xmlrpclib.False.
    # @see Boolean
    # @see True
    # @see False

    def boolean(value, _truefalse=(False, True)):
        """Convert any Python value to XML-RPC 'boolean'."""
        return _truefalse[operator.truth(value)]

del modules, mod_dict

##
# Wrapper for XML-RPC DateTime values.  This converts a time value to
# the format used by XML-RPC.
# <p>
# The value can be given as a string in the format
# "yyyymmddThh:mm:ss", as a 9-item time tuple (as returned by
# time.localtime()), or an integer value (as returned by time.time()).
# The wrapper uses time.localtime() to convert an integer to a time
# tuple.
#
# @param value The time, given as an ISO 8601 string, a time
#              tuple, or an integer time value.

def _strftime(value):
    if datetime:
        if isinstance(value, datetime.datetime):
            return "%04d%02d%02dT%02d:%02d:%02d" % (
                value.year, value.month, value.day,
                value.hour, value.minute, value.second)

    if not isinstance(value, (TupleType, time.struct_time)):
        if value == 0:
            value = time.time()
        value = time.localtime(value)

    return "%04d%02d%02dT%02d:%02d:%02d" % value[:6]

class DateTime:
    """DateTime wrapper for an ISO 8601 string or time tuple or
    localtime integer value to generate 'dateTime.iso8601' XML-RPC
    value.
    """

    def __init__(self, value=0):
        if isinstance(value, StringType):
            self.value = value
        else:
            self.value = _strftime(value)

    def make_comparable(self, other):
        if isinstance(other, DateTime):
            s = self.value
            o = other.value
        elif datetime and isinstance(other, datetime.datetime):
            s = self.value
            o = other.strftime("%Y%m%dT%H:%M:%S")
        elif isinstance(other, basestring):
            s = self.value
            o = other
        elif hasattr(other, "timetuple"):
            s = self.timetuple()
            o = other.timetuple()
        else:
            otype = (hasattr(other, "__class__")
                     and other.__class__.__name__
                     or type(other))
            raise TypeError("Can't compare %s and %s" %
                            (self.__class__.__name__, otype))
        return s, o

    def __lt__(self, other):
        s, o = self.make_comparable(other)
        return s < o

    def __le__(self, other):
        s, o = self.make_comparable(other)
        return s <= o

    def __gt__(self, other):
        s, o = self.make_comparable(other)
        return s > o

    def __ge__(self, other):
        s, o = self.make_comparable(other)
        return s >= o

    def __eq__(self, other):
        s, o = self.make_comparable(other)
        return s == o

    def __ne__(self, other):
        s, o = self.make_comparable(other)
        return s != o

    def timetuple(self):
        return time.strptime(self.value, "%Y%m%dT%H:%M:%S")

    def __cmp__(self, other):
        s, o = self.make_comparable(other)
        return cmp(s, o)

    ##
    # Get date/time value.
    #
    # @return Date/time value, as an ISO 8601 string.

    def __str__(self):
        return self.value

    def __repr__(self):
        return "<DateTime %s at %x>" % (repr(self.value), id(self))

    def decode(self, data):
        data = str(data)
        self.value = string.strip(data)

    def encode(self, out):
        out.write("<value><dateTime.iso8601>")
        out.write(self.value)
        out.write("</dateTime.iso8601></value>\n")

def _datetime(data):
    # decode xml element contents into a DateTime structure.
    value = DateTime()
    value.decode(data)
    return value

def _datetime_type(data):
    t = time.strptime(data, "%Y%m%dT%H:%M:%S")
    return datetime.datetime(*tuple(t)[:6])

##
# Wrapper for binary data.  This can be used to transport any kind
# of binary data over XML-RPC, using BASE64 encoding.
#
# @param data An 8-bit string containing arbitrary data.

import base64
try:
    import cStringIO as StringIO
except ImportError:
    import StringIO

class Binary:
    """Wrapper for binary data."""

    def __init__(self, data=None):
        self.data = data

    ##
    # Get buffer contents.
    #
    # @return Buffer contents, as an 8-bit string.

    def __str__(self):
        return self.data or ""

    def __cmp__(self, other):
        if isinstance(other, Binary):
            other = other.data
        return cmp(self.data, other)

    def decode(self, data):
        self.data = base64.decodestring(data)

    def encode(self, out):
        out.write("<value><base64>\n")
        base64.encode(StringIO.StringIO(self.data), out)
        out.write("</base64></value>\n")

def _binary(data):
    # decode xml element contents into a Binary structure
    value = Binary()
    value.decode(data)
    return value

WRAPPERS = (DateTime, Binary)
if not _bool_is_builtin:
    WRAPPERS = WRAPPERS + (Boolean,)

# --------------------------------------------------------------------
# XML parsers

try:
    # optional xmlrpclib accelerator
    import _xmlrpclib
    FastParser = _xmlrpclib.Parser
    FastUnmarshaller = _xmlrpclib.Unmarshaller
except (AttributeError, ImportError):
    FastParser = FastUnmarshaller = None

try:
    import _xmlrpclib
    FastMarshaller = _xmlrpclib.Marshaller
except (AttributeError, ImportError):
    FastMarshaller = None

try:
    from xml.parsers import expat
    if not hasattr(expat, "ParserCreate"):
        raise ImportError
except ImportError:
    ExpatParser = None # expat not available
else:
    class ExpatParser:
        # fast expat parser for Python 2.0 and later.
        def __init__(self, target):
            self._parser = parser = expat.ParserCreate(None, None)
            self._target = target
            parser.StartElementHandler = target.start
            parser.EndElementHandler = target.end
            parser.CharacterDataHandler = target.data
            encoding = None
            if not parser.returns_unicode:
                encoding = "utf-8"
            target.xml(encoding, None)

        def feed(self, data):
            self._parser.Parse(data, 0)

        def close(self):
            try:
                parser = self._parser
            except AttributeError:
                pass
            else:
                del self._target, self._parser # get rid of circular references
                parser.Parse("", 1) # end of data

class SlowParser:
    """Default XML parser (based on xmllib.XMLParser)."""
    # this is the slowest parser.
    def __init__(self, target):
        import xmllib # lazy subclassing (!)
        if xmllib.XMLParser not in SlowParser.__bases__:
            SlowParser.__bases__ = (xmllib.XMLParser,)
        self.handle_xml = target.xml
        self.unknown_starttag = target.start
        self.handle_data = target.data
        self.handle_cdata = target.data
        self.unknown_endtag = target.end
        try:
            xmllib.XMLParser.__init__(self, accept_utf8=1)
        except TypeError:
            xmllib.XMLParser.__init__(self) # pre-2.0

# --------------------------------------------------------------------
# XML-RPC marshalling and unmarshalling code

##
# XML-RPC marshaller.
#
# @param encoding Default encoding for 8-bit strings.  The default
#     value is None (interpreted as UTF-8).
# @see dumps

class Marshaller:
    """Generate an XML-RPC params chunk from a Python data structure.

    Create a Marshaller instance for each set of parameters, and use
    the "dumps" method to convert your data (represented as a tuple)
    to an XML-RPC params chunk.  To write a fault response, pass a
    Fault instance instead.  You may prefer to use the "dumps" module
    function for this purpose.
    """

    # by the way, if you don't understand what's going on in here,
    # that's perfectly ok.

    def __init__(self, encoding=None, allow_none=0):
        self.memo = {}
        self.data = None
        self.encoding = encoding
        self.allow_none = allow_none

    dispatch = {}

    def dumps(self, values):
        out = []
        write = out.append
        dump = self.__dump
        if isinstance(values, Fault):
            # fault instance
            write("<fault>\n")
            dump({'faultCode': values.faultCode,
                  'faultString': values.faultString},
                 write)
            write("</fault>\n")
        else:
            # parameter block
            # FIXME: the xml-rpc specification allows us to leave out
            # the entire <params> block if there are no parameters.
            # however, changing this may break older code (including
            # old versions of xmlrpclib.py), so this is better left as
            # is for now.  See @XMLRPC3 for more information. /F
            write("<params>\n")
            for v in values:
                write("<param>\n")
                dump(v, write)
                write("</param>\n")
            write("</params>\n")
        result = string.join(out, "")
        return result

    def __dump(self, value, write):
        try:
            f = self.dispatch[type(value)]
        except KeyError:
            # check if this object can be marshalled as a structure
            try:
                value.__dict__
            except:
                raise TypeError, "cannot marshal %s objects" % type(value)
            # check if this class is a sub-class of a basic type,
            # because we don't know how to marshal these types
            # (e.g. a string sub-class)
            for type_ in type(value).__mro__:
                if type_ in self.dispatch.keys():
                    raise TypeError, "cannot marshal %s objects" % type(value)
            f = self.dispatch[InstanceType]
        f(self, value, write)

    def dump_nil (self, value, write):
        if not self.allow_none:
            raise TypeError, "cannot marshal None unless allow_none is enabled"
        write("<value><nil/></value>")
    dispatch[NoneType] = dump_nil

    def dump_int(self, value, write):
        # in case ints are > 32 bits
        if value > MAXINT or value < MININT:
            raise OverflowError, "int exceeds XML-RPC limits"
        write("<value><int>")
        write(str(value))
        write("</int></value>\n")
    dispatch[IntType] = dump_int

    if _bool_is_builtin:
        def dump_bool(self, value, write):
            write("<value><boolean>")
            write(value and "1" or "0")
            write("</boolean></value>\n")
        dispatch[bool] = dump_bool

    def dump_long(self, value, write):
        if value > MAXINT or value < MININT:
            raise OverflowError, "long int exceeds XML-RPC limits"
        write("<value><int>")
        write(str(int(value)))
        write("</int></value>\n")
    dispatch[LongType] = dump_long

    def dump_double(self, value, write):
        write("<value><double>")
        write(repr(value))
        write("</double></value>\n")
    dispatch[FloatType] = dump_double

    def dump_string(self, value, write, escape=escape):
        write("<value><string>")
        write(escape(value))
        write("</string></value>\n")
    dispatch[StringType] = dump_string

    if unicode:
        def dump_unicode(self, value, write, escape=escape):
            write("<value><string>")
            write(escape(value).encode(self.encoding, 'xmlcharrefreplace'))
            write("</string></value>\n")
        dispatch[UnicodeType] = dump_unicode

    def dump_array(self, value, write):
        i = id(value)
        if i in self.memo:
            raise TypeError, "cannot marshal recursive sequences"
        self.memo[i] = None
        dump = self.__dump
        write("<value><array><data>\n")
        for v in value:
            dump(v, write)
        write("</data></array></value>\n")
        del self.memo[i]
    dispatch[TupleType] = dump_array
    dispatch[ListType] = dump_array

    def dump_struct(self, value, write, escape=escape):
        i = id(value)
        if i in self.memo:
            raise TypeError, "cannot marshal recursive dictionaries"
        self.memo[i] = None
        dump = self.__dump
        write("<value><struct>\n")
        for k, v in value.items():
            write("<member>\n")
            if type(k) is StringType:
                k = escape(k)
            elif unicode and type(k) is UnicodeType:
                k = escape(k).encode(self.encoding, 'xmlcharrefreplace')
            else:
                raise TypeError, "dictionary key must be string"
            write("<name>%s</name>\n" % k)
            dump(v, write)
            write("</member>\n")
        write("</struct></value>\n")
        del self.memo[i]
    dispatch[DictType] = dump_struct

    if datetime:
        def dump_datetime(self, value, write):
            write("<value><dateTime.iso8601>")
            write(_strftime(value))
            write("</dateTime.iso8601></value>\n")
        dispatch[datetime.datetime] = dump_datetime

    def dump_instance(self, value, write):
        # check for special wrappers
        if value.__class__ in WRAPPERS:
            self.write = write
            value.encode(self)
            del self.write
        else:
            # store instance attributes as a struct (really?)
            self.dump_struct(value.__dict__, write)
    dispatch[InstanceType] = dump_instance

##
# XML-RPC unmarshaller.
#
# @see loads

class Unmarshaller:
    """Unmarshal an XML-RPC response, based on incoming XML event
    messages (start, data, end).  Call close() to get the resulting
    data structure.

    Note that this reader is fairly tolerant, and gladly accepts bogus
    XML-RPC data without complaining (but not bogus XML).
    """

    # and again, if you don't understand what's going on in here,
    # that's perfectly ok.

    def __init__(self, use_datetime=0):
        self._type = None
        self._stack = []
        self._marks = []
        self._data = []
        self._value = False
        self._methodname = None
        self._encoding = "utf-8"
        self.append = self._stack.append
        self._use_datetime = use_datetime
        if use_datetime and not datetime:
            raise ValueError, "the datetime module is not available"

    def close(self):
        # return response tuple and target method
        if self._type is None or self._marks:
            raise ResponseError()
        if self._type == "fault":
            raise Fault(**self._stack[0])
        return tuple(self._stack)

    def getmethodname(self):
        return self._methodname

    #
    # event handlers

    def xml(self, encoding, standalone):
        self._encoding = encoding
        # FIXME: assert standalone == 1 ???

    def start(self, tag, attrs):
        # prepare to handle this element
        if tag == "array" or tag == "struct":
            self._marks.append(len(self._stack))
        self._data = []
        if self._value and tag not in self.dispatch:
            raise ResponseError("unknown tag %r" % tag)
        self._value = (tag == "value")

    def data(self, text):
        self._data.append(text)

    def end(self, tag, join=string.join):
        # call the appropriate end tag handler
        try:
            f = self.dispatch[tag]
        except KeyError:
            pass # unknown tag ?
        else:
            return f(self, join(self._data, ""))

    #
    # accelerator support

    def end_dispatch(self, tag, data):
        # dispatch data
        try:
            f = self.dispatch[tag]
        except KeyError:
            pass # unknown tag ?
        else:
            return f(self, data)

    #
    # element decoders

    dispatch = {}

    def end_nil (self, data):
        self.append(None)
        self._value = 0
    dispatch["nil"] = end_nil

    def end_boolean(self, data):
        if data == "0":
            self.append(False)
        elif data == "1":
            self.append(True)
        else:
            raise TypeError, "bad boolean value"
        self._value = 0
    dispatch["boolean"] = end_boolean

    def end_int(self, data):
        self.append(int(data))
        self._value = 0
    dispatch["i4"] = end_int
    dispatch["i8"] = end_int
    dispatch["int"] = end_int

    def end_double(self, data):
        self.append(float(data))
        self._value = 0
    dispatch["double"] = end_double

    def end_string(self, data):
        if self._encoding:
            data = _decode(data, self._encoding)
        self.append(_stringify(data))
        self._value = 0
    dispatch["string"] = end_string
    dispatch["name"] = end_string # struct keys are always strings

    def end_array(self, data):
        mark = self._marks.pop()
        # map arrays to Python lists
        self._stack[mark:] = [self._stack[mark:]]
        self._value = 0
    dispatch["array"] = end_array

    def end_struct(self, data):
        mark = self._marks.pop()
        # map structs to Python dictionaries
        dict = {}
        items = self._stack[mark:]
        for i in range(0, len(items), 2):
            dict[_stringify(items[i])] = items[i+1]
        self._stack[mark:] = [dict]
        self._value = 0
    dispatch["struct"] = end_struct

    def end_base64(self, data):
        value = Binary()
        value.decode(data)
        self.append(value)
        self._value = 0
    dispatch["base64"] = end_base64

    def end_dateTime(self, data):
        value = DateTime()
        value.decode(data)
        if self._use_datetime:
            value = _datetime_type(data)
        self.append(value)
    dispatch["dateTime.iso8601"] = end_dateTime

    def end_value(self, data):
        # if we stumble upon a value element with no internal
        # elements, treat it as a string element
        if self._value:
            self.end_string(data)
    dispatch["value"] = end_value

    def end_params(self, data):
        self._type = "params"
    dispatch["params"] = end_params

    def end_fault(self, data):
        self._type = "fault"
    dispatch["fault"] = end_fault

    def end_methodName(self, data):
        if self._encoding:
            data = _decode(data, self._encoding)
        self._methodname = data
        self._type = "methodName" # no params
    dispatch["methodName"] = end_methodName

## Multicall support
#

class _MultiCallMethod:
    # some lesser magic to store calls made to a MultiCall object
    # for batch execution
    def __init__(self, call_list, name):
        self.__call_list = call_list
        self.__name = name
    def __getattr__(self, name):
        return _MultiCallMethod(self.__call_list, "%s.%s" % (self.__name, name))
    def __call__(self, *args):
        self.__call_list.append((self.__name, args))

class MultiCallIterator:
    """Iterates over the results of a multicall. Exceptions are
    raised in response to xmlrpc faults."""

    def __init__(self, results):
        self.results = results

    def __getitem__(self, i):
        item = self.results[i]
        if type(item) == type({}):
            raise Fault(item['faultCode'], item['faultString'])
        elif type(item) == type([]):
            return item[0]
        else:
            raise ValueError,\
                  "unexpected type in multicall result"

class MultiCall:
    """server -> an object used to boxcar method calls

    server should be a ServerProxy object.

    Methods can be added to the MultiCall using normal
    method call syntax e.g.:

    multicall = MultiCall(server_proxy)
    multicall.add(2,3)
    multicall.get_address("Guido")

    To execute the multicall, call the MultiCall object e.g.:

    add_result, address = multicall()
    """

    def __init__(self, server):
        self.__server = server
        self.__call_list = []

    def __repr__(self):
        return "<MultiCall at %x>" % id(self)

    __str__ = __repr__

    def __getattr__(self, name):
        return _MultiCallMethod(self.__call_list, name)

    def __call__(self):
        marshalled_list = []
        for name, args in self.__call_list:
            marshalled_list.append({'methodName' : name, 'params' : args})

        return MultiCallIterator(self.__server.system.multicall(marshalled_list))

# --------------------------------------------------------------------
# convenience functions

##
# Create a parser object, and connect it to an unmarshalling instance.
# This function picks the fastest available XML parser.
#
# return A (parser, unmarshaller) tuple.

def getparser(use_datetime=0):
    """getparser() -> parser, unmarshaller

    Create an instance of the fastest available parser, and attach it
    to an unmarshalling object.  Return both objects.
    """
    if use_datetime and not datetime:
        raise ValueError, "the datetime module is not available"
    if FastParser and FastUnmarshaller:
        if use_datetime:
            mkdatetime = _datetime_type
        else:
            mkdatetime = _datetime
        target = FastUnmarshaller(True, False, _binary, mkdatetime, Fault)
        parser = FastParser(target)
    else:
        target = Unmarshaller(use_datetime=use_datetime)
        if FastParser:
            parser = FastParser(target)
        elif ExpatParser:
            parser = ExpatParser(target)
        else:
            parser = SlowParser(target)
    return parser, target

##
# Convert a Python tuple or a Fault instance to an XML-RPC packet.
#
# @def dumps(params, **options)
# @param params A tuple or Fault instance.
# @keyparam methodname If given, create a methodCall request for
#     this method name.
# @keyparam methodresponse If given, create a methodResponse packet.
#     If used with a tuple, the tuple must be a singleton (that is,
#     it must contain exactly one element).
# @keyparam encoding The packet encoding.
# @return A string containing marshalled data.

def dumps(params, methodname=None, methodresponse=None, encoding=None,
          allow_none=0):
    """data [,options] -> marshalled data

    Convert an argument tuple or a Fault instance to an XML-RPC
    request (or response, if the methodresponse option is used).

    In addition to the data object, the following options can be given
    as keyword arguments:

        methodname: the method name for a methodCall packet

        methodresponse: true to create a methodResponse packet.
        If this option is used with a tuple, the tuple must be
        a singleton (i.e. it can contain only one element).

        encoding: the packet encoding (default is UTF-8)

    All 8-bit strings in the data structure are assumed to use the
    packet encoding.  Unicode strings are automatically converted,
    where necessary.
    """

    assert isinstance(params, TupleType) or isinstance(params, Fault),\
           "argument must be tuple or Fault instance"

    if isinstance(params, Fault):
        methodresponse = 1
    elif methodresponse and isinstance(params, TupleType):
        assert len(params) == 1, "response tuple must be a singleton"

    if not encoding:
        encoding = "utf-8"

    if FastMarshaller:
        m = FastMarshaller(encoding)
    else:
        m = Marshaller(encoding, allow_none)

    data = m.dumps(params)

    if encoding != "utf-8":
        xmlheader = "<?xml version='1.0' encoding='%s'?>\n" % str(encoding)
    else:
        xmlheader = "<?xml version='1.0'?>\n" # utf-8 is default

    # standard XML-RPC wrappings
    if methodname:
        # a method call
        if not isinstance(methodname, StringType):
            methodname = methodname.encode(encoding, 'xmlcharrefreplace')
        data = (
            xmlheader,
            "<methodCall>\n"
            "<methodName>", methodname, "</methodName>\n",
            data,
            "</methodCall>\n"
            )
    elif methodresponse:
        # a method response, or a fault structure
        data = (
            xmlheader,
            "<methodResponse>\n",
            data,
            "</methodResponse>\n"
            )
    else:
        return data # return as is
    return string.join(data, "")

##
# Convert an XML-RPC packet to a Python object.  If the XML-RPC packet
# represents a fault condition, this function raises a Fault exception.
#
# @param data An XML-RPC packet, given as an 8-bit string.
# @return A tuple containing the unpacked data, and the method name
#     (None if not present).
# @see Fault

def loads(data, use_datetime=0):
    """data -> unmarshalled data, method name

    Convert an XML-RPC packet to unmarshalled data plus a method
    name (None if not present).

    If the XML-RPC packet represents a fault condition, this function
    raises a Fault exception.
    """
    p, u = getparser(use_datetime=use_datetime)
    p.feed(data)
    p.close()
    return u.close(), u.getmethodname()

##
# Encode a string using the gzip content encoding such as specified by the
# Content-Encoding: gzip
# in the HTTP header, as described in RFC 1952
#
# @param data the unencoded data
# @return the encoded data

def gzip_encode(data):
    """data -> gzip encoded data

    Encode data using the gzip content encoding as described in RFC 1952
    """
    if not gzip:
        raise NotImplementedError
    f = StringIO.StringIO()
    gzf = gzip.GzipFile(mode="wb", fileobj=f, compresslevel=1)
    gzf.write(data)
    gzf.close()
    encoded = f.getvalue()
    f.close()
    return encoded

##
# Decode a string using the gzip content encoding such as specified by the
# Content-Encoding: gzip
# in the HTTP header, as described in RFC 1952
#
# @param data The encoded data
# @keyparam max_decode Maximum bytes to decode (20MB default), use negative
#    values for unlimited decoding
# @return the unencoded data
# @raises ValueError if data is not correctly coded.
# @raises ValueError if max gzipped payload length exceeded

def gzip_decode(data, max_decode=20971520):
    """gzip encoded data -> unencoded data

    Decode data using the gzip content encoding as described in RFC 1952
    """
    if not gzip:
        raise NotImplementedError
    f = StringIO.StringIO(data)
    gzf = gzip.GzipFile(mode="rb", fileobj=f)
    try:
        if max_decode < 0: # no limit
            decoded = gzf.read()
        else:
            decoded = gzf.read(max_decode + 1)
    except IOError:
        raise ValueError("invalid data")
    f.close()
    gzf.close()
    if max_decode >= 0 and len(decoded) > max_decode:
        raise ValueError("max gzipped payload length exceeded")
    return decoded

##
# Return a decoded file-like object for the gzip encoding
# as described in RFC 1952.
#
# @param response A stream supporting a read() method
# @return a file-like object that the decoded data can be read() from

class GzipDecodedResponse(gzip.GzipFile if gzip else object):
    """a file-like object to decode a response encoded with the gzip
    method, as described in RFC 1952.
    """
    def __init__(self, response):
        #response doesn't support tell() and read(), required by
        #GzipFile
        if not gzip:
            raise NotImplementedError
        self.stringio = StringIO.StringIO(response.read())
        gzip.GzipFile.__init__(self, mode="rb", fileobj=self.stringio)

    def close(self):
        try:
            gzip.GzipFile.close(self)
        finally:
            self.stringio.close()


# --------------------------------------------------------------------
# request dispatcher

class _Method:
    # some magic to bind an XML-RPC method to an RPC server.
    # supports "nested" methods (e.g. examples.getStateName)
    def __init__(self, send, name):
        self.__send = send
        self.__name = name
    def __getattr__(self, name):
        return _Method(self.__send, "%s.%s" % (self.__name, name))
    def __call__(self, *args):
        return self.__send(self.__name, args)

##
# Standard transport class for XML-RPC over HTTP.
# <p>
# You can create custom transports by subclassing this method, and
# overriding selected methods.

class Transport:
    """Handles an HTTP transaction to an XML-RPC server."""

    # client identifier (may be overridden)
    user_agent = "xmlrpclib.py/%s (by www.pythonware.com)" % __version__

    #if true, we'll request gzip encoding
    accept_gzip_encoding = True

    # if positive, encode request using gzip if it exceeds this threshold
    # note that many server will get confused, so only use it if you know
    # that they can decode such a request
    encode_threshold = None #None = don't encode

    def __init__(self, use_datetime=0):
        self._use_datetime = use_datetime
        self._connection = (None, None)
        self._extra_headers = []
    ##
    # Send a complete request, and parse the response.
    # Retry request if a cached connection has disconnected.
    #
    # @param host Target host.
    # @param handler Target PRC handler.
    # @param request_body XML-RPC request body.
    # @param verbose Debugging flag.
    # @return Parsed response.

    def request(self, host, handler, request_body, verbose=0):
        #retry request once if cached connection has gone cold
        for i in (0, 1):
            try:
                return self.single_request(host, handler, request_body, verbose)
            except socket.error, e:
                if i or e.errno not in (errno.ECONNRESET, errno.ECONNABORTED, errno.EPIPE):
                    raise
            except httplib.BadStatusLine: #close after we sent request
                if i:
                    raise

    ##
    # Send a complete request, and parse the response.
    #
    # @param host Target host.
    # @param handler Target PRC handler.
    # @param request_body XML-RPC request body.
    # @param verbose Debugging flag.
    # @return Parsed response.

    def single_request(self, host, handler, request_body, verbose=0):
        # issue XML-RPC request

        h = self.make_connection(host)
        if verbose:
            h.set_debuglevel(1)

        try:
            self.send_request(h, handler, request_body)
            self.send_host(h, host)
            self.send_user_agent(h)
            self.send_content(h, request_body)

            response = h.getresponse(buffering=True)
            if response.status == 200:
                self.verbose = verbose
                return self.parse_response(response)
        except Fault:
            raise
        except Exception:
            # All unexpected errors leave connection in
            # a strange state, so we clear it.
            self.close()
            raise

        #discard any response data and raise exception
        if (response.getheader("content-length", 0)):
            response.read()
        raise ProtocolError(
            host + handler,
            response.status, response.reason,
            response.msg,
            )

    ##
    # Create parser.
    #
    # @return A 2-tuple containing a parser and an unmarshaller.

    def getparser(self):
        # get parser and unmarshaller
        return getparser(use_datetime=self._use_datetime)

    ##
    # Get authorization info from host parameter
    # Host may be a string, or a (host, x509-dict) tuple; if a string,
    # it is checked for a "user:pw@host" format, and a "Basic
    # Authentication" header is added if appropriate.
    #
    # @param host Host descriptor (URL or (URL, x509 info) tuple).
    # @return A 3-tuple containing (actual host, extra headers,
    #     x509 info).  The header and x509 fields may be None.

    def get_host_info(self, host):

        x509 = {}
        if isinstance(host, TupleType):
            host, x509 = host

        import urllib
        auth, host = urllib.splituser(host)

        if auth:
            import base64
            auth = base64.encodestring(urllib.unquote(auth))
            auth = string.join(string.split(auth), "") # get rid of whitespace
            extra_headers = [
                ("Authorization", "Basic " + auth)
                ]
        else:
            extra_headers = None

        return host, extra_headers, x509

    ##
    # Connect to server.
    #
    # @param host Target host.
    # @return A connection handle.

    def make_connection(self, host):
        #return an existing connection if possible.  This allows
        #HTTP/1.1 keep-alive.
        if self._connection and host == self._connection[0]:
            return self._connection[1]

        # create a HTTP connection object from a host descriptor
        chost, self._extra_headers, x509 = self.get_host_info(host)
        #store the host argument along with the connection object
        self._connection = host, httplib.HTTPConnection(chost)
        return self._connection[1]

    ##
    # Clear any cached connection object.
    # Used in the event of socket errors.
    #
    def close(self):
        host, connection = self._connection
        if connection:
            self._connection = (None, None)
            connection.close()

    ##
    # Send request header.
    #
    # @param connection Connection handle.
    # @param handler Target RPC handler.
    # @param request_body XML-RPC body.

    def send_request(self, connection, handler, request_body):
        if (self.accept_gzip_encoding and gzip):
            connection.putrequest("POST", handler, skip_accept_encoding=True)
            connection.putheader("Accept-Encoding", "gzip")
        else:
            connection.putrequest("POST", handler)

    ##
    # Send host name.
    #
    # @param connection Connection handle.
    # @param host Host name.
    #
    # Note: This function doesn't actually add the "Host"
    # header anymore, it is done as part of the connection.putrequest() in
    # send_request() above.

    def send_host(self, connection, host):
        extra_headers = self._extra_headers
        if extra_headers:
            if isinstance(extra_headers, DictType):
                extra_headers = extra_headers.items()
            for key, value in extra_headers:
                connection.putheader(key, value)

    ##
    # Send user-agent identifier.
    #
    # @param connection Connection handle.

    def send_user_agent(self, connection):
        connection.putheader("User-Agent", self.user_agent)

    ##
    # Send request body.
    #
    # @param connection Connection handle.
    # @param request_body XML-RPC request body.

    def send_content(self, connection, request_body):
        connection.putheader("Content-Type", "text/xml")

        #optionally encode the request
        if (self.encode_threshold is not None and
            self.encode_threshold < len(request_body) and
            gzip):
            connection.putheader("Content-Encoding", "gzip")
            request_body = gzip_encode(request_body)

        connection.putheader("Content-Length", str(len(request_body)))
        connection.endheaders(request_body)

    ##
    # Parse response.
    #
    # @param file Stream.
    # @return Response tuple and target method.

    def parse_response(self, response):
        # read response data from httpresponse, and parse it

        # Check for new http response object, else it is a file object
        if hasattr(response,'getheader'):
            if response.getheader("Content-Encoding", "") == "gzip":
                stream = GzipDecodedResponse(response)
            else:
                stream = response
        else:
            stream = response

        p, u = self.getparser()

        while 1:
            data = stream.read(1024)
            if not data:
                break
            if self.verbose:
                print "body:", repr(data)
            p.feed(data)

        if stream is not response:
            stream.close()
        p.close()

        return u.close()

##
# Standard transport class for XML-RPC over HTTPS.

class SafeTransport(Transport):
    """Handles an HTTPS transaction to an XML-RPC server."""

    def __init__(self, use_datetime=0, context=None):
        Transport.__init__(self, use_datetime=use_datetime)
        self.context = context

    # FIXME: mostly untested

    def make_connection(self, host):
        if self._connection and host == self._connection[0]:
            return self._connection[1]
        # create a HTTPS connection object from a host descriptor
        # host may be a string, or a (host, x509-dict) tuple
        try:
            HTTPS = httplib.HTTPSConnection
        except AttributeError:
            raise NotImplementedError(
                "your version of httplib doesn't support HTTPS"
                )
        else:
            chost, self._extra_headers, x509 = self.get_host_info(host)
            self._connection = host, HTTPS(chost, None, context=self.context, **(x509 or {}))
            return self._connection[1]

##
# Standard server proxy.  This class establishes a virtual connection
# to an XML-RPC server.
# <p>
# This class is available as ServerProxy and Server.  New code should
# use ServerProxy, to avoid confusion.
#
# @def ServerProxy(uri, **options)
# @param uri The connection point on the server.
# @keyparam transport A transport factory, compatible with the
#    standard transport class.
# @keyparam encoding The default encoding used for 8-bit strings
#    (default is UTF-8).
# @keyparam verbose Use a true value to enable debugging output.
#    (printed to standard output).
# @see Transport

class ServerProxy:
    """uri [,options] -> a logical connection to an XML-RPC server

    uri is the connection point on the server, given as
    scheme://host/target.

    The standard implementation always supports the "http" scheme.  If
    SSL socket support is available (Python 2.0), it also supports
    "https".

    If the target part and the slash preceding it are both omitted,
    "/RPC2" is assumed.

    The following options can be given as keyword arguments:

        transport: a transport factory
        encoding: the request encoding (default is UTF-8)

    All 8-bit strings passed to the server proxy are assumed to use
    the given encoding.
    """

    def __init__(self, uri, transport=None, encoding=None, verbose=0,
                 allow_none=0, use_datetime=0, context=None):
        # establish a "logical" server connection

        if unicode and isinstance(uri, unicode):
            uri = uri.encode('ISO-8859-1')

        # get the url
        import urllib
        type, uri = urllib.splittype(uri)
        if type not in ("http", "https"):
            raise IOError, "unsupported XML-RPC protocol"
        self.__host, self.__handler = urllib.splithost(uri)
        if not self.__handler:
            self.__handler = "/RPC2"

        if transport is None:
            if type == "https":
                transport = SafeTransport(use_datetime=use_datetime, context=context)
            else:
                transport = Transport(use_datetime=use_datetime)
        self.__transport = transport

        self.__encoding = encoding
        self.__verbose = verbose
        self.__allow_none = allow_none

    def __close(self):
        self.__transport.close()

    def __request(self, methodname, params):
        # call a method on the remote server

        request = dumps(params, methodname, encoding=self.__encoding,
                        allow_none=self.__allow_none)

        response = self.__transport.request(
            self.__host,
            self.__handler,
            request,
            verbose=self.__verbose
            )

        if len(response) == 1:
            response = response[0]

        return response

    def __repr__(self):
        return (
            "<ServerProxy for %s%s>" %
            (self.__host, self.__handler)
            )

    __str__ = __repr__

    def __getattr__(self, name):
        # magic method dispatcher
        return _Method(self.__request, name)

    # note: to call a remote object with a non-standard name, use
    # result getattr(server, "strange-python-name")(args)

    def __call__(self, attr):
        """A workaround to get special attributes on the ServerProxy
           without interfering with the magic __getattr__
        """
        if attr == "close":
            return self.__close
        elif attr == "transport":
            return self.__transport
        raise AttributeError("Attribute %r not found" % (attr,))

# compatibility

Server = ServerProxy

# --------------------------------------------------------------------
# test code

if __name__ == "__main__":

    server = ServerProxy("http://localhost:8000")

    print server

    multi = MultiCall(server)
    multi.pow(2, 9)
    multi.add(5, 1)
    multi.add(24, 11)
    try:
        for response in multi():
            print response
    except Error, v:
        print "ERROR", v




          

      

      

    

  

    
      
          
            
  Source code for robot.errors

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

"""Exceptions and return codes used internally.

External libraries should not used exceptions defined here.
"""

try:
    unicode
except NameError:
    unicode = str


# Return codes from Robot and Rebot.
# RC below 250 is the number of failed critical tests and exactly 250
# means that number or more such failures.
INFO_PRINTED    = 251   # --help or --version
DATA_ERROR      = 252   # Invalid data or cli args
STOPPED_BY_USER = 253   # KeyboardInterrupt or SystemExit
FRAMEWORK_ERROR = 255   # Unexpected error


[docs]class RobotError(Exception):
    """Base class for Robot Framework errors.

    Do not raise this method but use more specific errors instead.
    """

    def __init__(self, message='', details=''):
        Exception.__init__(self, message)
        self.details = details

    @property
    def message(self):
        return unicode(self)



[docs]class FrameworkError(RobotError):
    """Can be used when the core framework goes to unexpected state.

    It is good to explicitly raise a FrameworkError if some framework
    component is used incorrectly. This is pretty much same as
    'Internal Error' and should of course never happen.
    """



[docs]class DataError(RobotError):
    """Used when the provided test data is invalid.

    DataErrors are not caught by keywords that run other keywords
    (e.g. `Run Keyword And Expect Error`).
    """



[docs]class VariableError(DataError):
    """Used when variable does not exist.

    VariableErrors are caught by keywords that run other keywords
    (e.g. `Run Keyword And Expect Error`).
    """



[docs]class KeywordError(DataError):
    """Used when no keyword is found or there is more than one match.

    KeywordErrors are caught by keywords that run other keywords
    (e.g. `Run Keyword And Expect Error`).
    """



[docs]class TimeoutError(RobotError):
    """Used when a test or keyword timeout occurs.

    This exception is handled specially so that execution of the
    current test is always stopped immediately and it is not caught by
    keywords executing other keywords (e.g. `Run Keyword And Expect Error`).
    """

    def __init__(self, message='', test_timeout=True):
        RobotError.__init__(self, message)
        self.test_timeout = test_timeout

    @property
    def keyword_timeout(self):
        return not self.test_timeout



[docs]class Information(RobotError):
    """Used by argument parser with --help or --version."""



[docs]class ExecutionStatus(RobotError):
    """Base class for exceptions communicating status in test execution."""

    def __init__(self, message, test_timeout=False, keyword_timeout=False,
                 syntax=False, exit=False, continue_on_failure=False,
                 skip=False, return_value=None):
        if '\r\n' in message:
            message = message.replace('\r\n', '\n')
        from robot.utils import cut_long_message
        RobotError.__init__(self, cut_long_message(message))
        self.test_timeout = test_timeout
        self.keyword_timeout = keyword_timeout
        self.syntax = syntax
        self.exit = exit
        self._continue_on_failure = continue_on_failure
        self.skip = skip
        self.return_value = return_value

    @property
    def timeout(self):
        return self.test_timeout or self.keyword_timeout

    @property
    def dont_continue(self):
        return self.timeout or self.syntax or self.exit

    @property
    def continue_on_failure(self):
        return self._continue_on_failure

    @continue_on_failure.setter
    def continue_on_failure(self, continue_on_failure):
        self._continue_on_failure = continue_on_failure
        for child in getattr(self, '_errors', []):
            if child is not self:
                child.continue_on_failure = continue_on_failure

[docs]    def can_continue(self, context, templated=False):
        if context.dry_run:
            return True
        if self.syntax or self.exit or self.skip or self.test_timeout:
            return False
        if templated:
            return True
        if self.keyword_timeout:
            if context.in_teardown:
                self.keyword_timeout = False
            return False
        if context.in_teardown or context.continue_on_failure:
            return True
        return self.continue_on_failure


[docs]    def get_errors(self):
        return [self]


    @property
    def status(self):
        return 'FAIL' if not self.skip else 'SKIP'



[docs]class ExecutionFailed(ExecutionStatus):
    """Used for communicating failures in test execution."""



[docs]class HandlerExecutionFailed(ExecutionFailed):

    def __init__(self, details):
        error = details.error
        timeout = isinstance(error, TimeoutError)
        test_timeout = timeout and error.test_timeout
        keyword_timeout = timeout and error.keyword_timeout
        syntax = (isinstance(error, DataError)
                  and not isinstance(error, (KeywordError, VariableError)))
        exit_on_failure = self._get(error, 'EXIT_ON_FAILURE')
        continue_on_failure = self._get(error, 'CONTINUE_ON_FAILURE')
        skip = self._get(error, 'SKIP_EXECUTION')
        ExecutionFailed.__init__(self, details.message, test_timeout,
                                 keyword_timeout, syntax, exit_on_failure,
                                 continue_on_failure, skip)
        self.full_message = details.message
        self.traceback = details.traceback

    def _get(self, error, attr):
        return bool(getattr(error, 'ROBOT_' + attr, False))



[docs]class ExecutionFailures(ExecutionFailed):

    def __init__(self, errors, message=None):
        message = message or self._format_message(errors)
        ExecutionFailed.__init__(self, message, **self._get_attrs(errors))
        self._errors = errors

    def _format_message(self, errors):
        messages = [e.message for e in errors]
        if len(messages) == 1:
            return messages[0]
        prefix = 'Several failures occurred:'
        if any(msg.startswith('*HTML*') for msg in messages):
            html_prefix = '*HTML* '
            messages = [self._html_format(msg) for msg in messages]
        else:
            html_prefix = ''
        if any(e.skip for e in errors):
            skip_idx = errors.index([e for e in errors if e.skip][0])
            skip_msg = messages[skip_idx]
            messages = messages[:skip_idx] + messages[skip_idx+1:]
            if len(messages) == 1:
                return '%s%s\n\nAlso failure occurred:\n%s' \
                       % (html_prefix, skip_msg, messages[0])
            prefix = '%s\n\nAlso failures occurred:' % skip_msg
        return '\n\n'.join(
            [html_prefix + prefix] +
            ['%d) %s' % (i, m) for i, m in enumerate(messages, start=1)]
        )

    def _html_format(self, msg):
        from robot.utils import html_escape
        if msg.startswith('*HTML*'):
            return msg[6:].lstrip()
        return html_escape(msg)

    def _get_attrs(self, errors):
        return {
            'test_timeout': any(e.test_timeout for e in errors),
            'keyword_timeout': any(e.keyword_timeout for e in errors),
            'syntax': any(e.syntax for e in errors),
            'exit': any(e.exit for e in errors),
            'continue_on_failure': all(e.continue_on_failure for e in errors),
            'skip': any(e.skip for e in errors)
        }

[docs]    def get_errors(self):
        return self._errors




[docs]class UserKeywordExecutionFailed(ExecutionFailures):

    def __init__(self, run_errors=None, teardown_errors=None):
        errors = self._get_active_errors(run_errors, teardown_errors)
        message = self._get_message(run_errors, teardown_errors)
        ExecutionFailures.__init__(self, errors, message)
        if run_errors and not teardown_errors:
            self._errors = run_errors.get_errors()
        else:
            self._errors = [self]

    def _get_active_errors(self, *errors):
        return [err for err in errors if err]

    def _get_message(self, run_errors, teardown_errors):
        run_msg = run_errors.message if run_errors else ''
        td_msg = teardown_errors.message if teardown_errors else ''
        if not td_msg:
            return run_msg
        if not run_msg:
            return 'Keyword teardown failed:\n%s' % td_msg
        return '%s\n\nAlso keyword teardown failed:\n%s' % (run_msg, td_msg)



[docs]class ExecutionPassed(ExecutionStatus):
    """Base class for all exceptions communicating that execution passed.

    Should not be raised directly, but more detailed exceptions used instead.
    """

    def __init__(self, message=None, **kwargs):
        ExecutionStatus.__init__(self, message or self._get_message(), **kwargs)
        self._earlier_failures = []

    def _get_message(self):
        from robot.utils import printable_name
        return ("Invalid '%s' usage."
                % printable_name(type(self).__name__, code_style=True))

[docs]    def set_earlier_failures(self, failures):
        if failures:
            self._earlier_failures = list(failures) + self._earlier_failures


    @property
    def earlier_failures(self):
        if not self._earlier_failures:
            return None
        return ExecutionFailures(self._earlier_failures)

    @property
    def status(self):
        return 'PASS' if not self._earlier_failures else 'FAIL'



[docs]class PassExecution(ExecutionPassed):
    """Used by 'Pass Execution' keyword."""

    def __init__(self, message):
        ExecutionPassed.__init__(self, message)



[docs]class ContinueForLoop(ExecutionPassed):
    """Used by 'Continue For Loop' keyword."""



[docs]class ExitForLoop(ExecutionPassed):
    """Used by 'Exit For Loop' keyword."""



[docs]class ReturnFromKeyword(ExecutionPassed):
    """Used by 'Return From Keyword' keyword."""

    def __init__(self, return_value=None, failures=None):
        ExecutionPassed.__init__(self, return_value=return_value)
        if failures:
            self.set_earlier_failures(failures)



[docs]class RemoteError(RobotError):
    """Used by Remote library to report remote errors."""

    def __init__(self, message='', details='', fatal=False, continuable=False):
        RobotError.__init__(self, message, details)
        self.ROBOT_EXIT_ON_FAILURE = fatal
        self.ROBOT_CONTINUE_ON_FAILURE = continuable





          

      

      

    

  

    
      
          
            
  Source code for robot.libdoc

#!/usr/bin/env python

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

"""Module implementing the command line entry point for the Libdoc tool.

This module can be executed from the command line using the following
approaches::

    python -m robot.libdoc
    python path/to/robot/libdoc.py

Instead of ``python`` it is possible to use also other Python interpreters.

This module also provides :func:`libdoc` and :func:`libdoc_cli` functions
that can be used programmatically. Other code is for internal usage.

Libdoc itself is implemented in the :mod:`~robot.libdocpkg` package.
"""

import sys
import os

# Allows running as a script. __name__ check needed with multiprocessing:
# https://github.com/robotframework/robotframework/issues/1137
if 'robot' not in sys.modules and __name__ == '__main__':
    import pythonpathsetter

from robot.utils import Application, seq2str
from robot.errors import DataError
from robot.libdocpkg import LibraryDocumentation, ConsoleViewer


USAGE = """Libdoc -- Robot Framework library documentation generator

Version:  <VERSION>

Usage:  libdoc [options] library_or_resource output_file
   or:  libdoc [options] library_or_resource list|show|version [names]

Libdoc can generate documentation for Robot Framework libraries and resource
files. It can generate HTML documentation for humans as well as machine
readable spec files in XML and JSON formats. Libdoc also has few special
commands to show library or resource information on the console.

Libdoc supports all library and resource types and also earlier generated XML
and JSON specs can be used as input. If a library needs arguments, they must be
given as part of the library name and separated by two colons, for example,
like `LibraryName::arg1::arg2`.

The easiest way to run Libdoc is using the `libdoc` command created as part of
the normal installation. Alternatively it is possible to execute the
`robot.libdoc` module directly like `python -m robot.libdoc`, where `python`
can be replaced with any supported Python interpreter such as `jython`, `ipy`
or `python3`. Yet another alternative is running the module as a script like
`python path/to/robot/libdoc.py`.

The separate `libdoc` command and the support for JSON spec files are new in
Robot Framework 4.0.

Options
=======

 -f --format HTML|XML|JSON|LIBSPEC
                          Specifies whether to generate an HTML output for
                          humans or a machine readable spec file in XML or JSON
                          format. The `libspec` format means XML spec with
                          documentations converted to HTML. The default format
                          is got from the output file extension.
 -s --specdocformat RAW|HTML
                          Specifies the documentation format used with XML and
                          JSON spec files. `raw` means preserving the original
                          documentation format and `html` means converting
                          documentation to HTML. The default is `raw` with XML
                          spec files and `html` with JSON specs and when using
                          the special `libspec` format. New in RF 4.0.
 -F --docformat ROBOT|HTML|TEXT|REST
                          Specifies the source documentation format. Possible
                          values are Robot Framework's documentation format,
                          HTML, plain text, and reStructuredText. The default
                          value can be specified in library source code and
                          the initial default value is `ROBOT`.
 -n --name name           Sets the name of the documented library or resource.
 -v --version version     Sets the version of the documented library or
                          resource.
    --quiet               Do not print the path of the generated output file
                          to the console. New in RF 4.0.
 -P --pythonpath path *   Additional locations where to search for libraries
                          and resources.
 -h -? --help             Print this help.

Creating documentation
======================

When creating documentation in HTML, XML or JSON format, the output file must
be specified as the second argument after the library or resource name or path.

Output format is got automatically from the output file extension. In addition
to `*.html`, `*.xml` and `*.json` extensions, it is possible to use the special
`*.libspec` extensions which means XML spec with actual library and keyword
documentation converted to HTML. The format can also be set explicitly using
the `--format` option.

Examples:

  libdoc src/MyLibrary.py doc/MyLibrary.html
  python -m robot.libdoc MyLibrary.java MyLibrary.html
  jython -m robot.libdoc src/MyLibrary.py doc/MyLibrary.json
  libdoc doc/MyLibrary.json doc/MyLibrary.html
  libdoc --name MyLibrary Remote::10.0.0.42:8270 MyLibrary.xml
  libdoc MyLibrary MyLibrary.libspec

Viewing information on console
==============================

Libdoc has three special commands to show information on the console. These
commands are used instead of the name of the output file, and they can also
take additional arguments.

list:    List names of the keywords the library/resource contains. Can be
         limited to show only certain keywords by passing optional patterns as
         arguments. Keyword is listed if its name contains any given pattern.
show:    Show library/resource documentation. Can be limited to show only
         certain keywords by passing names as arguments. Keyword is shown if
         its name matches any given name. Special argument `intro` will show
         the library introduction and importing sections.
version: Show library version

Optional patterns given to `list` and `show` are case and space insensitive.
Both also accept `*` and `?` as wildcards.

Examples:

  libdoc Dialogs list
  libdoc SeleniumLibrary list browser
  libdoc Remote::10.0.0.42:8270 show
  libdoc Dialogs show PauseExecution execute*
  libdoc SeleniumLibrary show intro
  libdoc SeleniumLibrary version

Alternative execution
=====================

Libdoc works with all interpreters supported by Robot Framework (Python,
Jython and IronPython). In the examples above Libdoc is executed as an
installed module, but it can also be executed as a script like
`python path/robot/libdoc.py`.

For more information about Libdoc and other built-in tools, see
http://robotframework.org/robotframework/#built-in-tools.
"""


[docs]class LibDoc(Application):

    def __init__(self):
        Application.__init__(self, USAGE, arg_limits=(2,), auto_version=False)

[docs]    def validate(self, options, arguments):
        if ConsoleViewer.handles(arguments[1]):
            ConsoleViewer.validate_command(arguments[1], arguments[2:])
            return options, arguments
        if len(arguments) > 2:
            raise DataError('Only two arguments allowed when writing output.')
        return options, arguments


[docs]    def main(self, args, name='', version='', format=None, docformat=None,
             specdocformat=None, quiet=False):
        lib_or_res, output = args[:2]
        docformat = self._get_docformat(docformat)
        libdoc = LibraryDocumentation(lib_or_res, name, version, docformat)
        if ConsoleViewer.handles(output):
            ConsoleViewer(libdoc).view(output, *args[2:])
            return
        format, specdocformat \
            = self._get_format_and_specdocformat(format, specdocformat, output)
        if (format == 'HTML'
                or specdocformat == 'HTML'
                or format in ('JSON', 'LIBSPEC') and specdocformat != 'RAW'):
            libdoc.convert_docs_to_html()
        libdoc.save(output, format)
        if not quiet:
            self.console(os.path.abspath(output))


    def _get_docformat(self, docformat):
        return self._validate_format('Doc format', docformat,
                                     ['ROBOT', 'TEXT', 'HTML', 'REST'])

    def _get_format_and_specdocformat(self, format, specdocformat, output):
        extension = os.path.splitext(output)[1][1:]
        format = self._validate_format('Format', format or extension,
                                       ['HTML', 'XML', 'JSON', 'LIBSPEC'])
        specdocformat = self._validate_format('Spec doc format', specdocformat,
                                              ['RAW', 'HTML'])
        if format == 'HTML' and specdocformat:
            raise DataError("The --specdocformat option is not applicable with "
                            "HTML outputs.")
        return format, specdocformat

    def _validate_format(self, type, format, valid):
        if format is None:
            return None
        format = format.upper()
        if format not in valid:
            raise DataError("%s must be %s, got '%s'."
                            % (type, seq2str(valid, lastsep=' or '), format))
        return format



[docs]def libdoc_cli(arguments=None, exit=True):
    """Executes Libdoc similarly as from the command line.

    :param arguments: Command line options and arguments as a list of strings.
        Starting from RF 4.0, defaults to ``sys.argv[1:]`` if not given.
    :param exit: If ``True``, call ``sys.exit`` automatically. New in RF 4.0.

    The :func:`libdoc` function may work better in programmatic usage.

    Example::

        from robot.libdoc import libdoc_cli

        libdoc_cli(['--version', '1.0', 'MyLibrary.py', 'MyLibrary.html'])
    """
    if arguments is None:
        arguments = sys.argv[1:]
    LibDoc().execute_cli(arguments, exit=exit)



[docs]def libdoc(library_or_resource, outfile, name='', version='', format=None,
           docformat=None, specdocformat=None, quiet=False):
    """Executes Libdoc.

    :param library_or_resource: Name or path of the library or resource
        file to be documented.
    :param outfile: Path path to the file where to write outputs.
    :param name: Custom name to give to the documented library or resource.
    :param version: Version to give to the documented library or resource.
    :param format: Specifies whether to generate HTML, XML or JSON output.
        If this options is not used, the format is got from the extension of
        the output file. Possible values are ``'HTML'``, ``'XML'``, ``'JSON'``
        and ``'LIBSPEC'``.
    :param docformat: Documentation source format. Possible values are
        ``'ROBOT'``, ``'reST'``, ``'HTML'`` and ``'TEXT'``. The default value
        can be specified in library source code and the initial default
        is ``'ROBOT'``.
    :param specdocformat: Specifies whether the keyword documentation in spec
        files is converted to HTML regardless of the original documentation
        format. Possible values are ``'HTML'`` (convert to HTML) and ``'RAW'``
        (use original format). The default depends on the output format.
        New in Robot Framework 4.0.
    :param quiet: When true, the path of the generated output file is not
        printed the console. New in Robot Framework 4.0.

    Arguments have same semantics as Libdoc command line options with same names.
    Run ``libdoc --help`` or consult the Libdoc section in the Robot Framework
    User Guide for more details.

    Example::

        from robot.libdoc import libdoc

        libdoc('MyLibrary.py', 'MyLibrary.html', version='1.0')
    """
    return LibDoc().execute(
        library_or_resource, outfile, name=name, version=version, format=format,
        docformat=docformat, specdocformat=specdocformat, quiet=quiet
    )



if __name__ == '__main__':
    libdoc_cli(sys.argv[1:])




          

      

      

    

  

    
      
          
            
  Source code for robot.pythonpathsetter

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

"""Module that adds directories needed by Robot to sys.path when imported."""

import sys
import fnmatch
from os.path import abspath, dirname

ROBOTDIR = dirname(abspath(__file__))

[docs]def add_path(path, end=False):
    if not end:
        remove_path(path)
        sys.path.insert(0, path)
    elif not any(fnmatch.fnmatch(p, path) for p in sys.path):
        sys.path.append(path)


[docs]def remove_path(path):
    sys.path = [p for p in sys.path if not fnmatch.fnmatch(p, path)]



# When, for example, robot/run.py is executed as a script, the directory
# containing the robot module is not added to sys.path automatically but
# the robot directory itself is. Former is added to allow importing
# the module and the latter removed to prevent accidentally importing
# internal modules directly.
add_path(dirname(ROBOTDIR))
remove_path(ROBOTDIR)




          

      

      

    

  

    
      
          
            
  Source code for robot.rebot

#!/usr/bin/env python

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

"""Module implementing the command line entry point for post-processing outputs.

This module can be executed from the command line using the following
approaches::

    python -m robot.rebot
    python path/to/robot/rebot.py

Instead of ``python`` it is possible to use also other Python interpreters.
This module is also used by the installed ``rebot`` start-up script.

This module also provides :func:`rebot` and :func:`rebot_cli` functions
that can be used programmatically. Other code is for internal usage.
"""

import sys

# Allows running as a script. __name__ check needed with multiprocessing:
# https://github.com/robotframework/robotframework/issues/1137
if 'robot' not in sys.modules and __name__ == '__main__':
    import pythonpathsetter

from robot.conf import RebotSettings
from robot.errors import DataError
from robot.reporting import ResultWriter
from robot.output import LOGGER
from robot.utils import Application
from robot.run import RobotFramework


USAGE = """Rebot -- Robot Framework report and log generator

Version:  <VERSION>

Usage:  rebot [options] robot_outputs
   or:  python -m robot.rebot [options] robot_outputs
   or:  python path/to/robot/rebot.py [options] robot_outputs
   or:  java -jar robotframework.jar rebot [options] robot_outputs

Rebot can be used to generate logs and reports in HTML format. It can also
produce new XML output files which can be further processed with Rebot or
other tools.

The easiest way to execute Rebot is using the `rebot` command created as part
of the normal installation. Alternatively it is possible to execute the
`robot.rebot` module directly using `python -m robot.rebot`, where `python`
can be replaced with any supported Python interpreter like `jython`, `ipy` or
`python3`. Yet another alternative is running the `robot/rebot.py` script like
`python path/to/robot/rebot.py`. Finally, there is a standalone JAR
distribution available.

Inputs to Rebot are XML output files generated by Robot Framework or by earlier
Rebot executions. When more than one input file is given, a new top level test
suite containing suites in the given files is created by default. This allows
combining multiple outputs together to create higher level reports. An
exception is that if --merge is used, results are combined by adding suites
and tests in subsequent outputs into the first suite structure. If same test
is found from multiple outputs, the last one replaces the earlier ones.

For more information about Rebot and other built-in tools, see
http://robotframework.org/robotframework/#built-in-tools. For more details
about Robot Framework in general, go to http://robotframework.org.

Options
=======

    --rpa                 Turn on the generic automation mode. Mainly affects
                          terminology so that "test" is replaced with "task"
                          in logs and reports. By default the mode is got
                          from the processed output files. New in RF 3.1.
 -R --merge               When combining results, merge outputs together
                          instead of putting them under a new top level suite.
                          Example: rebot --merge orig.xml rerun.xml
 -N --name name           Set the name of the top level suite.
 -D --doc documentation   Set the documentation of the top level suite.
                          Simple formatting is supported (e.g. *bold*). If
                          the documentation contains spaces, it must be quoted.
                          If the value is path to an existing file, actual
                          documentation is read from that file.
                          Examples: --doc "Very *good* example"
                                    --doc doc_from_file.txt
 -M --metadata name:value *  Set metadata of the top level suite. Value can
                          contain formatting and be read from a file similarly
                          as --doc. Example: --metadata Version:1.2
 -G --settag tag *        Sets given tag(s) to all tests.
 -t --test name *         Select tests by name or by long name containing also
                          parent suite name like `Parent.Test`. Name is case
                          and space insensitive and it can also be a simple
                          pattern where `*` matches anything, `?` matches any
                          single character, and `[chars]` matches one character
                          in brackets.
    --task name *         Alias to --test. Especially applicable with --rpa.
 -s --suite name *        Select suites by name. When this option is used with
                          --test, --include or --exclude, only tests in
                          matching suites and also matching other filtering
                          criteria are selected. Name can be a simple pattern
                          similarly as with --test and it can contain parent
                          name separated with a dot. For example, `-s X.Y`
                          selects suite `Y` only if its parent is `X`.
 -i --include tag *       Select tests by tag. Similarly as name with --test,
                          tag is case and space insensitive and it is possible
                          to use patterns with `*`, `?` and `[]` as wildcards.
                          Tags and patterns can also be combined together with
                          `AND`, `OR`, and `NOT` operators.
                          Examples: --include foo --include bar*
                                    --include fooANDbar*
 -e --exclude tag *       Specify tests not to be included by tag. They are not
                          selected even if included with --include. Tags are
                          matched using same rules as with --include.
    --processemptysuite   Processes output also if the top level suite is
                          empty. Useful e.g. with --include/--exclude when it
                          is not an error that there are no matches.
 -c --critical tag *      Deprecated since RF 4.0 and has no effect anymore.
 -n --noncritical tag *   Deprecated since RF 4.0 and has no effect anymore.
                          Use --skiponfailure when starting execution instead.
 -d --outputdir dir       Where to create output files. The default is the
                          directory where Rebot is run from and the given path
                          is considered relative to that unless it is absolute.
 -o --output file         XML output file. Not created unless this option is
                          specified. Given path, similarly as paths given to
                          --log, --report and --xunit, is relative to
                          --outputdir unless given as an absolute path.
 -l --log file            HTML log file. Can be disabled by giving a special
                          name `NONE`. Default: log.html
                          Examples: `--log mylog.html`, `-l none`
 -r --report file         HTML report file. Can be disabled with `NONE`
                          similarly as --log. Default: report.html
 -x --xunit file          xUnit compatible result file. Not created unless this
                          option is specified.
    --xunitskipnoncritical  Deprecated since RF 4.0 and has no effect anymore.
 -T --timestampoutputs    When this option is used, timestamp in a format
                          `YYYYMMDD-hhmmss` is added to all generated output
                          files between their basename and extension. For
                          example `-T -o output.xml -r report.html -l none`
                          creates files like `output-20070503-154410.xml` and
                          `report-20070503-154410.html`.
    --splitlog            Split the log file into smaller pieces that open in
                          browsers transparently.
    --logtitle title      Title for the generated log file. The default title
                          is `<SuiteName> Test Log`.
    --reporttitle title   Title for the generated report file. The default
                          title is `<SuiteName> Test Report`.
    --reportbackground colors  Background colors to use in the report file.
                          Either `all_passed:critical_passed:failed` or
                          `passed:failed`. Both color names and codes work.
                          Examples: --reportbackground green:yellow:red
                                    --reportbackground #00E:#E00
 -L --loglevel level      Threshold for selecting messages. Available levels:
                          TRACE (default), DEBUG, INFO, WARN, NONE (no msgs).
                          Use syntax `LOGLEVEL:DEFAULT` to define the default
                          visible log level in log files.
                          Examples: --loglevel DEBUG
                                    --loglevel DEBUG:INFO
    --suitestatlevel level  How many levels to show in `Statistics by Suite`
                          in log and report. By default all suite levels are
                          shown. Example:  --suitestatlevel 3
    --tagstatinclude tag *  Include only matching tags in `Statistics by Tag`
                          in log and report. By default all tags are shown.
                          Given tag can be a pattern like with --include.
    --tagstatexclude tag *  Exclude matching tags from `Statistics by Tag`.
                          This option can be used with --tagstatinclude
                          similarly as --exclude is used with --include.
    --tagstatcombine tags:name *  Create combined statistics based on tags.
                          These statistics are added into `Statistics by Tag`.
                          If the optional `name` is not given, name of the
                          combined tag is got from the specified tags. Tags are
                          matched using the same rules as with --include.
                          Examples: --tagstatcombine requirement-*
                                    --tagstatcombine tag1ANDtag2:My_name
    --tagdoc pattern:doc *  Add documentation to tags matching the given
                          pattern. Documentation is shown in `Test Details` and
                          also as a tooltip in `Statistics by Tag`. Pattern can
                          use `*`, `?` and `[]` as wildcards like --test.
                          Documentation can contain formatting like --doc.
                          Examples: --tagdoc mytag:Example
                                    --tagdoc "owner-*:Original author"
    --tagstatlink pattern:link:title *  Add external links into `Statistics by
                          Tag`. Pattern can use `*`, `?` and `[]` as wildcards
                          like --test. Characters matching to `*` and `?`
                          wildcards can be used in link and title with syntax
                          %N, where N is index of the match (starting from 1).
                          Examples: --tagstatlink mytag:http://my.domain:Title
                          --tagstatlink "bug-*:http://url/id=%1:Issue Tracker"
    --expandkeywords name:<pattern>|tag:<pattern> *
                          Matching keywords will be automatically expanded in
                          the log file. Matching against keyword name or tags
                          work using same rules as with --removekeywords.
                          Examples: --expandkeywords name:BuiltIn.Log
                                    --expandkeywords tag:expand
                          New in RF 3.2.
    --removekeywords all|passed|for|wuks|name:<pattern>|tag:<pattern> *
                          Remove keyword data from all generated outputs.
                          Keywords containing warnings are not removed except
                          in the `all` mode.
                          all:     remove data from all keywords
                          passed:  remove data only from keywords in passed
                                   test cases and suites
                          for:     remove passed iterations from for loops
                          wuks:    remove all but the last failing keyword
                                   inside `BuiltIn.Wait Until Keyword Succeeds`
                          name:<pattern>:  remove data from keywords that match
                                   the given pattern. The pattern is matched
                                   against the full name of the keyword (e.g.
                                   'MyLib.Keyword', 'resource.Second Keyword'),
                                   is case, space, and underscore insensitive,
                                   and may contain `*`, `?` and `[]` wildcards.
                                   Examples: --removekeywords name:Lib.HugeKw
                                             --removekeywords name:myresource.*
                          tag:<pattern>:  remove data from keywords that match
                                   the given pattern. Tags are case and space
                                   insensitive and patterns can contain `*`,
                                   `?` and `[]` wildcards. Tags and patterns
                                   can also be combined together with `AND`,
                                   `OR`, and `NOT` operators.
                                   Examples: --removekeywords foo
                                             --removekeywords fooANDbar*
    --flattenkeywords for|foritem|name:<pattern>|tag:<pattern> *
                          Flattens matching keywords in all generated outputs.
                          Matching keywords get all log messages from their
                          child keywords and children are discarded otherwise.
                          for:     flatten for loops fully
                          foritem: flatten individual for loop iterations
                          name:<pattern>:  flatten matched keywords using same
                                   matching rules as with
                                   `--removekeywords name:<pattern>`
                          tag:<pattern>:  flatten matched keywords using same
                                   matching rules as with
                                   `--removekeywords tag:<pattern>`
    --starttime timestamp  Set execution start time. Timestamp must be given in
                          format `2007-10-01 15:12:42.268` where all separators
                          are optional (e.g. `20071001151242268` is ok too) and
                          parts from milliseconds to hours can be omitted if
                          they are zero (e.g. `2007-10-01`). This can be used
                          to override start time of a single suite or to set
                          start time for a combined suite, which would
                          otherwise be `N/A`.
    --endtime timestamp   Same as --starttime but for end time. If both options
                          are used, elapsed time of the suite is calculated
                          based on them. For combined suites, it is otherwise
                          calculated by adding elapsed times of the combined
                          suites together.
    --nostatusrc          Sets the return code to zero regardless are there
                          failures. Error codes are returned normally.
    --prerebotmodifier class *  Class to programmatically modify the result
                          model before creating outputs.
 -C --consolecolors auto|on|ansi|off  Use colors on console output or not.
                          auto: use colors when output not redirected (default)
                          on:   always use colors
                          ansi: like `on` but use ANSI colors also on Windows
                          off:  disable colors altogether
                          Note that colors do not work with Jython on Windows.
 -P --pythonpath path *   Additional locations to add to the module search path
                          that is used when importing Python based extensions.
 -A --argumentfile path *  Text file to read more arguments from. File can have
                          both options and output files, one per line. Contents
                          do not need to be escaped but spaces in the beginning
                          and end of lines are removed. Empty lines and lines
                          starting with a hash character (#) are ignored.
                          Example file:
                          |  --include regression
                          |  --name Regression Tests
                          |  # This is a comment line
                          |  output.xml
 -h -? --help             Print usage instructions.
 --version                Print version information.

Options that are marked with an asterisk (*) can be specified multiple times.
For example, `--test first --test third` selects test cases with name `first`
and `third`. If an option accepts a value but is not marked with an asterisk,
the last given value has precedence. For example, `--log A.html --log B.html`
creates log file `B.html`. Options accepting no values can be disabled by
using the same option again with `no` prefix added or dropped. The last option
has precedence regardless of how many times options are used. For example,
`--merge --merge --nomerge --nostatusrc --statusrc` would not activate the
merge mode and would return a normal return code.

Long option format is case-insensitive. For example, --SuiteStatLevel is
equivalent to but easier to read than --suitestatlevel. Long options can
also be shortened as long as they are unique. For example, `--logti Title`
works while `--lo log.html` does not because the former matches only --logtitle
but the latter matches both --log and --logtitle.

Environment Variables
=====================

REBOT_OPTIONS             Space separated list of default options to be placed
                          in front of any explicit options on the command line.
ROBOT_SYSLOG_FILE         Path to a file where Robot Framework writes internal
                          information about processed files. Can be useful when
                          debugging problems. If not set, or set to special
                          value `NONE`, writing to the syslog file is disabled.
ROBOT_SYSLOG_LEVEL        Log level to use when writing to the syslog file.
                          Available levels are the same as for --loglevel
                          command line option and the default is INFO.

Examples
========

# Simple Rebot run that creates log and report with default names.
$ rebot output.xml

# Using options. Note that this is one long command split into multiple lines.
$ rebot --log smoke_log.html --report smoke_report.html --include smoke
        --ReportTitle "Smoke Tests" --ReportBackground green:yellow:red
        --TagStatCombine tag1ANDtag2 path/to/myoutput.xml

# Executing `robot.rebot` module using Python and creating combined outputs.
$ python -m robot.rebot --name Combined outputs/*.xml

# Running `robot/rebot.py` script with Jython.
$ jython path/robot/rebot.py -N Project_X -l none -r x.html output.xml
"""


[docs]class Rebot(RobotFramework):

    def __init__(self):
        Application.__init__(self, USAGE, arg_limits=(1,),
                             env_options='REBOT_OPTIONS', logger=LOGGER)

[docs]    def main(self, datasources, **options):
        settings = RebotSettings(options)
        LOGGER.register_console_logger(**settings.console_output_config)
        if settings['Critical'] or settings['NonCritical']:
            LOGGER.warn("Command line options --critical and --noncritical have been "
                        "deprecated and have no effect with Rebot. Use --skiponfailure "
                        "when starting execution instead.")
        if settings['XUnitSkipNonCritical']:
            LOGGER.warn("Command line option --xunitskipnoncritical has been "
                        "deprecated and has no effect.")
        LOGGER.disable_message_cache()
        rc = ResultWriter(*datasources).write_results(settings)
        if rc < 0:
            raise DataError('No outputs created.')
        return rc




[docs]def rebot_cli(arguments=None, exit=True):
    """Command line execution entry point for post-processing outputs.

    :param arguments: Command line options and arguments as a list of strings.
        Starting from RF 3.1, defaults to ``sys.argv[1:]`` if not given.
    :param exit: If ``True``, call ``sys.exit`` with the return code denoting
        execution status, otherwise just return the rc.

    Entry point used when post-processing outputs from the command line, but
    can also be used by custom scripts. Especially useful if the script itself
    needs to accept same arguments as accepted by Rebot, because the script can
    just pass them forward directly along with the possible default values it
    sets itself.

    Example::

        from robot import rebot_cli

        rebot_cli(['--name', 'Example', '--log', 'NONE', 'o1.xml', 'o2.xml'])

    See also the :func:`rebot` function that allows setting options as keyword
    arguments like ``name="Example"`` and generally has a richer API for
    programmatic Rebot execution.
    """
    if arguments is None:
        arguments = sys.argv[1:]
    return Rebot().execute_cli(arguments, exit=exit)



[docs]def rebot(*outputs, **options):
    """Programmatic entry point for post-processing outputs.

    :param outputs: Paths to Robot Framework output files similarly
        as when running the ``rebot`` command on the command line.
    :param options: Options to configure processing outputs. Accepted
        options are mostly same as normal command line options to the ``rebot``
        command. Option names match command line option long names without
        hyphens so that, for example, ``--name`` becomes ``name``.

    The semantics related to passing options are exactly the same as with the
    :func:`~robot.run.run` function. See its documentation for more details.

    Examples::

        from robot import rebot

        rebot('path/to/output.xml')
        with open('stdout.txt', 'w') as stdout:
            rebot('o1.xml', 'o2.xml', name='Example', log=None, stdout=stdout)

    Equivalent command line usage::

        rebot path/to/output.xml
        rebot --name Example --log NONE o1.xml o2.xml > stdout.txt
    """
    return Rebot().execute(*outputs, **options)



if __name__ == '__main__':
    rebot_cli(sys.argv[1:])




          

      

      

    

  

    
      
          
            
  Source code for robot.run

#!/usr/bin/env python

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

"""Module implementing the command line entry point for executing tests.

This module can be executed from the command line using the following
approaches::

    python -m robot.run
    python path/to/robot/run.py

Instead of ``python`` it is possible to use also other Python interpreters.
This module is also used by the installed ``robot`` start-up script.

This module also provides :func:`run` and :func:`run_cli` functions
that can be used programmatically. Other code is for internal usage.
"""

import sys

# Allows running as a script. __name__ check needed with multiprocessing:
# https://github.com/robotframework/robotframework/issues/1137
if 'robot' not in sys.modules and __name__ == '__main__':
    import pythonpathsetter

from robot.conf import RobotSettings
from robot.model import ModelModifier
from robot.output import LOGGER, pyloggingconf
from robot.reporting import ResultWriter
from robot.running.builder import TestSuiteBuilder
from robot.utils import Application, unic, text


USAGE = """Robot Framework -- A generic automation framework

Version:  <VERSION>

Usage:  robot [options] paths
   or:  python -m robot [options] paths
   or:  python path/to/robot [options] paths
   or:  java -jar robotframework.jar [options] paths

Robot Framework is a generic open source automation framework for acceptance
testing, acceptance test-driven development (ATDD) and robotic process
automation (RPA). It has simple, easy-to-use syntax that utilizes the
keyword-driven automation approach. Keywords adding new capabilities are
implemented in libraries using either Python or Java. New higher level
keywords can also be created using Robot Framework's own syntax.

The easiest way to execute Robot Framework is using the `robot` command created
as part of the normal installation. Alternatively it is possible to execute
the `robot` module directly like `python -m robot`, where `python` can be
replaced with any supported Python interpreter such as `jython`, `ipy` or
`python3`. Yet another alternative is running the `robot` directory like
`python path/to/robot`. Finally, there is a standalone JAR distribution
available.

Tests (or tasks in RPA terminology) are created in files typically having the
`*.robot` extension. Files automatically create test (or task) suites and
directories with these files create higher level suites. When Robot Framework
is executed, paths to these files or directories are given to it as arguments.

By default Robot Framework creates an XML output file and a log and a report in
HTML format, but this can be configured using various options listed below.
Outputs in HTML format are for human consumption and XML output for integration
with other systems. XML outputs can also be combined and otherwise further
post-processed with the Rebot tool that is an integral part of Robot Framework.
Run `rebot --help` for more information.

Robot Framework is open source software released under Apache License 2.0.
For more information about the framework and the rich ecosystem around it
see http://robotframework.org/.

Options
=======

    --rpa                 Turn on the generic automation mode. Mainly affects
                          terminology so that "test" is replaced with "task"
                          in logs and reports. By default the mode is got
                          from test/task header in data files. New in RF 3.1.
 -F --extension value     Parse only files with this extension when executing
                          a directory. Has no effect when running individual
                          files or when using resource files. If more than one
                          extension is needed, separate them with a colon.
                          Examples: `--extension txt`, `--extension robot:txt`
                          Starting from RF 3.2 only `*.robot` files are parsed
                          by default.
 -N --name name           Set the name of the top level suite. By default the
                          name is created based on the executed file or
                          directory.
 -D --doc documentation   Set the documentation of the top level suite.
                          Simple formatting is supported (e.g. *bold*). If the
                          documentation contains spaces, it must be quoted.
                          If the value is path to an existing file, actual
                          documentation is read from that file.
                          Examples: --doc "Very *good* example"
                                    --doc doc_from_file.txt
 -M --metadata name:value *  Set metadata of the top level suite. Value can
                          contain formatting and be read from a file similarly
                          as --doc. Example: --metadata Version:1.2
 -G --settag tag *        Sets given tag(s) to all executed tests.
 -t --test name *         Select tests by name or by long name containing also
                          parent suite name like `Parent.Test`. Name is case
                          and space insensitive and it can also be a simple
                          pattern where `*` matches anything, `?` matches any
                          single character, and `[chars]` matches one character
                          in brackets.
    --task name *         Alias to --test. Especially applicable with --rpa.
 -s --suite name *        Select suites by name. When this option is used with
                          --test, --include or --exclude, only tests in
                          matching suites and also matching other filtering
                          criteria are selected. Name can be a simple pattern
                          similarly as with --test and it can contain parent
                          name separated with a dot. For example, `-s X.Y`
                          selects suite `Y` only if its parent is `X`.
 -i --include tag *       Select tests by tag. Similarly as name with --test,
                          tag is case and space insensitive and it is possible
                          to use patterns with `*`, `?` and `[]` as wildcards.
                          Tags and patterns can also be combined together with
                          `AND`, `OR`, and `NOT` operators.
                          Examples: --include foo --include bar*
                                    --include fooANDbar*
 -e --exclude tag *       Select test cases not to run by tag. These tests are
                          not run even if included with --include. Tags are
                          matched using same rules as with --include.
 -R --rerunfailed output  Select failed tests from an earlier output file to be
                          re-executed. Equivalent to selecting same tests
                          individually using --test.
 -S --rerunfailedsuites output  Select failed suites from an earlier output
                          file to be re-executed.
    --runemptysuite       Executes suite even if it contains no tests. Useful
                          e.g. with --include/--exclude when it is not an error
                          that no test matches the condition.
    --skip tag *          Tests having given tag will be skipped. Tag can be
                          a pattern. New in RF 4.0.
    --skiponfailure tag *  Tests having given tag will be skipped if they fail.
                          Tag can be a pattern. New in RF 4.0.
 -n --noncritical tag *   Alias for --skiponfailure. Deprecated since RF 4.0.
 -c --critical tag *      Opposite of --noncritical. Deprecated since RF 4.0.
 -v --variable name:value *  Set variables in the test data. Only scalar
                          variables with string value are supported and name is
                          given without `${}`. See --variablefile for a more
                          powerful variable setting mechanism.
                          Examples:
                          --variable str:Hello       =>  ${str} = `Hello`
                          -v hi:Hi_World -E space:_  =>  ${hi} = `Hi World`
                          -v x: -v y:42              =>  ${x} = ``, ${y} = `42`
 -V --variablefile path *  Python or YAML file file to read variables from.
                          Possible arguments to the variable file can be given
                          after the path using colon or semicolon as separator.
                          Examples: --variablefile path/vars.yaml
                                    --variablefile environment.py:testing
 -d --outputdir dir       Where to create output files. The default is the
                          directory where tests are run from and the given path
                          is considered relative to that unless it is absolute.
 -o --output file         XML output file. Given path, similarly as paths given
                          to --log, --report, --xunit, and --debugfile, is
                          relative to --outputdir unless given as an absolute
                          path. Other output files are created based on XML
                          output files after the test execution and XML outputs
                          can also be further processed with Rebot tool. Can be
                          disabled by giving a special value `NONE`.
                          Default: output.xml
 -l --log file            HTML log file. Can be disabled by giving a special
                          value `NONE`. Default: log.html
                          Examples: `--log mylog.html`, `-l NONE`
 -r --report file         HTML report file. Can be disabled with `NONE`
                          similarly as --log. Default: report.html
 -x --xunit file          xUnit compatible result file. Not created unless this
                          option is specified.
    --xunitskipnoncritical  Deprecated since RF 4.0 and has no effect anymore.
 -b --debugfile file      Debug file written during execution. Not created
                          unless this option is specified.
 -T --timestampoutputs    When this option is used, timestamp in a format
                          `YYYYMMDD-hhmmss` is added to all generated output
                          files between their basename and extension. For
                          example `-T -o output.xml -r report.html -l none`
                          creates files like `output-20070503-154410.xml` and
                          `report-20070503-154410.html`.
    --splitlog            Split the log file into smaller pieces that open in
                          browsers transparently.
    --logtitle title      Title for the generated log file. The default title
                          is `<SuiteName> Test Log`.
    --reporttitle title   Title for the generated report file. The default
                          title is `<SuiteName> Test Report`.
    --reportbackground colors  Background colors to use in the report file.
                          Order is `passed:failed:skipped`. Both color names
                          and codes work. `skipped` can be omitted.
                          Examples: --reportbackground green:red:yellow
                                    --reportbackground #00E:#E00
    --maxerrorlines lines  Maximum number of error message lines to show in
                          report when tests fail. Default is 40, minimum is 10
                          and `NONE` can be used to show the full message.
 -L --loglevel level      Threshold level for logging. Available levels: TRACE,
                          DEBUG, INFO (default), WARN, NONE (no logging). Use
                          syntax `LOGLEVEL:DEFAULT` to define the default
                          visible log level in log files.
                          Examples: --loglevel DEBUG
                                    --loglevel DEBUG:INFO
    --suitestatlevel level  How many levels to show in `Statistics by Suite`
                          in log and report. By default all suite levels are
                          shown. Example:  --suitestatlevel 3
    --tagstatinclude tag *  Include only matching tags in `Statistics by Tag`
                          in log and report. By default all tags are shown.
                          Given tag can be a pattern like with --include.
    --tagstatexclude tag *  Exclude matching tags from `Statistics by Tag`.
                          This option can be used with --tagstatinclude
                          similarly as --exclude is used with --include.
    --tagstatcombine tags:name *  Create combined statistics based on tags.
                          These statistics are added into `Statistics by Tag`.
                          If the optional `name` is not given, name of the
                          combined tag is got from the specified tags. Tags are
                          matched using the same rules as with --include.
                          Examples: --tagstatcombine requirement-*
                                    --tagstatcombine tag1ANDtag2:My_name
    --tagdoc pattern:doc *  Add documentation to tags matching the given
                          pattern. Documentation is shown in `Test Details` and
                          also as a tooltip in `Statistics by Tag`. Pattern can
                          use `*`, `?` and `[]` as wildcards like --test.
                          Documentation can contain formatting like --doc.
                          Examples: --tagdoc mytag:Example
                                    --tagdoc "owner-*:Original author"
    --tagstatlink pattern:link:title *  Add external links into `Statistics by
                          Tag`. Pattern can use `*`, `?` and `[]` as wildcards
                          like --test. Characters matching to `*` and `?`
                          wildcards can be used in link and title with syntax
                          %N, where N is index of the match (starting from 1).
                          Examples: --tagstatlink mytag:http://my.domain:Title
                          --tagstatlink "bug-*:http://url/id=%1:Issue Tracker"
    --expandkeywords name:<pattern>|tag:<pattern> *
                          Matching keywords will be automatically expanded in
                          the log file. Matching against keyword name or tags
                          work using same rules as with --removekeywords.
                          Examples: --expandkeywords name:BuiltIn.Log
                                    --expandkeywords tag:expand
                          New in RF 3.2.
    --removekeywords all|passed|for|wuks|name:<pattern>|tag:<pattern> *
                          Remove keyword data from the generated log file.
                          Keywords containing warnings are not removed except
                          in the `all` mode.
                          all:     remove data from all keywords
                          passed:  remove data only from keywords in passed
                                   test cases and suites
                          for:     remove passed iterations from for loops
                          wuks:    remove all but the last failing keyword
                                   inside `BuiltIn.Wait Until Keyword Succeeds`
                          name:<pattern>:  remove data from keywords that match
                                   the given pattern. The pattern is matched
                                   against the full name of the keyword (e.g.
                                   'MyLib.Keyword', 'resource.Second Keyword'),
                                   is case, space, and underscore insensitive,
                                   and may contain `*`, `?` and `[]` wildcards.
                                   Examples: --removekeywords name:Lib.HugeKw
                                             --removekeywords name:myresource.*
                          tag:<pattern>:  remove data from keywords that match
                                   the given pattern. Tags are case and space
                                   insensitive and patterns can contain `*`,
                                   `?` and `[]` wildcards. Tags and patterns
                                   can also be combined together with `AND`,
                                   `OR`, and `NOT` operators.
                                   Examples: --removekeywords foo
                                             --removekeywords fooANDbar*
    --flattenkeywords for|foritem|name:<pattern>|tag:<pattern> *
                          Flattens matching keywords in the generated log file.
                          Matching keywords get all log messages from their
                          child keywords and children are discarded otherwise.
                          for:     flatten for loops fully
                          foritem: flatten individual for loop iterations
                          name:<pattern>:  flatten matched keywords using same
                                   matching rules as with
                                   `--removekeywords name:<pattern>`
                          tag:<pattern>:  flatten matched keywords using same
                                   matching rules as with
                                   `--removekeywords tag:<pattern>`
    --listener class *    A class for monitoring test execution. Gets
                          notifications e.g. when tests start and end.
                          Arguments to the listener class can be given after
                          the name using a colon or a semicolon as a separator.
                          Examples: --listener MyListenerClass
                                    --listener path/to/Listener.py:arg1:arg2
    --nostatusrc          Sets the return code to zero regardless of failures
                          in test cases. Error codes are returned normally.
    --dryrun              Verifies test data and runs tests so that library
                          keywords are not executed.
 -X --exitonfailure       Stops test execution if any critical test fails.
    --exitonerror         Stops test execution if any error occurs when parsing
                          test data, importing libraries, and so on.
    --skipteardownonexit  Causes teardowns to be skipped if test execution is
                          stopped prematurely.
    --randomize all|suites|tests|none  Randomizes the test execution order.
                          all:    randomizes both suites and tests
                          suites: randomizes suites
                          tests:  randomizes tests
                          none:   no randomization (default)
                          Use syntax `VALUE:SEED` to give a custom random seed.
                          The seed must be an integer.
                          Examples: --randomize all
                                    --randomize tests:1234
    --prerunmodifier class *  Class to programmatically modify the test suite
                          structure before execution.
    --prerebotmodifier class *  Class to programmatically modify the result
                          model before creating reports and logs.
    --console type        How to report execution on the console.
                          verbose:  report every suite and test (default)
                          dotted:   only show `.` for passed test, `f` for
                                    failed non-critical tests, and `F` for
                                    failed critical tests
                          quiet:    no output except for errors and warnings
                          none:     no output whatsoever
 -. --dotted              Shortcut for `--console dotted`.
    --quiet               Shortcut for `--console quiet`.
 -W --consolewidth chars  Width of the console output. Default is 78.
 -C --consolecolors auto|on|ansi|off  Use colors on console output or not.
                          auto: use colors when output not redirected (default)
                          on:   always use colors
                          ansi: like `on` but use ANSI colors also on Windows
                          off:  disable colors altogether
                          Note that colors do not work with Jython on Windows.
 -K --consolemarkers auto|on|off  Show markers on the console when top level
                          keywords in a test case end. Values have same
                          semantics as with --consolecolors.
 -P --pythonpath path *   Additional locations (directories, ZIPs, JARs) where
                          to search test libraries and other extensions when
                          they are imported. Multiple paths can be given by
                          separating them with a colon (`:`) or by using this
                          option several times. Given path can also be a glob
                          pattern matching multiple paths.
                          Examples:
                          --pythonpath libs/ --pythonpath resources/*.jar
                          --pythonpath /opt/testlibs:mylibs.zip:yourlibs
 -A --argumentfile path *  Text file to read more arguments from. Use special
                          path `STDIN` to read contents from the standard input
                          stream. File can have both options and input files
                          or directories, one per line. Contents do not need to
                          be escaped but spaces in the beginning and end of
                          lines are removed. Empty lines and lines starting
                          with a hash character (#) are ignored.
                          Example file:
                          |  --include regression
                          |  --name Regression Tests
                          |  # This is a comment line
                          |  my_tests.robot
                          |  path/to/test/directory/
                          Examples:
                          --argumentfile argfile.txt --argumentfile STDIN
 -h -? --help             Print usage instructions.
 --version                Print version information.

Options that are marked with an asterisk (*) can be specified multiple times.
For example, `--test first --test third` selects test cases with name `first`
and `third`. If an option accepts a value but is not marked with an asterisk,
the last given value has precedence. For example, `--log A.html --log B.html`
creates log file `B.html`. Options accepting no values can be disabled by
using the same option again with `no` prefix added or dropped. The last option
has precedence regardless of how many times options are used. For example,
`--dryrun --dryrun --nodryrun --nostatusrc --statusrc` would not activate the
dry-run mode and would return a normal return code.

Long option format is case-insensitive. For example, --SuiteStatLevel is
equivalent to but easier to read than --suitestatlevel. Long options can
also be shortened as long as they are unique. For example, `--logti Title`
works while `--lo log.html` does not because the former matches only --logtitle
but the latter matches --log, --loglevel and --logtitle.

Environment Variables
=====================

ROBOT_OPTIONS             Space separated list of default options to be placed
                          in front of any explicit options on the command line.
ROBOT_SYSLOG_FILE         Path to a file where Robot Framework writes internal
                          information about parsing test case files and running
                          tests. Can be useful when debugging problems. If not
                          set, or set to a special value `NONE`, writing to the
                          syslog file is disabled.
ROBOT_SYSLOG_LEVEL        Log level to use when writing to the syslog file.
                          Available levels are the same as with --loglevel
                          command line option and the default is INFO.
ROBOT_INTERNAL_TRACES     When set to any non-empty value, Robot Framework's
                          internal methods are included in error tracebacks.

Examples
========

# Simple test run using `robot` command without options.
$ robot tests.robot

# Using options.
$ robot --include smoke --name "Smoke Tests" path/to/tests.robot

# Executing `robot` module using Python.
$ python -m robot path/to/tests

# Running `robot` directory with Jython.
$ jython /opt/robot tests.robot

# Executing multiple test case files and using case-insensitive long options.
$ robot --SuiteStatLevel 2 --Metadata Version:3 tests/*.robot more/tests.robot

# Setting default options and syslog file before running tests.
$ export ROBOT_OPTIONS="--outputdir results --suitestatlevel 2"
$ export ROBOT_SYSLOG_FILE=/tmp/syslog.txt
$ robot tests.robot
"""


[docs]class RobotFramework(Application):

    def __init__(self):
        Application.__init__(self, USAGE, arg_limits=(1,),
                             env_options='ROBOT_OPTIONS', logger=LOGGER)

[docs]    def main(self, datasources, **options):
        settings = RobotSettings(options)
        LOGGER.register_console_logger(**settings.console_output_config)
        if settings['Critical'] or settings['NonCritical']:
            LOGGER.warn("Command line options --critical and --noncritical have been "
                        "deprecated. Use --skiponfailure instead.")
        if settings['XUnitSkipNonCritical']:
            LOGGER.warn("Command line option --xunitskipnoncritical has been "
                        "deprecated and has no effect.")
        LOGGER.info('Settings:\n%s' % unic(settings))
        builder = TestSuiteBuilder(settings['SuiteNames'],
                                   included_extensions=settings.extension,
                                   rpa=settings.rpa,
                                   allow_empty_suite=settings.run_empty_suite)
        suite = builder.build(*datasources)
        settings.rpa = suite.rpa
        if settings.pre_run_modifiers:
            suite.visit(ModelModifier(settings.pre_run_modifiers,
                                      settings.run_empty_suite, LOGGER))
        suite.configure(**settings.suite_config)
        with pyloggingconf.robot_handler_enabled(settings.log_level):
            old_max_error_lines = text.MAX_ERROR_LINES
            text.MAX_ERROR_LINES = settings.max_error_lines
            try:
                result = suite.run(settings)
            finally:
                text.MAX_ERROR_LINES = old_max_error_lines
            LOGGER.info("Tests execution ended. Statistics:\n%s"
                        % result.suite.stat_message)
            if settings.log or settings.report or settings.xunit:
                writer = ResultWriter(settings.output if settings.log
                                      else result)
                writer.write_results(settings.get_rebot_settings())
        return result.return_code


[docs]    def validate(self, options, arguments):
        return self._filter_options_without_value(options), arguments


    def _filter_options_without_value(self, options):
        return dict((name, value) for name, value in options.items()
                    if value not in (None, []))



[docs]def run_cli(arguments=None, exit=True):
    """Command line execution entry point for running tests.

    :param arguments: Command line options and arguments as a list of strings.
        Starting from RF 3.1, defaults to ``sys.argv[1:]`` if not given.
    :param exit: If ``True``, call ``sys.exit`` with the return code denoting
        execution status, otherwise just return the rc.

    Entry point used when running tests from the command line, but can also
    be used by custom scripts that execute tests. Especially useful if the
    script itself needs to accept same arguments as accepted by Robot Framework,
    because the script can just pass them forward directly along with the
    possible default values it sets itself.

    Example::

        from robot import run_cli

        # Run tests and return the return code.
        rc = run_cli(['--name', 'Example', 'tests.robot'], exit=False)

        # Run tests and exit to the system automatically.
        run_cli(['--name', 'Example', 'tests.robot'])

    See also the :func:`run` function that allows setting options as keyword
    arguments like ``name="Example"`` and generally has a richer API for
    programmatic test execution.
    """
    if arguments is None:
        arguments = sys.argv[1:]
    return RobotFramework().execute_cli(arguments, exit=exit)



[docs]def run(*tests, **options):
    """Programmatic entry point for running tests.

    :param tests: Paths to test case files/directories to be executed similarly
        as when running the ``robot`` command on the command line.
    :param options: Options to configure and control execution. Accepted
        options are mostly same as normal command line options to the ``robot``
        command. Option names match command line option long names without
        hyphens so that, for example, ``--name`` becomes ``name``.

    Most options that can be given from the command line work. An exception
    is that options ``--pythonpath``, ``--argumentfile``, ``--help`` and
    ``--version`` are not supported.

    Options that can be given on the command line multiple times can be
    passed as lists. For example, ``include=['tag1', 'tag2']`` is equivalent
    to ``--include tag1 --include tag2``. If such options are used only once,
    they can be given also as a single string like ``include='tag'``.

    Options that accept no value can be given as Booleans. For example,
    ``dryrun=True`` is same as using the ``--dryrun`` option.

    Options that accept string ``NONE`` as a special value can also be used
    with Python ``None``. For example, using ``log=None`` is equivalent to
    ``--log NONE``.

    ``listener``, ``prerunmodifier`` and ``prerebotmodifier`` options allow
    passing values as Python objects in addition to module names these command
    line options support. For example, ``run('tests', listener=MyListener())``.

    To capture the standard output and error streams, pass an open file or
    file-like object as special keyword arguments ``stdout`` and ``stderr``,
    respectively.

    A return code is returned similarly as when running on the command line.
    Zero means that tests were executed and no critical test failed, values up
    to 250 denote the number of failed critical tests, and values between
    251-255 are for other statuses documented in the Robot Framework User Guide.

    Example::

        from robot import run

        run('path/to/tests.robot')
        run('tests.robot', include=['tag1', 'tag2'], splitlog=True)
        with open('stdout.txt', 'w') as stdout:
            run('t1.robot', 't2.robot', name='Example', log=None, stdout=stdout)

    Equivalent command line usage::

        robot path/to/tests.robot
        robot --include tag1 --include tag2 --splitlog tests.robot
        robot --name Example --log NONE t1.robot t2.robot > stdout.txt
    """
    return RobotFramework().execute(*tests, **options)



if __name__ == '__main__':
    run_cli(sys.argv[1:])




          

      

      

    

  

    
      
          
            
  Source code for robot.testdoc

#!/usr/bin/env python

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

"""Module implementing the command line entry point for the `Testdoc` tool.

This module can be executed from the command line using the following
approaches::

    python -m robot.testdoc
    python path/to/robot/testdoc.py

Instead of ``python`` it is possible to use also other Python interpreters.

This module also provides :func:`testdoc` and :func:`testdoc_cli` functions
that can be used programmatically. Other code is for internal usage.
"""

import os.path
import sys
import time

# Allows running as a script. __name__ check needed with multiprocessing:
# https://github.com/robotframework/robotframework/issues/1137
if 'robot' not in sys.modules and __name__ == '__main__':
    import pythonpathsetter

from robot.conf import RobotSettings
from robot.htmldata import HtmlFileWriter, ModelWriter, JsonWriter, TESTDOC
from robot.running import TestSuiteBuilder
from robot.utils import (abspath, Application, file_writer, get_link_path,
                         html_escape, html_format, IRONPYTHON, is_string,
                         PY_VERSION, secs_to_timestr, seq2str2,
                         timestr_to_secs, unescape)


# http://ironpython.codeplex.com/workitem/31549
if IRONPYTHON and PY_VERSION < (2, 7, 2):
    int = long


USAGE = """robot.testdoc -- Robot Framework test data documentation tool

Version:  <VERSION>

Usage:  python -m robot.testdoc [options] data_sources output_file

Testdoc generates a high level test documentation based on Robot Framework
test data. Generated documentation includes name, documentation and other
metadata of each test suite and test case, as well as the top-level keywords
and their arguments.

Options
=======

  -T --title title       Set the title of the generated documentation.
                         Underscores in the title are converted to spaces.
                         The default title is the name of the top level suite.
  -N --name name         Override the name of the top level suite.
  -D --doc document      Override the documentation of the top level suite.
  -M --metadata name:value *  Set/override metadata of the top level suite.
  -G --settag tag *      Set given tag(s) to all test cases.
  -t --test name *       Include tests by name.
  -s --suite name *      Include suites by name.
  -i --include tag *     Include tests by tags.
  -e --exclude tag *     Exclude tests by tags.
  -A --argumentfile path *  Text file to read more arguments from. Use special
                          path `STDIN` to read contents from the standard input
                          stream. File can have both options and data sources
                          one per line. Contents do not need to be escaped but
                          spaces in the beginning and end of lines are removed.
                          Empty lines and lines starting with a hash character
                          (#) are ignored.
                          Example file:
                          |  --name Example
                          |  # This is a comment line
                          |  my_tests.robot
                          |  output.html
                          Examples:
                          --argumentfile argfile.txt --argumentfile STDIN
  -h -? --help           Print this help.

All options except --title have exactly same semantics as same options have
when executing test cases.

Execution
=========

Data can be given as a single file, directory, or as multiple files and
directories. In all these cases, the last argument must be the file where
to write the output. The output is always created in HTML format.

Testdoc works with all interpreters supported by Robot Framework (Python,
Jython and IronPython). It can be executed as an installed module like
`python -m robot.testdoc` or as a script like `python path/robot/testdoc.py`.

Examples:

  python -m robot.testdoc my_test.robot testdoc.html
  jython -m robot.testdoc -N smoke_tests -i smoke path/to/my_tests smoke.html
  ipy path/to/robot/testdoc.py first_suite.txt second_suite.txt output.html

For more information about Testdoc and other built-in tools, see
http://robotframework.org/robotframework/#built-in-tools.
"""


[docs]class TestDoc(Application):

    def __init__(self):
        Application.__init__(self, USAGE, arg_limits=(2,))

[docs]    def main(self, datasources, title=None, **options):
        outfile = abspath(datasources.pop())
        suite = TestSuiteFactory(datasources, **options)
        self._write_test_doc(suite, outfile, title)
        self.console(outfile)


    def _write_test_doc(self, suite, outfile, title):
        with file_writer(outfile, usage='Testdoc output') as output:
            model_writer = TestdocModelWriter(output, suite, title)
            HtmlFileWriter(output, model_writer).write(TESTDOC)



[docs]def TestSuiteFactory(datasources, **options):
    settings = RobotSettings(options)
    if is_string(datasources):
        datasources = [datasources]
    suite = TestSuiteBuilder(process_curdir=False).build(*datasources)
    suite.configure(**settings.suite_config)
    return suite



[docs]class TestdocModelWriter(ModelWriter):

    def __init__(self, output, suite, title=None):
        self._output = output
        self._output_path = getattr(output, 'name', None)
        self._suite = suite
        self._title = title.replace('_', ' ') if title else suite.name

[docs]    def write(self, line):
        self._output.write('<script type="text/javascript">\n')
        self.write_data()
        self._output.write('</script>\n')


[docs]    def write_data(self):
        model = {
            'suite': JsonConverter(self._output_path).convert(self._suite),
            'title': self._title,
            'generated': int(time.time() * 1000)
        }
        JsonWriter(self._output).write_json('testdoc = ', model)




[docs]class JsonConverter(object):

    def __init__(self, output_path=None):
        self._output_path = output_path

[docs]    def convert(self, suite):
        return self._convert_suite(suite)


    def _convert_suite(self, suite):
        return {
            'source': suite.source or '',
            'relativeSource': self._get_relative_source(suite.source),
            'id': suite.id,
            'name': self._escape(suite.name),
            'fullName': self._escape(suite.longname),
            'doc': self._html(suite.doc),
            'metadata': [(self._escape(name), self._html(value))
                         for name, value in suite.metadata.items()],
            'numberOfTests': suite.test_count   ,
            'suites': self._convert_suites(suite),
            'tests': self._convert_tests(suite),
            'keywords': list(self._convert_keywords((suite.setup, suite.teardown)))
        }

    def _get_relative_source(self, source):
        if not source or not self._output_path:
            return ''
        return get_link_path(source, os.path.dirname(self._output_path))

    def _escape(self, item):
        return html_escape(item)

    def _html(self, item):
        return html_format(unescape(item))

    def _convert_suites(self, suite):
        return [self._convert_suite(s) for s in suite.suites]

    def _convert_tests(self, suite):
        return [self._convert_test(t) for t in suite.tests]

    def _convert_test(self, test):
        if test.setup:
            test.body.insert(0, test.setup)
        if test.teardown:
            test.body.append(test.teardown)
        return {
            'name': self._escape(test.name),
            'fullName': self._escape(test.longname),
            'id': test.id,
            'doc': self._html(test.doc),
            'tags': [self._escape(t) for t in test.tags],
            'timeout': self._get_timeout(test.timeout),
            'keywords': list(self._convert_keywords(test.body))
        }

    def _convert_keywords(self, keywords):
        for kw in keywords:
            if not kw:
                continue
            if kw.type == kw.SETUP:
                yield self._convert_keyword(kw, 'SETUP')
            elif kw.type == kw.TEARDOWN:
                yield self._convert_keyword(kw, 'TEARDOWN')
            elif kw.type == kw.FOR:
                yield self._convert_for(kw)
            elif kw.type == kw.IF_ELSE_ROOT:
                for branch in self._convert_if(kw):
                    yield branch
            else:
                yield self._convert_keyword(kw, 'KEYWORD')

    def _convert_for(self, data):
        name = '%s %s %s' % (', '.join(data.variables), data.flavor,
                             seq2str2(data.values))
        return {
            'name': self._escape(name),
            'arguments': '',
            'type': 'FOR'
        }

    def _convert_if(self, data):
        for branch in data.body:
            yield {
                'name': self._escape(branch.condition or ''),
                'arguments': '',
                'type': branch.type
            }

    def _convert_keyword(self, kw, kw_type):
        return {
            'name': self._escape(self._get_kw_name(kw)),
            'arguments': self._escape(', '.join(kw.args)),
            'type': kw_type
        }

    def _get_kw_name(self, kw):
        if kw.assign:
            return '%s = %s' % (', '.join(a.rstrip('= ') for a in kw.assign), kw.name)
        return kw.name

    def _get_timeout(self, timeout):
        if timeout is None:
            return ''
        try:
            tout = secs_to_timestr(timestr_to_secs(timeout))
        except ValueError:
            tout = timeout
        return tout



[docs]def testdoc_cli(arguments):
    """Executes `Testdoc` similarly as from the command line.

    :param arguments: command line arguments as a list of strings.

    For programmatic usage the :func:`testdoc` function is typically better. It
    has a better API for that and does not call :func:`sys.exit` like
    this function.

    Example::

        from robot.testdoc import testdoc_cli

        testdoc_cli(['--title', 'Test Plan', 'mytests', 'plan.html'])
    """
    TestDoc().execute_cli(arguments)



[docs]def testdoc(*arguments, **options):
    """Executes `Testdoc` programmatically.

    Arguments and options have same semantics, and options have same names,
    as arguments and options to Testdoc.

    Example::

        from robot.testdoc import testdoc

        testdoc('mytests', 'plan.html', title='Test Plan')
    """
    TestDoc().execute(*arguments, **options)



if __name__ == '__main__':
    testdoc_cli(sys.argv[1:])




          

      

      

    

  

    
      
          
            
  Source code for robot.tidy

#!/usr/bin/env python

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

"""Module implementing the command line entry point for the `Tidy` tool.

This module can be executed from the command line using the following
approaches::

    python -m robot.tidy
    python path/to/robot/tidy.py

Instead of ``python`` it is possible to use also other Python interpreters.

This module also provides :class:`Tidy` class and :func:`tidy_cli` function
that can be used programmatically. Other code is for internal usage.
"""

import os
import sys

# Allows running as a script. __name__ check needed with multiprocessing:
# https://github.com/robotframework/robotframework/issues/1137
if 'robot' not in sys.modules and __name__ == '__main__':
    import pythonpathsetter

from robot.errors import DataError
from robot.parsing import get_model, SuiteStructureBuilder, SuiteStructureVisitor
from robot.tidypkg import Aligner, Cleaner, NewlineNormalizer, SeparatorNormalizer
from robot.utils import Application, file_writer

USAGE = """robot.tidy -- Robot Framework data clean-up tool

Version:  <VERSION>

Usage:  python -m robot.tidy [options] input
   or:  python -m robot.tidy [options] input [output]
   or:  python -m robot.tidy --inplace [options] input [more inputs]
   or:  python -m robot.tidy --recursive [options] directory

Tidy tool can be used to clean up Robot Framework data. It, for example, uses
headers and settings consistently and adds consistent amount of whitespace
between sections, keywords and their arguments, and other pieces of the data.
It also converts old syntax to new syntax when appropriate.

When tidying a single file, the output is written to the console by default,
but an optional output file can be given as well. Files can also be modified
in-place using --inplace and --recursive options.

All output files are written using UTF-8 encoding. Outputs written to the
console use the current console encoding.

Options
=======

 -i --inplace    Tidy given file(s) so that original file(s) are overwritten.
                 When this option is used, it is possible to give multiple
                 input files.
 -r --recursive  Process given directory recursively. Files in the directory
                 are processed in-place similarly as when --inplace option
                 is used. Does not process referenced resource files.
 -p --usepipes   Use pipe ('|') as a column separator in the plain text format.
 -s --spacecount number
                 The number of spaces between cells in the plain text format.
                 Default is 4.
 -l --lineseparator native|windows|unix
                 Line separator to use in outputs. The default is 'native'.
                 native:  use operating system's native line separators
                 windows: use Windows line separators (CRLF)
                 unix:    use Unix line separators (LF)
 -h -? --help    Show this help.

Examples
========

  python -m robot.tidy example.robot
  python -m robot.tidy messed_up_data.robot cleaned_up_data.robot
  python -m robot.tidy --inplace example.robot
  python -m robot.tidy --recursive path/to/tests

Alternative execution
=====================

In the above examples Tidy is used only with Python, but it works also with
Jython and IronPython. Above it is executed as an installed module, but it
can also be run as a script like `python path/robot/tidy.py`.

For more information about Tidy and other built-in tools, see
http://robotframework.org/robotframework/#built-in-tools.

Deprecation
===========

The built-in Tidy tool was deprecated in Robot Framework 4.1 in favor of the
new and enhanced external Robotidy tool. The built-in tool will be removed
altogether in Robot Framework 5.0. Learn more about the new Robotidy tool at
https://robotidy.readthedocs.io/.
"""


[docs]class Tidy(SuiteStructureVisitor):
    """Programmatic API for the `Tidy` tool.

    Arguments accepted when creating an instance have same semantics as
    Tidy command line options with same names.
    """

    def __init__(self, space_count=4, use_pipes=False,
                 line_separator=os.linesep):
        sys.stderr.write(
            "The built-in Tidy tool ('robot.tidy') has been deprecated in favor "
            "of the new and enhanced external Robotidy tool. Learn more about "
            "the new tool at https://robotidy.readthedocs.io/.\n"
        )
        self.space_count = space_count
        self.use_pipes = use_pipes
        self.line_separator = line_separator
        self.short_test_name_length = 18
        self.setting_and_variable_name_length = 14

[docs]    def file(self, path, outpath=None):
        """Tidy a file.

        :param path: Path of the input file.
        :param outpath: Path of the output file. If not given, output is
            returned.

        Use :func:`inplace` to tidy files in-place.
        """
        with self._get_output(outpath) as writer:
            self._tidy(get_model(path), writer)
            if not outpath:
                return writer.getvalue().replace('\r\n', '\n')


    def _get_output(self, path):
        return file_writer(path, newline='', usage='Tidy output')

[docs]    def inplace(self, *paths):
        """Tidy file(s) in-place.

        :param paths: Paths of the files to to process.
        """
        for path in paths:
            model = get_model(path)
            with self._get_output(path) as output:
                self._tidy(model, output)


[docs]    def directory(self, path):
        """Tidy a directory.

        :param path: Path of the directory to process.

        All files in a directory, recursively, are processed in-place.
        """
        data = SuiteStructureBuilder().build([path])
        data.visit(self)


    def _tidy(self, model, output):
        Cleaner().visit(model)
        NewlineNormalizer(self.line_separator,
                          self.short_test_name_length).visit(model)
        SeparatorNormalizer(self.use_pipes, self.space_count).visit(model)
        Aligner(self.short_test_name_length,
                self.setting_and_variable_name_length,
                self.use_pipes).visit(model)
        model.save(output)

[docs]    def visit_file(self, file):
        self.inplace(file.source)


[docs]    def visit_directory(self, directory):
        if directory.init_file:
            self.inplace(directory.init_file)
        for child in directory.children:
            child.visit(self)




[docs]class TidyCommandLine(Application):
    """Command line interface for the `Tidy` tool.

    Typically :func:`tidy_cli` is a better suited for command line style
    usage and :class:`Tidy` for other programmatic usage.
    """

    def __init__(self):
        Application.__init__(self, USAGE, arg_limits=(1,))

[docs]    def main(self, arguments, recursive=False, inplace=False,
             usepipes=False, spacecount=4, lineseparator=os.linesep):
        tidy = Tidy(use_pipes=usepipes, space_count=spacecount,
                    line_separator=lineseparator)
        if recursive:
            tidy.directory(arguments[0])
        elif inplace:
            tidy.inplace(*arguments)
        else:
            output = tidy.file(*arguments)
            self.console(output)


[docs]    def validate(self, opts, args):
        validator = ArgumentValidator()
        opts['recursive'], opts['inplace'] = validator.mode_and_args(args,
                                                                     **opts)
        opts['lineseparator'] = validator.line_sep(**opts)
        if not opts['spacecount']:
            opts.pop('spacecount')
        else:
            opts['spacecount'] = validator.spacecount(opts['spacecount'])
        return opts, args




[docs]class ArgumentValidator(object):

[docs]    def mode_and_args(self, args, recursive, inplace, **others):
        recursive, inplace = bool(recursive), bool(inplace)
        validators = {(True, True): self._recursive_and_inplace_together,
                      (True, False): self._recursive_mode_arguments,
                      (False, True): self._inplace_mode_arguments,
                      (False, False): self._default_mode_arguments}
        validator = validators[(recursive, inplace)]
        validator(args)
        return recursive, inplace


    def _recursive_and_inplace_together(self, args):
        raise DataError('--recursive and --inplace can not be used together.')

    def _recursive_mode_arguments(self, args):
        if len(args) != 1:
            raise DataError('--recursive requires exactly one argument.')
        if not os.path.isdir(args[0]):
            raise DataError('--recursive requires input to be a directory.')

    def _inplace_mode_arguments(self, args):
        if not all(os.path.isfile(path) for path in args):
            raise DataError('--inplace requires inputs to be files.')

    def _default_mode_arguments(self, args):
        if len(args) not in (1, 2):
            raise DataError('Default mode requires 1 or 2 arguments.')
        if not os.path.isfile(args[0]):
            raise DataError('Default mode requires input to be a file.')

[docs]    def line_sep(self, lineseparator, **others):
        values = {'native': os.linesep, 'windows': '\r\n', 'unix': '\n'}
        try:
            return values[(lineseparator or 'native').lower()]
        except KeyError:
            raise DataError("Invalid line separator '%s'." % lineseparator)


[docs]    def spacecount(self, spacecount):
        try:
            spacecount = int(spacecount)
            if spacecount < 2:
                raise ValueError
        except ValueError:
            raise DataError('--spacecount must be an integer greater than 1.')
        return spacecount




[docs]def tidy_cli(arguments):
    """Executes `Tidy` similarly as from the command line.

    :param arguments: Command line arguments as a list of strings.

    Example::

        from robot.tidy import tidy_cli

        tidy_cli(['--spacecount', '2', 'tests.robot'])
    """
    TidyCommandLine().execute_cli(arguments)



if __name__ == '__main__':
    tidy_cli(sys.argv[1:])




          

      

      

    

  

    
      
          
            
  Source code for robot.utils

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

"""Various generic utility functions and classes.

Utilities are mainly for internal usage, but external libraries and tools
may find some of them useful. Utilities are generally stable, but absolute
backwards compatibility between major versions is not guaranteed.

All utilities are exposed via the :mod:`robot.utils` package, and should be
used either like::

    from robot import utils

    assert utils.Matcher('H?llo').match('Hillo')

or::

    from robot.utils import Matcher

    assert Matcher('H?llo').match('Hillo')
"""

from .argumentparser import ArgumentParser, cmdline2list
from .application import Application
from .compat import isatty, py2to3, py3to2, StringIO, unwrap, with_metaclass
from .compress import compress_text
from .connectioncache import ConnectionCache
from .dotdict import DotDict
from .encoding import (CONSOLE_ENCODING, SYSTEM_ENCODING, console_decode,
                       console_encode, system_decode, system_encode)
from .error import (get_error_message, get_error_details, ErrorDetails)
from .escaping import escape, glob_escape, unescape, split_from_equals
from .etreewrapper import ET, ETSource
from .filereader import FileReader
from .frange import frange
from .markuputils import html_format, html_escape, xml_escape, attribute_escape
from .markupwriters import HtmlWriter, XmlWriter, NullMarkupWriter
from .importer import Importer
from .match import eq, Matcher, MultiMatcher
from .misc import (plural_or_not, printable_name, roundup, seq2str,
                   seq2str2, test_or_task)
from .normalizing import lower, normalize, normalize_whitespace, NormalizedDict
from .platform import (IRONPYTHON, JAVA_VERSION, JYTHON, PY_VERSION,
                       PY2, PY3, PYPY, UNIXY, WINDOWS, RERAISED_EXCEPTIONS)
from .recommendations import RecommendationFinder
from .robotenv import get_env_var, set_env_var, del_env_var, get_env_vars
from .robotinspect import is_init, is_java_init, is_java_method
from .robotio import (binary_file_writer, create_destination_directory,
                      file_writer)
from .robotpath import abspath, find_file, get_link_path, normpath
from .robottime import (elapsed_time_to_string, format_time, get_elapsed_time,
                        get_time, get_timestamp, secs_to_timestamp,
                        secs_to_timestr, timestamp_to_secs, timestr_to_secs,
                        parse_time)
from .robottypes import (FALSE_STRINGS, Mapping, MutableMapping, TRUE_STRINGS,
                         is_bytes, is_dict_like, is_falsy, is_integer,
                         is_list_like, is_number, is_pathlike, is_string,
                         is_truthy, is_unicode, type_name, typeddict_types, unicode)
from .setter import setter, SetterAwareType
from .sortable import Sortable
from .text import (cut_assign_value, cut_long_message, format_assign_message,
                   get_console_length, getdoc, getshortdoc, pad_console_length,
                   rstrip, split_tags_from_doc, split_args_from_name_or_path)
from .unic import prepr, unic


[docs]def read_rest_data(rstfile):
    from .restreader import read_rest_data
    return read_rest_data(rstfile)





          

      

      

    

  

    
      
          
            
  Source code for robot.variables

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

"""Implements storing and resolving variables.

This package is mainly for internal usage, but utilities for finding
variables can be used externally as well.
"""

import warnings

from .assigner import VariableAssignment
from .evaluation import evaluate_expression
from .notfound import variable_not_found
from .scopes import VariableScopes
from .search import (search_variable, contains_variable,
                     is_variable, is_assign,
                     is_scalar_variable, is_scalar_assign,
                     is_dict_variable, is_dict_assign,
                     is_list_variable, is_list_assign,
                     VariableIterator)
from .tablesetter import VariableTableValue, DictVariableTableValue
from .variables import Variables


# TODO: Remove these utils in RF 4.1.

[docs]def is_var(string, identifiers='$@&'):
    """Deprecated since RF 3.2. Use ``is_variable`` instead."""
    warnings.warn(is_var.__doc__, UserWarning)
    return is_variable(string, identifiers)



[docs]def is_scalar_var(string):
    """Deprecated since RF 3.2.  Use ``is_scalar_variable`` instead."""
    warnings.warn(is_scalar_var.__doc__, UserWarning)
    return is_scalar_variable(string)



[docs]def is_list_var(string):
    """Deprecated since RF 3.2.  Use ``is_list_variable`` instead."""
    warnings.warn(is_list_var.__doc__, UserWarning)
    return is_list_variable(string)



[docs]def is_dict_var(string):
    """Deprecated since RF 3.2.  Use ``is_dict_variable`` instead."""
    warnings.warn(is_dict_var.__doc__, UserWarning)
    return is_dict_variable(string)



[docs]def contains_var(string, identifiers='$@&'):
    """Deprecated since RF 3.2.  Use ``contains_variable`` instead."""
    warnings.warn(contains_var.__doc__, UserWarning)
    return contains_variable(string, identifiers)





          

      

      

    

  

    
      
          
            
  Source code for robot.version

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

import re
import sys

# Version number typically updated by running `invoke set-version <version>`.
# Run `invoke --help set-version` or see tasks.py for details.
VERSION = '4.1.2'


[docs]def get_version(naked=False):
    if naked:
        return re.split('(a|b|rc|.dev)', VERSION)[0]
    return VERSION



[docs]def get_full_version(program=None, naked=False):
    version = '%s %s (%s %s on %s)' % (program or '',
                                       get_version(naked),
                                       get_interpreter(),
                                       sys.version.split()[0],
                                       sys.platform)
    return version.strip()



[docs]def get_interpreter():
    if sys.platform.startswith('java'):
        return 'Jython'
    if sys.platform == 'cli':
        return 'IronPython'
    if 'PyPy' in sys.version:
        return 'PyPy'
    return 'Python'





          

      

      

    

  

    
      
          
            
  Source code for robot.api.deco

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

import inspect


[docs]def not_keyword(func):
    """Decorator to disable exposing functions or methods as keywords.

    Examples::

        @not_keyword
        def not_exposed_as_keyword():
            # ...

        def exposed_as_keyword():
            # ...

    Alternatively the automatic keyword discovery can be disabled with
    the :func:`library` decorator or by setting the ``ROBOT_AUTO_KEYWORDS``
    attribute to a false value.

    New in Robot Framework 3.2.
    """
    func.robot_not_keyword = True
    return func



not_keyword.robot_not_keyword = True


[docs]@not_keyword
def keyword(name=None, tags=(), types=()):
    """Decorator to set custom name, tags and argument types to keywords.

    This decorator creates ``robot_name``, ``robot_tags`` and ``robot_types``
    attributes on the decorated keyword function or method based on the
    provided arguments. Robot Framework checks them to determine the keyword's
    name, tags, and argument types, respectively.

    Name must be given as a string, tags as a list of strings, and types
    either as a dictionary mapping argument names to types or as a list
    of types mapped to arguments based on position. It is OK to specify types
    only to some arguments, and setting ``types`` to ``None`` disables type
    conversion altogether.

    If the automatic keyword discovery has been disabled with the
    :func:`library` decorator or by setting the ``ROBOT_AUTO_KEYWORDS``
    attribute to a false value, this decorator is needed to mark functions
    or methods keywords.

    Examples::

        @keyword
        def example():
            # ...

        @keyword('Login as user "${user}" with password "${password}"',
                 tags=['custom name', 'embedded arguments', 'tags'])
        def login(user, password):
            # ...

        @keyword(types={'length': int, 'case_insensitive': bool})
        def types_as_dict(length, case_insensitive):
            # ...

        @keyword(types=[int, bool])
        def types_as_list(length, case_insensitive):
            # ...

        @keyword(types=None])
        def no_conversion(length, case_insensitive=False):
            # ...
    """
    if inspect.isroutine(name):
        return keyword()(name)

    def decorator(func):
        func.robot_name = name
        func.robot_tags = tags
        func.robot_types = types
        return func

    return decorator



[docs]@not_keyword
def library(scope=None, version=None, doc_format=None, listener=None,
            auto_keywords=False):
    """Class decorator to control keyword discovery and other library settings.

    By default disables automatic keyword detection by setting class attribute
    ``ROBOT_AUTO_KEYWORDS = False`` to the decorated library. In that mode
    only methods decorated explicitly with the :func:`keyword` decorator become
    keywords. If that is not desired, automatic keyword discovery can be
    enabled by using ``auto_keywords=True``.

    Arguments ``scope``, ``version``, ``doc_format`` and ``listener`` set the
    library scope, version, documentation format and listener by using class
    attributes ``ROBOT_LIBRARY_SCOPE``, ``ROBOT_LIBRARY_VERSION``,
    ``ROBOT_LIBRARY_DOC_FORMAT`` and ``ROBOT_LIBRARY_LISTENER``, respectively.
    These attributes are only set if the related arguments are given and they
    override possible existing attributes in the decorated class.

    Examples::

        @library
        class KeywordDiscovery:

            @keyword
            def do_something(self):
                # ...

            def not_keyword(self):
                # ...


        @library(scope='GLOBAL', version='3.2')
        class LibraryConfiguration:
            # ...

    The ``@library`` decorator is new in Robot Framework 3.2.
    """
    if inspect.isclass(scope):
        return library()(scope)

    def decorator(cls):
        if scope is not None:
            cls.ROBOT_LIBRARY_SCOPE = scope
        if version is not None:
            cls.ROBOT_LIBRARY_VERSION = version
        if doc_format is not None:
            cls.ROBOT_LIBRARY_DOC_FORMAT = doc_format
        if listener is not None:
            cls.ROBOT_LIBRARY_LISTENER = listener
        cls.ROBOT_AUTO_KEYWORDS = auto_keywords
        return cls

    return decorator





          

      

      

    

  

    
      
          
            
  Source code for robot.api.exceptions

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

"""Exceptions that libraries can use for communicating failures and other events.

These exceptions can be imported also via the top level :mod:`robot.api` package like
``from robot.api import SkipExecution``.

This module and all exceptions are new in Robot Framework 4.0.
"""


[docs]class Failure(AssertionError):
    """Report failed validation.

    There is no practical difference in using this exception compared to using
    the standard ``AssertionError``. The main benefits are HTML support and that
    the name of this exception is consistent with other exceptions in this module.
    """
    ROBOT_SUPPRESS_NAME = True

    def __init__(self, message, html=False):
        """
        :param message: Exception message.
        :param html: When ``True``, message is considered to be HTML and not escaped.
        """
        AssertionError.__init__(self, message if not html else '*HTML* ' + message)



[docs]class ContinuableFailure(Failure):
    """Report failed validation but allow continuing execution."""
    ROBOT_CONTINUE_ON_FAILURE = True



[docs]class Error(RuntimeError):
    """Report error in execution.

    Failures related to the system not behaving as expected should typically be
    reported using the :class:`Failure` exception or the standard ``AssertionError``.
    This exception can be used, for example, if the keyword is used incorrectly.

    There is no practical difference in using this exception compared to using
    the standard ``RuntimeError``. The main benefits are HTML support and that
    the name of this exception is consistent with other exceptions in this module.
    """
    ROBOT_SUPPRESS_NAME = True

    def __init__(self, message, html=False):
        """
        :param message: Exception message.
        :param html: When ``True``, message is considered to be HTML and not escaped.
        """
        RuntimeError.__init__(self, message if not html else '*HTML* ' + message)



[docs]class FatalError(Error):
    """Report error that stops the whole execution."""
    ROBOT_EXIT_ON_FAILURE = True
    ROBOT_SUPPRESS_NAME = False



[docs]class SkipExecution(Exception):
    """Mark the executed test or task skipped."""
    ROBOT_SKIP_EXECUTION = True
    ROBOT_SUPPRESS_NAME = True

    def __init__(self, message, html=False):
        """
        :param message: Exception message.
        :param html: When ``True``, message is considered to be HTML and not escaped.
        """
        Exception.__init__(self, message if not html else '*HTML* ' + message)





          

      

      

    

  

    
      
          
            
  Source code for robot.api.logger

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

"""Public logging API for test libraries.

This module provides a public API for writing messages to the log file
and the console. Test libraries can use this API like::

    logger.info('My message')

instead of logging through the standard output like::

    print('*INFO* My message')

In addition to a programmatic interface being cleaner to use, this API
has a benefit that the log messages have accurate timestamps.

If the logging methods are used when Robot Framework is not running,
the messages are redirected to the standard Python ``logging`` module
using logger named ``RobotFramework``.

Log levels
----------

It is possible to log messages using levels ``TRACE``, ``DEBUG``, ``INFO``,
``WARN`` and ``ERROR`` either using the :func:`write` function or, more
commonly, with the log level specific :func:`trace`, :func:`debug`,
:func:`info`, :func:`warn`, :func:`error` functions.

By default the trace and debug messages are not logged but that can be
changed with the ``--loglevel`` command line option. Warnings and errors are
automatically written also to the console and to the *Test Execution Errors*
section in the log file.

Logging HTML
------------

All methods that are used for writing messages to the log file have an
optional ``html`` argument. If a message to be logged is supposed to be
shown as HTML, this argument should be set to ``True``. Alternatively,
:func:`write` accepts a pseudo log level ``HTML``.

Example
-------

::

    from robot.api import logger

    def my_keyword(arg):
        logger.debug('Got argument %s.' % arg)
        do_something()
        logger.info('<i>This</i> is a boring example.', html=True)
"""

import logging

from robot.output import librarylogger
from robot.running.context import EXECUTION_CONTEXTS


[docs]def write(msg, level='INFO', html=False):
    """Writes the message to the log file using the given level.

    Valid log levels are ``TRACE``, ``DEBUG``, ``INFO`` (default), ``WARN``, and
    ``ERROR``. Additionally it is possible to use ``HTML`` pseudo log level that
    logs the message as HTML using the ``INFO`` level.

    Instead of using this method, it is generally better to use the level
    specific methods such as ``info`` and ``debug`` that have separate
    ``html`` argument to control the message format.
    """
    if EXECUTION_CONTEXTS.current is not None:
        librarylogger.write(msg, level, html)
    else:
        logger = logging.getLogger("RobotFramework")
        level = {'TRACE': logging.DEBUG // 2,
                 'DEBUG': logging.DEBUG,
                 'INFO': logging.INFO,
                 'HTML': logging.INFO,
                 'WARN': logging.WARN,
                 'ERROR': logging.ERROR}[level]
        logger.log(level, msg)



[docs]def trace(msg, html=False):
    """Writes the message to the log file using the ``TRACE`` level."""
    write(msg, 'TRACE', html)



[docs]def debug(msg, html=False):
    """Writes the message to the log file using the ``DEBUG`` level."""
    write(msg, 'DEBUG', html)



[docs]def info(msg, html=False, also_console=False):
    """Writes the message to the log file using the ``INFO`` level.

    If ``also_console`` argument is set to ``True``, the message is
    written both to the log file and to the console.
    """
    write(msg, 'INFO', html)
    if also_console:
        console(msg)



[docs]def warn(msg, html=False):
    """Writes the message to the log file using the ``WARN`` level."""
    write(msg, 'WARN', html)



[docs]def error(msg, html=False):
    """Writes the message to the log file using the ``ERROR`` level.
    """
    write(msg, 'ERROR', html)



[docs]def console(msg, newline=True, stream='stdout'):
    """Writes the message to the console.

    If the ``newline`` argument is ``True``, a newline character is
    automatically added to the message.

    By default the message is written to the standard output stream.
    Using the standard error stream is possibly by giving the ``stream``
    argument value ``'stderr'``.
    """
    librarylogger.console(msg, newline, stream)





          

      

      

    

  

    
      
          
            
  Source code for robot.conf.gatherfailed

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from robot.errors import DataError
from robot.model import SuiteVisitor
from robot.result import ExecutionResult
from robot.utils import get_error_message, glob_escape


[docs]class GatherFailedTests(SuiteVisitor):

    def __init__(self):
        self.tests = []

[docs]    def visit_test(self, test):
        if test.failed:
            self.tests.append(glob_escape(test.longname))


[docs]    def visit_keyword(self, kw):
        pass




[docs]class GatherFailedSuites(SuiteVisitor):

    def __init__(self):
        self.suites = []

[docs]    def start_suite(self, suite):
        if any(test.failed for test in suite.tests):
            self.suites.append(glob_escape(suite.longname))


[docs]    def visit_test(self, test):
        pass


[docs]    def visit_keyword(self, kw):
        pass




[docs]def gather_failed_tests(output):
    if output.upper() == 'NONE':
        return []
    gatherer = GatherFailedTests()
    tests_or_tasks = 'tests or tasks'
    try:
        suite = ExecutionResult(output, include_keywords=False).suite
        suite.visit(gatherer)
        tests_or_tasks = 'tests' if not suite.rpa else 'tasks'
        if not gatherer.tests:
            raise DataError('All %s passed.' % tests_or_tasks)
    except:
        raise DataError("Collecting failed %s from '%s' failed: %s"
                        % (tests_or_tasks, output, get_error_message()))
    return gatherer.tests



[docs]def gather_failed_suites(output):
    if output.upper() == 'NONE':
        return []
    gatherer = GatherFailedSuites()
    try:
        ExecutionResult(output, include_keywords=False).suite.visit(gatherer)
        if not gatherer.suites:
            raise DataError('All suites passed.')
    except:
        raise DataError("Collecting failed suites from '%s' failed: %s"
                        % (output, get_error_message()))
    return gatherer.suites





          

      

      

    

  

    
      
          
            
  Source code for robot.conf.settings

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

import os
import random
import sys
import time

from robot.errors import DataError, FrameworkError
from robot.output import LOGGER, loggerhelper
from robot.result.keywordremover import KeywordRemover
from robot.result.flattenkeywordmatcher import validate_flatten_keyword
from robot.utils import (abspath, create_destination_directory, escape,
                         format_time, get_link_path, html_escape, is_list_like,
                         py3to2, split_args_from_name_or_path)

from .gatherfailed import gather_failed_tests, gather_failed_suites


@py3to2
class _BaseSettings(object):
    _cli_opts = {'RPA'              : ('rpa', None),
                 'Name'             : ('name', None),
                 'Doc'              : ('doc', None),
                 'Metadata'         : ('metadata', []),
                 'TestNames'        : ('test', []),
                 'TaskNames'        : ('task', []),
                 'ReRunFailed'      : ('rerunfailed', 'NONE'),
                 'ReRunFailedSuites': ('rerunfailedsuites', 'NONE'),
                 'SuiteNames'       : ('suite', []),
                 'SetTag'           : ('settag', []),
                 'Include'          : ('include', []),
                 'Exclude'          : ('exclude', []),
                 'Critical'         : ('critical', []),
                 'NonCritical'      : ('noncritical', []),
                 'OutputDir'        : ('outputdir', abspath('.')),
                 'Log'              : ('log', 'log.html'),
                 'Report'           : ('report', 'report.html'),
                 'XUnit'            : ('xunit', None),
                 'SplitLog'         : ('splitlog', False),
                 'TimestampOutputs' : ('timestampoutputs', False),
                 'LogTitle'         : ('logtitle', None),
                 'ReportTitle'      : ('reporttitle', None),
                 'ReportBackground' : ('reportbackground',
                                       ('#9e9', '#f66', '#fed84f')),
                 'SuiteStatLevel'   : ('suitestatlevel', -1),
                 'TagStatInclude'   : ('tagstatinclude', []),
                 'TagStatExclude'   : ('tagstatexclude', []),
                 'TagStatCombine'   : ('tagstatcombine', []),
                 'TagDoc'           : ('tagdoc', []),
                 'TagStatLink'      : ('tagstatlink', []),
                 'RemoveKeywords'   : ('removekeywords', []),
                 'ExpandKeywords'   : ('expandkeywords', []),
                 'FlattenKeywords'  : ('flattenkeywords', []),
                 'PreRebotModifiers': ('prerebotmodifier', []),
                 'StatusRC'         : ('statusrc', True),
                 'ConsoleColors'    : ('consolecolors', 'AUTO'),
                 'StdOut'           : ('stdout', None),
                 'StdErr'           : ('stderr', None),
                 'XUnitSkipNonCritical' : ('xunitskipnoncritical', False)}
    _output_opts = ['Output', 'Log', 'Report', 'XUnit', 'DebugFile']

    def __init__(self, options=None, **extra_options):
        self.start_timestamp = format_time(time.time(), '', '-', '')
        self._opts = {}
        self._cli_opts = self._cli_opts.copy()
        self._cli_opts.update(self._extra_cli_opts)
        self._process_cli_opts(dict(options or {}, **extra_options))

    def _process_cli_opts(self, opts):
        for name, (cli_name, default) in self._cli_opts.items():
            value = opts[cli_name] if cli_name in opts else default
            if isinstance(default, list):
                # Copy mutable values and support list values as scalars.
                value = list(value) if is_list_like(value) else [value]
            self[name] = self._process_value(name, value)
        self['TestNames'] += self['ReRunFailed'] + self['TaskNames']
        self['SuiteNames'] += self['ReRunFailedSuites']

    def __setitem__(self, name, value):
        if name not in self._cli_opts:
            raise KeyError("Non-existing option '%s'." % name)
        self._opts[name] = value

    def _process_value(self, name, value):
        if name == 'ReRunFailed':
            return gather_failed_tests(value)
        if name == 'ReRunFailedSuites':
            return gather_failed_suites(value)
        if name == 'LogLevel':
            return self._process_log_level(value)
        if value == self._get_default_value(name):
            return value
        if name == 'Doc':
            return self._process_doc(value)
        if name == 'Metadata':
            return [self._process_metadata(v) for v in value]
        if name == 'TagDoc':
            return [self._process_tagdoc(v) for v in value]
        if name in ['Include', 'Exclude']:
            return [self._format_tag_patterns(v) for v in value]
        if name in self._output_opts and (not value or value.upper() == 'NONE'):
            return None
        if name == 'OutputDir':
            return abspath(value)
        if name in ['SuiteStatLevel', 'ConsoleWidth']:
            return self._convert_to_positive_integer_or_default(name, value)
        if name == 'VariableFiles':
            return [split_args_from_name_or_path(item) for item in value]
        if name == 'ReportBackground':
            return self._process_report_background(value)
        if name == 'TagStatCombine':
            return [self._process_tag_stat_combine(v) for v in value]
        if name == 'TagStatLink':
            return [v for v in [self._process_tag_stat_link(v) for v in value] if v]
        if name == 'Randomize':
            return self._process_randomize_value(value)
        if name == 'MaxErrorLines':
            return self._process_max_error_lines(value)
        if name == 'RemoveKeywords':
            self._validate_remove_keywords(value)
        if name == 'FlattenKeywords':
            self._validate_flatten_keywords(value)
        if name == 'ExpandKeywords':
            self._validate_expandkeywords(value)
        if name == 'Extension':
            return tuple(ext.lower().lstrip('.') for ext in value.split(':'))
        return value

    def _process_doc(self, value):
        if os.path.exists(value) and value.strip() == value:
            try:
                with open(value) as f:
                    value = f.read()
            except (OSError, IOError) as err:
                raise DataError('Reading documentation from an external file failed: %s'
                                % err)
        return self._escape_doc(value).strip()

    def _escape_doc(self, value):
        return value

    def _process_log_level(self, level):
        level, visible_level = self._split_log_level(level.upper())
        self._opts['VisibleLogLevel'] = visible_level
        return level

    def _split_log_level(self, level):
        if ':' in level:
            level, visible_level = level.split(':', 1)
        else:
            visible_level = level
        self._validate_log_level_and_default(level, visible_level)
        return level, visible_level

    def _validate_log_level_and_default(self, log_level, default):
        if log_level not in loggerhelper.LEVELS:
            raise DataError("Invalid log level '%s'" % log_level)
        if default not in loggerhelper.LEVELS:
            raise DataError("Invalid log level '%s'" % default)
        if not loggerhelper.IsLogged(log_level)(default):
            raise DataError("Default visible log level '%s' is lower than "
                            "log level '%s'" % (default, log_level))

    def _process_max_error_lines(self, value):
        if not value or value.upper() == 'NONE':
            return None
        value = self._convert_to_integer('maxerrorlines', value)
        if value < 10:
            raise DataError("Option '--maxerrorlines' expected an integer "
                            "value greater that 10 but got '%s'." % value)
        return value

    def _process_randomize_value(self, original):
        value = original.lower()
        if ':' in value:
            value, seed = value.split(':', 1)
        else:
            seed = random.randint(0, sys.maxsize)
        if value in ('test', 'suite'):
            value += 's'
        if value not in ('tests', 'suites', 'none', 'all'):
            self._raise_invalid_option_value('--randomize', original)
        try:
            seed = int(seed)
        except ValueError:
            self._raise_invalid_option_value('--randomize', original)
        return value, seed

    def _raise_invalid_option_value(self, option_name, given_value):
        raise DataError("Option '%s' does not support value '%s'."
                        % (option_name, given_value))

    def __getitem__(self, name):
        if name not in self._opts:
            raise KeyError("Non-existing option '%s'." % name)
        if name in self._output_opts:
            return self._get_output_file(name)
        return self._opts[name]

    def _get_output_file(self, option):
        """Returns path of the requested output file and creates needed dirs.

        `option` can be 'Output', 'Log', 'Report', 'XUnit' or 'DebugFile'.
        """
        name = self._opts[option]
        if not name:
            return None
        if option == 'Log' and self._output_disabled():
            self['Log'] = None
            LOGGER.error('Log file is not created if output.xml is disabled.')
            return None
        name = self._process_output_name(option, name)
        path = abspath(os.path.join(self['OutputDir'], name))
        create_destination_directory(path, '%s file' % option.lower())
        return path

    def _process_output_name(self, option, name):
        base, ext = os.path.splitext(name)
        if self['TimestampOutputs']:
            base = '%s-%s' % (base, self.start_timestamp)
        ext = self._get_output_extension(ext, option)
        return base + ext

    def _get_output_extension(self, ext, type_):
        if ext != '':
            return ext
        if type_ in ['Output', 'XUnit']:
            return '.xml'
        if type_ in ['Log', 'Report']:
            return '.html'
        if type_ == 'DebugFile':
            return '.txt'
        raise FrameworkError("Invalid output file type: %s" % type_)

    def _process_metadata(self, value):
        name, value = self._split_from_colon(value)
        return name, self._process_doc(value)

    def _split_from_colon(self, value):
        if ':' in value:
            return value.split(':', 1)
        return value, ''

    def _process_tagdoc(self, value):
        return self._split_from_colon(value)

    def _process_report_background(self, colors):
        if colors.count(':') not in [1, 2]:
            raise DataError("Invalid report background colors '%s'." % colors)
        colors = colors.split(':')
        if len(colors) == 2:
            return colors[0], colors[1], '#fed84f'
        return tuple(colors)

    def _process_tag_stat_combine(self, pattern):
        if ':' in pattern:
            pattern, title = pattern.rsplit(':', 1)
        else:
            title = ''
        return self._format_tag_patterns(pattern), title

    def _format_tag_patterns(self, pattern):
        for search, replace in [('&', 'AND'), ('AND', ' AND '), ('OR', ' OR '),
                                ('NOT', ' NOT '), ('_', ' ')]:
            if search in pattern:
                pattern = pattern.replace(search, replace)
        while '  ' in pattern:
            pattern = pattern.replace('  ', ' ')
        if pattern.startswith(' NOT'):
            pattern = pattern[1:]
        return pattern

    def _process_tag_stat_link(self, value):
        tokens = value.split(':')
        if len(tokens) >= 3:
            return tokens[0], ':'.join(tokens[1:-1]), tokens[-1]
        raise DataError("Invalid format for option '--tagstatlink'. "
                        "Expected 'tag:link:title' but got '%s'." % value)

    def _convert_to_positive_integer_or_default(self, name, value):
        value = self._convert_to_integer(name, value)
        return value if value > 0 else self._get_default_value(name)

    def _convert_to_integer(self, name, value):
        try:
            return int(value)
        except ValueError:
            raise DataError("Option '--%s' expected integer value but got '%s'."
                            % (name.lower(), value))

    def _get_default_value(self, name):
        return self._cli_opts[name][1]

    def _validate_remove_keywords(self, values):
        for value in values:
            try:
                KeywordRemover(value)
            except DataError as err:
                raise DataError("Invalid value for option '--removekeywords'. %s" % err)

    def _validate_flatten_keywords(self, values):
        try:
            validate_flatten_keyword(values)
        except DataError as err:
            raise DataError("Invalid value for option '--flattenkeywords'. %s" % err)

    def _validate_expandkeywords(self, values):
        for opt in values:
            if not opt.lower().startswith(('name:', 'tag:')):
                raise DataError("Invalid value for option '--expandkeywords'. "
                                "Expected 'TAG:<pattern>', or "
                                "'NAME:<pattern>' but got '%s'." % opt)

    def __contains__(self, setting):
        return setting in self._cli_opts

    def __str__(self):
        return '\n'.join('%s: %s' % (name, self._opts[name])
                         for name in sorted(self._opts))

    @property
    def output_directory(self):
        return self['OutputDir']

    @property
    def output(self):
        return self['Output']

    @property
    def log(self):
        return self['Log']

    @property
    def report(self):
        return self['Report']

    @property
    def xunit(self):
        return self['XUnit']

    @property
    def log_level(self):
        return self['LogLevel']

    @property
    def split_log(self):
        return self['SplitLog']

    @property
    def status_rc(self):
        return self['StatusRC']

    @property
    def statistics_config(self):
        return {
            'suite_stat_level': self['SuiteStatLevel'],
            'tag_stat_include': self['TagStatInclude'],
            'tag_stat_exclude': self['TagStatExclude'],
            'tag_stat_combine': self['TagStatCombine'],
            'tag_stat_link': self['TagStatLink'],
            'tag_doc': self['TagDoc'],
        }

    @property
    def critical_tags(self):
        return self['Critical']

    @property
    def remove_keywords(self):
        return self['RemoveKeywords']

    @property
    def flatten_keywords(self):
        return self['FlattenKeywords']

    @property
    def pre_rebot_modifiers(self):
        return self['PreRebotModifiers']

    @property
    def console_colors(self):
        return self['ConsoleColors']

    @property
    def rpa(self):
        return self['RPA']

    @rpa.setter
    def rpa(self, value):
        self['RPA'] = value


[docs]class RobotSettings(_BaseSettings):
    _extra_cli_opts = {'Extension'          : ('extension', ('robot',)),
                       'Output'             : ('output', 'output.xml'),
                       'LogLevel'           : ('loglevel', 'INFO'),
                       'MaxErrorLines'      : ('maxerrorlines', 40),
                       'DryRun'             : ('dryrun', False),
                       'ExitOnFailure'      : ('exitonfailure', False),
                       'ExitOnError'        : ('exitonerror', False),
                       'Skip'               : ('skip', []),
                       'SkipOnFailure'      : ('skiponfailure', []),
                       'SkipTeardownOnExit' : ('skipteardownonexit', False),
                       'Randomize'          : ('randomize', 'NONE'),
                       'RunEmptySuite'      : ('runemptysuite', False),
                       'Variables'          : ('variable', []),
                       'VariableFiles'      : ('variablefile', []),
                       'PreRunModifiers'    : ('prerunmodifier', []),
                       'Listeners'          : ('listener', []),
                       'ConsoleType'        : ('console', 'verbose'),
                       'ConsoleTypeDotted'  : ('dotted', False),
                       'ConsoleTypeQuiet'   : ('quiet', False),
                       'ConsoleWidth'       : ('consolewidth', 78),
                       'ConsoleMarkers'     : ('consolemarkers', 'AUTO'),
                       'DebugFile'          : ('debugfile', None)}

[docs]    def get_rebot_settings(self):
        settings = RebotSettings()
        settings.start_timestamp = self.start_timestamp
        settings._opts.update(self._opts)
        for name in ['Variables', 'VariableFiles', 'Listeners']:
            del(settings._opts[name])
        for name in ['Include', 'Exclude', 'TestNames', 'SuiteNames', 'Metadata']:
            settings._opts[name] = []
        for name in ['Name', 'Doc']:
            settings._opts[name] = None
        settings._opts['Output'] = None
        settings._opts['LogLevel'] = 'TRACE'
        settings._opts['ProcessEmptySuite'] = self['RunEmptySuite']
        settings._opts['ExpandKeywords'] = self['ExpandKeywords']
        return settings


    def _output_disabled(self):
        return self.output is None

    def _escape_doc(self, value):
        return escape(value)

    @property
    def listeners(self):
        return self['Listeners']

    @property
    def debug_file(self):
        return self['DebugFile']

    @property
    def suite_config(self):
        return {
            'name': self['Name'],
            'doc': self['Doc'],
            'metadata': dict(self['Metadata']),
            'set_tags': self['SetTag'],
            'include_tags': self['Include'],
            'exclude_tags': self['Exclude'],
            'include_suites': self['SuiteNames'],
            'include_tests': self['TestNames'],
            'empty_suite_ok': self.run_empty_suite,
            'randomize_suites': self.randomize_suites,
            'randomize_tests': self.randomize_tests,
            'randomize_seed': self.randomize_seed,
        }

    @property
    def randomize_seed(self):
        return self['Randomize'][1]

    @property
    def randomize_suites(self):
        return self['Randomize'][0] in ('suites', 'all')

    @property
    def randomize_tests(self):
        return self['Randomize'][0] in ('tests', 'all')

    @property
    def dry_run(self):
        return self['DryRun']

    @property
    def exit_on_failure(self):
        return self['ExitOnFailure']

    @property
    def exit_on_error(self):
        return self['ExitOnError']

    @property
    def skipped_tags(self):
        return self['Skip']

    @property
    def skip_on_failure(self):
        return (self['SkipOnFailure'] or []) + (self['NonCritical'] or [])

    @property
    def skip_teardown_on_exit(self):
        return self['SkipTeardownOnExit']

    @property
    def console_output_config(self):
        return {
            'type':    self.console_type,
            'width':   self.console_width,
            'colors':  self.console_colors,
            'markers': self.console_markers,
            'stdout':  self['StdOut'],
            'stderr':  self['StdErr']
        }

    @property
    def console_type(self):
        if self['ConsoleTypeQuiet']:
            return 'quiet'
        if self['ConsoleTypeDotted']:
            return 'dotted'
        return self['ConsoleType']

    @property
    def console_width(self):
        return self['ConsoleWidth']

    @property
    def console_markers(self):
        return self['ConsoleMarkers']

    @property
    def max_error_lines(self):
        return self['MaxErrorLines']

    @property
    def pre_run_modifiers(self):
        return self['PreRunModifiers']

    @property
    def run_empty_suite(self):
        return self['RunEmptySuite']

    @property
    def variables(self):
        return self['Variables']

    @property
    def variable_files(self):
        return self['VariableFiles']

    @property
    def extension(self):
        return self['Extension']



[docs]class RebotSettings(_BaseSettings):
    _extra_cli_opts = {'Output'            : ('output', None),
                       'LogLevel'          : ('loglevel', 'TRACE'),
                       'ProcessEmptySuite' : ('processemptysuite', False),
                       'StartTime'         : ('starttime', None),
                       'EndTime'           : ('endtime', None),
                       'Merge'             : ('merge', False)}

    def _output_disabled(self):
        return False

    @property
    def suite_config(self):
        return {
            'name': self['Name'],
            'doc': self['Doc'],
            'metadata': dict(self['Metadata']),
            'set_tags': self['SetTag'],
            'include_tags': self['Include'],
            'exclude_tags': self['Exclude'],
            'include_suites': self['SuiteNames'],
            'include_tests': self['TestNames'],
            'empty_suite_ok': self.process_empty_suite,
            'remove_keywords': self.remove_keywords,
            'log_level': self['LogLevel'],
            'start_time': self['StartTime'],
            'end_time': self['EndTime']
        }

    @property
    def log_config(self):
        if not self.log:
            return {}
        return {
            'rpa': self.rpa,
            'title': html_escape(self['LogTitle'] or ''),
            'reportURL': self._url_from_path(self.log, self.report),
            'splitLogBase': os.path.basename(os.path.splitext(self.log)[0]),
            'defaultLevel': self['VisibleLogLevel']
        }

    @property
    def report_config(self):
        if not self.report:
            return {}
        return {
            'rpa': self.rpa,
            'title': html_escape(self['ReportTitle'] or ''),
            'logURL': self._url_from_path(self.report, self.log),
            'background' : self._resolve_background_colors()
        }

    def _url_from_path(self, source, destination):
        if not destination:
            return None
        return get_link_path(destination, os.path.dirname(source))

    def _resolve_background_colors(self):
        colors = self['ReportBackground']
        return {'pass': colors[0], 'fail': colors[1], 'skip': colors[2]}

    @property
    def merge(self):
        return self['Merge']

    @property
    def console_output_config(self):
        return {
            'colors':  self.console_colors,
            'stdout':  self['StdOut'],
            'stderr':  self['StdErr']
        }

    @property
    def process_empty_suite(self):
        return self['ProcessEmptySuite']

    @property
    def expand_keywords(self):
        return self['ExpandKeywords']





          

      

      

    

  

    
      
          
            
  Source code for robot.htmldata.htmlfilewriter

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

import os.path
import re

from robot.utils import HtmlWriter
from robot.version import get_full_version

from .template import HtmlTemplate


[docs]class HtmlFileWriter(object):

    def __init__(self, output, model_writer):
        self._output = output
        self._model_writer = model_writer

[docs]    def write(self, template):
        writers = self._get_writers(os.path.dirname(template))
        for line in HtmlTemplate(template):
            for writer in writers:
                if writer.handles(line):
                    writer.write(line)
                    break


    def _get_writers(self, base_dir):
        html_writer = HtmlWriter(self._output)
        return (self._model_writer,
                JsFileWriter(html_writer, base_dir),
                CssFileWriter(html_writer, base_dir),
                GeneratorWriter(html_writer),
                LineWriter(self._output))



class _Writer(object):
    _handles_line = None

    def handles(self, line):
        return line.startswith(self._handles_line)

    def write(self, line):
        raise NotImplementedError


[docs]class ModelWriter(_Writer):
    _handles_line = '<!-- JS MODEL -->'



[docs]class LineWriter(_Writer):

    def __init__(self, output):
        self._output = output

[docs]    def handles(self, line):
        return True


[docs]    def write(self, line):
        self._output.write(line + '\n')




[docs]class GeneratorWriter(_Writer):
    _handles_line = '<meta name="Generator" content='

    def __init__(self, html_writer):
        self._html_writer = html_writer

[docs]    def write(self, line):
        version = get_full_version('Robot Framework')
        self._html_writer.start('meta', {'name': 'Generator', 'content': version})




class _InliningWriter(_Writer):

    def __init__(self, html_writer, base_dir):
        self._html_writer = html_writer
        self._base_dir = base_dir

    def _inline_file(self, filename, tag, attrs):
        self._html_writer.start(tag, attrs)
        for line in HtmlTemplate(os.path.join(self._base_dir, filename)):
            self._html_writer.content(line, escape=False, newline=True)
        self._html_writer.end(tag)


[docs]class JsFileWriter(_InliningWriter):
    _handles_line = '<script type="text/javascript" src='
    _source_file = re.compile('src=\"([^\"]+)\"')

[docs]    def write(self, line):
        name = self._source_file.search(line).group(1)
        self._inline_file(name, 'script', {'type': 'text/javascript'})




[docs]class CssFileWriter(_InliningWriter):
    _handles_line = '<link rel="stylesheet"'
    _source_file = re.compile('href=\"([^\"]+)\"')
    _media_type = re.compile('media=\"([^\"]+)\"')

[docs]    def write(self, line):
        name = self._source_file.search(line).group(1)
        media = self._media_type.search(line).group(1)
        self._inline_file(name, 'style', {'type': 'text/css', 'media': media})






          

      

      

    

  

    
      
          
            
  Source code for robot.htmldata.jsonwriter

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from robot.utils import PY2


[docs]class JsonWriter(object):

    def __init__(self, output, separator=''):
        self._writer = JsonDumper(output)
        self._separator = separator

[docs]    def write_json(self, prefix, data, postfix=';\n', mapping=None,
                   separator=True):
        self._writer.write(prefix)
        self._writer.dump(data, mapping)
        self._writer.write(postfix)
        self._write_separator(separator)


[docs]    def write(self, string, postfix=';\n', separator=True):
        self._writer.write(string + postfix)
        self._write_separator(separator)


    def _write_separator(self, separator):
        if separator and self._separator:
            self._writer.write(self._separator)



[docs]class JsonDumper(object):

    def __init__(self, output):
        self.write = output.write
        self._dumpers = (MappingDumper(self),
                         IntegerDumper(self),
                         TupleListDumper(self),
                         StringDumper(self),
                         NoneDumper(self),
                         DictDumper(self))

[docs]    def dump(self, data, mapping=None):
        for dumper in self._dumpers:
            if dumper.handles(data, mapping):
                dumper.dump(data, mapping)
                return
        raise ValueError('Dumping %s not supported.' % type(data))




class _Dumper(object):
    _handled_types = None

    def __init__(self, jsondumper):
        self._dump = jsondumper.dump
        self._write = jsondumper.write

    def handles(self, data, mapping):
        return isinstance(data, self._handled_types)

    def dump(self, data, mapping):
        raise NotImplementedError


[docs]class StringDumper(_Dumper):
    _handled_types = (str, unicode) if PY2 else str
    _search_and_replace = [('\\', '\\\\'), ('"', '\\"'), ('\t', '\\t'),
                           ('\n', '\\n'), ('\r', '\\r'), ('</', '\\x3c/')]

[docs]    def dump(self, data, mapping):
        self._write('"%s"' % (self._escape(data) if data else ''))


    def _escape(self, string):
        for search, replace in self._search_and_replace:
            if search in string:
                string = string.replace(search, replace)
        return string



[docs]class IntegerDumper(_Dumper):
    # Handles also bool
    _handled_types = (int, long) if PY2 else int

[docs]    def dump(self, data, mapping):
        self._write(str(data).lower())




[docs]class DictDumper(_Dumper):
    _handled_types = dict

[docs]    def dump(self, data, mapping):
        write = self._write
        dump = self._dump
        write('{')
        last_index = len(data) - 1
        for index, key in enumerate(sorted(data)):
            dump(key, mapping)
            write(':')
            dump(data[key], mapping)
            if index < last_index:
                write(',')
        write('}')




[docs]class TupleListDumper(_Dumper):
    _handled_types = (tuple, list)

[docs]    def dump(self, data, mapping):
        write = self._write
        dump = self._dump
        write('[')
        last_index = len(data) - 1
        for index, item in enumerate(data):
            dump(item, mapping)
            if index < last_index:
                write(',')
        write(']')




[docs]class MappingDumper(_Dumper):

[docs]    def handles(self, data, mapping):
        try:
            return mapping and data in mapping
        except TypeError:
            return False


[docs]    def dump(self, data, mapping):
        self._write(mapping[data])




[docs]class NoneDumper(_Dumper):

[docs]    def handles(self, data, mapping):
        return data is None


[docs]    def dump(self, data, mapping):
        self._write('null')






          

      

      

    

  

    
      
          
            
  Source code for robot.htmldata.normaltemplate

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

import codecs
import os
from os.path import abspath, dirname, join, normpath


[docs]class HtmlTemplate(object):
    _base_dir = join(dirname(abspath(__file__)), '..', 'htmldata')

    def __init__(self, filename):
        self._path = normpath(join(self._base_dir, filename.replace('/', os.sep)))

    def __iter__(self):
        with codecs.open(self._path, encoding='UTF-8') as file:
            for line in file:
                yield line.rstrip()





          

      

      

    

  

    
      
          
            
  Source code for robot.libdocpkg.builder

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

import os

from robot.errors import DataError
from robot.utils import JYTHON, JAVA_VERSION, get_error_message

from .robotbuilder import LibraryDocBuilder, ResourceDocBuilder
from .specbuilder import SpecDocBuilder
from .jsonbuilder import JsonDocBuilder
if JYTHON:
    if JAVA_VERSION < (1, 9):
        from .javabuilder import JavaDocBuilder
    else:
        from .java9builder import JavaDocBuilder
else:
[docs]    def JavaDocBuilder():
        raise DataError('Documenting Java test libraries requires Jython.')



RESOURCE_EXTENSIONS = ('resource', 'robot', 'txt', 'tsv', 'rst', 'rest')
SPEC_EXTENSIONS = ('xml', 'libspec')


[docs]def LibraryDocumentation(library_or_resource, name=None, version=None,
                         doc_format=None):
    builder = DocumentationBuilder(library_or_resource)
    libdoc = _build(builder, library_or_resource)
    if name:
        libdoc.name = name
    if version:
        libdoc.version = version
    if doc_format:
        libdoc.doc_format = doc_format
    return libdoc



def _build(builder, source):
    try:
        return builder.build(source)
    except DataError:
        # Possible resource file in PYTHONPATH. Something like `xxx.resource` that
        # did not exist has been considered to be a library earlier, now we try to
        # parse it as a resource file.
        if (isinstance(builder, LibraryDocBuilder)
                and not os.path.exists(source)
                and _get_extension(source) in RESOURCE_EXTENSIONS):
            return _build(ResourceDocBuilder(), source)
        raise
    except:
        raise DataError("Building library '%s' failed: %s"
                        % (source, get_error_message()))


def _get_extension(source):
    return os.path.splitext(source)[1][1:].lower()


[docs]def DocumentationBuilder(library_or_resource):
    """Create a documentation builder for the specified library or resource.

    The argument can be a path to a library, a resource file or to a spec file
    generated by Libdoc earlier. If the argument does not point to an existing file,
    it is expected to be the name of the library to be imported. If a resource file
    is to be imported from PYTHONPATH, then :class:`~.robotbuilder.ResourceDocBuilder`
    must be used explicitly instead.
    """
    if os.path.exists(library_or_resource):
        extension = _get_extension(library_or_resource)
        if extension in RESOURCE_EXTENSIONS:
            return ResourceDocBuilder()
        if extension in SPEC_EXTENSIONS:
            return SpecDocBuilder()
        if extension == 'json':
            return JsonDocBuilder()
        if extension == 'java':
            return JavaDocBuilder()
    return LibraryDocBuilder()





          

      

      

    

  

    
      
          
            
  Source code for robot.libdocpkg.consoleviewer

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

import textwrap

from robot.utils import MultiMatcher, console_encode, unicode
from robot.errors import DataError


[docs]class ConsoleViewer(object):

    def __init__(self, libdoc):
        self._libdoc = libdoc
        self._keywords = KeywordMatcher(libdoc)

[docs]    @classmethod
    def handles(cls, command):
        return command.lower() in ['list', 'show', 'version']


[docs]    @classmethod
    def validate_command(cls, command, args):
        if not cls.handles(command):
            raise DataError("Unknown command '%s'." % command)
        if command.lower() == 'version' and args:
            raise DataError("Command 'version' does not take arguments.")


[docs]    def view(self, command, *args):
        self.validate_command(command, args)
        getattr(self, command.lower())(*args)


[docs]    def list(self, *patterns):
        for kw in self._keywords.search('*%s*' % p for p in patterns):
            self._console(kw.name)


[docs]    def show(self, *names):
        if MultiMatcher(names, match_if_no_patterns=True).match('intro'):
            self._show_intro(self._libdoc)
            if self._libdoc.inits:
                self._show_inits(self._libdoc)
        for kw in self._keywords.search(names):
            self._show_keyword(kw)


[docs]    def version(self):
        self._console(self._libdoc.version or 'N/A')


    def _console(self, msg):
        print(console_encode(msg))

    def _show_intro(self, lib):
        self._header(lib.name, underline='=')
        self._data([('Version', lib.version),
                    ('Scope', lib.scope if lib.type == 'LIBRARY' else None)])
        self._doc(lib.doc)

    def _show_inits(self, lib):
        self._header('Importing', underline='-')
        for init in lib.inits:
            self._show_keyword(init, show_name=False)

    def _show_keyword(self, kw, show_name=True):
        if show_name:
            self._header(kw.name, underline='-')
        self._data([('Arguments', '[%s]' % unicode(kw.args))])
        self._doc(kw.doc)

    def _header(self, name, underline):
        self._console('%s\n%s' % (name, underline * len(name)))

    def _data(self, items):
        ljust = max(len(name) for name, _ in items) + 3
        for name, value in items:
            if value:
                text = '%s%s' % ((name+':').ljust(ljust), value)
                self._console(self._wrap(text, subsequent_indent=' '*ljust))

    def _doc(self, doc):
        self._console('')
        for line in doc.splitlines():
            self._console(self._wrap(line))
        if doc:
            self._console('')

    def _wrap(self, text, width=78, **config):
        return '\n'.join(textwrap.wrap(text, width=width, **config))



[docs]class KeywordMatcher(object):

    def __init__(self, libdoc):
        self._keywords = libdoc.keywords

[docs]    def search(self, patterns):
        matcher = MultiMatcher(patterns, match_if_no_patterns=True)
        for kw in self._keywords:
            if matcher.match(kw.name):
                yield kw






          

      

      

    

  

    
      
          
            
  Source code for robot.libdocpkg.datatypes

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from inspect import getdoc, isclass

try:
    from enum import Enum

    EnumType = type(Enum)
except ImportError:  # Standard in Py 3.4+ but can be separately installed
[docs]    class EnumType(object):
        pass



from robot.utils import py3to2, Sortable, unic, unicode, typeddict_types


[docs]@py3to2
class DataTypeCatalog(object):

    def __init__(self):
        self._enums = set()
        self._typed_dicts = set()

    def __iter__(self):
        return iter(sorted(self._typed_dicts | self._enums))

    def __bool__(self):
        return bool(self._enums or self._typed_dicts)

    @property
    def enums(self):
        return sorted(self._enums)

    @property
    def typed_dicts(self):
        return sorted(self._typed_dicts)

[docs]    def update(self, types):
        for typ in types:
            type_doc = self._get_type_doc_object(typ)
            if isinstance(type_doc, EnumDoc):
                self._enums.add(type_doc)
            elif isinstance(type_doc, TypedDictDoc):
                self._typed_dicts.add(type_doc)


    def _get_type_doc_object(self, typ):
        if isinstance(typ, (EnumDoc, TypedDictDoc)):
            return typ
        if isinstance(typ, typeddict_types):
            return TypedDictDoc.from_TypedDict(typ)
        if isinstance(typ, EnumType):
            return EnumDoc.from_Enum(typ)
        if isinstance(typ, dict):
            if typ.get('type', None) == 'TypedDict':
                return TypedDictDoc(**typ)
            if typ.get('type', None) == 'Enum':
                return EnumDoc(**typ)
        return None

[docs]    def to_dictionary(self):
        return {
            'enums': [en.to_dictionary() for en in self.enums],
            'typedDicts': [td.to_dictionary() for td in self.typed_dicts]
        }




[docs]class TypedDictDoc(Sortable):

    def __init__(self, name='', doc='', items=None, type='TypedDict'):
        self.name = name
        self.doc = doc
        self.items = items or []
        self.type = type

[docs]    @classmethod
    def from_TypedDict(cls, typed_dict):
        items = []
        required_keys = list(getattr(typed_dict, '__required_keys__', []))
        optional_keys = list(getattr(typed_dict, '__optional_keys__', []))
        for key, value in typed_dict.__annotations__.items():
            typ = value.__name__ if isclass(value) else unic(value)
            required = key in required_keys if required_keys or optional_keys else None
            items.append({'key': key, 'type': typ, 'required': required})
        return cls(name=typed_dict.__name__,
                   doc=getdoc(typed_dict) or '',
                   items=items)


    @property
    def _sort_key(self):
        return self.name.lower()

[docs]    def to_dictionary(self):
        return {
            'name': self.name,
            'type': self.type,
            'doc': self.doc,
            'items': self.items
        }




[docs]class EnumDoc(Sortable):

    def __init__(self, name='', doc='', members=None, type='Enum'):
        self.name = name
        self.doc = doc
        self.members = members or []
        self.type = type

[docs]    @classmethod
    def from_Enum(cls, enum_type):
        return cls(name=enum_type.__name__,
                   doc=getdoc(enum_type) or '',
                   members=[{'name': name, 'value': unicode(member.value)}
                            for name, member in enum_type.__members__.items()])


    @property
    def _sort_key(self):
        return self.name.lower()

[docs]    def to_dictionary(self):
        return {
            'name': self.name,
            'type': self.type,
            'doc': self.doc,
            'members': self.members
        }






          

      

      

    

  

    
      
          
            
  Source code for robot.libdocpkg.htmlutils

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

import re
try:
    from urllib import quote
except ImportError:
    from urllib.parse import quote

from robot.errors import DataError
from robot.utils import html_escape, html_format, NormalizedDict
from robot.utils.htmlformatters import HeaderFormatter


[docs]class DocFormatter(object):
    _header_regexp = re.compile(r'<h([234])>(.+?)</h\1>')
    _name_regexp = re.compile('`(.+?)`')

    def __init__(self, keywords, data_types, introduction, doc_format='ROBOT'):
        self._doc_to_html = DocToHtml(doc_format)
        self._targets = self._get_targets(keywords, data_types, introduction,
                                          robot_format=doc_format == 'ROBOT')

    def _get_targets(self, keywords, data_types, introduction, robot_format):
        targets = {
            'introduction': 'Introduction',
            'library introduction': 'Introduction',
            'importing': 'Importing',
            'library importing': 'Importing',
            'keywords': 'Keywords',
            'data types': 'Data types'
        }
        for kw in keywords:
            targets[kw.name] = kw.name
        for dt in data_types:
            targets[dt.name] = dt.name
        if robot_format:
            for header in self._yield_header_targets(introduction):
                targets[header] = header
        return self._escape_and_encode_targets(targets)

    def _yield_header_targets(self, introduction):
        headers = HeaderFormatter()
        for line in introduction.splitlines():
            match = headers.match(line.strip())
            if match:
                yield match.group(2)

    def _escape_and_encode_targets(self, targets):
        return NormalizedDict((html_escape(key), self._encode_uri_component(value))
                              for key, value in targets.items())

    def _encode_uri_component(self, value):
        # Emulates encodeURIComponent javascript function
        return quote(value.encode('UTF-8'), safe="-_.!~*'()")

[docs]    def html(self, doc, intro=False):
        doc = self._doc_to_html(doc)
        if intro:
            doc = self._header_regexp.sub(r'<h\1 id="\2">\2</h\1>', doc)
        return self._name_regexp.sub(self._link_keywords, doc)


    def _link_keywords(self, match):
        name = match.group(1)
        if name in self._targets:
            return '<a href="#%s" class="name">%s</a>' % (self._targets[name], name)
        return '<span class="name">%s</span>' % name



[docs]class DocToHtml(object):

    def __init__(self, doc_format):
        self._formatter = self._get_formatter(doc_format)

    def _get_formatter(self, doc_format):
        try:
            return {'ROBOT': html_format,
                    'TEXT': self._format_text,
                    'HTML': lambda doc: doc,
                    'REST': self._format_rest}[doc_format]
        except KeyError:
            raise DataError("Invalid documentation format '%s'." % doc_format)

    def _format_text(self, doc):
        return '<p style="white-space: pre-wrap">%s</p>' % html_escape(doc)

    def _format_rest(self, doc):
        try:
            from docutils.core import publish_parts
        except ImportError:
            raise DataError("reST format requires 'docutils' module to be installed.")
        parts = publish_parts(doc, writer_name='html',
                              settings_overrides={'syntax_highlight': 'short'})
        return parts['html_body']

    def __call__(self, doc):
        return self._formatter(doc)



[docs]class HtmlToText(object):
    html_tags = {
        'b': '*',
        'i': '_',
        'strong': '*',
        'em': '_',
        'code': '``',
        'div.*?': ''
    }
    html_chars = {
        '<br */?>': '\n',
        '&amp;': '&',
        '&lt;': '<',
        '&gt;': '>',
        '&quot;': '"',
        '&apos;': "'"
    }

[docs]    def get_shortdoc_from_html(self, doc):
        match = re.search(r'<p.*?>(.*?)</?p>', doc, re.DOTALL)
        if match:
            doc = match.group(1)
        doc = self.html_to_plain_text(doc)
        return doc


[docs]    def html_to_plain_text(self, doc):
        for tag, repl in self.html_tags.items():
            doc = re.sub(r'<%(tag)s>(.*?)</%(tag)s>' % {'tag': tag},
                         r'%(repl)s\1%(repl)s' % {'repl': repl}, doc,
                         flags=re.DOTALL)
        for html, text in self.html_chars.items():
            doc = re.sub(html, text, doc)
        return doc






          

      

      

    

  

    
      
          
            
  Source code for robot.libdocpkg.htmlwriter

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from robot.htmldata import HtmlFileWriter, ModelWriter, LIBDOC


[docs]class LibdocHtmlWriter(object):

[docs]    def write(self, libdoc, output):
        model_writer = LibdocModelWriter(output, libdoc)
        HtmlFileWriter(output, model_writer).write(LIBDOC)




[docs]class LibdocModelWriter(ModelWriter):

    def __init__(self, output, libdoc):
        self.output = output
        self.libdoc = libdoc

[docs]    def write(self, line):
        self.output.write('<script type="text/javascript">\n'
                          'libdoc = %s\n'
                          '</script>\n'
                          % self.libdoc.to_json())






          

      

      

    

  

    
      
          
            
  Source code for robot.libdocpkg.javabuilder

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from inspect import cleandoc

from robot.errors import DataError
from robot.running import ArgumentSpec
from robot.utils import (JAVA_VERSION, normalize, split_tags_from_doc,
                         printable_name)

from .model import LibraryDoc, KeywordDoc


[docs]class JavaDocBuilder(object):

[docs]    def build(self, path):
        doc = ClassDoc(path)
        libdoc = LibraryDoc(name=doc.qualifiedName(),
                            doc=self._get_doc(doc),
                            version=self._get_version(doc),
                            scope=self._get_scope(doc),
                            doc_format=self._get_doc_format(doc),
                            source=path)
        libdoc.inits = self._initializers(doc)
        libdoc.keywords = self._keywords(doc)
        return libdoc


    def _get_doc(self, doc):
        text = doc.getRawCommentText()
        return cleandoc(text).rstrip()

    def _get_version(self, doc):
        return self._get_attr(doc, 'VERSION')

    def _get_scope(self, doc):
        scope = self._get_attr(doc, 'SCOPE', upper=True)
        return {'GLOBAL': 'GLOBAL',
                'SUITE': 'SUITE',
                'TESTSUITE': 'SUITE'}.get(scope, 'TEST')

    def _get_doc_format(self, doc):
        return self._get_attr(doc, 'DOC_FORMAT', upper=True)

    def _get_attr(self, doc, name, upper=False):
        name = 'ROBOT_LIBRARY_' + name
        for field in doc.fields():
            if field.name() == name and field.isPublic():
                value = field.constantValue()
                if upper:
                    value = normalize(value, ignore='_').upper()
                return value
        return ''

    def _initializers(self, doc):
        inits = [self._keyword_doc(init) for init in doc.constructors()]
        if len(inits) == 1 and not inits[0].args:
            return []
        return inits

    def _keywords(self, doc):
        return [self._keyword_doc(m) for m in doc.methods()]

    def _keyword_doc(self, method):
        doc, tags = split_tags_from_doc(self._get_doc(method))
        return KeywordDoc(
            name=printable_name(method.name(), code_style=True),
            args=self._get_keyword_arguments(method),
            doc=doc,
            tags=tags
        )

    def _get_keyword_arguments(self, method):
        params = method.parameters()
        spec = ArgumentSpec()
        if not params:
            return spec
        names = [p.name() for p in params]
        if self._is_varargs(params[-1]):
            spec.var_positional = names.pop()
        elif self._is_kwargs(params[-1]):
            spec.var_named = names.pop()
            if len(params) > 1 and self._is_varargs(params[-2]):
                spec.var_positional = names.pop()
        spec.positional_only = names
        return spec

    def _is_varargs(self, param):
        return (param.typeName().startswith('java.util.List')
                or param.type().dimension() == '[]')

    def _is_kwargs(self, param):
        return param.typeName().startswith('java.util.Map')



[docs]def ClassDoc(path):
    """Process the given Java source file and return ClassDoc instance.

    Processing is done using com.sun.tools.javadoc APIs. Returned object
    implements com.sun.javadoc.ClassDoc interface:
    http://docs.oracle.com/javase/7/docs/jdk/api/javadoc/doclet/
    """
    try:
        from com.sun.tools.javadoc import JavadocTool, Messager, ModifierFilter
        from com.sun.tools.javac.util import List, Context
        from com.sun.tools.javac.code.Flags import PUBLIC
    except ImportError:
        raise DataError("Creating documentation from Java source files "
                        "requires 'tools.jar' to be in CLASSPATH.")
    context = Context()
    Messager.preRegister(context, 'libdoc')
    jdoctool = JavadocTool.make0(context)
    filter = ModifierFilter(PUBLIC)
    java_names = List.of(path)
    if JAVA_VERSION < (1, 8):  # API changed in Java 8
        root = jdoctool.getRootDocImpl('en', 'utf-8', filter, java_names,
                                       List.nil(), False, List.nil(),
                                       List.nil(), False, False, True)
    else:
        root = jdoctool.getRootDocImpl('en', 'utf-8', filter, java_names,
                                       List.nil(), List.nil(), False, List.nil(),
                                       List.nil(), False, False, True)
    return root.classes()[0]





          

      

      

    

  

    
      
          
            
  Source code for robot.libdocpkg.jsonbuilder

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

import json
import os.path

from robot.running import ArgInfo, ArgumentSpec
from robot.errors import DataError

from .model import LibraryDoc, KeywordDoc


[docs]class JsonDocBuilder(object):

[docs]    def build(self, path):
        spec = self._parse_spec_json(path)
        return self.build_from_dict(spec)


[docs]    def build_from_dict(self, spec):
        libdoc = LibraryDoc(name=spec['name'],
                            doc=spec['doc'],
                            version=spec['version'],
                            type=spec['type'],
                            scope=spec['scope'],
                            doc_format=spec['docFormat'],
                            source=spec['source'],
                            lineno=int(spec.get('lineno', -1)))
        libdoc.data_types.update(spec['dataTypes'].get('enums', []))
        libdoc.data_types.update(spec['dataTypes'].get('typedDicts', []))
        libdoc.inits = [self._create_keyword(kw) for kw in spec['inits']]
        libdoc.keywords = [self._create_keyword(kw) for kw in spec['keywords']]
        return libdoc


    def _parse_spec_json(self, path):
        if not os.path.isfile(path):
            raise DataError("Spec file '%s' does not exist." % path)
        with open(path) as json_source:
            libdoc_dict = json.load(json_source)
        return libdoc_dict

    def _create_keyword(self, kw):
        return KeywordDoc(name=kw.get('name'),
                          args=self._create_arguments(kw['args']),
                          doc=kw['doc'],
                          shortdoc=kw['shortdoc'],
                          tags=kw['tags'],
                          source=kw['source'],
                          lineno=int(kw.get('lineno', -1)))

    def _create_arguments(self, arguments):
        spec = ArgumentSpec()
        setters = {
            ArgInfo.POSITIONAL_ONLY: spec.positional_only.append,
            ArgInfo.POSITIONAL_ONLY_MARKER: lambda value: None,
            ArgInfo.POSITIONAL_OR_NAMED: spec.positional_or_named.append,
            ArgInfo.VAR_POSITIONAL: lambda value: setattr(spec, 'var_positional', value),
            ArgInfo.NAMED_ONLY_MARKER: lambda value: None,
            ArgInfo.NAMED_ONLY: spec.named_only.append,
            ArgInfo.VAR_NAMED: lambda value: setattr(spec, 'var_named', value),
        }
        for arg in arguments:
            name = arg['name']
            setters[arg['kind']](name)
            default = arg.get('defaultValue')
            if default is not None:
                spec.defaults[name] = default
            arg_types = arg['types']
            if not spec.types:
                spec.types = {}
            spec.types[name] = tuple(arg_types)
        return spec





          

      

      

    

  

    
      
          
            
  Source code for robot.libdocpkg.jsonwriter

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from robot.utils import file_writer


[docs]class LibdocJsonWriter(object):

[docs]    def write(self, libdoc, outfile):
        with file_writer(outfile) as writer:
            writer.write(libdoc.to_json(indent=2))






          

      

      

    

  

    
      
          
            
  Source code for robot.libdocpkg.model

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

import json
import re
from itertools import chain

from robot.model import Tags
from robot.utils import (IRONPYTHON, getshortdoc, get_timestamp,
                         Sortable, setter, unicode)

from .datatypes import DataTypeCatalog
from .htmlutils import HtmlToText, DocFormatter
from .writer import LibdocWriter
from .output import LibdocOutput


[docs]class LibraryDoc(object):

    def __init__(self, name='', doc='', version='', type='LIBRARY',
                 scope='TEST', doc_format='ROBOT',
                 source=None, lineno=-1):
        self.name = name
        self._doc = doc
        self.version = version
        self.type = type
        self.scope = scope
        self.doc_format = doc_format
        self.source = source
        self.lineno = lineno
        self.data_types = DataTypeCatalog()
        self.inits = []
        self.keywords = []

    @property
    def doc(self):
        if self.doc_format == 'ROBOT' and '%TOC%' in self._doc:
            return self._add_toc(self._doc)
        return self._doc

    def _add_toc(self, doc):
        toc = self._create_toc(doc)
        return '\n'.join(line if line.strip() != '%TOC%' else toc
                         for line in doc.splitlines())

    def _create_toc(self, doc):
        entries = re.findall(r'^\s*=\s+(.+?)\s+=\s*$', doc, flags=re.MULTILINE)
        if self.inits:
            entries.append('Importing')
        if self.keywords:
            entries.append('Keywords')
        if self.data_types:
            entries.append('Data types')
        return '\n'.join('- `%s`' % entry for entry in entries)

    @setter
    def doc_format(self, format):
        return format or 'ROBOT'

    @setter
    def inits(self, inits):
        return self._process_keywords(inits)

    @setter
    def keywords(self, kws):
        return self._process_keywords(kws)

    def _process_keywords(self, kws):
        for keyword in kws:
            self._add_types_from_keyword(keyword)
            keyword.parent = self
            keyword.generate_shortdoc()
        return sorted(kws)

    def _add_types_from_keyword(self, keyword):
        for arg in keyword.args:
            self.data_types.update(arg.types)

    @property
    def all_tags(self):
        return Tags(chain.from_iterable(kw.tags for kw in self.keywords))

[docs]    def save(self, output=None, format='HTML'):
        with LibdocOutput(output, format) as outfile:
            LibdocWriter(format).write(self, outfile)


[docs]    def convert_docs_to_html(self):
        formatter = DocFormatter(self.keywords, self.data_types, self.doc,
                                 self.doc_format)
        self._doc = formatter.html(self.doc, intro=True)
        self.doc_format = 'HTML'
        for init in self.inits:
            init.doc = formatter.html(init.doc)
        for keyword in self.keywords:
            keyword.doc = formatter.html(keyword.doc)
        for type_doc in self.data_types:
            type_doc.doc = formatter.html(type_doc.doc)


[docs]    def to_dictionary(self):
        return {
            'name': self.name,
            'doc': self.doc,
            'version': self.version,
            'generated': get_timestamp(daysep='-', millissep=None),
            'type': self.type,
            'scope': self.scope,
            'docFormat': self.doc_format,
            'source': self.source,
            'lineno': self.lineno,
            'tags': list(self.all_tags),
            'inits': [init.to_dictionary() for init in self.inits],
            'keywords': [kw.to_dictionary() for kw in self.keywords],
            'dataTypes': self.data_types.to_dictionary()
        }


[docs]    def to_json(self, indent=None):
        data = self.to_dictionary()
        if IRONPYTHON:
            # Workaround for https://github.com/IronLanguages/ironpython2/issues/643
            data = self._unicode_to_utf8(data)
        return json.dumps(data, indent=indent)


    def _unicode_to_utf8(self, data):
        if isinstance(data, dict):
            return {self._unicode_to_utf8(key): self._unicode_to_utf8(value)
                    for key, value in data.items()}
        if isinstance(data, (list, tuple)):
            return [self._unicode_to_utf8(item) for item in data]
        if isinstance(data, unicode):
            return data.encode('UTF-8')
        return data



[docs]class KeywordDoc(Sortable):

    def __init__(self, name='', args=(), doc='', shortdoc='', tags=(), source=None,
                 lineno=-1, parent=None):
        self.name = name
        self.args = args
        self.doc = doc
        self._shortdoc = shortdoc
        self.tags = Tags(tags)
        self.source = source
        self.lineno = lineno
        self.parent = parent

    @property
    def shortdoc(self):
        if self._shortdoc:
            return self._shortdoc
        return self._get_shortdoc()

    def _get_shortdoc(self):
        doc = self.doc
        if self.parent and self.parent.doc_format == 'HTML':
            doc = HtmlToText().get_shortdoc_from_html(doc)
        return ' '.join(getshortdoc(doc).splitlines())

    @shortdoc.setter
    def shortdoc(self, shortdoc):
        self._shortdoc = shortdoc

    @property
    def deprecated(self):
        return self.doc.startswith('*DEPRECATED') and '*' in self.doc[1:]

    @property
    def _sort_key(self):
        return self.name.lower()

[docs]    def generate_shortdoc(self):
        if not self._shortdoc:
            self.shortdoc = self._get_shortdoc()


[docs]    def to_dictionary(self):
        return {
            'name': self.name,
            'args': [self._arg_to_dict(arg) for arg in self.args],
            'doc': self.doc,
            'shortdoc': self.shortdoc,
            'tags': list(self.tags),
            'source': self.source,
            'lineno': self.lineno
        }


    def _arg_to_dict(self, arg):
        return {
            'name': arg.name,
            'types': arg.types_reprs,
            'defaultValue': arg.default_repr,
            'kind': arg.kind,
            'required': arg.required,
            'repr': unicode(arg)
        }





          

      

      

    

  

    
      
          
            
  Source code for robot.libdocpkg.output

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

import os

from robot.utils import file_writer


[docs]class LibdocOutput(object):

    def __init__(self, output_path, format):
        self._output_path = output_path
        self._format = format.upper()
        self._output_file = None

    def __enter__(self):
        if self._format == 'HTML':
            self._output_file = file_writer(self._output_path,
                                            usage='Libdoc output')
            return self._output_file
        return self._output_path

    def __exit__(self, *exc_info):
        if self._output_file:
            self._output_file.close()
        if any(exc_info):
            try:
                os.remove(self._output_path)
            except OSError:
                pass





          

      

      

    

  

    
      
          
            
  Source code for robot.libdocpkg.robotbuilder

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

import os
import sys
import re

from robot.errors import DataError
from robot.running import (TestLibrary, UserLibrary, UserErrorHandler,
                           ResourceFileBuilder)
from robot.utils import split_tags_from_doc, unescape, is_string
from robot.variables import VariableIterator, search_variable

from .model import LibraryDoc, KeywordDoc


[docs]class LibraryDocBuilder(object):
    _argument_separator = '::'

[docs]    def build(self, library):
        name, args = self._split_library_name_and_args(library)
        lib = TestLibrary(name, args)
        libdoc = LibraryDoc(name=lib.name,
                            doc=self._get_doc(lib),
                            version=lib.version,
                            scope=str(lib.scope),
                            doc_format=lib.doc_format,
                            source=lib.source,
                            lineno=lib.lineno)
        libdoc.inits = self._get_initializers(lib)
        libdoc.keywords = KeywordDocBuilder().build_keywords(lib)
        return libdoc


    def _split_library_name_and_args(self, library):
        args = library.split(self._argument_separator)
        name = args.pop(0)
        return self._normalize_library_path(name), args

    def _normalize_library_path(self, library):
        path = library.replace('/', os.sep)
        if os.path.exists(path):
            return os.path.abspath(path)
        return library

    def _get_doc(self, lib):
        return lib.doc or "Documentation for library ``%s``." % lib.name

    def _get_initializers(self, lib):
        if lib.init.arguments.maxargs:
            return [KeywordDocBuilder().build_keyword(lib.init)]
        return []



[docs]class ResourceDocBuilder(object):

[docs]    def build(self, path):
        res = self._import_resource(path)
        libdoc = LibraryDoc(name=res.name,
                            doc=self._get_doc(res),
                            type='RESOURCE',
                            scope='GLOBAL',
                            source=res.source,
                            lineno=1)
        libdoc.keywords = KeywordDocBuilder(resource=True).build_keywords(res)
        return libdoc


    def _import_resource(self, path):
        ast = ResourceFileBuilder(process_curdir=False).build(
            self._find_resource_file(path))
        return UserLibrary(ast)

    def _find_resource_file(self, path):
        if os.path.isfile(path):
            return os.path.normpath(path)
        for dire in [item for item in sys.path if os.path.isdir(item)]:
            candidate = os.path.normpath(os.path.join(dire, path))
            if os.path.isfile(candidate):
                return candidate
        raise DataError("Resource file '%s' does not exist." % path)

    def _get_doc(self, res):
        if res.doc:
            return unescape(res.doc)
        return "Documentation for resource file ``%s``." % res.name



[docs]class KeywordDocBuilder(object):

    def __init__(self, resource=False):
        self._resource = resource

[docs]    def build_keywords(self, lib):
        return [self.build_keyword(kw) for kw in lib.handlers]


[docs]    def build_keyword(self, kw):
        doc, tags = self._get_doc_and_tags(kw)
        if not self._resource:
            self._escape_strings_in_defaults(kw.arguments.defaults)
        return KeywordDoc(name=kw.name,
                          args=kw.arguments,
                          doc=doc,
                          tags=tags,
                          source=kw.source,
                          lineno=kw.lineno)


    def _escape_strings_in_defaults(self, defaults):
        for name, value in defaults.items():
            if is_string(value):
                value = re.sub(r'[\\\r\n\t]', lambda x: repr(str(x.group()))[1:-1], value)
                value = self._escape_variables(value)
                defaults[name] = re.sub('^(?= )|(?<= )$|(?<= )(?= )', r'\\', value)

    def _escape_variables(self, value):
        result = ''
        match = search_variable(value)
        while match:
            result += r'%s\%s{%s}' % (match.before, match.identifier,
                                      self._escape_variables(match.base))
            for item in match.items:
                result += '[%s]' % self._escape_variables(item)
            match = search_variable(match.after)
        return result + match.string

    def _get_doc_and_tags(self, kw):
        doc = self._get_doc(kw)
        doc, tags = split_tags_from_doc(doc)
        return doc, kw.tags + tags

    def _get_doc(self, kw):
        if self._resource and not isinstance(kw, UserErrorHandler):
            return unescape(kw.doc)
        return kw.doc





          

      

      

    

  

    
      
          
            
  Source code for robot.libdocpkg.specbuilder

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

import os.path

from robot.errors import DataError
from robot.running import ArgInfo, ArgumentSpec
from robot.utils import ET, ETSource

from .model import LibraryDoc, KeywordDoc
from .datatypes import EnumDoc, TypedDictDoc


[docs]class SpecDocBuilder(object):

[docs]    def build(self, path):
        spec = self._parse_spec(path)
        libdoc = LibraryDoc(name=spec.get('name'),
                            type=spec.get('type').upper(),
                            version=spec.find('version').text or '',
                            doc=spec.find('doc').text or '',
                            scope=spec.get('scope'),
                            doc_format=spec.get('format', 'ROBOT'),
                            source=spec.get('source'),
                            lineno=int(spec.get('lineno', -1)))
        libdoc.inits = self._create_keywords(spec, 'inits/init')
        libdoc.keywords = self._create_keywords(spec, 'keywords/kw')
        libdoc.data_types.update(self._create_data_types(spec))
        return libdoc


    def _parse_spec(self, path):
        if not os.path.isfile(path):
            raise DataError("Spec file '%s' does not exist." % path)
        with ETSource(path) as source:
            root = ET.parse(source).getroot()
        if root.tag != 'keywordspec':
            raise DataError("Invalid spec file '%s'." % path)
        version = root.get('specversion')
        if version != '3':
            raise DataError("Invalid spec file version '%s'. "
                            "Robot Framework 4.0 and newer requires spec version 3."
                            % version)
        return root

    def _create_keywords(self, spec, path):
        return [self._create_keyword(elem) for elem in spec.findall(path)]

    def _create_keyword(self, elem):
        # "deprecated" attribute isn't read because it is read from the doc
        # automatically. That should probably be changed at some point.
        return KeywordDoc(name=elem.get('name', ''),
                          args=self._create_arguments(elem),
                          doc=elem.find('doc').text or '',
                          shortdoc=elem.find('shortdoc').text or '',
                          tags=[t.text for t in elem.findall('tags/tag')],
                          source=elem.get('source'),
                          lineno=int(elem.get('lineno', -1)))

    def _create_arguments(self, elem):
        spec = ArgumentSpec()
        setters = {
            ArgInfo.POSITIONAL_ONLY: spec.positional_only.append,
            ArgInfo.POSITIONAL_ONLY_MARKER: lambda value: None,
            ArgInfo.POSITIONAL_OR_NAMED: spec.positional_or_named.append,
            ArgInfo.VAR_POSITIONAL: lambda value: setattr(spec, 'var_positional', value),
            ArgInfo.NAMED_ONLY_MARKER: lambda value: None,
            ArgInfo.NAMED_ONLY: spec.named_only.append,
            ArgInfo.VAR_NAMED: lambda value: setattr(spec, 'var_named', value),
        }
        for arg in elem.findall('arguments/arg'):
            name_elem = arg.find('name')
            if name_elem is None:
                continue
            name = name_elem.text
            setters[arg.get('kind')](name)
            default_elem = arg.find('default')
            if default_elem is not None:
                spec.defaults[name] = default_elem.text or ''
            type_elems = arg.findall('type')
            if not spec.types:
                spec.types = {}
            spec.types[name] = tuple(t.text for t in type_elems)
        return spec

    def _create_data_types(self, spec):
        enums = [self._create_enum_doc(dt)
                 for dt in spec.findall('datatypes/enums/enum')]
        typed_dicts = [self._create_typed_dict_doc(dt)
                       for dt in spec.findall('datatypes/typeddicts/typeddict')]
        return enums + typed_dicts

    def _create_enum_doc(self, dt):
        return EnumDoc(name=dt.get('name'),
                       doc=dt.find('doc').text or '',
                       members=[{'name': member.get('name'),
                                 'value': member.get('value')}
                                for member in dt.findall('members/member')])

    def _create_typed_dict_doc(self, dt):
        items = []
        for item in dt.findall('items/item'):
            required = item.get('required', None)
            if required is not None:
                required = True if required == 'true' else False
            items.append({'key': item.get('key'),
                          'type': item.get('type'),
                          'required': required})
        return TypedDictDoc(name=dt.get('name'),
                            doc=dt.find('doc').text or '',
                            items=items)





          

      

      

    

  

    
      
          
            
  Source code for robot.libdocpkg.writer

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from robot.errors import DataError

from .htmlwriter import LibdocHtmlWriter
from .xmlwriter import LibdocXmlWriter
from .jsonwriter import LibdocJsonWriter


[docs]def LibdocWriter(format=None):
    format = (format or 'HTML')
    if format == 'HTML':
        return LibdocHtmlWriter()
    if format == 'XML':
        return LibdocXmlWriter()
    if format == 'LIBSPEC':
        return LibdocXmlWriter()
    if format == 'JSON':
        return LibdocJsonWriter()
    raise DataError("Invalid format '%s'." % format)





          

      

      

    

  

    
      
          
            
  Source code for robot.libdocpkg.xmlwriter

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

import os.path
from datetime import datetime

from robot.utils import WINDOWS, XmlWriter, unicode


[docs]class LibdocXmlWriter(object):

[docs]    def write(self, libdoc, outfile):
        writer = XmlWriter(outfile, usage='Libdoc spec')
        self._write_start(libdoc, writer)
        self._write_keywords('inits', 'init', libdoc.inits, libdoc.source, writer)
        self._write_keywords('keywords', 'kw', libdoc.keywords, libdoc.source, writer)
        self._write_data_types(libdoc.data_types, writer)
        self._write_end(writer)


    def _write_start(self, libdoc, writer):
        generated = datetime.utcnow().replace(microsecond=0).isoformat() + 'Z'
        attrs = {'name': libdoc.name,
                 'type': libdoc.type,
                 'format': libdoc.doc_format,
                 'scope': libdoc.scope,
                 'generated': generated,
                 'specversion': '3'}
        self._add_source_info(attrs, libdoc, writer.output)
        writer.start('keywordspec', attrs)
        writer.element('version', libdoc.version)
        writer.element('doc', libdoc.doc)
        self._write_tags(libdoc.all_tags, writer)

    def _add_source_info(self, attrs, item, outfile, lib_source=None):
        if item.source and item.source != lib_source:
            attrs['source'] = self._format_source(item.source, outfile)
        if item.lineno > 0:
            attrs['lineno'] = str(item.lineno)

    def _format_source(self, source, outfile):
        if not os.path.exists(source):
            return source
        source = os.path.normpath(source)
        if not (hasattr(outfile, 'name')
                and os.path.isfile(outfile.name)
                and self._on_same_drive(source, outfile.name)):
            return source
        return os.path.relpath(source, os.path.dirname(outfile.name))

    def _on_same_drive(self, path1, path2):
        if not WINDOWS:
            return True
        return os.path.splitdrive(path1)[0] == os.path.splitdrive(path2)[0]

    def _get_old_style_scope(self, libdoc):
        if libdoc.type == 'RESOURCE':
            return ''
        return {'GLOBAL': 'global',
                'SUITE': 'test suite',
                'TEST': 'test case'}[libdoc.scope]

    def _write_keywords(self, list_name, kw_type, keywords, lib_source, writer):
        writer.start(list_name)
        for kw in keywords:
            attrs = self._get_start_attrs(kw, lib_source, writer)
            writer.start(kw_type, attrs)
            self._write_arguments(kw, writer)
            writer.element('doc', kw.doc)
            writer.element('shortdoc', kw.shortdoc)
            if kw_type == 'kw' and kw.tags:
                self._write_tags(kw.tags, writer)
            writer.end(kw_type)
        writer.end(list_name)

    def _write_tags(self, tags, writer):
        writer.start('tags')
        for tag in tags:
            writer.element('tag', tag)
        writer.end('tags')

    def _write_arguments(self, kw, writer):
        writer.start('arguments', {'repr': unicode(kw.args)})
        for arg in kw.args:
            writer.start('arg', {'kind': arg.kind,
                                 'required': 'true' if arg.required else 'false',
                                 'repr': unicode(arg)})
            if arg.name:
                writer.element('name', arg.name)
            for type_repr in arg.types_reprs:
                writer.element('type', type_repr)
            if arg.default is not arg.NOTSET:
                writer.element('default', arg.default_repr)
            writer.end('arg')
        writer.end('arguments')

    def _get_start_attrs(self, kw, lib_source, writer):
        attrs = {'name': kw.name}
        if kw.deprecated:
            attrs['deprecated'] = 'true'
        self._add_source_info(attrs, kw, writer.output, lib_source)
        return attrs

    def _write_data_types(self, data_types, writer):
        writer.start('datatypes')
        if data_types.enums:
            writer.start('enums')
            for enum in data_types.enums:
                writer.start('enum', {'name': enum.name})
                writer.element('doc', enum.doc)
                writer.start('members')
                for member in enum.members:
                    writer.element('member', attrs=member)
                writer.end('members')
                writer.end('enum')
            writer.end('enums')
        if data_types.typed_dicts:
            writer.start('typeddicts')
            for typ_dict in data_types.typed_dicts:
                writer.start('typeddict', {'name': typ_dict.name})
                writer.element('doc', typ_dict.doc)
                writer.start('items')
                for item in typ_dict.items:
                    if item['required'] is None:
                        item.pop('required')
                    elif item['required']:
                        item['required'] = 'true'
                    else:
                        item['required'] = 'false'
                    writer.element('item', attrs=item)
                writer.end('items')
                writer.end('typeddict')
            writer.end('typeddicts')
        writer.end('datatypes')

    def _write_end(self, writer):
        writer.end('keywordspec')
        writer.close()





          

      

      

    

  

    
      
          
            
  Source code for robot.libraries.BuiltIn

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from __future__ import absolute_import

from collections import OrderedDict
import difflib
import re
import time

from robot.api import logger, SkipExecution
from robot.api.deco import keyword
from robot.errors import (ContinueForLoop, DataError, ExecutionFailed,
                          ExecutionFailures, ExecutionPassed, ExitForLoop,
                          PassExecution, ReturnFromKeyword, VariableError)
from robot.running import Keyword, RUN_KW_REGISTER
from robot.running.context import EXECUTION_CONTEXTS
from robot.running.usererrorhandler import UserErrorHandler
from robot.utils import (DotDict, escape, format_assign_message,
                         get_error_message, get_time, html_escape, is_falsy,
                         is_integer, is_list_like, is_string, is_truthy,
                         is_unicode, IRONPYTHON, JYTHON, Matcher, normalize,
                         normalize_whitespace, parse_time, prepr,
                         plural_or_not as s, PY3, RERAISED_EXCEPTIONS,
                         roundup, secs_to_timestr, seq2str, split_from_equals,
                         timestr_to_secs, type_name, unic)
from robot.utils.asserts import assert_equal, assert_not_equal
from robot.variables import (evaluate_expression, is_dict_variable,
                             is_list_variable, search_variable,
                             DictVariableTableValue, VariableTableValue)
from robot.version import get_version

if JYTHON:
    from java.lang import String, Number


# TODO: Clean-up registering run keyword variants in RF 3.1.
# https://github.com/robotframework/robotframework/issues/2190

[docs]def run_keyword_variant(resolve):
    def decorator(method):
        RUN_KW_REGISTER.register_run_keyword('BuiltIn', method.__name__,
                                             resolve, deprecation_warning=False)
        return method
    return decorator



class _BuiltInBase(object):

    @property
    def _context(self):
        return self._get_context()

    def _get_context(self, top=False):
        ctx = EXECUTION_CONTEXTS.current if not top else EXECUTION_CONTEXTS.top
        if ctx is None:
            raise RobotNotRunningError('Cannot access execution context')
        return ctx

    @property
    def _namespace(self):
        return self._get_context().namespace

    @property
    def _variables(self):
        return self._namespace.variables

    def _matches(self, string, pattern, caseless=False):
        # Must use this instead of fnmatch when string may contain newlines.
        matcher = Matcher(pattern, caseless=caseless, spaceless=False)
        return matcher.match(string)

    def _is_true(self, condition):
        if is_string(condition):
            condition = self.evaluate(condition)
        return bool(condition)

    def _log_types(self, *args):
        self._log_types_at_level('DEBUG', *args)

    def _log_types_at_level(self, level, *args):
        msg = ["Argument types are:"] + [self._get_type(a) for a in args]
        self.log('\n'.join(msg), level)

    def _get_type(self, arg):
        # In IronPython type(u'x') is str. We want to report unicode anyway.
        if is_unicode(arg):
            return "<type 'unicode'>"
        return str(type(arg))


class _Converter(_BuiltInBase):

    def convert_to_integer(self, item, base=None):
        """Converts the given item to an integer number.

        If the given item is a string, it is by default expected to be an
        integer in base 10. There are two ways to convert from other bases:

        - Give base explicitly to the keyword as ``base`` argument.

        - Prefix the given string with the base so that ``0b`` means binary
          (base 2), ``0o`` means octal (base 8), and ``0x`` means hex (base 16).
          The prefix is considered only when ``base`` argument is not given and
          may itself be prefixed with a plus or minus sign.

        The syntax is case-insensitive and possible spaces are ignored.

        Examples:
        | ${result} = | Convert To Integer | 100    |    | # Result is 100   |
        | ${result} = | Convert To Integer | FF AA  | 16 | # Result is 65450 |
        | ${result} = | Convert To Integer | 100    | 8  | # Result is 64    |
        | ${result} = | Convert To Integer | -100   | 2  | # Result is -4    |
        | ${result} = | Convert To Integer | 0b100  |    | # Result is 4     |
        | ${result} = | Convert To Integer | -0x100 |    | # Result is -256  |

        See also `Convert To Number`, `Convert To Binary`, `Convert To Octal`,
        `Convert To Hex`, and `Convert To Bytes`.
        """
        self._log_types(item)
        return self._convert_to_integer(item, base)

    def _convert_to_integer(self, orig, base=None):
        try:
            item = self._handle_java_numbers(orig)
            item, base = self._get_base(item, base)
            if base:
                return int(item, self._convert_to_integer(base))
            return int(item)
        except:
            raise RuntimeError("'%s' cannot be converted to an integer: %s"
                               % (orig, get_error_message()))

    def _handle_java_numbers(self, item):
        if not JYTHON:
            return item
        if isinstance(item, String):
            return unic(item)
        if isinstance(item, Number):
            return item.doubleValue()
        return item

    def _get_base(self, item, base):
        if not is_string(item):
            return item, base
        item = normalize(item)
        if item.startswith(('-', '+')):
            sign = item[0]
            item = item[1:]
        else:
            sign = ''
        bases = {'0b': 2, '0o': 8, '0x': 16}
        if base or not item.startswith(tuple(bases)):
            return sign+item, base
        return sign+item[2:], bases[item[:2]]

    def convert_to_binary(self, item, base=None, prefix=None, length=None):
        """Converts the given item to a binary string.

        The ``item``, with an optional ``base``, is first converted to an
        integer using `Convert To Integer` internally. After that it
        is converted to a binary number (base 2) represented as a
        string such as ``1011``.

        The returned value can contain an optional ``prefix`` and can be
        required to be of minimum ``length`` (excluding the prefix and a
        possible minus sign). If the value is initially shorter than
        the required length, it is padded with zeros.

        Examples:
        | ${result} = | Convert To Binary | 10 |         |           | # Result is 1010   |
        | ${result} = | Convert To Binary | F  | base=16 | prefix=0b | # Result is 0b1111 |
        | ${result} = | Convert To Binary | -2 | prefix=B | length=4 | # Result is -B0010 |

        See also `Convert To Integer`, `Convert To Octal` and `Convert To Hex`.
        """
        return self._convert_to_bin_oct_hex(item, base, prefix, length, 'b')

    def convert_to_octal(self, item, base=None, prefix=None, length=None):
        """Converts the given item to an octal string.

        The ``item``, with an optional ``base``, is first converted to an
        integer using `Convert To Integer` internally. After that it
        is converted to an octal number (base 8) represented as a
        string such as ``775``.

        The returned value can contain an optional ``prefix`` and can be
        required to be of minimum ``length`` (excluding the prefix and a
        possible minus sign). If the value is initially shorter than
        the required length, it is padded with zeros.

        Examples:
        | ${result} = | Convert To Octal | 10 |            |          | # Result is 12      |
        | ${result} = | Convert To Octal | -F | base=16    | prefix=0 | # Result is -017    |
        | ${result} = | Convert To Octal | 16 | prefix=oct | length=4 | # Result is oct0020 |

        See also `Convert To Integer`, `Convert To Binary` and `Convert To Hex`.
        """
        return self._convert_to_bin_oct_hex(item, base, prefix, length, 'o')

    def convert_to_hex(self, item, base=None, prefix=None, length=None,
                       lowercase=False):
        """Converts the given item to a hexadecimal string.

        The ``item``, with an optional ``base``, is first converted to an
        integer using `Convert To Integer` internally. After that it
        is converted to a hexadecimal number (base 16) represented as
        a string such as ``FF0A``.

        The returned value can contain an optional ``prefix`` and can be
        required to be of minimum ``length`` (excluding the prefix and a
        possible minus sign). If the value is initially shorter than
        the required length, it is padded with zeros.

        By default the value is returned as an upper case string, but the
        ``lowercase`` argument a true value (see `Boolean arguments`) turns
        the value (but not the given prefix) to lower case.

        Examples:
        | ${result} = | Convert To Hex | 255 |           |              | # Result is FF    |
        | ${result} = | Convert To Hex | -10 | prefix=0x | length=2     | # Result is -0x0A |
        | ${result} = | Convert To Hex | 255 | prefix=X | lowercase=yes | # Result is Xff   |

        See also `Convert To Integer`, `Convert To Binary` and `Convert To Octal`.
        """
        spec = 'x' if lowercase else 'X'
        return self._convert_to_bin_oct_hex(item, base, prefix, length, spec)

    def _convert_to_bin_oct_hex(self, item, base, prefix, length, format_spec):
        self._log_types(item)
        ret = format(self._convert_to_integer(item, base), format_spec)
        prefix = prefix or ''
        if ret[0] == '-':
            prefix = '-' + prefix
            ret = ret[1:]
        if length:
            ret = ret.rjust(self._convert_to_integer(length), '0')
        return prefix + ret

    def convert_to_number(self, item, precision=None):
        """Converts the given item to a floating point number.

        If the optional ``precision`` is positive or zero, the returned number
        is rounded to that number of decimal digits. Negative precision means
        that the number is rounded to the closest multiple of 10 to the power
        of the absolute precision. If a number is equally close to a certain
        precision, it is always rounded away from zero.

        Examples:
        | ${result} = | Convert To Number | 42.512 |    | # Result is 42.512 |
        | ${result} = | Convert To Number | 42.512 | 1  | # Result is 42.5   |
        | ${result} = | Convert To Number | 42.512 | 0  | # Result is 43.0   |
        | ${result} = | Convert To Number | 42.512 | -1 | # Result is 40.0   |

        Notice that machines generally cannot store floating point numbers
        accurately. This may cause surprises with these numbers in general
        and also when they are rounded. For more information see, for example,
        these resources:

        - http://docs.python.org/tutorial/floatingpoint.html
        - http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition

        If you want to avoid possible problems with floating point numbers,
        you can implement custom keywords using Python's
        [http://docs.python.org/library/decimal.html|decimal] or
        [http://docs.python.org/library/fractions.html|fractions] modules.

        If you need an integer number, use `Convert To Integer` instead.
        """
        self._log_types(item)
        return self._convert_to_number(item, precision)

    def _convert_to_number(self, item, precision=None):
        number = self._convert_to_number_without_precision(item)
        if precision is not None:
            number = roundup(number, self._convert_to_integer(precision),
                             return_type=float)
        return number

    def _convert_to_number_without_precision(self, item):
        try:
            if JYTHON:
                item = self._handle_java_numbers(item)
            return float(item)
        except:
            error = get_error_message()
            try:
                return float(self._convert_to_integer(item))
            except RuntimeError:
                raise RuntimeError("'%s' cannot be converted to a floating "
                                   "point number: %s" % (item, error))

    def convert_to_string(self, item):
        """Converts the given item to a Unicode string.

        Strings are also [http://www.macchiato.com/unicode/nfc-faq|
        NFC normalized].

        Use `Encode String To Bytes` and `Decode Bytes To String` keywords
        in ``String`` library if you need to convert between Unicode and byte
        strings using different encodings. Use `Convert To Bytes` if you just
        want to create byte strings.
        """
        self._log_types(item)
        return self._convert_to_string(item)

    def _convert_to_string(self, item):
        return unic(item)

    def convert_to_boolean(self, item):
        """Converts the given item to Boolean true or false.

        Handles strings ``True`` and ``False`` (case-insensitive) as expected,
        otherwise returns item's
        [http://docs.python.org/library/stdtypes.html#truth|truth value]
        using Python's ``bool()`` method.
        """
        self._log_types(item)
        if is_string(item):
            if item.upper() == 'TRUE':
                return True
            if item.upper() == 'FALSE':
                return False
        return bool(item)

    def convert_to_bytes(self, input, input_type='text'):
        u"""Converts the given ``input`` to bytes according to the ``input_type``.

        Valid input types are listed below:

        - ``text:`` Converts text to bytes character by character. All
          characters with ordinal below 256 can be used and are converted to
          bytes with same values. Many characters are easiest to represent
          using escapes like ``\\x00`` or ``\\xff``. Supports both Unicode
          strings and bytes.

        - ``int:`` Converts integers separated by spaces to bytes. Similarly as
          with `Convert To Integer`, it is possible to use binary, octal, or
          hex values by prefixing the values with ``0b``, ``0o``, or ``0x``,
          respectively.

        - ``hex:`` Converts hexadecimal values to bytes. Single byte is always
          two characters long (e.g. ``01`` or ``FF``). Spaces are ignored and
          can be used freely as a visual separator.

        - ``bin:`` Converts binary values to bytes. Single byte is always eight
          characters long (e.g. ``00001010``). Spaces are ignored and can be
          used freely as a visual separator.

        In addition to giving the input as a string, it is possible to use
        lists or other iterables containing individual characters or numbers.
        In that case numbers do not need to be padded to certain length and
        they cannot contain extra spaces.

        Examples (last column shows returned bytes):
        | ${bytes} = | Convert To Bytes | hyv\xe4    |     | # hyv\\xe4        |
        | ${bytes} = | Convert To Bytes | \\xff\\x07 |     | # \\xff\\x07      |
        | ${bytes} = | Convert To Bytes | 82 70      | int | # RF              |
        | ${bytes} = | Convert To Bytes | 0b10 0x10  | int | # \\x02\\x10      |
        | ${bytes} = | Convert To Bytes | ff 00 07   | hex | # \\xff\\x00\\x07 |
        | ${bytes} = | Convert To Bytes | 5246212121 | hex | # RF!!!           |
        | ${bytes} = | Convert To Bytes | 0000 1000  | bin | # \\x08           |
        | ${input} = | Create List      | 1          | 2   | 12                |
        | ${bytes} = | Convert To Bytes | ${input}   | int | # \\x01\\x02\\x0c |
        | ${bytes} = | Convert To Bytes | ${input}   | hex | # \\x01\\x02\\x12 |

        Use `Encode String To Bytes` in ``String`` library if you need to
        convert text to bytes using a certain encoding.
        """
        try:
            try:
                ordinals = getattr(self, '_get_ordinals_from_%s' % input_type)
            except AttributeError:
                raise RuntimeError("Invalid input type '%s'." % input_type)
            return bytes(bytearray(o for o in ordinals(input)))
        except:
            raise RuntimeError("Creating bytes failed: %s" % get_error_message())

    def _get_ordinals_from_text(self, input):
        # https://github.com/IronLanguages/main/issues/1237
        if IRONPYTHON and isinstance(input, bytearray):
            input = bytes(input)
        for char in input:
            ordinal = char if is_integer(char) else ord(char)
            yield self._test_ordinal(ordinal, char, 'Character')

    def _test_ordinal(self, ordinal, original, type):
        if 0 <= ordinal <= 255:
            return ordinal
        raise RuntimeError("%s '%s' cannot be represented as a byte."
                           % (type, original))

    def _get_ordinals_from_int(self, input):
        if is_string(input):
            input = input.split()
        elif is_integer(input):
            input = [input]
        for integer in input:
            ordinal = self._convert_to_integer(integer)
            yield self._test_ordinal(ordinal, integer, 'Integer')

    def _get_ordinals_from_hex(self, input):
        for token in self._input_to_tokens(input, length=2):
            ordinal = self._convert_to_integer(token, base=16)
            yield self._test_ordinal(ordinal, token, 'Hex value')

    def _get_ordinals_from_bin(self, input):
        for token in self._input_to_tokens(input, length=8):
            ordinal = self._convert_to_integer(token, base=2)
            yield self._test_ordinal(ordinal, token, 'Binary value')

    def _input_to_tokens(self, input, length):
        if not is_string(input):
            return input
        input = ''.join(input.split())
        if len(input) % length != 0:
            raise RuntimeError('Expected input to be multiple of %d.' % length)
        return (input[i:i+length] for i in range(0, len(input), length))

    def create_list(self, *items):
        """Returns a list containing given items.

        The returned list can be assigned both to ``${scalar}`` and ``@{list}``
        variables.

        Examples:
        | @{list} =   | Create List | a    | b    | c    |
        | ${scalar} = | Create List | a    | b    | c    |
        | ${ints} =   | Create List | ${1} | ${2} | ${3} |
        """
        return list(items)

    @run_keyword_variant(resolve=0)
    def create_dictionary(self, *items):
        """Creates and returns a dictionary based on the given ``items``.

        Items are typically given using the ``key=value`` syntax same way as
        ``&{dictionary}`` variables are created in the Variable table. Both
        keys and values can contain variables, and possible equal sign in key
        can be escaped with a backslash like ``escaped\\=key=value``. It is
        also possible to get items from existing dictionaries by simply using
        them like ``&{dict}``.

        Alternatively items can be specified so that keys and values are given
        separately. This and the ``key=value`` syntax can even be combined,
        but separately given items must be first. If same key is used multiple
        times, the last value has precedence.

        The returned dictionary is ordered, and values with strings as keys
        can also be accessed using a convenient dot-access syntax like
        ``${dict.key}``. Technically the returned dictionary is Robot
        Framework's own ``DotDict`` instance. If there is a need, it can be
        converted into a regular Python ``dict`` instance by using the
        `Convert To Dictionary` keyword from the Collections library.

        Examples:
        | &{dict} = | Create Dictionary | key=value | foo=bar | | | # key=value syntax |
        | Should Be True | ${dict} == {'key': 'value', 'foo': 'bar'} |
        | &{dict2} = | Create Dictionary | key | value | foo | bar | # separate key and value |
        | Should Be Equal | ${dict} | ${dict2} |
        | &{dict} = | Create Dictionary | ${1}=${2} | &{dict} | foo=new | | # using variables |
        | Should Be True | ${dict} == {1: 2, 'key': 'value', 'foo': 'new'} |
        | Should Be Equal | ${dict.key} | value | | | | # dot-access |
        """
        separate, combined = self._split_dict_items(items)
        result = DotDict(self._format_separate_dict_items(separate))
        combined = DictVariableTableValue(combined).resolve(self._variables)
        result.update(combined)
        return result

    def _split_dict_items(self, items):
        separate = []
        for item in items:
            name, value = split_from_equals(item)
            if value is not None or is_dict_variable(item):
                break
            separate.append(item)
        return separate, items[len(separate):]

    def _format_separate_dict_items(self, separate):
        separate = self._variables.replace_list(separate)
        if len(separate) % 2 != 0:
            raise DataError('Expected even number of keys and values, got %d.'
                            % len(separate))
        return [separate[i:i+2] for i in range(0, len(separate), 2)]


class _Verify(_BuiltInBase):

    def _set_and_remove_tags(self, tags):
        set_tags = [tag for tag in tags if not tag.startswith('-')]
        remove_tags = [tag[1:] for tag in tags if tag.startswith('-')]
        if remove_tags:
            self.remove_tags(*remove_tags)
        if set_tags:
            self.set_tags(*set_tags)

    def fail(self, msg=None, *tags):
        """Fails the test with the given message and optionally alters its tags.

        The error message is specified using the ``msg`` argument.
        It is possible to use HTML in the given error message, similarly
        as with any other keyword accepting an error message, by prefixing
        the error with ``*HTML*``.

        It is possible to modify tags of the current test case by passing tags
        after the message. Tags starting with a hyphen (e.g. ``-regression``)
        are removed and others added. Tags are modified using `Set Tags` and
        `Remove Tags` internally, and the semantics setting and removing them
        are the same as with these keywords.

        Examples:
        | Fail | Test not ready   |             | | # Fails with the given message.    |
        | Fail | *HTML*<b>Test not ready</b> | | | # Fails using HTML in the message. |
        | Fail | Test not ready   | not-ready   | | # Fails and adds 'not-ready' tag.  |
        | Fail | OS not supported | -regression | | # Removes tag 'regression'.        |
        | Fail | My message       | tag    | -t*  | # Removes all tags starting with 't' except the newly added 'tag'. |

        See `Fatal Error` if you need to stop the whole test execution.
        """
        self._set_and_remove_tags(tags)
        raise AssertionError(msg) if msg else AssertionError()

    def fatal_error(self, msg=None):
        """Stops the whole test execution.

        The test or suite where this keyword is used fails with the provided
        message, and subsequent tests fail with a canned message.
        Possible teardowns will nevertheless be executed.

        See `Fail` if you only want to stop one test case unconditionally.
        """
        error = AssertionError(msg) if msg else AssertionError()
        error.ROBOT_EXIT_ON_FAILURE = True
        raise error

    def should_not_be_true(self, condition, msg=None):
        """Fails if the given condition is true.

        See `Should Be True` for details about how ``condition`` is evaluated
        and how ``msg`` can be used to override the default error message.
        """
        if self._is_true(condition):
            raise AssertionError(msg or "'%s' should not be true." % condition)

    def should_be_true(self, condition, msg=None):
        """Fails if the given condition is not true.

        If ``condition`` is a string (e.g. ``${rc} < 10``), it is evaluated as
        a Python expression as explained in `Evaluating expressions` and the
        keyword status is decided based on the result. If a non-string item is
        given, the status is got directly from its
        [http://docs.python.org/library/stdtypes.html#truth|truth value].

        The default error message (``<condition> should be true``) is not very
        informative, but it can be overridden with the ``msg`` argument.

        Examples:
        | Should Be True | ${rc} < 10            | |
        | Should Be True | '${status}' == 'PASS' | # Strings must be quoted |
        | Should Be True | ${number}   | # Passes if ${number} is not zero |
        | Should Be True | ${list}     | # Passes if ${list} is not empty  |

        Variables used like ``${variable}``, as in the examples above, are
        replaced in the expression before evaluation. Variables are also
        available in the evaluation namespace, and can be accessed using
        special ``$variable`` syntax as explained in the `Evaluating
        expressions` section.

        Examples:
        | Should Be True | $rc < 10          |
        | Should Be True | $status == 'PASS' | # Expected string must be quoted |

        `Should Be True` automatically imports Python's
        [http://docs.python.org/library/os.html|os] and
        [http://docs.python.org/library/sys.html|sys] modules that contain
        several useful attributes:

        | Should Be True | os.linesep == '\\n'             | # Unixy   |
        | Should Be True | os.linesep == '\\r\\n'          | # Windows |
        | Should Be True | sys.platform == 'darwin'        | # OS X    |
        | Should Be True | sys.platform.startswith('java') | # Jython  |
        """
        if not self._is_true(condition):
            raise AssertionError(msg or "'%s' should be true." % condition)

    def should_be_equal(self, first, second, msg=None, values=True,
                        ignore_case=False, formatter='str', strip_spaces=False,
                        collapse_spaces=False):
        """Fails if the given objects are unequal.

        Optional ``msg``, ``values`` and ``formatter`` arguments specify how
        to construct the error message if this keyword fails:

        - If ``msg`` is not given, the error message is ``<first> != <second>``.
        - If ``msg`` is given and ``values`` gets a true value (default),
          the error message is ``<msg>: <first> != <second>``.
        - If ``msg`` is given and ``values`` gets a false value (see
          `Boolean arguments`), the error message is simply ``<msg>``.
        - ``formatter`` controls how to format the values. Possible values are
          ``str`` (default), ``repr`` and ``ascii``, and they work similarly
          as Python built-in functions with same names. See `String
          representations` for more details.

        If ``ignore_case`` is given a true value (see `Boolean arguments`) and
        both arguments are strings, comparison is done case-insensitively.
        If both arguments are multiline strings, this keyword uses
        `multiline string comparison`.

        If ``strip_spaces`` is given a true value (see `Boolean arguments`)
        and both arguments are strings, the comparison is done without leading
        and trailing spaces. If ``strip_spaces`` is given a string value
        ``LEADING`` or ``TRAILING`` (case-insensitive), the comparison is done
        without leading or trailing spaces, respectively.

        If ``collapse_spaces`` is given a true value (see `Boolean arguments`) and both
        arguments are strings, the comparison is done with all white spaces replaced by
        a single space character.

        Examples:
        | Should Be Equal | ${x} | expected | | |
        | Should Be Equal | ${x} | expected | Custom error message |
        | Should Be Equal | ${x} | expected | Custom message | values=False |
        | Should Be Equal | ${x} | expected | ignore_case=True | formatter=repr |

        ``strip_spaces`` is new in Robot Framework 4.0 and
        ``collapse_spaces`` is new in Robot Framework 4.1.
        """
        self._log_types_at_info_if_different(first, second)
        if is_string(first) and is_string(second):
            if ignore_case:
                first = first.lower()
                second = second.lower()
            if strip_spaces:
                first = self._strip_spaces(first, strip_spaces)
                second = self._strip_spaces(second, strip_spaces)
            if collapse_spaces:
                first = self._collapse_spaces(first)
                second = self._collapse_spaces(second)
        self._should_be_equal(first, second, msg, values, formatter)

    def _should_be_equal(self, first, second, msg, values, formatter='str'):
        include_values = self._include_values(values)
        formatter = self._get_formatter(formatter)
        if first == second:
            return
        if include_values and is_string(first) and is_string(second):
            self._raise_multi_diff(first, second, msg, formatter)
        assert_equal(first, second, msg, include_values, formatter)

    def _log_types_at_info_if_different(self, first, second):
        level = 'DEBUG' if type(first) == type(second) else 'INFO'
        self._log_types_at_level(level, first, second)

    def _raise_multi_diff(self, first, second, msg, formatter):
        first_lines = first.splitlines(True)      # keepends
        second_lines = second.splitlines(True)
        if len(first_lines) < 3 or len(second_lines) < 3:
            return
        self.log("%s\n\n!=\n\n%s" % (first.rstrip(), second.rstrip()))
        diffs = list(difflib.unified_diff(first_lines, second_lines,
                                          fromfile='first', tofile='second',
                                          lineterm=''))
        diffs[3:] = [item[0] + formatter(item[1:]).rstrip() for item in diffs[3:]]
        prefix = 'Multiline strings are different:'
        if msg:
            prefix = '%s: %s' % (msg, prefix)
        raise AssertionError('\n'.join([prefix] + diffs))

    def _include_values(self, values):
        return is_truthy(values) and str(values).upper() != 'NO VALUES'

    def _strip_spaces(self, value, strip_spaces):
        if not is_string(value):
            return value
        if not is_string(strip_spaces):
            return value.strip() if strip_spaces else value
        if strip_spaces.upper() == 'LEADING':
            return value.lstrip()
        if strip_spaces.upper() == 'TRAILING':
            return value.rstrip()
        return value.strip() if is_truthy(strip_spaces) else value

    def _collapse_spaces(self, value):
        return re.sub(r'\s+', ' ', value) if is_string(value) else value

    def should_not_be_equal(self, first, second, msg=None, values=True,
                            ignore_case=False, strip_spaces=False,
                            collapse_spaces=False):
        """Fails if the given objects are equal.

        See `Should Be Equal` for an explanation on how to override the default
        error message with ``msg`` and ``values``.

        If ``ignore_case`` is given a true value (see `Boolean arguments`) and
        both arguments are strings, comparison is done case-insensitively.

        If ``strip_spaces`` is given a true value (see `Boolean arguments`)
        and both arguments are strings, the comparison is done without leading
        and trailing spaces. If ``strip_spaces`` is given a string value
        ``LEADING`` or ``TRAILING`` (case-insensitive), the comparison is done
        without leading or trailing spaces, respectively.

        If ``collapse_spaces`` is given a true value (see `Boolean arguments`) and both
        arguments are strings, the comparison is done with all white spaces replaced by
        a single space character.

        ``strip_spaces`` is new in Robot Framework 4.0 and ``collapse_spaces`` is new
        in Robot Framework 4.1.
        """
        self._log_types_at_info_if_different(first, second)
        if is_string(first) and is_string(second):
            if ignore_case:
                first = first.lower()
                second = second.lower()
            if strip_spaces:
                first = self._strip_spaces(first, strip_spaces)
                second = self._strip_spaces(second, strip_spaces)
            if collapse_spaces:
                first = self._collapse_spaces(first)
                second = self._collapse_spaces(second)
        self._should_not_be_equal(first, second, msg, values)

    def _should_not_be_equal(self, first, second, msg, values):
        assert_not_equal(first, second, msg, self._include_values(values))

    def should_not_be_equal_as_integers(self, first, second, msg=None,
                                        values=True, base=None):
        """Fails if objects are equal after converting them to integers.

        See `Convert To Integer` for information how to convert integers from
        other bases than 10 using ``base`` argument or ``0b/0o/0x`` prefixes.

        See `Should Be Equal` for an explanation on how to override the default
        error message with ``msg`` and ``values``.

        See `Should Be Equal As Integers` for some usage examples.
        """
        self._log_types_at_info_if_different(first, second)
        self._should_not_be_equal(self._convert_to_integer(first, base),
                                  self._convert_to_integer(second, base),
                                  msg, values)

    def should_be_equal_as_integers(self, first, second, msg=None, values=True,
                                    base=None):
        """Fails if objects are unequal after converting them to integers.

        See `Convert To Integer` for information how to convert integers from
        other bases than 10 using ``base`` argument or ``0b/0o/0x`` prefixes.

        See `Should Be Equal` for an explanation on how to override the default
        error message with ``msg`` and ``values``.

        Examples:
        | Should Be Equal As Integers | 42   | ${42} | Error message |
        | Should Be Equal As Integers | ABCD | abcd  | base=16 |
        | Should Be Equal As Integers | 0b1011 | 11  |
        """
        self._log_types_at_info_if_different(first, second)
        self._should_be_equal(self._convert_to_integer(first, base),
                              self._convert_to_integer(second, base),
                              msg, values)

    def should_not_be_equal_as_numbers(self, first, second, msg=None,
                                       values=True, precision=6):
        """Fails if objects are equal after converting them to real numbers.

        The conversion is done with `Convert To Number` keyword using the
        given ``precision``.

        See `Should Be Equal As Numbers` for examples on how to use
        ``precision`` and why it does not always work as expected. See also
        `Should Be Equal` for an explanation on how to override the default
        error message with ``msg`` and ``values``.
        """
        self._log_types_at_info_if_different(first, second)
        first = self._convert_to_number(first, precision)
        second = self._convert_to_number(second, precision)
        self._should_not_be_equal(first, second, msg, values)

    def should_be_equal_as_numbers(self, first, second, msg=None, values=True,
                                   precision=6):
        """Fails if objects are unequal after converting them to real numbers.

        The conversion is done with `Convert To Number` keyword using the
        given ``precision``.

        Examples:
        | Should Be Equal As Numbers | ${x} | 1.1 | | # Passes if ${x} is 1.1 |
        | Should Be Equal As Numbers | 1.123 | 1.1 | precision=1  | # Passes |
        | Should Be Equal As Numbers | 1.123 | 1.4 | precision=0  | # Passes |
        | Should Be Equal As Numbers | 112.3 | 75  | precision=-2 | # Passes |

        As discussed in the documentation of `Convert To Number`, machines
        generally cannot store floating point numbers accurately. Because of
        this limitation, comparing floats for equality is problematic and
        a correct approach to use depends on the context. This keyword uses
        a very naive approach of rounding the numbers before comparing them,
        which is both prone to rounding errors and does not work very well if
        numbers are really big or small. For more information about comparing
        floats, and ideas on how to implement your own context specific
        comparison algorithm, see
        http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/.

        If you want to avoid possible problems with floating point numbers,
        you can implement custom keywords using Python's
        [http://docs.python.org/library/decimal.html|decimal] or
        [http://docs.python.org/library/fractions.html|fractions] modules.

        See `Should Not Be Equal As Numbers` for a negative version of this
        keyword and `Should Be Equal` for an explanation on how to override
        the default error message with ``msg`` and ``values``.
        """
        self._log_types_at_info_if_different(first, second)
        first = self._convert_to_number(first, precision)
        second = self._convert_to_number(second, precision)
        self._should_be_equal(first, second, msg, values)

    def should_not_be_equal_as_strings(self, first, second, msg=None, values=True,
                                       ignore_case=False, strip_spaces=False,
                                       collapse_spaces=False):
        """Fails if objects are equal after converting them to strings.

        See `Should Be Equal` for an explanation on how to override the default
        error message with ``msg`` and ``values``.

        If ``ignore_case`` is given a true value (see `Boolean arguments`),
        comparison is done case-insensitively.

        If ``strip_spaces`` is given a true value (see `Boolean arguments`)
        and both arguments are strings, the comparison is done without leading
        and trailing spaces. If ``strip_spaces`` is given a string value
        ``LEADING`` or ``TRAILING`` (case-insensitive), the comparison is done
        without leading or trailing spaces, respectively.

        If ``collapse_spaces`` is given a true value (see `Boolean arguments`) and both
        arguments are strings, the comparison is done with all white spaces replaced by
        a single space character.

        Strings are always [http://www.macchiato.com/unicode/nfc-faq|
        NFC normalized].

        ``strip_spaces`` is new in Robot Framework 4.0 and ``collapse_spaces`` is new
        in Robot Framework 4.1.
        """
        self._log_types_at_info_if_different(first, second)
        first = self._convert_to_string(first)
        second = self._convert_to_string(second)
        if ignore_case:
            first = first.lower()
            second = second.lower()
        if strip_spaces:
            first = self._strip_spaces(first, strip_spaces)
            second = self._strip_spaces(second, strip_spaces)
        if collapse_spaces:
            first = self._collapse_spaces(first)
            second = self._collapse_spaces(second)
        self._should_not_be_equal(first, second, msg, values)

    def should_be_equal_as_strings(self, first, second, msg=None, values=True,
                                   ignore_case=False, strip_spaces=False,
                                   formatter='str', collapse_spaces=False):
        """Fails if objects are unequal after converting them to strings.

        See `Should Be Equal` for an explanation on how to override the default
        error message with ``msg``, ``values`` and ``formatter``.

        If ``ignore_case`` is given a true value (see `Boolean arguments`),
        comparison is done case-insensitively. If both arguments are
        multiline strings, this keyword uses `multiline string comparison`.

        If ``strip_spaces`` is given a true value (see `Boolean arguments`)
        and both arguments are strings, the comparison is done without leading
        and trailing spaces. If ``strip_spaces`` is given a string value
        ``LEADING`` or ``TRAILING`` (case-insensitive), the comparison is done
        without leading or trailing spaces, respectively.

        If ``collapse_spaces`` is given a true value (see `Boolean arguments`) and both
        arguments are strings, the comparison is done with all white spaces replaced by
        a single space character.

        Strings are always [http://www.macchiato.com/unicode/nfc-faq| NFC normalized].

        ``strip_spaces`` is new in Robot Framework 4.0
        and ``collapse_spaces`` is new in Robot Framework 4.1.
        """
        self._log_types_at_info_if_different(first, second)
        first = self._convert_to_string(first)
        second = self._convert_to_string(second)
        if ignore_case:
            first = first.lower()
            second = second.lower()
        if strip_spaces:
            first = self._strip_spaces(first, strip_spaces)
            second = self._strip_spaces(second, strip_spaces)
        if collapse_spaces:
            first = self._collapse_spaces(first)
            second = self._collapse_spaces(second)
        self._should_be_equal(first, second, msg, values, formatter)

    def should_not_start_with(self, str1, str2, msg=None, values=True,
                              ignore_case=False, strip_spaces=False,
                              collapse_spaces=False):
        """Fails if the string ``str1`` starts with the string ``str2``.

        See `Should Be Equal` for an explanation on how to override the default
        error message with ``msg`` and ``values``, as well as for semantics
        of the ``ignore_case``, ``strip_spaces``, and ``collapse_spaces`` options.
        """
        if ignore_case:
            str1 = str1.lower()
            str2 = str2.lower()
        if strip_spaces:
            str1 = self._strip_spaces(str1, strip_spaces)
            str2 = self._strip_spaces(str2, strip_spaces)
        if collapse_spaces:
            str1 = self._collapse_spaces(str1)
            str2 = self._collapse_spaces(str2)
        if str1.startswith(str2):
            raise AssertionError(self._get_string_msg(str1, str2, msg, values,
                                                      'starts with'))

    def should_start_with(self, str1, str2, msg=None, values=True,
                          ignore_case=False, strip_spaces=False, collapse_spaces=False):
        """Fails if the string ``str1`` does not start with the string ``str2``.

        See `Should Be Equal` for an explanation on how to override the default
        error message with ``msg`` and ``values``, as well as for semantics
        of the ``ignore_case``, ``strip_spaces``, and ``collapse_spaces`` options.
        """
        if ignore_case:
            str1 = str1.lower()
            str2 = str2.lower()
        if strip_spaces:
            str1 = self._strip_spaces(str1, strip_spaces)
            str2 = self._strip_spaces(str2, strip_spaces)
        if collapse_spaces:
            str1 = self._collapse_spaces(str1)
            str2 = self._collapse_spaces(str2)
        if not str1.startswith(str2):
            raise AssertionError(self._get_string_msg(str1, str2, msg, values,
                                                      'does not start with'))

    def should_not_end_with(self, str1, str2, msg=None, values=True,
                            ignore_case=False, strip_spaces=False,
                            collapse_spaces=False):
        """Fails if the string ``str1`` ends with the string ``str2``.

        See `Should Be Equal` for an explanation on how to override the default
        error message with ``msg`` and ``values``, as well as for semantics
        of the ``ignore_case``, ``strip_spaces``, and ``collapse_spaces`` options.
        """
        if ignore_case:
            str1 = str1.lower()
            str2 = str2.lower()
        if strip_spaces:
            str1 = self._strip_spaces(str1, strip_spaces)
            str2 = self._strip_spaces(str2, strip_spaces)
        if collapse_spaces:
            str1 = self._collapse_spaces(str1)
            str2 = self._collapse_spaces(str2)
        if str1.endswith(str2):
            raise AssertionError(self._get_string_msg(str1, str2, msg, values,
                                                      'ends with'))

    def should_end_with(self, str1, str2, msg=None, values=True,
                        ignore_case=False, strip_spaces=False, collapse_spaces=False):
        """Fails if the string ``str1`` does not end with the string ``str2``.

        See `Should Be Equal` for an explanation on how to override the default
        error message with ``msg`` and ``values``, as well as for semantics
        of the ``ignore_case``, ``strip_spaces``, and ``collapse_spaces`` options.
        """
        if ignore_case:
            str1 = str1.lower()
            str2 = str2.lower()
        if strip_spaces:
            str1 = self._strip_spaces(str1, strip_spaces)
            str2 = self._strip_spaces(str2, strip_spaces)
        if collapse_spaces:
            str1 = self._collapse_spaces(str1)
            str2 = self._collapse_spaces(str2)
        if not str1.endswith(str2):
            raise AssertionError(self._get_string_msg(str1, str2, msg, values,
                                                      'does not end with'))

    def should_not_contain(self, container, item, msg=None, values=True,
                           ignore_case=False, strip_spaces=False,
                           collapse_spaces=False):
        """Fails if ``container`` contains ``item`` one or more times.

        Works with strings, lists, and anything that supports Python's ``in``
        operator.

        See `Should Be Equal` for an explanation on how to override the default
        error message with arguments ``msg`` and ``values``. ``ignore_case``
        has exactly the same semantics as with `Should Contain`.

        If ``strip_spaces`` is given a true value (see `Boolean arguments`)
        and both arguments are strings, the comparison is done without leading
        and trailing spaces. If ``strip_spaces`` is given a string value
        ``LEADING`` or ``TRAILING`` (case-insensitive), the comparison is done
        without leading or trailing spaces, respectively.

        If ``collapse_spaces`` is given a true value (see `Boolean arguments`) and both
        arguments are strings, the comparison is done with all white spaces replaced by
        a single space character.

        Examples:
        | Should Not Contain | ${some list} | value  |
        | Should Not Contain | ${output}    | FAILED | ignore_case=True |

        ``strip_spaces`` is new in Robot Framework 4.0 and ``collapse_spaces`` is new
        in Robot Framework 4.1.
        """
        # TODO: It is inconsistent that errors show original case in 'container'
        # 'item' is in lower case. Should rather show original case everywhere
        # and add separate '(case-insensitive)' not to the error message.
        # This same logic should be used with all keywords supporting
        # case-insensitive comparisons.
        orig_container = container
        if ignore_case and is_string(item):
            item = item.lower()
            if is_string(container):
                container = container.lower()
            elif is_list_like(container):
                container = set(x.lower() if is_string(x) else x for x in container)
        if strip_spaces and is_string(item):
            item = self._strip_spaces(item, strip_spaces)
            if is_string(container):
                container = self._strip_spaces(container, strip_spaces)
            elif is_list_like(container):
                container = set(self._strip_spaces(x, strip_spaces) for x in container)
        if collapse_spaces and is_string(item):
            item = self._collapse_spaces(item)
            if is_string(container):
                container = self._collapse_spaces(container)
            elif is_list_like(container):
                container = set(self._collapse_spaces(x) for x in container)
        if item in container:
            raise AssertionError(self._get_string_msg(orig_container, item, msg,
                                                      values, 'contains'))

    def should_contain(self, container, item, msg=None, values=True,
                       ignore_case=False, strip_spaces=False, collapse_spaces=False):
        """Fails if ``container`` does not contain ``item`` one or more times.

        Works with strings, lists, and anything that supports Python's ``in``
        operator.

        See `Should Be Equal` for an explanation on how to override the default
        error message with arguments ``msg`` and ``values``.

        If ``ignore_case`` is given a true value (see `Boolean arguments`) and
        compared items are strings, it indicates that comparison should be
        case-insensitive. If the ``container`` is a list-like object, string
        items in it are compared case-insensitively.

        If ``strip_spaces`` is given a true value (see `Boolean arguments`)
        and both arguments are strings, the comparison is done without leading
        and trailing spaces. If ``strip_spaces`` is given a string value
        ``LEADING`` or ``TRAILING`` (case-insensitive), the comparison is done
        without leading or trailing spaces, respectively.

        If ``collapse_spaces`` is given a true value (see `Boolean arguments`) and both
        arguments are strings, the comparison is done with all white spaces replaced by
        a single space character.

        Examples:
        | Should Contain | ${output}    | PASS  | | |
        | Should Contain | ${some list} | value | msg=Failure! | values=False |
        | Should Contain | ${some list} | value | ignore_case=True |

        ``strip_spaces`` is new in Robot Framework 4.0 and ``collapse_spaces`` is new
        in Robot Framework 4.1.
        """
        orig_container = container
        if ignore_case and is_string(item):
            item = item.lower()
            if is_string(container):
                container = container.lower()
            elif is_list_like(container):
                container = set(x.lower() if is_string(x) else x for x in container)
        if strip_spaces and is_string(item):
            item = self._strip_spaces(item, strip_spaces)
            if is_string(container):
                container = self._strip_spaces(container, strip_spaces)
            elif is_list_like(container):
                container = set(self._strip_spaces(x, strip_spaces) for x in container)
        if collapse_spaces and is_string(item):
            item = self._collapse_spaces(item)
            if is_string(container):
                container = self._collapse_spaces(container)
            elif is_list_like(container):
                container = set(self._collapse_spaces(x) for x in container)
        if item not in container:
            raise AssertionError(self._get_string_msg(orig_container, item, msg,
                                                      values, 'does not contain'))

    def should_contain_any(self, container, *items, **configuration):
        """Fails if ``container`` does not contain any of the ``*items``.

        Works with strings, lists, and anything that supports Python's ``in``
        operator.

        Supports additional configuration parameters ``msg``, ``values``,
        ``ignore_case`` and ``strip_spaces``, and ``collapse_spaces``
        which have exactly the same semantics as arguments with same
        names have with `Should Contain`. These arguments must always
        be given using ``name=value`` syntax after all ``items``.

        Note that possible equal signs in ``items`` must be escaped with
        a backslash (e.g. ``foo\\=bar``) to avoid them to be passed in
        as ``**configuration``.

        Examples:
        | Should Contain Any | ${string} | substring 1 | substring 2 | | |
        | Should Contain Any | ${list}   | item 1 | item 2 | item 3 |
        | Should Contain Any | ${list}   | item 1 | item 2 | item 3 | ignore_case=True |
        | Should Contain Any | ${list}   | @{items} | msg=Custom message | values=False |
        """
        msg = configuration.pop('msg', None)
        values = configuration.pop('values', True)
        ignore_case = is_truthy(configuration.pop('ignore_case', False))
        strip_spaces = configuration.pop('strip_spaces', False)
        collapse_spaces = is_truthy(configuration.pop('collapse_spaces', False))
        if configuration:
            raise RuntimeError("Unsupported configuration parameter%s: %s."
                               % (s(configuration), seq2str(sorted(configuration))))
        if not items:
            raise RuntimeError('One or more items required.')
        orig_container = container
        if ignore_case:
            items = [x.lower() if is_string(x) else x for x in items]
            if is_string(container):
                container = container.lower()
            elif is_list_like(container):
                container = set(x.lower() if is_string(x) else x for x in container)
        if strip_spaces:
            items = [self._strip_spaces(x, strip_spaces) for x in items]
            if is_string(container):
                container = self._strip_spaces(container, strip_spaces)
            elif is_list_like(container):
                container = set(self._strip_spaces(x, strip_spaces) for x in container)
        if collapse_spaces:
            items = [self._collapse_spaces(x) for x in items]
            if is_string(container):
                container = self._collapse_spaces(container)
            elif is_list_like(container):
                container = set(self._collapse_spaces(x) for x in container)
        if not any(item in container for item in items):
            msg = self._get_string_msg(orig_container,
                                       seq2str(items, lastsep=' or '),
                                       msg, values,
                                       'does not contain any of',
                                       quote_item2=False)
            raise AssertionError(msg)

    def should_not_contain_any(self, container, *items, **configuration):
        """Fails if ``container`` contains one or more of the ``*items``.

        Works with strings, lists, and anything that supports Python's ``in``
        operator.

        Supports additional configuration parameters ``msg``, ``values``,
        ``ignore_case`` and ``strip_spaces``, and ``collapse_spaces`` which have exactly
        the same semantics as arguments with same names have with `Should Contain`.
        These arguments must always be given using ``name=value`` syntax after all ``items``.

        Note that possible equal signs in ``items`` must be escaped with
        a backslash (e.g. ``foo\\=bar``) to avoid them to be passed in
        as ``**configuration``.

        Examples:
        | Should Not Contain Any | ${string} | substring 1 | substring 2 | | |
        | Should Not Contain Any | ${list}   | item 1 | item 2 | item 3 |
        | Should Not Contain Any | ${list}   | item 1 | item 2 | item 3 | ignore_case=True |
        | Should Not Contain Any | ${list}   | @{items} | msg=Custom message | values=False |
        """
        msg = configuration.pop('msg', None)
        values = configuration.pop('values', True)
        ignore_case = is_truthy(configuration.pop('ignore_case', False))
        strip_spaces = configuration.pop('strip_spaces', False)
        collapse_spaces = is_truthy(configuration.pop('collapse_spaces', False))
        if configuration:
            raise RuntimeError("Unsupported configuration parameter%s: %s."
                               % (s(configuration), seq2str(sorted(configuration))))
        if not items:
            raise RuntimeError('One or more items required.')
        orig_container = container
        if ignore_case:
            items = [x.lower() if is_string(x) else x for x in items]
            if is_string(container):
                container = container.lower()
            elif is_list_like(container):
                container = set(x.lower() if is_string(x) else x for x in container)
        if strip_spaces:
            items = [self._strip_spaces(x, strip_spaces) for x in items]
            if is_string(container):
                container = self._strip_spaces(container, strip_spaces)
            elif is_list_like(container):
                container = set(self._strip_spaces(x, strip_spaces) for x in container)
        if collapse_spaces:
            items = [self._collapse_spaces(x) for x in items]
            if is_string(container):
                container = self._collapse_spaces(container)
            elif is_list_like(container):
                container = set(self._collapse_spaces(x) for x in container)
        if any(item in container for item in items):
            msg = self._get_string_msg(orig_container,
                                       seq2str(items, lastsep=' or '),
                                       msg, values,
                                       'contains one or more of',
                                       quote_item2=False)
            raise AssertionError(msg)

    def should_contain_x_times(self, container, item, count, msg=None,
                               ignore_case=False, strip_spaces=False,
                               collapse_spaces=False):
        """Fails if ``container`` does not contain ``item`` ``count`` times.

        Works with strings, lists and all objects that `Get Count` works
        with. The default error message can be overridden with ``msg`` and
        the actual count is always logged.

        If ``ignore_case`` is given a true value (see `Boolean arguments`) and
        compared items are strings, it indicates that comparison should be
        case-insensitive. If the ``container`` is a list-like object, string
        items in it are compared case-insensitively.

        If ``strip_spaces`` is given a true value (see `Boolean arguments`)
        and both arguments are strings, the comparison is done without leading
        and trailing spaces. If ``strip_spaces`` is given a string value
        ``LEADING`` or ``TRAILING`` (case-insensitive), the comparison is done
        without leading or trailing spaces, respectively.

        If ``collapse_spaces`` is given a true value (see `Boolean arguments`) and both
        arguments are strings, the comparison is done with all white spaces replaced by
        a single space character.

        Examples:
        | Should Contain X Times | ${output}    | hello | 2 |
        | Should Contain X Times | ${some list} | value | 3 | ignore_case=True |

        ``strip_spaces`` is new in Robot Framework 4.0 and ``collapse_spaces`` is new
        in Robot Framework 4.1.
        """
        count = self._convert_to_integer(count)
        orig_container = container
        if is_string(item):
            if ignore_case:
                item = item.lower()
                if is_string(container):
                    container = container.lower()
                elif is_list_like(container):
                    container = [x.lower() if is_string(x) else x for x in container]
            if strip_spaces:
                item = self._strip_spaces(item, strip_spaces)
                if is_string(container):
                    container = self._strip_spaces(container, strip_spaces)
                elif is_list_like(container):
                    container = [self._strip_spaces(x, strip_spaces) for x in container]
            if collapse_spaces:
                item = self._collapse_spaces(item)
                if is_string(container):
                    container = self._collapse_spaces(container)
                elif is_list_like(container):
                    container = [self._collapse_spaces(x) for x in container]
        x = self.get_count(container, item)
        if not msg:
            msg = "'%s' contains '%s' %d time%s, not %d time%s." \
                    % (unic(orig_container), unic(item), x, s(x), count, s(count))
        self.should_be_equal_as_integers(x, count, msg, values=False)

    def get_count(self, container, item):
        """Returns and logs how many times ``item`` is found from ``container``.

        This keyword works with Python strings and lists and all objects
        that either have ``count`` method or can be converted to Python lists.

        Example:
        | ${count} = | Get Count | ${some item} | interesting value |
        | Should Be True | 5 < ${count} < 10 |
        """
        if not hasattr(container, 'count'):
            try:
                container = list(container)
            except:
                raise RuntimeError("Converting '%s' to list failed: %s"
                                   % (container, get_error_message()))
        count = container.count(item)
        self.log('Item found from container %d time%s.' % (count, s(count)))
        return count

    def should_not_match(self, string, pattern, msg=None, values=True,
                         ignore_case=False):
        """Fails if the given ``string`` matches the given ``pattern``.

        Pattern matching is similar as matching files in a shell with
        ``*``, ``?`` and ``[chars]`` acting as wildcards. See the
        `Glob patterns` section for more information.

        If ``ignore_case`` is given a true value (see `Boolean arguments`),
        the comparison is case-insensitive.

        See `Should Be Equal` for an explanation on how to override the default
        error message with ``msg`` and ``values`.
        """
        if self._matches(string, pattern, caseless=ignore_case):
            raise AssertionError(self._get_string_msg(string, pattern, msg,
                                                      values, 'matches'))

    def should_match(self, string, pattern, msg=None, values=True,
                     ignore_case=False):
        """Fails if the given ``string`` does not match the given ``pattern``.

        Pattern matching is similar as matching files in a shell with
        ``*``, ``?`` and ``[chars]`` acting as wildcards. See the
        `Glob patterns` section for more information.

        If ``ignore_case`` is given a true value (see `Boolean arguments`) and
        compared items are strings, it indicates that comparison should be
        case-insensitive.

        See `Should Be Equal` for an explanation on how to override the default
        error message with ``msg`` and ``values``.
        """
        if not self._matches(string, pattern, caseless=ignore_case):
            raise AssertionError(self._get_string_msg(string, pattern, msg,
                                                      values, 'does not match'))

    def should_match_regexp(self, string, pattern, msg=None, values=True):
        """Fails if ``string`` does not match ``pattern`` as a regular expression.

        See the `Regular expressions` section for more information about
        regular expressions and how to use then in Robot Framework test data.

        Notice that the given pattern does not need to match the whole string.
        For example, the pattern ``ello`` matches the string ``Hello world!``.
        If a full match is needed, the ``^`` and ``$`` characters can be used
        to denote the beginning and end of the string, respectively.
        For example, ``^ello$`` only matches the exact string ``ello``.

        Possible flags altering how the expression is parsed (e.g.
        ``re.IGNORECASE``, ``re.MULTILINE``) must be embedded to the
        pattern like ``(?im)pattern``. The most useful flags are ``i``
        (case-insensitive), ``m`` (multiline mode), ``s`` (dotall mode)
        and ``x`` (verbose).

        If this keyword passes, it returns the portion of the string that
        matched the pattern. Additionally, the possible captured groups are
        returned.

        See the `Should Be Equal` keyword for an explanation on how to override
        the default error message with the ``msg`` and ``values`` arguments.

        Examples:
        | Should Match Regexp | ${output} | \\\\d{6}   | # Output contains six numbers  | |
        | Should Match Regexp | ${output} | ^\\\\d{6}$ | # Six numbers and nothing more |
        | ${ret} = | Should Match Regexp | Foo: 42 | (?i)foo: \\\\d+ |
        | ${match} | ${group1} | ${group2} = |
        | ...      | Should Match Regexp | Bar: 43 | (Foo|Bar): (\\\\d+) |
        =>
        | ${ret} = 'Foo: 42'
        | ${match} = 'Bar: 43'
        | ${group1} = 'Bar'
        | ${group2} = '43'
        """
        res = re.search(pattern, string)
        if res is None:
            raise AssertionError(self._get_string_msg(string, pattern, msg,
                                                      values, 'does not match'))
        match = res.group(0)
        groups = res.groups()
        if groups:
            return [match] + list(groups)
        return match

    def should_not_match_regexp(self, string, pattern, msg=None, values=True):
        """Fails if ``string`` matches ``pattern`` as a regular expression.

        See `Should Match Regexp` for more information about arguments.
        """
        if re.search(pattern, string) is not None:
            raise AssertionError(self._get_string_msg(string, pattern, msg,
                                                      values, 'matches'))

    def get_length(self, item):
        """Returns and logs the length of the given item as an integer.

        The item can be anything that has a length, for example, a string,
        a list, or a mapping. The keyword first tries to get the length with
        the Python function ``len``, which calls the  item's ``__len__`` method
        internally. If that fails, the keyword tries to call the item's
        possible ``length`` and ``size`` methods directly. The final attempt is
        trying to get the value of the item's ``length`` attribute. If all
        these attempts are unsuccessful, the keyword fails.

        Examples:
        | ${length} = | Get Length    | Hello, world! |        |
        | Should Be Equal As Integers | ${length}     | 13     |
        | @{list} =   | Create List   | Hello,        | world! |
        | ${length} = | Get Length    | ${list}       |        |
        | Should Be Equal As Integers | ${length}     | 2      |

        See also `Length Should Be`, `Should Be Empty` and `Should Not Be
        Empty`.
        """
        length = self._get_length(item)
        self.log('Length is %d' % length)
        return length

    def _get_length(self, item):
        try:
            return len(item)
        except RERAISED_EXCEPTIONS:
            raise
        except:
            try:
                return item.length()
            except RERAISED_EXCEPTIONS:
                raise
            except:
                try:
                    return item.size()
                except RERAISED_EXCEPTIONS:
                    raise
                except:
                    try:
                        return item.length
                    except RERAISED_EXCEPTIONS:
                        raise
                    except:
                        raise RuntimeError("Could not get length of '%s'." % item)

    def length_should_be(self, item, length, msg=None):
        """Verifies that the length of the given item is correct.

        The length of the item is got using the `Get Length` keyword. The
        default error message can be overridden with the ``msg`` argument.
        """
        length = self._convert_to_integer(length)
        actual = self.get_length(item)
        if actual != length:
            raise AssertionError(msg or "Length of '%s' should be %d but is %d."
                                        % (item, length, actual))

    def should_be_empty(self, item, msg=None):
        """Verifies that the given item is empty.

        The length of the item is got using the `Get Length` keyword. The
        default error message can be overridden with the ``msg`` argument.
        """
        if self.get_length(item) > 0:
            raise AssertionError(msg or "'%s' should be empty." % (item,))

    def should_not_be_empty(self, item, msg=None):
        """Verifies that the given item is not empty.

        The length of the item is got using the `Get Length` keyword. The
        default error message can be overridden with the ``msg`` argument.
        """
        if self.get_length(item) == 0:
            raise AssertionError(msg or "'%s' should not be empty." % (item,))

    def _get_string_msg(self, item1, item2, custom_message, include_values,
                        delimiter, quote_item1=True, quote_item2=True):
        if custom_message and not self._include_values(include_values):
            return custom_message
        item1 = "'%s'" % unic(item1) if quote_item1 else unic(item1)
        item2 = "'%s'" % unic(item2) if quote_item2 else unic(item2)
        default_message = '%s %s %s' % (item1, delimiter, item2)
        if not custom_message:
            return default_message
        return '%s: %s' % (custom_message, default_message)


class _Variables(_BuiltInBase):

    def get_variables(self, no_decoration=False):
        """Returns a dictionary containing all variables in the current scope.

        Variables are returned as a special dictionary that allows accessing
        variables in space, case, and underscore insensitive manner similarly
        as accessing variables in the test data. This dictionary supports all
        same operations as normal Python dictionaries and, for example,
        Collections library can be used to access or modify it. Modifying the
        returned dictionary has no effect on the variables available in the
        current scope.

        By default variables are returned with ``${}``, ``@{}`` or ``&{}``
        decoration based on variable types. Giving a true value (see `Boolean
        arguments`) to the optional argument ``no_decoration`` will return
        the variables without the decoration.

        Example:
        | ${example_variable} =         | Set Variable | example value         | |
        | ${variables} =                | Get Variables |                      |
        | Dictionary Should Contain Key | ${variables} | \\${example_variable} |
        | Dictionary Should Contain Key | ${variables} | \\${ExampleVariable}  |
        | Set To Dictionary             | ${variables} | \\${name} | value     |
        | Variable Should Not Exist     | \\${name}    |           |           |
        | ${no decoration} =            | Get Variables | no_decoration=Yes |
        | Dictionary Should Contain Key | ${no decoration} | example_variable |
        """
        return self._variables.as_dict(decoration=is_falsy(no_decoration))

    @keyword(types=None)
    @run_keyword_variant(resolve=0)
    def get_variable_value(self, name, default=None):
        """Returns variable value or ``default`` if the variable does not exist.

        The name of the variable can be given either as a normal variable name
        (e.g. ``${NAME}``) or in escaped format (e.g. ``\\${NAME}``). Notice
        that the former has some limitations explained in `Set Suite Variable`.

        Examples:
        | ${x} = | Get Variable Value | ${a} | default |
        | ${y} = | Get Variable Value | ${a} | ${b}    |
        | ${z} = | Get Variable Value | ${z} |         |
        =>
        | ${x} gets value of ${a} if ${a} exists and string 'default' otherwise
        | ${y} gets value of ${a} if ${a} exists and value of ${b} otherwise
        | ${z} is set to Python None if it does not exist previously

        See `Set Variable If` for another keyword to set variables dynamically.
        """
        name = self._get_var_name(name)
        try:
            return self._variables.replace_scalar(name)
        except VariableError:
            return self._variables.replace_scalar(default)

    def log_variables(self, level='INFO'):
        """Logs all variables in the current scope with given log level."""
        variables = self.get_variables()
        for name in sorted(variables, key=lambda s: s[2:-1].lower()):
            name, value = self._get_logged_variable(name, variables)
            msg = format_assign_message(name, value, cut_long=False)
            self.log(msg, level)

    def _get_logged_variable(self, name, variables):
        value = variables[name]
        try:
            if name[0] == '@':
                value = list(value)
            if name[0] == '&':
                value = OrderedDict(value)
        except RERAISED_EXCEPTIONS:
            raise
        except:
            name = '$' + name[1:]
        return name, value

    @run_keyword_variant(resolve=0)
    def variable_should_exist(self, name, msg=None):
        """Fails unless the given variable exists within the current scope.

        The name of the variable can be given either as a normal variable name
        (e.g. ``${NAME}``) or in escaped format (e.g. ``\\${NAME}``). Notice
        that the former has some limitations explained in `Set Suite Variable`.

        The default error message can be overridden with the ``msg`` argument.

        See also `Variable Should Not Exist` and `Keyword Should Exist`.
        """
        name = self._get_var_name(name)
        try:
            self._variables.replace_scalar(name)
        except VariableError:
            raise AssertionError(self._variables.replace_string(msg)
                                 if msg else "Variable '%s' does not exist." % name)

    @run_keyword_variant(resolve=0)
    def variable_should_not_exist(self, name, msg=None):
        """Fails if the given variable exists within the current scope.

        The name of the variable can be given either as a normal variable name
        (e.g. ``${NAME}``) or in escaped format (e.g. ``\\${NAME}``). Notice
        that the former has some limitations explained in `Set Suite Variable`.

        The default error message can be overridden with the ``msg`` argument.

        See also `Variable Should Exist` and `Keyword Should Exist`.
        """
        name = self._get_var_name(name)
        try:
            self._variables.replace_scalar(name)
        except VariableError:
            pass
        else:
            raise AssertionError(self._variables.replace_string(msg)
                                 if msg else "Variable '%s' exists." % name)

    def replace_variables(self, text):
        """Replaces variables in the given text with their current values.

        If the text contains undefined variables, this keyword fails.
        If the given ``text`` contains only a single variable, its value is
        returned as-is and it can be any object. Otherwise this keyword
        always returns a string.

        Example:

        The file ``template.txt`` contains ``Hello ${NAME}!`` and variable
        ``${NAME}`` has the value ``Robot``.

        | ${template} =   | Get File          | ${CURDIR}/template.txt |
        | ${message} =    | Replace Variables | ${template}            |
        | Should Be Equal | ${message}        | Hello Robot!           |
        """
        return self._variables.replace_scalar(text)

    def set_variable(self, *values):
        """Returns the given values which can then be assigned to a variables.

        This keyword is mainly used for setting scalar variables.
        Additionally it can be used for converting a scalar variable
        containing a list to a list variable or to multiple scalar variables.
        It is recommended to use `Create List` when creating new lists.

        Examples:
        | ${hi} =   | Set Variable | Hello, world! | | |
        | ${hi2} =  | Set Variable | I said: ${hi} |
        | ${var1}   | ${var2} =    | Set Variable | Hello | world |
        | @{list} = | Set Variable | ${list with some items} |
        | ${item1}  | ${item2} =   | Set Variable  | ${list with 2 items} |

        Variables created with this keyword are available only in the
        scope where they are created. See `Set Global Variable`,
        `Set Test Variable` and `Set Suite Variable` for information on how to
        set variables so that they are available also in a larger scope.
        """
        if len(values) == 0:
            return ''
        elif len(values) == 1:
            return values[0]
        else:
            return list(values)

    @run_keyword_variant(resolve=0)
    def set_local_variable(self, name, *values):
        """Makes a variable available everywhere within the local scope.

        Variables set with this keyword are available within the
        local scope of the currently executed test case or in the local scope
        of the keyword in which they are defined. For example, if you set a
        variable in a user keyword, it is available only in that keyword. Other
        test cases or keywords will not see variables set with this keyword.

        This keyword is equivalent to a normal variable assignment based on a
        keyword return value.

        Example:
        | @{list} =          | Create List | item1     | item2     | item3     |

        is equivalent with

        | Set Local Variable | @{list} | item1    | item2    | item3    |

        This keyword will provide the option of setting local variables inside keywords
        like `Run Keyword If`, `Run Keyword And Return If`, `Run Keyword Unless`
        which until now was not possible by using `Set Variable`.

        It will also be possible to use this keyword from external libraries
        that want to set local variables.

        New in Robot Framework 3.2.
        """
        name = self._get_var_name(name)
        value = self._get_var_value(name, values)
        self._variables.set_local_variable(name, value)
        self._log_set_variable(name, value)

    @run_keyword_variant(resolve=0)
    def set_test_variable(self, name, *values):
        """Makes a variable available everywhere within the scope of the current test.

        Variables set with this keyword are available everywhere within the
        scope of the currently executed test case. For example, if you set a
        variable in a user keyword, it is available both in the test case level
        and also in all other user keywords used in the current test. Other
        test cases will not see variables set with this keyword.
        It is an error to call `Set Test Variable` outside the
        scope of a test (e.g. in a Suite Setup or Teardown).

        See `Set Suite Variable` for more information and examples.
        """
        name = self._get_var_name(name)
        value = self._get_var_value(name, values)
        self._variables.set_test(name, value)
        self._log_set_variable(name, value)

    @run_keyword_variant(resolve=0)
    def set_task_variable(self, name, *values):
        """Makes a variable available everywhere within the scope of the current task.

        This is an alias for `Set Test Variable` that is more applicable when
        creating tasks, not tests.
        """
        self.set_test_variable(name, *values)

    @run_keyword_variant(resolve=0)
    def set_suite_variable(self, name, *values):
        """Makes a variable available everywhere within the scope of the current suite.

        Variables set with this keyword are available everywhere within the
        scope of the currently executed test suite. Setting variables with this
        keyword thus has the same effect as creating them using the Variable
        table in the test data file or importing them from variable files.

        Possible child test suites do not see variables set with this keyword
        by default, but that can be controlled by using ``children=<option>``
        as the last argument. If the specified ``<option>`` given a true value
        (see `Boolean arguments`), the variable is set also to the child
        suites. Parent and sibling suites will never see variables set with
        this keyword.

        The name of the variable can be given either as a normal variable name
        (e.g. ``${NAME}``) or in escaped format as ``\\${NAME}`` or ``$NAME``.
        Variable value can be given using the same syntax as when variables
        are created in the Variable table.

        If a variable already exists within the new scope, its value will be
        overwritten. Otherwise a new variable is created. If a variable already
        exists within the current scope, the value can be left empty and the
        variable within the new scope gets the value within the current scope.

        Examples:
        | Set Suite Variable | ${SCALAR} | Hello, world! | |
        | Set Suite Variable | ${SCALAR} | Hello, world! | children=true |
        | Set Suite Variable | @{LIST}   | First item    | Second item   |
        | Set Suite Variable | &{DICT}   | key=value     | foo=bar       |
        | ${ID} =            | Get ID    |
        | Set Suite Variable | ${ID}     |

        To override an existing value with an empty value, use built-in
        variables ``${EMPTY}``, ``@{EMPTY}`` or ``&{EMPTY}``:

        | Set Suite Variable | ${SCALAR} | ${EMPTY} |
        | Set Suite Variable | @{LIST}   | @{EMPTY} |
        | Set Suite Variable | &{DICT}   | &{EMPTY} |

        *NOTE:* If the variable has value which itself is a variable (escaped
        or not), you must always use the escaped format to set the variable:

        Example:
        | ${NAME} =          | Set Variable | \\${var} | |
        | Set Suite Variable | ${NAME}      | value | # Sets variable ${var}  |
        | Set Suite Variable | \\${NAME}    | value | # Sets variable ${NAME} |

        This limitation applies also to `Set Test Variable`, `Set Global
        Variable`, `Variable Should Exist`, `Variable Should Not Exist` and
        `Get Variable Value` keywords.
        """
        name = self._get_var_name(name)
        if values and is_string(values[-1]) and values[-1].startswith('children='):
            children = self._variables.replace_scalar(values[-1][9:])
            children = is_truthy(children)
            values = values[:-1]
        else:
            children = False
        value = self._get_var_value(name, values)
        self._variables.set_suite(name, value, children=children)
        self._log_set_variable(name, value)

    @run_keyword_variant(resolve=0)
    def set_global_variable(self, name, *values):
        """Makes a variable available globally in all tests and suites.

        Variables set with this keyword are globally available in all
        subsequent test suites, test cases and user keywords. Also variables
        in variable tables are overridden. Variables assigned locally based
        on keyword return values or by using `Set Test Variable` and
        `Set Suite Variable` override these variables in that scope, but
        the global value is not changed in those cases.

        In practice setting variables with this keyword has the same effect
        as using command line options ``--variable`` and ``--variablefile``.
        Because this keyword can change variables everywhere, it should be
        used with care.

        See `Set Suite Variable` for more information and examples.
        """
        name = self._get_var_name(name)
        value = self._get_var_value(name, values)
        self._variables.set_global(name, value)
        self._log_set_variable(name, value)

    # Helpers

    def _get_var_name(self, original):
        try:
            replaced = self._variables.replace_string(original)
        except VariableError:
            replaced = original
        try:
            name = self._resolve_var_name(replaced)
        except ValueError:
            name = original
        match = search_variable(name)
        match.resolve_base(self._variables)
        if not match.is_assign():
            raise DataError("Invalid variable name '%s'." % name)
        return unic(match)

    def _resolve_var_name(self, name):
        if name.startswith('\\'):
            name = name[1:]
        if len(name) < 2 or name[0] not in '$@&':
            raise ValueError
        if name[1] != '{':
            name = '%s{%s}' % (name[0], name[1:])
        match = search_variable(name, identifiers='$@&', ignore_errors=True)
        match.resolve_base(self._variables)
        if not match.is_assign():
            raise ValueError
        return unic(match)

    def _get_var_value(self, name, values):
        if not values:
            return self._variables[name]
        if name[0] == '$':
            # We could consider catenating values similarly as when creating
            # scalar variables in the variable table, but that would require
            # handling non-string values somehow. For details see
            # https://github.com/robotframework/robotframework/issues/1919
            if len(values) != 1 or is_list_variable(values[0]):
                raise DataError("Setting list value to scalar variable '%s' "
                                "is not supported anymore. Create list "
                                "variable '@%s' instead." % (name, name[1:]))
            return self._variables.replace_scalar(values[0])
        return VariableTableValue(values, name).resolve(self._variables)

    def _log_set_variable(self, name, value):
        self.log(format_assign_message(name, value))


class _RunKeyword(_BuiltInBase):

    # If you use any of these run keyword variants from another library, you
    # should register those keywords with 'register_run_keyword' method. See
    # the documentation of that method at the end of this file. There are also
    # other run keyword variant keywords in BuiltIn which can also be seen
    # at the end of this file.

    @run_keyword_variant(resolve=1)
    def run_keyword(self, name, *args):
        """Executes the given keyword with the given arguments.

        Because the name of the keyword to execute is given as an argument, it
        can be a variable and thus set dynamically, e.g. from a return value of
        another keyword or from the command line.
        """
        if not is_string(name):
            raise RuntimeError('Keyword name must be a string.')
        kw = Keyword(name, args=args)
        return kw.run(self._context)

    @run_keyword_variant(resolve=0)
    def run_keywords(self, *keywords):
        """Executes all the given keywords in a sequence.

        This keyword is mainly useful in setups and teardowns when they need
        to take care of multiple actions and creating a new higher level user
        keyword would be an overkill.

        By default all arguments are expected to be keywords to be executed.

        Examples:
        | `Run Keywords` | `Initialize database` | `Start servers` | `Clear logs` |
        | `Run Keywords` | ${KW 1} | ${KW 2} |
        | `Run Keywords` | @{KEYWORDS} |

        Keywords can also be run with arguments using upper case ``AND`` as
        a separator between keywords. The keywords are executed so that the
        first argument is the first keyword and proceeding arguments until
        the first ``AND`` are arguments to it. First argument after the first
        ``AND`` is the second keyword and proceeding arguments until the next
        ``AND`` are its arguments. And so on.

        Examples:
        | `Run Keywords` | `Initialize database` | db1 | AND | `Start servers` | server1 | server2 | |
        | `Run Keywords` | `Initialize database` | ${DB NAME} | AND | `Start servers` | @{SERVERS} | AND | `Clear logs` |
        | `Run Keywords` | ${KW} | AND | @{KW WITH ARGS} |

        Notice that the ``AND`` control argument must be used explicitly and
        cannot itself come from a variable. If you need to use literal ``AND``
        string as argument, you can either use variables or escape it with
        a backslash like ``\\AND``.
        """
        self._run_keywords(self._split_run_keywords(list(keywords)))

    def _run_keywords(self, iterable):
        errors = []
        for kw, args in iterable:
            try:
                self.run_keyword(kw, *args)
            except ExecutionPassed as err:
                err.set_earlier_failures(errors)
                raise err
            except ExecutionFailed as err:
                errors.extend(err.get_errors())
                if not err.can_continue(self._context):
                    break
        if errors:
            raise ExecutionFailures(errors)

    def _split_run_keywords(self, keywords):
        if 'AND' not in keywords:
            for name in self._variables.replace_list(keywords):
                yield name, ()
        else:
            for name, args in self._split_run_keywords_from_and(keywords):
                yield name, args

    def _split_run_keywords_from_and(self, keywords):
        while 'AND' in keywords:
            index = keywords.index('AND')
            yield self._resolve_run_keywords_name_and_args(keywords[:index])
            keywords = keywords[index+1:]
        yield self._resolve_run_keywords_name_and_args(keywords)

    def _resolve_run_keywords_name_and_args(self, kw_call):
        kw_call = self._variables.replace_list(kw_call, replace_until=1)
        if not kw_call:
            raise DataError('Incorrect use of AND')
        return kw_call[0], kw_call[1:]

    @run_keyword_variant(resolve=2)
    def run_keyword_if(self, condition, name, *args):
        """Runs the given keyword with the given arguments, if ``condition`` is true.

        *NOTE:* Robot Framework 4.0 introduced built-in IF/ELSE support and using
        that is generally recommended over using this keyword.

        The given ``condition`` is evaluated in Python as explained in
        `Evaluating expressions`, and ``name`` and ``*args`` have same
        semantics as with `Run Keyword`.

        Example, a simple if/else construct:
        | ${status} | ${value} = | `Run Keyword And Ignore Error` | `My Keyword` |
        | `Run Keyword If`     | '${status}' == 'PASS' | `Some Action`    | arg |
        | `Run Keyword Unless` | '${status}' == 'PASS' | `Another Action` |

        In this example, only either `Some Action` or `Another Action` is
        executed, based on the status of `My Keyword`. Instead of `Run Keyword
        And Ignore Error` you can also use `Run Keyword And Return Status`.

        Variables used like ``${variable}``, as in the examples above, are
        replaced in the expression before evaluation. Variables are also
        available in the evaluation namespace and can be accessed using special
        syntax ``$variable`` as explained in the `Evaluating expressions`
        section.

        Example:
        | `Run Keyword If` | $result is None or $result == 'FAIL' | `Keyword` |

        This keyword supports also optional ELSE and ELSE IF branches. Both
        of them are defined in ``*args`` and must use exactly format ``ELSE``
        or ``ELSE IF``, respectively. ELSE branches must contain first the
        name of the keyword to execute and then its possible arguments. ELSE
        IF branches must first contain a condition, like the first argument
        to this keyword, and then the keyword to execute and its possible
        arguments. It is possible to have ELSE branch after ELSE IF and to
        have multiple ELSE IF branches. Nested `Run Keyword If` usage is not
        supported when using ELSE and/or ELSE IF branches.

        Given previous example, if/else construct can also be created like this:
        | ${status} | ${value} = | `Run Keyword And Ignore Error` | `My Keyword` |
        | `Run Keyword If` | '${status}' == 'PASS' | `Some Action` | arg | ELSE | `Another Action` |

        The return value of this keyword is the return value of the actually
        executed keyword or Python ``None`` if no keyword was executed (i.e.
        if ``condition`` was false). Hence, it is recommended to use ELSE
        and/or ELSE IF branches to conditionally assign return values from
        keyword to variables (see `Set Variable If` if you need to set fixed
        values conditionally). This is illustrated by the example below:

        | ${var1} =   | `Run Keyword If` | ${rc} == 0     | `Some keyword returning a value` | | |
        | ...         | ELSE IF          | 0 < ${rc} < 42 | `Another keyword` |
        | ...         | ELSE IF          | ${rc} < 0      | `Another keyword with args` | ${rc} | arg2 |
        | ...         | ELSE             | `Final keyword to handle abnormal cases` | ${rc} |
        | ${var2} =   | `Run Keyword If` | ${condition}  | `Some keyword` |

        In this example, ${var2} will be set to ``None`` if ${condition} is
        false.

        Notice that ``ELSE`` and ``ELSE IF`` control words must be used
        explicitly and thus cannot come from variables. If you need to use
        literal ``ELSE`` and ``ELSE IF`` strings as arguments, you can escape
        them with a backslash like ``\\ELSE`` and ``\\ELSE IF``.

        Python's [http://docs.python.org/library/os.html|os] and
        [http://docs.python.org/library/sys.html|sys] modules are
        automatically imported when evaluating the ``condition``.
        Attributes they contain can thus be used in the condition:

        | `Run Keyword If` | os.sep == '/' | `Unix Keyword`        | |
        | ...              | ELSE IF       | sys.platform.startswith('java') | `Jython Keyword` |
        | ...              | ELSE          | `Windows Keyword`     |
        """
        args, branch = self._split_elif_or_else_branch(args)
        if self._is_true(condition):
            return self.run_keyword(name, *args)
        return branch()

    def _split_elif_or_else_branch(self, args):
        if 'ELSE IF' in args:
            args, branch = self._split_branch(args, 'ELSE IF', 2,
                                              'condition and keyword')
            return args, lambda: self.run_keyword_if(*branch)
        if 'ELSE' in args:
            args, branch = self._split_branch(args, 'ELSE', 1, 'keyword')
            return args, lambda: self.run_keyword(*branch)
        return args, lambda: None

    def _split_branch(self, args, control_word, required, required_error):
        index = list(args).index(control_word)
        branch = self._variables.replace_list(args[index+1:], required)
        if len(branch) < required:
            raise DataError('%s requires %s.' % (control_word, required_error))
        return args[:index], branch

    @run_keyword_variant(resolve=2)
    def run_keyword_unless(self, condition, name, *args):
        """Runs the given keyword with the given arguments if ``condition`` is false.

        See `Run Keyword If` for more information and an example. Notice that
        this keyword does not support ``ELSE`` or ``ELSE IF`` branches like
        `Run Keyword If` does, though.
        """
        if not self._is_true(condition):
            return self.run_keyword(name, *args)

    @run_keyword_variant(resolve=1)
    def run_keyword_and_ignore_error(self, name, *args):
        """Runs the given keyword with the given arguments and ignores possible error.

        This keyword returns two values, so that the first is either string
        ``PASS`` or ``FAIL``, depending on the status of the executed keyword.
        The second value is either the return value of the keyword or the
        received error message. See `Run Keyword And Return Status` If you are
        only interested in the execution status.

        The keyword name and arguments work as in `Run Keyword`. See
        `Run Keyword If` for a usage example.

        Errors caused by invalid syntax, timeouts, or fatal exceptions are not
        caught by this keyword. Otherwise this keyword itself never fails.
        """
        try:
            return 'PASS', self.run_keyword(name, *args)
        except ExecutionFailed as err:
            if err.dont_continue or err.skip:
                raise
            return 'FAIL', unic(err)

    @run_keyword_variant(resolve=1)
    def run_keyword_and_warn_on_failure(self, name, *args):
        """Runs the specified keyword logs a warning if the keyword fails.

        This keyword is similar to `Run Keyword And Ignore Error` but if the executed
        keyword fails, the error message is logged as a warning to make it more
        visible. Returns status and possible return value or error message exactly
        like `Run Keyword And Ignore Error` does.

        Errors caused by invalid syntax, timeouts, or fatal exceptions are not
        caught by this keyword. Otherwise this keyword itself never fails.

        New in Robot Framework 4.0.
        """
        status, message = self.run_keyword_and_ignore_error(name, *args)
        if status == 'FAIL':
            logger.warn("Executing keyword '%s' failed:\n%s" % (name, message))
        return status, message

    @run_keyword_variant(resolve=1)
    def run_keyword_and_return_status(self, name, *args):
        """Runs the given keyword with given arguments and returns the status as a Boolean value.

        This keyword returns Boolean ``True`` if the keyword that is executed
        succeeds and ``False`` if it fails. This is useful, for example, in
        combination with `Run Keyword If`. If you are interested in the error
        message or return value, use `Run Keyword And Ignore Error` instead.

        The keyword name and arguments work as in `Run Keyword`.

        Example:
        | ${passed} = | `Run Keyword And Return Status` | Keyword | args |
        | `Run Keyword If` | ${passed} | Another keyword |

        Errors caused by invalid syntax, timeouts, or fatal exceptions are not
        caught by this keyword. Otherwise this keyword itself never fails.
        """
        status, _ = self.run_keyword_and_ignore_error(name, *args)
        return status == 'PASS'

    @run_keyword_variant(resolve=1)
    def run_keyword_and_continue_on_failure(self, name, *args):
        """Runs the keyword and continues execution even if a failure occurs.

        The keyword name and arguments work as with `Run Keyword`.

        Example:
        | Run Keyword And Continue On Failure | Fail | This is a stupid example |
        | Log | This keyword is executed |

        The execution is not continued if the failure is caused by invalid syntax,
        timeout, or fatal exception.
        """
        try:
            return self.run_keyword(name, *args)
        except ExecutionFailed as err:
            if not err.dont_continue:
                err.continue_on_failure = True
            raise err

    @run_keyword_variant(resolve=2)
    def run_keyword_and_expect_error(self, expected_error, name, *args):
        """Runs the keyword and checks that the expected error occurred.

        The keyword to execute and its arguments are specified using ``name``
        and ``*args`` exactly like with `Run Keyword`.

        The expected error must be given in the same format as in Robot Framework
        reports. By default it is interpreted as a glob pattern with ``*``, ``?``
        and ``[chars]`` as wildcards, but that can be changed by using various
        prefixes explained in the table below. Prefixes are case-sensitive and
        they must be separated from the actual message with a colon and an
        optional space like ``PREFIX: Message`` or ``PREFIX:Message``.

        | = Prefix = | = Explanation = |
        | ``EQUALS`` | Exact match. Especially useful if the error contains glob wildcards. |
        | ``STARTS`` | Error must start with the specified error. |
        | ``REGEXP`` | Regular expression match. |
        | ``GLOB``   | Same as the default behavior. |

        See the `Pattern matching` section for more information about glob
        patterns and regular expressions.

        If the expected error occurs, the error message is returned and it can
        be further processed or tested if needed. If there is no error, or the
        error does not match the expected error, this keyword fails.

        Examples:
        | Run Keyword And Expect Error | My error            | Keyword | arg |
        | Run Keyword And Expect Error | ValueError: *       | Some Keyword  |
        | Run Keyword And Expect Error | STARTS: ValueError: | Some Keyword  |
        | Run Keyword And Expect Error | EQUALS:No match for '//input[@type="text"]' |
        | ...                          | Find Element | //input[@type="text"] |
        | ${msg} =                     | Run Keyword And Expect Error | * |
        | ...                          | Keyword | arg1 | arg2 |
        | Log To Console | ${msg} |

        Errors caused by invalid syntax, timeouts, or fatal exceptions are not
        caught by this keyword.
        """
        try:
            self.run_keyword(name, *args)
        except ExecutionFailed as err:
            if err.dont_continue or err.skip:
                raise
            error = err.message
        else:
            raise AssertionError("Expected error '%s' did not occur."
                                 % expected_error)
        if not self._error_is_expected(error, expected_error):
            raise AssertionError("Expected error '%s' but got '%s'."
                                 % (expected_error, error))
        return error

    def _error_is_expected(self, error, expected_error):
        glob = self._matches
        matchers = {'GLOB': glob,
                    'EQUALS': lambda s, p: s == p,
                    'STARTS': lambda s, p: s.startswith(p),
                    'REGEXP': lambda s, p: re.match(p, s) is not None}
        prefixes = tuple(prefix + ':' for prefix in matchers)
        if not expected_error.startswith(prefixes):
            return glob(error, expected_error)
        prefix, expected_error = expected_error.split(':', 1)
        return matchers[prefix](error, expected_error.lstrip())

    @run_keyword_variant(resolve=2)
    def repeat_keyword(self, repeat, name, *args):
        """Executes the specified keyword multiple times.

        ``name`` and ``args`` define the keyword that is executed similarly as
        with `Run Keyword`. ``repeat`` specifies how many times (as a count) or
        how long time (as a timeout) the keyword should be executed.

        If ``repeat`` is given as count, it specifies how many times the
        keyword should be executed. ``repeat`` can be given as an integer or
        as a string that can be converted to an integer. If it is a string,
        it can have postfix ``times`` or ``x`` (case and space insensitive)
        to make the expression more explicit.

        If ``repeat`` is given as timeout, it must be in Robot Framework's
        time format (e.g. ``1 minute``, ``2 min 3 s``). Using a number alone
        (e.g. ``1`` or ``1.5``) does not work in this context.

        If ``repeat`` is zero or negative, the keyword is not executed at
        all. This keyword fails immediately if any of the execution
        rounds fails.

        Examples:
        | Repeat Keyword | 5 times   | Go to Previous Page | | |
        | Repeat Keyword | ${var}    | Some Keyword | arg1 | arg2 |
        | Repeat Keyword | 2 minutes | Some Keyword | arg1 | arg2 |
        """
        try:
            count = self._get_repeat_count(repeat)
        except RuntimeError as err:
            timeout = self._get_repeat_timeout(repeat)
            if timeout is None:
                raise err
            keywords = self._keywords_repeated_by_timeout(timeout, name, args)
        else:
            keywords = self._keywords_repeated_by_count(count, name, args)
        self._run_keywords(keywords)

    def _get_repeat_count(self, times, require_postfix=False):
        times = normalize(str(times))
        if times.endswith('times'):
            times = times[:-5]
        elif times.endswith('x'):
            times = times[:-1]
        elif require_postfix:
            raise ValueError
        return self._convert_to_integer(times)

    def _get_repeat_timeout(self, timestr):
        try:
            float(timestr)
        except ValueError:
            pass
        else:
            return None
        try:
            return timestr_to_secs(timestr)
        except ValueError:
            return None

    def _keywords_repeated_by_count(self, count, name, args):
        if count <= 0:
            self.log("Keyword '%s' repeated zero times." % name)
        for i in range(count):
            self.log("Repeating keyword, round %d/%d." % (i + 1, count))
            yield name, args

    def _keywords_repeated_by_timeout(self, timeout, name, args):
        if timeout <= 0:
            self.log("Keyword '%s' repeated zero times." % name)
        repeat_round = 0
        maxtime = time.time() + timeout
        while time.time() < maxtime:
            repeat_round += 1
            self.log("Repeating keyword, round %d, %s remaining."
                     % (repeat_round,
                        secs_to_timestr(maxtime - time.time(), compact=True)))
            yield name, args

    @run_keyword_variant(resolve=3)
    def wait_until_keyword_succeeds(self, retry, retry_interval, name, *args):
        """Runs the specified keyword and retries if it fails.

        ``name`` and ``args`` define the keyword that is executed similarly
        as with `Run Keyword`. How long to retry running the keyword is
        defined using ``retry`` argument either as timeout or count.
        ``retry_interval`` is the time to wait between execution attempts.

        If ``retry`` is given as timeout, it must be in Robot Framework's
        time format (e.g. ``1 minute``, ``2 min 3 s``, ``4.5``) that is
        explained in an appendix of Robot Framework User Guide. If it is
        given as count, it must have ``times`` or ``x`` postfix (e.g.
        ``5 times``, ``10 x``). ``retry_interval`` must always be given in
        Robot Framework's time format.

        By default ``retry_interval`` is the time to wait _after_ a keyword has
        failed. For example, if the first run takes 2 seconds and the retry
        interval is 3 seconds, the second run starts 5 seconds after the first
        run started. If ``retry_interval`` start with prefix ``strict:``, the
        execution time of the previous keyword is subtracted from the retry time.
        With the earlier example the second run would thus start 3 seconds after
        the first run started. A warning is logged if keyword execution time is
        longer than a strict interval.

        If the keyword does not succeed regardless of retries, this keyword
        fails. If the executed keyword passes, its return value is returned.

        Examples:
        | Wait Until Keyword Succeeds | 2 min | 5 sec | My keyword | argument |
        | ${result} = | Wait Until Keyword Succeeds | 3x | 200ms | My keyword |
        | ${result} = | Wait Until Keyword Succeeds | 3x | strict: 200ms | My keyword |

        All normal failures are caught by this keyword. Errors caused by
        invalid syntax, test or keyword timeouts, or fatal exceptions (caused
        e.g. by `Fatal Error`) are not caught.

        Running the same keyword multiple times inside this keyword can create
        lots of output and considerably increase the size of the generated
        output files. It is possible to remove unnecessary keywords from
        the outputs using ``--RemoveKeywords WUKS`` command line option.

        Support for "strict" retry interval is new in Robot Framework 4.1.
        """
        maxtime = count = -1
        try:
            count = self._get_repeat_count(retry, require_postfix=True)
        except ValueError:
            timeout = timestr_to_secs(retry)
            maxtime = time.time() + timeout
            message = 'for %s' % secs_to_timestr(timeout)
        else:
            if count <= 0:
                raise ValueError('Retry count %d is not positive.' % count)
            message = '%d time%s' % (count, s(count))
        if is_string(retry_interval) and normalize(retry_interval).startswith('strict:'):
            retry_interval = retry_interval.split(':', 1)[1].strip()
            strict_interval = True
        else:
            strict_interval = False
        retry_interval = sleep_time = timestr_to_secs(retry_interval)
        while True:
            start_time = time.time()
            try:
                return self.run_keyword(name, *args)
            except ExecutionFailed as err:
                if err.dont_continue or err.skip:
                    raise
                count -= 1
                if time.time() > maxtime > 0 or count == 0:
                    raise AssertionError("Keyword '%s' failed after retrying %s. "
                                         "The last error was: %s" % (name, message, err))
            finally:
                if strict_interval:
                    keyword_runtime = time.time() - start_time
                    sleep_time = retry_interval - keyword_runtime
                    if sleep_time < 0:
                        logger.warn("Keyword execution time %s is longer than retry "
                                    "interval %s." % (secs_to_timestr(keyword_runtime),
                                                      secs_to_timestr(retry_interval)))
            self._sleep_in_parts(sleep_time)

    @run_keyword_variant(resolve=1)
    def set_variable_if(self, condition, *values):
        """Sets variable based on the given condition.

        The basic usage is giving a condition and two values. The
        given condition is first evaluated the same way as with the
        `Should Be True` keyword. If the condition is true, then the
        first value is returned, and otherwise the second value is
        returned. The second value can also be omitted, in which case
        it has a default value None. This usage is illustrated in the
        examples below, where ``${rc}`` is assumed to be zero.

        | ${var1} = | Set Variable If | ${rc} == 0 | zero     | nonzero |
        | ${var2} = | Set Variable If | ${rc} > 0  | value1   | value2  |
        | ${var3} = | Set Variable If | ${rc} > 0  | whatever |         |
        =>
        | ${var1} = 'zero'
        | ${var2} = 'value2'
        | ${var3} = None

        It is also possible to have 'else if' support by replacing the
        second value with another condition, and having two new values
        after it. If the first condition is not true, the second is
        evaluated and one of the values after it is returned based on
        its truth value. This can be continued by adding more
        conditions without a limit.

        | ${var} = | Set Variable If | ${rc} == 0        | zero           |
        | ...      | ${rc} > 0       | greater than zero | less then zero |
        |          |
        | ${var} = | Set Variable If | |
        | ...      | ${rc} == 0      | zero              |
        | ...      | ${rc} == 1      | one               |
        | ...      | ${rc} == 2      | two               |
        | ...      | ${rc} > 2       | greater than two  |
        | ...      | ${rc} < 0       | less than zero    |

        Use `Get Variable Value` if you need to set variables
        dynamically based on whether a variable exist or not.
        """
        values = self._verify_values_for_set_variable_if(list(values))
        if self._is_true(condition):
            return self._variables.replace_scalar(values[0])
        values = self._verify_values_for_set_variable_if(values[1:], True)
        if len(values) == 1:
            return self._variables.replace_scalar(values[0])
        return self.run_keyword('BuiltIn.Set Variable If', *values[0:])

    def _verify_values_for_set_variable_if(self, values, default=False):
        if not values:
            if default:
                return [None]
            raise RuntimeError('At least one value is required')
        if is_list_variable(values[0]):
            values[:1] = [escape(item) for item in self._variables[values[0]]]
            return self._verify_values_for_set_variable_if(values)
        return values

    @run_keyword_variant(resolve=1)
    def run_keyword_if_test_failed(self, name, *args):
        """Runs the given keyword with the given arguments, if the test failed.

        This keyword can only be used in a test teardown. Trying to use it
        anywhere else results in an error.

        Otherwise, this keyword works exactly like `Run Keyword`, see its
        documentation for more details.
        """
        test = self._get_test_in_teardown('Run Keyword If Test Failed')
        if test.failed:
            return self.run_keyword(name, *args)

    @run_keyword_variant(resolve=1)
    def run_keyword_if_test_passed(self, name, *args):
        """Runs the given keyword with the given arguments, if the test passed.

        This keyword can only be used in a test teardown. Trying to use it
        anywhere else results in an error.

        Otherwise, this keyword works exactly like `Run Keyword`, see its
        documentation for more details.
        """
        test = self._get_test_in_teardown('Run Keyword If Test Passed')
        if test.passed:
            return self.run_keyword(name, *args)

    @run_keyword_variant(resolve=1)
    def run_keyword_if_timeout_occurred(self, name, *args):
        """Runs the given keyword if either a test or a keyword timeout has occurred.

        This keyword can only be used in a test teardown. Trying to use it
        anywhere else results in an error.

        Otherwise, this keyword works exactly like `Run Keyword`, see its
        documentation for more details.
        """
        self._get_test_in_teardown('Run Keyword If Timeout Occurred')
        if self._context.timeout_occurred:
            return self.run_keyword(name, *args)

    def _get_test_in_teardown(self, kwname):
        ctx = self._context
        if ctx.test and ctx.in_test_teardown:
            return ctx.test
        raise RuntimeError("Keyword '%s' can only be used in test teardown."
                           % kwname)

    @run_keyword_variant(resolve=1)
    def run_keyword_if_all_critical_tests_passed(self, name, *args):
        """*DEPRECATED.* Use `BuiltIn.Run Keyword If All Tests Passed` instead."""
        self.run_keyword_if_all_tests_passed(name, args)

    @run_keyword_variant(resolve=1)
    def run_keyword_if_any_critical_tests_failed(self, name, *args):
        """*DEPRECATED.* Use `BuiltIn.Run Keyword If Any Tests Failed` instead."""
        self.run_keyword_if_any_tests_failed(name, args)

    @run_keyword_variant(resolve=1)
    def run_keyword_if_all_tests_passed(self, name, *args):
        """Runs the given keyword with the given arguments, if all tests passed.

        This keyword can only be used in a suite teardown. Trying to use it
        anywhere else results in an error.

        Otherwise, this keyword works exactly like `Run Keyword`, see its
        documentation for more details.
        """
        suite = self._get_suite_in_teardown('Run Keyword If All Tests Passed')
        if suite.statistics.failed == 0:
            return self.run_keyword(name, *args)

    @run_keyword_variant(resolve=1)
    def run_keyword_if_any_tests_failed(self, name, *args):
        """Runs the given keyword with the given arguments, if one or more tests failed.

        This keyword can only be used in a suite teardown. Trying to use it
        anywhere else results in an error.

        Otherwise, this keyword works exactly like `Run Keyword`, see its
        documentation for more details.
        """
        suite = self._get_suite_in_teardown('Run Keyword If Any Tests Failed')
        if suite.statistics.failed > 0:
            return self.run_keyword(name, *args)

    def _get_suite_in_teardown(self, kwname):
        if not self._context.in_suite_teardown:
            raise RuntimeError("Keyword '%s' can only be used in suite teardown."
                               % kwname)
        return self._context.suite


class _Control(_BuiltInBase):

    def skip(self, msg='Skipped with Skip keyword.'):
        """Skips the rest of the current test.

        Skips the remaining keywords in the current test and sets the given
        message to the test. If the test has teardown, it will be executed.
        """
        raise SkipExecution(msg)

    def skip_if(self, condition, msg=None):
        """Skips the rest of the current test if the ``condition`` is True.

        Skips the remaining keywords in the current test and sets the given
        message to the test. If ``msg`` is not given, the ``condition`` will
        be used as the message. If the test has teardown, it will be executed.

        If the ``condition`` evaluates to False, does nothing.
        """
        if self._is_true(condition):
            raise SkipExecution(msg or condition)

    def continue_for_loop(self):
        """Skips the current for loop iteration and continues from the next.

        Skips the remaining keywords in the current for loop iteration and
        continues from the next one. Can be used directly in a for loop or
        in a keyword that the loop uses.

        Example:
        | FOR | ${var}         | IN                     | @{VALUES}         |
        |     | Run Keyword If | '${var}' == 'CONTINUE' | Continue For Loop |
        |     | Do Something   | ${var}                 |
        | END |

        See `Continue For Loop If` to conditionally continue a for loop without
        using `Run Keyword If` or other wrapper keywords.
        """
        self.log("Continuing for loop from the next iteration.")
        raise ContinueForLoop()

    def continue_for_loop_if(self, condition):
        """Skips the current for loop iteration if the ``condition`` is true.

        A wrapper for `Continue For Loop` to continue a for loop based on
        the given condition. The condition is evaluated using the same
        semantics as with `Should Be True` keyword.

        Example:
        | FOR | ${var}               | IN                     | @{VALUES} |
        |     | Continue For Loop If | '${var}' == 'CONTINUE' |
        |     | Do Something         | ${var}                 |
        | END |
        """
        if self._is_true(condition):
            self.continue_for_loop()

    def exit_for_loop(self):
        """Stops executing the enclosing for loop.

        Exits the enclosing for loop and continues execution after it.
        Can be used directly in a for loop or in a keyword that the loop uses.

        Example:
        | FOR | ${var}         | IN                 | @{VALUES}     |
        |     | Run Keyword If | '${var}' == 'EXIT' | Exit For Loop |
        |     | Do Something   | ${var} |
        | END |

        See `Exit For Loop If` to conditionally exit a for loop without
        using `Run Keyword If` or other wrapper keywords.
        """
        self.log("Exiting for loop altogether.")
        raise ExitForLoop()

    def exit_for_loop_if(self, condition):
        """Stops executing the enclosing for loop if the ``condition`` is true.

        A wrapper for `Exit For Loop` to exit a for loop based on
        the given condition. The condition is evaluated using the same
        semantics as with `Should Be True` keyword.

        Example:
        | FOR | ${var}           | IN                 | @{VALUES} |
        |     | Exit For Loop If | '${var}' == 'EXIT' |
        |     | Do Something     | ${var}             |
        | END |
        """
        if self._is_true(condition):
            self.exit_for_loop()

    @run_keyword_variant(resolve=0)
    def return_from_keyword(self, *return_values):
        """Returns from the enclosing user keyword.

        This keyword can be used to return from a user keyword with PASS status
        without executing it fully. It is also possible to return values
        similarly as with the ``[Return]`` setting. For more detailed information
        about working with the return values, see the User Guide.

        This keyword is typically wrapped to some other keyword, such as
        `Run Keyword If` or `Run Keyword If Test Passed`, to return based
        on a condition:

        | Run Keyword If | ${rc} < 0 | Return From Keyword |
        | Run Keyword If Test Passed | Return From Keyword |

        It is possible to use this keyword to return from a keyword also inside
        a for loop. That, as well as returning values, is demonstrated by the
        `Find Index` keyword in the following somewhat advanced example.
        Notice that it is often a good idea to move this kind of complicated
        logic into a test library.

        | ***** Variables *****
        | @{LIST} =    foo    baz
        |
        | ***** Test Cases *****
        | Example
        |     ${index} =    Find Index    baz    @{LIST}
        |     Should Be Equal    ${index}    ${1}
        |     ${index} =    Find Index    non existing    @{LIST}
        |     Should Be Equal    ${index}    ${-1}
        |
        | ***** Keywords *****
        | Find Index
        |    [Arguments]    ${element}    @{items}
        |    ${index} =    Set Variable    ${0}
        |    FOR    ${item}    IN    @{items}
        |        Run Keyword If    '${item}' == '${element}'    Return From Keyword    ${index}
        |        ${index} =    Set Variable    ${index + 1}
        |    END
        |    Return From Keyword    ${-1}    # Also [Return] would work here.

        The most common use case, returning based on an expression, can be
        accomplished directly with `Return From Keyword If`. See also
        `Run Keyword And Return` and `Run Keyword And Return If`.
        """
        self._return_from_keyword(return_values)

    def _return_from_keyword(self, return_values=None, failures=None):
        self.log('Returning from the enclosing user keyword.')
        raise ReturnFromKeyword(return_values, failures)

    @run_keyword_variant(resolve=1)
    def return_from_keyword_if(self, condition, *return_values):
        """Returns from the enclosing user keyword if ``condition`` is true.

        A wrapper for `Return From Keyword` to return based on the given
        condition. The condition is evaluated using the same semantics as
        with `Should Be True` keyword.

        Given the same example as in `Return From Keyword`, we can rewrite the
        `Find Index` keyword as follows:

        | ***** Keywords *****
        | Find Index
        |    [Arguments]    ${element}    @{items}
        |    ${index} =    Set Variable    ${0}
        |    FOR    ${item}    IN    @{items}
        |        Return From Keyword If    '${item}' == '${element}'    ${index}
        |        ${index} =    Set Variable    ${index + 1}
        |    END
        |    Return From Keyword    ${-1}    # Also [Return] would work here.

        See also `Run Keyword And Return` and `Run Keyword And Return If`.
        """
        if self._is_true(condition):
            self._return_from_keyword(return_values)

    @run_keyword_variant(resolve=1)
    def run_keyword_and_return(self, name, *args):
        """Runs the specified keyword and returns from the enclosing user keyword.

        The keyword to execute is defined with ``name`` and ``*args`` exactly
        like with `Run Keyword`. After running the keyword, returns from the
        enclosing user keyword and passes possible return value from the
        executed keyword further. Returning from a keyword has exactly same
        semantics as with `Return From Keyword`.

        Example:
        | `Run Keyword And Return`  | `My Keyword` | arg1 | arg2 |
        | # Above is equivalent to: |
        | ${result} =               | `My Keyword` | arg1 | arg2 |
        | `Return From Keyword`     | ${result}    |      |      |

        Use `Run Keyword And Return If` if you want to run keyword and return
        based on a condition.
        """
        try:
            ret = self.run_keyword(name, *args)
        except ExecutionFailed as err:
            self._return_from_keyword(failures=[err])
        else:
            self._return_from_keyword(return_values=[escape(ret)])

    @run_keyword_variant(resolve=2)
    def run_keyword_and_return_if(self, condition, name, *args):
        """Runs the specified keyword and returns from the enclosing user keyword.

        A wrapper for `Run Keyword And Return` to run and return based on
        the given ``condition``. The condition is evaluated using the same
        semantics as with `Should Be True` keyword.

        Example:
        | `Run Keyword And Return If` | ${rc} > 0 | `My Keyword` | arg1 | arg2 |
        | # Above is equivalent to:   |
        | `Run Keyword If`            | ${rc} > 0 | `Run Keyword And Return` | `My Keyword ` | arg1 | arg2 |

        Use `Return From Keyword If` if you want to return a certain value
        based on a condition.
        """
        if self._is_true(condition):
            self.run_keyword_and_return(name, *args)

    def pass_execution(self, message, *tags):
        """Skips rest of the current test, setup, or teardown with PASS status.

        This keyword can be used anywhere in the test data, but the place where
        used affects the behavior:

        - When used in any setup or teardown (suite, test or keyword), passes
          that setup or teardown. Possible keyword teardowns of the started
          keywords are executed. Does not affect execution or statuses
          otherwise.
        - When used in a test outside setup or teardown, passes that particular
          test case. Possible test and keyword teardowns are executed.

        Possible continuable failures before this keyword is used, as well as
        failures in executed teardowns, will fail the execution.

        It is mandatory to give a message explaining why execution was passed.
        By default the message is considered plain text, but starting it with
        ``*HTML*`` allows using HTML formatting.

        It is also possible to modify test tags passing tags after the message
        similarly as with `Fail` keyword. Tags starting with a hyphen
        (e.g. ``-regression``) are removed and others added. Tags are modified
        using `Set Tags` and `Remove Tags` internally, and the semantics
        setting and removing them are the same as with these keywords.

        Examples:
        | Pass Execution | All features available in this version tested. |
        | Pass Execution | Deprecated test. | deprecated | -regression    |

        This keyword is typically wrapped to some other keyword, such as
        `Run Keyword If`, to pass based on a condition. The most common case
        can be handled also with `Pass Execution If`:

        | Run Keyword If    | ${rc} < 0 | Pass Execution | Negative values are cool. |
        | Pass Execution If | ${rc} < 0 | Negative values are cool. |

        Passing execution in the middle of a test, setup or teardown should be
        used with care. In the worst case it leads to tests that skip all the
        parts that could actually uncover problems in the tested application.
        In cases where execution cannot continue do to external factors,
        it is often safer to fail the test case and make it non-critical.
        """
        message = message.strip()
        if not message:
            raise RuntimeError('Message cannot be empty.')
        self._set_and_remove_tags(tags)
        log_message, level = self._get_logged_test_message_and_level(message)
        self.log('Execution passed with message:\n%s' % log_message, level)
        raise PassExecution(message)

    @run_keyword_variant(resolve=1)
    def pass_execution_if(self, condition, message, *tags):
        """Conditionally skips rest of the current test, setup, or teardown with PASS status.

        A wrapper for `Pass Execution` to skip rest of the current test,
        setup or teardown based the given ``condition``. The condition is
        evaluated similarly as with `Should Be True` keyword, and ``message``
        and ``*tags`` have same semantics as with `Pass Execution`.

        Example:
        | FOR | ${var}            | IN                     | @{VALUES}               |
        |     | Pass Execution If | '${var}' == 'EXPECTED' | Correct value was found |
        |     | Do Something      | ${var}                 |
        | END |
        """
        if self._is_true(condition):
            message = self._variables.replace_string(message)
            tags = self._variables.replace_list(tags)
            self.pass_execution(message, *tags)


class _Misc(_BuiltInBase):

    def no_operation(self):
        """Does absolutely nothing."""

    def sleep(self, time_, reason=None):
        """Pauses the test executed for the given time.

        ``time`` may be either a number or a time string. Time strings are in
        a format such as ``1 day 2 hours 3 minutes 4 seconds 5milliseconds`` or
        ``1d 2h 3m 4s 5ms``, and they are fully explained in an appendix of
        Robot Framework User Guide. Optional `reason` can be used to explain why
        sleeping is necessary. Both the time slept and the reason are logged.

        Examples:
        | Sleep | 42                   | |
        | Sleep | 1.5                  |
        | Sleep | 2 minutes 10 seconds |
        | Sleep | 10s                  | Wait for a reply |
        """
        seconds = timestr_to_secs(time_)
        # Python hangs with negative values
        if seconds < 0:
            seconds = 0
        self._sleep_in_parts(seconds)
        self.log('Slept %s' % secs_to_timestr(seconds))
        if reason:
            self.log(reason)

    def _sleep_in_parts(self, seconds):
        # time.sleep can't be stopped in windows
        # to ensure that we can signal stop (with timeout)
        # split sleeping to small pieces
        endtime = time.time() + float(seconds)
        while True:
            remaining = endtime - time.time()
            if remaining <= 0:
                break
            time.sleep(min(remaining, 0.01))

    def catenate(self, *items):
        """Catenates the given items together and returns the resulted string.

        By default, items are catenated with spaces, but if the first item
        contains the string ``SEPARATOR=<sep>``, the separator ``<sep>`` is
        used instead. Items are converted into strings when necessary.

        Examples:
        | ${str1} = | Catenate | Hello         | world |       |
        | ${str2} = | Catenate | SEPARATOR=--- | Hello | world |
        | ${str3} = | Catenate | SEPARATOR=    | Hello | world |
        =>
        | ${str1} = 'Hello world'
        | ${str2} = 'Hello---world'
        | ${str3} = 'Helloworld'
        """
        if not items:
            return ''
        items = [unic(item) for item in items]
        if items[0].startswith('SEPARATOR='):
            sep = items[0][len('SEPARATOR='):]
            items = items[1:]
        else:
            sep = ' '
        return sep.join(items)

    def log(self, message, level='INFO', html=False, console=False,
            repr=False, formatter='str'):
        u"""Logs the given message with the given level.

        Valid levels are TRACE, DEBUG, INFO (default), HTML, WARN, and ERROR.
        Messages below the current active log level are ignored. See
        `Set Log Level` keyword and ``--loglevel`` command line option
        for more details about setting the level.

        Messages logged with the WARN or ERROR levels will be automatically
        visible also in the console and in the Test Execution Errors section
        in the log file.

        If the ``html`` argument is given a true value (see `Boolean
        arguments`), the message will be considered HTML and special characters
        such as ``<`` are not escaped. For example, logging
        ``<img src="image.png">`` creates an image when ``html`` is true, but
        otherwise the message is that exact string. An alternative to using
        the ``html`` argument is using the HTML pseudo log level. It logs
        the message as HTML using the INFO level.

        If the ``console`` argument is true, the message will be written to
        the console where test execution was started from in addition to
        the log file. This keyword always uses the standard output stream
        and adds a newline after the written message. Use `Log To Console`
        instead if either of these is undesirable,

        The ``formatter`` argument controls how to format the string
        representation of the message. Possible values are ``str`` (default),
        ``repr`` and ``ascii``, and they work similarly to Python built-in
        functions with same names. When using ``repr``, bigger lists,
        dictionaries and other containers are also pretty-printed so that
        there is one item per row. For more details see `String
        representations`.

        The old way to control string representation was using the ``repr``
        argument, and ``repr=True`` is still equivalent to using
        ``formatter=repr``. The ``repr`` argument will be deprecated in the
        future, though, and using ``formatter`` is thus recommended.

        Examples:
        | Log | Hello, world!        |          |   | # Normal INFO message.   |
        | Log | Warning, world!      | WARN     |   | # Warning.               |
        | Log | <b>Hello</b>, world! | html=yes |   | # INFO message as HTML.  |
        | Log | <b>Hello</b>, world! | HTML     |   | # Same as above.         |
        | Log | <b>Hello</b>, world! | DEBUG    | html=true | # DEBUG as HTML. |
        | Log | Hello, console!   | console=yes | | # Log also to the console. |
        | Log | Null is \\x00  | formatter=repr | | # Log ``'Null is \\x00'``. |

        See `Log Many` if you want to log multiple messages in one go, and
        `Log To Console` if you only want to write to the console.
        """
        # TODO: Deprecate `repr` in RF 3.2 or latest in RF 3.3.
        if repr:
            formatter = prepr
        else:
            formatter = self._get_formatter(formatter)
        message = formatter(message)
        logger.write(message, level, html)
        if console:
            logger.console(message)

    def _get_formatter(self, formatter):
        try:
            return {'str': unic,
                    'repr': prepr,
                    'ascii': ascii if PY3 else repr}[formatter.lower()]
        except KeyError:
            raise ValueError("Invalid formatter '%s'. Available "
                             "'str', 'repr' and 'ascii'." % formatter)

    @run_keyword_variant(resolve=0)
    def log_many(self, *messages):
        """Logs the given messages as separate entries using the INFO level.

        Supports also logging list and dictionary variable items individually.

        Examples:
        | Log Many | Hello   | ${var}  |
        | Log Many | @{list} | &{dict} |

        See `Log` and `Log To Console` keywords if you want to use alternative
        log levels, use HTML, or log to the console.
        """
        for msg in self._yield_logged_messages(messages):
            self.log(msg)

    def _yield_logged_messages(self, messages):
        for msg in messages:
            match = search_variable(msg)
            value = self._variables.replace_scalar(msg)
            if match.is_list_variable():
                for item in value:
                    yield item
            elif match.is_dict_variable():
                for name, value in value.items():
                    yield '%s=%s' % (name, value)
            else:
                yield value

    def log_to_console(self, message, stream='STDOUT', no_newline=False):
        """Logs the given message to the console.

        By default uses the standard output stream. Using the standard error
        stream is possibly by giving the ``stream`` argument value ``STDERR``
        (case-insensitive).

        By default appends a newline to the logged message. This can be
        disabled by giving the ``no_newline`` argument a true value (see
        `Boolean arguments`).

        Examples:
        | Log To Console | Hello, console!             |                 |
        | Log To Console | Hello, stderr!              | STDERR          |
        | Log To Console | Message starts here and is  | no_newline=true |
        | Log To Console | continued without newline.  |                 |

        This keyword does not log the message to the normal log file. Use
        `Log` keyword, possibly with argument ``console``, if that is desired.
        """
        logger.console(message, newline=is_falsy(no_newline), stream=stream)

    @run_keyword_variant(resolve=0)
    def comment(self, *messages):
        """Displays the given messages in the log file as keyword arguments.

        This keyword does nothing with the arguments it receives, but as they
        are visible in the log, this keyword can be used to display simple
        messages. Given arguments are ignored so thoroughly that they can even
        contain non-existing variables. If you are interested about variable
        values, you can use the `Log` or `Log Many` keywords.
        """
        pass

    def set_log_level(self, level):
        """Sets the log threshold to the specified level and returns the old level.

        Messages below the level will not logged. The default logging level is
        INFO, but it can be overridden with the command line option
        ``--loglevel``.

        The available levels: TRACE, DEBUG, INFO (default), WARN, ERROR and NONE (no
        logging).
        """
        try:
            old = self._context.output.set_log_level(level)
        except DataError as err:
            raise RuntimeError(unic(err))
        self._namespace.variables.set_global('${LOG_LEVEL}', level.upper())
        self.log('Log level changed from %s to %s.' % (old, level.upper()))
        return old

    def reload_library(self, name_or_instance):
        """Rechecks what keywords the specified library provides.

        Can be called explicitly in the test data or by a library itself
        when keywords it provides have changed.

        The library can be specified by its name or as the active instance of
        the library. The latter is especially useful if the library itself
        calls this keyword as a method.
        """
        library = self._namespace.reload_library(name_or_instance)
        self.log('Reloaded library %s with %s keywords.' % (library.name,
                                                            len(library)))

    @run_keyword_variant(resolve=0)
    def import_library(self, name, *args):
        """Imports a library with the given name and optional arguments.

        This functionality allows dynamic importing of libraries while tests
        are running. That may be necessary, if the library itself is dynamic
        and not yet available when test data is processed. In a normal case,
        libraries should be imported using the Library setting in the Setting
        section.

        This keyword supports importing libraries both using library
        names and physical paths. When paths are used, they must be
        given in absolute format or found from
        [http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#module-search-path|
        search path]. Forward slashes can be used as path separators in all
        operating systems.

        It is possible to pass arguments to the imported library and also
        named argument syntax works if the library supports it. ``WITH NAME``
        syntax can be used to give a custom name to the imported library.

        Examples:
        | Import Library | MyLibrary | | | |
        | Import Library | ${CURDIR}/../Library.py | arg1 | named=arg2 |
        | Import Library | ${LIBRARIES}/Lib.java | arg | WITH NAME | JavaLib |
        """
        args, alias = self._split_alias(args)
        try:
            self._namespace.import_library(name, args, alias)
        except DataError as err:
            raise RuntimeError(unic(err))

    def _split_alias(self, args):
        if len(args) > 1 and normalize_whitespace(args[-2]) == 'WITH NAME':
            return args[:-2], args[-1]
        return args, None

    @run_keyword_variant(resolve=0)
    def import_variables(self, path, *args):
        """Imports a variable file with the given path and optional arguments.

        Variables imported with this keyword are set into the test suite scope
        similarly when importing them in the Setting table using the Variables
        setting. These variables override possible existing variables with
        the same names. This functionality can thus be used to import new
        variables, for example, for each test in a test suite.

        The given path must be absolute or found from
        [http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pythonpath-jythonpath-and-ironpythonpath|
        search path]. Forward slashes can be used as path separator regardless
        the operating system.

        Examples:
        | Import Variables | ${CURDIR}/variables.py   |      |      |
        | Import Variables | ${CURDIR}/../vars/env.py | arg1 | arg2 |
        | Import Variables | file_from_pythonpath.py  |      |      |
        """
        try:
            self._namespace.import_variables(path, list(args), overwrite=True)
        except DataError as err:
            raise RuntimeError(unic(err))

    @run_keyword_variant(resolve=0)
    def import_resource(self, path):
        """Imports a resource file with the given path.

        Resources imported with this keyword are set into the test suite scope
        similarly when importing them in the Setting table using the Resource
        setting.

        The given path must be absolute or found from
        [http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pythonpath-jythonpath-and-ironpythonpath|
        search path]. Forward slashes can be used as path separator regardless
        the operating system.

        Examples:
        | Import Resource | ${CURDIR}/resource.txt |
        | Import Resource | ${CURDIR}/../resources/resource.html |
        | Import Resource | found_from_pythonpath.robot |
        """
        try:
            self._namespace.import_resource(path)
        except DataError as err:
            raise RuntimeError(unic(err))

    def set_library_search_order(self, *search_order):
        """Sets the resolution order to use when a name matches multiple keywords.

        The library search order is used to resolve conflicts when a keyword
        name in the test data matches multiple keywords. The first library
        (or resource, see below) containing the keyword is selected and that
        keyword implementation used. If the keyword is not found from any library
        (or resource), test executing fails the same way as when the search
        order is not set.

        When this keyword is used, there is no need to use the long
        ``LibraryName.Keyword Name`` notation.  For example, instead of
        having

        | MyLibrary.Keyword | arg |
        | MyLibrary.Another Keyword |
        | MyLibrary.Keyword | xxx |

        you can have

        | Set Library Search Order | MyLibrary |
        | Keyword | arg |
        | Another Keyword |
        | Keyword | xxx |

        This keyword can be used also to set the order of keywords in different
        resource files. In this case resource names must be given without paths
        or extensions like:

        | Set Library Search Order | resource | another_resource |

        *NOTE:*
        - The search order is valid only in the suite where this keywords is used.
        - Keywords in resources always have higher priority than
          keywords in libraries regardless the search order.
        - The old order is returned and can be used to reset the search order later.
        - Library and resource names in the search order are both case and space
          insensitive.
        """
        return self._namespace.set_search_order(search_order)

    def keyword_should_exist(self, name, msg=None):
        """Fails unless the given keyword exists in the current scope.

        Fails also if there are more than one keywords with the same name.
        Works both with the short name (e.g. ``Log``) and the full name
        (e.g. ``BuiltIn.Log``).

        The default error message can be overridden with the ``msg`` argument.

        See also `Variable Should Exist`.
        """
        try:
            runner = self._namespace.get_runner(name)
        except DataError as error:
            raise AssertionError(msg or error.message)
        if isinstance(runner, UserErrorHandler):
            raise AssertionError(msg or runner.error.message)

    def get_time(self, format='timestamp', time_='NOW'):
        """Returns the given time in the requested format.

        *NOTE:* DateTime library contains much more flexible keywords for
        getting the current date and time and for date and time handling in
        general.

        How time is returned is determined based on the given ``format``
        string as follows. Note that all checks are case-insensitive.

        1) If ``format`` contains the word ``epoch``, the time is returned
           in seconds after the UNIX epoch (1970-01-01 00:00:00 UTC).
           The return value is always an integer.

        2) If ``format`` contains any of the words ``year``, ``month``,
           ``day``, ``hour``, ``min``, or ``sec``, only the selected parts are
           returned. The order of the returned parts is always the one
           in the previous sentence and the order of words in ``format``
           is not significant. The parts are returned as zero-padded
           strings (e.g. May -> ``05``).

        3) Otherwise (and by default) the time is returned as a
           timestamp string in the format ``2006-02-24 15:08:31``.

        By default this keyword returns the current local time, but
        that can be altered using ``time`` argument as explained below.
        Note that all checks involving strings are case-insensitive.

        1) If ``time`` is a number, or a string that can be converted to
           a number, it is interpreted as seconds since the UNIX epoch.
           This documentation was originally written about 1177654467
           seconds after the epoch.

        2) If ``time`` is a timestamp, that time will be used. Valid
           timestamp formats are ``YYYY-MM-DD hh:mm:ss`` and
           ``YYYYMMDD hhmmss``.

        3) If ``time`` is equal to ``NOW`` (default), the current local
           time is used.

        4) If ``time`` is equal to ``UTC``, the current time in
           [http://en.wikipedia.org/wiki/Coordinated_Universal_Time|UTC]
           is used.

        5) If ``time`` is in the format like ``NOW - 1 day`` or ``UTC + 1 hour
           30 min``, the current local/UTC time plus/minus the time
           specified with the time string is used. The time string format
           is described in an appendix of Robot Framework User Guide.

        Examples (expecting the current local time is 2006-03-29 15:06:21):
        | ${time} = | Get Time |             |  |  |
        | ${secs} = | Get Time | epoch       |  |  |
        | ${year} = | Get Time | return year |  |  |
        | ${yyyy}   | ${mm}    | ${dd} =     | Get Time | year,month,day |
        | @{time} = | Get Time | year month day hour min sec |  |  |
        | ${y}      | ${s} =   | Get Time    | seconds and year |  |
        =>
        | ${time} = '2006-03-29 15:06:21'
        | ${secs} = 1143637581
        | ${year} = '2006'
        | ${yyyy} = '2006', ${mm} = '03', ${dd} = '29'
        | @{time} = ['2006', '03', '29', '15', '06', '21']
        | ${y} = '2006'
        | ${s} = '21'

        Examples (expecting the current local time is 2006-03-29 15:06:21 and
        UTC time is 2006-03-29 12:06:21):
        | ${time} = | Get Time |              | 1177654467          | # Time given as epoch seconds        |
        | ${secs} = | Get Time | sec          | 2007-04-27 09:14:27 | # Time given as a timestamp          |
        | ${year} = | Get Time | year         | NOW                 | # The local time of execution        |
        | @{time} = | Get Time | hour min sec | NOW + 1h 2min 3s    | # 1h 2min 3s added to the local time |
        | @{utc} =  | Get Time | hour min sec | UTC                 | # The UTC time of execution          |
        | ${hour} = | Get Time | hour         | UTC - 1 hour        | # 1h subtracted from the UTC  time   |
        =>
        | ${time} = '2007-04-27 09:14:27'
        | ${secs} = 27
        | ${year} = '2006'
        | @{time} = ['16', '08', '24']
        | @{utc} = ['12', '06', '21']
        | ${hour} = '11'
        """
        return get_time(format, parse_time(time_))

    def evaluate(self, expression, modules=None, namespace=None):
        """Evaluates the given expression in Python and returns the result.

        ``expression`` is evaluated in Python as explained in the
        `Evaluating expressions` section.

        ``modules`` argument can be used to specify a comma separated
        list of Python modules to be imported and added to the evaluation
        namespace.

        ``namespace`` argument can be used to pass a custom evaluation
        namespace as a dictionary. Possible ``modules`` are added to this
        namespace.

        Variables used like ``${variable}`` are replaced in the expression
        before evaluation. Variables are also available in the evaluation
        namespace and can be accessed using the special ``$variable`` syntax
        as explained in the `Evaluating expressions` section.

        Starting from Robot Framework 3.2, modules used in the expression are
        imported automatically. There are, however, two cases where they need to
        be explicitly specified using the ``modules`` argument:

        - When nested modules like ``rootmod.submod`` are implemented so that
          the root module does not automatically import sub modules. This is
          illustrated by the ``selenium.webdriver`` example below.

        - When using a module in the expression part of a list comprehension.
          This is illustrated by the ``json`` example below.

        Examples (expecting ``${result}`` is number 3.14):
        | ${status} =  | Evaluate | 0 < ${result} < 10 | # Would also work with string '3.14' |
        | ${status} =  | Evaluate | 0 < $result < 10   | # Using variable itself, not string representation |
        | ${random} =  | Evaluate | random.randint(0, sys.maxsize) |
        | ${options} = | Evaluate | selenium.webdriver.ChromeOptions() | modules=selenium.webdriver |
        | ${items} =   | Evaluate | [json.loads(item) for item in ('1', '"b"')] | modules=json |
        | ${ns} =      | Create Dictionary | x=${4}    | y=${2}              |
        | ${result} =  | Evaluate | x*10 + y           | namespace=${ns}     |
        =>
        | ${status} = True
        | ${random} = <random integer>
        | ${options} = ChromeOptions instance
        | ${items} = [1, 'b']
        | ${result} = 42

        *NOTE*: Prior to Robot Framework 3.2 using ``modules=rootmod.submod``
        was not enough to make the root module itself available in the
        evaluation namespace. It needed to be taken into use explicitly like
        ``modules=rootmod, rootmod.submod``.
        """
        try:
            return evaluate_expression(expression, self._variables.current.store,
                                       modules, namespace)
        except DataError as err:
            raise RuntimeError(err.message)

    def call_method(self, object, method_name, *args, **kwargs):
        """Calls the named method of the given object with the provided arguments.

        The possible return value from the method is returned and can be
        assigned to a variable. Keyword fails both if the object does not have
        a method with the given name or if executing the method raises an
        exception.

        Possible equal signs in arguments must be escaped with a backslash
        like ``\\=``.

        Examples:
        | Call Method      | ${hashtable} | put          | myname  | myvalue |
        | ${isempty} =     | Call Method  | ${hashtable} | isEmpty |         |
        | Should Not Be True | ${isempty} |              |         |         |
        | ${value} =       | Call Method  | ${hashtable} | get     | myname  |
        | Should Be Equal  | ${value}     | myvalue      |         |         |
        | Call Method      | ${object}    | kwargs    | name=value | foo=bar |
        | Call Method      | ${object}    | positional   | escaped\\=equals  |
        """
        try:
            method = getattr(object, method_name)
        except AttributeError:
            raise RuntimeError("%s object does not have method '%s'."
                               % (type_name(object), method_name))
        try:
            return method(*args, **kwargs)
        except:
            raise RuntimeError("Calling method '%s' failed: %s"
                               % (method_name, get_error_message()))

    def regexp_escape(self, *patterns):
        """Returns each argument string escaped for use as a regular expression.

        This keyword can be used to escape strings to be used with
        `Should Match Regexp` and `Should Not Match Regexp` keywords.

        Escaping is done with Python's ``re.escape()`` function.

        Examples:
        | ${escaped} = | Regexp Escape | ${original} |
        | @{strings} = | Regexp Escape | @{strings}  |
        """
        if len(patterns) == 0:
            return ''
        if len(patterns) == 1:
            return re.escape(patterns[0])
        return [re.escape(p) for p in patterns]

    def set_test_message(self, message, append=False):
        """Sets message for the current test case.

        If the optional ``append`` argument is given a true value (see `Boolean
        arguments`), the given ``message`` is added after the possible earlier
        message by joining the messages with a space.

        In test teardown this keyword can alter the possible failure message,
        but otherwise failures override messages set by this keyword. Notice
        that in teardown the message is available as a built-in variable
        ``${TEST MESSAGE}``.

        It is possible to use HTML format in the message by starting the message
        with ``*HTML*``.

        Examples:
        | Set Test Message | My message           |                          |
        | Set Test Message | is continued.        | append=yes               |
        | Should Be Equal  | ${TEST MESSAGE}      | My message is continued. |
        | Set Test Message | `*`HTML`*` <b>Hello!</b> |                      |

        This keyword can not be used in suite setup or suite teardown.
        """
        test = self._context.test
        if not test:
            raise RuntimeError("'Set Test Message' keyword cannot be used in "
                               "suite setup or teardown.")
        test.message = self._get_new_text(test.message, message,
                                          append, handle_html=True)
        if self._context.in_test_teardown:
            self._variables.set_test("${TEST_MESSAGE}", test.message)
        message, level = self._get_logged_test_message_and_level(test.message)
        self.log('Set test message to:\n%s' % message, level)

    def _get_new_text(self, old, new, append, handle_html=False):
        if not is_unicode(new):
            new = unic(new)
        if not (is_truthy(append) and old):
            return new
        if handle_html:
            if new.startswith('*HTML*'):
                new = new[6:].lstrip()
                if not old.startswith('*HTML*'):
                    old = '*HTML* %s' % html_escape(old)
            elif old.startswith('*HTML*'):
                new = html_escape(new)
        return '%s %s' % (old, new)

    def _get_logged_test_message_and_level(self, message):
        if message.startswith('*HTML*'):
            return message[6:].lstrip(), 'HTML'
        return message, 'INFO'

    def set_test_documentation(self, doc, append=False):
        """Sets documentation for the current test case.

        By default the possible existing documentation is overwritten, but
        this can be changed using the optional ``append`` argument similarly
        as with `Set Test Message` keyword.

        The current test documentation is available as a built-in variable
        ``${TEST DOCUMENTATION}``. This keyword can not be used in suite
        setup or suite teardown.
        """
        test = self._context.test
        if not test:
            raise RuntimeError("'Set Test Documentation' keyword cannot be "
                               "used in suite setup or teardown.")
        test.doc = self._get_new_text(test.doc, doc, append)
        self._variables.set_test('${TEST_DOCUMENTATION}', test.doc)
        self.log('Set test documentation to:\n%s' % test.doc)

    def set_suite_documentation(self, doc, append=False, top=False):
        """Sets documentation for the current test suite.

        By default the possible existing documentation is overwritten, but
        this can be changed using the optional ``append`` argument similarly
        as with `Set Test Message` keyword.

        This keyword sets the documentation of the current suite by default.
        If the optional ``top`` argument is given a true value (see `Boolean
        arguments`), the documentation of the top level suite is altered
        instead.

        The documentation of the current suite is available as a built-in
        variable ``${SUITE DOCUMENTATION}``.
        """
        suite = self._get_context(top).suite
        suite.doc = self._get_new_text(suite.doc, doc, append)
        self._variables.set_suite('${SUITE_DOCUMENTATION}', suite.doc, top)
        self.log('Set suite documentation to:\n%s' % suite.doc)

    def set_suite_metadata(self, name, value, append=False, top=False):
        """Sets metadata for the current test suite.

        By default possible existing metadata values are overwritten, but
        this can be changed using the optional ``append`` argument similarly
        as with `Set Test Message` keyword.

        This keyword sets the metadata of the current suite by default.
        If the optional ``top`` argument is given a true value (see `Boolean
        arguments`), the metadata of the top level suite is altered instead.

        The metadata of the current suite is available as a built-in variable
        ``${SUITE METADATA}`` in a Python dictionary. Notice that modifying this
        variable directly has no effect on the actual metadata the suite has.
        """
        if not is_unicode(name):
            name = unic(name)
        metadata = self._get_context(top).suite.metadata
        original = metadata.get(name, '')
        metadata[name] = self._get_new_text(original, value, append)
        self._variables.set_suite('${SUITE_METADATA}', metadata.copy(), top)
        self.log("Set suite metadata '%s' to value '%s'." % (name, metadata[name]))

    def set_tags(self, *tags):
        """Adds given ``tags`` for the current test or all tests in a suite.

        When this keyword is used inside a test case, that test gets
        the specified tags and other tests are not affected.

        If this keyword is used in a suite setup, all test cases in
        that suite, recursively, gets the given tags. It is a failure
        to use this keyword in a suite teardown.

        The current tags are available as a built-in variable ``@{TEST TAGS}``.

        See `Remove Tags` if you want to remove certain tags and `Fail` if
        you want to fail the test case after setting and/or removing tags.
        """
        ctx = self._context
        if ctx.test:
            ctx.test.tags.add(tags)
            ctx.variables.set_test('@{TEST_TAGS}', list(ctx.test.tags))
        elif not ctx.in_suite_teardown:
            ctx.suite.set_tags(tags, persist=True)
        else:
            raise RuntimeError("'Set Tags' cannot be used in suite teardown.")
        self.log('Set tag%s %s.' % (s(tags), seq2str(tags)))

    def remove_tags(self, *tags):
        """Removes given ``tags`` from the current test or all tests in a suite.

        Tags can be given exactly or using a pattern with ``*``, ``?`` and
        ``[chars]`` acting as wildcards. See the `Glob patterns` section
        for more information.

        This keyword can affect either one test case or all test cases in a
        test suite similarly as `Set Tags` keyword.

        The current tags are available as a built-in variable ``@{TEST TAGS}``.

        Example:
        | Remove Tags | mytag | something-* | ?ython |

        See `Set Tags` if you want to add certain tags and `Fail` if you want
        to fail the test case after setting and/or removing tags.
        """
        ctx = self._context
        if ctx.test:
            ctx.test.tags.remove(tags)
            ctx.variables.set_test('@{TEST_TAGS}', list(ctx.test.tags))
        elif not ctx.in_suite_teardown:
            ctx.suite.set_tags(remove=tags, persist=True)
        else:
            raise RuntimeError("'Remove Tags' cannot be used in suite teardown.")
        self.log('Removed tag%s %s.' % (s(tags), seq2str(tags)))

    def get_library_instance(self, name=None, all=False):
        """Returns the currently active instance of the specified test library.

        This keyword makes it easy for test libraries to interact with
        other test libraries that have state. This is illustrated by
        the Python example below:

        | from robot.libraries.BuiltIn import BuiltIn
        |
        | def title_should_start_with(expected):
        |     seleniumlib = BuiltIn().get_library_instance('SeleniumLibrary')
        |     title = seleniumlib.get_title()
        |     if not title.startswith(expected):
        |         raise AssertionError("Title '%s' did not start with '%s'"
        |                              % (title, expected))

        It is also possible to use this keyword in the test data and
        pass the returned library instance to another keyword. If a
        library is imported with a custom name, the ``name`` used to get
        the instance must be that name and not the original library name.

        If the optional argument ``all`` is given a true value, then a
        dictionary mapping all library names to instances will be returned.

        Example:
        | &{all libs} = | Get library instance | all=True |
        """
        if all:
            return self._namespace.get_library_instances()
        try:
            return self._namespace.get_library_instance(name)
        except DataError as err:
            raise RuntimeError(unic(err))


[docs]class BuiltIn(_Verify, _Converter, _Variables, _RunKeyword, _Control, _Misc):
    u"""An always available standard library with often needed keywords.

    ``BuiltIn`` is Robot Framework's standard library that provides a set
    of generic keywords needed often. It is imported automatically and
    thus always available. The provided keywords can be used, for example,
    for verifications (e.g. `Should Be Equal`, `Should Contain`),
    conversions (e.g. `Convert To Integer`) and for various other purposes
    (e.g. `Log`, `Sleep`, `Run Keyword If`, `Set Global Variable`).

    == Table of contents ==

    %TOC%

    = HTML error messages =

    Many of the keywords accept an optional error message to use if the keyword
    fails, and it is possible to use HTML in these messages by prefixing them
    with ``*HTML*``. See `Fail` keyword for a usage example. Notice that using
    HTML in messages is not limited to BuiltIn library but works with any
    error message.

    = Evaluating expressions =

    Many keywords, such as `Evaluate`, `Run Keyword If` and `Should Be True`,
    accept an expression that is evaluated in Python.

    == Evaluation namespace ==

    Expressions are evaluated using Python's
    [http://docs.python.org/library/functions.html#eval|eval] function so
    that all Python built-ins like ``len()`` and ``int()`` are available.
    In addition to that, all unrecognized variables are considered to be
    modules that are automatically imported. It is possible to use all
    available Python modules, including the standard modules and the installed
    third party modules.

    Examples:
    | `Should Be True`   | len('${result}') > 3 | |
    | `Run Keyword If`   | os.sep == '/'        | Non-Windows Keyword  |
    | ${robot version} = | `Evaluate`           | robot.__version__    |

    `Evaluate` also allows configuring the execution namespace with a custom
    namespace and with custom modules to be imported. The latter functionality
    is useful in special cases where the automatic module import does not work
    such as when using nested modules like ``rootmod.submod`` or list
    comprehensions. See the documentation of the `Evaluate` keyword for mode
    details.

    *NOTE:* Automatic module import is a new feature in Robot Framework 3.2.
    Earlier modules needed to be explicitly taken into use when using the
    `Evaluate` keyword and other keywords only had access to ``sys`` and
    ``os`` modules.

    == Using variables ==

    When a variable is used in the expressing using the normal ``${variable}``
    syntax, its value is replaced before the expression is evaluated. This
    means that the value used in the expression will be the string
    representation of the variable value, not the variable value itself.
    This is not a problem with numbers and other objects that have a string
    representation that can be evaluated directly, but with other objects
    the behavior depends on the string representation. Most importantly,
    strings must always be quoted, and if they can contain newlines, they must
    be triple quoted.

    Examples:
    | `Should Be True` | ${rc} < 10                | Return code greater than 10 | |
    | `Run Keyword If` | '${status}' == 'PASS'     | Log | Passed                |
    | `Run Keyword If` | 'FAIL' in '''${output}''' | Log | Output contains FAIL  |

    Actual variables values are also available in the evaluation namespace.
    They can be accessed using special variable syntax without the curly
    braces like ``$variable``. These variables should never be quoted.

    Examples:
    | `Should Be True` | $rc < 10          | Return code greater than 10  | |
    | `Run Keyword If` | $status == 'PASS' | `Log` | Passed               |
    | `Run Keyword If` | 'FAIL' in $output | `Log` | Output contains FAIL |
    | `Should Be True` | len($result) > 1 and $result[1] == 'OK' |
    | `Should Be True` | $result is not None                     |

    Using the ``$variable`` syntax slows down expression evaluation a little.
    This should not typically matter, but should be taken into account if
    complex expressions are evaluated often and there are strict time
    constrains.

    Notice that instead of creating complicated expressions, it is often better
    to move the logic into a test library. That eases maintenance and can also
    enhance execution speed.

    = Boolean arguments =

    Some keywords accept arguments that are handled as Boolean values true or
    false. If such an argument is given as a string, it is considered false if
    it is an empty string or equal to ``FALSE``, ``NONE``, ``NO``, ``OFF`` or
    ``0``, case-insensitively. Keywords verifying something that allow dropping
    actual and expected values from the possible error message also consider
    string ``no values`` to be false. Other strings are considered true unless
    the keyword documentation explicitly states otherwise, and other argument
    types are tested using the same
    [http://docs.python.org/library/stdtypes.html#truth|rules as in Python].

    True examples:
    | `Should Be Equal` | ${x} | ${y}  | Custom error | values=True    | # Strings are generally true.    |
    | `Should Be Equal` | ${x} | ${y}  | Custom error | values=yes     | # Same as the above.             |
    | `Should Be Equal` | ${x} | ${y}  | Custom error | values=${TRUE} | # Python ``True`` is true.       |
    | `Should Be Equal` | ${x} | ${y}  | Custom error | values=${42}   | # Numbers other than 0 are true. |

    False examples:
    | `Should Be Equal` | ${x} | ${y}  | Custom error | values=False     | # String ``false`` is false.   |
    | `Should Be Equal` | ${x} | ${y}  | Custom error | values=no        | # Also string ``no`` is false. |
    | `Should Be Equal` | ${x} | ${y}  | Custom error | values=${EMPTY}  | # Empty string is false.       |
    | `Should Be Equal` | ${x} | ${y}  | Custom error | values=${FALSE}  | # Python ``False`` is false.   |
    | `Should Be Equal` | ${x} | ${y}  | Custom error | values=no values | # ``no values`` works with ``values`` argument |

    = Pattern matching =

    Many keywords accepts arguments as either glob or regular expression
    patterns.

    == Glob patterns ==

    Some keywords, for example `Should Match`, support so called
    [http://en.wikipedia.org/wiki/Glob_(programming)|glob patterns] where:

    | ``*``        | matches any string, even an empty string                |
    | ``?``        | matches any single character                            |
    | ``[chars]``  | matches one character in the bracket                    |
    | ``[!chars]`` | matches one character not in the bracket                |
    | ``[a-z]``    | matches one character from the range in the bracket     |
    | ``[!a-z]``   | matches one character not from the range in the bracket |

    Unlike with glob patterns normally, path separator characters ``/`` and
    ``\\`` and the newline character ``\\n`` are matches by the above
    wildcards.

    == Regular expressions ==

    Some keywords, for example `Should Match Regexp`, support
    [http://en.wikipedia.org/wiki/Regular_expression|regular expressions]
    that are more powerful but also more complicated that glob patterns.
    The regular expression support is implemented using Python's
    [http://docs.python.org/library/re.html|re module] and its documentation
    should be consulted for more information about the syntax.

    Because the backslash character (``\\``) is an escape character in
    Robot Framework test data, possible backslash characters in regular
    expressions need to be escaped with another backslash like ``\\\\d\\\\w+``.
    Strings that may contain special characters but should be handled
    as literal strings, can be escaped with the `Regexp Escape` keyword.

    = Multiline string comparison =

    `Should Be Equal` and `Should Be Equal As Strings` report the failures using
    [http://en.wikipedia.org/wiki/Diff_utility#Unified_format|unified diff
    format] if both strings have more than two lines.

    Example:
    | ${first} =  | `Catenate` | SEPARATOR=\\n | Not in second | Same | Differs | Same |
    | ${second} = | `Catenate` | SEPARATOR=\\n | Same | Differs2 | Same | Not in first |
    | `Should Be Equal` | ${first} | ${second} |

    Results in the following error message:

    | Multiline strings are different:
    | --- first
    | +++ second
    | @@ -1,4 +1,4 @@
    | -Not in second
    |  Same
    | -Differs
    | +Differs2
    |  Same
    | +Not in first

    = String representations =

    Several keywords log values explicitly (e.g. `Log`) or implicitly (e.g.
    `Should Be Equal` when there are failures). By default keywords log values
    using "human readable" string representation, which means that strings
    like ``Hello`` and numbers like ``42`` are logged as-is. Most of the time
    this is the desired behavior, but there are some problems as well:

    - It is not possible to see difference between different objects that
      have same string representation like string ``42`` and integer ``42``.
      `Should Be Equal` and some other keywords add the type information to
      the error message in these cases, though.

    - Non-printable characters such as the null byte are not visible.

    - Trailing whitespace is not visible.

    - Different newlines (``\\r\\n`` on Windows, ``\\n`` elsewhere) cannot
      be separated from each others.

    - There are several Unicode characters that are different but look the
      same. One example is the Latin ``\u0061`` (``\\u0061``) and the Cyrillic
      ``\u0430`` (``\\u0430``). Error messages like ``\u0061 != \u0430`` are
      not very helpful.

    - Some Unicode characters can be represented using
      [https://en.wikipedia.org/wiki/Unicode_equivalence|different forms].
      For example, ``\xe4`` can be represented either as a single code point
      ``\\u00e4`` or using two code points ``\\u0061`` and ``\\u0308`` combined
      together. Such forms are considered canonically equivalent, but strings
      containing them are not considered equal when compared in Python. Error
      messages like ``\xe4 != \u0061\u0308`` are not that helpful either.

    - Containers such as lists and dictionaries are formatted into a single
      line making it hard to see individual items they contain.

    To overcome the above problems, some keywords such as `Log` and
    `Should Be Equal` have an optional ``formatter`` argument that can be
    used to configure the string representation. The supported values are
    ``str`` (default), ``repr``, and ``ascii`` that work similarly as
    [https://docs.python.org/library/functions.html|Python built-in functions]
    with same names. More detailed semantics are explained below.

    == str ==

    Use the "human readable" string representation. Equivalent to using
    ``str()`` in Python 3 and ``unicode()`` in Python 2. This is the default.

    == repr ==

    Use the "machine readable" string representation. Similar to using
    ``repr()`` in Python, which means that strings like ``Hello`` are logged
    like ``'Hello'``, newlines and non-printable characters are escaped like
    ``\\n`` and ``\\x00``, and so on. Non-ASCII characters are shown as-is
    like ``\xe4`` in Python 3 and in escaped format like ``\\xe4`` in Python 2.
    Use ``ascii`` to always get the escaped format.

    There are also some enhancements compared to the standard ``repr()``:
    - Bigger lists, dictionaries and other containers are pretty-printed so
      that there is one item per row.
    - On Python 2 the ``u`` prefix is omitted with Unicode strings and
      the ``b`` prefix is added to byte strings.

    == ascii ==

    Same as using ``ascii()`` in Python 3 or ``repr()`` in Python 2 where
    ``ascii()`` does not exist. Similar to using ``repr`` explained above
    but with the following differences:

    - On Python 3 non-ASCII characters are escaped like ``\\xe4`` instead of
      showing them as-is like ``\xe4``. This makes it easier to see differences
      between Unicode characters that look the same but are not equal. This
      is how ``repr()`` works in Python 2.
    - On Python 2 just uses the standard ``repr()`` meaning that Unicode
      strings get the ``u`` prefix and no ``b`` prefix is added to byte
      strings.
    - Containers are not pretty-printed.
    """
    ROBOT_LIBRARY_SCOPE = 'GLOBAL'
    ROBOT_LIBRARY_VERSION = get_version()



[docs]class RobotNotRunningError(AttributeError):
    """Used when something cannot be done because Robot is not running.

    Based on AttributeError to be backwards compatible with RF < 2.8.5.
    May later be based directly on Exception, so new code should except
    this exception explicitly.
    """
    pass



[docs]def register_run_keyword(library, keyword, args_to_process=None,
                         deprecation_warning=True):
    """Tell Robot Framework that this keyword runs other keywords internally.

    *NOTE:* This API will change in the future. For more information see
    https://github.com/robotframework/robotframework/issues/2190. Use with
    `deprecation_warning=False` to avoid related deprecation warnings.

    1) Why is this method needed

    Keywords running other keywords internally using `Run Keyword` or its variants
    like `Run Keyword If` need some special handling by the framework. This includes
    not processing arguments (e.g. variables in them) twice, special handling of
    timeouts, and so on.

    2) How to use this method

    `library` is the name of the library where the registered keyword is implemented.

    `keyword` is the name of the keyword. With Python 2 it is possible to pass also
    the function or method implementing the keyword.

    `args_to_process`` defines how many of the arguments to the registered keyword must
    be processed normally.

    3) Examples

    from robot.libraries.BuiltIn import BuiltIn, register_run_keyword

    def my_run_keyword(name, *args):
        # do something
        return BuiltIn().run_keyword(name, *args)

    register_run_keyword(__name__, 'My Run Keyword', 1)

    -------------

    from robot.libraries.BuiltIn import BuiltIn, register_run_keyword

    class MyLibrary:
        def my_run_keyword_if(self, expression, name, *args):
            # do something
            return BuiltIn().run_keyword_if(expression, name, *args)

    register_run_keyword('MyLibrary', 'my_run_keyword_if', 2)
    """
    RUN_KW_REGISTER.register_run_keyword(library, keyword, args_to_process,
                                         deprecation_warning)





          

      

      

    

  

    
      
          
            
  Source code for robot.libraries.Collections

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

import copy

from robot.api import logger
from robot.utils import (is_dict_like, is_list_like, is_number, is_string, is_truthy, plural_or_not,
                         seq2str, seq2str2, type_name, unic, Matcher)
from robot.utils.asserts import assert_equal
from robot.version import get_version


[docs]class NotSet(object):
    def __repr__(self):
        return ""

NOT_SET = NotSet()


class _List(object):

    def convert_to_list(self, item):
        """Converts the given ``item`` to a Python ``list`` type.

        Mainly useful for converting tuples and other iterable to lists.
        Use `Create List` from the BuiltIn library for constructing new lists.
        """
        return list(item)

    def append_to_list(self, list_, *values):
        """Adds ``values`` to the end of ``list``.

        Example:
        | Append To List | ${L1} | xxx |   |   |
        | Append To List | ${L2} | x   | y | z |
        =>
        | ${L1} = ['a', 'xxx']
        | ${L2} = ['a', 'b', 'x', 'y', 'z']
        """
        self._validate_list(list_)
        for value in values:
            list_.append(value)

    def insert_into_list(self, list_, index, value):
        """Inserts ``value`` into ``list`` to the position specified with ``index``.

        Index ``0`` adds the value into the first position, ``1`` to the second,
        and so on. Inserting from right works with negative indices so that
        ``-1`` is the second last position, ``-2`` third last, and so on. Use
        `Append To List` to add items to the end of the list.

        If the absolute value of the index is greater than
        the length of the list, the value is added at the end
        (positive index) or the beginning (negative index). An index
        can be given either as an integer or a string that can be
        converted to an integer.

        Example:
        | Insert Into List | ${L1} | 0     | xxx |
        | Insert Into List | ${L2} | ${-1} | xxx |
        =>
        | ${L1} = ['xxx', 'a']
        | ${L2} = ['a', 'xxx', 'b']
        """
        self._validate_list(list_)
        list_.insert(self._index_to_int(index), value)

    def combine_lists(self, *lists):
        """Combines the given ``lists`` together and returns the result.

        The given lists are not altered by this keyword.

        Example:
        | ${x} = | Combine Lists | ${L1} | ${L2} |       |
        | ${y} = | Combine Lists | ${L1} | ${L2} | ${L1} |
        =>
        | ${x} = ['a', 'a', 'b']
        | ${y} = ['a', 'a', 'b', 'a']
        | ${L1} and ${L2} are not changed.
        """
        self._validate_lists(*lists)
        ret = []
        for item in lists:
            ret.extend(item)
        return ret

    def set_list_value(self, list_, index, value):
        """Sets the value of ``list`` specified by ``index`` to the given ``value``.

        Index ``0`` means the first position, ``1`` the second and so on.
        Similarly, ``-1`` is the last position, ``-2`` second last, and so on.
        Using an index that does not exist on the list causes an error.
        The index can be either an integer or a string that can be converted to
        an integer.

        Example:
        | Set List Value | ${L3} | 1  | xxx |
        | Set List Value | ${L3} | -1 | yyy |
        =>
        | ${L3} = ['a', 'xxx', 'yyy']
        """
        self._validate_list(list_)
        try:
            list_[self._index_to_int(index)] = value
        except IndexError:
            self._index_error(list_, index)

    def remove_values_from_list(self, list_, *values):
        """Removes all occurrences of given ``values`` from ``list``.

        It is not an error if a value does not exist in the list at all.

        Example:
        | Remove Values From List | ${L4} | a | c | e | f |
        =>
        | ${L4} = ['b', 'd']
        """
        self._validate_list(list_)
        for value in values:
            while value in list_:
                list_.remove(value)

    def remove_from_list(self, list_, index):
        """Removes and returns the value specified with an ``index`` from ``list``.

        Index ``0`` means the first position, ``1`` the second and so on.
        Similarly, ``-1`` is the last position, ``-2`` the second last, and so on.
        Using an index that does not exist on the list causes an error.
        The index can be either an integer or a string that can be converted
        to an integer.

        Example:
        | ${x} = | Remove From List | ${L2} | 0 |
        =>
        | ${x} = 'a'
        | ${L2} = ['b']
        """
        self._validate_list(list_)
        try:
            return list_.pop(self._index_to_int(index))
        except IndexError:
            self._index_error(list_, index)

    def remove_duplicates(self, list_):
        """Returns a list without duplicates based on the given ``list``.

        Creates and returns a new list that contains all items in the given
        list so that one item can appear only once. Order of the items in
        the new list is the same as in the original except for missing
        duplicates. Number of the removed duplicates is logged.
        """
        self._validate_list(list_)
        ret = []
        for item in list_:
            if item not in ret:
                ret.append(item)
        removed = len(list_) - len(ret)
        logger.info('%d duplicate%s removed.' % (removed, plural_or_not(removed)))
        return ret

    def get_from_list(self, list_, index):
        """Returns the value specified with an ``index`` from ``list``.

        The given list is never altered by this keyword.

        Index ``0`` means the first position, ``1`` the second, and so on.
        Similarly, ``-1`` is the last position, ``-2`` the second last, and so on.
        Using an index that does not exist on the list causes an error.
        The index can be either an integer or a string that can be converted
        to an integer.

        Examples (including Python equivalents in comments):
        | ${x} = | Get From List | ${L5} | 0  | # L5[0]  |
        | ${y} = | Get From List | ${L5} | -2 | # L5[-2] |
        =>
        | ${x} = 'a'
        | ${y} = 'd'
        | ${L5} is not changed
        """
        self._validate_list(list_)
        try:
            return list_[self._index_to_int(index)]
        except IndexError:
            self._index_error(list_, index)

    def get_slice_from_list(self, list_, start=0, end=None):
        """Returns a slice of the given list between ``start`` and ``end`` indexes.

        The given list is never altered by this keyword.

        If both ``start`` and ``end`` are given, a sublist containing values
        from ``start`` to ``end`` is returned. This is the same as
        ``list[start:end]`` in Python. To get all items from the beginning,
        use 0 as the start value, and to get all items until and including
        the end, use ``None`` (default) as the end value.

        Using ``start`` or ``end`` not found on the list is the same as using
        the largest (or smallest) available index.

        Examples (incl. Python equivalents in comments):
        | ${x} = | Get Slice From List | ${L5} | 2      | 4 | # L5[2:4]    |
        | ${y} = | Get Slice From List | ${L5} | 1      |   | # L5[1:None] |
        | ${z} = | Get Slice From List | ${L5} | end=-2 |   | # L5[0:-2]   |
        =>
        | ${x} = ['c', 'd']
        | ${y} = ['b', 'c', 'd', 'e']
        | ${z} = ['a', 'b', 'c']
        | ${L5} is not changed
        """
        self._validate_list(list_)
        start = self._index_to_int(start, True)
        if end is not None:
            end = self._index_to_int(end)
        return list_[start:end]

    def count_values_in_list(self, list_, value, start=0, end=None):
        """Returns the number of occurrences of the given ``value`` in ``list``.

        The search can be narrowed to the selected sublist by the ``start`` and
        ``end`` indexes having the same semantics as with `Get Slice From List`
        keyword. The given list is never altered by this keyword.

        Example:
        | ${x} = | Count Values In List | ${L3} | b |
        =>
        | ${x} = 1
        | ${L3} is not changed
        """
        self._validate_list(list_)
        return self.get_slice_from_list(list_, start, end).count(value)

    def get_index_from_list(self, list_, value, start=0, end=None):
        """Returns the index of the first occurrence of the ``value`` on the list.

        The search can be narrowed to the selected sublist by the ``start`` and
        ``end`` indexes having the same semantics as with `Get Slice From List`
        keyword. In case the value is not found, -1 is returned. The given list
        is never altered by this keyword.

        Example:
        | ${x} = | Get Index From List | ${L5} | d |
        =>
        | ${x} = 3
        | ${L5} is not changed
        """
        self._validate_list(list_)
        if start == '':
            start = 0
        list_ = self.get_slice_from_list(list_, start, end)
        try:
            return int(start) + list_.index(value)
        except ValueError:
            return -1

    def copy_list(self, list_, deepcopy=False):
        """Returns a copy of the given list.

        If the optional ``deepcopy`` is given a true value, the returned
        list is a deep copy. New option in Robot Framework 3.1.2.

        The given list is never altered by this keyword.
        """
        self._validate_list(list_)
        if deepcopy:
            return copy.deepcopy(list_)
        return list_[:]

    def reverse_list(self, list_):
        """Reverses the given list in place.

        Note that the given list is changed and nothing is returned. Use
        `Copy List` first, if you need to keep also the original order.

        | Reverse List | ${L3} |
        =>
        | ${L3} = ['c', 'b', 'a']
        """
        self._validate_list(list_)
        list_.reverse()

    def sort_list(self, list_):
        """Sorts the given list in place.

        Sorting fails if items in the list are not comparable with each others.
        On Python 2 most objects are comparable, but on Python 3 comparing,
        for example, strings with numbers is not possible.

        Note that the given list is changed and nothing is returned. Use
        `Copy List` first, if you need to keep also the original order.
        """
        self._validate_list(list_)
        list_.sort()

    def list_should_contain_value(self, list_, value, msg=None):
        """Fails if the ``value`` is not found from ``list``.

        Use the ``msg`` argument to override the default error message.
        """
        self._validate_list(list_)
        default = "%s does not contain value '%s'." % (seq2str2(list_), value)
        _verify_condition(value in list_, default, msg)

    def list_should_not_contain_value(self, list_, value, msg=None):
        """Fails if the ``value`` is found from ``list``.

        Use the ``msg`` argument to override the default error message.
        """
        self._validate_list(list_)
        default = "%s contains value '%s'." % (seq2str2(list_), value)
        _verify_condition(value not in list_, default, msg)

    def list_should_not_contain_duplicates(self, list_, msg=None):
        """Fails if any element in the ``list`` is found from it more than once.

        The default error message lists all the elements that were found
        from the ``list`` multiple times, but it can be overridden by giving
        a custom ``msg``. All multiple times found items and their counts are
        also logged.

        This keyword works with all iterables that can be converted to a list.
        The original iterable is never altered.
        """
        self._validate_list(list_)
        if not isinstance(list_, list):
            list_ = list(list_)
        dupes = []
        for item in list_:
            if item not in dupes:
                count = list_.count(item)
                if count > 1:
                    logger.info("'%s' found %d times." % (item, count))
                    dupes.append(item)
        if dupes:
            raise AssertionError(msg or
                                 '%s found multiple times.' % seq2str(dupes))

    def lists_should_be_equal(self, list1, list2, msg=None, values=True,
                              names=None, ignore_order=False):
        """Fails if given lists are unequal.

        The keyword first verifies that the lists have equal lengths, and then
        it checks are all their values equal. Possible differences between the
        values are listed in the default error message like ``Index 4: ABC !=
        Abc``. The types of the lists do not need to be the same. For example,
        Python tuple and list with same content are considered equal.

        The error message can be configured using ``msg`` and ``values``
        arguments:
        - If ``msg`` is not given, the default error message is used.
        - If ``msg`` is given and ``values`` gets a value considered true
          (see `Boolean arguments`), the error message starts with the given
          ``msg`` followed by a newline and the default message.
        - If ``msg`` is given and ``values``  is not given a true value,
          the error message is just the given ``msg``.

        The optional ``names`` argument can be used for naming the indices
        shown in the default error message. It can either be a list of names
        matching the indices in the lists or a dictionary where keys are
        indices that need to be named. It is not necessary to name all of
        the indices.  When using a dictionary, keys can be either integers
        or strings that can be converted to integers.

        Examples:
        | ${names} = | Create List | First Name | Family Name | Email |
        | Lists Should Be Equal | ${people1} | ${people2} | names=${names} |
        | ${names} = | Create Dictionary | 0=First Name | 2=Email |
        | Lists Should Be Equal | ${people1} | ${people2} | names=${names} |

        If the items in index 2 would differ in the above examples, the error
        message would contain a row like ``Index 2 (email): name@foo.com !=
        name@bar.com``.

        The optional ``ignore_order`` argument can be used to ignore the order
        of the elements in the lists. Using it requires items to be sortable.
        This is new in Robot Framework 3.2.

        Example:
        | ${list1} = | Create List | apple | cherry | banana |
        | ${list2} = | Create List | cherry | banana | apple |
        | Lists Should Be Equal | ${list1} | ${list2} | ignore_order=True |
        """
        self._validate_lists(list1, list2)
        len1 = len(list1)
        len2 = len(list2)
        default = 'Lengths are different: %d != %d' % (len1, len2)
        _verify_condition(len1 == len2, default, msg, values)
        names = self._get_list_index_name_mapping(names, len1)
        if ignore_order:
            list1 = sorted(list1)
            list2 = sorted(list2)
        diffs = list(self._yield_list_diffs(list1, list2, names))
        default = 'Lists are different:\n' + '\n'.join(diffs)
        _verify_condition(diffs == [], default, msg, values)

    def _get_list_index_name_mapping(self, names, list_length):
        if not names:
            return {}
        if is_dict_like(names):
            return dict((int(index), names[index]) for index in names)
        return dict(zip(range(list_length), names))

    def _yield_list_diffs(self, list1, list2, names):
        for index, (item1, item2) in enumerate(zip(list1, list2)):
            name = ' (%s)' % names[index] if index in names else ''
            try:
                assert_equal(item1, item2, msg='Index %d%s' % (index, name))
            except AssertionError as err:
                yield unic(err)

    def list_should_contain_sub_list(self, list1, list2, msg=None, values=True):
        """Fails if not all of the elements in ``list2`` are found in ``list1``.

        The order of values and the number of values are not taken into
        account.

        See `Lists Should Be Equal` for more information about configuring
        the error message with ``msg`` and ``values`` arguments.
        """
        self._validate_lists(list1, list2)
        diffs = ', '.join(unic(item) for item in list2 if item not in list1)
        default = 'Following values were not found from first list: ' + diffs
        _verify_condition(not diffs, default, msg, values)

    def log_list(self, list_, level='INFO'):
        """Logs the length and contents of the ``list`` using given ``level``.

        Valid levels are TRACE, DEBUG, INFO (default), and WARN.

        If you only want to the length, use keyword `Get Length` from
        the BuiltIn library.
        """
        self._validate_list(list_)
        logger.write('\n'.join(self._log_list(list_)), level)

    def _log_list(self, list_):
        if not list_:
            yield 'List is empty.'
        elif len(list_) == 1:
            yield 'List has one item:\n%s' % (list_[0],)
        else:
            yield 'List length is %d and it contains following items:' % len(list_)
            for index, item in enumerate(list_):
                yield '%s: %s' % (index, item)

    def _index_to_int(self, index, empty_to_zero=False):
        if empty_to_zero and not index:
            return 0
        try:
            return int(index)
        except ValueError:
            raise ValueError("Cannot convert index '%s' to an integer." % index)

    def _index_error(self, list_, index):
        raise IndexError('Given index %s is out of the range 0-%d.'
                         % (index, len(list_)-1))

    def _validate_list(self, list_, position=1):
        if not is_list_like(list_):
            raise TypeError("Expected argument %d to be a list or list-like, "
                            "got %s instead." % (position, type_name(list_)))

    def _validate_lists(self, *lists):
        for index, item in enumerate(lists, start=1):
            self._validate_list(item, index)


class _Dictionary(object):

    def convert_to_dictionary(self, item):
        """Converts the given ``item`` to a Python ``dict`` type.

        Mainly useful for converting other mappings to normal dictionaries.
        This includes converting Robot Framework's own ``DotDict`` instances
        that it uses if variables are created using the ``&{var}`` syntax.

        Use `Create Dictionary` from the BuiltIn library for constructing new
        dictionaries.
        """
        return dict(item)

    def set_to_dictionary(self, dictionary, *key_value_pairs, **items):
        """Adds the given ``key_value_pairs`` and ``items`` to the ``dictionary``.

        Giving items as ``key_value_pairs`` means giving keys and values
        as separate arguments:

        | Set To Dictionary | ${D1} | key | value | second | ${2} |
        =>
        | ${D1} = {'a': 1, 'key': 'value', 'second': 2}

        | Set To Dictionary | ${D1} | key=value | second=${2} |

        The latter syntax is typically more convenient to use, but it has
        a limitation that keys must be strings.

        If given keys already exist in the dictionary, their values are updated.
        """
        self._validate_dictionary(dictionary)
        if len(key_value_pairs) % 2 != 0:
            raise ValueError("Adding data to a dictionary failed. There "
                             "should be even number of key-value-pairs.")
        for i in range(0, len(key_value_pairs), 2):
            dictionary[key_value_pairs[i]] = key_value_pairs[i+1]
        dictionary.update(items)
        return dictionary

    def remove_from_dictionary(self, dictionary, *keys):
        """Removes the given ``keys`` from the ``dictionary``.

        If the given ``key`` cannot be found from the ``dictionary``, it
        is ignored.

        Example:
        | Remove From Dictionary | ${D3} | b | x | y |
        =>
        | ${D3} = {'a': 1, 'c': 3}
        """
        self._validate_dictionary(dictionary)
        for key in keys:
            if key in dictionary:
                value = dictionary.pop(key)
                logger.info("Removed item with key '%s' and value '%s'." % (key, value))
            else:
                logger.info("Key '%s' not found." % (key,))

    def pop_from_dictionary(self, dictionary, key, default=NOT_SET):
        """Pops the given ``key`` from the ``dictionary`` and returns its value.

        By default the keyword fails if the given ``key`` cannot be found from
        the ``dictionary``. If optional ``default`` value is given, it will be
        returned instead of failing.

        Example:
        | ${val}= | Pop From Dictionary | ${D3} | b |
        =>
        | ${val} = 2
        | ${D3} = {'a': 1, 'c': 3}
        """
        self._validate_dictionary(dictionary)
        if default is NOT_SET:
            self.dictionary_should_contain_key(dictionary, key)
            return dictionary.pop(key)
        return dictionary.pop(key, default)

    def keep_in_dictionary(self, dictionary, *keys):
        """Keeps the given ``keys`` in the ``dictionary`` and removes all other.

        If the given ``key`` cannot be found from the ``dictionary``, it
        is ignored.

        Example:
        | Keep In Dictionary | ${D5} | b | x | d |
        =>
        | ${D5} = {'b': 2, 'd': 4}
        """
        self._validate_dictionary(dictionary)
        remove_keys = [k for k in dictionary if k not in keys]
        self.remove_from_dictionary(dictionary, *remove_keys)

    def copy_dictionary(self, dictionary, deepcopy=False):
        """Returns a copy of the given dictionary.

        The ``deepcopy`` argument controls should the returned dictionary be
        a [https://docs.python.org/library/copy.html|shallow or deep copy].
        By default returns a shallow copy, but that can be changed by giving
        ``deepcopy`` a true value (see `Boolean arguments`). This is a new
        option in Robot Framework 3.1.2. Earlier versions always returned
        shallow copies.

        The given dictionary is never altered by this keyword.
        """
        self._validate_dictionary(dictionary)
        if deepcopy:
            return copy.deepcopy(dictionary)
        return dictionary.copy()

    def get_dictionary_keys(self, dictionary, sort_keys=True):
        """Returns keys of the given ``dictionary`` as a list.

        By default keys are returned in sorted order (assuming they are
        sortable), but they can be returned in the original order by giving
        ``sort_keys``  a false value (see `Boolean arguments`). Notice that
        with Python 3.5 and earlier dictionary order is undefined unless using
        ordered dictionaries.

        The given ``dictionary`` is never altered by this keyword.

        Example:
        | ${sorted} =   | Get Dictionary Keys | ${D3} |
        | ${unsorted} = | Get Dictionary Keys | ${D3} | sort_keys=False |
        =>
        | ${sorted} = ['a', 'b', 'c']
        | ${unsorted} = ['b', 'a', 'c']   # Order depends on Python version.

        ``sort_keys`` is a new option in Robot Framework 3.1.2. Earlier keys
        were always sorted.
        """
        self._validate_dictionary(dictionary)
        keys = dictionary.keys()
        if sort_keys:
            try:
                return sorted(keys)
            except TypeError:
                pass
        return list(keys)

    def get_dictionary_values(self, dictionary, sort_keys=True):
        """Returns values of the given ``dictionary`` as a list.

        Uses `Get Dictionary Keys` to get keys and then returns corresponding
        values. By default keys are sorted and values returned in that order,
        but this can be changed by giving ``sort_keys`` a false value (see
        `Boolean arguments`). Notice that with Python 3.5 and earlier
        dictionary order is undefined unless using ordered dictionaries.

        The given ``dictionary`` is never altered by this keyword.

        Example:
        | ${sorted} =   | Get Dictionary Values | ${D3} |
        | ${unsorted} = | Get Dictionary Values | ${D3} | sort_keys=False |
        =>
        | ${sorted} = [1, 2, 3]
        | ${unsorted} = [2, 1, 3]    # Order depends on Python version.

        ``sort_keys`` is a new option in Robot Framework 3.1.2. Earlier values
        were always sorted based on keys.
        """
        self._validate_dictionary(dictionary)
        keys = self.get_dictionary_keys(dictionary, sort_keys=sort_keys)
        return [dictionary[k] for k in keys]

    def get_dictionary_items(self, dictionary, sort_keys=True):
        """Returns items of the given ``dictionary`` as a list.

        Uses `Get Dictionary Keys` to get keys and then returns corresponding
        items. By default keys are sorted and items returned in that order,
        but this can be changed by giving ``sort_keys`` a false value (see
        `Boolean arguments`). Notice that with Python 3.5 and earlier
        dictionary order is undefined unless using ordered dictionaries.

        Items are returned as a flat list so that first item is a key,
        second item is a corresponding value, third item is the second key,
        and so on.

        The given ``dictionary`` is never altered by this keyword.

        Example:
        | ${sorted} =   | Get Dictionary Items | ${D3} |
        | ${unsorted} = | Get Dictionary Items | ${D3} | sort_keys=False |
        =>
        | ${sorted} = ['a', 1, 'b', 2, 'c', 3]
        | ${unsorted} = ['b', 2, 'a', 1, 'c', 3]    # Order depends on Python version.

        ``sort_keys`` is a new option in Robot Framework 3.1.2. Earlier items
        were always sorted based on keys.
        """
        self._validate_dictionary(dictionary)
        keys = self.get_dictionary_keys(dictionary, sort_keys=sort_keys)
        return [i for key in keys for i in (key, dictionary[key])]

    def get_from_dictionary(self, dictionary, key):
        """Returns a value from the given ``dictionary`` based on the given ``key``.

        If the given ``key`` cannot be found from the ``dictionary``, this
        keyword fails.

        The given dictionary is never altered by this keyword.

        Example:
        | ${value} = | Get From Dictionary | ${D3} | b |
        =>
        | ${value} = 2
        """
        self._validate_dictionary(dictionary)
        try:
            return dictionary[key]
        except KeyError:
            raise RuntimeError("Dictionary does not contain key '%s'." % (key,))

    def dictionary_should_contain_key(self, dictionary, key, msg=None):
        """Fails if ``key`` is not found from ``dictionary``.

        Use the ``msg`` argument to override the default error message.
        """
        self._validate_dictionary(dictionary)
        default = "Dictionary does not contain key '%s'." % (key,)
        _verify_condition(key in dictionary, default, msg)

    def dictionary_should_not_contain_key(self, dictionary, key, msg=None):
        """Fails if ``key`` is found from ``dictionary``.

        Use the ``msg`` argument to override the default error message.
        """
        self._validate_dictionary(dictionary)
        default = "Dictionary contains key '%s'." % (key,)
        _verify_condition(key not in dictionary, default, msg)

    def dictionary_should_contain_item(self, dictionary, key, value, msg=None):
        """An item of ``key`` / ``value`` must be found in a ``dictionary``.

        Value is converted to unicode for comparison.

        Use the ``msg`` argument to override the default error message.
        """
        self._validate_dictionary(dictionary)
        self.dictionary_should_contain_key(dictionary, key, msg)
        actual, expected = unic(dictionary[key]), unic(value)
        default = "Value of dictionary key '%s' does not match: %s != %s" % (key, actual, expected)
        _verify_condition(actual == expected, default, msg)

    def dictionary_should_contain_value(self, dictionary, value, msg=None):
        """Fails if ``value`` is not found from ``dictionary``.

        Use the ``msg`` argument to override the default error message.
        """
        self._validate_dictionary(dictionary)
        default = "Dictionary does not contain value '%s'." % (value,)
        _verify_condition(value in dictionary.values(), default, msg)

    def dictionary_should_not_contain_value(self, dictionary, value, msg=None):
        """Fails if ``value`` is found from ``dictionary``.

        Use the ``msg`` argument to override the default error message.
        """
        self._validate_dictionary(dictionary)
        default = "Dictionary contains value '%s'." % (value,)
        _verify_condition(not value in dictionary.values(), default, msg)

    def dictionaries_should_be_equal(self, dict1, dict2, msg=None, values=True):
        """Fails if the given dictionaries are not equal.

        First the equality of dictionaries' keys is checked and after that all
        the key value pairs. If there are differences between the values, those
        are listed in the error message. The types of the dictionaries do not
        need to be same.

        See `Lists Should Be Equal` for more information about configuring
        the error message with ``msg`` and ``values`` arguments.
        """
        self._validate_dictionary(dict1)
        self._validate_dictionary(dict2, 2)
        keys = self._keys_should_be_equal(dict1, dict2, msg, values)
        self._key_values_should_be_equal(keys, dict1, dict2, msg, values)

    def dictionary_should_contain_sub_dictionary(self, dict1, dict2, msg=None,
                                                 values=True):
        """Fails unless all items in ``dict2`` are found from ``dict1``.

        See `Lists Should Be Equal` for more information about configuring
        the error message with ``msg`` and ``values`` arguments.
        """
        self._validate_dictionary(dict1)
        self._validate_dictionary(dict2, 2)
        keys = self.get_dictionary_keys(dict2)
        diffs = [unic(k) for k in keys if k not in dict1]
        default = "Following keys missing from first dictionary: %s" \
                  % ', '.join(diffs)
        _verify_condition(not diffs, default, msg, values)
        self._key_values_should_be_equal(keys, dict1, dict2, msg, values)

    def log_dictionary(self, dictionary, level='INFO'):
        """Logs the size and contents of the ``dictionary`` using given ``level``.

        Valid levels are TRACE, DEBUG, INFO (default), and WARN.

        If you only want to log the size, use keyword `Get Length` from
        the BuiltIn library.
        """
        self._validate_dictionary(dictionary)
        logger.write('\n'.join(self._log_dictionary(dictionary)), level)

    def _log_dictionary(self, dictionary):
        if not dictionary:
            yield 'Dictionary is empty.'
        elif len(dictionary) == 1:
            yield 'Dictionary has one item:'
        else:
            yield 'Dictionary size is %d and it contains following items:' % len(dictionary)
        for key in self.get_dictionary_keys(dictionary):
            yield '%s: %s' % (key, dictionary[key])

    def _keys_should_be_equal(self, dict1, dict2, msg, values):
        keys1 = self.get_dictionary_keys(dict1)
        keys2 = self.get_dictionary_keys(dict2)
        miss1 = [unic(k) for k in keys2 if k not in dict1]
        miss2 = [unic(k) for k in keys1 if k not in dict2]
        error = []
        if miss1:
            error += ['Following keys missing from first dictionary: %s'
                      % ', '.join(miss1)]
        if miss2:
            error += ['Following keys missing from second dictionary: %s'
                      % ', '.join(miss2)]
        _verify_condition(not error, '\n'.join(error), msg, values)
        return keys1

    def _key_values_should_be_equal(self, keys, dict1, dict2, msg, values):
        diffs = list(self._yield_dict_diffs(keys, dict1, dict2))
        default = 'Following keys have different values:\n' + '\n'.join(diffs)
        _verify_condition(not diffs, default, msg, values)

    def _yield_dict_diffs(self, keys, dict1, dict2):
        for key in keys:
            try:
                assert_equal(dict1[key], dict2[key], msg='Key %s' % (key,))
            except AssertionError as err:
                yield unic(err)

    def _validate_dictionary(self, dictionary, position=1):
        if is_string(dictionary) or is_number(dictionary):
            raise TypeError("Expected argument %d to be a dictionary or dictionary-like, "
                            "got %s instead." % (position, type_name(dictionary)))


[docs]class Collections(_List, _Dictionary):
    """A test library providing keywords for handling lists and dictionaries.

    ``Collections`` is Robot Framework's standard library that provides a
    set of keywords for handling Python lists and dictionaries. This
    library has keywords, for example, for modifying and getting
    values from lists and dictionaries (e.g. `Append To List`, `Get
    From Dictionary`) and for verifying their contents (e.g. `Lists
    Should Be Equal`, `Dictionary Should Contain Value`).

    == Table of contents ==

    %TOC%

    = Related keywords in BuiltIn =

    Following keywords in the BuiltIn library can also be used with
    lists and dictionaries:

    | = Keyword Name =             | = Applicable With = |
    | `Create List`                | lists |
    | `Create Dictionary`          | dicts |
    | `Get Length`                 | both  |
    | `Length Should Be`           | both  |
    | `Should Be Empty`            | both  |
    | `Should Not Be Empty`        | both  |
    | `Should Contain`             | both  |
    | `Should Not Contain`         | both  |
    | `Should Contain X Times`     | lists |
    | `Should Not Contain X Times` | lists |
    | `Get Count`                  | lists |

    = Using with list-like and dictionary-like objects =

    List keywords that do not alter the given list can also be used
    with tuples, and to some extend also with other iterables.
    `Convert To List` can be used to convert tuples and other iterables
    to Python ``list`` objects.

    Similarly dictionary keywords can, for most parts, be used with other
    mappings. `Convert To Dictionary` can be used if real Python ``dict``
    objects are needed.

    = Boolean arguments =

    Some keywords accept arguments that are handled as Boolean values true or
    false. If such an argument is given as a string, it is considered false if
    it is an empty string or equal to ``FALSE``, ``NONE``, ``NO``, ``OFF`` or
    ``0``, case-insensitively. Keywords verifying something that allow dropping
    actual and expected values from the possible error message also consider
    string ``no values`` to be false. Other strings are considered true
    regardless their value, and other argument types are tested using the same
    [http://docs.python.org/library/stdtypes.html#truth|rules as in Python].

    True examples:
    | `Should Contain Match` | ${list} | ${pattern} | case_insensitive=True    | # Strings are generally true.    |
    | `Should Contain Match` | ${list} | ${pattern} | case_insensitive=yes     | # Same as the above.             |
    | `Should Contain Match` | ${list} | ${pattern} | case_insensitive=${TRUE} | # Python ``True`` is true.       |
    | `Should Contain Match` | ${list} | ${pattern} | case_insensitive=${42}   | # Numbers other than 0 are true. |

    False examples:
    | `Should Contain Match` | ${list} | ${pattern} | case_insensitive=False    | # String ``false`` is false.   | |
    | `Should Contain Match` | ${list} | ${pattern} | case_insensitive=no       | # Also string ``no`` is false. |
    | `Should Contain Match` | ${list} | ${pattern} | case_insensitive=${EMPTY} | # Empty string is false.       |
    | `Should Contain Match` | ${list} | ${pattern} | case_insensitive=${FALSE} | # Python ``False`` is false.   |
    | `Lists Should Be Equal` | ${x}   | ${y} | Custom error | values=no values | # ``no values`` works with ``values`` argument |

    Considering ``OFF`` and ``0`` false is new in Robot Framework 3.1.

    = Data in examples =

    List related keywords use variables in format ``${Lx}`` in their examples.
    They mean lists with as many alphabetic characters as specified by ``x``.
    For example, ``${L1}`` means ``['a']`` and ``${L3}`` means
    ``['a', 'b', 'c']``.

    Dictionary keywords use similar ``${Dx}`` variables. For example, ``${D1}``
    means ``{'a': 1}`` and ``${D3}`` means ``{'a': 1, 'b': 2, 'c': 3}``.
    """
    ROBOT_LIBRARY_SCOPE = 'GLOBAL'
    ROBOT_LIBRARY_VERSION = get_version()

[docs]    def should_contain_match(self, list, pattern, msg=None,
                             case_insensitive=False,
                             whitespace_insensitive=False):
        """Fails if ``pattern`` is not found in ``list``.

        By default, pattern matching is similar to matching files in a shell
        and is case-sensitive and whitespace-sensitive. In the pattern syntax,
        ``*`` matches to anything and ``?`` matches to any single character. You
        can also prepend ``glob=`` to your pattern to explicitly use this pattern
        matching behavior.

        If you prepend ``regexp=`` to your pattern, your pattern will be used
        according to the Python
        [http://docs.python.org/library/re.html|re module] regular expression
        syntax. Important note: Backslashes are an escape character, and must
        be escaped with another backslash (e.g. ``regexp=\\\\d{6}`` to search for
        ``\\d{6}``). See `BuiltIn.Should Match Regexp` for more details.

        If ``case_insensitive`` is given a true value (see `Boolean arguments`),
        the pattern matching will ignore case.

        If ``whitespace_insensitive`` is given a true value (see `Boolean
        arguments`), the pattern matching will ignore whitespace.

        Non-string values in lists are ignored when matching patterns.

        Use the ``msg`` argument to override the default error message.

        See also ``Should Not Contain Match``.

        Examples:
        | Should Contain Match | ${list} | a*              | | | # Match strings beginning with 'a'. |
        | Should Contain Match | ${list} | regexp=a.*      | | | # Same as the above but with regexp. |
        | Should Contain Match | ${list} | regexp=\\\\d{6} | | | # Match strings containing six digits. |
        | Should Contain Match | ${list} | a*  | case_insensitive=True       | | # Match strings beginning with 'a' or 'A'. |
        | Should Contain Match | ${list} | ab* | whitespace_insensitive=yes  | | # Match strings beginning with 'ab' with possible whitespace ignored. |
        | Should Contain Match | ${list} | ab* | whitespace_insensitive=true | case_insensitive=true | # Same as the above but also ignore case. |
        """
        _List._validate_list(self, list)
        matches = _get_matches_in_iterable(list, pattern, case_insensitive,
                                           whitespace_insensitive)
        default = "%s does not contain match for pattern '%s'." \
                  % (seq2str2(list), pattern)
        _verify_condition(matches, default, msg)


[docs]    def should_not_contain_match(self, list, pattern, msg=None,
                                 case_insensitive=False,
                                 whitespace_insensitive=False):
        """Fails if ``pattern`` is found in ``list``.

        Exact opposite of `Should Contain Match` keyword. See that keyword
        for information about arguments and usage in general.
        """
        _List._validate_list(self, list)
        matches = _get_matches_in_iterable(list, pattern, case_insensitive,
                                           whitespace_insensitive)
        default = "%s contains match for pattern '%s'." \
                  % (seq2str2(list), pattern)
        _verify_condition(not matches, default, msg)


[docs]    def get_matches(self, list, pattern, case_insensitive=False,
                    whitespace_insensitive=False):
        """Returns a list of matches to ``pattern`` in ``list``.

        For more information on ``pattern``, ``case_insensitive``, and
        ``whitespace_insensitive``, see `Should Contain Match`.

        Examples:
        | ${matches}= | Get Matches | ${list} | a* | # ${matches} will contain any string beginning with 'a' | |
        | ${matches}= | Get Matches | ${list} | regexp=a.* | # ${matches} will contain any string beginning with 'a' (regexp version) |
        | ${matches}= | Get Matches | ${list} | a* | case_insensitive=${True} | # ${matches} will contain any string beginning with 'a' or 'A' |
        """
        _List._validate_list(self, list)
        return _get_matches_in_iterable(list, pattern, case_insensitive,
                                        whitespace_insensitive)


[docs]    def get_match_count(self, list, pattern, case_insensitive=False,
                        whitespace_insensitive=False):
        """Returns the count of matches to ``pattern`` in ``list``.

        For more information on ``pattern``, ``case_insensitive``, and
        ``whitespace_insensitive``, see `Should Contain Match`.

        Examples:
        | ${count}= | Get Match Count | ${list} | a* | # ${count} will be the count of strings beginning with 'a' | |
        | ${count}= | Get Match Count | ${list} | regexp=a.* | # ${matches} will be the count of strings beginning with 'a' (regexp version) |
        | ${count}= | Get Match Count | ${list} | a* | case_insensitive=${True} | # ${matches} will be the count of strings beginning with 'a' or 'A' |
        """
        _List._validate_list(self, list)
        return len(self.get_matches(list, pattern, case_insensitive,
                                    whitespace_insensitive))




def _verify_condition(condition, default_msg, msg, values=False):
    if condition:
        return
    if not msg:
        msg = default_msg
    elif is_truthy(values) and str(values).upper() != 'NO VALUES':
        msg += '\n' + default_msg
    raise AssertionError(msg)


def _get_matches_in_iterable(iterable, pattern, case_insensitive=False,
                             whitespace_insensitive=False):
    if not is_string(pattern):
        raise TypeError("Pattern must be string, got '%s'." % type_name(pattern))
    regexp = False
    if pattern.startswith('regexp='):
        pattern = pattern[7:]
        regexp = True
    elif pattern.startswith('glob='):
        pattern = pattern[5:]
    matcher = Matcher(pattern,
                      caseless=is_truthy(case_insensitive),
                      spaceless=is_truthy(whitespace_insensitive),
                      regexp=regexp)
    return [string for string in iterable
            if is_string(string) and matcher.match(string)]




          

      

      

    

  

    
      
          
            
  Source code for robot.libraries.DateTime

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

"""A test library for handling date and time values.

``DateTime`` is a Robot Framework standard library that supports creating and
converting date and time values (e.g. `Get Current Date`, `Convert Time`),
as well as doing simple calculations with them (e.g. `Subtract Time From Date`,
`Add Time To Time`). It supports dates and times in various formats, and can
also be used by other libraries programmatically.

== Table of contents ==

%TOC%

= Terminology =

In the context of this library, ``date`` and ``time`` generally have following
meanings:

- ``date``: An entity with both date and time components but without any
   timezone information. For example, ``2014-06-11 10:07:42``.
- ``time``: A time interval. For example, ``1 hour 20 minutes`` or ``01:20:00``.

This terminology differs from what Python's standard
[http://docs.python.org/library/datetime.html|datetime] module uses.
Basically its
[http://docs.python.org/library/datetime.html#datetime-objects|datetime] and
[http://docs.python.org/library/datetime.html#timedelta-objects|timedelta]
objects match ``date`` and ``time`` as defined by this library.

= Date formats =

Dates can given to and received from keywords in `timestamp`, `custom
timestamp`, `Python datetime` and `epoch time` formats. These formats are
discussed thoroughly in subsequent sections.

Input format is determined automatically based on the given date except when
using custom timestamps, in which case it needs to be given using
``date_format`` argument. Default result format is timestamp, but it can
be overridden using ``result_format`` argument.

== Timestamp ==

If a date is given as a string, it is always considered to be a timestamp.
If no custom formatting is given using ``date_format`` argument, the timestamp
is expected to be in [http://en.wikipedia.org/wiki/ISO_8601|ISO 8601] like
format ``YYYY-MM-DD hh:mm:ss.mil``, where any non-digit character can be used
as a separator or separators can be omitted altogether. Additionally,
only the date part is mandatory, all possibly missing time components are
considered to be zeros.

Dates can also be returned in the same ``YYYY-MM-DD hh:mm:ss.mil`` format by
using ``timestamp`` value with ``result_format`` argument. This is also the
default format that keywords returning dates use. Milliseconds can be excluded
using ``exclude_millis`` as explained in `Millisecond handling` section.

Examples:
${date1} =	Convert Date	2014-06-11 10:07:42.000	
${date2} =	Convert Date	20140611 100742	result_format=timestamp
Should Be Equal	${date1}	${date2}	
${date} =	Convert Date	20140612 12:57	exclude_millis=yes
Should Be Equal	${date}	2014-06-12 12:57:00	

== Custom timestamp ==

It is possible to use custom timestamps in both input and output.
The custom format is same as accepted by Python's
[http://docs.python.org/library/datetime.html#strftime-strptime-behavior|
datetime.strptime] function. For example, the default timestamp discussed
in the previous section would match ``%Y-%m-%d %H:%M:%S.%f``.

When using a custom timestamp in input, it must be specified using
``date_format`` argument. The actual input value must be a string that matches
the specified format exactly. When using a custom timestamp in output, it must
be given using ``result_format`` argument.

Examples:
${date} =	Convert Date	28.05.2014 12:05	date_format=%d.%m.%Y %H:%M
Should Be Equal	${date}	2014-05-28 12:05:00.000	
${date} =	Convert Date	${date}	result_format=%d.%m.%Y
Should Be Equal	${date}	28.05.2014	

Notice that locale aware directives like ``%b``  do not work correctly with
Jython on non-English locales: http://bugs.jython.org/issue2285

== Python datetime ==

Python's standard
[http://docs.python.org/library/datetime.html#datetime-objects|datetime]
objects can be used both in input and output. In input they are recognized
automatically, and in output it is possible to get them by giving ``datetime``
value to ``result_format`` argument.

One nice benefit with datetime objects is that they have different time
components available as attributes that can be easily accessed using the
extended variable syntax.

Examples:
${datetime} =	Convert Date	2014-06-11 10:07:42.123	datetime
Should Be Equal As Integers	${datetime.year}	2014	
Should Be Equal As Integers	${datetime.month}	6	
Should Be Equal As Integers	${datetime.day}	11	
Should Be Equal As Integers	${datetime.hour}	10	
Should Be Equal As Integers	${datetime.minute}	7	
Should Be Equal As Integers	${datetime.second}	42	
Should Be Equal As Integers	${datetime.microsecond}	123000	

== Epoch time ==

Epoch time is the time in seconds since the
[http://en.wikipedia.org/wiki/Unix_time|UNIX epoch] i.e. 00:00:00.000 (UTC)
1 January 1970. To give a date in epoch time, it must be given as a number
(integer or float), not as a string. To return a date in epoch time,
it is possible to use ``epoch`` value with ``result_format`` argument.
Epoch time is returned as a floating point number.

Notice that epoch time itself is independent on timezones and thus same
around the world at a certain time. What local time a certain epoch time
matches obviously then depends on the timezone. For example, examples below
were tested in Finland but verifications would fail on other timezones.

Examples:
${date} =	Convert Date	${1000000000}	
Should Be Equal	${date}	2001-09-09 04:46:40.000	
${date} =	Convert Date	2014-06-12 13:27:59.279	epoch
Should Be Equal	${date}	${1402568879.279}	

== Earliest supported date ==

The earliest date that is supported depends on the date format and to some
extent on the platform:

- Timestamps support year 1900 and above.
- Python datetime objects support year 1 and above.
- Epoch time supports 1970 and above on Windows with Python and IronPython.
- On other platforms epoch time supports 1900 and above or even earlier.

= Time formats =

Similarly as dates, times can be given to and received from keywords in
various different formats. Supported formats are `number`, `time string`
(verbose and compact), `timer string` and `Python timedelta`.

Input format for time is always determined automatically based on the input.
Result format is number by default, but it can be customised using
``result_format`` argument.

== Number ==

Time given as a number is interpreted to be seconds. It can be given
either as an integer or a float, or it can be a string that can be converted
to a number.

To return a time as a number, ``result_format`` argument must have value
``number``, which is also the default. Returned number is always a float.

Examples:
${time} =	Convert Time	3.14	
Should Be Equal	${time}	${3.14}	
${time} =	Convert Time	${time}	result_format=number
Should Be Equal	${time}	${3.14}	

== Time string ==

Time strings are strings in format like ``1 minute 42 seconds`` or ``1min 42s``.
The basic idea of this format is having first a number and then a text
specifying what time that number represents. Numbers can be either
integers or floating point numbers, the whole format is case and space
insensitive, and it is possible to add a minus prefix to specify negative
times. The available time specifiers are:

- ``days``, ``day``, ``d``
- ``hours``, ``hour``, ``h``
- ``minutes``, ``minute``, ``mins``, ``min``, ``m``
- ``seconds``, ``second``, ``secs``, ``sec``, ``s``
- ``milliseconds``, ``millisecond``, ``millis``, ``ms``

When returning a time string, it is possible to select between ``verbose``
and ``compact`` representations using ``result_format`` argument. The verbose
format uses long specifiers ``day``, ``hour``, ``minute``, ``second`` and
``millisecond``, and adds ``s`` at the end when needed. The compact format uses
shorter specifiers ``d``, ``h``, ``min``, ``s`` and ``ms``, and even drops
the space between the number and the specifier.

Examples:
${time} =	Convert Time	1 minute 42 seconds	
Should Be Equal	${time}	${102}	
${time} =	Convert Time	4200	verbose
Should Be Equal	${time}	1 hour 10 minutes	
${time} =	Convert Time	- 1.5 hours	compact
Should Be Equal	${time}	- 1h 30min	

== Timer string ==

Timer string is a string given in timer like format ``hh:mm:ss.mil``. In this
format both hour and millisecond parts are optional, leading and trailing
zeros can be left out when they are not meaningful, and negative times can
be represented by adding a minus prefix.

To return a time as timer string, ``result_format`` argument must be given
value ``timer``. Timer strings are by default returned in full ``hh:mm:ss.mil``
format, but milliseconds can be excluded using ``exclude_millis`` as explained
in `Millisecond handling` section.

Examples:
${time} =	Convert Time	01:42		
Should Be Equal	${time}	${102}		
${time} =	Convert Time	01:10:00.123		
Should Be Equal	${time}	${4200.123}		
${time} =	Convert Time	102	timer	
Should Be Equal	${time}	00:01:42.000		
${time} =	Convert Time	-101.567	timer	exclude_millis=yes
Should Be Equal	${time}	-00:01:42		

== Python timedelta ==

Python's standard
[http://docs.python.org/library/datetime.html#datetime.timedelta|timedelta]
objects are also supported both in input and in output. In input they are
recognized automatically, and in output it is possible to receive them by
giving ``timedelta`` value to ``result_format`` argument.

Examples:
| ${timedelta} =  | Convert Time                 | 01:10:02.123 | timedelta |
| Should Be Equal | ${timedelta.total_seconds()} | ${4202.123}  |

= Millisecond handling =

This library handles dates and times internally using the precision of the
given input. With `timestamp`, `time string`, and `timer string` result
formats seconds are, however, rounded to millisecond accuracy. Milliseconds
may also be included even if there would be none.

All keywords returning dates or times have an option to leave milliseconds out
by giving a true value to ``exclude_millis`` argument. If the argument is given
as a string, it is considered true unless it is empty or case-insensitively
equal to ``false``, ``none`` or ``no``. Other argument types are tested using
same [http://docs.python.org/library/stdtypes.html#truth|rules as in
Python].

When milliseconds are excluded, seconds in returned dates and times are
rounded to the nearest full second. With `timestamp` and `timer string`
result formats, milliseconds will also be removed from the returned string
altogether.

Examples:
${date} =	Convert Date	2014-06-11 10:07:42		
Should Be Equal	${date}	2014-06-11 10:07:42.000		
${date} =	Convert Date	2014-06-11 10:07:42.500	exclude_millis=yes	
Should Be Equal	${date}	2014-06-11 10:07:43		
${dt} =	Convert Date	2014-06-11 10:07:42.500	datetime	exclude_millis=yes
Should Be Equal	${dt.second}	${43}		
Should Be Equal	${dt.microsecond}	${0}		
${time} =	Convert Time	102	timer	exclude_millis=false
Should Be Equal	${time}	00:01:42.000		
${time} =	Convert Time	102.567	timer	exclude_millis=true
Should Be Equal	${time}	00:01:43		

= Programmatic usage =

In addition to be used as normal library, this library is intended to
provide a stable API for other libraries to use if they want to support
same date and time formats as this library. All the provided keywords
are available as functions that can be easily imported:

| from robot.libraries.DateTime import convert_time
|
| def example_keyword(timeout):
|     seconds = convert_time(timeout)
|     # ...

Additionally helper classes ``Date`` and ``Time`` can be used directly:

| from robot.libraries.DateTime import Date, Time
|
| def example_keyword(date, interval):
|     date = Date(date).convert('datetime')
|     interval = Time(interval).convert('number')
|     # ...
"""

from __future__ import absolute_import

from datetime import datetime, timedelta
import time
import re

from robot.version import get_version
from robot.utils import (elapsed_time_to_string, is_falsy, is_number,
                         is_string, roundup, secs_to_timestr, timestr_to_secs,
                         type_name, IRONPYTHON)

__version__ = get_version()
__all__ = ['convert_time', 'convert_date', 'subtract_date_from_date',
           'subtract_time_from_date', 'subtract_time_from_time',
           'add_time_to_time', 'add_time_to_date', 'get_current_date']


[docs]def get_current_date(time_zone='local', increment=0,
                     result_format='timestamp', exclude_millis=False):
    """Returns current local or UTC time with an optional increment.

    Arguments:
    - ``time_zone:``      Get the current time on this time zone. Currently only
                          ``local`` (default) and ``UTC`` are supported.
    - ``increment:``      Optional time increment to add to the returned date in
                          one of the supported `time formats`. Can be negative.
    - ``result_format:``  Format of the returned date (see `date formats`).
    - ``exclude_millis:`` When set to any true value, rounds and drops
                          milliseconds as explained in `millisecond handling`.

    Examples:
    | ${date} =       | Get Current Date | | |
    | Should Be Equal | ${date}          | 2014-06-12 20:00:58.946 |
    | ${date} =       | Get Current Date | UTC                     |
    | Should Be Equal | ${date}          | 2014-06-12 17:00:58.946 |
    | ${date} =       | Get Current Date | increment=02:30:00      |
    | Should Be Equal | ${date}          | 2014-06-12 22:30:58.946 |
    | ${date} =       | Get Current Date | UTC                     | - 5 hours |
    | Should Be Equal | ${date}          | 2014-06-12 12:00:58.946 |
    | ${date} =       | Get Current Date | result_format=datetime  |
    | Should Be Equal | ${date.year}     | ${2014}                 |
    | Should Be Equal | ${date.month}    | ${6}                    |
    """
    upper = time_zone.upper()
    if upper == 'LOCAL':
        dt = datetime.now()
    # Epoch time is same regardless the timezone. We convert `dt` to epoch time
    # using `time.mktime()` afterwards, and it expects time in local time.
    # For details: https://github.com/robotframework/robotframework/issues/3306
    elif upper == 'UTC' and result_format.upper() == 'EPOCH':
        dt = datetime.now()
    elif upper == 'UTC':
        dt = datetime.utcnow()
    else:
        raise ValueError("Unsupported timezone '%s'." % time_zone)
    date = Date(dt) + Time(increment)
    return date.convert(result_format, millis=is_falsy(exclude_millis))



[docs]def convert_date(date, result_format='timestamp', exclude_millis=False,
                 date_format=None):
    """Converts between supported `date formats`.

    Arguments:
    - ``date:``           Date in one of the supported `date formats`.
    - ``result_format:``  Format of the returned date.
    - ``exclude_millis:`` When set to any true value, rounds and drops
                          milliseconds as explained in `millisecond handling`.
    - ``date_format:``    Specifies possible `custom timestamp` format.

    Examples:
    | ${date} =       | Convert Date | 20140528 12:05:03.111   | | |
    | Should Be Equal | ${date}      | 2014-05-28 12:05:03.111 |
    | ${date} =       | Convert Date | ${date}                 | epoch |
    | Should Be Equal | ${date}      | ${1401267903.111}       |
    | ${date} =       | Convert Date | 5.28.2014 12:05         | exclude_millis=yes | date_format=%m.%d.%Y %H:%M |
    | Should Be Equal | ${date}      | 2014-05-28 12:05:00     |
    """
    return Date(date, date_format).convert(result_format,
                                           millis=is_falsy(exclude_millis))



[docs]def convert_time(time, result_format='number', exclude_millis=False):
    """Converts between supported `time formats`.

    Arguments:
    - ``time:``           Time in one of the supported `time formats`.
    - ``result_format:``  Format of the returned time.
    - ``exclude_millis:`` When set to any true value, rounds and drops
                          milliseconds as explained in `millisecond handling`.

    Examples:
    | ${time} =       | Convert Time  | 10 seconds        | | |
    | Should Be Equal | ${time}       | ${10}             |
    | ${time} =       | Convert Time  | 1:00:01           | verbose |
    | Should Be Equal | ${time}       | 1 hour 1 second   |
    | ${time} =       | Convert Time  | ${3661.5} | timer | exclude_milles=yes |
    | Should Be Equal | ${time}       | 01:01:02          |
    """
    return Time(time).convert(result_format, millis=is_falsy(exclude_millis))



[docs]def subtract_date_from_date(date1, date2, result_format='number',
                            exclude_millis=False, date1_format=None,
                            date2_format=None):
    """Subtracts date from another date and returns time between.

    Arguments:
    - ``date1:``          Date to subtract another date from in one of the
                          supported `date formats`.
    - ``date2:``          Date that is subtracted in one of the supported
                          `date formats`.
    - ``result_format:``  Format of the returned time (see `time formats`).
    - ``exclude_millis:`` When set to any true value, rounds and drops
                          milliseconds as explained in `millisecond handling`.
    - ``date1_format:``   Possible `custom timestamp` format of ``date1``.
    - ``date2_format:``   Possible `custom timestamp` format of ``date2``.

     Examples:
    | ${time} =       | Subtract Date From Date | 2014-05-28 12:05:52     | 2014-05-28 12:05:10 | |
    | Should Be Equal | ${time}                 | ${42}                   |
    | ${time} =       | Subtract Date From Date | 2014-05-28 12:05:52     | 2014-05-27 12:05:10 | verbose |
    | Should Be Equal | ${time}                 | 1 day 42 seconds        |
    """
    time = Date(date1, date1_format) - Date(date2, date2_format)
    return time.convert(result_format, millis=is_falsy(exclude_millis))



[docs]def add_time_to_date(date, time, result_format='timestamp',
                     exclude_millis=False, date_format=None):
    """Adds time to date and returns the resulting date.

    Arguments:
    - ``date:``           Date to add time to in one of the supported
                          `date formats`.
    - ``time:``           Time that is added in one of the supported
                          `time formats`.
    - ``result_format:``  Format of the returned date.
    - ``exclude_millis:`` When set to any true value, rounds and drops
                          milliseconds as explained in `millisecond handling`.
    - ``date_format:``    Possible `custom timestamp` format of ``date``.

    Examples:
    | ${date} =       | Add Time To Date | 2014-05-28 12:05:03.111 | 7 days       |
    | Should Be Equal | ${date}          | 2014-06-04 12:05:03.111 |              |
    | ${date} =       | Add Time To Date | 2014-05-28 12:05:03.111 | 01:02:03:004 |
    | Should Be Equal | ${date}          | 2014-05-28 13:07:06.115 |
    """
    date = Date(date, date_format) + Time(time)
    return date.convert(result_format, millis=is_falsy(exclude_millis))



[docs]def subtract_time_from_date(date, time, result_format='timestamp',
                            exclude_millis=False, date_format=None):
    """Subtracts time from date and returns the resulting date.

    Arguments:
    - ``date:``           Date to subtract time from in one of the supported
                          `date formats`.
    - ``time:``           Time that is subtracted in one of the supported
                         `time formats`.
    - ``result_format:``  Format of the returned date.
    - ``exclude_millis:`` When set to any true value, rounds and drops
                          milliseconds as explained in `millisecond handling`.
    - ``date_format:``    Possible `custom timestamp` format of ``date``.

    Examples:
    | ${date} =       | Subtract Time From Date | 2014-06-04 12:05:03.111 | 7 days |
    | Should Be Equal | ${date}                 | 2014-05-28 12:05:03.111 |
    | ${date} =       | Subtract Time From Date | 2014-05-28 13:07:06.115 | 01:02:03:004 |
    | Should Be Equal | ${date}                 | 2014-05-28 12:05:03.111 |
    """
    date = Date(date, date_format) - Time(time)
    return date.convert(result_format, millis=is_falsy(exclude_millis))



[docs]def add_time_to_time(time1, time2, result_format='number',
                     exclude_millis=False):
    """Adds time to another time and returns the resulting time.

    Arguments:
    - ``time1:``          First time in one of the supported `time formats`.
    - ``time2:``          Second time in one of the supported `time formats`.
    - ``result_format:``  Format of the returned time.
    - ``exclude_millis:`` When set to any true value, rounds and drops
                          milliseconds as explained in `millisecond handling`.

    Examples:
    | ${time} =       | Add Time To Time | 1 minute          | 42       | | |
    | Should Be Equal | ${time}          | ${102}            |
    | ${time} =       | Add Time To Time | 3 hours 5 minutes | 01:02:03 | timer | exclude_millis=yes |
    | Should Be Equal | ${time}          | 04:07:03          |
    """
    time = Time(time1) + Time(time2)
    return time.convert(result_format, millis=is_falsy(exclude_millis))



[docs]def subtract_time_from_time(time1, time2, result_format='number',
                            exclude_millis=False):
    """Subtracts time from another time and returns the resulting time.

    Arguments:
    - ``time1:``          Time to subtract another time from in one of
                          the supported `time formats`.
    - ``time2:``          Time to subtract in one of the supported `time formats`.
    - ``result_format:``  Format of the returned time.
    - ``exclude_millis:`` When set to any true value, rounds and drops
                          milliseconds as explained in `millisecond handling`.

    Examples:
    | ${time} =       | Subtract Time From Time | 00:02:30 | 100      | |
    | Should Be Equal | ${time}                 | ${50}    |
    | ${time} =       | Subtract Time From Time | ${time}  | 1 minute | compact |
    | Should Be Equal | ${time}                 | - 10s    |
    """
    time = Time(time1) - Time(time2)
    return time.convert(result_format, millis=is_falsy(exclude_millis))



class Date(object):

    def __init__(self, date, input_format=None):
        self.datetime = self._convert_to_datetime(date, input_format)

    @property
    def seconds(self):
        # Mainly for backwards compatibility with RF 2.9.1 and earlier.
        return self._convert_to_epoch(self.datetime)

    def _convert_to_datetime(self, date, input_format):
        if isinstance(date, datetime):
            return date
        if is_number(date):
            return self._seconds_to_datetime(date)
        if is_string(date):
            return self._string_to_datetime(date, input_format)
        raise ValueError("Unsupported input '%s'." % date)

    def _seconds_to_datetime(self, secs):
        # Workaround microsecond rounding errors with IronPython:
        # https://github.com/IronLanguages/main/issues/1170
        # Also Jython had similar problems, but they seem to be fixed in 2.7.
        dt = datetime.fromtimestamp(secs)
        return dt.replace(microsecond=roundup(secs % 1 * 1e6))

    def _string_to_datetime(self, ts, input_format):
        if not input_format:
            ts = self._normalize_timestamp(ts)
            input_format = '%Y-%m-%d %H:%M:%S.%f'
        if self._need_to_handle_f_directive(input_format):
            return self._handle_un_supported_f_directive(ts, input_format)
        return datetime.strptime(ts, input_format)

    def _normalize_timestamp(self, date):
        ts = ''.join(d for d in date if d.isdigit())
        if not (8 <= len(ts) <= 20):
            raise ValueError("Invalid timestamp '%s'." % date)
        ts = ts.ljust(20, '0')
        return '%s-%s-%s %s:%s:%s.%s' % (ts[:4], ts[4:6], ts[6:8], ts[8:10],
                                         ts[10:12], ts[12:14], ts[14:])

    def _need_to_handle_f_directive(self, format):
        # https://github.com/IronLanguages/main/issues/1169
        return IRONPYTHON and '%f' in format

    def _handle_un_supported_f_directive(self, ts, input_format):
        input_format = self._remove_f_from_format(input_format)
        match = re.search(r'\d+$', ts)
        if not match:
            raise ValueError("time data '%s' does not match format '%s%%f'."
                             % (ts, input_format))
        end_digits = match.group(0)
        micro = int(end_digits.ljust(6, '0'))
        dt = datetime.strptime(ts[:-len(end_digits)], input_format)
        return dt.replace(microsecond=micro)

    def _remove_f_from_format(self, format):
        if not format.endswith('%f'):
            raise ValueError('%f directive is supported only at the end of '
                             'the format string on this Python interpreter.')
        return format[:-2]

    def convert(self, format, millis=True):
        dt = self.datetime
        if not millis:
            secs = 1 if dt.microsecond >= 5e5 else 0
            dt = dt.replace(microsecond=0) + timedelta(seconds=secs)
        if '%' in format:
            return self._convert_to_custom_timestamp(dt, format)
        format = format.lower()
        if format == 'timestamp':
            return self._convert_to_timestamp(dt, millis)
        if format == 'datetime':
            return dt
        if format == 'epoch':
            return self._convert_to_epoch(dt)
        raise ValueError("Unknown format '%s'." % format)

    def _convert_to_custom_timestamp(self, dt, format):
        if not self._need_to_handle_f_directive(format):
            return dt.strftime(format)
        format = self._remove_f_from_format(format)
        return dt.strftime(format) + '%06d' % dt.microsecond

    def _convert_to_timestamp(self, dt, millis=True):
        if not millis:
            return dt.strftime('%Y-%m-%d %H:%M:%S')
        ms = roundup(dt.microsecond / 1000.0)
        if ms == 1000:
            dt += timedelta(seconds=1)
            ms = 0
        return dt.strftime('%Y-%m-%d %H:%M:%S') + '.%03d' % ms

    def _convert_to_epoch(self, dt):
        return time.mktime(dt.timetuple()) + dt.microsecond / 1e6

    def __add__(self, other):
        if isinstance(other, Time):
            return Date(self.datetime + other.timedelta)
        raise TypeError('Can only add Time to Date, got %s.' % type_name(other))

    def __sub__(self, other):
        if isinstance(other, Date):
            return Time(self.datetime - other.datetime)
        if isinstance(other, Time):
            return Date(self.datetime - other.timedelta)
        raise TypeError('Can only subtract Date or Time from Date, got %s.'
                        % type_name(other))


class Time(object):

    def __init__(self, time):
        self.seconds = float(self._convert_time_to_seconds(time))

    def _convert_time_to_seconds(self, time):
        if isinstance(time, timedelta):
            return time.total_seconds()
        return timestr_to_secs(time, round_to=None)

    @property
    def timedelta(self):
        return timedelta(seconds=self.seconds)

    def convert(self, format, millis=True):
        try:
            result_converter = getattr(self, '_convert_to_%s' % format.lower())
        except AttributeError:
            raise ValueError("Unknown format '%s'." % format)
        seconds = self.seconds if millis else float(roundup(self.seconds))
        return result_converter(seconds, millis)

    def _convert_to_number(self, seconds, millis=True):
        return seconds

    def _convert_to_verbose(self, seconds, millis=True):
        return secs_to_timestr(seconds)

    def _convert_to_compact(self, seconds, millis=True):
        return secs_to_timestr(seconds, compact=True)

    def _convert_to_timer(self, seconds, millis=True):
        return elapsed_time_to_string(seconds * 1000, include_millis=millis)

    def _convert_to_timedelta(self, seconds, millis=True):
        return timedelta(seconds=seconds)

    def __add__(self, other):
        if isinstance(other, Time):
            return Time(self.seconds + other.seconds)
        raise TypeError('Can only add Time to Time, got %s.' % type_name(other))

    def __sub__(self, other):
        if isinstance(other, Time):
            return Time(self.seconds - other.seconds)
        raise TypeError('Can only subtract Time from Time, got %s.'
                        % type_name(other))




          

      

      

    

  

    
      
          
            
  Source code for robot.libraries.Dialogs

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

"""A test library providing dialogs for interacting with users.

``Dialogs`` is Robot Framework's standard library that provides means
for pausing the test execution and getting input from users. The
dialogs are slightly different depending on whether tests are run on
Python, IronPython or Jython but they provide the same functionality.

Long lines in the provided messages are wrapped automatically. If you want
to wrap lines manually, you can add newlines using the ``\\n`` character
sequence.

The library has a known limitation that it cannot be used with timeouts
on Python.
"""

from robot.version import get_version
from robot.utils import IRONPYTHON, JYTHON, is_truthy

if JYTHON:
    from .dialogs_jy import MessageDialog, PassFailDialog, InputDialog, SelectionDialog, MultipleSelectionDialog
elif IRONPYTHON:
    from .dialogs_ipy import MessageDialog, PassFailDialog, InputDialog, SelectionDialog, MultipleSelectionDialog
else:
    from .dialogs_py import MessageDialog, PassFailDialog, InputDialog, SelectionDialog, MultipleSelectionDialog


__version__ = get_version()
__all__ = ['execute_manual_step', 'get_value_from_user',
           'get_selection_from_user', 'pause_execution', 'get_selections_from_user']


[docs]def pause_execution(message='Test execution paused. Press OK to continue.'):
    """Pauses test execution until user clicks ``Ok`` button.

    ``message`` is the message shown in the dialog.
    """
    MessageDialog(message).show()



[docs]def execute_manual_step(message, default_error=''):
    """Pauses test execution until user sets the keyword status.

    User can press either ``PASS`` or ``FAIL`` button. In the latter case execution
    fails and an additional dialog is opened for defining the error message.

    ``message`` is the instruction shown in the initial dialog and
    ``default_error`` is the default value shown in the possible error message
    dialog.
    """
    if not _validate_user_input(PassFailDialog(message)):
        msg = get_value_from_user('Give error message:', default_error)
        raise AssertionError(msg)



[docs]def get_value_from_user(message, default_value='', hidden=False):
    """Pauses test execution and asks user to input a value.

    Value typed by the user, or the possible default value, is returned.
    Returning an empty value is fine, but pressing ``Cancel`` fails the keyword.

    ``message`` is the instruction shown in the dialog and ``default_value`` is
    the possible default value shown in the input field.

    If ``hidden`` is given a true value, the value typed by the user is hidden.
    ``hidden`` is considered true if it is a non-empty string not equal to
    ``false``, ``none`` or ``no``, case-insensitively. If it is not a string,
    its truth value is got directly using same
    [http://docs.python.org/library/stdtypes.html#truth|rules as in Python].

    Example:
    | ${username} = | Get Value From User | Input user name | default    |
    | ${password} = | Get Value From User | Input password  | hidden=yes |
    """
    return _validate_user_input(InputDialog(message, default_value,
                                            is_truthy(hidden)))



[docs]def get_selection_from_user(message, *values):
    """Pauses test execution and asks user to select a value.

    The selected value is returned. Pressing ``Cancel`` fails the keyword.

    ``message`` is the instruction shown in the dialog and ``values`` are
    the options given to the user.

    Example:
    | ${user} = | Get Selection From User | Select user | user1 | user2 | admin |
    """
    return _validate_user_input(SelectionDialog(message, values))



[docs]def get_selections_from_user(message, *values):
    """Pauses test execution and asks user to select multiple values.

    The selected values are returned as a list. Selecting no values is OK
    and in that case the returned list is empty. Pressing ``Cancel`` fails
    the keyword.

    ``message`` is the instruction shown in the dialog and ``values`` are
    the options given to the user.

    Example:
    | ${users} = | Get Selections From User | Select users | user1 | user2 | admin |

    New in Robot Framework 3.1.
    """
    return _validate_user_input(MultipleSelectionDialog(message, values))



def _validate_user_input(dialog):
    value = dialog.show()
    if value is None:
        raise RuntimeError('No value provided by user.')
    return value




          

      

      

    

  

    
      
          
            
  Source code for robot.libraries.Easter

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from robot.api import logger


[docs]def none_shall_pass(who):
    if who is not None:
        raise AssertionError('None shall pass!')
    logger.info(
        '<iframe width="560" height="315" '
        'src="https://www.youtube-nocookie.com/embed/zKhEw7nD9C4?autoplay=1" '
        'frameborder="0" '
        'allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture" '
        'allowfullscreen>'
        '</iframe>',
        html=True
    )





          

      

      

    

  

    
      
          
            
  Source code for robot.libraries.OperatingSystem

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

import fnmatch
import glob
import io
import os
import shutil
import sys
import tempfile
import time

from robot.version import get_version
from robot.api import logger
from robot.api.deco import keyword
from robot.utils import (abspath, ConnectionCache, console_decode, del_env_var,
                         get_env_var, get_env_vars, get_time, is_truthy,
                         is_unicode, normpath, parse_time, plural_or_not,
                         secs_to_timestamp, secs_to_timestr, seq2str,
                         set_env_var, timestr_to_secs, unic, CONSOLE_ENCODING,
                         IRONPYTHON, JYTHON, PY2, PY3, SYSTEM_ENCODING, WINDOWS)

__version__ = get_version()
PROCESSES = ConnectionCache('No active processes.')


[docs]class OperatingSystem(object):
    """A test library providing keywords for OS related tasks.

    ``OperatingSystem`` is Robot Framework's standard library that
    enables various operating system related tasks to be performed in
    the system where Robot Framework is running. It can, among other
    things, execute commands (e.g. `Run`), create and remove files and
    directories (e.g. `Create File`, `Remove Directory`), check
    whether files or directories exists or contain something
    (e.g. `File Should Exist`, `Directory Should Be Empty`) and
    manipulate environment variables (e.g. `Set Environment Variable`).

    == Table of contents ==

    %TOC%

    = Path separators =

    Because Robot Framework uses the backslash (``\\``) as an escape character
    in the test data, using a literal backslash requires duplicating it like
    in ``c:\\\\path\\\\file.txt``. That can be inconvenient especially with
    longer Windows paths, and thus all keywords expecting paths as arguments
    convert forward slashes to backslashes automatically on Windows. This also
    means that paths like ``${CURDIR}/path/file.txt`` are operating system
    independent.

    Notice that the automatic path separator conversion does not work if
    the path is only a part of an argument like with `Run` and `Start Process`
    keywords. In these cases the built-in variable ``${/}`` that contains
    ``\\`` or ``/``, depending on the operating system, can be used instead.

    = Pattern matching =

    Some keywords allow their arguments to be specified as
    [http://en.wikipedia.org/wiki/Glob_(programming)|glob patterns] where:

    | ``*``        | matches any string, even an empty string                |
    | ``?``        | matches any single character                            |
    | ``[chars]``  | matches one character in the bracket                    |
    | ``[!chars]`` | matches one character not in the bracket                |
    | ``[a-z]``    | matches one character from the range in the bracket     |
    | ``[!a-z]``   | matches one character not from the range in the bracket |

    Unless otherwise noted, matching is case-insensitive on
    case-insensitive operating systems such as Windows.

    = Tilde expansion =

    Paths beginning with ``~`` or ``~username`` are expanded to the current or
    specified user's home directory, respectively. The resulting path is
    operating system dependent, but typically e.g. ``~/robot`` is expanded to
    ``C:\\Users\\<user>\\robot`` on Windows and ``/home/<user>/robot`` on
    Unixes.

    The ``~username`` form does not work on Jython.

    = Boolean arguments =

    Some keywords accept arguments that are handled as Boolean values true or
    false. If such an argument is given as a string, it is considered false if
    it is an empty string or equal to ``FALSE``, ``NONE``, ``NO``, ``OFF`` or
    ``0``, case-insensitively. Other strings are considered true regardless
    their value, and other argument types are tested using the same
    [http://docs.python.org/library/stdtypes.html#truth|rules as in Python].

    True examples:
    | `Remove Directory` | ${path} | recursive=True    | # Strings are generally true.    |
    | `Remove Directory` | ${path} | recursive=yes     | # Same as the above.             |
    | `Remove Directory` | ${path} | recursive=${TRUE} | # Python ``True`` is true.       |
    | `Remove Directory` | ${path} | recursive=${42}   | # Numbers other than 0 are true. |

    False examples:
    | `Remove Directory` | ${path} | recursive=False    | # String ``false`` is false.   |
    | `Remove Directory` | ${path} | recursive=no       | # Also string ``no`` is false. |
    | `Remove Directory` | ${path} | recursive=${EMPTY} | # Empty string is false.       |
    | `Remove Directory` | ${path} | recursive=${FALSE} | # Python ``False`` is false.   |

    Considering `OFF`` and ``0`` false is new in Robot Framework 3.1.

    = Example =

    |  =Setting=  |     =Value=     |
    | Library     | OperatingSystem |

    | =Variable=  |       =Value=         |
    | ${PATH}     | ${CURDIR}/example.txt |

    | =Test Case= |     =Action=      | =Argument= |    =Argument=        |
    | Example     | Create File       | ${PATH}    | Some text            |
    |             | File Should Exist | ${PATH}    |                      |
    |             | Copy File         | ${PATH}    | ~/file.txt           |
    |             | ${output} =       | Run | ${TEMPDIR}${/}script.py arg |
    """
    ROBOT_LIBRARY_SCOPE = 'GLOBAL'
    ROBOT_LIBRARY_VERSION = __version__

[docs]    def run(self, command):
        """Runs the given command in the system and returns the output.

        The execution status of the command *is not checked* by this
        keyword, and it must be done separately based on the returned
        output. If the execution return code is needed, either `Run
        And Return RC` or `Run And Return RC And Output` can be used.

        The standard error stream is automatically redirected to the standard
        output stream by adding ``2>&1`` after the executed command. This
        automatic redirection is done only when the executed command does not
        contain additional output redirections. You can thus freely forward
        the standard error somewhere else, for example, like
        ``my_command 2>stderr.txt``.

        The returned output contains everything written into the standard
        output or error streams by the command (unless either of them
        is redirected explicitly). Many commands add an extra newline
        (``\\n``) after the output to make it easier to read in the
        console. To ease processing the returned output, this possible
        trailing newline is stripped by this keyword.

        Examples:
        | ${output} =        | Run       | ls -lhF /tmp |
        | Log                | ${output} |
        | ${result} =        | Run       | ${CURDIR}${/}tester.py arg1 arg2 |
        | Should Not Contain | ${result} | FAIL |
        | ${stdout} =        | Run       | /opt/script.sh 2>/tmp/stderr.txt |
        | Should Be Equal    | ${stdout} | TEST PASSED |
        | File Should Be Empty | /tmp/stderr.txt |

        *TIP:* `Run Process` keyword provided by the
        [http://robotframework.org/robotframework/latest/libraries/Process.html|
        Process library] supports better process configuration and is generally
        recommended as a replacement for this keyword.
        """
        return self._run(command)[1]


[docs]    def run_and_return_rc(self, command):
        """Runs the given command in the system and returns the return code.

        The return code (RC) is returned as a positive integer in
        range from 0 to 255 as returned by the executed command. On
        some operating systems (notable Windows) original return codes
        can be something else, but this keyword always maps them to
        the 0-255 range. Since the RC is an integer, it must be
        checked e.g. with the keyword `Should Be Equal As Integers`
        instead of `Should Be Equal` (both are built-in keywords).

        Examples:
        | ${rc} = | Run and Return RC | ${CURDIR}${/}script.py arg |
        | Should Be Equal As Integers | ${rc} | 0 |
        | ${rc} = | Run and Return RC | /path/to/example.rb arg1 arg2 |
        | Should Be True | 0 < ${rc} < 42 |

        See `Run` and `Run And Return RC And Output` if you need to get the
        output of the executed command.

        *TIP:* `Run Process` keyword provided by the
        [http://robotframework.org/robotframework/latest/libraries/Process.html|
        Process library] supports better process configuration and is generally
        recommended as a replacement for this keyword.
        """
        return self._run(command)[0]


[docs]    def run_and_return_rc_and_output(self, command):
        """Runs the given command in the system and returns the RC and output.

        The return code (RC) is returned similarly as with `Run And Return RC`
        and the output similarly as with `Run`.

        Examples:
        | ${rc} | ${output} =  | Run and Return RC and Output | ${CURDIR}${/}mytool |
        | Should Be Equal As Integers | ${rc}    | 0    |
        | Should Not Contain   | ${output}       | FAIL |
        | ${rc} | ${stdout} =  | Run and Return RC and Output | /opt/script.sh 2>/tmp/stderr.txt |
        | Should Be True       | ${rc} > 42      |
        | Should Be Equal      | ${stdout}       | TEST PASSED |
        | File Should Be Empty | /tmp/stderr.txt |

        *TIP:* `Run Process` keyword provided by the
        [http://robotframework.org/robotframework/latest/libraries/Process.html|
        Process library] supports better process configuration and is generally
        recommended as a replacement for this keyword.
        """
        return self._run(command)


    def _run(self, command):
        process = _Process(command)
        self._info("Running command '%s'." % process)
        stdout = process.read()
        rc = process.close()
        return rc, stdout

[docs]    def get_file(self, path, encoding='UTF-8', encoding_errors='strict'):
        """Returns the contents of a specified file.

        This keyword reads the specified file and returns the contents.
        Line breaks in content are converted to platform independent form.
        See also `Get Binary File`.

        ``encoding`` defines the encoding of the file. The default value is
        ``UTF-8``, which means that UTF-8 and ASCII encoded files are read
        correctly. In addition to the encodings supported by the underlying
        Python implementation, the following special encoding values can be
        used:

        - ``SYSTEM``: Use the default system encoding.
        - ``CONSOLE``: Use the console encoding. Outside Windows this is same
          as the system encoding.

        ``encoding_errors`` argument controls what to do if decoding some bytes
        fails. All values accepted by ``decode`` method in Python are valid, but
        in practice the following values are most useful:

        - ``strict``: Fail if characters cannot be decoded (default).
        - ``ignore``: Ignore characters that cannot be decoded.
        - ``replace``: Replace characters that cannot be decoded with
          a replacement character.
        """
        path = self._absnorm(path)
        self._link("Getting file '%s'.", path)
        encoding = self._map_encoding(encoding)
        if IRONPYTHON:
            # https://github.com/IronLanguages/main/issues/1233
            with open(path) as f:
                content = f.read().decode(encoding, encoding_errors)
        else:
            with io.open(path, encoding=encoding, errors=encoding_errors,
                         newline='') as f:
                content = f.read()
        return content.replace('\r\n', '\n')


    def _map_encoding(self, encoding):
        # Python 3 opens files in native system encoding by default.
        if PY3 and encoding.upper() == 'SYSTEM':
            return None
        return {'SYSTEM': SYSTEM_ENCODING,
                'CONSOLE': CONSOLE_ENCODING}.get(encoding.upper(), encoding)

[docs]    def get_binary_file(self, path):
        """Returns the contents of a specified file.

        This keyword reads the specified file and returns the contents as is.
        See also `Get File`.
        """
        path = self._absnorm(path)
        self._link("Getting file '%s'.", path)
        with open(path, 'rb') as f:
            return bytes(f.read())


[docs]    def grep_file(self, path, pattern, encoding='UTF-8', encoding_errors='strict'):
        """Returns the lines of the specified file that match the ``pattern``.

        This keyword reads a file from the file system using the defined
        ``path``, ``encoding`` and ``encoding_errors`` similarly as `Get File`.
        A difference is that only the lines that match the given ``pattern`` are
        returned. Lines are returned as a single string catenated back together
        with newlines and the number of matched lines is automatically logged.
        Possible trailing newline is never returned.

        A line matches if it contains the ``pattern`` anywhere in it and
        it *does not need to match the pattern fully*. The pattern
        matching syntax is explained in `introduction`, and in this
        case matching is case-sensitive.

        Examples:
        | ${errors} = | Grep File | /var/log/myapp.log | ERROR |
        | ${ret} = | Grep File | ${CURDIR}/file.txt | [Ww]ildc??d ex*ple |

        If more complex pattern matching is needed, it is possible to use
        `Get File` in combination with String library keywords like `Get
        Lines Matching Regexp`.

        This keyword supports special ``SYSTEM`` and ``CONSOLE`` encodings that
        `Get File` supports only with Robot Framework 4.0 and newer. When using
        Python 3, it is possible to use ``${NONE}`` instead of ``SYSTEM`` with
        earlier versions.
        """
        path = self._absnorm(path)
        pattern = '*%s*' % pattern
        encoding = self._map_encoding(encoding)
        lines = []
        total_lines = 0
        self._link("Reading file '%s'.", path)
        with io.open(path, encoding=encoding, errors=encoding_errors) as f:
            for line in f.readlines():
                total_lines += 1
                line = line.rstrip('\r\n')
                if fnmatch.fnmatchcase(line, pattern):
                    lines.append(line)
            self._info('%d out of %d lines matched' % (len(lines), total_lines))
            return '\n'.join(lines)


[docs]    def log_file(self, path, encoding='UTF-8', encoding_errors='strict'):
        """Wrapper for `Get File` that also logs the returned file.

        The file is logged with the INFO level. If you want something else,
        just use `Get File` and the built-in keyword `Log` with the desired
        level.

        See `Get File` for more information about ``encoding`` and
        ``encoding_errors`` arguments.
        """
        content = self.get_file(path, encoding, encoding_errors)
        self._info(content)
        return content


    # File and directory existence

[docs]    def should_exist(self, path, msg=None):
        """Fails unless the given path (file or directory) exists.

        The path can be given as an exact path or as a glob pattern.
        The pattern matching syntax is explained in `introduction`.
        The default error message can be overridden with the ``msg`` argument.
        """
        path = self._absnorm(path)
        if not self._glob(path):
            self._fail(msg, "Path '%s' does not exist." % path)
        self._link("Path '%s' exists.", path)


[docs]    def should_not_exist(self, path, msg=None):
        """Fails if the given path (file or directory) exists.

        The path can be given as an exact path or as a glob pattern.
        The pattern matching syntax is explained in `introduction`.
        The default error message can be overridden with the ``msg`` argument.
        """
        path = self._absnorm(path)
        matches = self._glob(path)
        if matches:
            self._fail(msg, self._get_matches_error('Path', path, matches))
        self._link("Path '%s' does not exist.", path)


    def _glob(self, path):
        return glob.glob(path) if not os.path.exists(path) else [path]

    def _get_matches_error(self, what, path, matches):
        if not self._is_glob_path(path):
            return "%s '%s' exists." % (what, path)
        return "%s '%s' matches %s." % (what, path, seq2str(sorted(matches)))

    def _is_glob_path(self, path):
        return '*' in path or '?' in path or ('[' in path and ']' in path)

[docs]    def file_should_exist(self, path, msg=None):
        """Fails unless the given ``path`` points to an existing file.

        The path can be given as an exact path or as a glob pattern.
        The pattern matching syntax is explained in `introduction`.
        The default error message can be overridden with the ``msg`` argument.
        """
        path = self._absnorm(path)
        matches = [p for p in self._glob(path) if os.path.isfile(p)]
        if not matches:
            self._fail(msg, "File '%s' does not exist." % path)
        self._link("File '%s' exists.", path)


[docs]    def file_should_not_exist(self, path, msg=None):
        """Fails if the given path points to an existing file.

        The path can be given as an exact path or as a glob pattern.
        The pattern matching syntax is explained in `introduction`.
        The default error message can be overridden with the ``msg`` argument.
        """
        path = self._absnorm(path)
        matches = [p for p in self._glob(path) if os.path.isfile(p)]
        if matches:
            self._fail(msg, self._get_matches_error('File', path, matches))
        self._link("File '%s' does not exist.", path)


[docs]    def directory_should_exist(self, path, msg=None):
        """Fails unless the given path points to an existing directory.

        The path can be given as an exact path or as a glob pattern.
        The pattern matching syntax is explained in `introduction`.
        The default error message can be overridden with the ``msg`` argument.
        """
        path = self._absnorm(path)
        matches = [p for p in self._glob(path) if os.path.isdir(p)]
        if not matches:
            self._fail(msg, "Directory '%s' does not exist." % path)
        self._link("Directory '%s' exists.", path)


[docs]    def directory_should_not_exist(self, path, msg=None):
        """Fails if the given path points to an existing file.

        The path can be given as an exact path or as a glob pattern.
        The pattern matching syntax is explained in `introduction`.
        The default error message can be overridden with the ``msg`` argument.
        """
        path = self._absnorm(path)
        matches = [p for p in self._glob(path) if os.path.isdir(p)]
        if matches:
            self._fail(msg, self._get_matches_error('Directory', path, matches))
        self._link("Directory '%s' does not exist.", path)


    # Waiting file/dir to appear/disappear

[docs]    def wait_until_removed(self, path, timeout='1 minute'):
        """Waits until the given file or directory is removed.

        The path can be given as an exact path or as a glob pattern.
        The pattern matching syntax is explained in `introduction`.
        If the path is a pattern, the keyword waits until all matching
        items are removed.

        The optional ``timeout`` can be used to control the maximum time of
        waiting. The timeout is given as a timeout string, e.g. in a format
        ``15 seconds``, ``1min 10s`` or just ``10``. The time string format is
        described in an appendix of Robot Framework User Guide.

        If the timeout is negative, the keyword is never timed-out. The keyword
        returns immediately, if the path does not exist in the first place.
        """
        path = self._absnorm(path)
        timeout = timestr_to_secs(timeout)
        maxtime = time.time() + timeout
        while self._glob(path):
            if timeout >= 0 and time.time() > maxtime:
                self._fail("'%s' was not removed in %s."
                           % (path, secs_to_timestr(timeout)))
            time.sleep(0.1)
        self._link("'%s' was removed.", path)


[docs]    def wait_until_created(self, path, timeout='1 minute'):
        """Waits until the given file or directory is created.

        The path can be given as an exact path or as a glob pattern.
        The pattern matching syntax is explained in `introduction`.
        If the path is a pattern, the keyword returns when an item matching
        it is created.

        The optional ``timeout`` can be used to control the maximum time of
        waiting. The timeout is given as a timeout string, e.g. in a format
        ``15 seconds``, ``1min 10s`` or just ``10``. The time string format is
        described in an appendix of Robot Framework User Guide.

        If the timeout is negative, the keyword is never timed-out. The keyword
        returns immediately, if the path already exists.
        """
        path = self._absnorm(path)
        timeout = timestr_to_secs(timeout)
        maxtime = time.time() + timeout
        while not self._glob(path):
            if timeout >= 0 and time.time() > maxtime:
                self._fail("'%s' was not created in %s."
                           % (path, secs_to_timestr(timeout)))
            time.sleep(0.1)
        self._link("'%s' was created.", path)


    # Dir/file empty

[docs]    def directory_should_be_empty(self, path, msg=None):
        """Fails unless the specified directory is empty.

        The default error message can be overridden with the ``msg`` argument.
        """
        path = self._absnorm(path)
        items = self._list_dir(path)
        if items:
            self._fail(msg, "Directory '%s' is not empty. Contents: %s."
                            % (path, seq2str(items, lastsep=', ')))
        self._link("Directory '%s' is empty.", path)


[docs]    def directory_should_not_be_empty(self, path, msg=None):
        """Fails if the specified directory is empty.

        The default error message can be overridden with the ``msg`` argument.
        """
        path = self._absnorm(path)
        items = self._list_dir(path)
        if not items:
            self._fail(msg, "Directory '%s' is empty." % path)
        self._link("Directory '%%s' contains %d item%s."
                   % (len(items), plural_or_not(items)), path)


[docs]    def file_should_be_empty(self, path, msg=None):
        """Fails unless the specified file is empty.

        The default error message can be overridden with the ``msg`` argument.
        """
        path = self._absnorm(path)
        if not os.path.isfile(path):
            self._error("File '%s' does not exist." % path)
        size = os.stat(path).st_size
        if size > 0:
            self._fail(msg,
                       "File '%s' is not empty. Size: %d bytes." % (path, size))
        self._link("File '%s' is empty.", path)


[docs]    def file_should_not_be_empty(self, path, msg=None):
        """Fails if the specified directory is empty.

        The default error message can be overridden with the ``msg`` argument.
        """
        path = self._absnorm(path)
        if not os.path.isfile(path):
            self._error("File '%s' does not exist." % path)
        size = os.stat(path).st_size
        if size == 0:
            self._fail(msg, "File '%s' is empty." % path)
        self._link("File '%%s' contains %d bytes." % size, path)


    # Creating and removing files and directory

[docs]    def create_file(self, path, content='', encoding='UTF-8'):
        """Creates a file with the given content and encoding.

        If the directory where the file is created does not exist, it is
        automatically created along with possible missing intermediate
        directories. Possible existing file is overwritten.

        On Windows newline characters (``\\n``) in content are automatically
        converted to Windows native newline sequence (``\\r\\n``).

        See `Get File` for more information about possible ``encoding`` values,
        including special values ``SYSTEM`` and ``CONSOLE``.

        Examples:
        | Create File | ${dir}/example.txt | Hello, world!       |         |
        | Create File | ${path}            | Hyv\\xe4 esimerkki  | Latin-1 |
        | Create File | /tmp/foo.txt       | 3\\nlines\\nhere\\n | SYSTEM  |

        Use `Append To File` if you want to append to an existing file
        and `Create Binary File` if you need to write bytes without encoding.
        `File Should Not Exist` can be used to avoid overwriting existing
        files.

        Automatically converting ``\\n`` to ``\\r\\n`` on Windows is new in
        Robot Framework 3.1.
        """
        path = self._write_to_file(path, content, encoding)
        self._link("Created file '%s'.", path)


    def _write_to_file(self, path, content, encoding=None, mode='w'):
        path = self._absnorm(path)
        parent = os.path.dirname(path)
        if not os.path.exists(parent):
            os.makedirs(parent)
        # io.open() only accepts Unicode, not byte-strings, in text mode.
        # We expect possible byte-strings to be all ASCII.
        if PY2 and isinstance(content, str) and 'b' not in mode:
            content = unicode(content)
        if encoding:
            encoding = self._map_encoding(encoding)
        with io.open(path, mode, encoding=encoding) as f:
            f.write(content)
        return path

[docs]    def create_binary_file(self, path, content):
        """Creates a binary file with the given content.

        If content is given as a Unicode string, it is first converted to bytes
        character by character. All characters with ordinal below 256 can be
        used and are converted to bytes with same values. Using characters
        with higher ordinal is an error.

        Byte strings, and possible other types, are written to the file as is.

        If the directory for the file does not exist, it is created, along
        with missing intermediate directories.

        Examples:
        | Create Binary File | ${dir}/example.png | ${image content}     |
        | Create Binary File | ${path}            | \\x01\\x00\\xe4\\x00 |

        Use `Create File` if you want to create a text file using a certain
        encoding. `File Should Not Exist` can be used to avoid overwriting
        existing files.
        """
        if is_unicode(content):
            content = bytes(bytearray(ord(c) for c in content))
        path = self._write_to_file(path, content, mode='wb')
        self._link("Created binary file '%s'.", path)


[docs]    def append_to_file(self, path, content, encoding='UTF-8'):
        """Appends the given content to the specified file.

        If the file exists, the given text is written to its end. If the file
        does not exist, it is created.

        Other than not overwriting possible existing files, this keyword works
        exactly like `Create File`. See its documentation for more details
        about the usage.

        Note that special encodings ``SYSTEM`` and ``CONSOLE`` only work
        with this keyword starting from Robot Framework 3.1.2.
        """
        path = self._write_to_file(path, content, encoding, mode='a')
        self._link("Appended to file '%s'.", path)


[docs]    def remove_file(self, path):
        """Removes a file with the given path.

        Passes if the file does not exist, but fails if the path does
        not point to a regular file (e.g. it points to a directory).

        The path can be given as an exact path or as a glob pattern.
        The pattern matching syntax is explained in `introduction`.
        If the path is a pattern, all files matching it are removed.
        """
        path = self._absnorm(path)
        matches = self._glob(path)
        if not matches:
            self._link("File '%s' does not exist.", path)
        for match in matches:
            if not os.path.isfile(match):
                self._error("Path '%s' is not a file." % match)
            os.remove(match)
            self._link("Removed file '%s'.", match)


[docs]    def remove_files(self, *paths):
        """Uses `Remove File` to remove multiple files one-by-one.

        Example:
        | Remove Files | ${TEMPDIR}${/}foo.txt | ${TEMPDIR}${/}bar.txt | ${TEMPDIR}${/}zap.txt |
        """
        for path in paths:
            self.remove_file(path)


[docs]    def empty_directory(self, path):
        """Deletes all the content from the given directory.

        Deletes both files and sub-directories, but the specified directory
        itself if not removed. Use `Remove Directory` if you want to remove
        the whole directory.
        """
        path = self._absnorm(path)
        for item in self._list_dir(path, absolute=True):
            if os.path.isdir(item):
                shutil.rmtree(item)
            else:
                os.remove(item)
        self._link("Emptied directory '%s'.", path)


[docs]    def create_directory(self, path):
        """Creates the specified directory.

        Also possible intermediate directories are created. Passes if the
        directory already exists, but fails if the path exists and is not
        a directory.
        """
        path = self._absnorm(path)
        if os.path.isdir(path):
            self._link("Directory '%s' already exists.", path )
        elif os.path.exists(path):
            self._error("Path '%s' is not a directory." % path)
        else:
            os.makedirs(path)
            self._link("Created directory '%s'.", path)


[docs]    def remove_directory(self, path, recursive=False):
        """Removes the directory pointed to by the given ``path``.

        If the second argument ``recursive`` is given a true value (see
        `Boolean arguments`), the directory is removed recursively. Otherwise
        removing fails if the directory is not empty.

        If the directory pointed to by the ``path`` does not exist, the keyword
        passes, but it fails, if the ``path`` points to a file.
        """
        path = self._absnorm(path)
        if not os.path.exists(path):
            self._link("Directory '%s' does not exist.", path)
        elif not os.path.isdir(path):
            self._error("Path '%s' is not a directory." % path)
        else:
            if is_truthy(recursive):
                shutil.rmtree(path)
            else:
                self.directory_should_be_empty(
                    path, "Directory '%s' is not empty." % path)
                os.rmdir(path)
            self._link("Removed directory '%s'.", path)


    # Moving and copying files and directories

[docs]    def copy_file(self, source, destination):
        """Copies the source file into the destination.

        Source must be a path to an existing file or a glob pattern (see
        `Pattern matching`) that matches exactly one file. How the
        destination is interpreted is explained below.

        1) If the destination is an existing file, the source file is copied
        over it.

        2) If the destination is an existing directory, the source file is
        copied into it. A possible file with the same name as the source is
        overwritten.

        3) If the destination does not exist and it ends with a path
        separator (``/`` or ``\\``), it is considered a directory. That
        directory is created and a source file copied into it.
        Possible missing intermediate directories are also created.

        4) If the destination does not exist and it does not end with a path
        separator, it is considered a file. If the path to the file does not
        exist, it is created.

        The resulting destination path is returned.

        See also `Copy Files`, `Move File`, and `Move Files`.
        """
        source, destination = \
            self._prepare_copy_and_move_file(source, destination)
        if not self._are_source_and_destination_same_file(source, destination):
            source, destination = self._atomic_copy(source, destination)
            self._link("Copied file from '%s' to '%s'.", source, destination)
        return destination


    def _prepare_copy_and_move_file(self, source, destination):
        source = self._normalize_copy_and_move_source(source)
        destination = self._normalize_copy_and_move_destination(destination)
        if os.path.isdir(destination):
            destination = os.path.join(destination, os.path.basename(source))
        return source, destination

    def _normalize_copy_and_move_source(self, source):
        source = self._absnorm(source)
        sources = self._glob(source)
        if len(sources) > 1:
            self._error("Multiple matches with source pattern '%s'." % source)
        if sources:
            source = sources[0]
        if not os.path.exists(source):
            self._error("Source file '%s' does not exist." % source)
        if not os.path.isfile(source):
            self._error("Source file '%s' is not a regular file." % source)
        return source

    def _normalize_copy_and_move_destination(self, destination):
        is_dir = os.path.isdir(destination) or destination.endswith(('/', '\\'))
        destination = self._absnorm(destination)
        directory = destination if is_dir else os.path.dirname(destination)
        self._ensure_destination_directory_exists(directory)
        return destination

    def _ensure_destination_directory_exists(self, path):
        if not os.path.exists(path):
            os.makedirs(path)
        elif not os.path.isdir(path):
            self._error("Destination '%s' exists and is not a directory." % path)

    def _are_source_and_destination_same_file(self, source, destination):
        if self._force_normalize(source) == self._force_normalize(destination):
            self._link("Source '%s' and destination '%s' point to the same "
                       "file.", source, destination)
            return True
        return False

    def _force_normalize(self, path):
        # TODO: Should normalize_path also support link normalization?
        # TODO: Should we handle dos paths like 'exampl~1.txt'?
        return os.path.realpath(normpath(path, case_normalize=True))

    def _atomic_copy(self, source, destination):
        """Copy file atomically (or at least try to).

        This method tries to ensure that a file copy operation will not fail
        if the destination file is removed during copy operation. The problem
        is that copying a file is typically not an atomic operation.

        Luckily moving files is atomic in almost every platform, assuming files
        are on the same filesystem, and we can use that as a workaround:
        - First move the source to a temporary directory that is ensured to
          be on the same filesystem as the destination.
        - Move the temporary file over the real destination.

        See also https://github.com/robotframework/robotframework/issues/1502
        """
        temp_directory = tempfile.mkdtemp(dir=os.path.dirname(destination))
        temp_file = os.path.join(temp_directory, os.path.basename(source))
        try:
            shutil.copy(source, temp_file)
            if os.path.exists(destination):
                os.remove(destination)
            shutil.move(temp_file, destination)
        finally:
            shutil.rmtree(temp_directory)
        return source, destination

[docs]    def move_file(self, source, destination):
        """Moves the source file into the destination.

        Arguments have exactly same semantics as with `Copy File` keyword.
        Destination file path is returned.

        If the source and destination are on the same filesystem, rename
        operation is used. Otherwise file is copied to the destination
        filesystem and then removed from the original filesystem.

        See also `Move Files`, `Copy File`, and `Copy Files`.
        """
        source, destination = \
            self._prepare_copy_and_move_file(source, destination)
        if not self._are_source_and_destination_same_file(destination, source):
            shutil.move(source, destination)
            self._link("Moved file from '%s' to '%s'.", source, destination)
        return destination


[docs]    def copy_files(self, *sources_and_destination):
        """Copies specified files to the target directory.

        Source files can be given as exact paths and as glob patterns (see
        `Pattern matching`). At least one source must be given, but it is
        not an error if it is a pattern that does not match anything.

        Last argument must be the destination directory. If the destination
        does not exist, it will be created.

        Examples:
        | Copy Files | ${dir}/file1.txt  | ${dir}/file2.txt | ${dir2} |
        | Copy Files | ${dir}/file-*.txt | ${dir2}          |         |

        See also `Copy File`, `Move File`, and `Move Files`.
        """
        sources, destination \
            = self._prepare_copy_and_move_files(sources_and_destination)
        for source in sources:
            self.copy_file(source, destination)


    def _prepare_copy_and_move_files(self, items):
        if len(items) < 2:
            self._error('Must contain destination and at least one source.')
        sources = self._glob_files(items[:-1])
        destination = self._absnorm(items[-1])
        self._ensure_destination_directory_exists(destination)
        return sources, destination

    def _glob_files(self, patterns):
        files = []
        for pattern in patterns:
            files.extend(self._glob(self._absnorm(pattern)))
        return files

[docs]    def move_files(self, *sources_and_destination):
        """Moves specified files to the target directory.

        Arguments have exactly same semantics as with `Copy Files` keyword.

        See also `Move File`, `Copy File`, and `Copy Files`.
        """
        sources, destination \
            = self._prepare_copy_and_move_files(sources_and_destination)
        for source in sources:
            self.move_file(source, destination)


[docs]    def copy_directory(self, source, destination):
        """Copies the source directory into the destination.

        If the destination exists, the source is copied under it. Otherwise
        the destination directory and the possible missing intermediate
        directories are created.
        """
        source, destination \
            = self._prepare_copy_and_move_directory(source, destination)
        try:
            shutil.copytree(source, destination)
        except shutil.Error:
            # https://github.com/robotframework/robotframework/issues/2321
            if not (WINDOWS and JYTHON):
                raise
        self._link("Copied directory from '%s' to '%s'.", source, destination)


    def _prepare_copy_and_move_directory(self, source, destination):
        source = self._absnorm(source)
        destination = self._absnorm(destination)
        if not os.path.exists(source):
            self._error("Source '%s' does not exist." % source)
        if not os.path.isdir(source):
            self._error("Source '%s' is not a directory." % source)
        if os.path.exists(destination) and not os.path.isdir(destination):
            self._error("Destination '%s' is not a directory." % destination)
        if os.path.exists(destination):
            base = os.path.basename(source)
            destination = os.path.join(destination, base)
        else:
            parent = os.path.dirname(destination)
            if not os.path.exists(parent):
                os.makedirs(parent)
        return source, destination

[docs]    def move_directory(self, source, destination):
        """Moves the source directory into a destination.

        Uses `Copy Directory` keyword internally, and ``source`` and
        ``destination`` arguments have exactly same semantics as with
        that keyword.
        """
        source, destination \
            = self._prepare_copy_and_move_directory(source, destination)
        shutil.move(source, destination)
        self._link("Moved directory from '%s' to '%s'.", source, destination)


    # Environment Variables

[docs]    @keyword(types=None)
    def get_environment_variable(self, name, default=None):
        """Returns the value of an environment variable with the given name.

        If no such environment variable is set, returns the default value, if
        given. Otherwise fails the test case.

        Returned variables are automatically decoded to Unicode using
        the system encoding.

        Note that you can also access environment variables directly using
        the variable syntax ``%{ENV_VAR_NAME}``.
        """
        value = get_env_var(name, default)
        if value is None:
            self._error("Environment variable '%s' does not exist." % name)
        return value


[docs]    def set_environment_variable(self, name, value):
        """Sets an environment variable to a specified value.

        Values are converted to strings automatically. Set variables are
        automatically encoded using the system encoding.
        """
        set_env_var(name, value)
        self._info("Environment variable '%s' set to value '%s'."
                   % (name, value))


[docs]    def append_to_environment_variable(self, name, *values, **config):
        """Appends given ``values`` to environment variable ``name``.

        If the environment variable already exists, values are added after it,
        and otherwise a new environment variable is created.

        Values are, by default, joined together using the operating system
        path separator (``;`` on Windows, ``:`` elsewhere). This can be changed
        by giving a separator after the values like ``separator=value``. No
        other configuration parameters are accepted.

        Examples (assuming ``NAME`` and ``NAME2`` do not exist initially):
        | Append To Environment Variable | NAME     | first  |       |
        | Should Be Equal                | %{NAME}  | first  |       |
        | Append To Environment Variable | NAME     | second | third |
        | Should Be Equal                | %{NAME}  | first${:}second${:}third |
        | Append To Environment Variable | NAME2    | first  | separator=-     |
        | Should Be Equal                | %{NAME2} | first  |                 |
        | Append To Environment Variable | NAME2    | second | separator=-     |
        | Should Be Equal                | %{NAME2} | first-second             |
        """
        sentinel = object()
        initial = self.get_environment_variable(name, sentinel)
        if initial is not sentinel:
            values = (initial,) + values
        separator = config.pop('separator', os.pathsep)
        if config:
            config = ['='.join(i) for i in sorted(config.items())]
            self._error('Configuration %s not accepted.'
                        % seq2str(config, lastsep=' or '))
        self.set_environment_variable(name, separator.join(values))


[docs]    def remove_environment_variable(self, *names):
        """Deletes the specified environment variable.

        Does nothing if the environment variable is not set.

        It is possible to remove multiple variables by passing them to this
        keyword as separate arguments.
        """
        for name in names:
            value = del_env_var(name)
            if value:
                self._info("Environment variable '%s' deleted." % name)
            else:
                self._info("Environment variable '%s' does not exist." % name)


[docs]    def environment_variable_should_be_set(self, name, msg=None):
        """Fails if the specified environment variable is not set.

        The default error message can be overridden with the ``msg`` argument.
        """
        value = get_env_var(name)
        if not value:
            self._fail(msg, "Environment variable '%s' is not set." % name)
        self._info("Environment variable '%s' is set to '%s'." % (name, value))


[docs]    def environment_variable_should_not_be_set(self, name, msg=None):
        """Fails if the specified environment variable is set.

        The default error message can be overridden with the ``msg`` argument.
        """
        value = get_env_var(name)
        if value:
            self._fail(msg, "Environment variable '%s' is set to '%s'."
                            % (name, value))
        self._info("Environment variable '%s' is not set." % name)


[docs]    def get_environment_variables(self):
        """Returns currently available environment variables as a dictionary.

        Both keys and values are decoded to Unicode using the system encoding.
        Altering the returned dictionary has no effect on the actual environment
        variables.
        """
        return get_env_vars()


[docs]    def log_environment_variables(self, level='INFO'):
        """Logs all environment variables using the given log level.

        Environment variables are also returned the same way as with
        `Get Environment Variables` keyword.
        """
        variables = get_env_vars()
        for name in sorted(variables, key=lambda item: item.lower()):
            self._log('%s = %s' % (name, variables[name]), level)
        return variables


    # Path

[docs]    def join_path(self, base, *parts):
        """Joins the given path part(s) to the given base path.

        The path separator (``/`` or ``\\``) is inserted when needed and
        the possible absolute paths handled as expected. The resulted
        path is also normalized.

        Examples:
        | ${path} = | Join Path | my        | path  | | |
        | ${p2} =   | Join Path | my/       | path/ |
        | ${p3} =   | Join Path | my        | path  | my | file.txt |
        | ${p4} =   | Join Path | my        | /path |
        | ${p5} =   | Join Path | /my/path/ | ..    | path2 |
        =>
        - ${path} = 'my/path'
        - ${p2} = 'my/path'
        - ${p3} = 'my/path/my/file.txt'
        - ${p4} = '/path'
        - ${p5} = '/my/path2'
        """
        base = base.replace('/', os.sep)
        parts = [p.replace('/', os.sep) for p in parts]
        return self.normalize_path(os.path.join(base, *parts))


[docs]    def join_paths(self, base, *paths):
        """Joins given paths with base and returns resulted paths.

        See `Join Path` for more information.

        Examples:
        | @{p1} = | Join Paths | base     | example       | other |          |
        | @{p2} = | Join Paths | /my/base | /example      | other |          |
        | @{p3} = | Join Paths | my/base  | example/path/ | other | one/more |
        =>
        - @{p1} = ['base/example', 'base/other']
        - @{p2} = ['/example', '/my/base/other']
        - @{p3} = ['my/base/example/path', 'my/base/other', 'my/base/one/more']
        """
        return [self.join_path(base, path) for path in paths]


[docs]    def normalize_path(self, path, case_normalize=False):
        """Normalizes the given path.

        - Collapses redundant separators and up-level references.
        - Converts ``/`` to ``\\`` on Windows.
        - Replaces initial ``~`` or ``~user`` by that user's home directory.
          The latter is not supported on Jython.
        - If ``case_normalize`` is given a true value (see `Boolean arguments`)
          on Windows, converts the path to all lowercase. New in Robot
          Framework 3.1.

        Examples:
        | ${path1} = | Normalize Path | abc/           |
        | ${path2} = | Normalize Path | abc/../def     |
        | ${path3} = | Normalize Path | abc/./def//ghi |
        | ${path4} = | Normalize Path | ~robot/stuff   |
        =>
        - ${path1} = 'abc'
        - ${path2} = 'def'
        - ${path3} = 'abc/def/ghi'
        - ${path4} = '/home/robot/stuff'

        On Windows result would use ``\\`` instead of ``/`` and home directory
        would be different.
        """
        path = os.path.normpath(os.path.expanduser(path.replace('/', os.sep)))
        # os.path.normcase doesn't normalize on OSX which also, by default,
        # has case-insensitive file system. Our robot.utils.normpath would
        # do that, but it's not certain would that, or other things that the
        # utility do, desirable.
        if case_normalize:
            path = os.path.normcase(path)
        return path or '.'


[docs]    def split_path(self, path):
        """Splits the given path from the last path separator (``/`` or ``\\``).

        The given path is first normalized (e.g. a possible trailing
        path separator is removed, special directories ``..`` and ``.``
        removed). The parts that are split are returned as separate
        components.

        Examples:
        | ${path1} | ${dir} =  | Split Path | abc/def         |
        | ${path2} | ${file} = | Split Path | abc/def/ghi.txt |
        | ${path3} | ${d2}  =  | Split Path | abc/../def/ghi/ |
        =>
        - ${path1} = 'abc' & ${dir} = 'def'
        - ${path2} = 'abc/def' & ${file} = 'ghi.txt'
        - ${path3} = 'def' & ${d2} = 'ghi'
        """
        return os.path.split(self.normalize_path(path))


[docs]    def split_extension(self, path):
        """Splits the extension from the given path.

        The given path is first normalized (e.g. possible trailing
        path separators removed, special directories ``..`` and ``.``
        removed). The base path and extension are returned as separate
        components so that the dot used as an extension separator is
        removed. If the path contains no extension, an empty string is
        returned for it. Possible leading and trailing dots in the file
        name are never considered to be extension separators.

        Examples:
        | ${path} | ${ext} = | Split Extension | file.extension    |
        | ${p2}   | ${e2} =  | Split Extension | path/file.ext     |
        | ${p3}   | ${e3} =  | Split Extension | path/file         |
        | ${p4}   | ${e4} =  | Split Extension | p1/../p2/file.ext |
        | ${p5}   | ${e5} =  | Split Extension | path/.file.ext    |
        | ${p6}   | ${e6} =  | Split Extension | path/.file        |
        =>
        - ${path} = 'file' & ${ext} = 'extension'
        - ${p2} = 'path/file' & ${e2} = 'ext'
        - ${p3} = 'path/file' & ${e3} = ''
        - ${p4} = 'p2/file' & ${e4} = 'ext'
        - ${p5} = 'path/.file' & ${e5} = 'ext'
        - ${p6} = 'path/.file' & ${e6} = ''
        """
        path = self.normalize_path(path)
        basename = os.path.basename(path)
        if basename.startswith('.' * basename.count('.')):
            return path, ''
        if path.endswith('.'):
            path2 = path.rstrip('.')
            trailing_dots = '.' * (len(path) - len(path2))
            path = path2
        else:
            trailing_dots = ''
        basepath, extension = os.path.splitext(path)
        if extension.startswith('.'):
            extension = extension[1:]
        if extension:
            extension += trailing_dots
        else:
            basepath += trailing_dots
        return basepath, extension


    # Misc

[docs]    def get_modified_time(self, path, format='timestamp'):
        """Returns the last modification time of a file or directory.

        How time is returned is determined based on the given ``format``
        string as follows. Note that all checks are case-insensitive.
        Returned time is also automatically logged.

        1) If ``format`` contains the word ``epoch``, the time is returned
           in seconds after the UNIX epoch. The return value is always
           an integer.

        2) If ``format`` contains any of the words ``year``, ``month``,
           ``day``, ``hour``, ``min`` or ``sec``, only the selected parts are
           returned. The order of the returned parts is always the one
           in the previous sentence and the order of the words in
           ``format`` is not significant. The parts are returned as
           zero-padded strings (e.g. May -> ``05``).

        3) Otherwise, and by default, the time is returned as a
           timestamp string in the format ``2006-02-24 15:08:31``.

        Examples (when the modified time of ``${CURDIR}`` is
        2006-03-29 15:06:21):
        | ${time} = | Get Modified Time | ${CURDIR} | | |
        | ${secs} = | Get Modified Time | ${CURDIR} | epoch |
        | ${year} = | Get Modified Time | ${CURDIR} | return year |
        | ${y} | ${d} = | Get Modified Time | ${CURDIR} | year,day |
        | @{time} = | Get Modified Time | ${CURDIR} | year,month,day,hour,min,sec |
        =>
        - ${time} = '2006-03-29 15:06:21'
        - ${secs} = 1143637581
        - ${year} = '2006'
        - ${y} = '2006' & ${d} = '29'
        - @{time} = ['2006', '03', '29', '15', '06', '21']
        """
        path = self._absnorm(path)
        if not os.path.exists(path):
            self._error("Path '%s' does not exist." % path)
        mtime = get_time(format, os.stat(path).st_mtime)
        self._link("Last modified time of '%%s' is %s." % mtime, path)
        return mtime


[docs]    def set_modified_time(self, path, mtime):
        """Sets the file modification and access times.

        Changes the modification and access times of the given file to
        the value determined by ``mtime``. The time can be given in
        different formats described below. Note that all checks
        involving strings are case-insensitive. Modified time can only
        be set to regular files.

        1) If ``mtime`` is a number, or a string that can be converted
           to a number, it is interpreted as seconds since the UNIX
           epoch (1970-01-01 00:00:00 UTC). This documentation was
           originally written about 1177654467 seconds after the epoch.

        2) If ``mtime`` is a timestamp, that time will be used. Valid
           timestamp formats are ``YYYY-MM-DD hh:mm:ss`` and
           ``YYYYMMDD hhmmss``.

        3) If ``mtime`` is equal to ``NOW``, the current local time is used.

        4) If ``mtime`` is equal to ``UTC``, the current time in
           [http://en.wikipedia.org/wiki/Coordinated_Universal_Time|UTC]
           is used.

        5) If ``mtime`` is in the format like ``NOW - 1 day`` or ``UTC + 1
           hour 30 min``, the current local/UTC time plus/minus the time
           specified with the time string is used. The time string format
           is described in an appendix of Robot Framework User Guide.

        Examples:
        | Set Modified Time | /path/file | 1177654467         | # Time given as epoch seconds |
        | Set Modified Time | /path/file | 2007-04-27 9:14:27 | # Time given as a timestamp   |
        | Set Modified Time | /path/file | NOW                | # The local time of execution |
        | Set Modified Time | /path/file | NOW - 1 day        | # 1 day subtracted from the local time |
        | Set Modified Time | /path/file | UTC + 1h 2min 3s   | # 1h 2min 3s added to the UTC time |
        """
        mtime = parse_time(mtime)
        path = self._absnorm(path)
        if not os.path.exists(path):
            self._error("File '%s' does not exist." % path)
        if not os.path.isfile(path):
            self._error("Path '%s' is not a regular file." % path)
        os.utime(path, (mtime, mtime))
        time.sleep(0.1)  # Give os some time to really set these times
        tstamp = secs_to_timestamp(mtime, seps=('-', ' ', ':'))
        self._link("Set modified time of '%%s' to %s." % tstamp, path)


[docs]    def get_file_size(self, path):
        """Returns and logs file size as an integer in bytes."""
        path = self._absnorm(path)
        if not os.path.isfile(path):
            self._error("File '%s' does not exist." % path)
        size = os.stat(path).st_size
        plural = plural_or_not(size)
        self._link("Size of file '%%s' is %d byte%s." % (size, plural), path)
        return size


[docs]    def list_directory(self, path, pattern=None, absolute=False):
        """Returns and logs items in a directory, optionally filtered with ``pattern``.

        File and directory names are returned in case-sensitive alphabetical
        order, e.g. ``['A Name', 'Second', 'a lower case name', 'one more']``.
        Implicit directories ``.`` and ``..`` are not returned. The returned
        items are automatically logged.

        File and directory names are returned relative to the given path
        (e.g. ``'file.txt'``) by default. If you want them be returned in
        absolute format (e.g. ``'/home/robot/file.txt'``), give the ``absolute``
        argument a true value (see `Boolean arguments`).

        If ``pattern`` is given, only items matching it are returned. The pattern
        matching syntax is explained in `introduction`, and in this case
        matching is case-sensitive.

        Examples (using also other `List Directory` variants):
        | @{items} = | List Directory           | ${TEMPDIR} | | |
        | @{files} = | List Files In Directory  | /tmp | *.txt | absolute |
        | ${count} = | Count Files In Directory | ${CURDIR} | ??? |
        """
        items = self._list_dir(path, pattern, absolute)
        self._info('%d item%s:\n%s' % (len(items), plural_or_not(items),
                                       '\n'.join(items)))
        return items


[docs]    def list_files_in_directory(self, path, pattern=None, absolute=False):
        """Wrapper for `List Directory` that returns only files."""
        files = self._list_files_in_dir(path, pattern, absolute)
        self._info('%d file%s:\n%s' % (len(files), plural_or_not(files),
                                       '\n'.join(files)))
        return files


[docs]    def list_directories_in_directory(self, path, pattern=None, absolute=False):
        """Wrapper for `List Directory` that returns only directories."""
        dirs = self._list_dirs_in_dir(path, pattern, absolute)
        self._info('%d director%s:\n%s' % (len(dirs),
                                           'y' if len(dirs) == 1 else 'ies',
                                           '\n'.join(dirs)))
        return dirs


[docs]    def count_items_in_directory(self, path, pattern=None):
        """Returns and logs the number of all items in the given directory.

        The argument ``pattern`` has the same semantics as with `List Directory`
        keyword. The count is returned as an integer, so it must be checked e.g.
        with the built-in keyword `Should Be Equal As Integers`.
        """
        count = len(self._list_dir(path, pattern))
        self._info("%s item%s." % (count, plural_or_not(count)))
        return count


[docs]    def count_files_in_directory(self, path, pattern=None):
        """Wrapper for `Count Items In Directory` returning only file count."""
        count = len(self._list_files_in_dir(path, pattern))
        self._info("%s file%s." % (count, plural_or_not(count)))
        return count


[docs]    def count_directories_in_directory(self, path, pattern=None):
        """Wrapper for `Count Items In Directory` returning only directory count."""
        count = len(self._list_dirs_in_dir(path, pattern))
        self._info("%s director%s." % (count, 'y' if count == 1 else 'ies'))
        return count


    def _list_dir(self, path, pattern=None, absolute=False):
        path = self._absnorm(path)
        self._link("Listing contents of directory '%s'.", path)
        if not os.path.isdir(path):
            self._error("Directory '%s' does not exist." % path)
        # result is already unicode but unic also handles NFC normalization
        items = sorted(unic(item) for item in os.listdir(path))
        if pattern:
            items = [i for i in items if fnmatch.fnmatchcase(i, pattern)]
        if is_truthy(absolute):
            path = os.path.normpath(path)
            items = [os.path.join(path, item) for item in items]
        return items

    def _list_files_in_dir(self, path, pattern=None, absolute=False):
        return [item for item in self._list_dir(path, pattern, absolute)
                if os.path.isfile(os.path.join(path, item))]

    def _list_dirs_in_dir(self, path, pattern=None, absolute=False):
        return [item for item in self._list_dir(path, pattern, absolute)
                if os.path.isdir(os.path.join(path, item))]

[docs]    def touch(self, path):
        """Emulates the UNIX touch command.

        Creates a file, if it does not exist. Otherwise changes its access and
        modification times to the current time.

        Fails if used with the directories or the parent directory of the given
        file does not exist.
        """
        path = self._absnorm(path)
        if os.path.isdir(path):
            self._error("Cannot touch '%s' because it is a directory." % path)
        if not os.path.exists(os.path.dirname(path)):
            self._error("Cannot touch '%s' because its parent directory does "
                        "not exist." % path)
        if os.path.exists(path):
            mtime = round(time.time())
            os.utime(path, (mtime, mtime))
            self._link("Touched existing file '%s'.", path)
        else:
            open(path, 'w').close()
            self._link("Touched new file '%s'.", path)


    def _absnorm(self, path):
        path = self.normalize_path(path)
        try:
            return abspath(path)
        except ValueError:  # http://ironpython.codeplex.com/workitem/29489
            return path

    def _fail(self, *messages):
        raise AssertionError(next(msg for msg in messages if msg))

    def _error(self, msg):
        raise RuntimeError(msg)

    def _info(self, msg):
        self._log(msg, 'INFO')

    def _link(self, msg, *paths):
        paths = tuple('<a href="file://%s">%s</a>' % (p, p) for p in paths)
        self._log(msg % paths, 'HTML')

    def _warn(self, msg):
        self._log(msg, 'WARN')

    def _log(self, msg, level):
        logger.write(msg, level)



class _Process:

    def __init__(self, command):
        self._command = self._process_command(command)
        self._process = os.popen(self._command)

    def __str__(self):
        return self._command

    def read(self):
        return self._process_output(self._process.read())

    def close(self):
        try:
            rc = self._process.close()
        except IOError:  # Has occurred sometimes in Windows
            return 255
        if rc is None:
            return 0
        # In Windows (Python and Jython) return code is value returned by
        # command (can be almost anything)
        # In other OS:
        #   In Jython return code can be between '-255' - '255'
        #   In Python return code must be converted with 'rc >> 8' and it is
        #   between 0-255 after conversion
        if WINDOWS or JYTHON:
            return rc % 256
        return rc >> 8

    def _process_command(self, command):
        if '>' not in command:
            if command.endswith('&'):
                command = command[:-1] + ' 2>&1 &'
            else:
                command += ' 2>&1'
        return self._encode_to_file_system(command)

    def _encode_to_file_system(self, string):
        enc = sys.getfilesystemencoding() if PY2 else None
        return string.encode(enc) if enc else string

    def _process_output(self, output):
        if '\r\n' in output:
            output = output.replace('\r\n', '\n')
        if output.endswith('\n'):
            output = output[:-1]
        return console_decode(output, force=True)




          

      

      

    

  

    
      
          
            
  Source code for robot.libraries.Process

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

import ctypes
import os
import subprocess
import time
from tempfile import TemporaryFile
import signal as signal_module

from robot.utils import (abspath, cmdline2list, ConnectionCache, console_decode,
                         console_encode, IRONPYTHON, JYTHON, is_list_like, is_string,
                         is_unicode, is_truthy, NormalizedDict, PY2, py3to2,
                         secs_to_timestr, system_decode, system_encode, timestr_to_secs,
                         WINDOWS)
from robot.version import get_version
from robot.api import logger


[docs]class Process(object):
    """Robot Framework test library for running processes.

    This library utilizes Python's
    [http://docs.python.org/library/subprocess.html|subprocess]
    module and its
    [http://docs.python.org/library/subprocess.html#popen-constructor|Popen]
    class.

    The library has following main usages:

    - Running processes in system and waiting for their completion using
      `Run Process` keyword.
    - Starting processes on background using `Start Process`.
    - Waiting started process to complete using `Wait For Process` or
      stopping them with `Terminate Process` or `Terminate All Processes`.

    == Table of contents ==

    %TOC%

    = Specifying command and arguments =

    Both `Run Process` and `Start Process` accept the command to execute and
    all arguments passed to the command as separate arguments. This makes usage
    convenient and also allows these keywords to automatically escape possible
    spaces and other special characters in commands and arguments. Notice that
    if a command accepts options that themselves accept values, these options
    and their values must be given as separate arguments.

    When `running processes in shell`, it is also possible to give the whole
    command to execute as a single string. The command can then contain
    multiple commands to be run together. When using this approach, the caller
    is responsible on escaping.

    Examples:
    | `Run Process` | ${tools}${/}prog.py | argument | second arg with spaces | | |
    | `Run Process` | java | -jar | ${jars}${/}example.jar | --option | value |
    | `Run Process` | prog.py "one arg" && tool.sh | shell=yes | cwd=${tools} |

    Possible non-string arguments are converted to strings automatically.

    = Process configuration =

    `Run Process` and `Start Process` keywords can be configured using
    optional ``**configuration`` keyword arguments. Configuration arguments
    must be given after other arguments passed to these keywords and must
    use syntax like ``name=value``. Available configuration arguments are
    listed below and discussed further in sections afterwards.

    |  = Name =  |                  = Explanation =                      |
    | shell      | Specifies whether to run the command in shell or not. |
    | cwd        | Specifies the working directory.                      |
    | env        | Specifies environment variables given to the process. |
    | env:<name> | Overrides the named environment variable(s) only.     |
    | stdout     | Path of a file where to write standard output.        |
    | stderr     | Path of a file where to write standard error.         |
    | stdin      | Configure process standard input. New in RF 4.1.2.    |
    | output_encoding | Encoding to use when reading command outputs.    |
    | alias      | Alias given to the process.                           |

    Note that because ``**configuration`` is passed using ``name=value`` syntax,
    possible equal signs in other arguments passed to `Run Process` and
    `Start Process` must be escaped with a backslash like ``name\\=value``.
    See `Run Process` for an example.

    == Running processes in shell ==

    The ``shell`` argument specifies whether to run the process in a shell or
    not. By default shell is not used, which means that shell specific commands,
    like ``copy`` and ``dir`` on Windows, are not available. You can, however,
    run shell scripts and batch files without using a shell.

    Giving the ``shell`` argument any non-false value, such as ``shell=True``,
    changes the program to be executed in a shell. It allows using the shell
    capabilities, but can also make the process invocation operating system
    dependent. Having a shell between the actually started process and this
    library can also interfere communication with the process such as stopping
    it and reading its outputs. Because of these problems, it is recommended
    to use the shell only when absolutely necessary.

    When using a shell it is possible to give the whole command to execute
    as a single string. See `Specifying command and arguments` section for
    examples and more details in general.

    == Current working directory ==

    By default the child process will be executed in the same directory
    as the parent process, the process running tests, is executed. This
    can be changed by giving an alternative location using the ``cwd`` argument.
    Forward slashes in the given path are automatically converted to
    backslashes on Windows.

    `Standard output and error streams`, when redirected to files,
    are also relative to the current working directory possibly set using
    the ``cwd`` argument.

    Example:
    | `Run Process` | prog.exe | cwd=${ROOT}/directory | stdout=stdout.txt |

    == Environment variables ==

    By default the child process will get a copy of the parent process's
    environment variables. The ``env`` argument can be used to give the
    child a custom environment as a Python dictionary. If there is a need
    to specify only certain environment variable, it is possible to use the
    ``env:<name>=<value>`` format to set or override only that named variables.
    It is also possible to use these two approaches together.

    Examples:
    | `Run Process` | program | env=${environ} | |
    | `Run Process` | program | env:http_proxy=10.144.1.10:8080 | env:PATH=%{PATH}${:}${PROGDIR} |
    | `Run Process` | program | env=${environ} | env:EXTRA=value |

    == Standard output and error streams ==

    By default processes are run so that their standard output and standard
    error streams are kept in the memory. This works fine normally,
    but if there is a lot of output, the output buffers may get full and
    the program can hang. Additionally on Jython, everything written to
    these in-memory buffers can be lost if the process is terminated.

    To avoid the above mentioned problems, it is possible to use ``stdout``
    and ``stderr`` arguments to specify files on the file system where to
    redirect the outputs. This can also be useful if other processes or
    other keywords need to read or manipulate the outputs somehow.

    Given ``stdout`` and ``stderr`` paths are relative to the `current working
    directory`. Forward slashes in the given paths are automatically converted
    to backslashes on Windows.

    As a special feature, it is possible to redirect the standard error to
    the standard output by using ``stderr=STDOUT``.

    Regardless are outputs redirected to files or not, they are accessible
    through the `result object` returned when the process ends. Commands are
    expected to write outputs using the console encoding, but `output encoding`
    can be configured using the ``output_encoding`` argument if needed.

    If you are not interested in outputs at all, you can explicitly ignore them
    by using a special value ``DEVNULL`` both with ``stdout`` and ``stderr``. For
    example, ``stdout=DEVNULL`` is the same as redirecting output on console
    with ``> /dev/null`` on UNIX-like operating systems or ``> NUL`` on Windows.
    This way the process will not hang even if there would be a lot of output,
    but naturally output is not available after execution either.

    Support for the special value ``DEVNULL`` is new in Robot Framework 3.2.

    Examples:
    | ${result} = | `Run Process` | program | stdout=${TEMPDIR}/stdout.txt | stderr=${TEMPDIR}/stderr.txt |
    | `Log Many`  | stdout: ${result.stdout} | stderr: ${result.stderr} |
    | ${result} = | `Run Process` | program | stderr=STDOUT |
    | `Log`       | all output: ${result.stdout} |
    | ${result} = | `Run Process` | program | stdout=DEVNULL | stderr=DEVNULL |

    Note that the created output files are not automatically removed after
    the test run. The user is responsible to remove them if needed.

    == Standard input stream ==

    The ``stdin`` argument makes it possible to pass information to the standard
    input stream of the started process. How its value is interpreted is
    explained in the table below.

    | = Value =        | = Explanation = |
    | String ``PIPE``  | Make stdin a pipe that can be written to. This is the default. |
    | String ``NONE``  | Inherit stdin from the parent process. This value is case-insensitive. |
    | Path to a file   | Open the specified file and use it as the stdin. |
    | Any other string | Create a temporary file with the text as its content and use it as the stdin. |
    | Any non-string value | Used as-is. Could be a file descriptor, stdout of another process, etc. |

    Values ``PIPE`` and ``NONE`` are internally mapped directly to
    ``subprocess.PIPE`` and ``None``, respectively, when calling
    [https://docs.python.org/3/library/subprocess.html#subprocess.Popen|subprocess.Popen].
    The default behavior may change from ``PIPE`` to ``NONE`` in future
    releases. If you depend on the ``PIPE`` behavior, it is a good idea to use
    it explicitly.

    Examples:
    | `Run Process` | command | stdin=NONE |
    | `Run Process` | command | stdin=${CURDIR}/stdin.txt |
    | `Run Process` | command | stdin=Stdin as text. |

    The support to configure ``stdin`` is new in Robot Framework 4.1.2.

    == Output encoding ==

    Executed commands are, by default, expected to write outputs to the
    `standard output and error streams` using the encoding used by the
    system console. If the command uses some other encoding, that can be
    configured using the ``output_encoding`` argument. This is especially
    useful on Windows where the console uses a different encoding than rest
    of the system, and many commands use the general system encoding instead
    of the console encoding.

    The value used with the ``output_encoding`` argument must be a valid
    encoding and must match the encoding actually used by the command. As a
    convenience, it is possible to use strings ``CONSOLE`` and ``SYSTEM``
    to specify that the console or system encoding is used, respectively.
    If produced outputs use different encoding then configured, values got
    through the `result object` will be invalid.

    Examples:
    | `Start Process` | program | output_encoding=UTF-8 |
    | `Run Process`   | program | stdout=${path} | output_encoding=SYSTEM |

    == Alias ==

    A custom name given to the process that can be used when selecting the
    `active process`.

    Examples:
    | `Start Process` | program | alias=example |
    | `Run Process`   | python  | -c | print('hello') | alias=hello |

    = Active process =

    The test library keeps record which of the started processes is currently
    active. By default it is latest process started with `Start Process`,
    but `Switch Process` can be used to select a different one. Using
    `Run Process` does not affect the active process.

    The keywords that operate on started processes will use the active process
    by default, but it is possible to explicitly select a different process
    using the ``handle`` argument. The handle can be the identifier returned by
    `Start Process` or an ``alias`` explicitly given to `Start Process` or
    `Run Process`.

    = Result object =

    `Run Process`, `Wait For Process` and `Terminate Process` keywords return a
    result object that contains information about the process execution as its
    attributes. The same result object, or some of its attributes, can also
    be get using `Get Process Result` keyword. Attributes available in the
    object are documented in the table below.

    | = Attribute = |             = Explanation =               |
    | rc            | Return code of the process as an integer. |
    | stdout        | Contents of the standard output stream.   |
    | stderr        | Contents of the standard error stream.    |
    | stdout_path   | Path where stdout was redirected or ``None`` if not redirected. |
    | stderr_path   | Path where stderr was redirected or ``None`` if not redirected. |

    Example:
    | ${result} =            | `Run Process`         | program               |
    | `Should Be Equal As Integers` | ${result.rc}   | 0                     |
    | `Should Match`         | ${result.stdout}      | Some t?xt*            |
    | `Should Be Empty`      | ${result.stderr}      |                       |
    | ${stdout} =            | `Get File`            | ${result.stdout_path} |
    | `Should Be Equal`      | ${stdout}             | ${result.stdout}      |
    | `File Should Be Empty` | ${result.stderr_path} |                       |

    = Boolean arguments =

    Some keywords accept arguments that are handled as Boolean values true or
    false. If such an argument is given as a string, it is considered false if
    it is an empty string or equal to ``FALSE``, ``NONE``, ``NO``, ``OFF`` or
    ``0``, case-insensitively. Other strings are considered true regardless
    their value, and other argument types are tested using the same
    [http://docs.python.org/library/stdtypes.html#truth|rules as in Python].

    True examples:
    | `Terminate Process` | kill=True     | # Strings are generally true.    |
    | `Terminate Process` | kill=yes      | # Same as the above.             |
    | `Terminate Process` | kill=${TRUE}  | # Python ``True`` is true.       |
    | `Terminate Process` | kill=${42}    | # Numbers other than 0 are true. |

    False examples:
    | `Terminate Process` | kill=False    | # String ``false`` is false.   |
    | `Terminate Process` | kill=no       | # Also string ``no`` is false. |
    | `Terminate Process` | kill=${EMPTY} | # Empty string is false.       |
    | `Terminate Process` | kill=${FALSE} | # Python ``False`` is false.   |

    Considering ``OFF`` and ``0`` false is new in Robot Framework 3.1.

    = Example =

    | ***** Settings *****
    | Library           Process
    | Suite Teardown    `Terminate All Processes`    kill=True
    |
    | ***** Test Cases *****
    | Example
    |     `Start Process`    program    arg1    arg2    alias=First
    |     ${handle} =    `Start Process`    command.sh arg | command2.sh    shell=True    cwd=/path
    |     ${result} =    `Run Process`    ${CURDIR}/script.py
    |     `Should Not Contain`    ${result.stdout}    FAIL
    |     `Terminate Process`    ${handle}
    |     ${result} =    `Wait For Process`    First
    |     `Should Be Equal As Integers`    ${result.rc}    0
    """
    ROBOT_LIBRARY_SCOPE = 'GLOBAL'
    ROBOT_LIBRARY_VERSION = get_version()
    TERMINATE_TIMEOUT = 30
    KILL_TIMEOUT = 10

    def __init__(self):
        self._processes = ConnectionCache('No active process.')
        self._results = {}

[docs]    def run_process(self, command, *arguments, **configuration):
        """Runs a process and waits for it to complete.

        ``command`` and ``*arguments`` specify the command to execute and
        arguments passed to it. See `Specifying command and arguments` for
        more details.

        ``**configuration`` contains additional configuration related to
        starting processes and waiting for them to finish. See `Process
        configuration` for more details about configuration related to starting
        processes. Configuration related to waiting for processes consists of
        ``timeout`` and ``on_timeout`` arguments that have same semantics as
        with `Wait For Process` keyword. By default there is no timeout, and
        if timeout is defined the default action on timeout is ``terminate``.

        Returns a `result object` containing information about the execution.

        Note that possible equal signs in ``*arguments`` must be escaped
        with a backslash (e.g. ``name\\=value``) to avoid them to be passed in
        as ``**configuration``.

        Examples:
        | ${result} = | Run Process | python | -c | print('Hello, world!') |
        | Should Be Equal | ${result.stdout} | Hello, world! |
        | ${result} = | Run Process | ${command} | stderr=STDOUT | timeout=10s |
        | ${result} = | Run Process | ${command} | timeout=1min | on_timeout=continue |
        | ${result} = | Run Process | java -Dname\\=value Example | shell=True | cwd=${EXAMPLE} |

        This keyword does not change the `active process`.
        """
        current = self._processes.current
        timeout = configuration.pop('timeout', None)
        on_timeout = configuration.pop('on_timeout', 'terminate')
        try:
            handle = self.start_process(command, *arguments, **configuration)
            return self.wait_for_process(handle, timeout, on_timeout)
        finally:
            self._processes.current = current


[docs]    def start_process(self, command, *arguments, **configuration):
        """Starts a new process on background.

        See `Specifying command and arguments` and `Process configuration`
        for more information about the arguments, and `Run Process` keyword
        for related examples.

        Makes the started process new `active process`. Returns an identifier
        that can be used as a handle to activate the started process if needed.

        Processes are started so that they create a new process group. This
        allows sending signals to and terminating also possible child
        processes. This is not supported on Jython.
        """
        conf = ProcessConfiguration(**configuration)
        command = conf.get_command(command, list(arguments))
        self._log_start(command, conf)
        process = subprocess.Popen(command, **conf.popen_config)
        self._results[process] = ExecutionResult(process, **conf.result_config)
        return self._processes.register(process, alias=conf.alias)


    def _log_start(self, command, config):
        if is_list_like(command):
            command = self.join_command_line(command)
        logger.info(u'Starting process:\n%s' % system_decode(command))
        logger.debug(u'Process configuration:\n%s' % config)

[docs]    def is_process_running(self, handle=None):
        """Checks is the process running or not.

        If ``handle`` is not given, uses the current `active process`.

        Returns ``True`` if the process is still running and ``False`` otherwise.
        """
        return self._processes[handle].poll() is None


[docs]    def process_should_be_running(self, handle=None,
                                  error_message='Process is not running.'):
        """Verifies that the process is running.

        If ``handle`` is not given, uses the current `active process`.

        Fails if the process has stopped.
        """
        if not self.is_process_running(handle):
            raise AssertionError(error_message)


[docs]    def process_should_be_stopped(self, handle=None,
                                  error_message='Process is running.'):
        """Verifies that the process is not running.

        If ``handle`` is not given, uses the current `active process`.

        Fails if the process is still running.
        """
        if self.is_process_running(handle):
            raise AssertionError(error_message)


[docs]    def wait_for_process(self, handle=None, timeout=None, on_timeout='continue'):
        """Waits for the process to complete or to reach the given timeout.

        The process to wait for must have been started earlier with
        `Start Process`. If ``handle`` is not given, uses the current
        `active process`.

        ``timeout`` defines the maximum time to wait for the process. It can be
        given in
        [http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#time-format|
        various time formats] supported by Robot Framework, for example, ``42``,
        ``42 s``, or ``1 minute 30 seconds``. The timeout is ignored if it is
        Python ``None`` (default), string ``NONE`` (case-insensitively), zero,
        or negative.

        ``on_timeout`` defines what to do if the timeout occurs. Possible values
        and corresponding actions are explained in the table below. Notice
        that reaching the timeout never fails the test.

        | = Value = |               = Action =               |
        | continue  | The process is left running (default). |
        | terminate | The process is gracefully terminated.  |
        | kill      | The process is forcefully stopped.     |

        See `Terminate Process` keyword for more details how processes are
        terminated and killed.

        If the process ends before the timeout or it is terminated or killed,
        this keyword returns a `result object` containing information about
        the execution. If the process is left running, Python ``None`` is
        returned instead.

        Examples:
        | # Process ends cleanly      |                  |                  | |
        | ${result} =                 | Wait For Process | example          |
        | Process Should Be Stopped   | example          |                  |
        | Should Be Equal As Integers | ${result.rc}     | 0                |
        | # Process does not end      |                  |                  |
        | ${result} =                 | Wait For Process | timeout=42 secs  |
        | Process Should Be Running   |                  |                  |
        | Should Be Equal             | ${result}        | ${NONE}          |
        | # Kill non-ending process   |                  |                  |
        | ${result} =                 | Wait For Process | timeout=1min 30s | on_timeout=kill |
        | Process Should Be Stopped   |                  |                  |
        | Should Be Equal As Integers | ${result.rc}     | -9               |

        Ignoring timeout if it is string ``NONE``, zero, or negative is new
        in Robot Framework 3.2.
        """
        process = self._processes[handle]
        logger.info('Waiting for process to complete.')
        timeout = self._get_timeout(timeout)
        if timeout > 0:
            if not self._process_is_stopped(process, timeout):
                logger.info('Process did not complete in %s.'
                            % secs_to_timestr(timeout))
                return self._manage_process_timeout(handle, on_timeout.lower())
        return self._wait(process)


    def _get_timeout(self, timeout):
        if (is_string(timeout) and timeout.upper() == 'NONE') or not timeout:
            return -1
        return timestr_to_secs(timeout)

    def _manage_process_timeout(self, handle, on_timeout):
        if on_timeout == 'terminate':
            return self.terminate_process(handle)
        elif on_timeout == 'kill':
            return self.terminate_process(handle, kill=True)
        else:
            logger.info('Leaving process intact.')
            return None

    def _wait(self, process):
        result = self._results[process]
        result.rc = process.wait() or 0
        result.close_streams()
        logger.info('Process completed.')
        return result

[docs]    def terminate_process(self, handle=None, kill=False):
        """Stops the process gracefully or forcefully.

        If ``handle`` is not given, uses the current `active process`.

        By default first tries to stop the process gracefully. If the process
        does not stop in 30 seconds, or ``kill`` argument is given a true value,
        (see `Boolean arguments`) kills the process forcefully. Stops also all
        the child processes of the originally started process.

        Waits for the process to stop after terminating it. Returns a `result
        object` containing information about the execution similarly as `Wait
        For Process`.

        On Unix-like machines graceful termination is done using ``TERM (15)``
        signal and killing using ``KILL (9)``. Use `Send Signal To Process`
        instead if you just want to send either of these signals without
        waiting for the process to stop.

        On Windows graceful termination is done using ``CTRL_BREAK_EVENT``
        event and killing using Win32 API function ``TerminateProcess()``.

        Examples:
        | ${result} =                 | Terminate Process |     | |
        | Should Be Equal As Integers | ${result.rc}      | -15 | # On Unixes |
        | Terminate Process           | myproc            | kill=true |

        Limitations:
        - Graceful termination is not supported on Windows when using Jython.
          Process is killed instead.
        - Stopping the whole process group is not supported when using Jython.
        - On Windows forceful kill only stops the main process, not possible
          child processes.
        """
        process = self._processes[handle]
        if not hasattr(process, 'terminate'):
            raise RuntimeError('Terminating processes is not supported '
                               'by this Python version.')
        terminator = self._kill if is_truthy(kill) else self._terminate
        try:
            terminator(process)
        except OSError:
            if not self._process_is_stopped(process, self.KILL_TIMEOUT):
                raise
            logger.debug('Ignored OSError because process was stopped.')
        return self._wait(process)


    def _kill(self, process):
        logger.info('Forcefully killing process.')
        if hasattr(os, 'killpg'):
            os.killpg(process.pid, signal_module.SIGKILL)
        else:
            process.kill()
        if not self._process_is_stopped(process, self.KILL_TIMEOUT):
            raise RuntimeError('Failed to kill process.')

    def _terminate(self, process):
        logger.info('Gracefully terminating process.')
        # Sends signal to the whole process group both on POSIX and on Windows
        # if supported by the interpreter.
        if hasattr(os, 'killpg'):
            os.killpg(process.pid, signal_module.SIGTERM)
        elif hasattr(signal_module, 'CTRL_BREAK_EVENT'):
            if IRONPYTHON:
                # https://ironpython.codeplex.com/workitem/35020
                ctypes.windll.kernel32.GenerateConsoleCtrlEvent(
                    signal_module.CTRL_BREAK_EVENT, process.pid)
            else:
                process.send_signal(signal_module.CTRL_BREAK_EVENT)
        else:
            process.terminate()
        if not self._process_is_stopped(process, self.TERMINATE_TIMEOUT):
            logger.info('Graceful termination failed.')
            self._kill(process)

[docs]    def terminate_all_processes(self, kill=False):
        """Terminates all still running processes started by this library.

        This keyword can be used in suite teardown or elsewhere to make
        sure that all processes are stopped,

        By default tries to terminate processes gracefully, but can be
        configured to forcefully kill them immediately. See `Terminate Process`
        that this keyword uses internally for more details.
        """
        for handle in range(1, len(self._processes) + 1):
            if self.is_process_running(handle):
                self.terminate_process(handle, kill=kill)
        self.__init__()


[docs]    def send_signal_to_process(self, signal, handle=None, group=False):
        """Sends the given ``signal`` to the specified process.

        If ``handle`` is not given, uses the current `active process`.

        Signal can be specified either as an integer as a signal name. In the
        latter case it is possible to give the name both with or without ``SIG``
        prefix, but names are case-sensitive. For example, all the examples
        below send signal ``INT (2)``:

        | Send Signal To Process | 2      |        | # Send to active process |
        | Send Signal To Process | INT    |        |                          |
        | Send Signal To Process | SIGINT | myproc | # Send to named process  |

        This keyword is only supported on Unix-like machines, not on Windows.
        What signals are supported depends on the system. For a list of
        existing signals on your system, see the Unix man pages related to
        signal handling (typically ``man signal`` or ``man 7 signal``).

        By default sends the signal only to the parent process, not to possible
        child processes started by it. Notice that when `running processes in
        shell`, the shell is the parent process and it depends on the system
        does the shell propagate the signal to the actual started process.

        To send the signal to the whole process group, ``group`` argument can
        be set to any true value (see `Boolean arguments`). This is not
        supported by Jython, however.
        """
        if os.sep == '\\':
            raise RuntimeError('This keyword does not work on Windows.')
        process = self._processes[handle]
        signum = self._get_signal_number(signal)
        logger.info('Sending signal %s (%d).' % (signal, signum))
        if is_truthy(group) and hasattr(os, 'killpg'):
            os.killpg(process.pid, signum)
        elif hasattr(process, 'send_signal'):
            process.send_signal(signum)
        else:
            raise RuntimeError('Sending signals is not supported '
                               'by this Python version.')


    def _get_signal_number(self, int_or_name):
        try:
            return int(int_or_name)
        except ValueError:
            return self._convert_signal_name_to_number(int_or_name)

    def _convert_signal_name_to_number(self, name):
        try:
            return getattr(signal_module,
                           name if name.startswith('SIG') else 'SIG' + name)
        except AttributeError:
            raise RuntimeError("Unsupported signal '%s'." % name)

[docs]    def get_process_id(self, handle=None):
        """Returns the process ID (pid) of the process as an integer.

        If ``handle`` is not given, uses the current `active process`.

        Notice that the pid is not the same as the handle returned by
        `Start Process` that is used internally by this library.
        """
        return self._processes[handle].pid


[docs]    def get_process_object(self, handle=None):
        """Return the underlying ``subprocess.Popen`` object.

        If ``handle`` is not given, uses the current `active process`.
        """
        return self._processes[handle]


[docs]    def get_process_result(self, handle=None, rc=False, stdout=False,
                           stderr=False, stdout_path=False, stderr_path=False):
        """Returns the specified `result object` or some of its attributes.

        The given ``handle`` specifies the process whose results should be
        returned. If no ``handle`` is given, results of the current `active
        process` are returned. In either case, the process must have been
        finishes before this keyword can be used. In practice this means
        that processes started with `Start Process` must be finished either
        with `Wait For Process` or `Terminate Process` before using this
        keyword.

        If no other arguments than the optional ``handle`` are given, a whole
        `result object` is returned. If one or more of the other arguments
        are given any true value, only the specified attributes of the
        `result object` are returned. These attributes are always returned
        in the same order as arguments are specified in the keyword signature.
        See `Boolean arguments` section for more details about true and false
        values.

        Examples:
        | Run Process           | python             | -c            | print('Hello, world!') | alias=myproc | |
        | # Get result object   |                    |               |
        | ${result} =           | Get Process Result | myproc        |
        | Should Be Equal       | ${result.rc}       | ${0}          |
        | Should Be Equal       | ${result.stdout}   | Hello, world! |
        | Should Be Empty       | ${result.stderr}   |               |
        | # Get one attribute   |                    |               |
        | ${stdout} =           | Get Process Result | myproc        | stdout=true |
        | Should Be Equal       | ${stdout}          | Hello, world! |
        | # Multiple attributes |                    |               |
        | ${stdout}             | ${stderr} =        | Get Process Result |  myproc | stdout=yes | stderr=yes |
        | Should Be Equal       | ${stdout}          | Hello, world! |
        | Should Be Empty       | ${stderr}          |               |

        Although getting results of a previously executed process can be handy
        in general, the main use case for this keyword is returning results
        over the remote library interface. The remote interface does not
        support returning the whole result object, but individual attributes
        can be returned without problems.
        """
        result = self._results[self._processes[handle]]
        if result.rc is None:
            raise RuntimeError('Getting results of unfinished processes '
                               'is not supported.')
        attributes = self._get_result_attributes(result, rc, stdout, stderr,
                                                 stdout_path, stderr_path)
        if not attributes:
            return result
        elif len(attributes) == 1:
            return attributes[0]
        return attributes


    def _get_result_attributes(self, result, *includes):
        attributes = (result.rc, result.stdout, result.stderr,
                      result.stdout_path, result.stderr_path)
        includes = (is_truthy(incl) for incl in includes)
        return tuple(attr for attr, incl in zip(attributes, includes) if incl)

[docs]    def switch_process(self, handle):
        """Makes the specified process the current `active process`.

        The handle can be an identifier returned by `Start Process` or
        the ``alias`` given to it explicitly.

        Example:
        | Start Process  | prog1    | alias=process1 |
        | Start Process  | prog2    | alias=process2 |
        | # currently active process is process2 |
        | Switch Process | process1 |
        | # now active process is process1 |
        """
        self._processes.switch(handle)


    def _process_is_stopped(self, process, timeout):
        stopped = lambda: process.poll() is not None
        max_time = time.time() + timeout
        while time.time() <= max_time and not stopped():
            time.sleep(min(0.1, timeout))
        return stopped()

[docs]    def split_command_line(self, args, escaping=False):
        """Splits command line string into a list of arguments.

        String is split from spaces, but argument surrounded in quotes may
        contain spaces in them. If ``escaping`` is given a true value, then
        backslash is treated as an escape character. It can escape unquoted
        spaces, quotes inside quotes, and so on, but it also requires using
        double backslashes when using Windows paths.

        Examples:
        | @{cmd} = | Split Command Line | --option "value with spaces" |
        | Should Be True | $cmd == ['--option', 'value with spaces'] |
        """
        return cmdline2list(args, escaping=escaping)


[docs]    def join_command_line(self, *args):
        """Joins arguments into one command line string.

        In resulting command line string arguments are delimited with a space,
        arguments containing spaces are surrounded with quotes, and possible
        quotes are escaped with a backslash.

        If this keyword is given only one argument and that is a list like
        object, then the values of that list are joined instead.

        Example:
        | ${cmd} = | Join Command Line | --option | value with spaces |
        | Should Be Equal | ${cmd} | --option "value with spaces" |
        """
        if len(args) == 1 and is_list_like(args[0]):
            args = args[0]
        return subprocess.list2cmdline(args)




[docs]class ExecutionResult(object):

    def __init__(self, process, stdout, stderr, stdin=None, rc=None,
                 output_encoding=None):
        self._process = process
        self.stdout_path = self._get_path(stdout)
        self.stderr_path = self._get_path(stderr)
        self.rc = rc
        self._output_encoding = output_encoding
        self._stdout = None
        self._stderr = None
        self._custom_streams = [stream for stream in (stdout, stderr, stdin)
                                if self._is_custom_stream(stream)]

    def _get_path(self, stream):
        return stream.name if self._is_custom_stream(stream) else None

    def _is_custom_stream(self, stream):
        return stream not in (subprocess.PIPE, subprocess.STDOUT, None)

    @property
    def stdout(self):
        if self._stdout is None:
            self._read_stdout()
        return self._stdout

    @property
    def stderr(self):
        if self._stderr is None:
            self._read_stderr()
        return self._stderr

    def _read_stdout(self):
        self._stdout = self._read_stream(self.stdout_path, self._process.stdout)

    def _read_stderr(self):
        self._stderr = self._read_stream(self.stderr_path, self._process.stderr)

    def _read_stream(self, stream_path, stream):
        if stream_path:
            stream = open(stream_path, 'rb')
        elif not self._is_open(stream):
            return ''
        try:
            content = stream.read()
        except IOError:  # http://bugs.jython.org/issue2218
            return ''
        finally:
            if stream_path:
                stream.close()
        return self._format_output(content)

    def _is_open(self, stream):
        return stream and not stream.closed

    def _format_output(self, output):
        output = console_decode(output, self._output_encoding, force=True)
        output = output.replace('\r\n', '\n')
        if output.endswith('\n'):
            output = output[:-1]
        return output

[docs]    def close_streams(self):
        standard_streams = self._get_and_read_standard_streams(self._process)
        for stream in standard_streams + self._custom_streams:
            if self._is_open(stream):
                stream.close()


    def _get_and_read_standard_streams(self, process):
        stdin, stdout, stderr = process.stdin, process.stdout, process.stderr
        if stdout:
            self._read_stdout()
        if stderr:
            self._read_stderr()
        return [stdin, stdout, stderr]

    def __str__(self):
        return '<result object with rc %d>' % self.rc



[docs]@py3to2
class ProcessConfiguration(object):

    def __init__(self, cwd=None, shell=False, stdout=None, stderr=None, stdin='PIPE',
                 output_encoding='CONSOLE', alias=None, env=None, **rest):
        self.cwd = self._get_cwd(cwd)
        self.shell = is_truthy(shell)
        self.alias = alias
        self.output_encoding = output_encoding
        self.stdout_stream = self._new_stream(stdout)
        self.stderr_stream = self._get_stderr(stderr, stdout, self.stdout_stream)
        self.stdin_stream = self._get_stdin(stdin)
        self.env = self._construct_env(env, rest)

    def _get_cwd(self, cwd):
        if cwd:
            return cwd.replace('/', os.sep)
        return abspath('.')

    def _new_stream(self, name):
        if name == 'DEVNULL':
            return open(os.devnull, 'w')
        if name:
            path = os.path.normpath(os.path.join(self.cwd, name))
            return open(path, 'w')
        return subprocess.PIPE

    def _get_stderr(self, stderr, stdout, stdout_stream):
        if stderr and stderr in ['STDOUT', stdout]:
            if stdout_stream != subprocess.PIPE:
                return stdout_stream
            return subprocess.STDOUT
        return self._new_stream(stderr)

    def _get_stdin(self, stdin):
        if not is_string(stdin):
            return stdin
        if stdin.upper() == 'NONE':
            return None
        if stdin == 'PIPE':
            return subprocess.PIPE
        path = os.path.normpath(os.path.join(self.cwd, stdin))
        if os.path.isfile(path):
            return open(path)
        stdin_file = TemporaryFile()
        if is_unicode(stdin):
            stdin = console_encode(stdin, self.output_encoding, force=True)
        stdin_file.write(stdin)
        stdin_file.seek(0)
        return stdin_file

    def _construct_env(self, env, extra):
        env = self._get_initial_env(env, extra)
        if env is None:
            return None
        if WINDOWS:
            env = NormalizedDict(env, spaceless=False)
        self._add_to_env(env, extra)
        if WINDOWS:
            env = dict((key.upper(), env[key]) for key in env)
        return env

    def _get_initial_env(self, env, extra):
        if env:
            return dict((system_encode(k), system_encode(env[k])) for k in env)
        if extra:
            return os.environ.copy()
        return None

    def _add_to_env(self, env, extra):
        for key in extra:
            if not key.startswith('env:'):
                raise RuntimeError("Keyword argument '%s' is not supported by "
                                   "this keyword." % key)
            env[system_encode(key[4:])] = system_encode(extra[key])

[docs]    def get_command(self, command, arguments):
        command = [system_encode(item) for item in [command] + arguments]
        if not self.shell:
            return command
        if arguments:
            return subprocess.list2cmdline(command)
        return command[0]


    @property
    def popen_config(self):
        config = {'stdout': self.stdout_stream,
                  'stderr': self.stderr_stream,
                  'stdin': self.stdin_stream,
                  'shell': self.shell,
                  'cwd': self.cwd,
                  'env': self.env}
        # Close file descriptors regardless the Python version:
        # https://github.com/robotframework/robotframework/issues/2794
        if not WINDOWS:
            config['close_fds'] = True
        if not JYTHON:
            self._add_process_group_config(config)
        return config

    def _add_process_group_config(self, config):
        if hasattr(os, 'setsid'):
            config['preexec_fn'] = os.setsid
        if hasattr(subprocess, 'CREATE_NEW_PROCESS_GROUP'):
            config['creationflags'] = subprocess.CREATE_NEW_PROCESS_GROUP

    @property
    def result_config(self):
        return {'stdout': self.stdout_stream,
                'stderr': self.stderr_stream,
                'stdin': self.stdin_stream,
                'output_encoding': self.output_encoding}

    def __str__(self):
        return """\
cwd:     %s
shell:   %s
stdout:  %s
stderr:  %s
stdin:   %s
alias:   %s
env:     %s""" % (self.cwd,
                  self.shell,
                  self._stream_name(self.stdout_stream),
                  self._stream_name(self.stderr_stream),
                  self._stream_name(self.stdin_stream),
                  self.alias,
                  self.env)

    def _stream_name(self, stream):
        if hasattr(stream, 'name'):
            return stream.name
        return {subprocess.PIPE: 'PIPE',
                subprocess.STDOUT: 'STDOUT',
                None: 'None'}.get(stream, stream)





          

      

      

    

  

    
      
          
            
  Source code for robot.libraries.Remote

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from __future__ import absolute_import

from contextlib import contextmanager
from functools import wraps

try:
    import httplib
    import xmlrpclib
except ImportError:  # Py3
    import http.client as httplib
    import xmlrpc.client as xmlrpclib
import re
import socket
import sys
import time

try:
    from xml.parsers.expat import ExpatError
except ImportError:   # No expat in IronPython 2.7
    class ExpatError(Exception):
        pass

from robot.errors import RemoteError
from robot.utils import (is_bytes, is_dict_like, is_list_like, is_number,
                         is_string, timestr_to_secs, unic, DotDict,
                         IRONPYTHON, JYTHON, PY2)


[docs]class Remote(object):
    ROBOT_LIBRARY_SCOPE = 'TEST SUITE'

    def __init__(self, uri='http://127.0.0.1:8270', timeout=None):
        """Connects to a remote server at ``uri``.

        Optional ``timeout`` can be used to specify a timeout to wait when
        initially connecting to the server and if a connection accidentally
        closes. Timeout can be given as seconds (e.g. ``60``) or using
        Robot Framework time format (e.g. ``60s``, ``2 minutes 10 seconds``).

        The default timeout is typically several minutes, but it depends on
        the operating system and its configuration. Notice that setting
        a timeout that is shorter than keyword execution time will interrupt
        the keyword.

        Timeouts do not work with IronPython.
        """
        if '://' not in uri:
            uri = 'http://' + uri
        if timeout:
            timeout = timestr_to_secs(timeout)
        self._uri = uri
        self._client = XmlRpcRemoteClient(uri, timeout)
        self._lib_info = None
        self._lib_info_initialized = False

[docs]    def get_keyword_names(self):
        if self._is_lib_info_available():
            return [name for name in self._lib_info
                    if not (name[:2] == '__' and name[-2:] == '__')]
        try:
            return self._client.get_keyword_names()
        except TypeError as error:
            raise RuntimeError('Connecting remote server at %s failed: %s'
                               % (self._uri, error))


    def _is_lib_info_available(self):
        if not self._lib_info_initialized:
            try:
                self._lib_info = self._client.get_library_information()
            except TypeError:
                pass
            self._lib_info_initialized = True
        return self._lib_info is not None

[docs]    def get_keyword_arguments(self, name):
        return self._get_kw_info(name, 'args', self._client.get_keyword_arguments,
                                 default=['*args'])


    def _get_kw_info(self, kw, info, getter, default=None):
        if self._is_lib_info_available():
            return self._lib_info[kw].get(info, default)
        try:
            return getter(kw)
        except TypeError:
            return default

[docs]    def get_keyword_types(self, name):
        return self._get_kw_info(name, 'types', self._client.get_keyword_types,
                                 default=())


[docs]    def get_keyword_tags(self, name):
        return self._get_kw_info(name, 'tags', self._client.get_keyword_tags)


[docs]    def get_keyword_documentation(self, name):
        return self._get_kw_info(name, 'doc', self._client.get_keyword_documentation)


[docs]    def run_keyword(self, name, args, kwargs):
        coercer = ArgumentCoercer()
        args = coercer.coerce(args)
        kwargs = coercer.coerce(kwargs)
        result = RemoteResult(self._client.run_keyword(name, args, kwargs))
        sys.stdout.write(result.output)
        if result.status != 'PASS':
            raise RemoteError(result.error, result.traceback, result.fatal,
                              result.continuable)
        return result.return_




[docs]class ArgumentCoercer(object):
    binary = re.compile('[\x00-\x08\x0B\x0C\x0E-\x1F]')
    non_ascii = re.compile('[\x80-\xff]')

[docs]    def coerce(self, argument):
        for handles, handler in [(is_string, self._handle_string),
                                 (is_bytes, self._handle_bytes),
                                 (is_number, self._pass_through),
                                 (is_dict_like, self._coerce_dict),
                                 (is_list_like, self._coerce_list),
                                 (lambda arg: True, self._to_string)]:
            if handles(argument):
                return handler(argument)


    def _handle_string(self, arg):
        if self._string_contains_binary(arg):
            return self._handle_binary_in_string(arg)
        return arg

    def _string_contains_binary(self, arg):
        return (self.binary.search(arg) or
                is_bytes(arg) and self.non_ascii.search(arg))

    def _handle_binary_in_string(self, arg):
        try:
            if not is_bytes(arg):
                # Map Unicode code points to bytes directly
                arg = arg.encode('latin-1')
        except UnicodeError:
            raise ValueError('Cannot represent %r as binary.' % arg)
        return xmlrpclib.Binary(arg)

    def _handle_bytes(self, arg):
        # http://bugs.jython.org/issue2429
        if IRONPYTHON or JYTHON:
            arg = str(arg)
        return xmlrpclib.Binary(arg)

    def _pass_through(self, arg):
        return arg

    def _coerce_list(self, arg):
        return [self.coerce(item) for item in arg]

    def _coerce_dict(self, arg):
        return dict((self._to_key(key), self.coerce(arg[key])) for key in arg)

    def _to_key(self, item):
        item = self._to_string(item)
        self._validate_key(item)
        return item

    def _to_string(self, item):
        item = unic(item) if item is not None else ''
        return self._handle_string(item)

    def _validate_key(self, key):
        if isinstance(key, xmlrpclib.Binary):
            raise ValueError('Dictionary keys cannot be binary. Got %s%r.'
                             % ('b' if PY2 else '', key.data))
        if IRONPYTHON:
            try:
                key.encode('ASCII')
            except UnicodeError:
                raise ValueError('Dictionary keys cannot contain non-ASCII '
                                 'characters on IronPython. Got %r.' % key)



[docs]class RemoteResult(object):

    def __init__(self, result):
        if not (is_dict_like(result) and 'status' in result):
            raise RuntimeError('Invalid remote result dictionary: %s' % result)
        self.status = result['status']
        self.output = unic(self._get(result, 'output'))
        self.return_ = self._get(result, 'return')
        self.error = unic(self._get(result, 'error'))
        self.traceback = unic(self._get(result, 'traceback'))
        self.fatal = bool(self._get(result, 'fatal', False))
        self.continuable = bool(self._get(result, 'continuable', False))

    def _get(self, result, key, default=''):
        value = result.get(key, default)
        return self._convert(value)

    def _convert(self, value):
        if isinstance(value, xmlrpclib.Binary):
            return bytes(value.data)
        if is_dict_like(value):
            return DotDict((k, self._convert(v)) for k, v in value.items())
        if is_list_like(value):
            return [self._convert(v) for v in value]
        return value



[docs]class XmlRpcRemoteClient(object):

    def __init__(self, uri, timeout=None):
        self.uri = uri
        self.timeout = timeout

    @property
    @contextmanager
    def _server(self):
        if self.uri.startswith('https://'):
            transport = TimeoutHTTPSTransport(timeout=self.timeout)
        else:
            transport = TimeoutHTTPTransport(timeout=self.timeout)
        server = xmlrpclib.ServerProxy(self.uri, encoding='UTF-8',
                                       transport=transport)
        try:
            yield server
        except (socket.error, xmlrpclib.Error) as err:
            raise TypeError(err)
        finally:
            server('close')()

[docs]    def get_library_information(self):
        with self._server as server:
            return server.get_library_information()


[docs]    def get_keyword_names(self):
        with self._server as server:
            return server.get_keyword_names()


[docs]    def get_keyword_arguments(self, name):
        with self._server as server:
            return server.get_keyword_arguments(name)


[docs]    def get_keyword_types(self, name):
        with self._server as server:
            return server.get_keyword_types(name)


[docs]    def get_keyword_tags(self, name):
        with self._server as server:
            return server.get_keyword_tags(name)


[docs]    def get_keyword_documentation(self, name):
        with self._server as server:
            return server.get_keyword_documentation(name)


[docs]    def run_keyword(self, name, args, kwargs):
        with self._server as server:
            run_keyword_args = [name, args, kwargs] if kwargs else [name, args]
            try:
                return server.run_keyword(*run_keyword_args)
            except xmlrpclib.Fault as err:
                message = err.faultString
            except socket.error as err:
                message = 'Connection to remote server broken: %s' % err
            except ExpatError as err:
                message = ('Processing XML-RPC return value failed. '
                        'Most often this happens when the return value '
                        'contains characters that are not valid in XML. '
                        'Original error was: ExpatError: %s' % err)
            raise RuntimeError(message)




# Custom XML-RPC timeouts based on
# http://stackoverflow.com/questions/2425799/timeout-for-xmlrpclib-client-requests

class TimeoutHTTPTransport(xmlrpclib.Transport):
    _connection_class = httplib.HTTPConnection

    def __init__(self, use_datetime=0, timeout=None):
        xmlrpclib.Transport.__init__(self, use_datetime)
        if not timeout:
            timeout = socket._GLOBAL_DEFAULT_TIMEOUT
        self.timeout = timeout

[docs]    def make_connection(self, host):
        if self._connection and host == self._connection[0]:
            return self._connection[1]
        chost, self._extra_headers, x509 = self.get_host_info(host)
        self._connection = host, self._connection_class(chost, timeout=self.timeout)
        return self._connection[1]



if IRONPYTHON:

[docs]    class TimeoutHTTPTransport(xmlrpclib.Transport):

        def __init__(self, use_datetime=0, timeout=None):
            xmlrpclib.Transport.__init__(self, use_datetime)
            if timeout:
                raise RuntimeError('Timeouts are not supported on IronPython.')



[docs]class TimeoutHTTPSTransport(TimeoutHTTPTransport):
    _connection_class = httplib.HTTPSConnection





          

      

      

    

  

    
      
          
            
  Source code for robot.libraries.Reserved

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from robot.running import RUN_KW_REGISTER


RESERVED_KEYWORDS = ['for', 'while', 'break', 'continue', 'end',
                     'if', 'else', 'elif', 'else if', 'return']


[docs]class Reserved(object):
    ROBOT_LIBRARY_SCOPE = 'GLOBAL'

    def __init__(self):
        for kw in RESERVED_KEYWORDS:
            self._add_reserved(kw)

    def _add_reserved(self, kw):
        RUN_KW_REGISTER.register_run_keyword('Reserved', kw,
                                             args_to_process=0,
                                             deprecation_warning=False)
        self.__dict__[kw] = lambda *args, **kwargs: self._run_reserved(kw)

    def _run_reserved(self, kw):
        error = "'%s' is a reserved keyword." % kw.title()
        if kw in ('for', 'end', 'if', 'else', 'else if'):
            error += " It must be an upper case '%s'" % kw.upper()
            if kw in ('else', 'else if'):
                error += " and follow an opening 'IF'"
            if kw == 'end':
                error += " and follow an opening 'FOR' or 'IF'"
            error += " when used as a marker."
        if kw == 'elif':
            error += " The marker to use with 'IF' is 'ELSE IF'."
        raise Exception(error)





          

      

      

    

  

    
      
          
            
  Source code for robot.libraries.Screenshot

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from __future__ import print_function

import os
import subprocess
import sys
if sys.platform.startswith('java'):
    from java.awt import Toolkit, Robot, Rectangle
    from javax.imageio import ImageIO
    from java.io import File
elif sys.platform == 'cli':
    import clr
    clr.AddReference('System.Windows.Forms')
    clr.AddReference('System.Drawing')
    from System.Drawing import Bitmap, Graphics, Imaging
    from System.Windows.Forms import Screen
else:
    try:
        import wx
    except ImportError:
        wx = None
    try:
        from gtk import gdk
    except ImportError:
        gdk = None
    try:
        from PIL import ImageGrab  # apparently available only on Windows
    except ImportError:
        ImageGrab = None

from robot.api import logger
from robot.libraries.BuiltIn import BuiltIn
from robot.version import get_version
from robot.utils import abspath, get_error_message, get_link_path, py3to2


[docs]class Screenshot(object):
    """Test library for taking screenshots on the machine where tests are run.

    Notice that successfully taking screenshots requires tests to be run with
    a physical or virtual display.

    == Table of contents ==

    %TOC%

    = Using with Python =

    How screenshots are taken when using Python depends on the operating
    system. On OSX screenshots are taken using the built-in ``screencapture``
    utility. On other operating systems you need to have one of the following
    tools or Python modules installed. You can specify the tool/module to use
    when `importing` the library. If no tool or module is specified, the first
    one found will be used.

    - wxPython :: http://wxpython.org :: Required also by RIDE so many Robot
      Framework users already have this module installed.
    - PyGTK :: http://pygtk.org :: This module is available by default on most
      Linux distributions.
    - Pillow :: http://python-pillow.github.io ::
      Only works on Windows. Also the original PIL package is supported.
    - Scrot :: http://en.wikipedia.org/wiki/Scrot :: Not used on Windows.
      Install with ``apt-get install scrot`` or similar.

    = Using with Jython and IronPython =

    With Jython and IronPython this library uses APIs provided by JVM and .NET
    platforms, respectively. These APIs are always available and thus no
    external modules are needed.

    = Where screenshots are saved =

    By default screenshots are saved into the same directory where the Robot
    Framework log file is written. If no log is created, screenshots are saved
    into the directory where the XML output file is written.

    It is possible to specify a custom location for screenshots using
    ``screenshot_directory`` argument when `importing` the library and
    using `Set Screenshot Directory` keyword during execution. It is also
    possible to save screenshots using an absolute path.

    = ScreenCapLibrary =

    [https://github.com/mihaiparvu/ScreenCapLibrary|ScreenCapLibrary] is an
    external Robot Framework library that can be used as an alternative,
    which additionally provides support for multiple formats, adjusting the
    quality, using GIFs and video capturing.
    """

    ROBOT_LIBRARY_SCOPE = 'TEST SUITE'
    ROBOT_LIBRARY_VERSION = get_version()

    def __init__(self, screenshot_directory=None, screenshot_module=None):
        """Configure where screenshots are saved.

        If ``screenshot_directory`` is not given, screenshots are saved into
        same directory as the log file. The directory can also be set using
        `Set Screenshot Directory` keyword.

        ``screenshot_module`` specifies the module or tool to use when using
        this library on Python outside OSX. Possible values are ``wxPython``,
        ``PyGTK``, ``PIL`` and ``scrot``, case-insensitively. If no value is
        given, the first module/tool found is used in that order. See `Using
        with Python` for more information.

        Examples (use only one of these):
        | =Setting= |  =Value=   |  =Value=   |
        | Library   | Screenshot |            |
        | Library   | Screenshot | ${TEMPDIR} |
        | Library   | Screenshot | screenshot_module=PyGTK |
        """
        self._given_screenshot_dir = self._norm_path(screenshot_directory)
        self._screenshot_taker = ScreenshotTaker(screenshot_module)

    def _norm_path(self, path):
        if not path:
            return path
        return os.path.normpath(path.replace('/', os.sep))

    @property
    def _screenshot_dir(self):
        return self._given_screenshot_dir or self._log_dir

    @property
    def _log_dir(self):
        variables = BuiltIn().get_variables()
        outdir = variables['${OUTPUTDIR}']
        log = variables['${LOGFILE}']
        log = os.path.dirname(log) if log != 'NONE' else '.'
        return self._norm_path(os.path.join(outdir, log))

[docs]    def set_screenshot_directory(self, path):
        """Sets the directory where screenshots are saved.

        It is possible to use ``/`` as a path separator in all operating
        systems. Path to the old directory is returned.

        The directory can also be set in `importing`.
        """
        path = self._norm_path(path)
        if not os.path.isdir(path):
            raise RuntimeError("Directory '%s' does not exist." % path)
        old = self._screenshot_dir
        self._given_screenshot_dir = path
        return old


[docs]    def take_screenshot(self, name="screenshot", width="800px"):
        """Takes a screenshot in JPEG format and embeds it into the log file.

        Name of the file where the screenshot is stored is derived from the
        given ``name``. If the ``name`` ends with extension ``.jpg`` or
        ``.jpeg``, the screenshot will be stored with that exact name.
        Otherwise a unique name is created by adding an underscore, a running
        index and an extension to the ``name``.

        The name will be interpreted to be relative to the directory where
        the log file is written. It is also possible to use absolute paths.
        Using ``/`` as a path separator works in all operating systems.

        ``width`` specifies the size of the screenshot in the log file.

        Examples: (LOGDIR is determined automatically by the library)
        | Take Screenshot |                  |     | # LOGDIR/screenshot_1.jpg (index automatically incremented) |
        | Take Screenshot | mypic            |     | # LOGDIR/mypic_1.jpg (index automatically incremented) |
        | Take Screenshot | ${TEMPDIR}/mypic |     | # /tmp/mypic_1.jpg (index automatically incremented) |
        | Take Screenshot | pic.jpg          |     | # LOGDIR/pic.jpg (always uses this file) |
        | Take Screenshot | images/login.jpg | 80% | # Specify both name and width. |
        | Take Screenshot | width=550px      |     | # Specify only width. |

        The path where the screenshot is saved is returned.
        """
        path = self._save_screenshot(name)
        self._embed_screenshot(path, width)
        return path


[docs]    def take_screenshot_without_embedding(self, name="screenshot"):
        """Takes a screenshot and links it from the log file.

        This keyword is otherwise identical to `Take Screenshot` but the saved
        screenshot is not embedded into the log file. The screenshot is linked
        so it is nevertheless easily available.
        """
        path = self._save_screenshot(name)
        self._link_screenshot(path)
        return path


    def _save_screenshot(self, basename, directory=None):
        path = self._get_screenshot_path(basename, directory)
        return self._screenshot_to_file(path)

    def _screenshot_to_file(self, path):
        path = self._validate_screenshot_path(path)
        logger.debug('Using %s module/tool for taking screenshot.'
                     % self._screenshot_taker.module)
        try:
            self._screenshot_taker(path)
        except:
            logger.warn('Taking screenshot failed: %s\n'
                        'Make sure tests are run with a physical or virtual '
                        'display.' % get_error_message())
        return path

    def _validate_screenshot_path(self, path):
        path = abspath(self._norm_path(path))
        if not os.path.exists(os.path.dirname(path)):
            raise RuntimeError("Directory '%s' where to save the screenshot "
                               "does not exist" % os.path.dirname(path))
        return path

    def _get_screenshot_path(self, basename, directory):
        directory = self._norm_path(directory) if directory else self._screenshot_dir
        if basename.lower().endswith(('.jpg', '.jpeg')):
            return os.path.join(directory, basename)
        index = 0
        while True:
            index += 1
            path = os.path.join(directory, "%s_%d.jpg" % (basename, index))
            if not os.path.exists(path):
                return path

    def _embed_screenshot(self, path, width):
        link = get_link_path(path, self._log_dir)
        logger.info('<a href="%s"><img src="%s" width="%s"></a>'
                    % (link, link, width), html=True)

    def _link_screenshot(self, path):
        link = get_link_path(path, self._log_dir)
        logger.info("Screenshot saved to '<a href=\"%s\">%s</a>'."
                    % (link, path), html=True)



[docs]@py3to2
class ScreenshotTaker(object):

    def __init__(self, module_name=None):
        self._screenshot = self._get_screenshot_taker(module_name)
        self.module = self._screenshot.__name__.split('_')[1]
        self._wx_app_reference = None

    def __call__(self, path):
        self._screenshot(path)

    def __bool__(self):
        return self.module != 'no'

[docs]    def test(self, path=None):
        if not self:
            print("Cannot take screenshots.")
            return False
        print("Using '%s' to take screenshot." % self.module)
        if not path:
            print("Not taking test screenshot.")
            return True
        print("Taking test screenshot to '%s'." % path)
        try:
            self(path)
        except:
            print("Failed: %s" % get_error_message())
            return False
        else:
            print("Success!")
            return True


    def _get_screenshot_taker(self, module_name=None):
        if sys.platform.startswith('java'):
            return self._java_screenshot
        if sys.platform == 'cli':
            return self._cli_screenshot
        if sys.platform == 'darwin':
            return self._osx_screenshot
        if module_name:
            return self._get_named_screenshot_taker(module_name.lower())
        return self._get_default_screenshot_taker()

    def _get_named_screenshot_taker(self, name):
        screenshot_takers = {'wxpython': (wx, self._wx_screenshot),
                             'pygtk': (gdk, self._gtk_screenshot),
                             'pil': (ImageGrab, self._pil_screenshot),
                             'scrot': (self._scrot, self._scrot_screenshot)}
        if name not in screenshot_takers:
            raise RuntimeError("Invalid screenshot module or tool '%s'." % name)
        supported, screenshot_taker = screenshot_takers[name]
        if not supported:
            raise RuntimeError("Screenshot module or tool '%s' not installed."
                               % name)
        return screenshot_taker

    def _get_default_screenshot_taker(self):
        for module, screenshot_taker in [(wx, self._wx_screenshot),
                                         (gdk, self._gtk_screenshot),
                                         (ImageGrab, self._pil_screenshot),
                                         (self._scrot, self._scrot_screenshot),
                                         (True, self._no_screenshot)]:
            if module:
                return screenshot_taker

    def _java_screenshot(self, path):
        size = Toolkit.getDefaultToolkit().getScreenSize()
        rectangle = Rectangle(0, 0, size.width, size.height)
        image = Robot().createScreenCapture(rectangle)
        ImageIO.write(image, 'jpg', File(path))

    def _cli_screenshot(self, path):
        bmp = Bitmap(Screen.PrimaryScreen.Bounds.Width,
                     Screen.PrimaryScreen.Bounds.Height)
        graphics = Graphics.FromImage(bmp)
        try:
            graphics.CopyFromScreen(0, 0, 0, 0, bmp.Size)
        finally:
            graphics.Dispose()
            bmp.Save(path, Imaging.ImageFormat.Jpeg)

    def _osx_screenshot(self, path):
        if self._call('screencapture', '-t', 'jpg', path) != 0:
            raise RuntimeError("Using 'screencapture' failed.")

    def _call(self, *command):
        try:
            return subprocess.call(command, stdout=subprocess.PIPE,
                                   stderr=subprocess.STDOUT)
        except OSError:
            return -1

    @property
    def _scrot(self):
        return os.sep == '/' and self._call('scrot', '--version') == 0

    def _scrot_screenshot(self, path):
        if not path.endswith(('.jpg', '.jpeg')):
            raise RuntimeError("Scrot requires extension to be '.jpg' or "
                               "'.jpeg', got '%s'." % os.path.splitext(path)[1])
        if os.path.exists(path):
            os.remove(path)
        if self._call('scrot', '--silent', path) != 0:
            raise RuntimeError("Using 'scrot' failed.")

    def _wx_screenshot(self, path):
        if not self._wx_app_reference:
            self._wx_app_reference = wx.App(False)
        context = wx.ScreenDC()
        width, height = context.GetSize()
        if wx.__version__ >= '4':
            bitmap = wx.Bitmap(width, height, -1)
        else:
            bitmap = wx.EmptyBitmap(width, height, -1)
        memory = wx.MemoryDC()
        memory.SelectObject(bitmap)
        memory.Blit(0, 0, width, height, context, -1, -1)
        memory.SelectObject(wx.NullBitmap)
        bitmap.SaveFile(path, wx.BITMAP_TYPE_JPEG)

    def _gtk_screenshot(self, path):
        window = gdk.get_default_root_window()
        if not window:
            raise RuntimeError('Taking screenshot failed.')
        width, height = window.get_size()
        pb = gdk.Pixbuf(gdk.COLORSPACE_RGB, False, 8, width, height)
        pb = pb.get_from_drawable(window, window.get_colormap(),
                                  0, 0, 0, 0, width, height)
        if not pb:
            raise RuntimeError('Taking screenshot failed.')
        pb.save(path, 'jpeg')

    def _pil_screenshot(self, path):
        ImageGrab.grab().save(path, 'JPEG')

    def _no_screenshot(self, path):
        raise RuntimeError('Taking screenshots is not supported on this platform '
                           'by default. See library documentation for details.')



if __name__ == "__main__":
    if len(sys.argv) not in [2, 3]:
        sys.exit("Usage: %s <path>|test [wxpython|pygtk|pil|scrot]"
                 % os.path.basename(sys.argv[0]))
    path = sys.argv[1] if sys.argv[1] != 'test' else None
    module = sys.argv[2] if len(sys.argv) > 2 else None
    ScreenshotTaker(module).test(path)




          

      

      

    

  

    
      
          
            
  Source code for robot.libraries.String

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from __future__ import absolute_import

import os
import re
from fnmatch import fnmatchcase
from random import randint
from string import ascii_lowercase, ascii_uppercase, digits


from robot.api import logger
from robot.api.deco import keyword
from robot.utils import (is_bytes, is_string, is_truthy, is_unicode, lower,
                         unic, FileReader, PY2, PY3)
from robot.version import get_version


[docs]class String(object):
    """A test library for string manipulation and verification.

    ``String`` is Robot Framework's standard library for manipulating
    strings (e.g. `Replace String Using Regexp`, `Split To Lines`) and
    verifying their contents (e.g. `Should Be String`).

    Following keywords from ``BuiltIn`` library can also be used with strings:

    - `Catenate`
    - `Get Length`
    - `Length Should Be`
    - `Should (Not) Be Empty`
    - `Should (Not) Be Equal (As Strings/Integers/Numbers)`
    - `Should (Not) Match (Regexp)`
    - `Should (Not) Contain`
    - `Should (Not) Start With`
    - `Should (Not) End With`
    - `Convert To String`
    - `Convert To Bytes`
    """
    ROBOT_LIBRARY_SCOPE = 'GLOBAL'
    ROBOT_LIBRARY_VERSION = get_version()

[docs]    def convert_to_lower_case(self, string):
        """Converts string to lower case.

        Uses Python's standard
        [https://docs.python.org/library/stdtypes.html#str.lower|lower()]
        method.

        Examples:
        | ${str1} = | Convert To Lower Case | ABC |
        | ${str2} = | Convert To Lower Case | 1A2c3D |
        | Should Be Equal | ${str1} | abc |
        | Should Be Equal | ${str2} | 1a2c3d |
        """
        # Custom `lower` needed due to IronPython bug. See its code and
        # comments for more details.
        return lower(string)


[docs]    def convert_to_upper_case(self, string):
        """Converts string to upper case.

        Uses Python's standard
        [https://docs.python.org/library/stdtypes.html#str.upper|upper()]
        method.

        Examples:
        | ${str1} = | Convert To Upper Case | abc |
        | ${str2} = | Convert To Upper Case | 1a2C3d |
        | Should Be Equal | ${str1} | ABC |
        | Should Be Equal | ${str2} | 1A2C3D |
        """
        return string.upper()


[docs]    @keyword(types=None)
    def convert_to_title_case(self, string, exclude=None):
        """Converts string to title case.

        Uses the following algorithm:

        - Split the string to words from whitespace characters (spaces,
          newlines, etc.).
        - Exclude words that are not all lower case. This preserves,
          for example, "OK" and "iPhone".
        - Exclude also words listed in the optional ``exclude`` argument.
        - Title case the first alphabetical character of each word that has
          not been excluded.
        - Join all words together so that original whitespace is preserved.

        Explicitly excluded words can be given as a list or as a string with
        words separated by a comma and an optional space. Excluded words are
        actually considered to be regular expression patterns, so it is
        possible to use something like "example[.!?]?" to match the word
        "example" on it own and also if followed by ".", "!" or "?".
        See `BuiltIn.Should Match Regexp` for more information about Python
        regular expression syntax in general and how to use it in Robot
        Framework test data in particular.

        Examples:
        | ${str1} = | Convert To Title Case | hello, world!     | |
        | ${str2} = | Convert To Title Case | it's an OK iPhone | exclude=a, an, the |
        | ${str3} = | Convert To Title Case | distance is 1 km. | exclude=is, km.? |
        | Should Be Equal | ${str1} | Hello, World! |
        | Should Be Equal | ${str2} | It's an OK iPhone |
        | Should Be Equal | ${str3} | Distance is 1 km. |

        The reason this keyword does not use Python's standard
        [https://docs.python.org/library/stdtypes.html#str.title|title()]
        method is that it can yield undesired results, for example, if
        strings contain upper case letters or special characters like
        apostrophes. It would, for example, convert "it's an OK iPhone"
        to "It'S An Ok Iphone".

        New in Robot Framework 3.2.
        """
        if not is_unicode(string):
            raise TypeError('This keyword works only with Unicode strings.')
        if is_string(exclude):
            exclude = [e.strip() for e in exclude.split(',')]
        elif not exclude:
            exclude = []
        exclude = [re.compile('^%s$' % e) for e in exclude]

        def title(word):
            if any(e.match(word) for e in exclude) or not word.islower():
                return word
            for index, char in enumerate(word):
                if char.isalpha():
                    return word[:index] + word[index].title() + word[index+1:]
            return word

        tokens = re.split(r'(\s+)', string, flags=re.UNICODE)
        return ''.join(title(token) for token in tokens)


[docs]    def encode_string_to_bytes(self, string, encoding, errors='strict'):
        """Encodes the given Unicode ``string`` to bytes using the given ``encoding``.

        ``errors`` argument controls what to do if encoding some characters fails.
        All values accepted by ``encode`` method in Python are valid, but in
        practice the following values are most useful:

        - ``strict``: fail if characters cannot be encoded (default)
        - ``ignore``: ignore characters that cannot be encoded
        - ``replace``: replace characters that cannot be encoded with
          a replacement character

        Examples:
        | ${bytes} = | Encode String To Bytes | ${string} | UTF-8 |
        | ${bytes} = | Encode String To Bytes | ${string} | ASCII | errors=ignore |

        Use `Convert To Bytes` in ``BuiltIn`` if you want to create bytes based
        on character or integer sequences. Use `Decode Bytes To String` if you
        need to convert byte strings to Unicode strings and `Convert To String`
        in ``BuiltIn`` if you need to convert arbitrary objects to Unicode.
        """
        return bytes(string.encode(encoding, errors))


[docs]    def decode_bytes_to_string(self, bytes, encoding, errors='strict'):
        """Decodes the given ``bytes`` to a Unicode string using the given ``encoding``.

        ``errors`` argument controls what to do if decoding some bytes fails.
        All values accepted by ``decode`` method in Python are valid, but in
        practice the following values are most useful:

        - ``strict``: fail if characters cannot be decoded (default)
        - ``ignore``: ignore characters that cannot be decoded
        - ``replace``: replace characters that cannot be decoded with
          a replacement character

        Examples:
        | ${string} = | Decode Bytes To String | ${bytes} | UTF-8 |
        | ${string} = | Decode Bytes To String | ${bytes} | ASCII | errors=ignore |

        Use `Encode String To Bytes` if you need to convert Unicode strings to
        byte strings, and `Convert To String` in ``BuiltIn`` if you need to
        convert arbitrary objects to Unicode strings.
        """
        if PY3 and is_unicode(bytes):
            raise TypeError('Can not decode strings on Python 3.')
        return bytes.decode(encoding, errors)


[docs]    def format_string(self, template, *positional, **named):
        """Formats a ``template`` using the given ``positional`` and ``named`` arguments.

        The template can be either be a string or an absolute path to
        an existing file. In the latter case the file is read and its contents
        are used as the template. If the template file contains non-ASCII
        characters, it must be encoded using UTF-8.

        The template is formatted using Python's
        [https://docs.python.org/library/string.html#format-string-syntax|format
        string syntax]. Placeholders are marked using ``{}`` with possible
        field name and format specification inside. Literal curly braces
        can be inserted by doubling them like `{{` and `}}`.

        Examples:
        | ${to} = | Format String | To: {} <{}>                    | ${user}      | ${email} | |
        | ${to} = | Format String | To: {name} <{email}>           | name=${name} | email=${email} |
        | ${to} = | Format String | To: {user.name} <{user.email}> | user=${user} |
        | ${xx} = | Format String | {:*^30}                        | centered     |
        | ${yy} = | Format String | {0:{width}{base}}              | ${42}        | base=X | width=10 |
        | ${zz} = | Format String | ${CURDIR}/template.txt         | positional   | named=value |

        New in Robot Framework 3.1.
        """
        if os.path.isabs(template) and os.path.isfile(template):
            template = template.replace('/', os.sep)
            logger.info('Reading template from file <a href="%s">%s</a>.'
                        % (template, template), html=True)
            with FileReader(template) as reader:
                template = reader.read()
        return template.format(*positional, **named)


[docs]    def get_line_count(self, string):
        """Returns and logs the number of lines in the given string."""
        count = len(string.splitlines())
        logger.info('%d lines' % count)
        return count


[docs]    def split_to_lines(self, string, start=0, end=None):
        """Splits the given string to lines.

        It is possible to get only a selection of lines from ``start``
        to ``end`` so that ``start`` index is inclusive and ``end`` is
        exclusive. Line numbering starts from 0, and it is possible to
        use negative indices to refer to lines from the end.

        Lines are returned without the newlines. The number of
        returned lines is automatically logged.

        Examples:
        | @{lines} =        | Split To Lines | ${manylines} |    |    |
        | @{ignore first} = | Split To Lines | ${manylines} | 1  |    |
        | @{ignore last} =  | Split To Lines | ${manylines} |    | -1 |
        | @{5th to 10th} =  | Split To Lines | ${manylines} | 4  | 10 |
        | @{first two} =    | Split To Lines | ${manylines} |    | 1  |
        | @{last two} =     | Split To Lines | ${manylines} | -2 |    |

        Use `Get Line` if you only need to get a single line.
        """
        start = self._convert_to_index(start, 'start')
        end = self._convert_to_index(end, 'end')
        lines = string.splitlines()[start:end]
        logger.info('%d lines returned' % len(lines))
        return lines


[docs]    def get_line(self, string, line_number):
        """Returns the specified line from the given ``string``.

        Line numbering starts from 0 and it is possible to use
        negative indices to refer to lines from the end. The line is
        returned without the newline character.

        Examples:
        | ${first} =    | Get Line | ${string} | 0  |
        | ${2nd last} = | Get Line | ${string} | -2 |

        Use `Split To Lines` if all lines are needed.
        """
        line_number = self._convert_to_integer(line_number, 'line_number')
        return string.splitlines()[line_number]


[docs]    def get_lines_containing_string(self, string, pattern, case_insensitive=False):
        """Returns lines of the given ``string`` that contain the ``pattern``.

        The ``pattern`` is always considered to be a normal string, not a glob
        or regexp pattern. A line matches if the ``pattern`` is found anywhere
        on it.

        The match is case-sensitive by default, but giving ``case_insensitive``
        a true value makes it case-insensitive. The value is considered true
        if it is a non-empty string that is not equal to ``false``, ``none`` or
        ``no``. If the value is not a string, its truth value is got directly
        in Python.

        Lines are returned as one string catenated back together with
        newlines. Possible trailing newline is never returned. The
        number of matching lines is automatically logged.

        Examples:
        | ${lines} = | Get Lines Containing String | ${result} | An example |
        | ${ret} =   | Get Lines Containing String | ${ret} | FAIL | case-insensitive |

        See `Get Lines Matching Pattern` and `Get Lines Matching Regexp`
        if you need more complex pattern matching.
        """
        if is_truthy(case_insensitive):
            pattern = pattern.lower()
            contains = lambda line: pattern in line.lower()
        else:
            contains = lambda line: pattern in line
        return self._get_matching_lines(string, contains)


[docs]    def get_lines_matching_pattern(self, string, pattern, case_insensitive=False):
        """Returns lines of the given ``string`` that match the ``pattern``.

        The ``pattern`` is a _glob pattern_ where:
        | ``*``        | matches everything |
        | ``?``        | matches any single character |
        | ``[chars]``  | matches any character inside square brackets (e.g. ``[abc]`` matches either ``a``, ``b`` or ``c``) |
        | ``[!chars]`` | matches any character not inside square brackets |

        A line matches only if it matches the ``pattern`` fully.

        The match is case-sensitive by default, but giving ``case_insensitive``
        a true value makes it case-insensitive. The value is considered true
        if it is a non-empty string that is not equal to ``false``, ``none`` or
        ``no``. If the value is not a string, its truth value is got directly
        in Python.

        Lines are returned as one string catenated back together with
        newlines. Possible trailing newline is never returned. The
        number of matching lines is automatically logged.

        Examples:
        | ${lines} = | Get Lines Matching Pattern | ${result} | Wild???? example |
        | ${ret} = | Get Lines Matching Pattern | ${ret} | FAIL: * | case_insensitive=true |

        See `Get Lines Matching Regexp` if you need more complex
        patterns and `Get Lines Containing String` if searching
        literal strings is enough.
        """
        if is_truthy(case_insensitive):
            pattern = pattern.lower()
            matches = lambda line: fnmatchcase(line.lower(), pattern)
        else:
            matches = lambda line: fnmatchcase(line, pattern)
        return self._get_matching_lines(string, matches)


[docs]    def get_lines_matching_regexp(self, string, pattern, partial_match=False):
        """Returns lines of the given ``string`` that match the regexp ``pattern``.

        See `BuiltIn.Should Match Regexp` for more information about
        Python regular expression syntax in general and how to use it
        in Robot Framework test data in particular.

        By default lines match only if they match the pattern fully, but
        partial matching can be enabled by giving the ``partial_match``
        argument a true value. The value is considered true
        if it is a non-empty string that is not equal to ``false``, ``none`` or
        ``no``. If the value is not a string, its truth value is got directly
        in Python.

        If the pattern is empty, it matches only empty lines by default.
        When partial matching is enabled, empty pattern matches all lines.

        Notice that to make the match case-insensitive, you need to prefix
        the pattern with case-insensitive flag ``(?i)``.

        Lines are returned as one string concatenated back together with
        newlines. Possible trailing newline is never returned. The
        number of matching lines is automatically logged.

        Examples:
        | ${lines} = | Get Lines Matching Regexp | ${result} | Reg\\\\w{3} example | |
        | ${lines} = | Get Lines Matching Regexp | ${result} | Reg\\\\w{3} example | partial_match=true |
        | ${ret} =   | Get Lines Matching Regexp | ${ret}    | (?i)FAIL: .* |

        See `Get Lines Matching Pattern` and `Get Lines Containing
        String` if you do not need full regular expression powers (and
        complexity).
        """
        if not is_truthy(partial_match):
            pattern = '^%s$' % pattern
        return self._get_matching_lines(string, re.compile(pattern).search)


    def _get_matching_lines(self, string, matches):
        lines = string.splitlines()
        matching = [line for line in lines if matches(line)]
        logger.info('%d out of %d lines matched' % (len(matching), len(lines)))
        return '\n'.join(matching)

[docs]    def get_regexp_matches(self, string, pattern, *groups):
        """Returns a list of all non-overlapping matches in the given string.

        ``string`` is the string to find matches from and ``pattern`` is the
        regular expression. See `BuiltIn.Should Match Regexp` for more
        information about Python regular expression syntax in general and how
        to use it in Robot Framework test data in particular.

        If no groups are used, the returned list contains full matches. If one
        group is used, the list contains only contents of that group. If
        multiple groups are used, the list contains tuples that contain
        individual group contents. All groups can be given as indexes (starting
        from 1) and named groups also as names.

        Examples:
        | ${no match} =    | Get Regexp Matches | the string | xxx     | | |
        | ${matches} =     | Get Regexp Matches | the string | t..     |
        | ${one group} =   | Get Regexp Matches | the string | t(..)   | 1 |
        | ${named group} = | Get Regexp Matches | the string | t(?P<name>..) | name |
        | ${two groups} =  | Get Regexp Matches | the string | t(.)(.) | 1 | 2 |
        =>
        | ${no match} = []
        | ${matches} = ['the', 'tri']
        | ${one group} = ['he', 'ri']
        | ${named group} = ['he', 'ri']
        | ${two groups} = [('h', 'e'), ('r', 'i')]
        """
        regexp = re.compile(pattern)
        groups = [self._parse_group(g) for g in groups]
        return [m.group(*groups) for m in regexp.finditer(string)]


    def _parse_group(self, group):
        try:
            return int(group)
        except ValueError:
            return group

[docs]    def replace_string(self, string, search_for, replace_with, count=-1):
        """Replaces ``search_for`` in the given ``string`` with ``replace_with``.

        ``search_for`` is used as a literal string. See `Replace String
        Using Regexp` if more powerful pattern matching is needed.
        If you need to just remove a string see `Remove String`.

        If the optional argument ``count`` is given, only that many
        occurrences from left are replaced. Negative ``count`` means
        that all occurrences are replaced (default behaviour) and zero
        means that nothing is done.

        A modified version of the string is returned and the original
        string is not altered.

        Examples:
        | ${str} =        | Replace String | Hello, world!  | world | tellus   | |
        | Should Be Equal | ${str}         | Hello, tellus! |       |          |
        | ${str} =        | Replace String | Hello, world!  | l     | ${EMPTY} | count=1 |
        | Should Be Equal | ${str}         | Helo, world!   |       |          |
        """
        count = self._convert_to_integer(count, 'count')
        return string.replace(search_for, replace_with, count)


[docs]    def replace_string_using_regexp(self, string, pattern, replace_with, count=-1):
        """Replaces ``pattern`` in the given ``string`` with ``replace_with``.

        This keyword is otherwise identical to `Replace String`, but
        the ``pattern`` to search for is considered to be a regular
        expression.  See `BuiltIn.Should Match Regexp` for more
        information about Python regular expression syntax in general
        and how to use it in Robot Framework test data in particular.

        If you need to just remove a string see `Remove String Using Regexp`.

        Examples:
        | ${str} = | Replace String Using Regexp | ${str} | 20\\\\d\\\\d-\\\\d\\\\d-\\\\d\\\\d | <DATE> |
        | ${str} = | Replace String Using Regexp | ${str} | (Hello|Hi) | ${EMPTY} | count=1 |
        """
        count = self._convert_to_integer(count, 'count')
        # re.sub handles 0 and negative counts differently than string.replace
        if count == 0:
            return string
        return re.sub(pattern, replace_with, string, max(count, 0))


[docs]    def remove_string(self, string, *removables):
        """Removes all ``removables`` from the given ``string``.

        ``removables`` are used as literal strings. Each removable will be
        matched to a temporary string from which preceding removables have
        been already removed. See second example below.

        Use `Remove String Using Regexp` if more powerful pattern matching is
        needed. If only a certain number of matches should be removed,
        `Replace String` or `Replace String Using Regexp` can be used.

        A modified version of the string is returned and the original
        string is not altered.

        Examples:
        | ${str} =        | Remove String | Robot Framework | work   | |
        | Should Be Equal | ${str}        | Robot Frame     |
        | ${str} =        | Remove String | Robot Framework | o | bt |
        | Should Be Equal | ${str}        | R Framewrk      |
        """
        for removable in removables:
            string = self.replace_string(string, removable, '')
        return string


[docs]    def remove_string_using_regexp(self, string, *patterns):
        """Removes ``patterns`` from the given ``string``.

        This keyword is otherwise identical to `Remove String`, but
        the ``patterns`` to search for are considered to be a regular
        expression. See `Replace String Using Regexp` for more information
        about the regular expression syntax. That keyword can also be
        used if there is a need to remove only a certain number of
        occurrences.
        """
        for pattern in patterns:
            string = self.replace_string_using_regexp(string, pattern, '')
        return string


[docs]    @keyword(types=None)
    def split_string(self, string, separator=None, max_split=-1):
        """Splits the ``string`` using ``separator`` as a delimiter string.

        If a ``separator`` is not given, any whitespace string is a
        separator. In that case also possible consecutive whitespace
        as well as leading and trailing whitespace is ignored.

        Split words are returned as a list. If the optional
        ``max_split`` is given, at most ``max_split`` splits are done, and
        the returned list will have maximum ``max_split + 1`` elements.

        Examples:
        | @{words} =         | Split String | ${string} | | | |
        | @{words} =         | Split String | ${string} | ,${SPACE} |
        | ${pre} | ${post} = | Split String | ${string} | ::    | 1 |

        See `Split String From Right` if you want to start splitting
        from right, and `Fetch From Left` and `Fetch From Right` if
        you only want to get first/last part of the string.
        """
        if separator == '':
            separator = None
        max_split = self._convert_to_integer(max_split, 'max_split')
        return string.split(separator, max_split)


[docs]    @keyword(types=None)
    def split_string_from_right(self, string, separator=None, max_split=-1):
        """Splits the ``string`` using ``separator`` starting from right.

        Same as `Split String`, but splitting is started from right. This has
        an effect only when ``max_split`` is given.

        Examples:
        | ${first} | ${rest} = | Split String            | ${string} | - | 1 |
        | ${rest}  | ${last} = | Split String From Right | ${string} | - | 1 |
        """
        if separator == '':
            separator = None
        max_split = self._convert_to_integer(max_split, 'max_split')
        return string.rsplit(separator, max_split)


[docs]    def split_string_to_characters(self, string):
        """Splits the given ``string`` to characters.

        Example:
        | @{characters} = | Split String To Characters | ${string} |
        """
        return list(string)


[docs]    def fetch_from_left(self, string, marker):
        """Returns contents of the ``string`` before the first occurrence of ``marker``.

        If the ``marker`` is not found, whole string is returned.

        See also `Fetch From Right`, `Split String` and `Split String
        From Right`.
        """
        return string.split(marker)[0]


[docs]    def fetch_from_right(self, string, marker):
        """Returns contents of the ``string`` after the last occurrence of ``marker``.

        If the ``marker`` is not found, whole string is returned.

        See also `Fetch From Left`, `Split String` and `Split String
        From Right`.
        """
        return string.split(marker)[-1]


[docs]    def generate_random_string(self, length=8, chars='[LETTERS][NUMBERS]'):
        """Generates a string with a desired ``length`` from the given ``chars``.

        The population sequence ``chars`` contains the characters to use
        when generating the random string. It can contain any
        characters, and it is possible to use special markers
        explained in the table below:

        |  = Marker =   |               = Explanation =                   |
        | ``[LOWER]``   | Lowercase ASCII characters from ``a`` to ``z``. |
        | ``[UPPER]``   | Uppercase ASCII characters from ``A`` to ``Z``. |
        | ``[LETTERS]`` | Lowercase and uppercase ASCII characters.       |
        | ``[NUMBERS]`` | Numbers from 0 to 9.                            |

        Examples:
        | ${ret} = | Generate Random String | | |
        | ${low} = | Generate Random String | 12 | [LOWER]         |
        | ${bin} = | Generate Random String | 8  | 01              |
        | ${hex} = | Generate Random String | 4  | [NUMBERS]abcdef |
        """
        if length == '':
            length = 8
        length = self._convert_to_integer(length, 'length')
        for name, value in [('[LOWER]', ascii_lowercase),
                            ('[UPPER]', ascii_uppercase),
                            ('[LETTERS]', ascii_lowercase + ascii_uppercase),
                            ('[NUMBERS]', digits)]:
            chars = chars.replace(name, value)
        maxi = len(chars) - 1
        return ''.join(chars[randint(0, maxi)] for _ in range(length))


[docs]    def get_substring(self, string, start, end=None):
        """Returns a substring from ``start`` index to ``end`` index.

        The ``start`` index is inclusive and ``end`` is exclusive.
        Indexing starts from 0, and it is possible to use
        negative indices to refer to characters from the end.

        Examples:
        | ${ignore first} = | Get Substring | ${string} | 1  |    |
        | ${ignore last} =  | Get Substring | ${string} |    | -1 |
        | ${5th to 10th} =  | Get Substring | ${string} | 4  | 10 |
        | ${first two} =    | Get Substring | ${string} |    | 1  |
        | ${last two} =     | Get Substring | ${string} | -2 |    |
        """
        start = self._convert_to_index(start, 'start')
        end = self._convert_to_index(end, 'end')
        return string[start:end]


[docs]    @keyword(types=None)
    def strip_string(self, string, mode='both', characters=None):
        """Remove leading and/or trailing whitespaces from the given string.

        ``mode`` is either ``left`` to remove leading characters, ``right`` to
        remove trailing characters, ``both`` (default) to remove the
        characters from both sides of the string or ``none`` to return the
        unmodified string.

        If the optional ``characters`` is given, it must be a string and the
        characters in the string will be stripped in the string. Please note,
        that this is not a substring to be removed but a list of characters,
        see the example below.

        Examples:
        | ${stripped}=  | Strip String | ${SPACE}Hello${SPACE} | |
        | Should Be Equal | ${stripped} | Hello | |
        | ${stripped}=  | Strip String | ${SPACE}Hello${SPACE} | mode=left |
        | Should Be Equal | ${stripped} | Hello${SPACE} | |
        | ${stripped}=  | Strip String | aabaHelloeee | characters=abe |
        | Should Be Equal | ${stripped} | Hello | |
        """
        try:
            method = {'BOTH': string.strip,
                      'LEFT': string.lstrip,
                      'RIGHT': string.rstrip,
                      'NONE': lambda characters: string}[mode.upper()]
        except KeyError:
            raise ValueError("Invalid mode '%s'." % mode)
        return method(characters)


[docs]    def should_be_string(self, item, msg=None):
        """Fails if the given ``item`` is not a string.

        With Python 2, except with IronPython, this keyword passes regardless
        is the ``item`` a Unicode string or a byte string. Use `Should Be
        Unicode String` or `Should Be Byte String` if you want to restrict
        the string type. Notice that with Python 2, except with IronPython,
        ``'string'`` creates a byte string and ``u'unicode'`` must be used to
        create a Unicode string.

        With Python 3 and IronPython, this keyword passes if the string is
        a Unicode string but fails if it is bytes. Notice that with both
        Python 3 and IronPython, ``'string'`` creates a Unicode string, and
        ``b'bytes'`` must be used to create a byte string.

        The default error message can be overridden with the optional
        ``msg`` argument.
        """
        if not is_string(item):
            self._fail(msg, "'%s' is not a string.", item)


[docs]    def should_not_be_string(self, item, msg=None):
        """Fails if the given ``item`` is a string.

        See `Should Be String` for more details about Unicode strings and byte
        strings.

        The default error message can be overridden with the optional
        ``msg`` argument.
        """
        if is_string(item):
            self._fail(msg, "'%s' is a string.", item)


[docs]    def should_be_unicode_string(self, item, msg=None):
        """Fails if the given ``item`` is not a Unicode string.

        Use `Should Be Byte String` if you want to verify the ``item`` is a
        byte string, or `Should Be String` if both Unicode and byte strings
        are fine. See `Should Be String` for more details about Unicode
        strings and byte strings.

        The default error message can be overridden with the optional
        ``msg`` argument.
        """
        if not is_unicode(item):
            self._fail(msg, "'%s' is not a Unicode string.", item)


[docs]    def should_be_byte_string(self, item, msg=None):
        """Fails if the given ``item`` is not a byte string.

        Use `Should Be Unicode String` if you want to verify the ``item`` is a
        Unicode string, or `Should Be String` if both Unicode and byte strings
        are fine. See `Should Be String` for more details about Unicode strings
        and byte strings.

        The default error message can be overridden with the optional
        ``msg`` argument.
        """
        if not is_bytes(item):
            self._fail(msg, "'%s' is not a byte string.", item)


[docs]    def should_be_lower_case(self, string, msg=None):
        """Fails if the given ``string`` is not in lower case.

        For example, ``'string'`` and ``'with specials!'`` would pass, and
        ``'String'``, ``''`` and ``' '`` would fail.

        The default error message can be overridden with the optional
        ``msg`` argument.

        See also `Should Be Upper Case` and `Should Be Title Case`.
        """
        if not string.islower():
            self._fail(msg, "'%s' is not lower case.", string)


[docs]    def should_be_upper_case(self, string, msg=None):
        """Fails if the given ``string`` is not in upper case.

        For example, ``'STRING'`` and ``'WITH SPECIALS!'`` would pass, and
        ``'String'``, ``''`` and ``' '`` would fail.

        The default error message can be overridden with the optional
        ``msg`` argument.

        See also `Should Be Title Case` and `Should Be Lower Case`.
        """
        if not string.isupper():
            self._fail(msg, "'%s' is not upper case.", string)


[docs]    @keyword(types=None)
    def should_be_title_case(self, string, msg=None, exclude=None):
        """Fails if given ``string`` is not title.

        ``string`` is a title cased string if there is at least one upper case
        letter in each word.

        For example, ``'This Is Title'`` and ``'OK, Give Me My iPhone'``
        would pass. ``'all words lower'`` and ``'Word In lower'`` would fail.

        This logic changed in Robot Framework 4.0 to be compatible with
        `Convert to Title Case`. See `Convert to Title Case` for title case
        algorithm and reasoning.

        The default error message can be overridden with the optional
        ``msg`` argument.

        Words can be explicitly excluded with the optional ``exclude`` argument.

        Explicitly excluded words can be given as a list or as a string with
        words separated by a comma and an optional space. Excluded words are
        actually considered to be regular expression patterns, so it is
        possible to use something like "example[.!?]?" to match the word
        "example" on it own and also if followed by ".", "!" or "?".
        See `BuiltIn.Should Match Regexp` for more information about Python
        regular expression syntax in general and how to use it in Robot
        Framework test data in particular.

        See also `Should Be Upper Case` and `Should Be Lower Case`.
        """
        if PY2 and is_bytes(string):
            try:
                string = string.decode('ASCII')
            except UnicodeError:
                raise TypeError('This keyword works only with Unicode strings '
                                'and non-ASCII bytes.')
        if string != self.convert_to_title_case(string, exclude):
            self._fail(msg, "'%s' is not title case.", string)


    def _convert_to_index(self, value, name):
        if value == '':
            return 0
        if value is None:
            return None
        return self._convert_to_integer(value, name)

    def _convert_to_integer(self, value, name):
        try:
            return int(value)
        except ValueError:
            raise ValueError("Cannot convert '%s' argument '%s' to an integer."
                             % (name, value))

    def _fail(self, message, default_template, *items):
        if not message:
            message = default_template % tuple(unic(item) for item in items)
        raise AssertionError(message)





          

      

      

    

  

    
      
          
            
  Source code for robot.libraries.Telnet

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from contextlib import contextmanager
import inspect
import re
import socket
import struct
import telnetlib
import time

try:
    import pyte
except ImportError:
    pyte = None

from robot.api import logger
from robot.api.deco import keyword
from robot.utils import (ConnectionCache, is_bytes, is_string, is_truthy,
                         is_unicode, secs_to_timestr, seq2str, timestr_to_secs)
from robot.version import get_version


[docs]class Telnet(object):
    """A test library providing communication over Telnet connections.

    ``Telnet`` is Robot Framework's standard library that makes it possible to
    connect to Telnet servers and execute commands on the opened connections.

    == Table of contents ==

    %TOC%

    = Connections =

    The first step of using ``Telnet`` is opening a connection with `Open
    Connection` keyword. Typically the next step is logging in with `Login`
    keyword, and in the end the opened connection can be closed with `Close
    Connection`.

    It is possible to open multiple connections and switch the active one
    using `Switch Connection`. `Close All Connections` can be used to close
    all the connections, which is especially useful in suite teardowns to
    guarantee that all connections are always closed.

    = Writing and reading =

    After opening a connection and possibly logging in, commands can be
    executed or text written to the connection for other reasons using `Write`
    and `Write Bare` keywords. The main difference between these two is that
    the former adds a [#Configuration|configurable newline] after the text
    automatically.

    After writing something to the connection, the resulting output can be
    read using `Read`, `Read Until`, `Read Until Regexp`, and `Read Until
    Prompt` keywords. Which one to use depends on the context, but the latest
    one is often the most convenient.

    As a convenience when running a command, it is possible to use `Execute
    Command` that simply uses `Write` and `Read Until Prompt` internally.
    `Write Until Expected Output` is useful if you need to wait until writing
    something produces a desired output.

    Written and read text is automatically encoded/decoded using a
    [#Configuration|configured encoding].

    The ANSI escape codes, like cursor movement and color codes, are
    normally returned as part of the read operation. If an escape code occurs
    in middle of a search pattern it may also prevent finding the searched
    string. `Terminal emulation` can be used to process these
    escape codes as they would be if a real terminal would be in use.

    = Configuration =

    Many aspects related the connections can be easily configured either
    globally or per connection basis. Global configuration is done when
    [#Importing|library is imported], and these values can be overridden per
    connection by `Open Connection` or with setting specific keywords
    `Set Timeout`, `Set Newline`, `Set Prompt`, `Set Encoding`,
    `Set Default Log Level` and `Set Telnetlib Log Level`.

    Values of ``environ_user``, ``window_size``, ``terminal_emulation``, and
    ``terminal_type`` can not be changed after opening the connection.

    == Timeout ==

    Timeout defines how long is the maximum time to wait when reading
    output. It is used internally by `Read Until`, `Read Until Regexp`,
    `Read Until Prompt`, and `Login` keywords. The default value is 3 seconds.

    == Connection Timeout ==

    Connection Timeout defines how long is the maximum time to wait when
    opening the telnet connection. It is used internally by `Open Connection`.
    The default value is the system global default timeout.

    == Newline ==

    Newline defines which line separator `Write` keyword should use. The
    default value is ``CRLF`` that is typically used by Telnet connections.

    Newline can be given either in escaped format using ``\\n`` and ``\\r`` or
    with special ``LF`` and ``CR`` syntax.

    Examples:
    | `Set Newline` | \\n  |
    | `Set Newline` | CRLF |

    == Prompt ==

    Often the easiest way to read the output of a command is reading all
    the output until the next prompt with `Read Until Prompt`. It also makes
    it easier, and faster, to verify did `Login` succeed.

    Prompt can be specified either as a normal string or a regular expression.
    The latter is especially useful if the prompt changes as a result of
    the executed commands. Prompt can be set to be a regular expression
    by giving ``prompt_is_regexp`` argument a true value (see `Boolean
    arguments`).

    Examples:
    | `Open Connection` | lolcathost | prompt=$              |
    | `Set Prompt`      | (> |# )    | prompt_is_regexp=true |

    == Encoding ==

    To ease handling text containing non-ASCII characters, all written text is
    encoded and read text decoded by default. The default encoding is UTF-8
    that works also with ASCII. Encoding can be disabled by using a special
    encoding value ``NONE``. This is mainly useful if you need to get the bytes
    received from the connection as-is.

    Notice that when writing to the connection, only Unicode strings are
    encoded using the defined encoding. Byte strings are expected to be already
    encoded correctly. Notice also that normal text in test data is passed to
    the library as Unicode and you need to use variables to use bytes.

    It is also possible to configure the error handler to use if encoding or
    decoding characters fails. Accepted values are the same that encode/decode
    functions in Python strings accept. In practice the following values are
    the most useful:

    - ``ignore``: ignore characters that cannot be encoded (default)
    - ``strict``: fail if characters cannot be encoded
    - ``replace``: replace characters that cannot be encoded with a replacement
      character

    Examples:
    | `Open Connection` | lolcathost | encoding=Latin1 | encoding_errors=strict |
    | `Set Encoding` | ISO-8859-15 |
    | `Set Encoding` | errors=ignore |

    == Default log level ==

    Default log level specifies the log level keywords use for `logging` unless
    they are given an explicit log level. The default value is ``INFO``, and
    changing it, for example, to ``DEBUG`` can be a good idea if there is lot
    of unnecessary output that makes log files big.

    == Terminal type ==

    By default the Telnet library does not negotiate any specific terminal type
    with the server. If a specific terminal type, for example ``vt100``, is
    desired, the terminal type can be configured in `importing` and with
    `Open Connection`.

    == Window size ==

    Window size for negotiation with the server can be configured when
    `importing` the library and with `Open Connection`.

    == USER environment variable ==

    Telnet protocol allows the ``USER`` environment variable to be sent when
    connecting to the server. On some servers it may happen that there is no
    login prompt, and on those cases this configuration option will allow still
    to define the desired username. The option ``environ_user`` can be used in
    `importing` and with `Open Connection`.

    = Terminal emulation =

    Telnet library supports terminal
    emulation with [http://pyte.readthedocs.io|Pyte]. Terminal emulation
    will process the output in a virtual screen. This means that ANSI escape
    codes, like cursor movements, and also control characters, like
    carriage returns and backspaces, have the same effect on the result as they
    would have on a normal terminal screen. For example the sequence
    ``acdc\\x1b[3Dbba`` will result in output ``abba``.

    Terminal emulation is taken into use by giving ``terminal_emulation``
    argument a true value (see `Boolean arguments`) either in the library
    initialization or with `Open Connection`.

    As Pyte approximates vt-style terminal, you may also want to set the
    terminal type as ``vt100``. We also recommend that you increase the window
    size, as the terminal emulation will break all lines that are longer than
    the window row length.

    When terminal emulation is used, the `newline` and `encoding` can not be
    changed anymore after opening the connection.

    Examples:
    | `Open Connection` | lolcathost | terminal_emulation=True | terminal_type=vt100 | window_size=400x100 |

    As a prerequisite for using terminal emulation, you need to have Pyte
    installed. Due to backwards incompatible changes in Pyte, different
    Robot Framework versions support different Pyte versions:

    - Pyte 0.6 and newer are supported by Robot Framework 3.0.3.
      Latest Pyte version can be installed (or upgraded) with
      ``pip install --upgrade pyte``.
    - Pyte 0.5.2 and older are supported by Robot Framework 3.0.2 and earlier.
      Pyte 0.5.2 can be installed with ``pip install pyte==0.5.2``.

    = Logging =

    All keywords that read something log the output. These keywords take the
    log level to use as an optional argument, and if no log level is specified
    they use the [#Configuration|configured] default value.

    The valid log levels to use are ``TRACE``, ``DEBUG``, ``INFO`` (default),
    and ``WARN``. Levels below ``INFO`` are not shown in log files by default
    whereas warnings are shown more prominently.

    The [http://docs.python.org/library/telnetlib.html|telnetlib module]
    used by this library has a custom logging system for logging content it
    sends and receives. By default these messages are written using ``TRACE``
    level, but the level is configurable with the ``telnetlib_log_level``
    option either in the library initialization, to the `Open Connection`
    or by using the `Set Telnetlib Log Level` keyword to the active
    connection. Special level ``NONE`` con be used to disable the logging
    altogether.

    = Time string format =

    Timeouts and other times used must be given as a time string using format
    like ``15 seconds`` or ``1min 10s``. If the timeout is given as just
    a number, for example, ``10`` or ``1.5``, it is considered to be seconds.
    The time string format is described in more detail in an appendix of
    [http://robotframework.org/robotframework/#user-guide|Robot Framework User Guide].

    = Boolean arguments =

    Some keywords accept arguments that are handled as Boolean values true or
    false. If such an argument is given as a string, it is considered false if
    it is an empty string or equal to ``FALSE``, ``NONE``, ``NO``, ``OFF`` or
    ``0``, case-insensitively. Other strings are considered true regardless
    their value, and other argument types are tested using the same
    [http://docs.python.org/library/stdtypes.html#truth|rules as in Python].

    True examples:
    | `Open Connection` | lolcathost | terminal_emulation=True    | # Strings are generally true.    |
    | `Open Connection` | lolcathost | terminal_emulation=yes     | # Same as the above.             |
    | `Open Connection` | lolcathost | terminal_emulation=${TRUE} | # Python ``True`` is true.       |
    | `Open Connection` | lolcathost | terminal_emulation=${42}   | # Numbers other than 0 are true. |

    False examples:
    | `Open Connection` | lolcathost | terminal_emulation=False    | # String ``false`` is false.   |
    | `Open Connection` | lolcathost | terminal_emulation=no       | # Also string ``no`` is false. |
    | `Open Connection` | lolcathost | terminal_emulation=${EMPTY} | # Empty string is false.       |
    | `Open Connection` | lolcathost | terminal_emulation=${FALSE} | # Python ``False`` is false.   |

    Considering string ``NONE`` false is new in Robot Framework 3.0.3 and
    considering also ``OFF`` and ``0`` false is new in Robot Framework 3.1.
    """
    ROBOT_LIBRARY_SCOPE = 'TEST_SUITE'
    ROBOT_LIBRARY_VERSION = get_version()

    def __init__(self, timeout='3 seconds', newline='CRLF',
                 prompt=None, prompt_is_regexp=False,
                 encoding='UTF-8', encoding_errors='ignore',
                 default_log_level='INFO', window_size=None,
                 environ_user=None, terminal_emulation=False,
                 terminal_type=None, telnetlib_log_level='TRACE',
                 connection_timeout=None):
        """Telnet library can be imported with optional configuration parameters.

        Configuration parameters are used as default values when new
        connections are opened with `Open Connection` keyword. They can also be
        overridden after opening the connection using the `Set ...` `keywords`.
        See these keywords as well as `Configuration`, `Terminal emulation` and
        `Logging` sections above for more information about these parameters
        and their possible values.

        See `Time string format` and `Boolean arguments` sections for
        information about using arguments accepting times and Boolean values,
        respectively.

        Examples (use only one of these):
        | = Setting = | = Value = | = Value =                | = Value =            | = Value =           | = Comment = | |
        | Library     | Telnet    |                          |                      |                     | # default values |
        | Library     | Telnet    | 5 seconds                |                      |                     | # set only timeout |
        | Library     | Telnet    | newline=LF               | encoding=ISO-8859-1  |                     | # set newline and encoding using named arguments |
        | Library     | Telnet    | prompt=$                 |                      |                     | # set prompt |
        | Library     | Telnet    | prompt=(> |# )           | prompt_is_regexp=yes |                     | # set prompt as a regular expression |
        | Library     | Telnet    | terminal_emulation=True  | terminal_type=vt100  | window_size=400x100 | # use terminal emulation with defined window size and terminal type |
        | Library     | Telnet    | telnetlib_log_level=NONE |                      |                     | # disable logging messages from the underlying telnetlib |
        """
        self._timeout = timeout or 3.0
        self._set_connection_timeout(connection_timeout)
        self._newline = newline or 'CRLF'
        self._prompt = (prompt, prompt_is_regexp)
        self._encoding = encoding
        self._encoding_errors = encoding_errors
        self._default_log_level = default_log_level
        self._window_size = window_size
        self._environ_user = environ_user
        self._terminal_emulation = terminal_emulation
        self._terminal_type = terminal_type
        self._telnetlib_log_level = telnetlib_log_level
        self._cache = ConnectionCache()
        self._conn = None
        self._conn_kws = self._lib_kws = None

[docs]    def get_keyword_names(self):
        return self._get_library_keywords() + self._get_connection_keywords()


    def _get_library_keywords(self):
        if self._lib_kws is None:
            self._lib_kws = self._get_keywords(self, ['get_keyword_names'])
        return self._lib_kws

    def _get_keywords(self, source, excluded):
        return [name for name in dir(source)
                if self._is_keyword(name, source, excluded)]

    def _is_keyword(self, name, source, excluded):
        return (name not in excluded and
                not name.startswith('_') and
                name != 'get_keyword_names' and
                inspect.ismethod(getattr(source, name)))

    def _get_connection_keywords(self):
        if self._conn_kws is None:
            conn = self._get_connection()
            excluded = [name for name in dir(telnetlib.Telnet())
                        if name not in ['write', 'read', 'read_until']]
            self._conn_kws = self._get_keywords(conn, excluded)
        return self._conn_kws

    def __getattr__(self, name):
        if name not in self._get_connection_keywords():
            raise AttributeError(name)
        # If no connection is initialized, get attributes from a non-active
        # connection. This makes it possible for Robot to create keyword
        # handlers when it imports the library.
        return getattr(self._conn or self._get_connection(), name)

[docs]    @keyword(types=None)
    def open_connection(self, host, alias=None, port=23, timeout=None,
                        newline=None, prompt=None, prompt_is_regexp=False,
                        encoding=None, encoding_errors=None,
                        default_log_level=None, window_size=None,
                        environ_user=None, terminal_emulation=None,
                        terminal_type=None, telnetlib_log_level=None,
                        connection_timeout=None):
        """Opens a new Telnet connection to the given host and port.

        The ``timeout``, ``newline``, ``prompt``, ``prompt_is_regexp``,
        ``encoding``, ``default_log_level``, ``window_size``, ``environ_user``,
        ``terminal_emulation``, ``terminal_type`` and ``telnetlib_log_level``
        arguments get default values when the library is [#Importing|imported].
        Setting them here overrides those values for the opened connection.
        See `Configuration`, `Terminal emulation` and `Logging` sections for
        more information about these parameters and their possible values.

        Possible already opened connections are cached and it is possible to
        switch back to them using `Switch Connection` keyword. It is possible to
        switch either using explicitly given ``alias`` or using index returned
        by this keyword. Indexing starts from 1 and is reset back to it by
        `Close All Connections` keyword.
        """
        timeout = timeout or self._timeout
        connection_timeout = (timestr_to_secs(connection_timeout)
                              if connection_timeout
                              else self._connection_timeout)
        newline = newline or self._newline
        encoding = encoding or self._encoding
        encoding_errors = encoding_errors or self._encoding_errors
        default_log_level = default_log_level or self._default_log_level
        window_size = self._parse_window_size(window_size or self._window_size)
        environ_user = environ_user or self._environ_user
        if terminal_emulation is None:
            terminal_emulation = self._terminal_emulation
        terminal_type = terminal_type or self._terminal_type
        telnetlib_log_level = telnetlib_log_level or self._telnetlib_log_level
        if not prompt:
            prompt, prompt_is_regexp = self._prompt
        logger.info('Opening connection to %s:%s with prompt: %s%s'
                    % (host, port, prompt, ' (regexp)' if prompt_is_regexp else ''))
        self._conn = self._get_connection(host, port, timeout, newline,
                                          prompt, is_truthy(prompt_is_regexp),
                                          encoding, encoding_errors,
                                          default_log_level,
                                          window_size,
                                          environ_user,
                                          is_truthy(terminal_emulation),
                                          terminal_type,
                                          telnetlib_log_level,
                                          connection_timeout)
        return self._cache.register(self._conn, alias)


    def _parse_window_size(self, window_size):
        if not window_size:
            return None
        try:
            cols, rows = window_size.split('x', 1)
            return int(cols), int(rows)
        except ValueError:
            raise ValueError("Invalid window size '%s'. Should be "
                             "<rows>x<columns>." % window_size)

    def _get_connection(self, *args):
        """Can be overridden to use a custom connection."""
        return TelnetConnection(*args)

    def _set_connection_timeout(self, connection_timeout):
        self._connection_timeout = connection_timeout
        if self._connection_timeout:
            self._connection_timeout = timestr_to_secs(connection_timeout)

[docs]    def switch_connection(self, index_or_alias):
        """Switches between active connections using an index or an alias.

        Aliases can be given to `Open Connection` keyword which also always
        returns the connection index.

        This keyword returns the index of previous active connection.

        Example:
        | `Open Connection`   | myhost.net              |          |           |
        | `Login`             | john                    | secret   |           |
        | `Write`             | some command            |          |           |
        | `Open Connection`   | yourhost.com            | 2nd conn |           |
        | `Login`             | root                    | password |           |
        | `Write`             | another cmd             |          |           |
        | ${old index}=       | `Switch Connection`     | 1        | # index   |
        | `Write`             | something               |          |           |
        | `Switch Connection` | 2nd conn                |          | # alias   |
        | `Write`             | whatever                |          |           |
        | `Switch Connection` | ${old index}            | | # back to original |
        | [Teardown]          | `Close All Connections` |          |           |

        The example above expects that there were no other open
        connections when opening the first one, because it used index
        ``1`` when switching to the connection later. If you are not
        sure about that, you can store the index into a variable as
        shown below.

        | ${index} =          | `Open Connection` | myhost.net |
        | `Do Something`      |                   |            |
        | `Switch Connection` | ${index}          |            |
        """
        old_index = self._cache.current_index
        self._conn = self._cache.switch(index_or_alias)
        return old_index


[docs]    def close_all_connections(self):
        """Closes all open connections and empties the connection cache.

        If multiple connections are opened, this keyword should be used in
        a test or suite teardown to make sure that all connections are closed.
        It is not an error is some of the connections have already been closed
        by `Close Connection`.

        After this keyword, new indexes returned by `Open Connection`
        keyword are reset to 1.
        """
        self._conn = self._cache.close_all()




[docs]class TelnetConnection(telnetlib.Telnet):
    NEW_ENVIRON_IS = b'\x00'
    NEW_ENVIRON_VAR = b'\x00'
    NEW_ENVIRON_VALUE = b'\x01'
    INTERNAL_UPDATE_FREQUENCY = 0.03

    def __init__(self, host=None, port=23, timeout=3.0, newline='CRLF',
                 prompt=None, prompt_is_regexp=False,
                 encoding='UTF-8', encoding_errors='ignore',
                 default_log_level='INFO', window_size=None, environ_user=None,
                 terminal_emulation=False, terminal_type=None,
                 telnetlib_log_level='TRACE', connection_timeout=None):
        if connection_timeout is None:
            telnetlib.Telnet.__init__(self, host, int(port) if port else 23)
        else:
            telnetlib.Telnet.__init__(self, host, int(port) if port else 23,
                                      connection_timeout)
        self._set_timeout(timeout)
        self._set_newline(newline)
        self._set_prompt(prompt, prompt_is_regexp)
        self._set_encoding(encoding, encoding_errors)
        self._set_default_log_level(default_log_level)
        self._window_size = window_size
        self._environ_user = self._encode(environ_user) if environ_user else None
        self._terminal_emulator = self._check_terminal_emulation(terminal_emulation)
        self._terminal_type = self._encode(terminal_type) if terminal_type else None
        self.set_option_negotiation_callback(self._negotiate_options)
        self._set_telnetlib_log_level(telnetlib_log_level)
        self._opt_responses = list()

[docs]    def set_timeout(self, timeout):
        """Sets the timeout used for waiting output in the current connection.

        Read operations that expect some output to appear (`Read Until`, `Read
        Until Regexp`, `Read Until Prompt`, `Login`) use this timeout and fail
        if the expected output does not appear before this timeout expires.

        The ``timeout`` must be given in `time string format`. The old timeout
        is returned and can be used to restore the timeout later.

        Example:
        | ${old} =       | `Set Timeout` | 2 minute 30 seconds |
        | `Do Something` |
        | `Set Timeout`  | ${old}  |

        See `Configuration` section for more information about global and
        connection specific configuration.
        """
        self._verify_connection()
        old = self._timeout
        self._set_timeout(timeout)
        return secs_to_timestr(old)


    def _set_timeout(self, timeout):
        self._timeout = timestr_to_secs(timeout)

[docs]    def set_newline(self, newline):
        """Sets the newline used by `Write` keyword in the current connection.

        The old newline is returned and can be used to restore the newline later.
        See `Set Timeout` for a similar example.

        If terminal emulation is used, the newline can not be changed on an open
        connection.

        See `Configuration` section for more information about global and
        connection specific configuration.
        """
        self._verify_connection()
        if self._terminal_emulator:
            raise AssertionError("Newline can not be changed when terminal emulation is used.")
        old = self._newline
        self._set_newline(newline)
        return old


    def _set_newline(self, newline):
        newline = str(newline).upper()
        self._newline = newline.replace('LF', '\n').replace('CR', '\r')

[docs]    def set_prompt(self, prompt, prompt_is_regexp=False):
        """Sets the prompt used by `Read Until Prompt` and `Login` in the current connection.

        If ``prompt_is_regexp`` is given a true value (see `Boolean arguments`),
        the given ``prompt`` is considered to be a regular expression.

        The old prompt is returned and can be used to restore the prompt later.

        Example:
        | ${prompt} | ${regexp} = | `Set Prompt` | $ |
        | `Do Something` |
        | `Set Prompt` | ${prompt} | ${regexp} |

        See the documentation of
        [http://docs.python.org/library/re.html|Python re module]
        for more information about the supported regular expression syntax.
        Notice that possible backslashes need to be escaped in Robot Framework
        test data.

        See `Configuration` section for more information about global and
        connection specific configuration.
        """
        self._verify_connection()
        old = self._prompt
        self._set_prompt(prompt, prompt_is_regexp)
        if old[1]:
            return old[0].pattern, True
        return old


    def _set_prompt(self, prompt, prompt_is_regexp):
        if is_truthy(prompt_is_regexp):
            self._prompt = (re.compile(prompt), True)
        else:
            self._prompt = (prompt, False)

    def _prompt_is_set(self):
        return self._prompt[0] is not None

[docs]    @keyword(types=None)
    def set_encoding(self, encoding=None, errors=None):
        """Sets the encoding to use for `writing and reading` in the current connection.

        The given ``encoding`` specifies the encoding to use when written/read
        text is encoded/decoded, and ``errors`` specifies the error handler to
        use if encoding/decoding fails. Either of these can be omitted and in
        that case the old value is not affected. Use string ``NONE`` to disable
        encoding altogether.

        See `Configuration` section for more information about encoding and
        error handlers, as well as global and connection specific configuration
        in general.

        The old values are returned and can be used to restore the encoding
        and the error handler later. See `Set Prompt` for a similar example.

        If terminal emulation is used, the encoding can not be changed on an open
        connection.
        """
        self._verify_connection()
        if self._terminal_emulator:
            raise AssertionError("Encoding can not be changed when terminal emulation is used.")
        old = self._encoding
        self._set_encoding(encoding or old[0], errors or old[1])
        return old


    def _set_encoding(self, encoding, errors):
        self._encoding = (encoding.upper(), errors)

    def _encode(self, text):
        if is_bytes(text):
            return text
        if self._encoding[0] == 'NONE':
            return text.encode('ASCII')
        return text.encode(*self._encoding)

    def _decode(self, bytes):
        if self._encoding[0] == 'NONE':
            return bytes
        return bytes.decode(*self._encoding)

[docs]    def set_telnetlib_log_level(self, level):
        """Sets the log level used for `logging` in the underlying ``telnetlib``.

        Note that ``telnetlib`` can be very noisy thus using the level ``NONE``
        can shutdown the messages generated by this library.
        """
        self._verify_connection()
        old = self._telnetlib_log_level
        self._set_telnetlib_log_level(level)
        return old


    def _set_telnetlib_log_level(self, level):
        if level.upper() == 'NONE':
            self._telnetlib_log_level = 'NONE'
        elif self._is_valid_log_level(level) is False:
            raise AssertionError("Invalid log level '%s'" % level)
        self._telnetlib_log_level = level.upper()

[docs]    def set_default_log_level(self, level):
        """Sets the default log level used for `logging` in the current connection.

        The old default log level is returned and can be used to restore the
        log level later.

        See `Configuration` section for more information about global and
        connection specific configuration.
        """
        self._verify_connection()
        old = self._default_log_level
        self._set_default_log_level(level)
        return old


    def _set_default_log_level(self, level):
        if level is None or not self._is_valid_log_level(level):
            raise AssertionError("Invalid log level '%s'" % level)
        self._default_log_level = level.upper()

    def _is_valid_log_level(self, level):
        if level is None:
            return True
        if not is_string(level):
            return False
        return level.upper() in ('TRACE', 'DEBUG', 'INFO', 'WARN')

[docs]    def close_connection(self, loglevel=None):
        """Closes the current Telnet connection.

        Remaining output in the connection is read, logged, and returned.
        It is not an error to close an already closed connection.

        Use `Close All Connections` if you want to make sure all opened
        connections are closed.

        See `Logging` section for more information about log levels.
        """
        if self.sock:
            self.sock.shutdown(socket.SHUT_RDWR)
        self.close()
        output = self._decode(self.read_all())
        self._log(output, loglevel)
        return output


[docs]    def login(self, username, password, login_prompt='login: ',
              password_prompt='Password: ', login_timeout='1 second',
              login_incorrect='Login incorrect'):
        """Logs in to the Telnet server with the given user information.

        This keyword reads from the connection until the ``login_prompt`` is
        encountered and then types the given ``username``. Then it reads until
        the ``password_prompt`` and types the given ``password``. In both cases
        a newline is appended automatically and the connection specific
        timeout used when waiting for outputs.

        How logging status is verified depends on whether a prompt is set for
        this connection or not:

        1) If the prompt is set, this keyword reads the output until the prompt
        is found using the normal timeout. If no prompt is found, login is
        considered failed and also this keyword fails. Note that in this case
        both ``login_timeout`` and ``login_incorrect`` arguments are ignored.

        2) If the prompt is not set, this keywords sleeps until ``login_timeout``
        and then reads all the output available on the connection. If the
        output contains ``login_incorrect`` text, login is considered failed
        and also this keyword fails.

        See `Configuration` section for more information about setting
        newline, timeout, and prompt.
        """
        output = self._submit_credentials(username, password, login_prompt,
                                          password_prompt)
        if self._prompt_is_set():
            success, output2 = self._read_until_prompt()
        else:
            success, output2 = self._verify_login_without_prompt(
                    login_timeout, login_incorrect)
        output += output2
        self._log(output)
        if not success:
            raise AssertionError('Login incorrect')
        return output


    def _submit_credentials(self, username, password, login_prompt, password_prompt):
        # Using write_bare here instead of write because don't want to wait for
        # newline: https://github.com/robotframework/robotframework/issues/1371
        output = self.read_until(login_prompt, 'TRACE')
        self.write_bare(username + self._newline)
        output += self.read_until(password_prompt, 'TRACE')
        self.write_bare(password + self._newline)
        return output

    def _verify_login_without_prompt(self, delay, incorrect):
        time.sleep(timestr_to_secs(delay))
        output = self.read('TRACE')
        success = incorrect not in output
        return success, output

[docs]    def write(self, text, loglevel=None):
        """Writes the given text plus a newline into the connection.

        The newline character sequence to use can be [#Configuration|configured]
        both globally and per connection basis. The default value is ``CRLF``.

        This keyword consumes the written text, until the added newline, from
        the output and logs and returns it. The given text itself must not
        contain newlines. Use `Write Bare` instead if either of these features
        causes a problem.

        *Note:* This keyword does not return the possible output of the executed
        command. To get the output, one of the `Read ...` `keywords` must be
        used. See `Writing and reading` section for more details.

        See `Logging` section for more information about log levels.
        """
        newline = self._get_newline_for(text)
        if newline in text:
            raise RuntimeError("'Write' keyword cannot be used with strings "
                               "containing newlines. Use 'Write Bare' instead.")
        self.write_bare(text + newline)
        # Can't read until 'text' because long lines are cut strangely in the output
        return self.read_until(self._newline, loglevel)


    def _get_newline_for(self, text):
        if is_bytes(text):
            return self._encode(self._newline)
        return self._newline

[docs]    def write_bare(self, text):
        """Writes the given text, and nothing else, into the connection.

        This keyword does not append a newline nor consume the written text.
        Use `Write` if these features are needed.
        """
        self._verify_connection()
        telnetlib.Telnet.write(self, self._encode(text))


[docs]    def write_until_expected_output(self, text, expected, timeout,
                                    retry_interval, loglevel=None):
        """Writes the given ``text`` repeatedly, until ``expected`` appears in the output.

        ``text`` is written without appending a newline and it is consumed from
        the output before trying to find ``expected``. If ``expected`` does not
        appear in the output within ``timeout``, this keyword fails.

        ``retry_interval`` defines the time to wait ``expected`` to appear before
        writing the ``text`` again. Consuming the written ``text`` is subject to
        the normal [#Configuration|configured timeout].

        Both ``timeout`` and ``retry_interval`` must be given in `time string
        format`. See `Logging` section for more information about log levels.

        Example:
        | Write Until Expected Output | ps -ef| grep myprocess\\r\\n | myprocess |
        | ...                         | 5 s                          | 0.5 s     |

        The above example writes command ``ps -ef | grep myprocess\\r\\n`` until
        ``myprocess`` appears in the output. The command is written every 0.5
        seconds and the keyword fails if ``myprocess`` does not appear in
        the output in 5 seconds.
        """
        timeout = timestr_to_secs(timeout)
        retry_interval = timestr_to_secs(retry_interval)
        maxtime = time.time() + timeout
        while time.time() < maxtime:
            self.write_bare(text)
            self.read_until(text, loglevel)
            try:
                with self._custom_timeout(retry_interval):
                    return self.read_until(expected, loglevel)
            except AssertionError:
                pass
        raise NoMatchError(expected, timeout)


[docs]    def write_control_character(self, character):
        """Writes the given control character into the connection.

        The control character is prepended with an IAC (interpret as command)
        character.

        The following control character names are supported: BRK, IP, AO, AYT,
        EC, EL, NOP. Additionally, you can use arbitrary numbers to send any
        control character.

        Example:
        | Write Control Character | BRK | # Send Break command |
        | Write Control Character | 241 | # Send No operation command |
        """
        self._verify_connection()
        self.sock.sendall(telnetlib.IAC + self._get_control_character(character))


    def _get_control_character(self, int_or_name):
        try:
            ordinal = int(int_or_name)
            return bytes(bytearray([ordinal]))
        except ValueError:
            return self._convert_control_code_name_to_character(int_or_name)

    def _convert_control_code_name_to_character(self, name):
        code_names = {
                'BRK' : telnetlib.BRK,
                'IP' : telnetlib.IP,
                'AO' : telnetlib.AO,
                'AYT' : telnetlib.AYT,
                'EC' : telnetlib.EC,
                'EL' : telnetlib.EL,
                'NOP' : telnetlib.NOP
        }
        try:
            return code_names[name]
        except KeyError:
            raise RuntimeError("Unsupported control character '%s'." % name)

[docs]    def read(self, loglevel=None):
        """Reads everything that is currently available in the output.

        Read output is both returned and logged. See `Logging` section for more
        information about log levels.
        """
        self._verify_connection()
        output = self._decode(self.read_very_eager())
        if self._terminal_emulator:
            self._terminal_emulator.feed(output)
            output = self._terminal_emulator.read()
        self._log(output, loglevel)
        return output


[docs]    def read_until(self, expected, loglevel=None):
        """Reads output until ``expected`` text is encountered.

        Text up to and including the match is returned and logged. If no match
        is found, this keyword fails. How much to wait for the output depends
        on the [#Configuration|configured timeout].

        See `Logging` section for more information about log levels. Use
        `Read Until Regexp` if more complex matching is needed.
        """
        success, output = self._read_until(expected)
        self._log(output, loglevel)
        if not success:
            raise NoMatchError(expected, self._timeout, output)
        return output


    def _read_until(self, expected):
        self._verify_connection()
        if self._terminal_emulator:
            return self._terminal_read_until(expected)
        expected = self._encode(expected)
        output = telnetlib.Telnet.read_until(self, expected, self._timeout)
        return output.endswith(expected), self._decode(output)

    @property
    def _terminal_frequency(self):
        return min(self.INTERNAL_UPDATE_FREQUENCY, self._timeout)

    def _terminal_read_until(self, expected):
        max_time = time.time() + self._timeout
        output = self._terminal_emulator.read_until(expected)
        if output:
            return True, output
        while time.time() < max_time:
            output = telnetlib.Telnet.read_until(self, self._encode(expected),
                                                 self._terminal_frequency)
            self._terminal_emulator.feed(self._decode(output))
            output = self._terminal_emulator.read_until(expected)
            if output:
                return True, output
        return False, self._terminal_emulator.read()

    def _read_until_regexp(self, *expected):
        self._verify_connection()
        if self._terminal_emulator:
            return self._terminal_read_until_regexp(expected)
        expected = [self._encode(exp) if is_unicode(exp) else exp
                    for exp in expected]
        return self._telnet_read_until_regexp(expected)

    def _terminal_read_until_regexp(self, expected_list):
        max_time = time.time() + self._timeout
        regexps_bytes = [self._to_byte_regexp(rgx) for rgx in expected_list]
        regexps_unicode = [re.compile(self._decode(rgx.pattern))
                               for rgx in regexps_bytes]
        out = self._terminal_emulator.read_until_regexp(regexps_unicode)
        if out:
            return True, out
        while time.time() < max_time:
            output = self.expect(regexps_bytes, self._terminal_frequency)[-1]
            self._terminal_emulator.feed(self._decode(output))
            out = self._terminal_emulator.read_until_regexp(regexps_unicode)
            if out:
                return True, out
        return False, self._terminal_emulator.read()

    def _telnet_read_until_regexp(self, expected_list):
        expected = [self._to_byte_regexp(exp) for exp in expected_list]
        try:
            index, _, output = self.expect(expected, self._timeout)
        except TypeError:
            index, output = -1, b''
        return index != -1, self._decode(output)

    def _to_byte_regexp(self, exp):
        if is_bytes(exp):
            return re.compile(exp)
        if is_string(exp):
            return re.compile(self._encode(exp))
        pattern = exp.pattern
        if is_bytes(pattern):
            return exp
        return re.compile(self._encode(pattern))

[docs]    def read_until_regexp(self, *expected):
        """Reads output until any of the ``expected`` regular expressions match.

        This keyword accepts any number of regular expressions patterns or
        compiled Python regular expression objects as arguments. Text up to
        and including the first match to any of the regular expressions is
        returned and logged. If no match is found, this keyword fails. How much
        to wait for the output depends on the [#Configuration|configured timeout].

        If the last given argument is a [#Logging|valid log level], it is used
        as ``loglevel`` similarly as with `Read Until` keyword.

        See the documentation of
        [http://docs.python.org/library/re.html|Python re module]
        for more information about the supported regular expression syntax.
        Notice that possible backslashes need to be escaped in Robot Framework
        test data.

        Examples:
        | `Read Until Regexp` | (#|$) |
        | `Read Until Regexp` | first_regexp | second_regexp |
        | `Read Until Regexp` | \\\\d{4}-\\\\d{2}-\\\\d{2} | DEBUG |
        """
        if not expected:
            raise RuntimeError('At least one pattern required')
        if self._is_valid_log_level(expected[-1]):
            loglevel = expected[-1]
            expected = expected[:-1]
        else:
            loglevel = None
        success, output = self._read_until_regexp(*expected)
        self._log(output, loglevel)
        if not success:
            expected = [exp if is_string(exp) else exp.pattern
                        for exp in expected]
            raise NoMatchError(expected, self._timeout, output)
        return output


[docs]    def read_until_prompt(self, loglevel=None, strip_prompt=False):
        """Reads output until the prompt is encountered.

        This keyword requires the prompt to be [#Configuration|configured]
        either in `importing` or with `Open Connection` or `Set Prompt` keyword.

        By default, text up to and including the prompt is returned and logged.
        If no prompt is found, this keyword fails. How much to wait for the
        output depends on the [#Configuration|configured timeout].

        If you want to exclude the prompt from the returned output, set
        ``strip_prompt`` to a true value (see `Boolean arguments`). If your
        prompt is a regular expression, make sure that the expression spans the
        whole prompt, because only the part of the output that matches the
        regular expression is stripped away.

        See `Logging` section for more information about log levels.
        """
        if not self._prompt_is_set():
            raise RuntimeError('Prompt is not set.')
        success, output = self._read_until_prompt()
        self._log(output, loglevel)
        if not success:
            prompt, regexp = self._prompt
            raise AssertionError("Prompt '%s' not found in %s."
                                 % (prompt if not regexp else prompt.pattern,
                                    secs_to_timestr(self._timeout)))
        if is_truthy(strip_prompt):
            output = self._strip_prompt(output)
        return output


    def _read_until_prompt(self):
        prompt, regexp = self._prompt
        read_until = self._read_until_regexp if regexp else self._read_until
        return read_until(prompt)

    def _strip_prompt(self, output):
        prompt, regexp = self._prompt
        if not regexp:
            length = len(prompt)
        else:
            match = prompt.search(output)
            length = match.end() - match.start()
        return output[:-length]

[docs]    def execute_command(self, command, loglevel=None, strip_prompt=False):
        """Executes the given ``command`` and reads, logs, and returns everything until the prompt.

        This keyword requires the prompt to be [#Configuration|configured]
        either in `importing` or with `Open Connection` or `Set Prompt` keyword.

        This is a convenience keyword that uses `Write` and `Read Until Prompt`
        internally. Following two examples are thus functionally identical:

        | ${out} = | `Execute Command`   | pwd |

        | `Write`  | pwd                 |
        | ${out} = | `Read Until Prompt` |

        See `Logging` section for more information about log levels and `Read
        Until Prompt` for more information about the ``strip_prompt`` parameter.
        """
        self.write(command, loglevel)
        return self.read_until_prompt(loglevel, strip_prompt)


    @contextmanager
    def _custom_timeout(self, timeout):
        old = self.set_timeout(timeout)
        try:
            yield
        finally:
            self.set_timeout(old)

    def _verify_connection(self):
        if not self.sock:
            raise RuntimeError('No connection open')

    def _log(self, msg, level=None):
        msg = msg.strip()
        if msg:
            logger.write(msg, level or self._default_log_level)

    def _negotiate_options(self, sock, cmd, opt):
        # We don't have state changes in our accepted telnet options.
        # Therefore, we just track if we've already responded to an option. If
        # this is the case, we must not send any response.
        if cmd in (telnetlib.DO, telnetlib.DONT, telnetlib.WILL, telnetlib.WONT):
            if (cmd, opt) in self._opt_responses:
                return
            else:
                self._opt_responses.append((cmd, opt))

        # This is supposed to turn server side echoing on and turn other options off.
        if opt == telnetlib.ECHO and cmd in (telnetlib.WILL, telnetlib.WONT):
            self._opt_echo_on(opt)
        elif cmd == telnetlib.DO and opt == telnetlib.TTYPE and self._terminal_type:
            self._opt_terminal_type(opt, self._terminal_type)
        elif cmd == telnetlib.DO and opt == telnetlib.NEW_ENVIRON and self._environ_user:
            self._opt_environ_user(opt, self._environ_user)
        elif cmd == telnetlib.DO and opt == telnetlib.NAWS and self._window_size:
            self._opt_window_size(opt, *self._window_size)
        elif opt != telnetlib.NOOPT:
            self._opt_dont_and_wont(cmd, opt)

    def _opt_echo_on(self, opt):
        return self.sock.sendall(telnetlib.IAC + telnetlib.DO + opt)

    def _opt_terminal_type(self, opt, terminal_type):
        self.sock.sendall(telnetlib.IAC + telnetlib.WILL + opt)
        self.sock.sendall(telnetlib.IAC + telnetlib.SB + telnetlib.TTYPE
                          + self.NEW_ENVIRON_IS + terminal_type
                          + telnetlib.IAC + telnetlib.SE)

    def _opt_environ_user(self, opt, environ_user):
        self.sock.sendall(telnetlib.IAC + telnetlib.WILL + opt)
        self.sock.sendall(telnetlib.IAC + telnetlib.SB + telnetlib.NEW_ENVIRON
                          + self.NEW_ENVIRON_IS + self.NEW_ENVIRON_VAR
                          + b"USER" + self.NEW_ENVIRON_VALUE + environ_user
                          + telnetlib.IAC + telnetlib.SE)

    def _opt_window_size(self, opt, window_x, window_y):
        self.sock.sendall(telnetlib.IAC + telnetlib.WILL + opt)
        self.sock.sendall(telnetlib.IAC + telnetlib.SB + telnetlib.NAWS
                          + struct.pack('!HH', window_x, window_y)
                          + telnetlib.IAC + telnetlib.SE)

    def _opt_dont_and_wont(self, cmd, opt):
        if cmd in (telnetlib.DO, telnetlib.DONT):
            self.sock.sendall(telnetlib.IAC + telnetlib.WONT + opt)
        elif cmd in (telnetlib.WILL, telnetlib.WONT):
            self.sock.sendall(telnetlib.IAC + telnetlib.DONT + opt)

[docs]    def msg(self, msg, *args):
        # Forward telnetlib's debug messages to log
        if self._telnetlib_log_level != 'NONE':
            logger.write(msg % args, self._telnetlib_log_level)


    def _check_terminal_emulation(self, terminal_emulation):
        if not terminal_emulation:
            return False
        if not pyte:
            raise RuntimeError("Terminal emulation requires pyte module!\n"
                               "http://pypi.python.org/pypi/pyte/")
        return TerminalEmulator(window_size=self._window_size,
                                newline=self._newline)



[docs]class TerminalEmulator(object):

    def __init__(self, window_size=None, newline="\r\n"):
        self._rows, self._columns = window_size or (200, 200)
        self._newline = newline
        self._stream = pyte.Stream()
        self._screen = pyte.HistoryScreen(self._rows,
                                          self._columns,
                                          history=100000)
        self._stream.attach(self._screen)
        self._buffer = ''
        self._whitespace_after_last_feed = ''

    @property
    def current_output(self):
        return self._buffer + self._dump_screen()

    def _dump_screen(self):
        return self._get_history(self._screen) + \
               self._get_screen(self._screen) + \
               self._whitespace_after_last_feed

    def _get_history(self, screen):
        if not screen.history.top:
            return ''
        rows = []
        for row in screen.history.top:
            # Newer pyte versions store row data in mappings
            data = (char.data for _, char in sorted(row.items()))
            rows.append(''.join(data).rstrip())
        return self._newline.join(rows).rstrip(self._newline) + self._newline

    def _get_screen(self, screen):
        rows = (row.rstrip() for row in screen.display)
        return self._newline.join(rows).rstrip(self._newline)

[docs]    def feed(self, text):
        self._stream.feed(text)
        self._whitespace_after_last_feed = text[len(text.rstrip()):]


[docs]    def read(self):
        current_out = self.current_output
        self._update_buffer('')
        return current_out


[docs]    def read_until(self, expected):
        current_out = self.current_output
        exp_index = current_out.find(expected)
        if exp_index != -1:
            self._update_buffer(current_out[exp_index+len(expected):])
            return current_out[:exp_index+len(expected)]
        return None


[docs]    def read_until_regexp(self, regexp_list):
        current_out = self.current_output
        for rgx in regexp_list:
            match = rgx.search(current_out)
            if match:
                self._update_buffer(current_out[match.end():])
                return current_out[:match.end()]
        return None


    def _update_buffer(self, terminal_buffer):
        self._buffer = terminal_buffer
        self._whitespace_after_last_feed = ''
        self._screen.reset()



[docs]class NoMatchError(AssertionError):
    ROBOT_SUPPRESS_NAME = True

    def __init__(self, expected, timeout, output=None):
        self.expected = expected
        self.timeout = secs_to_timestr(timeout)
        self.output = output
        AssertionError.__init__(self, self._get_message())

    def _get_message(self):
        expected = "'%s'" % self.expected \
                   if is_string(self.expected) \
                   else seq2str(self.expected, lastsep=' or ')
        msg = "No match found for %s in %s." % (expected, self.timeout)
        if self.output is not None:
            msg += ' Output:\n%s' % self.output
        return msg





          

      

      

    

  

    
      
          
            
  Source code for robot.libraries.XML

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

import copy
import re
import os

try:
    from lxml import etree as lxml_etree
except ImportError:
    lxml_etree = None

from robot.api import logger
from robot.api.deco import keyword
from robot.libraries.BuiltIn import BuiltIn
from robot.utils import (asserts, ET, ETSource, is_bytes, is_falsy, is_string,
                         is_truthy, plural_or_not as s, PY2)
from robot.version import get_version


should_be_equal = asserts.assert_equal
should_match = BuiltIn().should_match


[docs]class XML(object):
    """Robot Framework test library for verifying and modifying XML documents.

    As the name implies, _XML_ is a test library for verifying contents of XML
    files. In practice it is a pretty thin wrapper on top of Python's
    [http://docs.python.org/library/xml.etree.elementtree.html|ElementTree XML API].

    The library has the following main usages:

    - Parsing an XML file, or a string containing XML, into an XML element
      structure and finding certain elements from it for for further analysis
      (e.g. `Parse XML` and `Get Element` keywords).
    - Getting text or attributes of elements
      (e.g. `Get Element Text` and `Get Element Attribute`).
    - Directly verifying text, attributes, or whole elements
      (e.g `Element Text Should Be` and `Elements Should Be Equal`).
    - Modifying XML and saving it (e.g. `Set Element Text`, `Add Element`
      and `Save XML`).

    == Table of contents ==

    %TOC%

    = Parsing XML =

    XML can be parsed into an element structure using `Parse XML` keyword.
    The XML to be parsed can be specified using a path to an XML file or as
    a string or bytes that contain XML directly. The keyword returns the root
    element of the structure, which then contains other elements as its
    children and their children. Possible comments and processing instructions
    in the source XML are removed.

    XML is not validated during parsing even if has a schema defined. How
    possible doctype elements are handled otherwise depends on the used XML
    module and on the platform. The standard ElementTree strips doctypes
    altogether but when `using lxml` they are preserved when XML is saved.

    The element structure returned by `Parse XML`, as well as elements
    returned by keywords such as `Get Element`, can be used as the ``source``
    argument with other keywords. In addition to an already parsed XML
    structure, other keywords also accept paths to XML files and strings
    containing XML similarly as `Parse XML`. Notice that keywords that modify
    XML do not write those changes back to disk even if the source would be
    given as a path to a file. Changes must always saved explicitly using
    `Save XML` keyword.

    When the source is given as a path to a file, the forward slash character
    (``/``) can be used as the path separator regardless the operating system.
    On Windows also the backslash works, but it the test data it needs to be
    escaped by doubling it (``\\\\``). Using the built-in variable ``${/}``
    naturally works too.

    Note: Support for XML as bytes is new in Robot Framework 3.2.

    = Using lxml =

    By default this library uses Python's standard
    [http://docs.python.org/library/xml.etree.elementtree.html|ElementTree]
    module for parsing XML, but it can be configured to use
    [http://lxml.de|lxml] module instead when `importing` the library.
    The resulting element structure has same API regardless which module
    is used for parsing.

    The main benefits of using lxml is that it supports richer xpath syntax
    than the standard ElementTree and enables using `Evaluate Xpath` keyword.
    It also preserves the doctype and possible namespace prefixes saving XML.

    = Example =

    The following simple example demonstrates parsing XML and verifying its
    contents both using keywords in this library and in _BuiltIn_ and
    _Collections_ libraries. How to use xpath expressions to find elements
    and what attributes the returned elements contain are discussed, with
    more examples, in `Finding elements with xpath` and `Element attributes`
    sections.

    In this example, as well as in many other examples in this documentation,
    ``${XML}`` refers to the following example XML document. In practice
    ``${XML}`` could either be a path to an XML file or it could contain the XML
    itself.

    | <example>
    |   <first id="1">text</first>
    |   <second id="2">
    |     <child/>
    |   </second>
    |   <third>
    |     <child>more text</child>
    |     <second id="child"/>
    |     <child><grandchild/></child>
    |   </third>
    |   <html>
    |     <p>
    |       Text with <b>bold</b> and <i>italics</i>.
    |     </p>
    |   </html>
    | </example>

    | ${root} =                | `Parse XML`   | ${XML}  |       |             |
    | `Should Be Equal`        | ${root.tag}   | example |       |             |
    | ${first} =               | `Get Element` | ${root} | first |             |
    | `Should Be Equal`        | ${first.text} | text    |       |             |
    | `Dictionary Should Contain Key` | ${first.attrib}  | id    |             |
    | `Element Text Should Be` | ${first}      | text    |       |             |
    | `Element Attribute Should Be` | ${first} | id      | 1     |             |
    | `Element Attribute Should Be` | ${root}  | id      | 1     | xpath=first |
    | `Element Attribute Should Be` | ${XML}   | id      | 1     | xpath=first |

    Notice that in the example three last lines are equivalent. Which one to
    use in practice depends on which other elements you need to get or verify.
    If you only need to do one verification, using the last line alone would
    suffice. If more verifications are needed, parsing the XML with `Parse XML`
    only once would be more efficient.

    = Finding elements with xpath =

    ElementTree, and thus also this library, supports finding elements using
    xpath expressions. ElementTree does not, however, support the full xpath
    standard. The supported xpath syntax is explained below and
    [https://docs.python.org/library/xml.etree.elementtree.html#xpath-support|
    ElementTree documentation] provides more details. In the examples
    ``${XML}`` refers to the same XML structure as in the earlier example.

    If lxml support is enabled when `importing` the library, the whole
    [http://www.w3.org/TR/xpath/|xpath 1.0 standard] is supported.
    That includes everything listed below but also lot of other useful
    constructs.

    == Tag names ==

    When just a single tag name is used, xpath matches all direct child
    elements that have that tag name.

    | ${elem} =          | `Get Element`  | ${XML}      | third |
    | `Should Be Equal`  | ${elem.tag}    | third       |       |
    | @{children} =      | `Get Elements` | ${elem}     | child |
    | `Length Should Be` | ${children}    | 2           |       |

    == Paths ==

    Paths are created by combining tag names with a forward slash (``/``). For
    example, ``parent/child`` matches all ``child`` elements under ``parent``
    element. Notice that if there are multiple ``parent`` elements that all
    have ``child`` elements, ``parent/child`` xpath will match all these
    ``child`` elements.

    | ${elem} =         | `Get Element` | ${XML}     | second/child            |
    | `Should Be Equal` | ${elem.tag}   | child      |                         |
    | ${elem} =         | `Get Element` | ${XML}     | third/child/grandchild  |
    | `Should Be Equal` | ${elem.tag}   | grandchild |                         |

    == Wildcards ==

    An asterisk (``*``) can be used in paths instead of a tag name to denote
    any element.

    | @{children} =      | `Get Elements` | ${XML} | */child |
    | `Length Should Be` | ${children}    | 3      |         |

    == Current element ==

    The current element is denoted with a dot (``.``). Normally the current
    element is implicit and does not need to be included in the xpath.

    == Parent element ==

    The parent element of another element is denoted with two dots (``..``).
    Notice that it is not possible to refer to the parent of the current
    element.

    | ${elem} =         | `Get Element` | ${XML} | */second/.. |
    | `Should Be Equal` | ${elem.tag}   | third  |             |

    == Search all sub elements ==

    Two forward slashes (``//``) mean that all sub elements, not only the
    direct children, are searched. If the search is started from the current
    element, an explicit dot is required.

    | @{elements} =      | `Get Elements` | ${XML} | .//second |
    | `Length Should Be` | ${elements}    | 2      |           |
    | ${b} =             | `Get Element`  | ${XML} | html//b   |
    | `Should Be Equal`  | ${b.text}      | bold   |           |

    == Predicates ==

    Predicates allow selecting elements using also other criteria than tag
    names, for example, attributes or position. They are specified after the
    normal tag name or path using syntax ``path[predicate]``. The path can have
    wildcards and other special syntax explained earlier. What predicates
    the standard ElementTree supports is explained in the table below.

    |  = Predicate =  |             = Matches =           |    = Example =     |
    | @attrib         | Elements with attribute ``attrib``. | second[@id]        |
    | @attrib="value" | Elements with attribute ``attrib`` having value ``value``. | *[@id="2"] |
    | position        | Elements at the specified position. Position can be an integer (starting from 1), expression ``last()``, or relative expression like ``last() - 1``. | third/child[1] |
    | tag             | Elements with a child element named ``tag``. | third/child[grandchild] |

    Predicates can also be stacked like ``path[predicate1][predicate2]``.
    A limitation is that possible position predicate must always be first.

    = Element attributes =

    All keywords returning elements, such as `Parse XML`, and `Get Element`,
    return ElementTree's
    [http://docs.python.org/library/xml.etree.elementtree.html#element-objects|Element objects].
    These elements can be used as inputs for other keywords, but they also
    contain several useful attributes that can be accessed directly using
    the extended variable syntax.

    The attributes that are both useful and convenient to use in the test
    data are explained below. Also other attributes, including methods, can
    be accessed, but that is typically better to do in custom libraries than
    directly in the test data.

    The examples use the same ``${XML}`` structure as the earlier examples.

    == tag ==

    The tag of the element.

    | ${root} =         | `Parse XML` | ${XML}  |
    | `Should Be Equal` | ${root.tag} | example |

    == text ==

    The text that the element contains or Python ``None`` if the element has no
    text. Notice that the text _does not_ contain texts of possible child
    elements nor text after or between children. Notice also that in XML
    whitespace is significant, so the text contains also possible indentation
    and newlines. To get also text of the possible children, optionally
    whitespace normalized, use `Get Element Text` keyword.

    | ${1st} =          | `Get Element` | ${XML}  | first        |
    | `Should Be Equal` | ${1st.text}   | text    |              |
    | ${2nd} =          | `Get Element` | ${XML}  | second/child |
    | `Should Be Equal` | ${2nd.text}   | ${NONE} |              |
    | ${p} =            | `Get Element` | ${XML}  | html/p       |
    | `Should Be Equal` | ${p.text}     | \\n${SPACE*6}Text with${SPACE} |

    == tail ==

    The text after the element before the next opening or closing tag. Python
    ``None`` if the element has no tail. Similarly as with ``text``, also
    ``tail`` contains possible indentation and newlines.

    | ${b} =            | `Get Element` | ${XML}  | html/p/b  |
    | `Should Be Equal` | ${b.tail}     | ${SPACE}and${SPACE} |

    == attrib ==

    A Python dictionary containing attributes of the element.

    | ${2nd} =          | `Get Element`       | ${XML} | second |
    | `Should Be Equal` | ${2nd.attrib['id']} | 2      |        |
    | ${3rd} =          | `Get Element`       | ${XML} | third  |
    | `Should Be Empty` | ${3rd.attrib}       |        |        |

    = Handling XML namespaces =

    ElementTree and lxml handle possible namespaces in XML documents by adding
    the namespace URI to tag names in so called Clark Notation. That is
    inconvenient especially with xpaths, and by default this library strips
    those namespaces away and moves them to ``xmlns`` attribute instead. That
    can be avoided by passing ``keep_clark_notation`` argument to `Parse XML`
    keyword. Alternatively `Parse XML` supports stripping namespace information
    altogether by using ``strip_namespaces`` argument. The pros and cons of
    different approaches are discussed in more detail below.

    == How ElementTree handles namespaces ==

    If an XML document has namespaces, ElementTree adds namespace information
    to tag names in [http://www.jclark.com/xml/xmlns.htm|Clark Notation]
    (e.g. ``{http://ns.uri}tag``) and removes original ``xmlns`` attributes.
    This is done both with default namespaces and with namespaces with a prefix.
    How it works in practice is illustrated by the following example, where
    ``${NS}`` variable contains this XML document:

    | <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
    |                 xmlns="http://www.w3.org/1999/xhtml">
    |   <xsl:template match="/">
    |     <html></html>
    |   </xsl:template>
    | </xsl:stylesheet>

    | ${root} = | `Parse XML` | ${NS} | keep_clark_notation=yes |
    | `Should Be Equal` | ${root.tag} | {http://www.w3.org/1999/XSL/Transform}stylesheet |
    | `Element Should Exist` | ${root} | {http://www.w3.org/1999/XSL/Transform}template/{http://www.w3.org/1999/xhtml}html |
    | `Should Be Empty` | ${root.attrib} |

    As you can see, including the namespace URI in tag names makes xpaths
    really long and complex.

    If you save the XML, ElementTree moves namespace information back to
    ``xmlns`` attributes. Unfortunately it does not restore the original
    prefixes:

    | <ns0:stylesheet xmlns:ns0="http://www.w3.org/1999/XSL/Transform">
    |   <ns0:template match="/">
    |     <ns1:html xmlns:ns1="http://www.w3.org/1999/xhtml"></ns1:html>
    |   </ns0:template>
    | </ns0:stylesheet>

    The resulting output is semantically same as the original, but mangling
    prefixes like this may still not be desirable. Notice also that the actual
    output depends slightly on ElementTree version.

    == Default namespace handling ==

    Because the way ElementTree handles namespaces makes xpaths so complicated,
    this library, by default, strips namespaces from tag names and moves that
    information back to ``xmlns`` attributes. How this works in practice is
    shown by the example below, where ``${NS}`` variable contains the same XML
    document as in the previous example.

    | ${root} = | `Parse XML` | ${NS} | | |
    | `Should Be Equal` | ${root.tag} | stylesheet |
    | `Element Should Exist` | ${root} | template/html |
    | `Element Attribute Should Be` | ${root} | xmlns | http://www.w3.org/1999/XSL/Transform |
    | `Element Attribute Should Be` | ${root} | xmlns | http://www.w3.org/1999/xhtml | xpath=template/html |

    Now that tags do not contain namespace information, xpaths are simple again.

    A minor limitation of this approach is that namespace prefixes are lost.
    As a result the saved output is not exactly same as the original one in
    this case either:

    | <stylesheet xmlns="http://www.w3.org/1999/XSL/Transform">
    |   <template match="/">
    |     <html xmlns="http://www.w3.org/1999/xhtml"></html>
    |   </template>
    | </stylesheet>

    Also this output is semantically same as the original. If the original XML
    had only default namespaces, the output would also look identical.

    == Namespaces when using lxml ==

    This library handles namespaces same way both when `using lxml` and when
    not using it. There are, however, differences how lxml internally handles
    namespaces compared to the standard ElementTree. The main difference is
    that lxml stores information about namespace prefixes and they are thus
    preserved if XML is saved. Another visible difference is that lxml includes
    namespace information in child elements got with `Get Element` if the
    parent element has namespaces.

    == Stripping namespaces altogether ==

    Because namespaces often add unnecessary complexity, `Parse XML` supports
    stripping them altogether by using ``strip_namespaces=True``. When this
    option is enabled, namespaces are not shown anywhere nor are they included
    if XML is saved.

    == Attribute namespaces ==

    Attributes in XML documents are, by default, in the same namespaces as
    the element they belong to. It is possible to use different namespaces
    by using prefixes, but this is pretty rare.

    If an attribute has a namespace prefix, ElementTree will replace it with
    Clark Notation the same way it handles elements. Because stripping
    namespaces from attributes could cause attribute conflicts, this library
    does not handle attribute namespaces at all. Thus the following example
    works the same way regardless how namespaces are handled.

    | ${root} = | `Parse XML` | <root id="1" ns:id="2" xmlns:ns="http://my.ns"/> | |
    | `Element Attribute Should Be` | ${root} | id | 1 |
    | `Element Attribute Should Be` | ${root} | {http://my.ns}id | 2 |

    = Boolean arguments =

    Some keywords accept arguments that are handled as Boolean values true or
    false. If such an argument is given as a string, it is considered false if
    it is an empty string or equal to ``FALSE``, ``NONE``, ``NO``, ``OFF`` or
    ``0``, case-insensitively. Other strings are considered true regardless
    their value, and other argument types are tested using the same
    [http://docs.python.org/library/stdtypes.html#truth|rules as in Python].

    True examples:
    | `Parse XML` | ${XML} | keep_clark_notation=True    | # Strings are generally true.    |
    | `Parse XML` | ${XML} | keep_clark_notation=yes     | # Same as the above.             |
    | `Parse XML` | ${XML} | keep_clark_notation=${TRUE} | # Python ``True`` is true.       |
    | `Parse XML` | ${XML} | keep_clark_notation=${42}   | # Numbers other than 0 are true. |

    False examples:
    | `Parse XML` | ${XML} | keep_clark_notation=False    | # String ``false`` is false.   |
    | `Parse XML` | ${XML} | keep_clark_notation=no       | # Also string ``no`` is false. |
    | `Parse XML` | ${XML} | keep_clark_notation=${EMPTY} | # Empty string is false.       |
    | `Parse XML` | ${XML} | keep_clark_notation=${FALSE} | # Python ``False`` is false.   |

    Considering ``OFF`` and ``0`` false is new in Robot Framework 3.1.

    == Pattern matching ==

    Some keywords, for example `Elements Should Match`, support so called
    [http://en.wikipedia.org/wiki/Glob_(programming)|glob patterns] where:

    | ``*``        | matches any string, even an empty string                |
    | ``?``        | matches any single character                            |
    | ``[chars]``  | matches one character in the bracket                    |
    | ``[!chars]`` | matches one character not in the bracket                |
    | ``[a-z]``    | matches one character from the range in the bracket     |
    | ``[!a-z]``   | matches one character not from the range in the bracket |

    Unlike with glob patterns normally, path separator characters ``/`` and
    ``\\`` and the newline character ``\\n`` are matches by the above
    wildcards.

    Support for brackets like ``[abc]`` and ``[!a-z]`` is new in
    Robot Framework 3.1
    """
    ROBOT_LIBRARY_SCOPE = 'GLOBAL'
    ROBOT_LIBRARY_VERSION = get_version()
    _xml_declaration = re.compile('^<\?xml .*\?>')

    def __init__(self, use_lxml=False):
        """Import library with optionally lxml mode enabled.

        By default this library uses Python's standard
        [http://docs.python.org/library/xml.etree.elementtree.html|ElementTree]
        module for parsing XML. If ``use_lxml`` argument is given a true value
        (see `Boolean arguments`), the library will use [http://lxml.de|lxml]
        module instead. See `Using lxml` section for benefits provided by lxml.

        Using lxml requires that the lxml module is installed on the system.
        If lxml mode is enabled but the module is not installed, this library
        will emit a warning and revert back to using the standard ElementTree.
        """
        use_lxml = is_truthy(use_lxml)
        if use_lxml and lxml_etree:
            self.etree = lxml_etree
            self.modern_etree = True
            self.lxml_etree = True
        else:
            self.etree = ET
            self.modern_etree = ET.VERSION >= '1.3'
            self.lxml_etree = False
        if use_lxml and not lxml_etree:
            logger.warn('XML library reverted to use standard ElementTree '
                        'because lxml module is not installed.')
        self._ns_stripper = NameSpaceStripper(self.etree, self.lxml_etree)

[docs]    def parse_xml(self, source, keep_clark_notation=False, strip_namespaces=False):
        """Parses the given XML file or string into an element structure.

        The ``source`` can either be a path to an XML file or a string
        containing XML. In both cases the XML is parsed into ElementTree
        [http://docs.python.org/library/xml.etree.elementtree.html#element-objects|element structure]
        and the root element is returned. Possible comments and processing
        instructions in the source XML are removed.

        As discussed in `Handling XML namespaces` section, this keyword, by
        default, removes namespace information ElementTree has added to tag
        names and moves it into ``xmlns`` attributes. This typically eases
        handling XML documents with namespaces considerably. If you do not
        want that to happen, or want to avoid the small overhead of going
        through the element structure when your XML does not have namespaces,
        you can disable this feature by giving ``keep_clark_notation`` argument
        a true value (see `Boolean arguments`).

        If you want to strip namespace information altogether so that it is
        not included even if XML is saved, you can give a true value to
        ``strip_namespaces`` argument.

        Examples:
        | ${root} = | Parse XML | <root><child/></root> | |
        | ${xml} = | Parse XML | ${CURDIR}/test.xml | keep_clark_notation=True |
        | ${xml} = | Parse XML | ${CURDIR}/test.xml | strip_namespaces=True |

        Use `Get Element` keyword if you want to get a certain element and not
        the whole structure. See `Parsing XML` section for more details and
        examples.
        """
        with ETSource(source) as source:
            tree = self.etree.parse(source)
        if self.lxml_etree:
            strip = (lxml_etree.Comment, lxml_etree.ProcessingInstruction)
            lxml_etree.strip_elements(tree, *strip, **dict(with_tail=False))
        root = tree.getroot()
        if not is_truthy(keep_clark_notation):
            self._ns_stripper.strip(root, preserve=is_falsy(strip_namespaces))
        return root


[docs]    def get_element(self, source, xpath='.'):
        """Returns an element in the ``source`` matching the ``xpath``.

        The ``source`` can be a path to an XML file, a string containing XML, or
        an already parsed XML element. The ``xpath`` specifies which element to
        find. See the `introduction` for more details about both the possible
        sources and the supported xpath syntax.

        The keyword fails if more, or less, than one element matches the
        ``xpath``. Use `Get Elements` if you want all matching elements to be
        returned.

        Examples using ``${XML}`` structure from `Example`:
        | ${element} = | Get Element | ${XML}     | second |
        | ${child} =   | Get Element | ${element} | child  |

        `Parse XML` is recommended for parsing XML when the whole structure
        is needed. It must be used if there is a need to configure how XML
        namespaces are handled.

        Many other keywords use this keyword internally, and keywords modifying
        XML are typically documented to both to modify the given source and
        to return it. Modifying the source does not apply if the source is
        given as a string. The XML structure parsed based on the string and
        then modified is nevertheless returned.
        """
        elements = self.get_elements(source, xpath)
        if len(elements) != 1:
            self._raise_wrong_number_of_matches(len(elements), xpath)
        return elements[0]


    def _raise_wrong_number_of_matches(self, count, xpath, message=None):
        if not message:
            message = self._wrong_number_of_matches(count, xpath)
        raise AssertionError(message)

    def _wrong_number_of_matches(self, count, xpath):
        if not count:
            return "No element matching '%s' found." % xpath
        if count == 1:
            return "One element matching '%s' found." % xpath
        return "Multiple elements (%d) matching '%s' found." % (count, xpath)

[docs]    def get_elements(self, source, xpath):
        """Returns a list of elements in the ``source`` matching the ``xpath``.

        The ``source`` can be a path to an XML file, a string containing XML, or
        an already parsed XML element. The ``xpath`` specifies which element to
        find. See the `introduction` for more details.

        Elements matching the ``xpath`` are returned as a list. If no elements
        match, an empty list is returned. Use `Get Element` if you want to get
        exactly one match.

        Examples using ``${XML}`` structure from `Example`:
        | ${children} =    | Get Elements | ${XML} | third/child |
        | Length Should Be | ${children}  | 2      |             |
        | ${children} =    | Get Elements | ${XML} | first/child |
        | Should Be Empty  |  ${children} |        |             |
        """
        if is_string(source) or is_bytes(source):
            source = self.parse_xml(source)
        finder = ElementFinder(self.etree, self.modern_etree, self.lxml_etree)
        return finder.find_all(source, xpath)


[docs]    def get_child_elements(self, source, xpath='.'):
        """Returns the child elements of the specified element as a list.

        The element whose children to return is specified using ``source`` and
        ``xpath``. They have exactly the same semantics as with `Get Element`
        keyword.

        All the direct child elements of the specified element are returned.
        If the element has no children, an empty list is returned.

        Examples using ``${XML}`` structure from `Example`:
        | ${children} =    | Get Child Elements | ${XML} |             |
        | Length Should Be | ${children}        | 4      |             |
        | ${children} =    | Get Child Elements | ${XML} | xpath=first |
        | Should Be Empty  | ${children}        |        |             |
        """
        return list(self.get_element(source, xpath))


[docs]    def get_element_count(self, source, xpath='.'):
        """Returns and logs how many elements the given ``xpath`` matches.

        Arguments ``source`` and ``xpath`` have exactly the same semantics as
        with `Get Elements` keyword that this keyword uses internally.

        See also `Element Should Exist` and `Element Should Not Exist`.
        """
        count = len(self.get_elements(source, xpath))
        logger.info("%d element%s matched '%s'." % (count, s(count), xpath))
        return count


[docs]    def element_should_exist(self, source, xpath='.', message=None):
        """Verifies that one or more element match the given ``xpath``.

        Arguments ``source`` and ``xpath`` have exactly the same semantics as
        with `Get Elements` keyword. Keyword passes if the ``xpath`` matches
        one or more elements in the ``source``. The default error message can
        be overridden with the ``message`` argument.

        See also `Element Should Not Exist` as well as `Get Element Count`
        that this keyword uses internally.
        """
        count = self.get_element_count(source, xpath)
        if not count:
            self._raise_wrong_number_of_matches(count, xpath, message)


[docs]    def element_should_not_exist(self, source, xpath='.', message=None):
        """Verifies that no element match the given ``xpath``.

        Arguments ``source`` and ``xpath`` have exactly the same semantics as
        with `Get Elements` keyword. Keyword fails if the ``xpath`` matches any
        element in the ``source``. The default error message can be overridden
        with the ``message`` argument.

        See also `Element Should Exist` as well as `Get Element Count`
        that this keyword uses internally.
        """
        count = self.get_element_count(source, xpath)
        if count:
            self._raise_wrong_number_of_matches(count, xpath, message)


[docs]    def get_element_text(self, source, xpath='.', normalize_whitespace=False):
        """Returns all text of the element, possibly whitespace normalized.

        The element whose text to return is specified using ``source`` and
        ``xpath``. They have exactly the same semantics as with `Get Element`
        keyword.

        This keyword returns all the text of the specified element, including
        all the text its children and grandchildren contain. If the element
        has no text, an empty string is returned. The returned text is thus not
        always the same as the `text` attribute of the element.

        By default all whitespace, including newlines and indentation, inside
        the element is returned as-is. If ``normalize_whitespace`` is given
        a true value (see `Boolean arguments`), then leading and trailing
        whitespace is stripped, newlines and tabs converted to spaces, and
        multiple spaces collapsed into one. This is especially useful when
        dealing with HTML data.

        Examples using ``${XML}`` structure from `Example`:
        | ${text} =       | Get Element Text | ${XML}       | first        |
        | Should Be Equal | ${text}          | text         |              |
        | ${text} =       | Get Element Text | ${XML}       | second/child |
        | Should Be Empty | ${text}          |              |              |
        | ${paragraph} =  | Get Element      | ${XML}       | html/p       |
        | ${text} =       | Get Element Text | ${paragraph} | normalize_whitespace=yes |
        | Should Be Equal | ${text}          | Text with bold and italics. |

        See also `Get Elements Texts`, `Element Text Should Be` and
        `Element Text Should Match`.
        """
        element = self.get_element(source, xpath)
        text = ''.join(self._yield_texts(element))
        if is_truthy(normalize_whitespace):
            text = self._normalize_whitespace(text)
        return text


    def _yield_texts(self, element, top=True):
        if element.text:
            yield element.text
        for child in element:
            for text in self._yield_texts(child, top=False):
                yield text
        if element.tail and not top:
            yield element.tail

    def _normalize_whitespace(self, text):
        return ' '.join(text.split())

[docs]    def get_elements_texts(self, source, xpath, normalize_whitespace=False):
        """Returns text of all elements matching ``xpath`` as a list.

        The elements whose text to return is specified using ``source`` and
        ``xpath``. They have exactly the same semantics as with `Get Elements`
        keyword.

        The text of the matched elements is returned using the same logic
        as with `Get Element Text`. This includes optional whitespace
        normalization using the ``normalize_whitespace`` option.

        Examples using ``${XML}`` structure from `Example`:
        | @{texts} =       | Get Elements Texts | ${XML}    | third/child |
        | Length Should Be | ${texts}           | 2         |             |
        | Should Be Equal  | @{texts}[0]        | more text |             |
        | Should Be Equal  | @{texts}[1]        | ${EMPTY}  |             |
        """
        return [self.get_element_text(elem, normalize_whitespace=normalize_whitespace)
                for elem in self.get_elements(source, xpath)]


[docs]    def element_text_should_be(self, source, expected, xpath='.',
                               normalize_whitespace=False, message=None):
        """Verifies that the text of the specified element is ``expected``.

        The element whose text is verified is specified using ``source`` and
        ``xpath``. They have exactly the same semantics as with `Get Element`
        keyword.

        The text to verify is got from the specified element using the same
        logic as with `Get Element Text`. This includes optional whitespace
        normalization using the ``normalize_whitespace`` option.

        The keyword passes if the text of the element is equal to the
        ``expected`` value, and otherwise it fails. The default error message
        can be overridden with the ``message`` argument.  Use `Element Text
        Should Match` to verify the text against a pattern instead of an exact
        value.

        Examples using ``${XML}`` structure from `Example`:
        | Element Text Should Be | ${XML}       | text     | xpath=first      |
        | Element Text Should Be | ${XML}       | ${EMPTY} | xpath=second/child |
        | ${paragraph} =         | Get Element  | ${XML}   | xpath=html/p     |
        | Element Text Should Be | ${paragraph} | Text with bold and italics. | normalize_whitespace=yes |
        """
        text = self.get_element_text(source, xpath, normalize_whitespace)
        should_be_equal(text, expected, message, values=False)


[docs]    def element_text_should_match(self, source, pattern, xpath='.',
                                  normalize_whitespace=False, message=None):
        """Verifies that the text of the specified element matches ``expected``.

        This keyword works exactly like `Element Text Should Be` except that
        the expected value can be given as a pattern that the text of the
        element must match.

        Pattern matching is similar as matching files in a shell with
        ``*``, ``?`` and ``[chars]`` acting as wildcards. See the
        `Pattern matching` section for more information.

        Examples using ``${XML}`` structure from `Example`:
        | Element Text Should Match | ${XML}       | t???   | xpath=first  |
        | ${paragraph} =            | Get Element  | ${XML} | xpath=html/p |
        | Element Text Should Match | ${paragraph} | Text with * and *. | normalize_whitespace=yes |
        """
        text = self.get_element_text(source, xpath, normalize_whitespace)
        should_match(text, pattern, message, values=False)


[docs]    @keyword(types=None)
    def get_element_attribute(self, source, name, xpath='.', default=None):
        """Returns the named attribute of the specified element.

        The element whose attribute to return is specified using ``source`` and
        ``xpath``. They have exactly the same semantics as with `Get Element`
        keyword.

        The value of the attribute ``name`` of the specified element is returned.
        If the element does not have such element, the ``default`` value is
        returned instead.

        Examples using ``${XML}`` structure from `Example`:
        | ${attribute} =  | Get Element Attribute | ${XML} | id | xpath=first | |
        | Should Be Equal | ${attribute}          | 1      |    |             |
        | ${attribute} =  | Get Element Attribute | ${XML} | xx | xpath=first | default=value |
        | Should Be Equal | ${attribute}          | value  |    |             |

        See also `Get Element Attributes`, `Element Attribute Should Be`,
        `Element Attribute Should Match` and `Element Should Not Have Attribute`.
        """
        return self.get_element(source, xpath).get(name, default)


[docs]    def get_element_attributes(self, source, xpath='.'):
        """Returns all attributes of the specified element.

        The element whose attributes to return is specified using ``source`` and
        ``xpath``. They have exactly the same semantics as with `Get Element`
        keyword.

        Attributes are returned as a Python dictionary. It is a copy of the
        original attributes so modifying it has no effect on the XML structure.

        Examples using ``${XML}`` structure from `Example`:
        | ${attributes} = | Get Element Attributes      | ${XML} | first |
        | Dictionary Should Contain Key | ${attributes} | id     |       |
        | ${attributes} = | Get Element Attributes      | ${XML} | third |
        | Should Be Empty | ${attributes}               |        |       |

        Use `Get Element Attribute` to get the value of a single attribute.
        """
        return dict(self.get_element(source, xpath).attrib)


[docs]    def element_attribute_should_be(self, source, name, expected, xpath='.',
                                    message=None):
        """Verifies that the specified attribute is ``expected``.

        The element whose attribute is verified is specified using ``source``
        and ``xpath``. They have exactly the same semantics as with
        `Get Element` keyword.

        The keyword passes if the attribute ``name`` of the element is equal to
        the ``expected`` value, and otherwise it fails. The default error
        message can be overridden with the ``message`` argument.

        To test that the element does not have a certain attribute, Python
        ``None`` (i.e. variable ``${NONE}``) can be used as the expected value.
        A cleaner alternative is using `Element Should Not Have Attribute`.

        Examples using ``${XML}`` structure from `Example`:
        | Element Attribute Should Be | ${XML} | id | 1       | xpath=first |
        | Element Attribute Should Be | ${XML} | id | ${NONE} |             |

        See also `Element Attribute Should Match` and `Get Element Attribute`.
        """
        attr = self.get_element_attribute(source, name, xpath)
        should_be_equal(attr, expected, message, values=False)


[docs]    def element_attribute_should_match(self, source, name, pattern, xpath='.',
                                       message=None):
        """Verifies that the specified attribute matches ``expected``.

        This keyword works exactly like `Element Attribute Should Be` except
        that the expected value can be given as a pattern that the attribute of
        the element must match.

        Pattern matching is similar as matching files in a shell with
        ``*``, ``?`` and ``[chars]`` acting as wildcards. See the
        `Pattern matching` section for more information.

        Examples using ``${XML}`` structure from `Example`:
        | Element Attribute Should Match | ${XML} | id | ?   | xpath=first |
        | Element Attribute Should Match | ${XML} | id | c*d | xpath=third/second |
        """
        attr = self.get_element_attribute(source, name, xpath)
        if attr is None:
            raise AssertionError("Attribute '%s' does not exist." % name)
        should_match(attr, pattern, message, values=False)


[docs]    def element_should_not_have_attribute(self, source, name, xpath='.', message=None):
        """Verifies that the specified element does not have  attribute ``name``.

        The element whose attribute is verified is specified using ``source``
        and ``xpath``. They have exactly the same semantics as with
        `Get Element` keyword.

        The keyword fails if the specified element has attribute ``name``. The
        default error message can be overridden with the ``message`` argument.

        Examples using ``${XML}`` structure from `Example`:
        | Element Should Not Have Attribute | ${XML} | id  |
        | Element Should Not Have Attribute | ${XML} | xxx | xpath=first |

        See also `Get Element Attribute`, `Get Element Attributes`,
        `Element Text Should Be` and `Element Text Should Match`.
        """
        attr = self.get_element_attribute(source, name, xpath)
        if attr is not None:
            raise AssertionError(message or "Attribute '%s' exists and "
                                            "has value '%s'." % (name, attr))


[docs]    def elements_should_be_equal(self, source, expected, exclude_children=False,
                                 normalize_whitespace=False):
        """Verifies that the given ``source`` element is equal to ``expected``.

        Both ``source`` and ``expected`` can be given as a path to an XML file,
        as a string containing XML, or as an already parsed XML element
        structure. See `introduction` for more information about parsing XML in
        general.

        The keyword passes if the ``source`` element and ``expected`` element
        are equal. This includes testing the tag names, texts, and attributes
        of the elements. By default also child elements are verified the same
        way, but this can be disabled by setting ``exclude_children`` to a
        true value (see `Boolean arguments`).

        All texts inside the given elements are verified, but possible text
        outside them is not. By default texts must match exactly, but setting
        ``normalize_whitespace`` to a true value makes text verification
        independent on newlines, tabs, and the amount of spaces. For more
        details about handling text see `Get Element Text` keyword and
        discussion about elements' `text` and `tail` attributes in the
        `introduction`.

        Examples using ``${XML}`` structure from `Example`:
        | ${first} =               | Get Element | ${XML} | first             | |
        | Elements Should Be Equal | ${first}    | <first id="1">text</first> |
        | ${p} =                   | Get Element | ${XML} | html/p            |
        | Elements Should Be Equal | ${p} | <p>Text with <b>bold</b> and <i>italics</i>.</p> | normalize_whitespace=yes |
        | Elements Should Be Equal | ${p} | <p>Text with</p> | exclude | normalize |

        The last example may look a bit strange because the ``<p>`` element
        only has text ``Text with``. The reason is that rest of the text
        inside ``<p>`` actually belongs to the child elements. This includes
        the ``.`` at the end that is the `tail` text of the ``<i>`` element.

        See also `Elements Should Match`.
        """
        self._compare_elements(source, expected, should_be_equal,
                               exclude_children, normalize_whitespace)


[docs]    def elements_should_match(self, source, expected, exclude_children=False,
                              normalize_whitespace=False):
        """Verifies that the given ``source`` element matches ``expected``.

        This keyword works exactly like `Elements Should Be Equal` except that
        texts and attribute values in the expected value can be given as
        patterns.

        Pattern matching is similar as matching files in a shell with
        ``*``, ``?`` and ``[chars]`` acting as wildcards. See the
        `Pattern matching` section for more information.

        Examples using ``${XML}`` structure from `Example`:
        | ${first} =            | Get Element | ${XML} | first          |
        | Elements Should Match | ${first}    | <first id="?">*</first> |

        See `Elements Should Be Equal` for more examples.
        """
        self._compare_elements(source, expected, should_match,
                               exclude_children, normalize_whitespace)


    def _compare_elements(self, source, expected, comparator, exclude_children,
                          normalize_whitespace):
        normalizer = self._normalize_whitespace \
            if is_truthy(normalize_whitespace) else None
        comparator = ElementComparator(comparator, normalizer, exclude_children)
        comparator.compare(self.get_element(source), self.get_element(expected))

[docs]    def set_element_tag(self, source, tag, xpath='.'):
        """Sets the tag of the specified element.

        The element whose tag to set is specified using ``source`` and
        ``xpath``. They have exactly the same semantics as with `Get Element`
        keyword. The resulting XML structure is returned, and if the ``source``
        is an already parsed XML structure, it is also modified in place.

        Examples using ``${XML}`` structure from `Example`:
        | Set Element Tag      | ${XML}     | newTag     | |
        | Should Be Equal      | ${XML.tag} | newTag     |
        | Set Element Tag      | ${XML}     | xxx        | xpath=second/child |
        | Element Should Exist | ${XML}     | second/xxx |
        | Element Should Not Exist | ${XML} | second/child |

        Can only set the tag of a single element. Use `Set Elements Tag` to set
        the tag of multiple elements in one call.
        """
        source = self.get_element(source)
        self.get_element(source, xpath).tag = tag
        return source


[docs]    def set_elements_tag(self, source, tag, xpath='.'):
        """Sets the tag of the specified elements.

        Like `Set Element Tag` but sets the tag of all elements matching
        the given ``xpath``.
        """
        for elem in self.get_elements(source, xpath):
            self.set_element_tag(elem, tag)


[docs]    @keyword(types=None)
    def set_element_text(self, source, text=None, tail=None, xpath='.'):
        """Sets text and/or tail text of the specified element.

        The element whose text to set is specified using ``source`` and
        ``xpath``. They have exactly the same semantics as with `Get Element`
        keyword. The resulting XML structure is returned, and if the ``source``
        is an already parsed XML structure, it is also modified in place.

        Element's text and tail text are changed only if new ``text`` and/or
        ``tail`` values are given. See `Element attributes` section for more
        information about `text` and `tail` in general.

        Examples using ``${XML}`` structure from `Example`:
        | Set Element Text       | ${XML} | new text | xpath=first    | |
        | Element Text Should Be | ${XML} | new text | xpath=first    |
        | Set Element Text       | ${XML} | tail=&   | xpath=html/p/b |
        | Element Text Should Be | ${XML} | Text with bold&italics. | xpath=html/p  | normalize_whitespace=yes |
        | Set Element Text       | ${XML} | slanted  | !! | xpath=html/p/i |
        | Element Text Should Be | ${XML} | Text with bold&slanted!! | xpath=html/p  | normalize_whitespace=yes |

        Can only set the text/tail of a single element. Use `Set Elements Text`
        to set the text/tail of multiple elements in one call.
        """
        source = self.get_element(source)
        element = self.get_element(source, xpath)
        if text is not None:
            element.text = text
        if tail is not None:
            element.tail = tail
        return source


[docs]    @keyword(types=None)
    def set_elements_text(self, source, text=None, tail=None, xpath='.'):
        """Sets text and/or tail text of the specified elements.

        Like `Set Element Text` but sets the text or tail of all elements
        matching the given ``xpath``.
        """
        for elem in self.get_elements(source, xpath):
            self.set_element_text(elem, text, tail)


[docs]    def set_element_attribute(self, source, name, value, xpath='.'):
        """Sets attribute ``name`` of the specified element to ``value``.

        The element whose attribute to set is specified using ``source`` and
        ``xpath``. They have exactly the same semantics as with `Get Element`
        keyword. The resulting XML structure is returned, and if the ``source``
        is an already parsed XML structure, it is also modified in place.

        It is possible to both set new attributes and to overwrite existing.
        Use `Remove Element Attribute` or `Remove Element Attributes` for
        removing them.

        Examples using ``${XML}`` structure from `Example`:
        | Set Element Attribute       | ${XML} | attr | value | |
        | Element Attribute Should Be | ${XML} | attr | value |
        | Set Element Attribute       | ${XML} | id   | new   | xpath=first |
        | Element Attribute Should Be | ${XML} | id   | new   | xpath=first |

        Can only set an attribute of a single element. Use `Set Elements
        Attribute` to set an attribute of multiple elements in one call.
        """
        if not name:
            raise RuntimeError('Attribute name can not be empty.')
        source = self.get_element(source)
        self.get_element(source, xpath).attrib[name] = value
        return source


[docs]    def set_elements_attribute(self, source, name, value, xpath='.'):
        """Sets attribute ``name`` of the specified elements to ``value``.

        Like `Set Element Attribute` but sets the attribute of all elements
        matching the given ``xpath``.
        """
        for elem in self.get_elements(source, xpath):
            self.set_element_attribute(elem, name, value)


[docs]    def remove_element_attribute(self, source, name, xpath='.'):
        """Removes attribute ``name`` from the specified element.

        The element whose attribute to remove is specified using ``source`` and
        ``xpath``. They have exactly the same semantics as with `Get Element`
        keyword. The resulting XML structure is returned, and if the ``source``
        is an already parsed XML structure, it is also modified in place.

        It is not a failure to remove a non-existing attribute. Use `Remove
        Element Attributes` to remove all attributes and `Set Element Attribute`
        to set them.

        Examples using ``${XML}`` structure from `Example`:
        | Remove Element Attribute          | ${XML} | id | xpath=first |
        | Element Should Not Have Attribute | ${XML} | id | xpath=first |

        Can only remove an attribute from a single element. Use `Remove Elements
        Attribute` to remove an attribute of multiple elements in one call.
        """
        source = self.get_element(source)
        attrib = self.get_element(source, xpath).attrib
        if name in attrib:
            attrib.pop(name)
        return source


[docs]    def remove_elements_attribute(self, source, name, xpath='.'):
        """Removes attribute ``name`` from the specified elements.

        Like `Remove Element Attribute` but removes the attribute of all
        elements matching the given ``xpath``.
        """
        for elem in self.get_elements(source, xpath):
            self.remove_element_attribute(elem, name)


[docs]    def remove_element_attributes(self, source, xpath='.'):
        """Removes all attributes from the specified element.

        The element whose attributes to remove is specified using ``source`` and
        ``xpath``. They have exactly the same semantics as with `Get Element`
        keyword. The resulting XML structure is returned, and if the ``source``
        is an already parsed XML structure, it is also modified in place.

        Use `Remove Element Attribute` to remove a single attribute and
        `Set Element Attribute` to set them.

        Examples using ``${XML}`` structure from `Example`:
        | Remove Element Attributes         | ${XML} | xpath=first |
        | Element Should Not Have Attribute | ${XML} | id | xpath=first |

        Can only remove attributes from a single element. Use `Remove Elements
        Attributes` to remove all attributes of multiple elements in one call.
        """
        source = self.get_element(source)
        self.get_element(source, xpath).attrib.clear()
        return source


[docs]    def remove_elements_attributes(self, source, xpath='.'):
        """Removes all attributes from the specified elements.

        Like `Remove Element Attributes` but removes all attributes of all
        elements matching the given ``xpath``.
        """
        for elem in self.get_elements(source, xpath):
            self.remove_element_attributes(elem)


[docs]    def add_element(self, source, element, index=None, xpath='.'):
        """Adds a child element to the specified element.

        The element to whom to add the new element is specified using ``source``
        and ``xpath``. They have exactly the same semantics as with `Get Element`
        keyword. The resulting XML structure is returned, and if the ``source``
        is an already parsed XML structure, it is also modified in place.

        The ``element`` to add can be specified as a path to an XML file or
        as a string containing XML, or it can be an already parsed XML element.
        The element is copied before adding so modifying either the original
        or the added element has no effect on the other
        .
        The element is added as the last child by default, but a custom index
        can be used to alter the position. Indices start from zero (0 = first
        position, 1 = second position, etc.), and negative numbers refer to
        positions at the end (-1 = second last position, -2 = third last, etc.).

        Examples using ``${XML}`` structure from `Example`:
        | Add Element | ${XML} | <new id="x"><c1/></new> | | |
        | Add Element | ${XML} | <c2/> | xpath=new |
        | Add Element | ${XML} | <c3/> | index=1 | xpath=new |
        | ${new} = | Get Element | ${XML} | new |
        | Elements Should Be Equal | ${new} | <new id="x"><c1/><c3/><c2/></new> |

        Use `Remove Element` or `Remove Elements` to remove elements.
        """
        source = self.get_element(source)
        parent = self.get_element(source, xpath)
        element = self.copy_element(element)
        if index is None:
            parent.append(element)
        else:
            parent.insert(int(index), element)
        return source


[docs]    def remove_element(self, source, xpath='', remove_tail=False):
        """Removes the element matching ``xpath`` from the ``source`` structure.

        The element to remove from the ``source`` is specified with ``xpath``
        using the same semantics as with `Get Element` keyword. The resulting
        XML structure is returned, and if the ``source`` is an already parsed
        XML structure, it is also modified in place.

        The keyword fails if ``xpath`` does not match exactly one element.
        Use `Remove Elements` to remove all matched elements.

        Element's tail text is not removed by default, but that can be changed
        by giving ``remove_tail`` a true value (see `Boolean arguments`). See
        `Element attributes` section for more information about `tail` in
        general.

        Examples using ``${XML}`` structure from `Example`:
        | Remove Element           | ${XML} | xpath=second | | |
        | Element Should Not Exist | ${XML} | xpath=second |
        | Remove Element           | ${XML} | xpath=html/p/b | remove_tail=yes |
        | Element Text Should Be   | ${XML} | Text with italics. | xpath=html/p | normalize_whitespace=yes |
        """
        source = self.get_element(source)
        self._remove_element(source, self.get_element(source, xpath), remove_tail)
        return source


[docs]    def remove_elements(self, source, xpath='', remove_tail=False):
        """Removes all elements matching ``xpath`` from the ``source`` structure.

        The elements to remove from the ``source`` are specified with ``xpath``
        using the same semantics as with `Get Elements` keyword. The resulting
        XML structure is returned, and if the ``source`` is an already parsed
        XML structure, it is also modified in place.

        It is not a failure if ``xpath`` matches no elements. Use `Remove
        Element` to remove exactly one element.

        Element's tail text is not removed by default, but that can be changed
        by using ``remove_tail`` argument similarly as with `Remove Element`.

        Examples using ``${XML}`` structure from `Example`:
        | Remove Elements          | ${XML} | xpath=*/child      |
        | Element Should Not Exist | ${XML} | xpath=second/child |
        | Element Should Not Exist | ${XML} | xpath=third/child  |
        """
        source = self.get_element(source)
        for element in self.get_elements(source, xpath):
            self._remove_element(source, element, remove_tail)
        return source


    def _remove_element(self, root, element, remove_tail=False):
        parent = self._find_parent(root, element)
        if not is_truthy(remove_tail):
            self._preserve_tail(element, parent)
        parent.remove(element)

    def _find_parent(self, root, element):
        all_elements = root.getiterator() if PY2 else root.iter()
        for parent in all_elements:
            for child in parent:
                if child is element:
                    return parent
        raise RuntimeError('Cannot remove root element.')

    def _preserve_tail(self, element, parent):
        if not element.tail:
            return
        index = list(parent).index(element)
        if index == 0:
            parent.text = (parent.text or '') + element.tail
        else:
            sibling = parent[index-1]
            sibling.tail = (sibling.tail or '') + element.tail

[docs]    def clear_element(self, source, xpath='.', clear_tail=False):
        """Clears the contents of the specified element.

        The element to clear is specified using ``source`` and ``xpath``. They
        have exactly the same semantics as with `Get Element` keyword.
        The resulting XML structure is returned, and if the ``source`` is
        an already parsed XML structure, it is also modified in place.

        Clearing the element means removing its text, attributes, and children.
        Element's tail text is not removed by default, but that can be changed
        by giving ``clear_tail`` a true value (see `Boolean arguments`). See
        `Element attributes` section for more information about tail in
        general.

        Examples using ``${XML}`` structure from `Example`:
        | Clear Element            | ${XML}   | xpath=first | | |
        | ${first} = | Get Element | ${XML}   | xpath=first |
        | Elements Should Be Equal | ${first} | <first/>    |
        | Clear Element            | ${XML}   | xpath=html/p/b | clear_tail=yes |
        | Element Text Should Be   | ${XML}   | Text with italics. | xpath=html/p | normalize_whitespace=yes |
        | Clear Element            | ${XML}   |
        | Elements Should Be Equal | ${XML}   | <example/> |

        Use `Remove Element` to remove the whole element.
        """
        source = self.get_element(source)
        element = self.get_element(source, xpath)
        tail = element.tail
        element.clear()
        if not is_truthy(clear_tail):
            element.tail = tail
        return source


[docs]    def copy_element(self, source, xpath='.'):
        """Returns a copy of the specified element.

        The element to copy is specified using ``source`` and ``xpath``. They
        have exactly the same semantics as with `Get Element` keyword.

        If the copy or the original element is modified afterwards, the changes
        have no effect on the other.

        Examples using ``${XML}`` structure from `Example`:
        | ${elem} =  | Get Element  | ${XML}  | xpath=first |
        | ${copy1} = | Copy Element | ${elem} |
        | ${copy2} = | Copy Element | ${XML}  | xpath=first |
        | Set Element Text         | ${XML}   | new text    | xpath=first      |
        | Set Element Attribute    | ${copy1} | id          | new              |
        | Elements Should Be Equal | ${elem}  | <first id="1">new text</first> |
        | Elements Should Be Equal | ${copy1} | <first id="new">text</first>   |
        | Elements Should Be Equal | ${copy2} | <first id="1">text</first>     |
        """
        return copy.deepcopy(self.get_element(source, xpath))


[docs]    def element_to_string(self, source, xpath='.', encoding=None):
        """Returns the string representation of the specified element.

        The element to convert to a string is specified using ``source`` and
        ``xpath``. They have exactly the same semantics as with `Get Element`
        keyword.

        By default the string is returned as Unicode. If ``encoding`` argument
        is given any value, the string is returned as bytes in the specified
        encoding. The resulting string never contains the XML declaration.

        See also `Log Element` and `Save XML`.
        """
        source = self.get_element(source, xpath)
        string = self.etree.tostring(source, encoding='UTF-8').decode('UTF-8')
        string = self._xml_declaration.sub('', string).strip()
        if encoding:
            string = string.encode(encoding)
        return string


[docs]    def log_element(self, source, level='INFO', xpath='.'):
        """Logs the string representation of the specified element.

        The element specified with ``source`` and ``xpath`` is first converted
        into a string using `Element To String` keyword internally. The
        resulting string is then logged using the given ``level``.

        The logged string is also returned.
        """
        string = self.element_to_string(source, xpath)
        logger.write(string, level)
        return string


[docs]    def save_xml(self, source, path, encoding='UTF-8'):
        """Saves the given element to the specified file.

        The element to save is specified with ``source`` using the same
        semantics as with `Get Element` keyword.

        The file where the element is saved is denoted with ``path`` and the
        encoding to use with ``encoding``. The resulting file always contains
        the XML declaration.

        The resulting XML file may not be exactly the same as the original:
        - Comments and processing instructions are always stripped.
        - Possible doctype and namespace prefixes are only preserved when
          `using lxml`.
        - Other small differences are possible depending on the ElementTree
          or lxml version.

        Use `Element To String` if you just need a string representation of
        the element.
        """
        path = os.path.abspath(path.replace('/', os.sep))
        elem = self.get_element(source)
        tree = self.etree.ElementTree(elem)
        config = {'encoding': encoding}
        if self.modern_etree:
            config['xml_declaration'] = True
        if self.lxml_etree:
            elem = self._ns_stripper.unstrip(elem)
            # https://bugs.launchpad.net/lxml/+bug/1660433
            if tree.docinfo.doctype:
                config['doctype'] = tree.docinfo.doctype
            tree = self.etree.ElementTree(elem)
        with open(path, 'wb') as output:
            if 'doctype' in config:
                output.write(self.etree.tostring(tree, **config))
            else:
                tree.write(output, **config)
        logger.info('XML saved to <a href="file://%s">%s</a>.' % (path, path),
                    html=True)


[docs]    def evaluate_xpath(self, source, expression, context='.'):
        """Evaluates the given xpath expression and returns results.

        The element in which context the expression is executed is specified
        using ``source`` and ``context`` arguments. They have exactly the same
        semantics as ``source`` and ``xpath`` arguments have with `Get Element`
        keyword.

        The xpath expression to evaluate is given as ``expression`` argument.
        The result of the evaluation is returned as-is.

        Examples using ``${XML}`` structure from `Example`:
        | ${count} =      | Evaluate Xpath | ${XML}  | count(third/*) | |
        | Should Be Equal | ${count}       | ${3}    |
        | ${text} =       | Evaluate Xpath | ${XML}  | string(descendant::second[last()]/@id) |
        | Should Be Equal | ${text}        | child   |
        | ${bold} =       | Evaluate Xpath | ${XML}  | boolean(preceding-sibling::*[1] = 'bold') | context=html/p/i |
        | Should Be Equal | ${bold}        | ${True} |

        This keyword works only if lxml mode is taken into use when `importing`
        the library.
        """
        if not self.lxml_etree:
            raise RuntimeError("'Evaluate Xpath' keyword only works in lxml mode.")
        return self.get_element(source, context).xpath(expression)




[docs]class NameSpaceStripper(object):

    def __init__(self, etree, lxml_etree=False):
        self.etree = etree
        self.lxml_tree = lxml_etree

[docs]    def strip(self, elem, preserve=True, current_ns=None, top=True):
        if elem.tag.startswith('{') and '}' in elem.tag:
            ns, elem.tag = elem.tag[1:].split('}', 1)
            if preserve and ns != current_ns:
                elem.attrib['xmlns'] = ns
                current_ns = ns
        elif current_ns:
            elem.attrib['xmlns'] = ''
            current_ns = None
        for child in elem:
            self.strip(child, preserve, current_ns, top=False)
        if top and not preserve and self.lxml_tree:
            self.etree.cleanup_namespaces(elem)


[docs]    def unstrip(self, elem, current_ns=None, copied=False):
        if not copied:
            elem = copy.deepcopy(elem)
        ns = elem.attrib.pop('xmlns', current_ns)
        if ns:
            elem.tag = '{%s}%s' % (ns, elem.tag)
        for child in elem:
            self.unstrip(child, ns, copied=True)
        return elem




[docs]class ElementFinder(object):

    def __init__(self, etree, modern=True, lxml=False):
        self.etree = etree
        self.modern = modern
        self.lxml = lxml

[docs]    def find_all(self, elem, xpath):
        xpath = self._get_xpath(xpath)
        if xpath == '.':  # ET < 1.3 does not support '.' alone.
            return [elem]
        if not self.lxml:
            return elem.findall(xpath)
        finder = self.etree.ETXPath(xpath)
        return finder(elem)


    def _get_xpath(self, xpath):
        if not xpath:
            raise RuntimeError('No xpath given.')
        if self.modern:
            return xpath
        try:
            return str(xpath)
        except UnicodeError:
            if not xpath.replace('/', '').isalnum():
                logger.warn('XPATHs containing non-ASCII characters and '
                            'other than tag names do not always work with '
                            'Python versions prior to 2.7. Verify results '
                            'manually and consider upgrading to 2.7.')
            return xpath



[docs]class ElementComparator(object):

    def __init__(self, comparator, normalizer=None, exclude_children=False):
        self._comparator = comparator
        self._normalizer = normalizer or (lambda text: text)
        self._exclude_children = is_truthy(exclude_children)

[docs]    def compare(self, actual, expected, location=None):
        if not location:
            location = Location(actual.tag)
        self._compare_tags(actual, expected, location)
        self._compare_attributes(actual, expected, location)
        self._compare_texts(actual, expected, location)
        if location.is_not_root:
            self._compare_tails(actual, expected, location)
        if not self._exclude_children:
            self._compare_children(actual, expected, location)


    def _compare_tags(self, actual, expected, location):
        self._compare(actual.tag, expected.tag, 'Different tag name', location,
                      should_be_equal)

    def _compare(self, actual, expected, message, location, comparator=None):
        if location.is_not_root:
            message = "%s at '%s'" % (message, location.path)
        if not comparator:
            comparator = self._comparator
        comparator(actual, expected, message)

    def _compare_attributes(self, actual, expected, location):
        self._compare(sorted(actual.attrib), sorted(expected.attrib),
                      'Different attribute names', location, should_be_equal)
        for key in actual.attrib:
            self._compare(actual.attrib[key], expected.attrib[key],
                          "Different value for attribute '%s'" % key, location)

    def _compare_texts(self, actual, expected, location):
        self._compare(self._text(actual.text), self._text(expected.text),
                      'Different text', location)

    def _text(self, text):
        return self._normalizer(text or '')

    def _compare_tails(self, actual, expected, location):
        self._compare(self._text(actual.tail), self._text(expected.tail),
                      'Different tail text', location)

    def _compare_children(self, actual, expected, location):
        self._compare(len(actual), len(expected), 'Different number of child elements',
                      location, should_be_equal)
        for act, exp in zip(actual, expected):
            self.compare(act, exp, location.child(act.tag))



[docs]class Location(object):

    def __init__(self, path, is_root=True):
        self.path = path
        self.is_not_root = not is_root
        self._children = {}

[docs]    def child(self, tag):
        if tag not in self._children:
            self._children[tag] = 1
        else:
            self._children[tag] += 1
            tag += '[%d]' % self._children[tag]
        return Location('%s/%s' % (self.path, tag), is_root=False)






          

      

      

    

  

    
      
          
            
  Source code for robot.libraries.dialogs_py

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

import sys
from threading import current_thread
import time

try:
    from Tkinter import (Button, Entry, Frame, Label, Listbox, TclError,
                         Toplevel, Tk, BOTH, END, LEFT, W)
except ImportError:
    from tkinter import (Button, Entry, Frame, Label, Listbox, TclError,
                         Toplevel, Tk, BOTH, END, LEFT, W)


class _TkDialog(Toplevel):
    _left_button = 'OK'
    _right_button = 'Cancel'

    def __init__(self, message, value=None, **extra):
        self._prevent_execution_with_timeouts()
        self._parent = self._get_parent()
        Toplevel.__init__(self, self._parent)
        self._initialize_dialog()
        self._create_body(message, value, **extra)
        self._create_buttons()
        self._result = None

    def _prevent_execution_with_timeouts(self):
        if 'linux' not in sys.platform and current_thread().name != 'MainThread':
            raise RuntimeError('Dialogs library is not supported with '
                               'timeouts on Python on this platform.')

    def _get_parent(self):
        parent = Tk()
        parent.withdraw()
        return parent

    def _initialize_dialog(self):
        self.title('Robot Framework')
        self.grab_set()
        self.protocol("WM_DELETE_WINDOW", self._close)
        self.bind("<Escape>", self._close)
        self.minsize(250, 80)
        self.geometry("+%d+%d" % self._get_center_location())
        self._bring_to_front()

    def grab_set(self, timeout=30):
        maxtime = time.time() + timeout
        while time.time() < maxtime:
            try:
                # Fails at least on Linux if mouse is hold down.
                return Toplevel.grab_set(self)
            except TclError:
                pass
        raise RuntimeError('Failed to open dialog in %s seconds. One possible '
                           'reason is holding down mouse button.' % timeout)

    def _get_center_location(self):
        x = (self.winfo_screenwidth() - self.winfo_reqwidth()) // 2
        y = (self.winfo_screenheight() - self.winfo_reqheight()) // 2
        return x, y

    def _bring_to_front(self):
        self.lift()
        self.attributes('-topmost', True)
        self.after_idle(self.attributes, '-topmost', False)

    def _create_body(self, message, value, **extra):
        frame = Frame(self)
        Label(frame, text=message, anchor=W, justify=LEFT, wraplength=800).pack(fill=BOTH)
        selector = self._create_selector(frame, value, **extra)
        if selector:
            selector.pack(fill=BOTH)
            selector.focus_set()
        frame.pack(padx=5, pady=5, expand=1, fill=BOTH)

    def _create_selector(self, frame, value):
        return None

    def _create_buttons(self):
        frame = Frame(self)
        self._create_button(frame, self._left_button,
                            self._left_button_clicked)
        self._create_button(frame, self._right_button,
                            self._right_button_clicked)
        frame.pack()

    def _create_button(self, parent, label, callback):
        if label:
            button = Button(parent, text=label, width=10, command=callback)
            button.pack(side=LEFT, padx=5, pady=5)

    def _left_button_clicked(self, event=None):
        if self._validate_value():
            self._result = self._get_value()
            self._close()

    def _validate_value(self):
        return True

    def _get_value(self):
        return None

    def _close(self, event=None):
        # self.destroy() is not enough on Linux
        self._parent.destroy()

    def _right_button_clicked(self, event=None):
        self._result = self._get_right_button_value()
        self._close()

    def _get_right_button_value(self):
        return None

    def show(self):
        self.wait_window(self)
        return self._result


[docs]class MessageDialog(_TkDialog):
    _right_button = None



[docs]class InputDialog(_TkDialog):

    def __init__(self, message, default='', hidden=False):
        _TkDialog.__init__(self, message, default, hidden=hidden)

    def _create_selector(self, parent, default, hidden):
        self._entry = Entry(parent, show='*' if hidden else '')
        self._entry.insert(0, default)
        self._entry.select_range(0, END)
        return self._entry

    def _get_value(self):
        return self._entry.get()



[docs]class SelectionDialog(_TkDialog):

    def __init__(self, message, values):
        _TkDialog.__init__(self, message, values)

    def _create_selector(self, parent, values):
        self._listbox = Listbox(parent)
        for item in values:
            self._listbox.insert(END, item)
        self._listbox.config(width=0)
        return self._listbox

    def _validate_value(self):
        return bool(self._listbox.curselection())

    def _get_value(self):
        return self._listbox.get(self._listbox.curselection())



[docs]class MultipleSelectionDialog(_TkDialog):

    def __init__(self, message, values):
        _TkDialog.__init__(self, message, values)

    def _create_selector(self, parent, values):
        self._listbox = Listbox(parent, selectmode='multiple')
        for item in values:
            self._listbox.insert(END, item)
        self._listbox.config(width=0)
        return self._listbox

    def _get_value(self):
        selected_values = [self._listbox.get(i) for i in self._listbox.curselection()]
        return selected_values



[docs]class PassFailDialog(_TkDialog):
    _left_button = 'PASS'
    _right_button = 'FAIL'

    def _get_value(self):
        return True

    def _get_right_button_value(self):
        return False





          

      

      

    

  

    
      
          
            
  Source code for robot.model.body

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

import re

from .itemlist import ItemList
from .modelobject import ModelObject


[docs]class BodyItem(ModelObject):
    KEYWORD = 'KEYWORD'
    SETUP = 'SETUP'
    TEARDOWN = 'TEARDOWN'
    FOR = 'FOR'
    FOR_ITERATION = 'FOR ITERATION'
    IF_ELSE_ROOT = 'IF/ELSE ROOT'
    IF = 'IF'
    ELSE_IF = 'ELSE IF'
    ELSE = 'ELSE'
    MESSAGE = 'MESSAGE'
    type = None
    __slots__ = ['parent']

    @property
    def id(self):
        """Item id in format like ``s1-t3-k1``.

        See :attr:`TestSuite.id <robot.model.testsuite.TestSuite.id>` for
        more information.
        """
        # This algorithm must match the id creation algorithm in the JavaScript side
        # or linking to warnings and errors won't work.
        if not self:
            return None
        if not self.parent:
            return 'k1'
        setup = getattr(self.parent, 'setup', None)
        body = getattr(self.parent, 'body', ())
        teardown = getattr(self.parent, 'teardown', None)
        steps = [step for step in [setup] + list(body) + [teardown]
                 if step and step.type != step.MESSAGE]
        return '%s-k%d' % (self.parent.id, steps.index(self) + 1)



[docs]class Body(ItemList):
    """A list-like object representing body of a suite, a test or a keyword.

    Body contains the keywords and other structures such as for loops.
    """
    __slots__ = []
    # Set using 'Body.register' when these classes are created.
    keyword_class = None
    for_class = None
    if_class = None

    def __init__(self, parent=None, items=None):
        ItemList.__init__(self, BodyItem, {'parent': parent}, items)

[docs]    @classmethod
    def register(cls, item_class):
        name_parts = re.findall('([A-Z][a-z]+)', item_class.__name__) + ['class']
        name = '_'.join(name_parts).lower()
        if not hasattr(cls, name):
            raise TypeError("Cannot register '%s'." % name)
        setattr(cls, name, item_class)
        return item_class


    @property
    def create(self):
        raise AttributeError(
            "'%s' object has no attribute 'create'. "
            "Use item specific methods like 'create_keyword' instead."
            % type(self).__name__
        )

[docs]    def create_keyword(self, *args, **kwargs):
        return self._create(self.keyword_class, 'create_keyword', args, kwargs)


    def _create(self, cls, name, args, kwargs):
        if cls is None:
            raise TypeError("'%s' object does not support '%s'."
                            % (type(self).__name__, name))
        return self.append(cls(*args, **kwargs))

[docs]    def create_for(self, *args, **kwargs):
        return self._create(self.for_class, 'create_for', args, kwargs)


[docs]    def create_if(self, *args, **kwargs):
        return self._create(self.if_class, 'create_if', args, kwargs)


[docs]    def filter(self, keywords=None, fors=None, ifs=None, predicate=None):
        """Filter body items based on type and/or custom predicate.

        To include or exclude items based on types, give matching arguments
        ``True`` or ``False`` values. For example, to include only keywords, use
        ``body.filter(keywords=True)`` and to exclude FOR and IF constructs use
        ``body.filter(fors=False, ifs=False)``. Including and excluding by types
        at the same time is not supported.

        Custom ``predicate`` is a calleble getting each body item as an argument
        that must return ``True/False`` depending on should the item be included
        or not.

        Selected items are returned as a list and the original body is not modified.
        """
        return self._filter([(self.keyword_class, keywords),
                             (self.for_class, fors),
                             (self.if_class, ifs)], predicate)


    def _filter(self, types, predicate):
        include = [cls for cls, activated in types if activated is True and cls]
        exclude = [cls for cls, activated in types if activated is False and cls]
        if include and exclude:
            raise ValueError('Items cannot be both included and excluded by type.')
        items = list(self)
        if include:
            items = [item for item in items if isinstance(item, tuple(include))]
        if exclude:
            items = [item for item in items if not isinstance(item, tuple(exclude))]
        if predicate:
            items = [item for item in items if predicate(item)]
        return items



[docs]class IfBranches(Body):
    if_branch_class = None
    keyword_class = None
    for_class = None
    if_class = None
    __slots__ = []

[docs]    def create_branch(self, *args, **kwargs):
        return self.append(self.if_branch_class(*args, **kwargs))






          

      

      

    

  

    
      
          
            
  Source code for robot.model.configurer

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from robot.utils import seq2str
from robot.errors import DataError

from .visitor import SuiteVisitor


[docs]class SuiteConfigurer(SuiteVisitor):

    def __init__(self, name=None, doc=None, metadata=None, set_tags=None,
                 include_tags=None, exclude_tags=None, include_suites=None,
                 include_tests=None, empty_suite_ok=False):
        self.name = name
        self.doc = doc
        self.metadata = metadata
        self.set_tags = set_tags or []
        self.include_tags = include_tags
        self.exclude_tags = exclude_tags
        self.include_suites = include_suites
        self.include_tests = include_tests
        self.empty_suite_ok = empty_suite_ok

    @property
    def add_tags(self):
        return [t for t in self.set_tags if not t.startswith('-')]

    @property
    def remove_tags(self):
        return [t[1:] for t in self.set_tags if t.startswith('-')]

[docs]    def visit_suite(self, suite):
        self._set_suite_attributes(suite)
        self._filter(suite)
        suite.set_tags(self.add_tags, self.remove_tags)


    def _set_suite_attributes(self, suite):
        if self.name:
            suite.name = self.name
        if self.doc:
            suite.doc = self.doc
        if self.metadata:
            suite.metadata.update(self.metadata)

    def _filter(self, suite):
        name = suite.name
        suite.filter(self.include_suites, self.include_tests,
                     self.include_tags, self.exclude_tags)
        if not (suite.test_count or self.empty_suite_ok):
            self._raise_no_tests_error(name, suite.rpa)

    def _raise_no_tests_error(self, suite, rpa=False):
        parts = ['tests' if not rpa else 'tasks',
                 self._get_test_selector_msgs(),
                 self._get_suite_selector_msg()]
        raise DataError("Suite '%s' contains no %s."
                        % (suite, ' '.join(p for p in parts if p)))

    def _get_test_selector_msgs(self):
        parts = []
        for explanation, selector in [('matching tags', self.include_tags),
                                      ('not matching tags', self.exclude_tags),
                                      ('matching name', self.include_tests)]:
            if selector:
                parts.append(self._format_selector_msg(explanation, selector))
        return seq2str(parts, quote='')

    def _format_selector_msg(self, explanation, selector):
        if len(selector) == 1 and explanation[-1] == 's':
            explanation = explanation[:-1]
        return '%s %s' % (explanation, seq2str(selector, lastsep=' or '))

    def _get_suite_selector_msg(self):
        if not self.include_suites:
            return ''
        return self._format_selector_msg('in suites', self.include_suites)





          

      

      

    

  

    
      
          
            
  Source code for robot.model.control

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from robot.utils import setter, py3to2

from .body import Body, BodyItem, IfBranches
from .keyword import Keywords


[docs]@py3to2
@Body.register
class For(BodyItem):
    type = BodyItem.FOR
    body_class = Body
    repr_args = ('variables', 'flavor', 'values')
    __slots__ = ['variables', 'flavor', 'values']

    def __init__(self, variables=(), flavor='IN', values=(), parent=None):
        self.variables = variables
        self.flavor = flavor
        self.values = values
        self.parent = parent
        self.body = None

    @setter
    def body(self, body):
        return self.body_class(self, body)

    @property
    def keywords(self):
        """Deprecated since Robot Framework 4.0. Use :attr:`body` instead."""
        return Keywords(self, self.body)

    @keywords.setter
    def keywords(self, keywords):
        Keywords.raise_deprecation_error()

[docs]    def visit(self, visitor):
        visitor.visit_for(self)


    def __str__(self):
        variables = '    '.join(self.variables)
        values = '    '.join(self.values)
        return u'FOR    %s    %s    %s' % (variables, self.flavor, values)



[docs]@Body.register
class If(BodyItem):
    """IF/ELSE structure root. Branches are stored in :attr:`body`."""
    type = BodyItem.IF_ELSE_ROOT
    body_class = IfBranches
    __slots__ = ['parent']

    def __init__(self, parent=None):
        self.parent = parent
        self.body = None

    @setter
    def body(self, body):
        return self.body_class(self, body)

    @property
    def id(self):
        """Root IF/ELSE id is always ``None``."""
        return None

[docs]    def visit(self, visitor):
        visitor.visit_if(self)




[docs]@py3to2
@IfBranches.register
class IfBranch(BodyItem):
    body_class = Body
    repr_args = ('type', 'condition')
    __slots__ = ['type', 'condition']

    def __init__(self, type=BodyItem.IF, condition=None, parent=None):
        self.type = type
        self.condition = condition
        self.parent = parent
        self.body = None

    @setter
    def body(self, body):
        return self.body_class(self, body)

    @property
    def id(self):
        """Branch id omits the root IF/ELSE object from the parent id part."""
        if not self.parent:
            return 'k1'
        index = self.parent.body.index(self) + 1
        if not self.parent.parent:
            return 'k%d' % index
        return '%s-k%d' % (self.parent.parent.id, index)

    def __str__(self):
        if self.type == self.IF:
            return u'IF    %s' % self.condition
        if self.type == self.ELSE_IF:
            return u'ELSE IF    %s' % self.condition
        return u'ELSE'

[docs]    def visit(self, visitor):
        visitor.visit_if_branch(self)






          

      

      

    

  

    
      
          
            
  Source code for robot.model.filter

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from robot.utils import py3to2, setter

from .tags import TagPatterns
from .namepatterns import SuiteNamePatterns, TestNamePatterns
from .visitor import SuiteVisitor


[docs]class EmptySuiteRemover(SuiteVisitor):

    def __init__(self, preserve_direct_children=False):
        self.preserve_direct_children = preserve_direct_children

[docs]    def end_suite(self, suite):
        if suite.parent or not self.preserve_direct_children:
            suite.suites = [s for s in suite.suites if s.test_count]


[docs]    def visit_test(self, test):
        pass


[docs]    def visit_keyword(self, kw):
        pass




[docs]@py3to2
class Filter(EmptySuiteRemover):

    def __init__(self, include_suites=None, include_tests=None,
                 include_tags=None, exclude_tags=None):
        EmptySuiteRemover.__init__(self)
        self.include_suites = include_suites
        self.include_tests = include_tests
        self.include_tags = include_tags
        self.exclude_tags = exclude_tags

    @setter
    def include_suites(self, suites):
        return SuiteNamePatterns(suites) \
            if not isinstance(suites, SuiteNamePatterns) else suites

    @setter
    def include_tests(self, tests):
        return TestNamePatterns(tests) \
            if not isinstance(tests, TestNamePatterns) else tests

    @setter
    def include_tags(self, tags):
        return TagPatterns(tags) if not isinstance(tags, TagPatterns) else tags

    @setter
    def exclude_tags(self, tags):
        return TagPatterns(tags) if not isinstance(tags, TagPatterns) else tags

[docs]    def start_suite(self, suite):
        if not self:
            return False
        if hasattr(suite, 'starttime'):
            suite.starttime = suite.endtime = None
        if self.include_suites:
            return self._filter_by_suite_name(suite)
        if self.include_tests:
            suite.tests = self._filter(suite, self._included_by_test_name)
        if self.include_tags:
            suite.tests = self._filter(suite, self._included_by_tags)
        if self.exclude_tags:
            suite.tests = self._filter(suite, self._not_excluded_by_tags)
        return bool(suite.suites)


    def _filter_by_suite_name(self, suite):
        if self.include_suites.match(suite.name, suite.longname):
            suite.visit(Filter(include_suites=[],
                               include_tests=self.include_tests,
                               include_tags=self.include_tags,
                               exclude_tags=self.exclude_tags))
            return False
        suite.tests = []
        return True

    def _filter(self, suite, filter):
        return [t for t in suite.tests if filter(t)]

    def _included_by_test_name(self, test):
        return self.include_tests.match(test.name, test.longname)

    def _included_by_tags(self, test):
        return self.include_tags.match(test.tags)

    def _not_excluded_by_tags(self, test):
        return not self.exclude_tags.match(test.tags)

    def __bool__(self):
        return bool(self.include_suites or self.include_tests or
                    self.include_tags or self.exclude_tags)





          

      

      

    

  

    
      
          
            
  Source code for robot.model.fixture

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

[docs]def create_fixture(fixture, parent, type):
    # TestCase and TestSuite have 'fixture_class', Keyword doesn't.
    fixture_class = getattr(parent, 'fixture_class', parent.__class__)
    if fixture is None:
        fixture = fixture_class(None, parent=parent, type=type)
    elif isinstance(fixture, fixture_class):
        fixture.parent = parent
        fixture.type = type
    else:
        raise TypeError("Only %s objects accepted, got %s."
                        % (fixture_class.__name__, fixture.__class__.__name__))
    return fixture





          

      

      

    

  

    
      
          
            
  Source code for robot.model.itemlist

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from functools import total_ordering

from robot.utils import py3to2


# TODO: When Python 2 support is dropped, we could extend MutableSequence.
# In Python 2 it doesn't have slots: https://bugs.python.org/issue11333


[docs]@total_ordering
@py3to2
class ItemList(object):
    __slots__ = ['_item_class', '_common_attrs', '_items']

    def __init__(self, item_class, common_attrs=None, items=None):
        self._item_class = item_class
        self._common_attrs = common_attrs
        self._items = []
        if items:
            self.extend(items)

[docs]    def create(self, *args, **kwargs):
        return self.append(self._item_class(*args, **kwargs))


[docs]    def append(self, item):
        self._check_type_and_set_attrs(item)
        self._items.append(item)
        return item


    def _check_type_and_set_attrs(self, *items):
        common_attrs = self._common_attrs or {}
        for item in items:
            if not isinstance(item, self._item_class):
                raise TypeError("Only %s objects accepted, got %s."
                                % (self._item_class.__name__,
                                   item.__class__.__name__))
            for attr in common_attrs:
                setattr(item, attr, common_attrs[attr])
        return items

[docs]    def extend(self, items):
        self._items.extend(self._check_type_and_set_attrs(*items))


[docs]    def insert(self, index, item):
        self._check_type_and_set_attrs(item)
        self._items.insert(index, item)


[docs]    def pop(self, *index):
        return self._items.pop(*index)


[docs]    def remove(self, item):
        self._items.remove(item)


[docs]    def index(self, item, *start_and_end):
        return self._items.index(item, *start_and_end)


[docs]    def clear(self):
        self._items = []


[docs]    def visit(self, visitor):
        for item in self:
            item.visit(visitor)


    def __iter__(self):
        index = 0
        while index < len(self._items):
            yield self._items[index]
            index += 1

    def __getitem__(self, index):
        if not isinstance(index, slice):
            return self._items[index]
        return self._create_new_from(self._items[index])

    def _create_new_from(self, items):
        # Cannot pass common_attrs directly to new object because all
        # subclasses don't have compatible __init__.
        new = type(self)(self._item_class)
        new._common_attrs = self._common_attrs
        new.extend(items)
        return new

    def __setitem__(self, index, item):
        if isinstance(index, slice):
            self._check_type_and_set_attrs(*item)
        else:
            self._check_type_and_set_attrs(item)
        self._items[index] = item

    def __delitem__(self, index):
        del self._items[index]

    def __contains__(self, item):
        return item in self._items

    def __len__(self):
        return len(self._items)

    def __str__(self):
        return u'[%s]' % ', '.join(repr(item) for item in self)

    def __repr__(self):
        return '%s(item_class=%s, items=%s)' % (type(self).__name__,
                                                self._item_class.__name__,
                                                self._items)

[docs]    def count(self, item):
        return self._items.count(item)


[docs]    def sort(self):
        self._items.sort()


[docs]    def reverse(self):
        self._items.reverse()


    def __reversed__(self):
        index = 0
        while index < len(self._items):
            yield self._items[len(self._items) - index - 1]
            index += 1

    def __eq__(self, other):
        return (isinstance(other, ItemList)
                and self._is_compatible(other)
                and self._items == other._items)

    def _is_compatible(self, other):
        return (self._item_class is other._item_class
                and self._common_attrs == other._common_attrs)

    def __ne__(self, other):
        # @total_ordering doesn't add __ne__ in Python < 2.7.15
        return not self == other

    def __lt__(self, other):
        if not isinstance(other, ItemList):
            raise TypeError('Cannot order ItemList and %s' % type(other).__name__)
        if not self._is_compatible(other):
            raise TypeError('Cannot order incompatible ItemLists')
        return self._items < other._items

    def __add__(self, other):
        if not isinstance(other, ItemList):
            raise TypeError('Cannot add ItemList and %s' % type(other).__name__)
        if not self._is_compatible(other):
            raise TypeError('Cannot add incompatible ItemLists')
        return self._create_new_from(self._items + other._items)

    def __iadd__(self, other):
        if isinstance(other, ItemList) and not self._is_compatible(other):
            raise TypeError('Cannot add incompatible ItemLists')
        self.extend(other)
        return self

    def __mul__(self, other):
        return self._create_new_from(self._items * other)

    def __imul__(self, other):
        self._items *= other
        return self

    def __rmul__(self, other):
        return self * other





          

      

      

    

  

    
      
          
            
  Source code for robot.model.keyword

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

import warnings

from robot.utils import setter, py3to2, unicode

from .body import Body, BodyItem
from .fixture import create_fixture
from .itemlist import ItemList
from .tags import Tags


[docs]@py3to2
@Body.register
class Keyword(BodyItem):
    """Base model for a single keyword.

    Extended by :class:`robot.running.model.Keyword` and
    :class:`robot.result.model.Keyword`.
    """
    repr_args = ('name', 'args', 'assign')
    __slots__ = ['_name', 'doc', 'args', 'assign', 'timeout', 'type', '_teardown']

    def __init__(self, name='', doc='', args=(), assign=(), tags=(),
                 timeout=None, type=BodyItem.KEYWORD, parent=None):
        self._name = name
        self.doc = doc
        self.args = args
        self.assign = assign
        self.tags = tags
        self.timeout = timeout
        self.type = type
        self._teardown = None
        self.parent = parent

    @property
    def name(self):
        return self._name

    @name.setter
    def name(self, name):
        self._name = name

    @property    # Cannot use @setter because it would create teardowns recursively.
    def teardown(self):
        """Keyword teardown as a :class:`Keyword` object.

        Teardown can be modified by setting attributes directly::

            keyword.teardown.name = 'Example'
            keyword.teardown.args = ('First', 'Second')

        Alternatively the :meth:`config` method can be used to set multiple
        attributes in one call::

            keyword.teardown.config(name='Example', args=('First', 'Second'))

        The easiest way to reset the whole teardown is setting it to ``None``.
        It will automatically recreate the underlying ``Keyword`` object::

            keyword.teardown = None

        This attribute is a ``Keyword`` object also when a keyword has no teardown
        but in that case its truth value is ``False``. If there is a need to just
        check does a keyword have a teardown, using the :attr:`has_teardown`
        attribute avoids creating the ``Keyword`` object and is thus more memory
        efficient.

        New in Robot Framework 4.0. Earlier teardown was accessed like
        ``keyword.keywords.teardown``. :attr:`has_teardown` is new in Robot
        Framework 4.1.2.
        """
        if self._teardown is None and self:
            self._teardown = create_fixture(None, self, self.TEARDOWN)
        return self._teardown

    @teardown.setter
    def teardown(self, teardown):
        self._teardown = create_fixture(teardown, self, self.TEARDOWN)

    @property
    def has_teardown(self):
        """Check does a keyword have a teardown without creating a teardown object.

        A difference between using ``if kw.has_teardown:`` and ``if kw.teardown:``
        is that accessing the :attr:`teardown` attribute creates a :class:`Keyword`
        object representing a teardown even when the keyword actually does not
        have one. This typically does not matter, but with bigger suite structures
        having lot of keywords it can have a considerable effect on memory usage.

        New in Robot Framework 4.1.2.
        """
        return bool(self._teardown)

    @setter
    def tags(self, tags):
        """Keyword tags as a :class:`~.model.tags.Tags` object."""
        return Tags(tags)

[docs]    def visit(self, visitor):
        """:mod:`Visitor interface <robot.model.visitor>` entry-point."""
        if self:
            visitor.visit_keyword(self)


    def __bool__(self):
        return self.name is not None

    def __str__(self):
        parts = list(self.assign) + [self.name] + list(self.args)
        return '    '.join(unicode(p) for p in parts)



[docs]class Keywords(ItemList):
    """A list-like object representing keywords in a suite, a test or a keyword.

    Read-only and deprecated since Robot Framework 4.0.
    """
    __slots__ = []
    deprecation_message = (
        "'keywords' attribute is read-only and deprecated since Robot Framework 4.0. "
        "Use 'body', 'setup' or 'teardown' instead."
    )

    def __init__(self, parent=None, keywords=None):
        warnings.warn(self.deprecation_message, UserWarning)
        ItemList.__init__(self, object, {'parent': parent})
        if keywords:
            ItemList.extend(self, keywords)

    @property
    def setup(self):
        return self[0] if (self and self[0].type == 'SETUP') else None

    @setup.setter
    def setup(self, kw):
        self.raise_deprecation_error()

[docs]    def create_setup(self, *args, **kwargs):
        self.raise_deprecation_error()


    @property
    def teardown(self):
        return self[-1] if (self and self[-1].type == 'TEARDOWN') else None

    @teardown.setter
    def teardown(self, kw):
        self.raise_deprecation_error()

[docs]    def create_teardown(self, *args, **kwargs):
        self.raise_deprecation_error()


    @property
    def all(self):
        """Iterates over all keywords, including setup and teardown."""
        return self

    @property
    def normal(self):
        """Iterates over normal keywords, omitting setup and teardown."""
        return [kw for kw in self if kw.type not in ('SETUP', 'TEARDOWN')]

    def __setitem__(self, index, item):
        self.raise_deprecation_error()

[docs]    def create(self, *args, **kwargs):
        self.raise_deprecation_error()


[docs]    def append(self, item):
        self.raise_deprecation_error()


[docs]    def extend(self, items):
        self.raise_deprecation_error()


[docs]    def insert(self, index, item):
        self.raise_deprecation_error()


[docs]    def pop(self, *index):
        self.raise_deprecation_error()


[docs]    def remove(self, item):
        self.raise_deprecation_error()


[docs]    def clear(self):
        self.raise_deprecation_error()


    def __delitem__(self, index):
        self.raise_deprecation_error()

[docs]    def sort(self):
        self.raise_deprecation_error()


[docs]    def reverse(self):
        self.raise_deprecation_error()


[docs]    @classmethod
    def raise_deprecation_error(cls):
        raise AttributeError(cls.deprecation_message)






          

      

      

    

  

    
      
          
            
  Source code for robot.model.message

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from robot.utils import html_escape, py3to2

from .body import BodyItem
from .itemlist import ItemList


[docs]@py3to2
class Message(BodyItem):
    """A message created during the test execution.

    Can be a log message triggered by a keyword, or a warning or an error
    that occurred during parsing or test execution.
    """
    type = BodyItem.MESSAGE
    repr_args = ('message', 'level')
    __slots__ = ['message', 'level', 'html', 'timestamp']

    def __init__(self, message='', level='INFO', html=False, timestamp=None, parent=None):
        #: The message content as a string.
        self.message = message
        #: Severity of the message. Either ``TRACE``, ``DEBUG``, ``INFO``,
        #: ``WARN``, ``ERROR``, ``FAIL`` or ``SKIP`. The last two are only used
        #: with keyword failure messages.
        self.level = level
        #: ``True`` if the content is in HTML, ``False`` otherwise.
        self.html = html
        #: Timestamp in format ``%Y%m%d %H:%M:%S.%f``.
        self.timestamp = timestamp
        #: The object this message was triggered by.
        self.parent = parent

    @property
    def html_message(self):
        """Returns the message content as HTML."""
        return self.message if self.html else html_escape(self.message)

    @property
    def id(self):
        if not self.parent:
            return 'm1'
        return '%s-m%d' % (self.parent.id, self.parent.messages.index(self) + 1)

[docs]    def visit(self, visitor):
        """:mod:`Visitor interface <robot.model.visitor>` entry-point."""
        visitor.visit_message(self)


    def __str__(self):
        return self.message



[docs]class Messages(ItemList):
    __slots__ = []

    def __init__(self, message_class=Message, parent=None, messages=None):
        ItemList.__init__(self, message_class, {'parent': parent}, messages)





          

      

      

    

  

    
      
          
            
  Source code for robot.model.metadata

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from robot.utils import is_string, NormalizedDict, py3to2, unic


[docs]@py3to2
class Metadata(NormalizedDict):

    def __init__(self, initial=None):
        NormalizedDict.__init__(self, initial, ignore='_')

    def __setitem__(self, key, value):
        if not is_string(key):
            key = unic(key)
        if not is_string(value):
            value = unic(value)
        NormalizedDict.__setitem__(self, key, value)

    def __str__(self):
        return u'{%s}' % ', '.join('%s: %s' % (k, self[k]) for k in self)





          

      

      

    

  

    
      
          
            
  Source code for robot.model.modelobject

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

import copy

from robot.utils import py3to2, SetterAwareType, with_metaclass


[docs]@py3to2
class ModelObject(with_metaclass(SetterAwareType, object)):
    repr_args = ()
    __slots__ = []

[docs]    def config(self, **attributes):
        """Configure model object with given attributes.

        ``obj.config(name='Example', doc='Something')`` is equivalent to setting
        ``obj.name = 'Example'`` and ``obj.doc = 'Something'``.

        New in Robot Framework 4.0.
        """
        for name in attributes:
            setattr(self, name, attributes[name])
        return self


[docs]    def copy(self, **attributes):
        """Return shallow copy of this object.

        :param attributes: Attributes to be set for the returned copy
            automatically. For example, ``test.copy(name='New name')``.

        See also :meth:`deepcopy`. The difference between these two is the same
        as with the standard ``copy.copy`` and ``copy.deepcopy`` functions
        that these methods also use internally.
        """
        copied = copy.copy(self)
        for name in attributes:
            setattr(copied, name, attributes[name])
        return copied


[docs]    def deepcopy(self, **attributes):
        """Return deep copy of this object.

        :param attributes: Attributes to be set for the returned copy
            automatically. For example, ``test.deepcopy(name='New name')``.

        See also :meth:`copy`. The difference between these two is the same
        as with the standard ``copy.copy`` and ``copy.deepcopy`` functions
        that these methods also use internally.
        """
        copied = copy.deepcopy(self)
        for name in attributes:
            setattr(copied, name, attributes[name])
        return copied


    def __repr__(self):
        args = ['%s=%r' % (n, getattr(self, n)) for n in self.repr_args]
        module = type(self).__module__.split('.')
        if len(module) > 1 and module[0] == 'robot':
            module = module[:2]
        return '%s.%s(%s)' % ('.'.join(module), type(self).__name__, ', '.join(args))





          

      

      

    

  

    
      
          
            
  Source code for robot.model.modifier

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from robot.errors import DataError
from robot.utils import (get_error_details, is_string,
                         split_args_from_name_or_path, type_name, Importer)

from .visitor import SuiteVisitor


[docs]class ModelModifier(SuiteVisitor):

    def __init__(self, visitors, empty_suite_ok, logger):
        self._log_error = logger.error
        self._empty_suite_ok = empty_suite_ok
        self._visitors = list(self._yield_visitors(visitors))

[docs]    def visit_suite(self, suite):
        for visitor in self._visitors:
            try:
                suite.visit(visitor)
            except:
                message, details = get_error_details()
                self._log_error("Executing model modifier '%s' failed: %s\n%s"
                                % (type_name(visitor), message, details))
        if not (suite.test_count or self._empty_suite_ok):
            raise DataError("Suite '%s' contains no tests after model modifiers."
                            % suite.name)


    def _yield_visitors(self, visitors):
        # Avoid cyclic imports. Yuck.
        from robot.output import LOGGER

        importer = Importer('model modifier', logger=LOGGER)
        for visitor in visitors:
            try:
                if not is_string(visitor):
                    yield visitor
                else:
                    name, args = split_args_from_name_or_path(visitor)
                    yield importer.import_class_or_module(name, args)
            except DataError as err:
                self._log_error(err.message)





          

      

      

    

  

    
      
          
            
  Source code for robot.model.namepatterns

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from robot.utils import MultiMatcher, py3to2


@py3to2
class _NamePatterns(object):

    def __init__(self, patterns=None):
        self._matcher = MultiMatcher(patterns, ignore='_')

    def match(self, name, longname=None):
        return self._match(name) or longname and self._match_longname(longname)

    def _match(self, name):
        return self._matcher.match(name)

    def _match_longname(self, name):
        raise NotImplementedError

    def __bool__(self):
        return bool(self._matcher)

    def __iter__(self):
        return iter(self._matcher)


[docs]class SuiteNamePatterns(_NamePatterns):

    def _match_longname(self, name):
        while '.' in name:
            if self._match(name):
                return True
            name = name.split('.', 1)[1]
        return False



[docs]class TestNamePatterns(_NamePatterns):

    def _match_longname(self, name):
        return self._match(name)





          

      

      

    

  

    
      
          
            
  Source code for robot.model.statistics

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from .totalstatistics import TotalStatisticsBuilder
from .suitestatistics import SuiteStatisticsBuilder
from .tagstatistics import TagStatisticsBuilder
from .visitor import SuiteVisitor


[docs]class Statistics(object):
    """Container for total, suite and tag statistics.

    Accepted parameters have the same semantics as the matching command line
    options.
    """
    def __init__(self, suite, suite_stat_level=-1, tag_stat_include=None,
                 tag_stat_exclude=None, tag_stat_combine=None, tag_doc=None,
                 tag_stat_link=None, rpa=False):
        total_builder = TotalStatisticsBuilder(rpa=rpa)
        suite_builder = SuiteStatisticsBuilder(suite_stat_level)
        tag_builder = TagStatisticsBuilder(tag_stat_include,
                                           tag_stat_exclude, tag_stat_combine,
                                           tag_doc, tag_stat_link)
        suite.visit(StatisticsBuilder(total_builder, suite_builder, tag_builder))
        #: Instance of :class:`~robot.model.totalstatistics.TotalStatistics`.
        self.total = total_builder.stats
        #: Instance of :class:`~robot.model.suitestatistics.SuiteStatistics`.
        self.suite = suite_builder.stats
        #: Instance of :class:`~robot.model.tagstatistics.TagStatistics`.
        self.tags = tag_builder.stats

[docs]    def visit(self, visitor):
        visitor.visit_statistics(self)




[docs]class StatisticsBuilder(SuiteVisitor):

    def __init__(self, total_builder, suite_builder, tag_builder):
        self._total_builder = total_builder
        self._suite_builder = suite_builder
        self._tag_builder = tag_builder

[docs]    def start_suite(self, suite):
        self._suite_builder.start_suite(suite)


[docs]    def end_suite(self, suite):
        self._suite_builder.end_suite()


[docs]    def visit_test(self, test):
        self._total_builder.add_test(test)
        self._suite_builder.add_test(test)
        self._tag_builder.add_test(test)


[docs]    def visit_keyword(self, kw):
        pass






          

      

      

    

  

    
      
          
            
  Source code for robot.model.stats

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from robot.utils import (Sortable, elapsed_time_to_string, html_escape,
                         is_string, normalize, py3to2, unicode)

from .tags import TagPattern


[docs]@py3to2
class Stat(Sortable):
    """Generic statistic object used for storing all the statistic values."""

    def __init__(self, name):
        #: Human readable identifier of the object these statistics
        #: belong to. `All Tests` for
        #: :class:`~robot.model.totalstatistics.TotalStatistics`,
        #: long name of the suite for
        #: :class:`~robot.model.suitestatistics.SuiteStatistics`
        #: or name of the tag for
        #: :class:`~robot.model.tagstatistics.TagStatistics`
        self.name = name
        #: Number of passed tests.
        self.passed = 0
        #: Number of failed tests.
        self.failed = 0
        #: Number of skipped tests.
        self.skipped = 0
        #: Number of milliseconds it took to execute.
        self.elapsed = 0
        self._norm_name = normalize(name, ignore='_')

[docs]    def get_attributes(self, include_label=False, include_elapsed=False,
                       exclude_empty=True, values_as_strings=False,
                       html_escape=False):
        attrs = {'pass': self.passed, 'fail': self.failed, 'skip': self.skipped}
        attrs.update(self._get_custom_attrs())
        if include_label:
            attrs['label'] = self.name
        if include_elapsed:
            attrs['elapsed'] = elapsed_time_to_string(self.elapsed,
                                                      include_millis=False)
        if exclude_empty:
            attrs = dict((k, v) for k, v in attrs.items() if v not in ('', None))
        if values_as_strings:
            attrs = dict((k, unicode(v if v is not None else ''))
                         for k, v in attrs.items())
        if html_escape:
            attrs = dict((k, self._html_escape(v)) for k, v in attrs.items())
        return attrs


    def _get_custom_attrs(self):
        return {}

    def _html_escape(self, item):
        return html_escape(item) if is_string(item) else item

    @property
    def total(self):
        return self.passed + self.failed + self.skipped

[docs]    def add_test(self, test):
        self._update_stats(test)
        self._update_elapsed(test)


    def _update_stats(self, test):
        if test.passed:
            self.passed += 1
        elif test.skipped:
            self.skipped += 1
        else:
            self.failed += 1

    def _update_elapsed(self, test):
        self.elapsed += test.elapsedtime

    @property
    def _sort_key(self):
        return self._norm_name

    def __bool__(self):
        return not self.failed

[docs]    def visit(self, visitor):
        visitor.visit_stat(self)




[docs]class TotalStat(Stat):
    """Stores statistic values for a test run."""
    type = 'total'



[docs]class SuiteStat(Stat):
    """Stores statistics values for a single suite."""
    type = 'suite'

    def __init__(self, suite):
        Stat.__init__(self, suite.longname)
        #: Identifier of the suite, e.g. `s1-s2`.
        self.id = suite.id
        #: Number of milliseconds it took to execute this suite,
        #: including sub-suites.
        self.elapsed = suite.elapsedtime
        self._name = suite.name

    def _get_custom_attrs(self):
        return {'id': self.id, 'name': self._name}

    def _update_elapsed(self, test):
        pass

[docs]    def add_stat(self, other):
        self.passed += other.passed
        self.failed += other.failed
        self.skipped += other.skipped




[docs]class TagStat(Stat):
    """Stores statistic values for a single tag."""
    type = 'tag'

    def __init__(self, name, doc='', links=None, combined=None):
        Stat.__init__(self, name)
        #: Documentation of tag as a string.
        self.doc = doc
        #: List of tuples in which the first value is the link URL and
        #: the second is the link title. An empty list by default.
        self.links = links or []
        #: Pattern as a string if the tag is combined, ``None`` otherwise.
        self.combined = combined

    @property
    def info(self):
        """Returns additional information of the tag statistics
           are about. Either `combined` or an empty string.
        """
        if self.combined:
            return 'combined'
        return ''

    def _get_custom_attrs(self):
        return {'doc': self.doc, 'links': self._get_links_as_string(),
                'info': self.info, 'combined': self.combined}

    def _get_links_as_string(self):
        return ':::'.join('%s:%s' % (title, url) for url, title in self.links)

    @property
    def _sort_key(self):
        return (not self.combined, self._norm_name)



[docs]class CombinedTagStat(TagStat):

    def __init__(self, pattern, name=None, doc='', links=None):
        TagStat.__init__(self, name or pattern, doc, links, combined=pattern)
        self.pattern = TagPattern(pattern)

[docs]    def match(self, tags):
        return self.pattern.match(tags)






          

      

      

    

  

    
      
          
            
  Source code for robot.model.suitestatistics

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from .stats import SuiteStat


[docs]class SuiteStatistics(object):
    """Container for suite statistics."""

    def __init__(self, suite):
        #: Instance of :class:`~robot.model.stats.SuiteStat`.
        self.stat = SuiteStat(suite)
        #: List of :class:`~robot.model.testsuite.TestSuite` objects.
        self.suites = []

[docs]    def visit(self, visitor):
        visitor.visit_suite_statistics(self)


    def __iter__(self):
        yield self.stat
        for child in self.suites:
            for stat in child:
                yield stat



[docs]class SuiteStatisticsBuilder(object):

    def __init__(self, suite_stat_level):
        self._suite_stat_level = suite_stat_level
        self._stats_stack = []
        self.stats = None

    @property
    def current(self):
        return self._stats_stack[-1] if self._stats_stack else None

[docs]    def start_suite(self, suite):
        self._stats_stack.append(SuiteStatistics(suite))
        if self.stats is None:
            self.stats = self.current


[docs]    def add_test(self, test):
        self.current.stat.add_test(test)


[docs]    def end_suite(self):
        stats = self._stats_stack.pop()
        if self.current:
            self.current.stat.add_stat(stats.stat)
            if self._is_child_included():
                self.current.suites.append(stats)


    def _is_child_included(self):
        return self._include_all_levels() or self._below_threshold()

    def _include_all_levels(self):
        return self._suite_stat_level == -1

    def _below_threshold(self):
        return len(self._stats_stack) < self._suite_stat_level





          

      

      

    

  

    
      
          
            
  Source code for robot.model.tags

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from robot.utils import (is_string, normalize, NormalizedDict, Matcher, py3to2,
                         unic, unicode)


[docs]@py3to2
class Tags(object):
    __slots__ = ['_tags']

    def __init__(self, tags=None):
        self._tags = self._init_tags(tags)

    def _init_tags(self, tags):
        if not tags:
            return ()
        if is_string(tags):
            tags = (tags,)
        return self._normalize(tags)

    def _normalize(self, tags):
        normalized = NormalizedDict([(unic(t), None) for t in tags], ignore='_')
        for remove in '', 'NONE':
            if remove in normalized:
                normalized.pop(remove)
        return tuple(normalized)

[docs]    def add(self, tags):
        self._tags = self._normalize(tuple(self) + tuple(Tags(tags)))


[docs]    def remove(self, tags):
        tags = TagPatterns(tags)
        self._tags = tuple([t for t in self if not tags.match(t)])


[docs]    def match(self, tags):
        return TagPatterns(tags).match(self)


    def __contains__(self, tags):
        return self.match(tags)

    def __len__(self):
        return len(self._tags)

    def __iter__(self):
        return iter(self._tags)

    def __str__(self):
        return u'[%s]' % ', '.join(self)

    def __repr__(self):
        return repr(list(self))

    def __eq__(self, other):
        if not isinstance(other, Tags):
            return False
        self_normalized = [normalize(tag, ignore='_') for tag in self]
        other_normalized = [normalize(tag, ignore='_') for tag in other]
        return sorted(self_normalized) == sorted(other_normalized)

    def __ne__(self, other):
        return not self == other

    def __getitem__(self, index):
        item = self._tags[index]
        return item if not isinstance(index, slice) else Tags(item)

    def __add__(self, other):
        return Tags(tuple(self) + tuple(Tags(other)))



[docs]@py3to2
class TagPatterns(object):

    def __init__(self, patterns):
        self._patterns = tuple(TagPattern(p) for p in Tags(patterns))

[docs]    def match(self, tags):
        tags = tags if isinstance(tags, Tags) else Tags(tags)
        return any(p.match(tags) for p in self._patterns)


    def __contains__(self, tag):
        return self.match(tag)

    def __len__(self):
        return len(self._patterns)

    def __iter__(self):
        return iter(self._patterns)

    def __getitem__(self, index):
        return self._patterns[index]

    def __str__(self):
        return u'[%s]' % u', '.join(unicode(pattern) for pattern in self)



[docs]def TagPattern(pattern):
    pattern = pattern.replace(' ', '')
    if 'NOT' in pattern:
        return NotTagPattern(*pattern.split('NOT'))
    if 'OR' in pattern:
        return OrTagPattern(pattern.split('OR'))
    if 'AND' in pattern or '&' in pattern:
        return AndTagPattern(pattern.replace('&', 'AND').split('AND'))
    return SingleTagPattern(pattern)



[docs]@py3to2
class SingleTagPattern(object):

    def __init__(self, pattern):
        self._matcher = Matcher(pattern, ignore='_')

[docs]    def match(self, tags):
        return self._matcher.match_any(tags)


    def __iter__(self):
        yield self

    def __str__(self):
        return self._matcher.pattern

    def __bool__(self):
        return bool(self._matcher)



[docs]@py3to2
class AndTagPattern(object):

    def __init__(self, patterns):
        self._patterns = tuple(TagPattern(p) for p in patterns)

[docs]    def match(self, tags):
        return all(p.match(tags) for p in self._patterns)


    def __iter__(self):
        return iter(self._patterns)

    def __str__(self):
        return ' AND '.join(unicode(pattern) for pattern in self)



[docs]@py3to2
class OrTagPattern(object):

    def __init__(self, patterns):
        self._patterns = tuple(TagPattern(p) for p in patterns)

[docs]    def match(self, tags):
        return any(p.match(tags) for p in self._patterns)


    def __iter__(self):
        return iter(self._patterns)

    def __str__(self):
        return ' OR '.join(unicode(pattern) for pattern in self)



[docs]@py3to2
class NotTagPattern(object):

    def __init__(self, must_match, *must_not_match):
        self._first = TagPattern(must_match)
        self._rest = OrTagPattern(must_not_match)

[docs]    def match(self, tags):
        if not self._first:
            return not self._rest.match(tags)
        return self._first.match(tags) and not self._rest.match(tags)


    def __iter__(self):
        yield self._first
        for pattern in self._rest:
            yield pattern

    def __str__(self):
        return ' NOT '.join(unicode(pattern) for pattern in self).lstrip()





          

      

      

    

  

    
      
          
            
  Source code for robot.model.tagsetter

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from robot.utils import py3to2

from .visitor import SuiteVisitor


[docs]@py3to2
class TagSetter(SuiteVisitor):

    def __init__(self, add=None, remove=None):
        self.add = add
        self.remove = remove

[docs]    def start_suite(self, suite):
        return bool(self)


[docs]    def visit_test(self, test):
        test.tags.add(self.add)
        test.tags.remove(self.remove)


[docs]    def visit_keyword(self, keyword):
        pass


    def __bool__(self):
        return bool(self.add or self.remove)





          

      

      

    

  

    
      
          
            
  Source code for robot.model.tagstatistics

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from itertools import chain
import re

from robot.utils import NormalizedDict

from .stats import CombinedTagStat, TagStat
from .tags import TagPatterns


[docs]class TagStatistics(object):
    """Container for tag statistics."""

    def __init__(self, combined_stats):
        #: Dictionary, where key is the name of the tag as a string and value
        #: is an instance of :class:`~robot.model.stats.TagStat`.
        self.tags = NormalizedDict(ignore='_')
        #: List of :class:`~robot.model.stats.CombinedTagStat` objects.
        self.combined = combined_stats

[docs]    def visit(self, visitor):
        visitor.visit_tag_statistics(self)


    def __iter__(self):
        return iter(sorted(chain(self.combined, self.tags.values())))



[docs]class TagStatisticsBuilder(object):

    def __init__(self, included=None, excluded=None, combined=None, docs=None,
                 links=None):
        self._included = TagPatterns(included)
        self._excluded = TagPatterns(excluded)
        self._reserved = TagPatterns('robot:*')
        self._info = TagStatInfo(docs, links)
        self.stats = TagStatistics(self._info.get_combined_stats(combined))

[docs]    def add_test(self, test):
        self._add_tags_to_statistics(test)
        self._add_to_combined_statistics(test)


    def _add_tags_to_statistics(self, test):
        for tag in test.tags:
            if self._is_included(tag) and not self._suppress_reserved(tag):
                if tag not in self.stats.tags:
                    self.stats.tags[tag] = self._info.get_stat(tag)
                self.stats.tags[tag].add_test(test)

    def _is_included(self, tag):
        if self._included and tag not in self._included:
            return False
        return tag not in self._excluded

    def _suppress_reserved(self, tag):
        return tag in self._reserved and tag not in self._included

    def _add_to_combined_statistics(self, test):
        for stat in self.stats.combined:
            if stat.match(test.tags):
                stat.add_test(test)



[docs]class TagStatInfo(object):

    def __init__(self, docs=None, links=None):
        self._docs = [TagStatDoc(*doc) for doc in docs or []]
        self._links = [TagStatLink(*link) for link in links or []]

[docs]    def get_stat(self, tag):
        return TagStat(tag, self.get_doc(tag), self.get_links(tag))


[docs]    def get_combined_stats(self, combined=None):
        return [self._get_combined_stat(*comb) for comb in combined or []]


    def _get_combined_stat(self, pattern, name=None):
        name = name or pattern
        return CombinedTagStat(pattern, name, self.get_doc(name),
                               self.get_links(name))

[docs]    def get_doc(self, tag):
        return ' & '.join(doc.text for doc in self._docs if doc.match(tag))


[docs]    def get_links(self, tag):
        return [link.get_link(tag) for link in self._links if link.match(tag)]




[docs]class TagStatDoc(object):

    def __init__(self, pattern, doc):
        self._matcher = TagPatterns(pattern)
        self.text = doc

[docs]    def match(self, tag):
        return self._matcher.match(tag)




[docs]class TagStatLink(object):
    _match_pattern_tokenizer = re.compile(r'(\*|\?+)')

    def __init__(self, pattern, link, title):
        self._regexp = self._get_match_regexp(pattern)
        self._link = link
        self._title = title.replace('_', ' ')

[docs]    def match(self, tag):
        return self._regexp.match(tag) is not None


[docs]    def get_link(self, tag):
        match = self._regexp.match(tag)
        if not match:
            return None
        link, title = self._replace_groups(self._link, self._title, match)
        return link, title


    def _replace_groups(self, link, title, match):
        for index, group in enumerate(match.groups()):
            placefolder = '%%%d' % (index+1)
            link = link.replace(placefolder, group)
            title = title.replace(placefolder, group)
        return link, title

    def _get_match_regexp(self, pattern):
        pattern = '^%s$' % ''.join(self._yield_match_pattern(pattern))
        return re.compile(pattern, re.IGNORECASE)

    def _yield_match_pattern(self, pattern):
        for token in self._match_pattern_tokenizer.split(pattern):
            if token.startswith('?'):
                yield '(%s)' % ('.'*len(token))
            elif token == '*':
                yield '(.*)'
            else:
                yield re.escape(token)





          

      

      

    

  

    
      
          
            
  Source code for robot.model.testcase

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from robot.utils import py3to2, setter

from .body import Body
from .fixture import create_fixture
from .itemlist import ItemList
from .keyword import Keyword, Keywords
from .modelobject import ModelObject
from .tags import Tags


[docs]@py3to2
class TestCase(ModelObject):
    """Base model for a single test case.

    Extended by :class:`robot.running.model.TestCase` and
    :class:`robot.result.model.TestCase`.
    """
    body_class = Body
    fixture_class = Keyword
    repr_args = ('name',)
    __slots__ = ['parent', 'name', 'doc', 'timeout']

    def __init__(self, name='', doc='', tags=None, timeout=None, parent=None):
        self.name = name
        self.doc = doc
        self.timeout = timeout
        self.tags = tags
        self.parent = parent
        self.body = None
        self.setup = None
        self.teardown = None

    @setter
    def body(self, body):
        """Test case body as a :class:`~.Body` object."""
        return self.body_class(self, body)

    @setter
    def tags(self, tags):
        """Test tags as a :class:`~.model.tags.Tags` object."""
        return Tags(tags)

    @setter
    def setup(self, setup):
        """Test setup as a :class:`~.model.keyword.Keyword` object.

        This attribute is a ``Keyword`` object also when a test has no setup
        but in that case its truth value is ``False``.

        Setup can be modified by setting attributes directly::

            test.setup.name = 'Example'
            test.setup.args = ('First', 'Second')

        Alternatively the :meth:`config` method can be used to set multiple
        attributes in one call::

            test.setup.config(name='Example', args=('First', 'Second'))

        The easiest way to reset the whole setup is setting it to ``None``.
        It will automatically recreate the underlying ``Keyword`` object::

            test.setup = None

        New in Robot Framework 4.0. Earlier setup was accessed like
        ``test.keywords.setup``.
        """
        return create_fixture(setup, self, Keyword.SETUP)

    @setter
    def teardown(self, teardown):
        """Test teardown as a :class:`~.model.keyword.Keyword` object.

        See :attr:`setup` for more information.
        """
        return create_fixture(teardown, self, Keyword.TEARDOWN)

    @property
    def keywords(self):
        """Deprecated since Robot Framework 4.0

        Use :attr:`body`, :attr:`setup` or :attr:`teardown` instead.
        """
        keywords = [self.setup] + list(self.body) + [self.teardown]
        return Keywords(self, [kw for kw in keywords if kw])

    @keywords.setter
    def keywords(self, keywords):
        Keywords.raise_deprecation_error()

    @property
    def id(self):
        """Test case id in format like ``s1-t3``.

        See :attr:`TestSuite.id <robot.model.testsuite.TestSuite.id>` for
        more information.
        """
        if not self.parent:
            return 't1'
        return '%s-t%d' % (self.parent.id, self.parent.tests.index(self)+1)

    @property
    def longname(self):
        """Test name prefixed with the long name of the parent suite."""
        if not self.parent:
            return self.name
        return '%s.%s' % (self.parent.longname, self.name)

    @property
    def source(self):
        return self.parent.source if self.parent is not None else None

[docs]    def visit(self, visitor):
        """:mod:`Visitor interface <robot.model.visitor>` entry-point."""
        visitor.visit_test(self)


    def __str__(self):
        return self.name



[docs]class TestCases(ItemList):
    __slots__ = []

    def __init__(self, test_class=TestCase, parent=None, tests=None):
        ItemList.__init__(self, test_class, {'parent': parent}, tests)

    def _check_type_and_set_attrs(self, *tests):
        tests = ItemList._check_type_and_set_attrs(self, *tests)
        for test in tests:
            for visitor in test.parent._visitors:
                test.visit(visitor)
        return tests





          

      

      

    

  

    
      
          
            
  Source code for robot.model.testsuite

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from robot.utils import py3to2, setter

from .configurer import SuiteConfigurer
from .filter import Filter, EmptySuiteRemover
from .fixture import create_fixture
from .itemlist import ItemList
from .keyword import Keyword, Keywords
from .metadata import Metadata
from .modelobject import ModelObject
from .tagsetter import TagSetter
from .testcase import TestCase, TestCases


[docs]@py3to2
class TestSuite(ModelObject):
    """Base model for single suite.

    Extended by :class:`robot.running.model.TestSuite` and
    :class:`robot.result.model.TestSuite`.
    """
    test_class = TestCase    #: Internal usage only.
    fixture_class = Keyword  #: Internal usage only.
    repr_args = ('name',)
    __slots__ = ['parent', 'source', '_name', 'doc', '_my_visitors', 'rpa']

    def __init__(self, name='', doc='', metadata=None, source=None, rpa=False,
                 parent=None):
        self._name = name
        self.doc = doc
        self.metadata = metadata
        self.source = source  #: Path to the source file or directory.
        self.parent = parent  #: Parent suite. ``None`` with the root suite.
        self.rpa = rpa        #: ``True`` when RPA mode is enabled.
        self.suites = None
        self.tests = None
        self.setup = None
        self.teardown = None
        self._my_visitors = []

    @property
    def _visitors(self):
        parent_visitors = self.parent._visitors if self.parent else []
        return self._my_visitors + parent_visitors

    @property
    def name(self):
        """Test suite name. If not set, constructed from child suite names."""
        return self._name or ' & '.join(s.name for s in self.suites)

    @name.setter
    def name(self, name):
        self._name = name

    @property
    def longname(self):
        """Suite name prefixed with the long name of the parent suite."""
        if not self.parent:
            return self.name
        return '%s.%s' % (self.parent.longname, self.name)

    @setter
    def metadata(self, metadata):
        """Free test suite metadata as a dictionary."""
        return Metadata(metadata)

    @setter
    def suites(self, suites):
        """Child suites as a :class:`~.TestSuites` object."""
        return TestSuites(self.__class__, self, suites)

    @setter
    def tests(self, tests):
        """Tests as a :class:`~.TestCases` object."""
        return TestCases(self.test_class, self, tests)

    @setter
    def setup(self, setup):
        """Suite setup as a :class:`~.model.keyword.Keyword` object.

        This attribute is a ``Keyword`` object also when a suite has no setup
        but in that case its truth value is ``False``.

        Setup can be modified by setting attributes directly::

            suite.setup.name = 'Example'
            suite.setup.args = ('First', 'Second')

        Alternatively the :meth:`config` method can be used to set multiple
        attributes in one call::

            suite.setup.config(name='Example', args=('First', 'Second'))

        The easiest way to reset the whole setup is setting it to ``None``.
        It will automatically recreate the underlying ``Keyword`` object::

            suite.setup = None

        New in Robot Framework 4.0. Earlier setup was accessed like
        ``suite.keywords.setup``.
        """
        return create_fixture(setup, self, Keyword.SETUP)

    @setter
    def teardown(self, teardown):
        """Suite teardown as a :class:`~.model.keyword.Keyword` object.

        See :attr:`setup` for more information.
        """
        return create_fixture(teardown, self, Keyword.TEARDOWN)

    @property
    def keywords(self):
        """Deprecated since Robot Framework 4.0

        Use :attr:`setup` or :attr:`teardown` instead.
        """
        keywords = [self.setup, self.teardown]
        return Keywords(self, [kw for kw in keywords if kw])

    @keywords.setter
    def keywords(self, keywords):
        Keywords.raise_deprecation_error()

    @property
    def id(self):
        """An automatically generated unique id.

        The root suite has id ``s1``, its child suites have ids ``s1-s1``,
        ``s1-s2``, ..., their child suites get ids ``s1-s1-s1``, ``s1-s1-s2``,
        ..., ``s1-s2-s1``, ..., and so on.

        The first test in a suite has an id like ``s1-t1``, the second has an
        id ``s1-t2``, and so on. Similarly keywords in suites (setup/teardown)
        and in tests get ids like ``s1-k1``, ``s1-t1-k1``, and ``s1-s4-t2-k5``.
        """
        if not self.parent:
            return 's1'
        return '%s-s%d' % (self.parent.id, self.parent.suites.index(self)+1)

    @property
    def test_count(self):
        """Number of the tests in this suite, recursively."""
        return len(self.tests) + sum(suite.test_count for suite in self.suites)

    @property
    def has_tests(self):
        if self.tests:
            return True
        return any(s.has_tests for s in self.suites)

[docs]    def set_tags(self, add=None, remove=None, persist=False):
        """Add and/or remove specified tags to the tests in this suite.

        :param add: Tags to add as a list or, if adding only one,
            as a single string.
        :param remove: Tags to remove as a list or as a single string.
            Can be given as patterns where ``*`` and ``?`` work as wildcards.
        :param persist: Add/remove specified tags also to new tests added
            to this suite in the future.
        """
        setter = TagSetter(add, remove)
        self.visit(setter)
        if persist:
            self._my_visitors.append(setter)


[docs]    def filter(self, included_suites=None, included_tests=None,
               included_tags=None, excluded_tags=None):
        """Select test cases and remove others from this suite.

        Parameters have the same semantics as ``--suite``, ``--test``,
        ``--include``, and ``--exclude`` command line options. All of them
        can be given as a list of strings, or when selecting only one, as
        a single string.

        Child suites that contain no tests after filtering are automatically
        removed.

        Example::

            suite.filter(included_tests=['Test 1', '* Example'],
                         included_tags='priority-1')
        """
        self.visit(Filter(included_suites, included_tests,
                          included_tags, excluded_tags))


[docs]    def configure(self, **options):
        """A shortcut to configure a suite using one method call.

        Can only be used with the root test suite.

        :param options: Passed to
            :class:`~robot.model.configurer.SuiteConfigurer` that will then
            set suite attributes, call :meth:`filter`, etc. as needed.

        Not to be confused with :meth:`config` method that suites, tests,
        and keywords have to make it possible to set multiple attributes in
        one call.
        """
        if self.parent is not None:
            raise ValueError("'TestSuite.configure()' can only be used with "
                             "the root test suite.")
        if options:
            self.visit(SuiteConfigurer(**options))


[docs]    def remove_empty_suites(self, preserve_direct_children=False):
        """Removes all child suites not containing any tests, recursively."""
        self.visit(EmptySuiteRemover(preserve_direct_children))


[docs]    def visit(self, visitor):
        """:mod:`Visitor interface <robot.model.visitor>` entry-point."""
        visitor.visit_suite(self)


    def __str__(self):
        return self.name



[docs]class TestSuites(ItemList):
    __slots__ = []

    def __init__(self, suite_class=TestSuite, parent=None, suites=None):
        ItemList.__init__(self, suite_class, {'parent': parent}, suites)





          

      

      

    

  

    
      
          
            
  Source code for robot.model.totalstatistics

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from robot.utils import test_or_task

from .stats import TotalStat
from .visitor import SuiteVisitor


[docs]class TotalStatistics(object):
    """Container for total statistics."""

    def __init__(self, rpa=False):
        #: Instance of :class:`~robot.model.stats.TotalStat` for all the tests.
        self._stat = TotalStat(test_or_task('All {Test}s', rpa))
        self._rpa = rpa

[docs]    def visit(self, visitor):
        visitor.visit_total_statistics(self._stat)


    def __iter__(self):
        yield self._stat

    @property
    def total(self):
        return self._stat.total

    @property
    def passed(self):
        return self._stat.passed

    @property
    def skipped(self):
        return self._stat.skipped

    @property
    def failed(self):
        return self._stat.failed

[docs]    def add_test(self, test):
        self._stat.add_test(test)


    @property
    def message(self):
        """String representation of the statistics.

        For example::
            2 tests, 1 passed, 1 failed
        """
        # TODO: should this message be highlighted in console
        test_or_task = 'test' if not self._rpa else 'task'
        total, end, passed, failed, skipped = self._get_counts()
        template = '%d %s%s, %d passed, %d failed'
        if skipped:
            return ((template + ', %d skipped')
                    % (total, test_or_task, end, passed, failed, skipped))
        return template % (total, test_or_task, end, passed, failed)

    def _get_counts(self):
        ending = 's' if self.total != 1 else ''
        return self.total, ending, self.passed, self.failed, self.skipped



[docs]class TotalStatisticsBuilder(SuiteVisitor):

    def __init__(self, suite=None, rpa=False):
        self.stats = TotalStatistics(rpa)
        if suite:
            suite.visit(self)

[docs]    def add_test(self, test):
        self.stats.add_test(test)


[docs]    def visit_test(self, test):
        self.add_test(test)


[docs]    def visit_keyword(self, kw):
        pass






          

      

      

    

  

    
      
          
            
  Source code for robot.model.visitor

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

"""Interface to ease traversing through a test suite structure.

Visitors make it easy to modify test suite structures or to collect information
from them. They work both with the :mod:`executable model <robot.running.model>`
and the :mod:`result model <robot.result.model>`, but the objects passed to
the visitor methods are slightly different depending on the model they are
used with. The main differences are that on the execution side keywords do
not have child keywords nor messages, and that only the result objects have
status related attributes like :attr:`status` and :attr:`starttime`.

This module contains :class:`SuiteVisitor` that implements the core logic to
visit a test suite structure, and the :mod:`~robot.result` package contains
:class:`~robot.result.visitor.ResultVisitor` that supports visiting the whole
test execution result structure. Both of these visitors should be imported
via the :mod:`robot.api` package when used by external code.

Visitor algorithm
-----------------

All suite, test, keyword and message objects have a :meth:`visit` method that
accepts a visitor instance. These methods will then call the correct visitor
method :meth:`~SuiteVisitor.visit_suite`, :meth:`~SuiteVisitor.visit_test`,
:meth:`~SuiteVisitor.visit_keyword` or :meth:`~SuiteVisitor.visit_message`,
depending on the instance where the :meth:`visit` method exists.

The recommended and definitely easiest way to implement a visitor is extending
the :class:`SuiteVisitor` base class. The default implementation of its
:meth:`visit_x` methods take care of traversing child elements of the object
:obj:`x` recursively. A :meth:`visit_x` method first calls a corresponding
:meth:`start_x` method (e.g. :meth:`visit_suite` calls :meth:`start_suite`),
then calls :meth:`visit` for all child objects of the :obj:`x` object, and
finally calls the corresponding :meth:`end_x` method. The default
implementations of :meth:`start_x` and :meth:`end_x` do nothing.

Visitors extending the :class:`SuiteVisitor` can stop visiting at a certain
level either by overriding suitable :meth:`visit_x` method or by returning
an explicit ``False`` from any :meth:`start_x` method.

Examples
--------

The following example visitor modifies the test suite structure it visits.
It could be used, for example, with Robot Framework's ``--prerunmodifier``
option to modify test data before execution.

.. literalinclude:: ../../../doc/api/code_examples/SelectEveryXthTest.py
   :language: python

For more examples it is possible to look at the source code of visitors used
internally by Robot Framework itself. Some good examples are
:class:`~robot.model.tagsetter.TagSetter` and
:mod:`keyword removers <robot.result.keywordremover>`.
"""


[docs]class SuiteVisitor(object):
    """Abstract class to ease traversing through the test suite structure.

    See the :mod:`module level <robot.model.visitor>` documentation for more
    information and an example.
    """

[docs]    def visit_suite(self, suite):
        """Implements traversing through suites.

        Can be overridden to allow modifying the passed in ``suite`` without
        calling :meth:`start_suite` or :meth:`end_suite` nor visiting child
        suites, tests or keywords (setup and teardown) at all.
        """
        if self.start_suite(suite) is not False:
            suite.setup.visit(self)
            suite.suites.visit(self)
            suite.tests.visit(self)
            suite.teardown.visit(self)
            self.end_suite(suite)


[docs]    def start_suite(self, suite):
        """Called when suite starts. Default implementation does nothing.

        Can return explicit ``False`` to stop visiting.
        """
        pass


[docs]    def end_suite(self, suite):
        """Called when suite ends. Default implementation does nothing."""
        pass


[docs]    def visit_test(self, test):
        """Implements traversing through tests.

        Can be overridden to allow modifying the passed in ``test`` without
        calling :meth:`start_test` or :meth:`end_test` nor visiting keywords.
        """
        if self.start_test(test) is not False:
            test.setup.visit(self)
            test.body.visit(self)
            test.teardown.visit(self)
            self.end_test(test)


[docs]    def start_test(self, test):
        """Called when test starts. Default implementation does nothing.

        Can return explicit ``False`` to stop visiting.
        """
        pass


[docs]    def end_test(self, test):
        """Called when test ends. Default implementation does nothing."""
        pass


[docs]    def visit_keyword(self, kw):
        """Implements traversing through keywords.

        Can be overridden to allow modifying the passed in ``kw`` without
        calling :meth:`start_keyword` or :meth:`end_keyword` nor visiting
        child keywords.
        """
        if self.start_keyword(kw) is not False:
            if hasattr(kw, 'body'):
                kw.body.visit(self)
            if kw.has_teardown:
                kw.teardown.visit(self)
            self.end_keyword(kw)


[docs]    def start_keyword(self, keyword):
        """Called when keyword starts. Default implementation does nothing.

        Can return explicit ``False`` to stop visiting.
        """
        pass


[docs]    def end_keyword(self, keyword):
        """Called when keyword ends. Default implementation does nothing."""
        pass


[docs]    def visit_for(self, for_):
        """Implements traversing through FOR loops.

        Can be overridden to allow modifying the passed in ``for_`` without
        calling :meth:`start_for` or :meth:`end_for` nor visiting body.
        """
        if self.start_for(for_) is not False:
            for_.body.visit(self)
            self.end_for(for_)


[docs]    def start_for(self, for_):
        """Called when FOR loop starts. Default implementation does nothing.

        Can return explicit ``False`` to stop visiting.
        """
        pass


[docs]    def end_for(self, for_):
        """Called when FOR loop ends. Default implementation does nothing."""
        pass


[docs]    def visit_for_iteration(self, iteration):
        """Implements traversing through single FOR loop iteration.

        This is only used with the result side model because on the running side
        there are no iterations.

        Can be overridden to allow modifying the passed in ``iteration`` without
        calling :meth:`start_for_iteration` or :meth:`end_for_iteration` nor visiting
        body.
        """
        if self.start_for_iteration(iteration) is not False:
            iteration.body.visit(self)
            self.end_for_iteration(iteration)


[docs]    def start_for_iteration(self, iteration):
        """Called when FOR loop iteration starts. Default implementation does nothing.

        Can return explicit ``False`` to stop visiting.
        """
        pass


[docs]    def end_for_iteration(self, iteration):
        """Called when FOR loop iteration ends. Default implementation does nothing."""
        pass


[docs]    def visit_if(self, if_):
        """Implements traversing through IF/ELSE structures.

        Notice that ``if_`` does not have any data directly. Actual IF/ELSE branches
        are in its ``body`` and visited using :meth:`visit_if_branch`.

        Can be overridden to allow modifying the passed in ``if_`` without
        calling :meth:`start_if` or :meth:`end_if` nor visiting branches.
        """
        if self.start_if(if_) is not False:
            if_.body.visit(self)
            self.end_if(if_)


[docs]    def start_if(self, if_):
        """Called when IF/ELSE structure starts. Default implementation does nothing.

        Can return explicit ``False`` to stop visiting.
        """
        pass


[docs]    def end_if(self, if_):
        """Called when IF/ELSE structure ends. Default implementation does nothing."""
        pass


[docs]    def visit_if_branch(self, branch):
        """Implements traversing through single IF/ELSE branch.

        Can be overridden to allow modifying the passed in ``branch`` without
        calling :meth:`start_if_branch` or :meth:`end_if_branch` nor visiting body.
        """
        if self.start_if_branch(branch) is not False:
            branch.body.visit(self)
            self.end_if_branch(branch)


[docs]    def start_if_branch(self, branch):
        """Called when IF/ELSE branch starts. Default implementation does nothing.

        Can return explicit ``False`` to stop visiting.
        """
        pass


[docs]    def end_if_branch(self, branch):
        """Called when IF/ELSE branch ends. Default implementation does nothing."""
        pass


[docs]    def visit_message(self, msg):
        """Implements visiting messages.

        Can be overridden to allow modifying the passed in ``msg`` without
        calling :meth:`start_message` or :meth:`end_message`.
        """
        if self.start_message(msg) is not False:
            self.end_message(msg)


[docs]    def start_message(self, msg):
        """Called when message starts. Default implementation does nothing.

        Can return explicit ``False`` to stop visiting.
        """
        pass


[docs]    def end_message(self, msg):
        """Called when message ends. Default implementation does nothing."""
        pass






          

      

      

    

  

    
      
          
            
  Source code for robot.output.console

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from robot.errors import DataError

from .dotted import DottedOutput
from .quiet import NoOutput, QuietOutput
from .verbose import VerboseOutput


[docs]def ConsoleOutput(type='verbose', width=78, colors='AUTO', markers='AUTO',
                  stdout=None, stderr=None):
    upper = type.upper()
    if upper == 'VERBOSE':
        return VerboseOutput(width, colors, markers, stdout, stderr)
    if upper == 'DOTTED':
        return DottedOutput(width, colors, stdout, stderr)
    if upper == 'QUIET':
        return QuietOutput(colors, stderr)
    if upper == 'NONE':
        return NoOutput()
    raise DataError("Invalid console output type '%s'. Available "
                    "'VERBOSE', 'DOTTED', 'QUIET' and 'NONE'." % type)





          

      

      

    

  

    
      
          
            
  Source code for robot.output.debugfile

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from robot.errors import DataError
from robot.utils import get_timestamp, file_writer, seq2str2

from .logger import LOGGER
from .loggerhelper import IsLogged


[docs]def DebugFile(path):
    if not path:
        LOGGER.info('No debug file')
        return None
    try:
        outfile = file_writer(path, usage='debug')
    except DataError as err:
        LOGGER.error(err.message)
        return None
    else:
        LOGGER.info('Debug file: %s' % path)
        return _DebugFileWriter(outfile)



class _DebugFileWriter:
    _separators = {'SUITE': '=', 'TEST': '-', 'KEYWORD': '~'}

    def __init__(self, outfile):
        self._indent = 0
        self._kw_level = 0
        self._separator_written_last = False
        self._outfile = outfile
        self._is_logged = IsLogged('DEBUG')

    def start_suite(self, suite):
        self._separator('SUITE')
        self._start('SUITE', suite.longname)
        self._separator('SUITE')

    def end_suite(self, suite):
        self._separator('SUITE')
        self._end('SUITE', suite.longname, suite.elapsedtime)
        self._separator('SUITE')
        if self._indent == 0:
            LOGGER.output_file('Debug', self._outfile.name)
            self.close()

    def start_test(self, test):
        self._separator('TEST')
        self._start('TEST', test.name)
        self._separator('TEST')

    def end_test(self, test):
        self._separator('TEST')
        self._end('TEST', test.name, test.elapsedtime)
        self._separator('TEST')

    def start_keyword(self, kw):
        if self._kw_level == 0:
            self._separator('KEYWORD')
        self._start(kw.type, kw.name, kw.args)
        self._kw_level += 1

    def end_keyword(self, kw):
        self._end(kw.type, kw.name, kw.elapsedtime)
        self._kw_level -= 1

    def log_message(self, msg):
        if self._is_logged(msg.level):
            self._write(msg.message, level=msg.level, timestamp=msg.timestamp)

    def close(self):
        if not self._outfile.closed:
            self._outfile.close()

    def _start(self, type_, name, args=''):
        args = ' ' + seq2str2(args)
        self._write('+%s START %s: %s%s' % ('-'*self._indent, type_, name, args))
        self._indent += 1

    def _end(self, type_, name, elapsed):
        self._indent -= 1
        self._write('+%s END %s: %s (%s)' % ('-'*self._indent, type_, name, elapsed))

    def _separator(self, type_):
        self._write(self._separators[type_] * 78, separator=True)

    def _write(self, text, separator=False, level='INFO', timestamp=None):
        if separator and self._separator_written_last:
            return
        if not separator:
            text = '%s - %s - %s' % (timestamp or get_timestamp(), level, text)
        self._outfile.write(text.rstrip() + '\n')
        self._outfile.flush()
        self._separator_written_last = separator




          

      

      

    

  

    
      
          
            
  Source code for robot.output.filelogger

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from robot.utils import file_writer

from .loggerhelper import AbstractLogger


[docs]class FileLogger(AbstractLogger):

    def __init__(self, path, level):
        AbstractLogger.__init__(self, level)
        self._writer = self._get_writer(path)  # unit test hook

    def _get_writer(self, path):
        return file_writer(path, usage='syslog')

[docs]    def message(self, msg):
        if self._is_logged(msg.level) and not self._writer.closed:
            entry = '%s | %s | %s\n' % (msg.timestamp, msg.level.ljust(5),
                                        msg.message)
            self._writer.write(entry)


[docs]    def start_suite(self, suite):
        self.info("Started test suite '%s'" % suite.name)


[docs]    def end_suite(self, suite):
        self.info("Ended test suite '%s'" % suite.name)


[docs]    def start_test(self, test):
        self.info("Started test case '%s'" % test.name)


[docs]    def end_test(self, test):
        self.info("Ended test case '%s'" % test.name)


[docs]    def start_keyword(self, kw):
        self.debug(lambda: "Started keyword '%s'" % kw.name)


[docs]    def end_keyword(self, kw):
        self.debug(lambda: "Ended keyword '%s'" % kw.name)


[docs]    def output_file(self, name, path):
        self.info('%s: %s' % (name, path))


[docs]    def close(self):
        self._writer.close()






          

      

      

    

  

    
      
          
            
  Source code for robot.output.librarylogger

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

"""Implementation of the public test library logging API.

This is exposed via :py:mod:`robot.api.logger`. Implementation must reside
here to avoid cyclic imports.
"""

import sys
import threading

from robot.errors import DataError
from robot.utils import unic, console_encode

from .logger import LOGGER
from .loggerhelper import Message


LOGGING_THREADS = ('MainThread', 'RobotFrameworkTimeoutThread')


[docs]def write(msg, level, html=False):
    # Callable messages allow lazy logging internally, but we don't want to
    # expose this functionality publicly. See the following issue for details:
    # https://github.com/robotframework/robotframework/issues/1505
    if callable(msg):
        msg = unic(msg)
    if level.upper() not in ('TRACE', 'DEBUG', 'INFO', 'HTML', 'WARN', 'ERROR'):
        raise DataError("Invalid log level '%s'." % level)
    if threading.current_thread().name in LOGGING_THREADS:
        LOGGER.log_message(Message(msg, level, html))



[docs]def trace(msg, html=False):
    write(msg, 'TRACE', html)



[docs]def debug(msg, html=False):
    write(msg, 'DEBUG', html)



[docs]def info(msg, html=False, also_console=False):
    write(msg, 'INFO', html)
    if also_console:
        console(msg)



[docs]def warn(msg, html=False):
    write(msg, 'WARN', html)



[docs]def error(msg, html=False):
    write(msg, 'ERROR', html)



[docs]def console(msg, newline=True, stream='stdout'):
    msg = unic(msg)
    if newline:
        msg += '\n'
    stream = sys.__stdout__ if stream.lower() != 'stderr' else sys.__stderr__
    stream.write(console_encode(msg, stream=stream))
    stream.flush()





          

      

      

    

  

    
      
          
            
  Source code for robot.output.listenerarguments

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from robot.utils import is_list_like, is_dict_like, is_string, unic


[docs]class ListenerArguments(object):

    def __init__(self, arguments):
        self._arguments = arguments
        self._version2 = None
        self._version3 = None

[docs]    def get_arguments(self, version):
        if version == 2:
            if self._version2 is None:
                self._version2 = self._get_version2_arguments(*self._arguments)
            return self._version2
        else:
            if self._version3 is None:
                self._version3 = self._get_version3_arguments(*self._arguments)
            return self._version3


    def _get_version2_arguments(self, *arguments):
        return arguments

    def _get_version3_arguments(self, *arguments):
        return arguments

[docs]    @classmethod
    def by_method_name(cls, name, arguments):
        Arguments = {'start_suite': StartSuiteArguments,
                     'end_suite': EndSuiteArguments,
                     'start_test': StartTestArguments,
                     'end_test': EndTestArguments,
                     'start_keyword': StartKeywordArguments,
                     'end_keyword': EndKeywordArguments,
                     'log_message': MessageArguments,
                     'message': MessageArguments}.get(name, ListenerArguments)
        return Arguments(arguments)




[docs]class MessageArguments(ListenerArguments):

    def _get_version2_arguments(self, msg):
        attributes = {'timestamp': msg.timestamp,
                      'message': msg.message,
                      'level': msg.level,
                      'html': 'yes' if msg.html else 'no'}
        return attributes,

    def _get_version3_arguments(self, msg):
        return msg,



class _ListenerArgumentsFromItem(ListenerArguments):
    _attribute_names = None

    def _get_version2_arguments(self, item):
        attributes = dict((name, self._get_attribute_value(item, name))
                          for name in self._attribute_names)
        attributes.update(self._get_extra_attributes(item))
        return item.name or '', attributes

    def _get_attribute_value(self, item, name):
        value = getattr(item, name)
        return self._take_copy_of_mutable_value(value)

    def _take_copy_of_mutable_value(self, value):
        if is_dict_like(value):
            return dict(value)
        if is_list_like(value):
            return list(value)
        return value

    def _get_extra_attributes(self, item):
        return {}

    def _get_version3_arguments(self, item):
        return item.data, item.result


[docs]class StartSuiteArguments(_ListenerArgumentsFromItem):
    _attribute_names = ('id', 'longname', 'doc', 'metadata', 'starttime')

    def _get_extra_attributes(self, suite):
        return {'tests': [t.name for t in suite.tests],
                'suites': [s.name for s in suite.suites],
                'totaltests': suite.test_count,
                'source': suite.source or ''}



[docs]class EndSuiteArguments(StartSuiteArguments):
    _attribute_names = ('id', 'longname', 'doc', 'metadata', 'starttime',
                        'endtime', 'elapsedtime', 'status', 'message')

    def _get_extra_attributes(self, suite):
        attrs = StartSuiteArguments._get_extra_attributes(self, suite)
        attrs['statistics'] = suite.stat_message
        return attrs



[docs]class StartTestArguments(_ListenerArgumentsFromItem):
    _attribute_names = ('id', 'longname', 'doc', 'tags', 'lineno', 'source', 'starttime')

    def _get_extra_attributes(self, test):
        return {'template': test.template or '',
                'originalname': test.data.name}



[docs]class EndTestArguments(StartTestArguments):
    _attribute_names = ('id', 'longname', 'doc', 'tags', 'lineno', 'source', 'starttime',
                        'endtime', 'elapsedtime', 'status', 'message')



[docs]class StartKeywordArguments(_ListenerArgumentsFromItem):
    _attribute_names = ('doc', 'assign', 'tags', 'lineno', 'source', 'type', 'status',
                        'starttime')

    def _get_extra_attributes(self, kw):
        args = [a if is_string(a) else unic(a) for a in kw.args]
        return {'kwname': kw.kwname or '', 'libname': kw.libname or '', 'args': args}



[docs]class EndKeywordArguments(StartKeywordArguments):
    _attribute_names = ('doc', 'assign', 'tags', 'lineno', 'source', 'type', 'status',
                        'starttime', 'endtime', 'elapsedtime')





          

      

      

    

  

    
      
          
            
  Source code for robot.output.listenermethods

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from robot.errors import TimeoutError
from robot.utils import get_error_details, py3to2

from .listenerarguments import ListenerArguments
from .logger import LOGGER


[docs]@py3to2
class ListenerMethods(object):

    def __init__(self, method_name, listeners):
        self._methods = []
        self._method_name = method_name
        if listeners:
            self._register_methods(method_name, listeners)

    def _register_methods(self, method_name, listeners):
        for listener in listeners:
            method = getattr(listener, method_name)
            if method:
                self._methods.append(ListenerMethod(method, listener))

    def __call__(self, *args):
        if self._methods:
            args = ListenerArguments.by_method_name(self._method_name, args)
            for method in self._methods:
                method(args.get_arguments(method.version))

    def __bool__(self):
        return bool(self._methods)



[docs]class LibraryListenerMethods(object):

    def __init__(self, method_name):
        self._method_stack = []
        self._method_name = method_name

[docs]    def new_suite_scope(self):
        self._method_stack.append([])


[docs]    def discard_suite_scope(self):
        self._method_stack.pop()


[docs]    def register(self, listeners, library):
        methods = self._method_stack[-1]
        for listener in listeners:
            method = getattr(listener, self._method_name)
            if method:
                info = ListenerMethod(method, listener, library)
                methods.append(info)


[docs]    def unregister(self, library):
        methods = [m for m in self._method_stack[-1] if m.library is not library]
        self._method_stack[-1] = methods


    def __call__(self, *args, **conf):
        methods = self._get_methods(**conf)
        if methods:
            args = ListenerArguments.by_method_name(self._method_name, args)
            for method in methods:
                method(args.get_arguments(method.version))

    def _get_methods(self, library=None):
        if not (self._method_stack and self._method_stack[-1]):
            return []
        methods = self._method_stack[-1]
        if library:
            return [m for m in methods if m.library is library]
        return methods



[docs]class ListenerMethod(object):
    # Flag to avoid recursive listener calls.
    called = False

    def __init__(self, method, listener, library=None):
        self.method = method
        self.listener_name = listener.name
        self.version = listener.version
        self.library = library

    def __call__(self, args):
        if self.called:
            return
        try:
            ListenerMethod.called = True
            self.method(*args)
        except TimeoutError:
            # Propagate possible timeouts:
            # https://github.com/robotframework/robotframework/issues/2763
            raise
        except:
            message, details = get_error_details()
            LOGGER.error("Calling method '%s' of listener '%s' failed: %s"
                         % (self.method.__name__, self.listener_name, message))
            LOGGER.info("Details:\n%s" % details)
        finally:
            ListenerMethod.called = False





          

      

      

    

  

    
      
          
            
  Source code for robot.output.listeners

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

import os.path

from robot.errors import DataError
from robot.utils import (Importer, is_string, py3to2, split_args_from_name_or_path,
                         type_name)

from .listenermethods import ListenerMethods, LibraryListenerMethods
from .loggerhelper import AbstractLoggerProxy, IsLogged
from .logger import LOGGER


[docs]@py3to2
class Listeners(object):
    _method_names = ('start_suite', 'end_suite', 'start_test', 'end_test',
                     'start_keyword', 'end_keyword', 'log_message', 'message',
                     'output_file', 'report_file', 'log_file', 'debug_file',
                     'xunit_file', 'library_import', 'resource_import',
                     'variables_import', 'close')

    def __init__(self, listeners, log_level='INFO'):
        self._is_logged = IsLogged(log_level)
        listeners = ListenerProxy.import_listeners(listeners,
                                                   self._method_names)
        for name in self._method_names:
            method = ListenerMethods(name, listeners)
            if name.endswith(('_keyword', '_file', '_import', 'log_message')):
                name = '_' + name
            setattr(self, name, method)

[docs]    def set_log_level(self, level):
        self._is_logged.set_level(level)


[docs]    def start_keyword(self, kw):
        if kw.type != kw.IF_ELSE_ROOT:
            self._start_keyword(kw)


[docs]    def end_keyword(self, kw):
        if kw.type != kw.IF_ELSE_ROOT:
            self._end_keyword(kw)


[docs]    def log_message(self, msg):
        if self._is_logged(msg.level):
            self._log_message(msg)


[docs]    def imported(self, import_type, name, attrs):
        method = getattr(self, '_%s_import' % import_type.lower())
        method(name, attrs)


[docs]    def output_file(self, file_type, path):
        method = getattr(self, '_%s_file' % file_type.lower())
        method(path)


    def __bool__(self):
        return any(isinstance(method, ListenerMethods) and method
                   for method in self.__dict__.values())



[docs]class LibraryListeners(object):
    _method_names = ('start_suite', 'end_suite', 'start_test', 'end_test',
                     'start_keyword', 'end_keyword', 'log_message', 'message',
                     'close')

    def __init__(self, log_level='INFO'):
        self._is_logged = IsLogged(log_level)
        for name in self._method_names:
            method = LibraryListenerMethods(name)
            if name == 'log_message':
                name = '_' + name
            setattr(self, name, method)

[docs]    def register(self, listeners, library):
        listeners = ListenerProxy.import_listeners(listeners,
                                                   self._method_names,
                                                   prefix='_',
                                                   raise_on_error=True)
        for method in self._listener_methods():
            method.register(listeners, library)


    def _listener_methods(self):
        return [method for method in self.__dict__.values()
                if isinstance(method, LibraryListenerMethods)]

[docs]    def unregister(self, library, close=False):
        if close:
            self.close(library=library)
        for method in self._listener_methods():
            method.unregister(library)


[docs]    def new_suite_scope(self):
        for method in self._listener_methods():
            method.new_suite_scope()


[docs]    def discard_suite_scope(self):
        for method in self._listener_methods():
            method.discard_suite_scope()


[docs]    def set_log_level(self, level):
        self._is_logged.set_level(level)


[docs]    def log_message(self, msg):
        if self._is_logged(msg.level):
            self._log_message(msg)


[docs]    def imported(self, import_type, name, attrs):
        pass


[docs]    def output_file(self, file_type, path):
        pass




[docs]class ListenerProxy(AbstractLoggerProxy):
    _no_method = None

    def __init__(self, listener, method_names, prefix=None):
        listener, name = self._import_listener(listener)
        AbstractLoggerProxy.__init__(self, listener, method_names, prefix)
        self.name = name
        self.version = self._get_version(listener)
        if self.version == 3:
            self.start_keyword = self.end_keyword = None
            self.library_import = self.resource_import = self.variables_import = None

    def _import_listener(self, listener):
        if not is_string(listener):
            # Modules have `__name__`, with others better to use `type_name`.
            name = getattr(listener, '__name__', None) or type_name(listener)
            return listener, name
        name, args = split_args_from_name_or_path(listener)
        importer = Importer('listener', logger=LOGGER)
        listener = importer.import_class_or_module(os.path.normpath(name),
                                                   instantiate_with_args=args)
        return listener, name

    def _get_version(self, listener):
        try:
            version = int(listener.ROBOT_LISTENER_API_VERSION)
            if version not in (2, 3):
                raise ValueError
        except AttributeError:
            raise DataError("Listener '%s' does not have mandatory "
                            "'ROBOT_LISTENER_API_VERSION' attribute."
                            % self.name)
        except (ValueError, TypeError):
            raise DataError("Listener '%s' uses unsupported API version '%s'."
                            % (self.name, listener.ROBOT_LISTENER_API_VERSION))
        return version

[docs]    @classmethod
    def import_listeners(cls, listeners, method_names, prefix=None,
                         raise_on_error=False):
        imported = []
        for listener in listeners:
            try:
                imported.append(cls(listener, method_names, prefix))
            except DataError as err:
                name = listener if is_string(listener) else type_name(listener)
                msg = "Taking listener '%s' into use failed: %s" % (name, err)
                if raise_on_error:
                    raise DataError(msg)
                LOGGER.error(msg)
        return imported






          

      

      

    

  

    
      
          
            
  Source code for robot.output.logger

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from contextlib import contextmanager
import os

from robot.errors import DataError
from robot.result import For, If, IfBranch, ForIteration

from .console import ConsoleOutput
from .filelogger import FileLogger
from .loggerhelper import AbstractLogger, AbstractLoggerProxy
from .stdoutlogsplitter import StdoutLogSplitter


[docs]class Logger(AbstractLogger):
    """A global logger proxy to delegating messages to registered loggers.

    Whenever something is written to LOGGER in code, all registered loggers are
    notified.  Messages are also cached and cached messages written to new
    loggers when they are registered.

    NOTE: This API is likely to change in future versions.
    """

    def __init__(self, register_console_logger=True):
        self._console_logger = None
        self._syslog = None
        self._xml_logger = None
        self._listeners = None
        self._library_listeners = None
        self._other_loggers = []
        self._message_cache = []
        self._log_message_cache = None
        self._started_keywords = 0
        self._error_occurred = False
        self._error_listener = None
        self._prev_log_message_handlers = []
        self._enabled = 0
        self._cache_only = False
        if register_console_logger:
            self.register_console_logger()

    @property
    def start_loggers(self):
        loggers = [self._console_logger, self._syslog, self._xml_logger,
                   self._listeners, self._library_listeners]
        return [logger for logger in self._other_loggers + loggers if logger]

    @property
    def end_loggers(self):
        loggers = [self._listeners, self._library_listeners,
                   self._console_logger, self._syslog, self._xml_logger]
        return [logger for logger in loggers + self._other_loggers if logger]

    def __iter__(self):
        return iter(self.end_loggers)

    def __enter__(self):
        if not self._enabled:
            self.register_syslog()
        self._enabled += 1

    def __exit__(self, *exc_info):
        self._enabled -= 1
        if not self._enabled:
            self.close()

[docs]    def register_console_logger(self, type='verbose', width=78, colors='AUTO',
                                markers='AUTO', stdout=None, stderr=None):
        logger = ConsoleOutput(type, width, colors, markers, stdout, stderr)
        self._console_logger = self._wrap_and_relay(logger)


    def _wrap_and_relay(self, logger):
        logger = LoggerProxy(logger)
        self._relay_cached_messages(logger)
        return logger

    def _relay_cached_messages(self, logger):
        if self._message_cache:
            for msg in self._message_cache[:]:
                logger.message(msg)

[docs]    def unregister_console_logger(self):
        self._console_logger = None


[docs]    def register_syslog(self, path=None, level='INFO'):
        if not path:
            path = os.environ.get('ROBOT_SYSLOG_FILE', 'NONE')
            level = os.environ.get('ROBOT_SYSLOG_LEVEL', level)
        if path.upper() == 'NONE':
            return
        try:
            syslog = FileLogger(path, level)
        except DataError as err:
            self.error("Opening syslog file '%s' failed: %s" % (path, err.message))
        else:
            self._syslog = self._wrap_and_relay(syslog)


[docs]    def register_xml_logger(self, logger):
        self._xml_logger = self._wrap_and_relay(logger)


[docs]    def unregister_xml_logger(self):
        self._xml_logger = None


[docs]    def register_listeners(self, listeners, library_listeners):
        self._listeners = listeners
        self._library_listeners = library_listeners
        if listeners:
            self._relay_cached_messages(listeners)


[docs]    def register_logger(self, *loggers):
        for logger in loggers:
            logger = self._wrap_and_relay(logger)
            self._other_loggers.append(logger)


[docs]    def unregister_logger(self, *loggers):
        for logger in loggers:
            self._other_loggers = [proxy for proxy in self._other_loggers
                                   if proxy.logger is not logger]


[docs]    def disable_message_cache(self):
        self._message_cache = None


[docs]    def register_error_listener(self, listener):
        self._error_listener = listener
        if self._error_occurred:
            listener()


[docs]    def message(self, msg):
        """Messages about what the framework is doing, warnings, errors, ..."""
        if not self._cache_only:
            for logger in self:
                logger.message(msg)
        if self._message_cache is not None:
            self._message_cache.append(msg)
        if msg.level == 'ERROR':
            self._error_occurred = True
            if self._error_listener:
                self._error_listener()


    @property
    @contextmanager
    def cache_only(self):
        self._cache_only = True
        try:
            yield
        finally:
            self._cache_only = False

    @property
    @contextmanager
    def delayed_logging(self):
        prev_cache = self._log_message_cache
        self._log_message_cache = []
        try:
            yield
        finally:
            messages = self._log_message_cache
            self._log_message_cache = prev_cache
            for msg in messages or ():
                self._log_message(msg, no_cache=True)

    def _log_message(self, msg, no_cache=False):
        """Log messages written (mainly) by libraries."""
        if self._log_message_cache is not None and not no_cache:
            msg.resolve_delayed_message()
            self._log_message_cache.append(msg)
            return
        for logger in self:
            logger.log_message(msg)
        if msg.level in ('WARN', 'ERROR'):
            self.message(msg)

    log_message = message

[docs]    def log_output(self, output):
        for msg in StdoutLogSplitter(output):
            self.log_message(msg)


[docs]    def enable_library_import_logging(self):
        self._prev_log_message_handlers.append(self.log_message)
        self.log_message = self.message


[docs]    def disable_library_import_logging(self):
        self.log_message = self._prev_log_message_handlers.pop()


[docs]    def start_suite(self, suite):
        for logger in self.start_loggers:
            logger.start_suite(suite)


[docs]    def end_suite(self, suite):
        for logger in self.end_loggers:
            logger.end_suite(suite)


[docs]    def start_test(self, test):
        for logger in self.start_loggers:
            logger.start_test(test)


[docs]    def end_test(self, test):
        for logger in self.end_loggers:
            logger.end_test(test)


[docs]    def start_keyword(self, keyword):
        # TODO: Could _prev_log_message_handlers be used also here?
        self._started_keywords += 1
        self.log_message = self._log_message
        for logger in self.start_loggers:
            logger.start_keyword(keyword)


[docs]    def end_keyword(self, keyword):
        self._started_keywords -= 1
        for logger in self.end_loggers:
            logger.end_keyword(keyword)
        if not self._started_keywords:
            self.log_message = self.message


[docs]    def imported(self, import_type, name, **attrs):
        for logger in self:
            logger.imported(import_type, name, attrs)


[docs]    def output_file(self, file_type, path):
        """Finished output, report, log, debug, or xunit file"""
        for logger in self:
            logger.output_file(file_type, path)


[docs]    def close(self):
        for logger in self:
            logger.close()
        self.__init__(register_console_logger=False)




[docs]class LoggerProxy(AbstractLoggerProxy):
    _methods = ('start_suite', 'end_suite', 'start_test', 'end_test',
                'start_keyword', 'end_keyword', 'message', 'log_message',
                'imported', 'output_file', 'close')
    _start_keyword_methods = {
        'IF/ELSE ROOT': 'start_if',
        'IF': 'start_if_branch',
        'ELSE IF': 'start_if_branch',
        'ELSE': 'start_if_branch',
        'FOR': 'start_for',
        'FOR ITERATION': 'start_for_iteration'
    }
    _end_keyword_methods = {
        'IF/ELSE ROOT': 'end_if',
        'IF': 'end_if_branch',
        'ELSE IF': 'end_if_branch',
        'ELSE': 'end_if_branch',
        'FOR': 'end_for',
        'FOR ITERATION': 'end_for_iteration'
    }

[docs]    def start_keyword(self, kw):
        name = self._start_keyword_methods.get(kw.type)
        if name and hasattr(self.logger, name):
            method = getattr(self.logger, name)
        else:
            method = self.logger.start_keyword
        method(kw)


[docs]    def end_keyword(self, kw):
        name = self._end_keyword_methods.get(kw.type)
        if name and hasattr(self.logger, name):
            method = getattr(self.logger, name)
        else:
            method = self.logger.end_keyword
        method(kw)




LOGGER = Logger()




          

      

      

    

  

    
      
          
            
  Source code for robot.output.loggerhelper

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from robot.errors import DataError
from robot.model import Message as BaseMessage
from robot.utils import get_timestamp, is_unicode, unic


LEVELS = {
  'NONE'  : 7,
  'SKIP'  : 6,
  'FAIL'  : 5,
  'ERROR' : 4,
  'WARN'  : 3,
  'INFO'  : 2,
  'DEBUG' : 1,
  'TRACE' : 0,
}


[docs]class AbstractLogger(object):

    def __init__(self, level='TRACE'):
        self._is_logged = IsLogged(level)

[docs]    def set_level(self, level):
        return self._is_logged.set_level(level)


[docs]    def trace(self, msg):
        self.write(msg, 'TRACE')


[docs]    def debug(self, msg):
        self.write(msg, 'DEBUG')


[docs]    def info(self, msg):
        self.write(msg, 'INFO')


[docs]    def warn(self, msg):
        self.write(msg, 'WARN')


[docs]    def fail(self, msg):
        html = False
        if msg.startswith("*HTML*"):
            html = True
            msg = msg[6:].lstrip()
        self.write(msg, 'FAIL', html)


[docs]    def skip(self, msg):
        html = False
        if msg.startswith("*HTML*"):
            html = True
            msg = msg[6:].lstrip()
        self.write(msg, 'SKIP', html)


[docs]    def error(self, msg):
        self.write(msg, 'ERROR')


[docs]    def write(self, message, level, html=False):
        self.message(Message(message, level, html))


[docs]    def message(self, msg):
        raise NotImplementedError(self.__class__)




[docs]class Message(BaseMessage):
    __slots__ = ['_message']

    def __init__(self, message, level='INFO', html=False, timestamp=None):
        message = self._normalize_message(message)
        level, html = self._get_level_and_html(level, html)
        timestamp = timestamp or get_timestamp()
        BaseMessage.__init__(self, message, level, html, timestamp)

    def _normalize_message(self, msg):
        if callable(msg):
            return msg
        if not is_unicode(msg):
            msg = unic(msg)
        if '\r\n' in msg:
            msg = msg.replace('\r\n', '\n')
        return msg

    def _get_level_and_html(self, level, html):
        level = level.upper()
        if level == 'HTML':
            return 'INFO', True
        if level not in LEVELS:
            raise DataError("Invalid log level '%s'." % level)
        return level, html

    @property
    def message(self):
        self.resolve_delayed_message()
        return self._message

    @message.setter
    def message(self, message):
        self._message = message

[docs]    def resolve_delayed_message(self):
        if callable(self._message):
            self._message = self._message()




[docs]class IsLogged(object):

    def __init__(self, level):
        self.level = level.upper()
        self._int_level = self._level_to_int(level)

    def __call__(self, level):
        return self._level_to_int(level) >= self._int_level

[docs]    def set_level(self, level):
        old = self.level
        self.__init__(level)
        return old


    def _level_to_int(self, level):
        try:
            return LEVELS[level.upper()]
        except KeyError:
            raise DataError("Invalid log level '%s'." % level)



[docs]class AbstractLoggerProxy(object):
    _methods = None
    _no_method = lambda *args: None

    def __init__(self, logger, method_names=None, prefix=None):
        self.logger = logger
        for name in method_names or self._methods:
            # Allow extending classes to implement some of the messages themselves.
            if hasattr(self, name):
                if hasattr(logger, name):
                    continue
                target = logger
            else:
                target = self
            setattr(target, name, self._get_method(logger, name, prefix))

    def _get_method(self, logger, name, prefix):
        for method_name in self._get_method_names(name, prefix):
            if hasattr(logger, method_name):
                return getattr(logger, method_name)
        return self._no_method

    def _get_method_names(self, name, prefix):
        names = [name, self._toCamelCase(name)] if '_' in name else [name]
        if prefix:
            names += [prefix + name for name in names]
        return names

    def _toCamelCase(self, name):
        parts = name.split('_')
        return ''.join([parts[0]] + [part.capitalize() for part in parts[1:]])





          

      

      

    

  

    
      
          
            
  Source code for robot.output.output

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from . import pyloggingconf
from .debugfile import DebugFile
from .listeners import LibraryListeners, Listeners
from .logger import LOGGER
from .loggerhelper import AbstractLogger
from .xmllogger import XmlLogger


[docs]class Output(AbstractLogger):

    def __init__(self, settings):
        AbstractLogger.__init__(self)
        self._xmllogger = XmlLogger(settings.output, settings.log_level,
                                    settings.rpa)
        self.listeners = Listeners(settings.listeners, settings.log_level)
        self.library_listeners = LibraryListeners(settings.log_level)
        self._register_loggers(DebugFile(settings.debug_file))
        self._settings = settings

    def _register_loggers(self, debug_file):
        LOGGER.register_xml_logger(self._xmllogger)
        LOGGER.register_listeners(self.listeners or None, self.library_listeners)
        if debug_file:
            LOGGER.register_logger(debug_file)

[docs]    def register_error_listener(self, listener):
        LOGGER.register_error_listener(listener)


[docs]    def close(self, result):
        self._xmllogger.visit_statistics(result.statistics)
        self._xmllogger.close()
        LOGGER.unregister_xml_logger()
        LOGGER.output_file('Output', self._settings['Output'])


[docs]    def start_suite(self, suite):
        LOGGER.start_suite(suite)


[docs]    def end_suite(self, suite):
        LOGGER.end_suite(suite)


[docs]    def start_test(self, test):
        LOGGER.start_test(test)


[docs]    def end_test(self, test):
        LOGGER.end_test(test)


[docs]    def start_keyword(self, kw):
        LOGGER.start_keyword(kw)


[docs]    def end_keyword(self, kw):
        LOGGER.end_keyword(kw)


[docs]    def message(self, msg):
        LOGGER.log_message(msg)


[docs]    def set_log_level(self, level):
        pyloggingconf.set_level(level)
        self.listeners.set_log_level(level)
        self.library_listeners.set_log_level(level)
        return self._xmllogger.set_log_level(level)






          

      

      

    

  

    
      
          
            
  Source code for robot.output.pyloggingconf

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from contextlib import contextmanager
import logging
import traceback

from robot.utils import get_error_details, unic

from . import librarylogger


LEVELS = {'TRACE': logging.NOTSET,
          'DEBUG': logging.DEBUG,
          'INFO': logging.INFO,
          'WARN': logging.WARNING,
          'ERROR': logging.ERROR}


[docs]@contextmanager
def robot_handler_enabled(level):
    root = logging.getLogger()
    if any(isinstance(h, RobotHandler) for h in root.handlers):
        yield
        return
    handler = RobotHandler()
    old_raise = logging.raiseExceptions
    root.addHandler(handler)
    logging.raiseExceptions = False
    set_level(level)
    try:
        yield
    finally:
        root.removeHandler(handler)
        logging.raiseExceptions = old_raise



[docs]def set_level(level):
    try:
        level = LEVELS[level.upper()]
    except KeyError:
        return
    logging.getLogger().setLevel(level)



[docs]class RobotHandler(logging.Handler):

[docs]    def emit(self, record):
        message, error = self._get_message(record)
        if record.exc_info:
            tb_lines = traceback.format_exception(*record.exc_info)
            message = ''.join([message, '\n'] + tb_lines).rstrip()
        method = self._get_logger_method(record.levelno)
        method(message)
        if error:
            librarylogger.debug(error)


    def _get_message(self, record):
        try:
            return record.getMessage(), None
        except:
            message = 'Failed to log following message properly: %s' \
                        % unic(record.msg)
            error = '\n'.join(get_error_details())
            return message, error

    def _get_logger_method(self, level):
        if level >= logging.ERROR:
            return librarylogger.error
        if level >= logging.WARNING:
            return librarylogger.warn
        if level >= logging.INFO:
            return librarylogger.info
        if level >= logging.DEBUG:
            return librarylogger.debug
        return librarylogger.trace





          

      

      

    

  

    
      
          
            
  Source code for robot.output.stdoutlogsplitter

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

import re

from robot.utils import format_time

from .loggerhelper import Message


[docs]class StdoutLogSplitter(object):
    """Splits messages logged through stdout (or stderr) into Message objects"""

    _split_from_levels = re.compile(r'^(?:\*'
                                    r'(TRACE|DEBUG|INFO|HTML|WARN|ERROR)'
                                    r'(:\d+(?:\.\d+)?)?'  # Optional timestamp
                                    r'\*)', re.MULTILINE)

    def __init__(self, output):
        self._messages = list(self._get_messages(output.strip()))

    def _get_messages(self, output):
        for level, timestamp, msg in self._split_output(output):
            if timestamp:
                timestamp = self._format_timestamp(timestamp[1:])
            yield Message(msg.strip(), level, timestamp=timestamp)

    def _split_output(self, output):
        tokens = self._split_from_levels.split(output)
        tokens = self._add_initial_level_and_time_if_needed(tokens)
        for i in range(0, len(tokens), 3):
            yield tokens[i:i+3]

    def _add_initial_level_and_time_if_needed(self, tokens):
        if self._output_started_with_level(tokens):
            return tokens[1:]
        return ['INFO', None] + tokens

    def _output_started_with_level(self, tokens):
        return tokens[0] == ''

    def _format_timestamp(self, millis):
        return format_time(float(millis)/1000, millissep='.')

    def __iter__(self):
        return iter(self._messages)





          

      

      

    

  

    
      
          
            
  Source code for robot.output.xmllogger

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from robot.utils import XmlWriter, NullMarkupWriter, get_timestamp, unic
from robot.version import get_full_version
from robot.result.visitor import ResultVisitor

from .loggerhelper import IsLogged


[docs]class XmlLogger(ResultVisitor):

    def __init__(self, path, log_level='TRACE', rpa=False, generator='Robot'):
        self._log_message_is_logged = IsLogged(log_level)
        self._error_message_is_logged = IsLogged('WARN')
        self._writer = self._get_writer(path, rpa, generator)
        self._errors = []

    def _get_writer(self, path, rpa, generator):
        if not path:
            return NullMarkupWriter()
        writer = XmlWriter(path, write_empty=False, usage='output')
        writer.start('robot', {'generator': get_full_version(generator),
                               'generated': get_timestamp(),
                               'rpa': 'true' if rpa else 'false',
                               'schemaversion': '2'})
        return writer

[docs]    def close(self):
        self.start_errors()
        for msg in self._errors:
            self._write_message(msg)
        self.end_errors()
        self._writer.end('robot')
        self._writer.close()


[docs]    def set_log_level(self, level):
        return self._log_message_is_logged.set_level(level)


[docs]    def message(self, msg):
        if self._error_message_is_logged(msg.level):
            self._errors.append(msg)


[docs]    def log_message(self, msg):
        if self._log_message_is_logged(msg.level):
            self._write_message(msg)


    def _write_message(self, msg):
        attrs = {'timestamp': msg.timestamp or 'N/A', 'level': msg.level}
        if msg.html:
            attrs['html'] = 'true'
        self._writer.element('msg', msg.message, attrs)

[docs]    def start_keyword(self, kw):
        attrs = {'name': kw.kwname, 'library': kw.libname}
        if kw.type != 'KEYWORD':
            attrs['type'] = kw.type
        if kw.sourcename:
            attrs['sourcename'] = kw.sourcename
        self._writer.start('kw', attrs)
        self._write_list('var', kw.assign)
        self._write_list('arg', [unic(a) for a in kw.args])
        self._write_list('tag', kw.tags)
        # Must be after tags to allow adding message when using --flattenkeywords.
        self._writer.element('doc', kw.doc)


[docs]    def end_keyword(self, kw):
        if kw.timeout:
            self._writer.element('timeout', attrs={'value': unic(kw.timeout)})
        self._write_status(kw)
        self._writer.end('kw')


[docs]    def start_if(self, if_):
        self._writer.start('if')
        self._writer.element('doc', if_.doc)


[docs]    def end_if(self, if_):
        self._write_status(if_)
        self._writer.end('if')


[docs]    def start_if_branch(self, branch):
        self._writer.start('branch', {'type': branch.type,
                                      'condition': branch.condition})
        self._writer.element('doc', branch.doc)


[docs]    def end_if_branch(self, branch):
        self._write_status(branch)
        self._writer.end('branch')


[docs]    def start_for(self, for_):
        self._writer.start('for', {'flavor': for_.flavor})
        for name in for_.variables:
            self._writer.element('var', name)
        for value in for_.values:
            self._writer.element('value', value)
        self._writer.element('doc', for_.doc)


[docs]    def end_for(self, for_):
        self._write_status(for_)
        self._writer.end('for')


[docs]    def start_for_iteration(self, iteration):
        self._writer.start('iter')
        for name, value in iteration.variables.items():
            self._writer.element('var', value, {'name': name})
        self._writer.element('doc', iteration.doc)


[docs]    def end_for_iteration(self, iteration):
        self._write_status(iteration)
        self._writer.end('iter')


[docs]    def start_test(self, test):
        self._writer.start('test', {'id': test.id, 'name': test.name})


[docs]    def end_test(self, test):
        self._writer.element('doc', test.doc)
        self._write_list('tag', test.tags)
        if test.timeout:
            self._writer.element('timeout', attrs={'value': unic(test.timeout)})
        self._write_status(test)
        self._writer.end('test')


[docs]    def start_suite(self, suite):
        attrs = {'id': suite.id, 'name': suite.name, 'source': suite.source}
        self._writer.start('suite', attrs)


[docs]    def end_suite(self, suite):
        self._writer.element('doc', suite.doc)
        for name, value in suite.metadata.items():
            self._writer.element('meta', value, {'name': name})
        self._write_status(suite)
        self._writer.end('suite')


[docs]    def start_statistics(self, stats):
        self._writer.start('statistics')


[docs]    def end_statistics(self, stats):
        self._writer.end('statistics')


[docs]    def start_total_statistics(self, total_stats):
        self._writer.start('total')


[docs]    def end_total_statistics(self, total_stats):
        self._writer.end('total')


[docs]    def start_tag_statistics(self, tag_stats):
        self._writer.start('tag')


[docs]    def end_tag_statistics(self, tag_stats):
        self._writer.end('tag')


[docs]    def start_suite_statistics(self, tag_stats):
        self._writer.start('suite')


[docs]    def end_suite_statistics(self, tag_stats):
        self._writer.end('suite')


[docs]    def visit_stat(self, stat):
        self._writer.element('stat', stat.name,
                             stat.get_attributes(values_as_strings=True))


[docs]    def start_errors(self, errors=None):
        self._writer.start('errors')


[docs]    def end_errors(self, errors=None):
        self._writer.end('errors')


    def _write_list(self, tag, items):
        for item in items:
            self._writer.element(tag, item)

    def _write_status(self, item):
        attrs = {'status': item.status, 'starttime': item.starttime or 'N/A',
                 'endtime': item.endtime or 'N/A'}
        if not (item.starttime and item.endtime):
            attrs['elapsedtime'] = str(item.elapsedtime)
        self._writer.element('status', item.message, attrs)





          

      

      

    

  

    
      
          
            
  Source code for robot.output.console.dotted

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

import sys

from robot.model import SuiteVisitor
from robot.utils import plural_or_not, secs_to_timestr

from .highlighting import HighlightingStream


[docs]class DottedOutput(object):

    def __init__(self, width=78, colors='AUTO', stdout=None, stderr=None):
        self._width = width
        self._stdout = HighlightingStream(stdout or sys.__stdout__, colors)
        self._stderr = HighlightingStream(stderr or sys.__stderr__, colors)
        self._markers_on_row = 0

[docs]    def start_suite(self, suite):
        if not suite.parent:
            self._stdout.write("Running suite '%s' with %d %s%s.\n"
                               % (suite.name, suite.test_count,
                                  'test' if not suite.rpa else 'task',
                                  plural_or_not(suite.test_count)))
            self._stdout.write('=' * self._width + '\n')


[docs]    def end_test(self, test):
        if self._markers_on_row == self._width:
            self._stdout.write('\n')
            self._markers_on_row = 0
        self._markers_on_row += 1
        if test.passed:
            self._stdout.write('.')
        elif test.skipped:
            self._stdout.highlight('s', 'SKIP')
        elif 'robot:exit' in test.tags:
            self._stdout.write('x')
        else:
            self._stdout.highlight('F', 'FAIL')


[docs]    def end_suite(self, suite):
        if not suite.parent:
            self._stdout.write('\n')
            StatusReporter(self._stdout, self._width).report(suite)
            self._stdout.write('\n')


[docs]    def message(self, msg):
        if msg.level in ('WARN', 'ERROR'):
            self._stderr.error(msg.message, msg.level)


[docs]    def output_file(self, name, path):
        self._stdout.write('%-8s %s\n' % (name+':', path))




[docs]class StatusReporter(SuiteVisitor):

    def __init__(self, stream, width):
        self._stream = stream
        self._width = width

[docs]    def report(self, suite):
        suite.visit(self)
        stats = suite.statistics
        self._stream.write("%s\nRun suite '%s' with %d %s%s in %s.\n\n"
                           % ('=' * self._width, suite.name, stats.total,
                              'test' if not suite.rpa else 'task',
                              plural_or_not(stats.total),
                              secs_to_timestr(suite.elapsedtime/1000.0)))
        self._stream.highlight(suite.status + 'ED', suite.status)
        self._stream.write('\n%s\n' % stats.message)


[docs]    def visit_test(self, test):
        if test.failed and 'robot:exit' not in test.tags:
            self._stream.write('-' * self._width + '\n')
            self._stream.highlight('FAIL')
            self._stream.write(': %s\n%s\n' % (test.longname,
                                               test.message.strip()))






          

      

      

    

  

    
      
          
            
  Source code for robot.output.console.highlighting

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

# Windows highlighting code adapted from color_console.py. It is copyright
# Andre Burgaud, licensed under the MIT License, and available here:
# http://www.burgaud.com/bring-colors-to-the-windows-console-with-python/

from contextlib import contextmanager
import errno
import os
import sys
try:
    from ctypes import windll, Structure, c_short, c_ushort, byref
except ImportError:  # Not on Windows or using Jython
    windll = None

from robot.errors import DataError
from robot.utils import console_encode, isatty, WINDOWS


[docs]class HighlightingStream(object):

    def __init__(self, stream, colors='AUTO'):
        self.stream = stream
        self._highlighter = self._get_highlighter(stream, colors)

    def _get_highlighter(self, stream, colors):
        options = {'AUTO': Highlighter if isatty(stream) else NoHighlighting,
                   'ON': Highlighter,
                   'OFF': NoHighlighting,
                   'ANSI': AnsiHighlighter}
        try:
            highlighter = options[colors.upper()]
        except KeyError:
            raise DataError("Invalid console color value '%s'. Available "
                            "'AUTO', 'ON', 'OFF' and 'ANSI'." % colors)
        return highlighter(stream)

[docs]    def write(self, text, flush=True):
        self._write(console_encode(text, stream=self.stream))
        if flush:
            self.flush()


    def _write(self, text, retry=5):
        # Workaround for Windows 10 console bug:
        # https://github.com/robotframework/robotframework/issues/2709
        try:
            with self._suppress_broken_pipe_error:
                self.stream.write(text)
        except IOError as err:
            if not (WINDOWS and err.errno == 0 and retry > 0):
                raise
            self._write(text, retry-1)

    @property
    @contextmanager
    def _suppress_broken_pipe_error(self):
        try:
            yield
        except IOError as err:
            if err.errno not in (errno.EPIPE, errno.EINVAL, errno.EBADF):
                raise

[docs]    def flush(self):
        with self._suppress_broken_pipe_error:
            self.stream.flush()


[docs]    def highlight(self, text, status=None, flush=True):
        if self._must_flush_before_and_after_highlighting():
            self.flush()
            flush = True
        with self._highlighting(status or text):
            self.write(text, flush)


    def _must_flush_before_and_after_highlighting(self):
        # Must flush on Windows before and after highlighting to make sure set
        # console colors only affect the actual highlighted text. Problems
        # only encountered with Python 3, but better to be safe than sorry.
        return WINDOWS and not isinstance(self._highlighter, NoHighlighting)

[docs]    def error(self, message, level):
        self.write('[ ', flush=False)
        self.highlight(level, flush=False)
        self.write(' ] %s\n' % message)


    @contextmanager
    def _highlighting(self, status):
        highlighter = self._highlighter
        start = {'PASS': highlighter.green,
                 'FAIL': highlighter.red,
                 'ERROR': highlighter.red,
                 'WARN': highlighter.yellow,
                 'SKIP': highlighter.yellow}[status]
        start()
        try:
            yield
        finally:
            highlighter.reset()



[docs]def Highlighter(stream):
    if os.sep == '/':
        return AnsiHighlighter(stream)
    return DosHighlighter(stream) if windll else NoHighlighting(stream)



[docs]class AnsiHighlighter(object):
    _ANSI_GREEN = '\033[32m'
    _ANSI_RED = '\033[31m'
    _ANSI_YELLOW = '\033[33m'
    _ANSI_RESET = '\033[0m'

    def __init__(self, stream):
        self._stream = stream

[docs]    def green(self):
        self._set_color(self._ANSI_GREEN)


[docs]    def red(self):
        self._set_color(self._ANSI_RED)


[docs]    def yellow(self):
        self._set_color(self._ANSI_YELLOW)


[docs]    def reset(self):
        self._set_color(self._ANSI_RESET)


    def _set_color(self, color):
        self._stream.write(color)



[docs]class NoHighlighting(AnsiHighlighter):

    def _set_color(self, color):
        pass



[docs]class DosHighlighter(object):
    _FOREGROUND_GREEN = 0x2
    _FOREGROUND_RED = 0x4
    _FOREGROUND_YELLOW = 0x6
    _FOREGROUND_GREY = 0x7
    _FOREGROUND_INTENSITY = 0x8
    _BACKGROUND_MASK = 0xF0
    _STDOUT_HANDLE = -11
    _STDERR_HANDLE = -12

    def __init__(self, stream):
        self._handle = self._get_std_handle(stream)
        self._orig_colors = self._get_colors()
        self._background = self._orig_colors & self._BACKGROUND_MASK

[docs]    def green(self):
        self._set_foreground_colors(self._FOREGROUND_GREEN)


[docs]    def red(self):
        self._set_foreground_colors(self._FOREGROUND_RED)


[docs]    def yellow(self):
        self._set_foreground_colors(self._FOREGROUND_YELLOW)


[docs]    def reset(self):
        self._set_colors(self._orig_colors)


    def _get_std_handle(self, stream):
        handle = self._STDOUT_HANDLE \
            if stream is sys.__stdout__ else self._STDERR_HANDLE
        return windll.kernel32.GetStdHandle(handle)

    def _get_colors(self):
        csbi = _CONSOLE_SCREEN_BUFFER_INFO()
        ok = windll.kernel32.GetConsoleScreenBufferInfo(self._handle, byref(csbi))
        if not ok:  # Call failed, return default console colors (gray on black)
            return self._FOREGROUND_GREY
        return csbi.wAttributes

    def _set_foreground_colors(self, colors):
        self._set_colors(colors | self._FOREGROUND_INTENSITY | self._background)

    def _set_colors(self, colors):
        windll.kernel32.SetConsoleTextAttribute(self._handle, colors)



if windll:

    class _COORD(Structure):
        _fields_ = [("X", c_short),
                    ("Y", c_short)]

    class _SMALL_RECT(Structure):
        _fields_ = [("Left", c_short),
                    ("Top", c_short),
                    ("Right", c_short),
                    ("Bottom", c_short)]

    class _CONSOLE_SCREEN_BUFFER_INFO(Structure):
        _fields_ = [("dwSize", _COORD),
                    ("dwCursorPosition", _COORD),
                    ("wAttributes", c_ushort),
                    ("srWindow", _SMALL_RECT),
                    ("dwMaximumWindowSize", _COORD)]




          

      

      

    

  

    
      
          
            
  Source code for robot.output.console.quiet

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

import sys

from .highlighting import HighlightingStream


[docs]class QuietOutput(object):

    def __init__(self, colors='AUTO', stderr=None):
        self._stderr = HighlightingStream(stderr or sys.__stderr__, colors)

[docs]    def message(self, msg):
        if msg.level in ('WARN', 'ERROR'):
            self._stderr.error(msg.message, msg.level)




[docs]class NoOutput(object):
    pass





          

      

      

    

  

    
      
          
            
  Source code for robot.output.console.verbose

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

import sys

from robot.errors import DataError
from robot.utils import (get_console_length, getshortdoc, isatty,
                         pad_console_length)

from .highlighting import HighlightingStream


[docs]class VerboseOutput(object):

    def __init__(self, width=78, colors='AUTO', markers='AUTO', stdout=None,
                 stderr=None):
        self._writer = VerboseWriter(width, colors, markers, stdout, stderr)
        self._started = False
        self._started_keywords = 0
        self._running_test = False

[docs]    def start_suite(self, suite):
        if not self._started:
            self._writer.suite_separator()
            self._started = True
        self._writer.info(suite.longname, suite.doc, start_suite=True)
        self._writer.suite_separator()


[docs]    def end_suite(self, suite):
        self._writer.info(suite.longname, suite.doc)
        self._writer.status(suite.status)
        self._writer.message(suite.full_message)
        self._writer.suite_separator()


[docs]    def start_test(self, test):
        self._writer.info(test.name, test.doc)
        self._running_test = True


[docs]    def end_test(self, test):
        self._writer.status(test.status, clear=True)
        self._writer.message(test.message)
        self._writer.test_separator()
        self._running_test = False


[docs]    def start_keyword(self, kw):
        self._started_keywords += 1


[docs]    def end_keyword(self, kw):
        self._started_keywords -= 1
        if self._running_test and not self._started_keywords:
            self._writer.keyword_marker(kw.status)


[docs]    def message(self, msg):
        if msg.level in ('WARN', 'ERROR'):
            self._writer.error(msg.message, msg.level, clear=self._running_test)


[docs]    def output_file(self, name, path):
        self._writer.output(name, path)




[docs]class VerboseWriter(object):
    _status_length = len('| PASS |')

    def __init__(self, width=78, colors='AUTO', markers='AUTO', stdout=None,
                 stderr=None):
        self._width = width
        self._stdout = HighlightingStream(stdout or sys.__stdout__, colors)
        self._stderr = HighlightingStream(stderr or sys.__stderr__, colors)
        self._keyword_marker = KeywordMarker(self._stdout, markers)
        self._last_info = None

[docs]    def info(self, name, doc, start_suite=False):
        width, separator = self._get_info_width_and_separator(start_suite)
        self._last_info = self._get_info(name, doc, width) + separator
        self._write_info()
        self._keyword_marker.reset_count()


    def _write_info(self):
        self._stdout.write(self._last_info)

    def _get_info_width_and_separator(self, start_suite):
        if start_suite:
            return self._width, '\n'
        return self._width - self._status_length - 1, ' '

    def _get_info(self, name, doc, width):
        if get_console_length(name) > width:
            return pad_console_length(name, width)
        doc = getshortdoc(doc, linesep=' ')
        info = '%s :: %s' % (name, doc) if doc else name
        return pad_console_length(info, width)

[docs]    def suite_separator(self):
        self._fill('=')


[docs]    def test_separator(self):
        self._fill('-')


    def _fill(self, char):
        self._stdout.write('%s\n' % (char * self._width))

[docs]    def status(self, status, clear=False):
        if self._should_clear_markers(clear):
            self._clear_status()
        self._stdout.write('| ', flush=False)
        self._stdout.highlight(status, flush=False)
        self._stdout.write(' |\n')


    def _should_clear_markers(self, clear):
        return clear and self._keyword_marker.marking_enabled

    def _clear_status(self):
        self._clear_info()
        self._write_info()

    def _clear_info(self):
        self._stdout.write('\r%s\r' % (' ' * self._width))
        self._keyword_marker.reset_count()

[docs]    def message(self, message):
        if message:
            self._stdout.write(message.strip() + '\n')


[docs]    def keyword_marker(self, status):
        if self._keyword_marker.marker_count == self._status_length:
            self._clear_status()
            self._keyword_marker.reset_count()
        self._keyword_marker.mark(status)


[docs]    def error(self, message, level, clear=False):
        if self._should_clear_markers(clear):
            self._clear_info()
        self._stderr.error(message, level)
        if self._should_clear_markers(clear):
            self._write_info()


[docs]    def output(self, name, path):
        self._stdout.write('%-8s %s\n' % (name+':', path))




[docs]class KeywordMarker(object):

    def __init__(self, highlighter, markers):
        self._highlighter = highlighter
        self.marking_enabled = self._marking_enabled(markers, highlighter)
        self.marker_count = 0

    def _marking_enabled(self, markers, highlighter):
        options = {'AUTO': isatty(highlighter.stream),
                   'ON': True,
                   'OFF': False}
        try:
            return options[markers.upper()]
        except KeyError:
            raise DataError("Invalid console marker value '%s'. Available "
                            "'AUTO', 'ON' and 'OFF'." % markers)

[docs]    def mark(self, status):
        if self.marking_enabled:
            marker, status = ('.', 'PASS') if status != 'FAIL' else ('F', 'FAIL')
            self._highlighter.highlight(marker, status)
            self.marker_count += 1


[docs]    def reset_count(self):
        self.marker_count = 0






          

      

      

    

  

    
      
          
            
  Source code for robot.parsing.suitestructure

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

import os.path

from robot.errors import DataError
from robot.model import SuiteNamePatterns
from robot.output import LOGGER
from robot.utils import abspath, get_error_message, unic


[docs]class SuiteStructure(object):

    def __init__(self, source=None, init_file=None, children=None):
        self.source = source
        self.init_file = init_file
        self.children = children
        self.extension = self._get_extension(source, init_file)

    def _get_extension(self, source, init_file):
        if self.is_directory and not init_file:
            return None
        source = init_file or source
        return os.path.splitext(source)[1][1:].lower()

    @property
    def is_directory(self):
        return self.children is not None

[docs]    def visit(self, visitor):
        if self.children is None:
            visitor.visit_file(self)
        else:
            visitor.visit_directory(self)




[docs]class SuiteStructureBuilder(object):
    ignored_prefixes = ('_', '.')
    ignored_dirs = ('CVS',)

    def __init__(self, included_extensions=('robot',), included_suites=None):
        self.included_extensions = included_extensions
        self.included_suites = included_suites

[docs]    def build(self, paths):
        paths = list(self._normalize_paths(paths))
        if len(paths) == 1:
            return self._build(paths[0], self.included_suites)
        children = [self._build(p, self.included_suites) for p in paths]
        return SuiteStructure(children=children)


    def _normalize_paths(self, paths):
        if not paths:
            raise DataError('One or more source paths required.')
        for path in paths:
            path = os.path.normpath(path)
            if not os.path.exists(path):
                raise DataError("Parsing '%s' failed: File or directory to "
                                "execute does not exist." % path)
            yield abspath(path)

    def _build(self, path, include_suites):
        if os.path.isfile(path):
            return SuiteStructure(path)
        include_suites = self._get_include_suites(path, include_suites)
        init_file, paths = self._get_child_paths(path, include_suites)
        children = [self._build(p, include_suites) for p in paths]
        return SuiteStructure(path, init_file, children)

    def _get_include_suites(self, path, incl_suites):
        if not incl_suites:
            return None
        if not isinstance(incl_suites, SuiteNamePatterns):
            incl_suites = SuiteNamePatterns(
                self._create_included_suites(incl_suites))
        # If a directory is included, also all its children should be included.
        if self._is_in_included_suites(os.path.basename(path), incl_suites):
            return None
        return incl_suites

    def _create_included_suites(self, incl_suites):
        for suite in incl_suites:
            yield suite
            while '.' in suite:
                suite = suite.split('.', 1)[1]
                yield suite

    def _get_child_paths(self, dirpath, incl_suites=None):
        init_file = None
        paths = []
        for path, is_init_file in self._list_dir(dirpath, incl_suites):
            if is_init_file:
                if not init_file:
                    init_file = path
                else:
                    LOGGER.error("Ignoring second test suite init file '%s'."
                                 % path)
            else:
                paths.append(path)
        return init_file, paths

    def _list_dir(self, dir_path, incl_suites):
        # os.listdir returns Unicode entries when path is Unicode
        dir_path = unic(dir_path)
        try:
            names = os.listdir(dir_path)
        except:
            raise DataError("Reading directory '%s' failed: %s"
                            % (dir_path, get_error_message()))
        for name in sorted(names, key=lambda item: item.lower()):
            name = unic(name)  # needed to handle nfc/nfd normalization on OSX
            path = os.path.join(dir_path, name)
            base, ext = os.path.splitext(name)
            ext = ext[1:].lower()
            if self._is_init_file(path, base, ext):
                yield path, True
            elif self._is_included(path, base, ext, incl_suites):
                yield path, False
            else:
                LOGGER.info("Ignoring file or directory '%s'." % path)

    def _is_init_file(self, path, base, ext):
        return (base.lower() == '__init__'
                and ext in self.included_extensions
                and os.path.isfile(path))

    def _is_included(self, path, base, ext, incl_suites):
        if base.startswith(self.ignored_prefixes):
            return False
        if os.path.isdir(path):
            return base not in self.ignored_dirs or ext
        if ext not in self.included_extensions:
            return False
        return self._is_in_included_suites(base, incl_suites)

    def _is_in_included_suites(self, name, incl_suites):
        if not incl_suites:
            return True
        return incl_suites.match(self._split_prefix(name))

    def _split_prefix(self, name):
        return name.split('__', 1)[-1]



[docs]class SuiteStructureVisitor(object):

[docs]    def visit_file(self, structure):
        pass


[docs]    def visit_directory(self, structure):
        self.start_directory(structure)
        for child in structure.children:
            child.visit(self)
        self.end_directory(structure)


[docs]    def start_directory(self, structure):
        pass


[docs]    def end_directory(self, structure):
        pass






          

      

      

    

  

    
      
          
            
  Source code for robot.parsing.lexer.blocklexers

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from .tokens import Token
from .statementlexers import (Lexer,
                              SettingSectionHeaderLexer, SettingLexer,
                              VariableSectionHeaderLexer, VariableLexer,
                              TestCaseSectionHeaderLexer,
                              KeywordSectionHeaderLexer,
                              CommentSectionHeaderLexer, CommentLexer,
                              ErrorSectionHeaderLexer,
                              TestOrKeywordSettingLexer,
                              KeywordCallLexer,
                              ForHeaderLexer,
                              IfHeaderLexer, ElseIfHeaderLexer, ElseHeaderLexer,
                              EndLexer)


[docs]class BlockLexer(Lexer):

    def __init__(self, ctx):
        """:type ctx: :class:`robot.parsing.lexer.context.FileContext`"""
        Lexer.__init__(self, ctx)
        self.lexers = []

[docs]    def accepts_more(self, statement):
        return True


[docs]    def input(self, statement):
        if self.lexers and self.lexers[-1].accepts_more(statement):
            lexer = self.lexers[-1]
        else:
            lexer = self.lexer_for(statement)
            self.lexers.append(lexer)
        lexer.input(statement)
        return lexer


[docs]    def lexer_for(self, statement):
        for cls in self.lexer_classes():
            lexer = cls(self.ctx)
            if lexer.handles(statement):
                return lexer
        raise TypeError("%s did not find lexer for statement %s."
                        % (type(self).__name__, statement))


[docs]    def lexer_classes(self):
        return ()


[docs]    def lex(self):
        for lexer in self.lexers:
            lexer.lex()


    def _lex_with_priority(self, priority):
        for lexer in self.lexers:
            if isinstance(lexer, priority):
                lexer.lex()
        for lexer in self.lexers:
            if not isinstance(lexer, priority):
                lexer.lex()



[docs]class FileLexer(BlockLexer):

[docs]    def lex(self):
        self._lex_with_priority(priority=SettingSectionLexer)


[docs]    def lexer_classes(self):
        return (SettingSectionLexer, VariableSectionLexer,
                TestCaseSectionLexer, KeywordSectionLexer,
                CommentSectionLexer, ErrorSectionLexer,
                ImplicitCommentSectionLexer)




[docs]class SectionLexer(BlockLexer):

[docs]    def accepts_more(self, statement):
        return not statement[0].value.startswith('*')




[docs]class SettingSectionLexer(SectionLexer):

[docs]    def handles(self, statement):
        return self.ctx.setting_section(statement)


[docs]    def lexer_classes(self):
        return (SettingSectionHeaderLexer, SettingLexer)




[docs]class VariableSectionLexer(SectionLexer):

[docs]    def handles(self, statement):
        return self.ctx.variable_section(statement)


[docs]    def lexer_classes(self):
        return (VariableSectionHeaderLexer, VariableLexer)




[docs]class TestCaseSectionLexer(SectionLexer):

[docs]    def handles(self, statement):
        return self.ctx.test_case_section(statement)


[docs]    def lexer_classes(self):
        return (TestCaseSectionHeaderLexer, TestCaseLexer)




[docs]class KeywordSectionLexer(SettingSectionLexer):

[docs]    def handles(self, statement):
        return self.ctx.keyword_section(statement)


[docs]    def lexer_classes(self):
        return (KeywordSectionHeaderLexer, KeywordLexer)




[docs]class CommentSectionLexer(SectionLexer):

[docs]    def handles(self, statement):
        return self.ctx.comment_section(statement)


[docs]    def lexer_classes(self):
        return (CommentSectionHeaderLexer, CommentLexer)




[docs]class ImplicitCommentSectionLexer(SectionLexer):

[docs]    def handles(self, statement):
        return True


[docs]    def lexer_classes(self):
        return (CommentLexer,)




[docs]class ErrorSectionLexer(SectionLexer):

[docs]    def handles(self, statement):
        return statement and statement[0].value.startswith('*')


[docs]    def lexer_classes(self):
        return (ErrorSectionHeaderLexer, CommentLexer)




[docs]class TestOrKeywordLexer(BlockLexer):
    name_type = NotImplemented
    _name_seen = False

[docs]    def accepts_more(self, statement):
        return not statement[0].value


[docs]    def input(self, statement):
        self._handle_name_or_indentation(statement)
        if statement:
            BlockLexer.input(self, statement)


    def _handle_name_or_indentation(self, statement):
        if not self._name_seen:
            statement.pop(0).type = self.name_type
            self._name_seen = True
        else:
            while statement and not statement[0].value:
                statement.pop(0).type = None    # These tokens will be ignored

[docs]    def lexer_classes(self):
        return (TestOrKeywordSettingLexer, ForLexer, IfLexer, KeywordCallLexer)




[docs]class TestCaseLexer(TestOrKeywordLexer):
    name_type = Token.TESTCASE_NAME

    def __init__(self, ctx):
        """:type ctx: :class:`robot.parsing.lexer.context.TestCaseFileContext`"""
        TestOrKeywordLexer.__init__(self, ctx.test_case_context())

[docs]    def lex(self,):
        self._lex_with_priority(priority=TestOrKeywordSettingLexer)




[docs]class KeywordLexer(TestOrKeywordLexer):
    name_type = Token.KEYWORD_NAME

    def __init__(self, ctx):
        TestOrKeywordLexer.__init__(self, ctx.keyword_context())



[docs]class NestedBlockLexer(BlockLexer):

    def __init__(self, ctx):
        BlockLexer.__init__(self, ctx)
        self._block_level = 0

[docs]    def accepts_more(self, statement):
        return self._block_level > 0


[docs]    def input(self, statement):
        lexer = BlockLexer.input(self, statement)
        if isinstance(lexer, (IfHeaderLexer, ForHeaderLexer)):
            self._block_level += 1
        if isinstance(lexer, EndLexer):
            self._block_level -= 1




[docs]class ForLexer(NestedBlockLexer):

[docs]    def handles(self, statement):
        return ForHeaderLexer(self.ctx).handles(statement)


[docs]    def lexer_classes(self):
        return (ForHeaderLexer, IfLexer, EndLexer, KeywordCallLexer)




[docs]class IfLexer(NestedBlockLexer):

[docs]    def handles(self, statement):
        return IfHeaderLexer(self.ctx).handles(statement)


[docs]    def lexer_classes(self):
        return (IfHeaderLexer, ElseIfHeaderLexer, ElseHeaderLexer,
                ForLexer, EndLexer, KeywordCallLexer)






          

      

      

    

  

    
      
          
            
  Source code for robot.parsing.lexer.context

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from .sections import (InitFileSections, TestCaseFileSections,
                       ResourceFileSections)
from .settings import (InitFileSettings, TestCaseFileSettings,
                       ResourceFileSettings, TestCaseSettings, KeywordSettings)


[docs]class LexingContext(object):
    settings_class = None

    def __init__(self, settings=None):
        self.settings = settings or self.settings_class()

[docs]    def lex_setting(self, statement):
        self.settings.lex(statement)




[docs]class FileContext(LexingContext):
    sections_class = None

    def __init__(self, settings=None):
        LexingContext.__init__(self, settings)
        self.sections = self.sections_class()

[docs]    def setting_section(self, statement):
        return self.sections.setting(statement)


[docs]    def variable_section(self, statement):
        return self.sections.variable(statement)


[docs]    def test_case_section(self, statement):
        return self.sections.test_case(statement)


[docs]    def keyword_section(self, statement):
        return self.sections.keyword(statement)


[docs]    def comment_section(self, statement):
        return self.sections.comment(statement)


[docs]    def keyword_context(self):
        return KeywordContext(settings=KeywordSettings())


[docs]    def lex_invalid_section(self, statement):
        self.sections.lex_invalid(statement)




[docs]class TestCaseFileContext(FileContext):
    sections_class = TestCaseFileSections
    settings_class = TestCaseFileSettings

[docs]    def test_case_context(self):
        return TestCaseContext(settings=TestCaseSettings(self.settings))




[docs]class ResourceFileContext(FileContext):
    sections_class = ResourceFileSections
    settings_class = ResourceFileSettings



[docs]class InitFileContext(FileContext):
    sections_class = InitFileSections
    settings_class = InitFileSettings



[docs]class TestCaseContext(LexingContext):

    @property
    def template_set(self):
        return self.settings.template_set



[docs]class KeywordContext(LexingContext):

    @property
    def template_set(self):
        return False





          

      

      

    

  

    
      
          
            
  Source code for robot.parsing.lexer.lexer

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from itertools import chain

from robot.errors import DataError
from robot.utils import get_error_message, FileReader

from .blocklexers import FileLexer
from .context import InitFileContext, TestCaseFileContext, ResourceFileContext
from .tokenizer import Tokenizer
from .tokens import EOS, Token


[docs]def get_tokens(source, data_only=False, tokenize_variables=False):
    """Parses the given source to tokens.

    :param source: The source where to read the data. Can be a path to
        a source file as a string or as ``pathlib.Path`` object, an already
        opened file object, or Unicode text containing the date directly.
        Source files must be UTF-8 encoded.
    :param data_only: When ``False`` (default), returns all tokens. When set
        to ``True``, omits separators, comments, continuation markers, and
        other non-data tokens.
    :param tokenize_variables: When ``True``, possible variables in keyword
        arguments and elsewhere are tokenized. See the
        :meth:`~robot.parsing.lexer.tokens.Token.tokenize_variables`
        method for details.

    Returns a generator that yields :class:`~robot.parsing.lexer.tokens.Token`
    instances.
    """
    lexer = Lexer(TestCaseFileContext(), data_only, tokenize_variables)
    lexer.input(source)
    return lexer.get_tokens()



[docs]def get_resource_tokens(source, data_only=False, tokenize_variables=False):
    """Parses the given source to resource file tokens.

    Otherwise same as :func:`get_tokens` but the source is considered to be
    a resource file. This affects, for example, what settings are valid.
    """
    lexer = Lexer(ResourceFileContext(), data_only, tokenize_variables)
    lexer.input(source)
    return lexer.get_tokens()



[docs]def get_init_tokens(source, data_only=False, tokenize_variables=False):
    """Parses the given source to init file tokens.

    Otherwise same as :func:`get_tokens` but the source is considered to be
    a suite initialization file. This affects, for example, what settings are
    valid.
    """
    lexer = Lexer(InitFileContext(), data_only, tokenize_variables)
    lexer.input(source)
    return lexer.get_tokens()



[docs]class Lexer(object):

    def __init__(self, ctx, data_only=False, tokenize_variables=False):
        self.lexer = FileLexer(ctx)
        self.data_only = data_only
        self.tokenize_variables = tokenize_variables
        self.statements = []

[docs]    def input(self, source):
        for statement in Tokenizer().tokenize(self._read(source),
                                              self.data_only):
            # Store all tokens but pass only data tokens to lexer.
            self.statements.append(statement)
            if self.data_only:
                data = statement[:]
            else:
                # Separators, comments, etc. already have type, data doesn't.
                data = [t for t in statement if t.type is None]
            if data:
                self.lexer.input(data)


    def _read(self, source):
        try:
            with FileReader(source, accept_text=True) as reader:
                return reader.read()
        except:
            raise DataError(get_error_message())

[docs]    def get_tokens(self):
        self.lexer.lex()
        statements = self.statements
        if not self.data_only:
            statements = chain.from_iterable(
                self._split_trailing_commented_and_empty_lines(s)
                for s in statements
            )
        tokens = self._get_tokens(statements)
        if self.tokenize_variables:
            tokens = self._tokenize_variables(tokens)
        return tokens


    def _get_tokens(self, statements):
        # Setting local variables is performance optimization to avoid
        # unnecessary lookups and attribute access.
        if self.data_only:
            ignored_types = {None, Token.COMMENT_HEADER, Token.COMMENT}
        else:
            ignored_types = {None}
        name_types = (Token.TESTCASE_NAME, Token.KEYWORD_NAME)
        separator_type = Token.SEPARATOR
        eol_type = Token.EOL
        for statement in statements:
            name_seen = False
            separator_after_name = None
            prev_token = None
            for token in statement:
                token_type = token.type
                if token_type in ignored_types:
                    continue
                if name_seen:
                    if token_type == separator_type:
                        separator_after_name = token
                        continue
                    if token_type != eol_type:
                        yield EOS.from_token(prev_token)
                    if separator_after_name:
                        yield separator_after_name
                    name_seen = False
                if token_type in name_types:
                    name_seen = True
                prev_token = token
                yield token
            if prev_token:
                yield EOS.from_token(prev_token)

    def _split_trailing_commented_and_empty_lines(self, statement):
        lines = self._split_to_lines(statement)
        commented_or_empty = []
        for line in reversed(lines):
            if not self._is_commented_or_empty(line):
                break
            commented_or_empty.append(line)
        if not commented_or_empty:
            return [statement]
        lines = lines[:-len(commented_or_empty)]
        statement = list(chain.from_iterable(lines))
        return [statement] + list(reversed(commented_or_empty))

    def _split_to_lines(self, statement):
        lines = []
        current = []
        for token in statement:
            current.append(token)
            if token.type == Token.EOL:
                lines.append(current)
                current = []
        if current:
            lines.append(current)
        return lines

    def _is_commented_or_empty(self, line):
        separator_or_ignore = (Token.SEPARATOR, None)
        comment_or_eol = (Token.COMMENT, Token.EOL)
        for token in line:
            if token.type not in separator_or_ignore:
                return token.type in comment_or_eol
        return False

    def _tokenize_variables(self, tokens):
        for token in tokens:
            for t in token.tokenize_variables():
                yield t





          

      

      

    

  

    
      
          
            
  Source code for robot.parsing.lexer.sections

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from robot.utils import normalize_whitespace

from .tokens import Token


[docs]class Sections(object):
    setting_markers = ('Settings', 'Setting')
    variable_markers = ('Variables', 'Variable')
    test_case_markers = ('Test Cases', 'Test Case', 'Tasks', 'Task')
    keyword_markers = ('Keywords', 'Keyword')
    comment_markers = ('Comments', 'Comment')

[docs]    def setting(self, statement):
        return self._handles(statement, self.setting_markers)


[docs]    def variable(self, statement):
        return self._handles(statement, self.variable_markers)


[docs]    def test_case(self, statement):
        return False


[docs]    def keyword(self, statement):
        return self._handles(statement, self.keyword_markers)


[docs]    def comment(self, statement):
        return self._handles(statement, self.comment_markers)


    def _handles(self, statement, markers):
        marker = statement[0].value
        return marker.startswith('*') and self._normalize(marker) in markers

    def _normalize(self, marker):
        return normalize_whitespace(marker).strip('* ').title()

[docs]    def lex_invalid(self, statement):
        message, fatal = self._get_invalid_section_error(statement[0].value)
        statement[0].set_error(message, fatal)
        for token in statement[1:]:
            token.type = Token.COMMENT


    def _get_invalid_section_error(self, header):
        raise NotImplementedError



[docs]class TestCaseFileSections(Sections):

[docs]    def test_case(self, statement):
        return self._handles(statement, self.test_case_markers)


    def _get_invalid_section_error(self, header):
        return ("Unrecognized section header '%s'. Valid sections: "
                "'Settings', 'Variables', 'Test Cases', 'Tasks', "
                "'Keywords' and 'Comments'." % header), False



[docs]class ResourceFileSections(Sections):

    def _get_invalid_section_error(self, header):
        name = self._normalize(header)
        if name in self.test_case_markers:
            message = "Resource file with '%s' section is invalid." % name
            fatal = True
        else:
            message = ("Unrecognized section header '%s'. Valid sections: "
                       "'Settings', 'Variables', 'Keywords' and 'Comments'."
                       % header)
            fatal = False
        return message, fatal



[docs]class InitFileSections(Sections):

    def _get_invalid_section_error(self, header):
        name = self._normalize(header)
        if name in self.test_case_markers:
            message = ("'%s' section is not allowed in suite initialization "
                       "file." % name)
        else:
            message = ("Unrecognized section header '%s'. Valid sections: "
                       "'Settings', 'Variables', 'Keywords' and 'Comments'."
                       % header)
        return message, False





          

      

      

    

  

    
      
          
            
  Source code for robot.parsing.lexer.settings

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from robot.utils import normalize, normalize_whitespace, RecommendationFinder

from .tokens import Token


[docs]class Settings(object):
    names = ()
    aliases = {}
    multi_use = (
        'Metadata',
        'Library',
        'Resource',
        'Variables'
    )
    single_value = (
        'Resource',
        'Test Timeout',
        'Test Template',
        'Timeout',
        'Template'
    )
    name_and_arguments = (
        'Metadata',
        'Suite Setup',
        'Suite Teardown',
        'Test Setup',
        'Test Teardown',
        'Test Template',
        'Setup',
        'Teardown',
        'Template',
        'Resource',
        'Variables'
    )
    name_arguments_and_with_name = (
        'Library',
    )

    def __init__(self):
        self.settings = {n: None for n in self.names}

[docs]    def lex(self, statement):
        setting = statement[0]
        name = self._format_name(setting.value)
        normalized = self._normalize_name(name)
        try:
            self._validate(name, normalized, statement)
        except ValueError as err:
            self._lex_error(setting, statement[1:], err.args[0])
        else:
            self._lex_setting(setting, statement[1:], normalized)


    def _format_name(self, name):
        return name

    def _normalize_name(self, name):
        name = normalize_whitespace(name).title()
        if name in self.aliases:
            return self.aliases[name]
        return name

    def _validate(self, name, normalized, statement):
        if normalized not in self.settings:
            message = self._get_non_existing_setting_message(name, normalized)
            raise ValueError(message)
        if self.settings[normalized] is not None and normalized not in self.multi_use:
            raise ValueError("Setting '%s' is allowed only once. "
                             "Only the first value is used." % name)
        if normalized in self.single_value and len(statement) > 2:
            raise ValueError("Setting '%s' accepts only one value, got %s."
                             % (name, len(statement) - 1))

    def _get_non_existing_setting_message(self, name, normalized):
        if normalized in TestCaseFileSettings.names:
            is_resource = isinstance(self, ResourceFileSettings)
            return "Setting '%s' is not allowed in %s file." % (
                name, 'resource' if is_resource else 'suite initialization'
            )
        return RecommendationFinder(normalize).find_and_format(
            name=normalized,
            candidates=tuple(self.settings) + tuple(self.aliases),
            message="Non-existing setting '%s'." % name
        )

    def _lex_error(self, setting, values, error):
        setting.set_error(error)
        for token in values:
            token.type = Token.COMMENT

    def _lex_setting(self, setting, values, name):
        self.settings[name] = values
        setting.type = name.upper()
        if name in self.name_and_arguments:
            self._lex_name_and_arguments(values)
        elif name in self.name_arguments_and_with_name:
            self._lex_name_arguments_and_with_name(values)
        else:
            self._lex_arguments(values)

    def _lex_name_and_arguments(self, tokens):
        if tokens:
            tokens[0].type = Token.NAME
        self._lex_arguments(tokens[1:])

    def _lex_name_arguments_and_with_name(self, tokens):
        self._lex_name_and_arguments(tokens)
        if len(tokens) > 1 and \
                normalize_whitespace(tokens[-2].value) == 'WITH NAME':
            tokens[-2].type = Token.WITH_NAME
            tokens[-1].type = Token.NAME

    def _lex_arguments(self, tokens):
        for token in tokens:
            token.type = Token.ARGUMENT



[docs]class TestCaseFileSettings(Settings):
    names = (
        'Documentation',
        'Metadata',
        'Suite Setup',
        'Suite Teardown',
        'Test Setup',
        'Test Teardown',
        'Test Template',
        'Test Timeout',
        'Force Tags',
        'Default Tags',
        'Library',
        'Resource',
        'Variables'
    )
    aliases = {
        'Task Setup': 'Test Setup',
        'Task Teardown': 'Test Teardown',
        'Task Template': 'Test Template',
        'Task Timeout': 'Test Timeout',
    }



[docs]class InitFileSettings(Settings):
    names = (
        'Documentation',
        'Metadata',
        'Suite Setup',
        'Suite Teardown',
        'Test Setup',
        'Test Teardown',
        'Test Timeout',
        'Force Tags',
        'Library',
        'Resource',
        'Variables'
    )



[docs]class ResourceFileSettings(Settings):
    names = (
        'Documentation',
        'Library',
        'Resource',
        'Variables'
    )



[docs]class TestCaseSettings(Settings):
    names = (
        'Documentation',
        'Tags',
        'Setup',
        'Teardown',
        'Template',
        'Timeout'
    )

    def __init__(self, parent):
        Settings.__init__(self)
        self.parent = parent

    def _format_name(self, name):
        return name[1:-1].strip()

    @property
    def template_set(self):
        template = self.settings['Template']
        if self._has_disabling_value(template):
            return False
        parent_template = self.parent.settings['Test Template']
        return self._has_value(template) or self._has_value(parent_template)

    def _has_disabling_value(self, setting):
        if setting is None:
            return False
        return setting == [] or setting[0].value.upper() == 'NONE'

    def _has_value(self, setting):
        return setting and setting[0].value



[docs]class KeywordSettings(Settings):
    names = (
        'Documentation',
        'Arguments',
        'Teardown',
        'Timeout',
        'Tags',
        'Return'
    )

    def _format_name(self, name):
        return name[1:-1].strip()





          

      

      

    

  

    
      
          
            
  Source code for robot.parsing.lexer.statementlexers

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from robot.utils import normalize_whitespace
from robot.variables import is_assign

from .tokens import Token


[docs]class Lexer(object):
    """Base class for lexers."""

    def __init__(self, ctx):
        self.ctx = ctx

[docs]    def handles(self, statement):
        return True


[docs]    def accepts_more(self, statement):
        raise NotImplementedError


[docs]    def input(self, statement):
        raise NotImplementedError


[docs]    def lex(self):
        raise NotImplementedError




[docs]class StatementLexer(Lexer):
    token_type = None

    def __init__(self, ctx):
        Lexer.__init__(self, ctx)
        self.statement = None

[docs]    def accepts_more(self, statement):
        return False


[docs]    def input(self, statement):
        self.statement = statement


[docs]    def lex(self):
        for token in self.statement:
            token.type = self.token_type




[docs]class SectionHeaderLexer(StatementLexer):

[docs]    def handles(self, statement):
        return statement[0].value.startswith('*')




[docs]class SettingSectionHeaderLexer(SectionHeaderLexer):
    token_type = Token.SETTING_HEADER



[docs]class VariableSectionHeaderLexer(SectionHeaderLexer):
    token_type = Token.VARIABLE_HEADER



[docs]class TestCaseSectionHeaderLexer(SectionHeaderLexer):
    token_type = Token.TESTCASE_HEADER



[docs]class KeywordSectionHeaderLexer(SectionHeaderLexer):
    token_type = Token.KEYWORD_HEADER



[docs]class CommentSectionHeaderLexer(SectionHeaderLexer):
    token_type = Token.COMMENT_HEADER



[docs]class ErrorSectionHeaderLexer(SectionHeaderLexer):

[docs]    def lex(self):
        self.ctx.lex_invalid_section(self.statement)




[docs]class CommentLexer(StatementLexer):
    token_type = Token.COMMENT



[docs]class SettingLexer(StatementLexer):

[docs]    def lex(self):
        self.ctx.lex_setting(self.statement)




[docs]class TestOrKeywordSettingLexer(SettingLexer):

[docs]    def handles(self, statement):
        marker = statement[0].value
        return marker and marker[0] == '[' and marker[-1] == ']'




[docs]class VariableLexer(StatementLexer):

[docs]    def lex(self):
        self.statement[0].type = Token.VARIABLE
        for token in self.statement[1:]:
            token.type = Token.ARGUMENT




[docs]class KeywordCallLexer(StatementLexer):

[docs]    def lex(self):
        if self.ctx.template_set:
            self._lex_as_template()
        else:
            self._lex_as_keyword_call()


    def _lex_as_template(self):
        for token in self.statement:
            token.type = Token.ARGUMENT

    def _lex_as_keyword_call(self):
        keyword_seen = False
        for token in self.statement:
            if keyword_seen:
                token.type = Token.ARGUMENT
            elif is_assign(token.value, allow_assign_mark=True):
                token.type = Token.ASSIGN
            else:
                token.type = Token.KEYWORD
                keyword_seen = True



[docs]class ForHeaderLexer(StatementLexer):
    separators = ('IN', 'IN RANGE', 'IN ENUMERATE', 'IN ZIP')

[docs]    def handles(self, statement):
        return statement[0].value == 'FOR'


[docs]    def lex(self):
        self.statement[0].type = Token.FOR
        separator_seen = False
        for token in self.statement[1:]:
            if separator_seen:
                token.type = Token.ARGUMENT
            elif normalize_whitespace(token.value) in self.separators:
                token.type = Token.FOR_SEPARATOR
                separator_seen = True
            else:
                token.type = Token.VARIABLE




[docs]class IfHeaderLexer(StatementLexer):

[docs]    def handles(self, statement):
        return statement[0].value == 'IF'


[docs]    def lex(self):
        self.statement[0].type = Token.IF
        for token in self.statement[1:]:
            token.type = Token.ARGUMENT




[docs]class ElseIfHeaderLexer(StatementLexer):

[docs]    def handles(self, statement):
        return normalize_whitespace(statement[0].value) == 'ELSE IF'


[docs]    def lex(self):
        self.statement[0].type = Token.ELSE_IF
        for token in self.statement[1:]:
            token.type = Token.ARGUMENT




[docs]class ElseHeaderLexer(StatementLexer):

[docs]    def handles(self, statement):
        return statement[0].value == 'ELSE'


[docs]    def lex(self):
        self.statement[0].type = Token.ELSE
        for token in self.statement[1:]:
            token.type = Token.ARGUMENT




[docs]class EndLexer(StatementLexer):

[docs]    def handles(self, statement):
        return statement[0].value == 'END'


[docs]    def lex(self):
        self.statement[0].type = Token.END
        for token in self.statement[1:]:
            token.type = Token.ARGUMENT






          

      

      

    

  

    
      
          
            
  Source code for robot.parsing.lexer.tokenizer

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

import re

from robot.utils import rstrip

from .tokens import Token


[docs]class Tokenizer(object):
    _space_splitter = re.compile(r'(\s{2,}|\t)', re.UNICODE)
    _pipe_splitter = re.compile(r'((?:\A|\s+)\|(?:\s+|\Z))', re.UNICODE)

[docs]    def tokenize(self, data, data_only=False):
        current = []
        for lineno, line in enumerate(data.splitlines(not data_only), start=1):
            tokens = self._tokenize_line(line, lineno, not data_only)
            tokens, starts_new = self._cleanup_tokens(tokens, data_only)
            if starts_new:
                if current:
                    yield current
                current = tokens
            else:
                current.extend(tokens)
        yield current


    def _tokenize_line(self, line, lineno, include_separators=True):
        # Performance optimized code.
        tokens = []
        append = tokens.append
        offset = 0
        if line[:1] == '|' and line[:2].strip() == '|':
            splitter = self._split_from_pipes
        else:
            splitter = self._split_from_spaces
        for value, is_data in splitter(rstrip(line)):
            if is_data:
                append(Token(None, value, lineno, offset))
            elif include_separators:
                append(Token(Token.SEPARATOR, value, lineno, offset))
            offset += len(value)
        if include_separators:
            trailing_whitespace = line[len(rstrip(line)):]
            append(Token(Token.EOL, trailing_whitespace, lineno, offset))
        return tokens

    def _split_from_spaces(self, line):
        is_data = True
        for value in self._space_splitter.split(line):
            yield value, is_data
            is_data = not is_data

    def _split_from_pipes(self, line):
        splitter = self._pipe_splitter
        _, separator, rest = splitter.split(line, 1)
        yield separator, False
        while splitter.search(rest):
            token, separator, rest = splitter.split(rest, 1)
            yield token, True
            yield separator, False
        yield rest, True

    def _cleanup_tokens(self, tokens, data_only):
        has_data = self._handle_comments(tokens)
        continues = self._handle_continuation(tokens)
        self._remove_trailing_empty(tokens)
        if continues:
            self._remove_leading_empty(tokens)
            self._ensure_data_after_continuation(tokens)
        if data_only:
            tokens = self._remove_non_data(tokens)
        return tokens, has_data and not continues

    def _handle_comments(self, tokens):
        has_data = False
        commented = False
        for token in tokens:
            if token.type is None:
                # lstrip needed to strip possible leading space from first token.
                # Other leading/trailing spaces have been consumed as separators.
                value = token.value.lstrip()
                if value and not commented:
                    if value[0] == '#':
                        commented = True
                    else:
                        has_data = True
                if commented:
                    token.type = Token.COMMENT
        return has_data

    def _handle_continuation(self, tokens):
        for token in tokens:
            if token.value == '...' and token.type is None:
                token.type = Token.CONTINUATION
                return True
            elif token.value and token.type != Token.SEPARATOR:
                return False
        return False

    def _remove_trailing_empty(self, tokens):
        # list() needed w/ IronPython, otherwise reversed() alone is enough.
        # https://github.com/IronLanguages/ironpython2/issues/699
        for token in reversed(list(tokens)):
            if not token.value and token.type != Token.EOL:
                tokens.remove(token)
            elif token.type is None:
                break

    def _remove_leading_empty(self, tokens):
        data_or_continuation = (None, Token.CONTINUATION)
        for token in list(tokens):
            if not token.value:
                tokens.remove(token)
            elif token.type in data_or_continuation:
                break

    def _ensure_data_after_continuation(self, tokens):
        if not any(t.type is None for t in tokens):
            cont = self._find_continuation(tokens)
            token = Token(lineno=cont.lineno, col_offset=cont.end_col_offset)
            tokens.insert(tokens.index(cont) + 1, token)

    def _find_continuation(self, tokens):
        for token in tokens:
            if token.type == Token.CONTINUATION:
                return token

    def _remove_non_data(self, tokens):
        return [t for t in tokens if t.type is None]





          

      

      

    

  

    
      
          
            
  Source code for robot.parsing.lexer.tokens

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from robot.utils import py3to2
from robot.variables import VariableIterator


[docs]@py3to2
class Token(object):
    """Token representing piece of Robot Framework data.

    Each token has type, value, line number, column offset and end column
    offset in :attr:`type`, :attr:`value`, :attr:`lineno`, :attr:`col_offset`
    and :attr:`end_col_offset` attributes, respectively. Tokens representing
    error also have their error message in :attr:`error` attribute.

    Token types are declared as class attributes such as :attr:`SETTING_HEADER`
    and :attr:`EOL`. Values of these constants have changed slightly in Robot
    Framework 4.0 and they may change again in the future. It is thus safer
    to use the constants, not their values, when types are needed. For example,
    use ``Token(Token.EOL)`` instead of ``Token('EOL')`` and
    ``token.type == Token.EOL`` instead of ``token.type == 'EOL'``.

    If :attr:`value` is not given when :class:`Token` is initialized and
    :attr:`type` is :attr:`IF`, :attr:`ELSE_IF`, :attr:`ELSE`, :attr:`FOR`,
    :attr:`END`, :attr:`WITH_NAME` or :attr:`CONTINUATION`, the value is
    automatically set to the correct marker value like ``'IF'`` or ``'ELSE IF'``.
    If :attr:`type` is :attr:`EOL` in this case, the value is set to ``'\\n'``.
    """

    SETTING_HEADER = 'SETTING HEADER'
    VARIABLE_HEADER = 'VARIABLE HEADER'
    TESTCASE_HEADER = 'TESTCASE HEADER'
    KEYWORD_HEADER = 'KEYWORD HEADER'
    COMMENT_HEADER = 'COMMENT HEADER'

    TESTCASE_NAME = 'TESTCASE NAME'
    KEYWORD_NAME = 'KEYWORD NAME'

    DOCUMENTATION = 'DOCUMENTATION'
    SUITE_SETUP = 'SUITE SETUP'
    SUITE_TEARDOWN = 'SUITE TEARDOWN'
    METADATA = 'METADATA'
    TEST_SETUP = 'TEST SETUP'
    TEST_TEARDOWN = 'TEST TEARDOWN'
    TEST_TEMPLATE = 'TEST TEMPLATE'
    TEST_TIMEOUT = 'TEST TIMEOUT'
    FORCE_TAGS = 'FORCE TAGS'
    DEFAULT_TAGS = 'DEFAULT TAGS'
    LIBRARY = 'LIBRARY'
    RESOURCE = 'RESOURCE'
    VARIABLES = 'VARIABLES'
    SETUP = 'SETUP'
    TEARDOWN = 'TEARDOWN'
    TEMPLATE = 'TEMPLATE'
    TIMEOUT = 'TIMEOUT'
    TAGS = 'TAGS'
    ARGUMENTS = 'ARGUMENTS'
    RETURN = 'RETURN'

    NAME = 'NAME'
    VARIABLE = 'VARIABLE'
    ARGUMENT = 'ARGUMENT'
    ASSIGN = 'ASSIGN'
    KEYWORD = 'KEYWORD'
    WITH_NAME = 'WITH NAME'
    FOR = 'FOR'
    FOR_SEPARATOR = 'FOR SEPARATOR'
    END = 'END'
    IF = 'IF'
    ELSE_IF = 'ELSE IF'
    ELSE = 'ELSE'

    SEPARATOR = 'SEPARATOR'
    COMMENT = 'COMMENT'
    CONTINUATION = 'CONTINUATION'
    EOL = 'EOL'
    EOS = 'EOS'

    ERROR = 'ERROR'
    FATAL_ERROR = 'FATAL ERROR'

    NON_DATA_TOKENS = frozenset((
        SEPARATOR,
        COMMENT,
        CONTINUATION,
        EOL,
        EOS
    ))
    SETTING_TOKENS = frozenset((
        DOCUMENTATION,
        SUITE_SETUP,
        SUITE_TEARDOWN,
        METADATA,
        TEST_SETUP,
        TEST_TEARDOWN,
        TEST_TEMPLATE,
        TEST_TIMEOUT,
        FORCE_TAGS,
        DEFAULT_TAGS,
        LIBRARY,
        RESOURCE,
        VARIABLES,
        SETUP,
        TEARDOWN,
        TEMPLATE,
        TIMEOUT,
        TAGS,
        ARGUMENTS,
        RETURN
    ))
    HEADER_TOKENS = frozenset((
        SETTING_HEADER,
        VARIABLE_HEADER,
        TESTCASE_HEADER,
        KEYWORD_HEADER,
        COMMENT_HEADER
    ))
    ALLOW_VARIABLES = frozenset((
        NAME,
        ARGUMENT,
        TESTCASE_NAME,
        KEYWORD_NAME
    ))

    __slots__ = ['type', 'value', 'lineno', 'col_offset', 'error']

    def __init__(self, type=None, value=None, lineno=-1, col_offset=-1, error=None):
        self.type = type
        if value is None:
            value = {
                Token.IF: 'IF', Token.ELSE_IF: 'ELSE IF', Token.ELSE: 'ELSE',
                Token.FOR: 'FOR', Token.END: 'END', Token.CONTINUATION: '...',
                Token.EOL: '\n', Token.WITH_NAME: 'WITH NAME'
            }.get(type, '')
        self.value = value
        self.lineno = lineno
        self.col_offset = col_offset
        self.error = error

    @property
    def end_col_offset(self):
        if self.col_offset == -1:
            return -1
        return self.col_offset + len(self.value)

[docs]    def set_error(self, error, fatal=False):
        self.type = Token.ERROR if not fatal else Token.FATAL_ERROR
        self.error = error


[docs]    def tokenize_variables(self):
        """Tokenizes possible variables in token value.

        Yields the token itself if the token does not allow variables (see
        :attr:`Token.ALLOW_VARIABLES`) or its value does not contain
        variables. Otherwise yields variable tokens as well as tokens
        before, after, or between variables so that they have the same
        type as the original token.
        """
        if self.type not in Token.ALLOW_VARIABLES:
            return self._tokenize_no_variables()
        variables = VariableIterator(self.value)
        if not variables:
            return self._tokenize_no_variables()
        return self._tokenize_variables(variables)


    def _tokenize_no_variables(self):
        yield self

    def _tokenize_variables(self, variables):
        lineno = self.lineno
        col_offset = self.col_offset
        remaining = ''
        for before, variable, remaining in variables:
            if before:
                yield Token(self.type, before, lineno, col_offset)
                col_offset += len(before)
            yield Token(Token.VARIABLE, variable, lineno, col_offset)
            col_offset += len(variable)
        if remaining:
            yield Token(self.type, remaining, lineno, col_offset)

    def __str__(self):
        return self.value

    def __repr__(self):
        type_ = self.type.replace(' ', '_') if self.type else 'None'
        error = '' if not self.error else ', %r' % self.error
        return 'Token(%s, %r, %s, %s%s)' % (type_, self.value, self.lineno,
                                            self.col_offset, error)

    def __eq__(self, other):
        return (isinstance(other, Token)
                and self.type == other.type
                and self.value == other.value
                and self.lineno == other.lineno
                and self.col_offset == other.col_offset
                and self.error == other.error)

    def __ne__(self, other):
        return not self == other



[docs]class EOS(Token):
    """Token representing end of a statement."""
    __slots__ = []

    def __init__(self, lineno=-1, col_offset=-1):
        Token.__init__(self, Token.EOS, '', lineno, col_offset)

[docs]    @classmethod
    def from_token(cls, token):
        return EOS(lineno=token.lineno, col_offset=token.end_col_offset)






          

      

      

    

  

    
      
          
            
  Source code for robot.parsing.model.blocks

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

import ast

from robot.utils import file_writer, is_pathlike, is_string

from .visitor import ModelVisitor
from ..lexer import Token


[docs]class Block(ast.AST):
    _fields = ()
    _attributes = ('lineno', 'col_offset', 'end_lineno', 'end_col_offset', 'errors')
    errors = ()

    @property
    def lineno(self):
        statement = FirstStatementFinder.find_from(self)
        return statement.lineno if statement else -1

    @property
    def col_offset(self):
        statement = FirstStatementFinder.find_from(self)
        return statement.col_offset if statement else -1

    @property
    def end_lineno(self):
        statement = LastStatementFinder.find_from(self)
        return statement.end_lineno if statement else -1

    @property
    def end_col_offset(self):
        statement = LastStatementFinder.find_from(self)
        return statement.end_col_offset if statement else -1

[docs]    def validate_model(self):
        ModelValidator().visit(self)


[docs]    def validate(self):
        pass




[docs]class File(Block):
    _fields = ('sections',)
    _attributes = ('source',) + Block._attributes

    def __init__(self, sections=None, source=None):
        self.sections = sections or []
        self.source = source

[docs]    def save(self, output=None):
        """Save model to the given ``output`` or to the original source file.

        The ``output`` can be a path to a file or an already opened file
        object. If ``output`` is not given, the original source file will
        be overwritten.
        """
        output = output or self.source
        if output is None:
            raise TypeError('Saving model requires explicit output '
                            'when original source is not path.')
        ModelWriter(output).write(self)




[docs]class Section(Block):
    _fields = ('header', 'body')

    def __init__(self, header=None, body=None):
        self.header = header
        self.body = body or []



[docs]class SettingSection(Section):
    pass



[docs]class VariableSection(Section):
    pass



[docs]class TestCaseSection(Section):

    @property
    def tasks(self):
        return self.header.name.upper() in ('TASKS', 'TASK')



[docs]class KeywordSection(Section):
    pass



[docs]class CommentSection(Section):
    pass



[docs]class TestCase(Block):
    _fields = ('header', 'body')

    def __init__(self, header, body=None):
        self.header = header
        self.body = body or []

    @property
    def name(self):
        return self.header.name



[docs]class Keyword(Block):
    _fields = ('header', 'body')

    def __init__(self, header, body=None):
        self.header = header
        self.body = body or []

    @property
    def name(self):
        return self.header.name



[docs]class If(Block):
    """Represents IF structures in the model.

    Used with IF, ELSE_IF and ELSE nodes. The :attr:`type` attribute specifies the type.
    """
    _fields = ('header', 'body', 'orelse', 'end')

    def __init__(self, header, body=None, orelse=None, end=None, errors=()):
        self.header = header
        self.body = body or []
        self.orelse = orelse
        self.end = end
        self.errors = errors

    @property
    def type(self):
        return self.header.type

    @property
    def condition(self):
        return self.header.condition

[docs]    def validate(self):
        self._validate_body()
        if self.type == Token.IF:
            self._validate_structure()
            self._validate_end()


    def _validate_body(self):
        if not self.body:
            self.errors += ('%s has empty body.' % self.type,)

    def _validate_structure(self):
        orelse = self.orelse
        else_seen = False
        while orelse:
            if else_seen:
                if orelse.type == Token.ELSE:
                    self.errors += ('Multiple ELSE branches.',)
                else:
                    self.errors += ('ELSE IF after ELSE.',)
            else_seen = else_seen or orelse.type == Token.ELSE
            orelse = orelse.orelse

    def _validate_end(self):
        if not self.end:
            self.errors += ('IF has no closing END.',)



[docs]class For(Block):
    _fields = ('header', 'body', 'end')

    def __init__(self, header, body=None, end=None, errors=()):
        self.header = header
        self.body = body or []
        self.end = end
        self.errors = errors

    @property
    def variables(self):
        return self.header.variables

    @property
    def values(self):
        return self.header.values

    @property
    def flavor(self):
        return self.header.flavor

[docs]    def validate(self):
        if not self.body:
            self.errors += ('FOR loop has empty body.',)
        if not self.end:
            self.errors += ('FOR loop has no closing END.',)




[docs]class ModelWriter(ModelVisitor):

    def __init__(self, output):
        if is_string(output) or is_pathlike(output):
            self.writer = file_writer(output)
            self.close_writer = True
        else:
            self.writer = output
            self.close_writer = False

[docs]    def write(self, model):
        try:
            self.visit(model)
        finally:
            if self.close_writer:
                self.writer.close()


[docs]    def visit_Statement(self, statement):
        for token in statement.tokens:
            self.writer.write(token.value)




[docs]class ModelValidator(ModelVisitor):

[docs]    def visit_Block(self, node):
        node.validate()
        ModelVisitor.generic_visit(self, node)


[docs]    def visit_Statement(self, node):
        node.validate()
        ModelVisitor.generic_visit(self, node)




[docs]class FirstStatementFinder(ModelVisitor):

    def __init__(self):
        self.statement = None

[docs]    @classmethod
    def find_from(cls, model):
        finder = cls()
        finder.visit(model)
        return finder.statement


[docs]    def visit_Statement(self, statement):
        if self.statement is None:
            self.statement = statement


[docs]    def generic_visit(self, node):
        if self.statement is None:
            ModelVisitor.generic_visit(self, node)




[docs]class LastStatementFinder(ModelVisitor):

    def __init__(self):
        self.statement = None

[docs]    @classmethod
    def find_from(cls, model):
        finder = cls()
        finder.visit(model)
        return finder.statement


[docs]    def visit_Statement(self, statement):
        self.statement = statement






          

      

      

    

  

    
      
          
            
  Source code for robot.parsing.model.statements

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

import ast
import re

from robot.running.arguments import UserKeywordArgumentParser
from robot.utils import normalize_whitespace, split_from_equals
from robot.variables import is_scalar_assign, is_dict_variable, search_variable

from ..lexer import Token


FOUR_SPACES = '    '
EOL = '\n'


[docs]class Statement(ast.AST):
    type = None
    handles_types = ()
    _fields = ('type', 'tokens')
    _attributes = ('lineno', 'col_offset', 'end_lineno', 'end_col_offset', 'errors')
    _statement_handlers = {}

    def __init__(self, tokens, errors=()):
        self.tokens = tuple(tokens)
        self.errors = errors

    @property
    def lineno(self):
        return self.tokens[0].lineno if self.tokens else -1

    @property
    def col_offset(self):
        return self.tokens[0].col_offset if self.tokens else -1

    @property
    def end_lineno(self):
        return self.tokens[-1].lineno if self.tokens else -1

    @property
    def end_col_offset(self):
        return self.tokens[-1].end_col_offset if self.tokens else -1

[docs]    @classmethod
    def register(cls, subcls):
        types = subcls.handles_types or (subcls.type,)
        for typ in types:
            cls._statement_handlers[typ] = subcls
        return subcls


[docs]    @classmethod
    def from_tokens(cls, tokens):
        handlers = cls._statement_handlers
        for token in tokens:
            if token.type in handlers:
                return handlers[token.type](tokens)
        return EmptyLine(tokens)


[docs]    @classmethod
    def from_params(cls, *args, **kwargs):
        """Create statement from passed parameters.

        Required and optional arguments should match class properties. Values are
        used to create matching tokens.

        There is one notable difference for `Documentation` statement where
        ``settings_header`` flag is used to determine if statement belongs to
        settings header or test/keyword.

        Most implementations support following general properties:
        - `separator` whitespace inserted between each token. Default is four spaces.
        - ``indent`` whitespace inserted before first token. Default is four spaces.
        - ``eol`` end of line sign. Default is ``'\\n'``.
        """
        raise NotImplementedError


    @property
    def data_tokens(self):
        return [t for t in self.tokens if t.type not in Token.NON_DATA_TOKENS]

[docs]    def get_token(self, *types):
        """Return a token with the given ``type``.

        If there are no matches, return ``None``. If there are multiple
        matches, return the first match.
        """
        for token in self.tokens:
            if token.type in types:
                return token
        return None


[docs]    def get_tokens(self, *types):
        """Return tokens having any of the given ``types``."""
        return [t for t in self.tokens if t.type in types]


[docs]    def get_value(self, type, default=None):
        """Return value of a token with the given ``type``.

        If there are no matches, return ``default``. If there are multiple
        matches, return the value of the first match.
        """
        token = self.get_token(type)
        return token.value if token else default


[docs]    def get_values(self, *types):
        """Return values of tokens having any of the given ``types``."""
        return tuple(t.value for t in self.tokens if t.type in types)


    @property
    def lines(self):
        line = []
        for token in self.tokens:
            line.append(token)
            if token.type == Token.EOL:
                yield line
                line = []
        if line:
            yield line

[docs]    def validate(self):
        pass


    def __iter__(self):
        return iter(self.tokens)

    def __len__(self):
        return len(self.tokens)

    def __getitem__(self, item):
        return self.tokens[item]

    def __repr__(self):
        errors = '' if not self.errors else ', errors=%s' % list(self.errors)
        return '%s(tokens=%s%s)' % (type(self).__name__, list(self.tokens), errors)



[docs]class DocumentationOrMetadata(Statement):

    def _join_value(self, tokens):
        lines = self._get_lines(tokens)
        return ''.join(self._yield_lines_with_newlines(lines))

    def _get_lines(self, tokens):
        lines = []
        line = None
        lineno = -1
        for t in tokens:
            if t.lineno != lineno:
                line = []
                lines.append(line)
            line.append(t.value)
            lineno = t.lineno
        return [' '.join(line) for line in lines]

    def _yield_lines_with_newlines(self, lines):
        last_index = len(lines) - 1
        for index, line in enumerate(lines):
            yield line
            if index < last_index and not self._escaped_or_has_newline(line):
                yield '\n'

    def _escaped_or_has_newline(self, line):
        match = re.search(r'(\\+)n?$', line)
        return match and len(match.group(1)) % 2 == 1



[docs]class SingleValue(Statement):

    @property
    def value(self):
        values = self.get_values(Token.NAME, Token.ARGUMENT)
        if values and values[0].upper() != 'NONE':
            return values[0]
        return None



[docs]class MultiValue(Statement):

    @property
    def values(self):
        return self.get_values(Token.ARGUMENT)



[docs]class Fixture(Statement):

    @property
    def name(self):
        return self.get_value(Token.NAME)

    @property
    def args(self):
        return self.get_values(Token.ARGUMENT)



[docs]@Statement.register
class SectionHeader(Statement):
    handles_types = (Token.SETTING_HEADER, Token.VARIABLE_HEADER,
                     Token.TESTCASE_HEADER, Token.KEYWORD_HEADER,
                     Token.COMMENT_HEADER)

[docs]    @classmethod
    def from_params(cls, type, name=None, eol=EOL):
        if not name:
            names = ('Settings', 'Variables', 'Test Cases', 'Keywords', 'Comments')
            name = dict(zip(cls.handles_types, names))[type]
        if not name.startswith('*'):
            name = '*** %s ***' % name
        return cls([
            Token(type, name),
            Token('EOL', '\n')
        ])


    @property
    def type(self):
        token = self.get_token(*self.handles_types)
        return token.type

    @property
    def name(self):
        token = self.get_token(*self.handles_types)
        return normalize_whitespace(token.value).strip('* ')



[docs]@Statement.register
class LibraryImport(Statement):
    type = Token.LIBRARY

[docs]    @classmethod
    def from_params(cls, name, args=(), alias=None, separator=FOUR_SPACES, eol=EOL):
        sep = Token(Token.SEPARATOR, separator)
        tokens = [Token(Token.LIBRARY, 'Library'), sep, Token(Token.NAME, name)]
        for arg in args:
            tokens.append(sep)
            tokens.append(Token(Token.ARGUMENT, arg))
        if alias is not None:
            tokens.append(sep)
            tokens.append(Token(Token.WITH_NAME))
            tokens.append(sep)
            tokens.append(Token(Token.NAME, alias))
        tokens.append(Token(Token.EOL, eol))
        return cls(tokens)


    @property
    def name(self):
        return self.get_value(Token.NAME)

    @property
    def args(self):
        return self.get_values(Token.ARGUMENT)

    @property
    def alias(self):
        with_name = self.get_token(Token.WITH_NAME)
        return self.get_tokens(Token.NAME)[-1].value if with_name else None



[docs]@Statement.register
class ResourceImport(Statement):
    type = Token.RESOURCE

[docs]    @classmethod
    def from_params(cls, name, separator=FOUR_SPACES, eol=EOL):
        return cls([
            Token(Token.RESOURCE, 'Resource'),
            Token(Token.SEPARATOR, separator),
            Token(Token.NAME, name),
            Token(Token.EOL, eol)
        ])


    @property
    def name(self):
        return self.get_value(Token.NAME)



[docs]@Statement.register
class VariablesImport(Statement):
    type = Token.VARIABLES

[docs]    @classmethod
    def from_params(cls, name, args=(), separator=FOUR_SPACES, eol=EOL):
        sep = Token(Token.SEPARATOR, separator)
        tokens = [
            Token(Token.VARIABLES, 'Variables'),
            sep,
            Token(Token.NAME, name)
        ]
        for arg in args:
            tokens.append(sep)
            tokens.append(Token(Token.ARGUMENT, arg))
        tokens.append(Token(Token.EOL, eol))
        return cls(tokens)


    @property
    def name(self):
        return self.get_value(Token.NAME)

    @property
    def args(self):
        return self.get_values(Token.ARGUMENT)



[docs]@Statement.register
class Documentation(DocumentationOrMetadata):
    type = Token.DOCUMENTATION

[docs]    @classmethod
    def from_params(cls, value, indent=FOUR_SPACES, separator=FOUR_SPACES,
                    eol=EOL, settings_section=True):
        if settings_section:
            tokens = [
                Token(Token.DOCUMENTATION, 'Documentation'),
                Token(Token.SEPARATOR, separator)
            ]
        else:
            tokens = [
                Token(Token.SEPARATOR, indent),
                Token(Token.DOCUMENTATION, '[Documentation]'),
                Token(Token.SEPARATOR, separator)
            ]
        multiline_separator = ' ' * (len(tokens[-2].value) + len(separator) - 3)
        doc_lines = value.splitlines()
        if doc_lines:
            tokens.append(Token(Token.ARGUMENT, doc_lines[0]))
            tokens.append(Token(Token.EOL, eol))
        for line in doc_lines[1:]:
            if not settings_section:
                tokens.append(Token(Token.SEPARATOR, indent))
            tokens.append(Token(Token.CONTINUATION))
            if line:
                tokens.append(Token(Token.SEPARATOR, multiline_separator))
                tokens.append(Token(Token.ARGUMENT, line))
            tokens.append(Token(Token.EOL, eol))
        return cls(tokens)


    @property
    def value(self):
        tokens = self.get_tokens(Token.ARGUMENT)
        return self._join_value(tokens)



[docs]@Statement.register
class Metadata(DocumentationOrMetadata):
    type = Token.METADATA

[docs]    @classmethod
    def from_params(cls, name, value, separator=FOUR_SPACES, eol=EOL):
        sep = Token(Token.SEPARATOR, separator)
        tokens = [
            Token(Token.METADATA, 'Metadata'),
            sep,
            Token(Token.NAME, name)
        ]
        metadata_lines = value.splitlines()
        if metadata_lines:
            tokens.append(sep)
            tokens.append(Token(Token.ARGUMENT, metadata_lines[0]))
            tokens.append(Token(Token.EOL, eol))
        for line in metadata_lines[1:]:
            tokens.append(Token(Token.CONTINUATION))
            tokens.append(sep)
            tokens.append(Token(Token.ARGUMENT, line))
            tokens.append(Token(Token.EOL, eol))
        return cls(tokens)


    @property
    def name(self):
        return self.get_value(Token.NAME)

    @property
    def value(self):
        tokens = self.get_tokens(Token.ARGUMENT)
        return self._join_value(tokens)



[docs]@Statement.register
class ForceTags(MultiValue):
    type = Token.FORCE_TAGS

[docs]    @classmethod
    def from_params(cls, values, separator=FOUR_SPACES, eol=EOL):
        tokens = [Token(Token.FORCE_TAGS, 'Force Tags')]
        for tag in values:
            tokens.append(Token(Token.SEPARATOR, separator))
            tokens.append(Token(Token.ARGUMENT, tag))
        tokens.append(Token(Token.EOL, eol))
        return cls(tokens)




[docs]@Statement.register
class DefaultTags(MultiValue):
    type = Token.DEFAULT_TAGS

[docs]    @classmethod
    def from_params(cls, values, separator=FOUR_SPACES, eol=EOL):
        tokens = [Token(Token.DEFAULT_TAGS, 'Default Tags')]
        for tag in values:
            tokens.append(Token(Token.SEPARATOR, separator))
            tokens.append(Token(Token.ARGUMENT, tag))
        tokens.append(Token(Token.EOL, eol))
        return cls(tokens)




[docs]@Statement.register
class SuiteSetup(Fixture):
    type = Token.SUITE_SETUP

[docs]    @classmethod
    def from_params(cls, name, args=(), separator=FOUR_SPACES, eol=EOL):
        tokens = [
            Token(Token.SUITE_SETUP, 'Suite Setup'),
            Token(Token.SEPARATOR, separator),
            Token(Token.NAME, name)
        ]
        for arg in args:
            tokens.append(Token(Token.SEPARATOR, separator))
            tokens.append(Token(Token.ARGUMENT, arg))
        tokens.append(Token(Token.EOL, eol))
        return cls(tokens)




[docs]@Statement.register
class SuiteTeardown(Fixture):
    type = Token.SUITE_TEARDOWN

[docs]    @classmethod
    def from_params(cls, name, args=(), separator=FOUR_SPACES, eol=EOL):
        tokens = [
            Token(Token.SUITE_TEARDOWN, 'Suite Teardown'),
            Token(Token.SEPARATOR, separator),
            Token(Token.NAME, name)
        ]
        for arg in args:
            tokens.append(Token(Token.SEPARATOR, separator))
            tokens.append(Token(Token.ARGUMENT, arg))
        tokens.append(Token(Token.EOL, eol))
        return cls(tokens)




[docs]@Statement.register
class TestSetup(Fixture):
    type = Token.TEST_SETUP

[docs]    @classmethod
    def from_params(cls, name, args=(), separator=FOUR_SPACES, eol=EOL):
        tokens = [
            Token(Token.TEST_SETUP, 'Test Setup'),
            Token(Token.SEPARATOR, separator),
            Token(Token.NAME, name)
        ]
        for arg in args:
            tokens.append(Token(Token.SEPARATOR, separator))
            tokens.append(Token(Token.ARGUMENT, arg))
        tokens.append(Token(Token.EOL, eol))
        return cls(tokens)




[docs]@Statement.register
class TestTeardown(Fixture):
    type = Token.TEST_TEARDOWN

[docs]    @classmethod
    def from_params(cls, name, args=(), separator=FOUR_SPACES, eol=EOL):
        tokens = [
            Token(Token.TEST_TEARDOWN, 'Test Teardown'),
            Token(Token.SEPARATOR, separator),
            Token(Token.NAME, name)
        ]
        for arg in args:
            tokens.append(Token(Token.SEPARATOR, separator))
            tokens.append(Token(Token.ARGUMENT, arg))
        tokens.append(Token(Token.EOL, eol))
        return cls(tokens)




[docs]@Statement.register
class TestTemplate(SingleValue):
    type = Token.TEST_TEMPLATE

[docs]    @classmethod
    def from_params(cls, value, separator=FOUR_SPACES, eol=EOL):
        return cls([
            Token(Token.TEST_TEMPLATE, 'Test Template'),
            Token(Token.SEPARATOR, separator),
            Token(Token.NAME, value),
            Token(Token.EOL, eol)
        ])




[docs]@Statement.register
class TestTimeout(SingleValue):
    type = Token.TEST_TIMEOUT

[docs]    @classmethod
    def from_params(cls, value, separator=FOUR_SPACES, eol=EOL):
        return cls([
            Token(Token.TEST_TIMEOUT, 'Test Timeout'),
            Token(Token.SEPARATOR, separator),
            Token(Token.ARGUMENT, value),
            Token(Token.EOL, eol)
        ])




[docs]@Statement.register
class Variable(Statement):
    type = Token.VARIABLE

[docs]    @classmethod
    def from_params(cls, name, value, separator=FOUR_SPACES, eol=EOL):
        return cls([
            Token(Token.VARIABLE, name),
            Token(Token.SEPARATOR, separator),
            Token(Token.ARGUMENT, value),
            Token(Token.EOL, eol)
        ])


    @property
    def name(self):
        name = self.get_value(Token.VARIABLE)
        if name.endswith('='):
            return name[:-1].rstrip()
        return name

    @property
    def value(self):
        return self.get_values(Token.ARGUMENT)

[docs]    def validate(self):
        name = self.get_value(Token.VARIABLE)
        match = search_variable(name, ignore_errors=True)
        if not match.is_assign(allow_assign_mark=True):
            self.errors += ("Invalid variable name '%s'." % name,)
        if match.is_dict_assign(allow_assign_mark=True):
            self._validate_dict_items()


    def _validate_dict_items(self):
        for item in self.get_values(Token.ARGUMENT):
            if not self._is_valid_dict_item(item):
                self.errors += (
                    "Invalid dictionary variable item '%s'. "
                    "Items must use 'name=value' syntax or be dictionary "
                    "variables themselves." % item,
                )

    def _is_valid_dict_item(self, item):
        name, value = split_from_equals(item)
        return value is not None or is_dict_variable(item)



[docs]@Statement.register
class TestCaseName(Statement):
    type = Token.TESTCASE_NAME

[docs]    @classmethod
    def from_params(cls, name, eol=EOL):
        tokens = [Token(Token.TESTCASE_NAME, name)]
        if eol:
            tokens.append(Token(Token.EOL, eol))
        return cls(tokens)


    @property
    def name(self):
        return self.get_value(Token.TESTCASE_NAME)



[docs]@Statement.register
class KeywordName(Statement):
    type = Token.KEYWORD_NAME

[docs]    @classmethod
    def from_params(cls, name, eol=EOL):
        tokens = [Token(Token.KEYWORD_NAME, name)]
        if eol:
            tokens.append(Token(Token.EOL, eol))
        return cls(tokens)


    @property
    def name(self):
        return self.get_value(Token.KEYWORD_NAME)



[docs]@Statement.register
class Setup(Fixture):
    type = Token.SETUP

[docs]    @classmethod
    def from_params(cls, name, args=(), indent=FOUR_SPACES, separator=FOUR_SPACES, eol=EOL):
        sep = Token(Token.SEPARATOR, separator)
        tokens = [
            Token(Token.SEPARATOR, indent),
            Token(Token.SETUP, '[Setup]'),
            sep,
            Token(Token.NAME, name)
        ]
        for arg in args:
            tokens.append(sep)
            tokens.append(Token(Token.ARGUMENT, arg))
        tokens.append(Token(Token.EOL, eol))
        return cls(tokens)




[docs]@Statement.register
class Teardown(Fixture):
    type = Token.TEARDOWN

[docs]    @classmethod
    def from_params(cls, name, args=(), indent=FOUR_SPACES, separator=FOUR_SPACES, eol=EOL):
        sep = Token(Token.SEPARATOR, separator)
        tokens = [
            Token(Token.SEPARATOR, indent),
            Token(Token.TEARDOWN, '[Teardown]'),
            sep,
            Token(Token.NAME, name)
        ]
        for arg in args:
            tokens.append(sep)
            tokens.append(Token(Token.ARGUMENT, arg))
        tokens.append(Token(Token.EOL, eol))
        return cls(tokens)




[docs]@Statement.register
class Tags(MultiValue):
    type = Token.TAGS

[docs]    @classmethod
    def from_params(cls, values, indent=FOUR_SPACES, separator=FOUR_SPACES, eol=EOL):
        tokens = [
            Token(Token.SEPARATOR, indent),
            Token(Token.TAGS, '[Tags]')
        ]
        for tag in values:
            tokens.append(Token(Token.SEPARATOR, separator))
            tokens.append(Token(Token.ARGUMENT, tag))
        tokens.append(Token(Token.EOL, eol))
        return cls(tokens)




[docs]@Statement.register
class Template(SingleValue):
    type = Token.TEMPLATE

[docs]    @classmethod
    def from_params(cls, value, indent=FOUR_SPACES, separator=FOUR_SPACES, eol=EOL):
        return cls([
            Token(Token.SEPARATOR, indent),
            Token(Token.TEMPLATE, '[Template]'),
            Token(Token.SEPARATOR, separator),
            Token(Token.NAME, value),
            Token(Token.EOL, eol)
        ])




[docs]@Statement.register
class Timeout(SingleValue):
    type = Token.TIMEOUT

[docs]    @classmethod
    def from_params(cls, value, indent=FOUR_SPACES, separator=FOUR_SPACES, eol=EOL):
        return cls([
            Token(Token.SEPARATOR, indent),
            Token(Token.TIMEOUT, '[Timeout]'),
            Token(Token.SEPARATOR, separator),
            Token(Token.ARGUMENT, value),
            Token(Token.EOL, eol)
        ])




[docs]@Statement.register
class Arguments(MultiValue):
    type = Token.ARGUMENTS

[docs]    @classmethod
    def from_params(cls, args, indent=FOUR_SPACES, separator=FOUR_SPACES, eol=EOL):
        tokens = [
            Token(Token.SEPARATOR, indent),
            Token(Token.ARGUMENTS, '[Arguments]'),
        ]
        for arg in args:
            tokens.append(Token(Token.SEPARATOR, separator))
            tokens.append(Token(Token.ARGUMENT, arg))
        tokens.append(Token(Token.EOL, eol))
        return cls(tokens)


[docs]    def validate(self):
        errors = []
        UserKeywordArgumentParser(error_reporter=errors.append).parse(self.values)
        self.errors = tuple(errors)




[docs]@Statement.register
class Return(MultiValue):
    type = Token.RETURN

[docs]    @classmethod
    def from_params(cls, args, indent=FOUR_SPACES, separator=FOUR_SPACES, eol=EOL):
        tokens = [
            Token(Token.SEPARATOR, indent),
            Token(Token.RETURN, '[Return]'),
        ]
        for arg in args:
            tokens.append(Token(Token.SEPARATOR, separator))
            tokens.append(Token(Token.ARGUMENT, arg))
        tokens.append(Token(Token.EOL, eol))
        return cls(tokens)




[docs]@Statement.register
class KeywordCall(Statement):
    type = Token.KEYWORD
    handles_types = (Token.KEYWORD, Token.ASSIGN)

[docs]    @classmethod
    def from_params(cls, name, assign=(), args=(), indent=FOUR_SPACES, separator=FOUR_SPACES, eol=EOL):
        tokens = [Token(Token.SEPARATOR, indent)]
        for assignment in assign:
            tokens.append(Token(Token.ASSIGN, assignment))
            tokens.append(Token(Token.SEPARATOR, separator))
        tokens.append(Token(Token.KEYWORD, name))
        for arg in args:
            tokens.append(Token(Token.SEPARATOR, separator))
            tokens.append(Token(Token.ARGUMENT, arg))
        tokens.append(Token(Token.EOL, eol))
        return cls(tokens)


    @property
    def keyword(self):
        return self.get_value(Token.KEYWORD)

    @property
    def args(self):
        return self.get_values(Token.ARGUMENT)

    @property
    def assign(self):
        return self.get_values(Token.ASSIGN)



[docs]@Statement.register
class TemplateArguments(Statement):
    type = Token.ARGUMENT

[docs]    @classmethod
    def from_params(cls, args, indent=FOUR_SPACES, separator=FOUR_SPACES, eol=EOL):
        tokens = []
        for index, arg in enumerate(args):
            tokens.append(Token(Token.SEPARATOR, separator if index else indent))
            tokens.append(Token(Token.ARGUMENT, arg))
        tokens.append(Token(Token.EOL, eol))
        return cls(tokens)


    @property
    def args(self):
        return self.get_values(self.type)



[docs]@Statement.register
class ForHeader(Statement):
    type = Token.FOR

[docs]    @classmethod
    def from_params(cls, variables, values, flavor='IN', indent=FOUR_SPACES, separator=FOUR_SPACES, eol=EOL):
        tokens = [
            Token(Token.SEPARATOR, indent),
            Token(Token.FOR),
            Token(Token.SEPARATOR, separator)
        ]
        for variable in variables:
            tokens.append(Token(Token.VARIABLE, variable))
            tokens.append(Token(Token.SEPARATOR, separator))
        tokens.append(Token(Token.FOR_SEPARATOR, flavor))
        for value in values:
            tokens.append(Token(Token.SEPARATOR, separator))
            tokens.append(Token(Token.ARGUMENT, value))
        tokens.append(Token(Token.EOL, eol))
        return cls(tokens)


    @property
    def variables(self):
        return self.get_values(Token.VARIABLE)

    @property
    def values(self):
        return self.get_values(Token.ARGUMENT)

    @property
    def flavor(self):
        separator = self.get_token(Token.FOR_SEPARATOR)
        return normalize_whitespace(separator.value) if separator else None

[docs]    def validate(self):
        if not self.variables:
            self._add_error('no loop variables')
        if not self.flavor:
            self._add_error("no 'IN' or other valid separator")
        else:
            for var in self.variables:
                if not is_scalar_assign(var):
                    self._add_error("invalid loop variable '%s'" % var)
            if not self.values:
                self._add_error('no loop values')


    def _add_error(self, error):
        self.errors += ('FOR loop has %s.' % error,)



[docs]@Statement.register
class IfHeader(Statement):
    type = Token.IF

[docs]    @classmethod
    def from_params(cls, condition, indent=FOUR_SPACES, separator=FOUR_SPACES, eol=EOL):
        return cls([
            Token(Token.SEPARATOR, indent),
            Token(Token.IF),
            Token(Token.SEPARATOR, separator),
            Token(Token.ARGUMENT, condition),
            Token(Token.EOL, eol)
        ])


    @property
    def condition(self):
        return self.get_value(Token.ARGUMENT)

[docs]    def validate(self):
        conditions = len(self.get_tokens(Token.ARGUMENT))
        if conditions == 0:
            self.errors += ('%s has no condition.' % self.type,)
        if conditions > 1:
            self.errors += ('%s has more than one condition.' % self.type,)




[docs]@Statement.register
class ElseIfHeader(IfHeader):
    type = Token.ELSE_IF

[docs]    @classmethod
    def from_params(cls, condition, indent=FOUR_SPACES, separator=FOUR_SPACES, eol=EOL):
        return cls([
            Token(Token.SEPARATOR, indent),
            Token(Token.ELSE_IF),
            Token(Token.SEPARATOR, separator),
            Token(Token.ARGUMENT, condition),
            Token(Token.EOL, eol)
        ])




[docs]@Statement.register
class ElseHeader(Statement):
    type = Token.ELSE

[docs]    @classmethod
    def from_params(cls, indent=FOUR_SPACES, eol=EOL):
        return cls([
            Token(Token.SEPARATOR, indent),
            Token(Token.ELSE),
            Token(Token.EOL, eol)
        ])


    @property
    def condition(self):
        return None

[docs]    def validate(self):
        if self.get_tokens(Token.ARGUMENT):
            self.errors += ('ELSE has condition.',)




[docs]@Statement.register
class End(Statement):
    type = Token.END

[docs]    @classmethod
    def from_params(cls, indent=FOUR_SPACES, eol=EOL):
        return cls([
            Token(Token.SEPARATOR, indent),
            Token(Token.END),
            Token(Token.EOL, eol)
        ])


[docs]    def validate(self):
        if self.get_tokens(Token.ARGUMENT):
            self.errors += ('END does not accept arguments.',)




[docs]@Statement.register
class Comment(Statement):
    type = Token.COMMENT

[docs]    @classmethod
    def from_params(cls, comment, indent=FOUR_SPACES, eol=EOL):
        return cls([
            Token(Token.SEPARATOR, indent),
            Token(Token.COMMENT, comment),
            Token(Token.EOL, eol)
        ])




[docs]@Statement.register
class Error(Statement):
    type = Token.ERROR
    handles_types = (Token.ERROR, Token.FATAL_ERROR)
    _errors = ()

    @property
    def errors(self):
        """Errors got from the underlying ``ERROR`` and ``FATAL_ERROR`` tokens.

        Errors can be set also explicitly. When accessing errors, they are returned
        along with errors got from tokens.
        """
        tokens = self.get_tokens(Token.ERROR, Token.FATAL_ERROR)
        return tuple(t.error for t in tokens) + self._errors

    @errors.setter
    def errors(self, errors):
        self._errors = tuple(errors)



[docs]class EmptyLine(Statement):
    type = Token.EOL

[docs]    @classmethod
    def from_params(cls, eol=EOL):
        return cls([Token(Token.EOL, eol)])






          

      

      

    

  

    
      
          
            
  Source code for robot.parsing.model.visitor

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

import ast


[docs]class VisitorFinder(object):

    def _find_visitor(self, cls):
        if cls is ast.AST:
            return None
        method = 'visit_' + cls.__name__
        if hasattr(self, method):
            return getattr(self, method)
        for base in cls.__bases__:
            visitor = self._find_visitor(base)
            if visitor:
                return visitor
        return None



[docs]class ModelVisitor(ast.NodeVisitor, VisitorFinder):
    """NodeVisitor that supports matching nodes based on their base classes.

    Otherwise identical to the standard `ast.NodeVisitor
    <https://docs.python.org/library/ast.html#ast.NodeVisitor>`__,
    but allows creating ``visit_ClassName`` methods so that the ``ClassName``
    is one of the base classes of the node. For example, this visitor method
    matches all statements::

        def visit_Statement(self, node):
            # ...
    """

[docs]    def visit(self, node):
        visitor = self._find_visitor(type(node)) or self.generic_visit
        visitor(node)




[docs]class ModelTransformer(ast.NodeTransformer, VisitorFinder):
    """NodeTransformer that supports matching nodes based on their base classes.

    See :class:`ModelVisitor` for explanation how this is different compared
    to the standard `ast.NodeTransformer
    <https://docs.python.org/library/ast.html#ast.NodeTransformer>`__.
    """

[docs]    def visit(self, node):
        visitor = self._find_visitor(type(node)) or self.generic_visit
        return visitor(node)






          

      

      

    

  

    
      
          
            
  Source code for robot.parsing.parser.blockparsers

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from ..lexer import Token
from ..model import TestCase, Keyword, For, If


[docs]class Parser(object):
    """Base class for parsers."""

    def __init__(self, model):
        self.model = model

[docs]    def handles(self, statement):
        raise NotImplementedError


[docs]    def parse(self, statement):
        raise NotImplementedError




[docs]class BlockParser(Parser):
    unhandled_tokens = Token.HEADER_TOKENS | frozenset((Token.TESTCASE_NAME,
                                                        Token.KEYWORD_NAME))

    def __init__(self, model):
        Parser.__init__(self, model)
        self.nested_parsers = {Token.FOR: ForParser, Token.IF: IfParser}

[docs]    def handles(self, statement):
        return statement.type not in self.unhandled_tokens


[docs]    def parse(self, statement):
        parser_class = self.nested_parsers.get(statement.type)
        if parser_class:
            parser = parser_class(statement)
            self.model.body.append(parser.model)
            return parser
        self.model.body.append(statement)
        return None




[docs]class TestCaseParser(BlockParser):

    def __init__(self, header):
        BlockParser.__init__(self, TestCase(header))



[docs]class KeywordParser(BlockParser):

    def __init__(self, header):
        BlockParser.__init__(self, Keyword(header))



[docs]class NestedBlockParser(BlockParser):

[docs]    def handles(self, statement):
        return BlockParser.handles(self, statement) and not self.model.end


[docs]    def parse(self, statement):
        if statement.type == Token.END:
            self.model.end = statement
            return None
        return BlockParser.parse(self, statement)




[docs]class ForParser(NestedBlockParser):

    def __init__(self, header):
        NestedBlockParser.__init__(self, For(header))



[docs]class IfParser(NestedBlockParser):

    def __init__(self, header):
        NestedBlockParser.__init__(self, If(header))

[docs]    def parse(self, statement):
        if statement.type in (Token.ELSE_IF, Token.ELSE):
            parser = OrElseParser(statement)
            self.model.orelse = parser.model
            return parser
        return NestedBlockParser.parse(self, statement)




[docs]class OrElseParser(IfParser):

[docs]    def handles(self, statement):
        return IfParser.handles(self, statement) and statement.type != Token.END






          

      

      

    

  

    
      
          
            
  Source code for robot.parsing.parser.fileparser

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

import os.path

from robot.utils import is_pathlike, is_string

from ..lexer import Token
from ..model import (File, CommentSection, SettingSection, VariableSection,
                     TestCaseSection, KeywordSection)

from .blockparsers import Parser, TestCaseParser, KeywordParser


[docs]class FileParser(Parser):

    def __init__(self, source=None):
        Parser.__init__(self, File(source=self._get_path(source)))

    def _get_path(self, source):
        if not source:
            return None
        if is_string(source) and '\n' not in source and os.path.isfile(source):
            return source
        if is_pathlike(source) and source.is_file():
            return str(source)
        return None

[docs]    def handles(self, statement):
        return True


[docs]    def parse(self, statement):
        parser_class = {
            Token.SETTING_HEADER: SettingSectionParser,
            Token.VARIABLE_HEADER: VariableSectionParser,
            Token.TESTCASE_HEADER: TestCaseSectionParser,
            Token.KEYWORD_HEADER: KeywordSectionParser,
            Token.COMMENT_HEADER: CommentSectionParser,
            Token.COMMENT: ImplicitCommentSectionParser,
            Token.ERROR: ImplicitCommentSectionParser,
            Token.EOL: ImplicitCommentSectionParser
        }[statement.type]
        parser = parser_class(statement)
        self.model.sections.append(parser.model)
        return parser




[docs]class SectionParser(Parser):
    model_class = None

    def __init__(self, header):
        Parser.__init__(self, self.model_class(header))

[docs]    def handles(self, statement):
        return statement.type not in Token.HEADER_TOKENS


[docs]    def parse(self, statement):
        self.model.body.append(statement)
        return None




[docs]class SettingSectionParser(SectionParser):
    model_class = SettingSection



[docs]class VariableSectionParser(SectionParser):
    model_class = VariableSection



[docs]class CommentSectionParser(SectionParser):
    model_class = CommentSection



[docs]class ImplicitCommentSectionParser(SectionParser):

[docs]    def model_class(self, statement):
        return CommentSection(body=[statement])




[docs]class TestCaseSectionParser(SectionParser):
    model_class = TestCaseSection

[docs]    def parse(self, statement):
        if statement.type == Token.TESTCASE_NAME:
            parser = TestCaseParser(statement)
            self.model.body.append(parser.model)
            return parser
        return SectionParser.parse(self, statement)




[docs]class KeywordSectionParser(SectionParser):
    model_class = KeywordSection

[docs]    def parse(self, statement):
        if statement.type == Token.KEYWORD_NAME:
            parser = KeywordParser(statement)
            self.model.body.append(parser.model)
            return parser
        return SectionParser.parse(self, statement)






          

      

      

    

  

    
      
          
            
  Source code for robot.parsing.parser.parser

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from ..lexer import Token, get_tokens, get_resource_tokens, get_init_tokens
from ..model import Statement

from .fileparser import FileParser


[docs]def get_model(source, data_only=False, curdir=None):
    """Parses the given source to a model represented as an AST.

    How to use the model is explained more thoroughly in the general
    documentation of the :mod:`robot.parsing` module.

    :param source: The source where to read the data. Can be a path to
        a source file as a string or as ``pathlib.Path`` object, an already
        opened file object, or Unicode text containing the date directly.
        Source files must be UTF-8 encoded.
    :param data_only: When ``False`` (default), returns all tokens. When set
        to ``True``, omits separators, comments, continuation markers, and
        other non-data tokens. Model like this cannot be saved back to
        file system.
    :param curdir: Directory where the source file exists. This path is used
        to set the value of the built-in ``${CURDIR}`` variable during parsing.
        When not given, the variable is left as-is. Should only be given
        only if the model will be executed afterwards. If the model is saved
        back to disk, resolving ``${CURDIR}`` is typically not a good idea.

    Use :func:`get_resource_model` or :func:`get_init_model` when parsing
    resource or suite initialization files, respectively.
    """
    return _get_model(get_tokens, source, data_only, curdir)



[docs]def get_resource_model(source, data_only=False, curdir=None):
    """Parses the given source to a resource file model.

    Otherwise same as :func:`get_model` but the source is considered to be
    a resource file. This affects, for example, what settings are valid.
    """
    return _get_model(get_resource_tokens, source, data_only, curdir)



[docs]def get_init_model(source, data_only=False, curdir=None):
    """Parses the given source to a init file model.

    Otherwise same as :func:`get_model` but the source is considered to be
    a suite initialization file. This affects, for example, what settings are
    valid.
    """
    return _get_model(get_init_tokens, source, data_only, curdir)



def _get_model(token_getter, source, data_only=False, curdir=None):
    tokens = token_getter(source, data_only)
    statements = _tokens_to_statements(tokens, curdir)
    model = _statements_to_model(statements, source)
    model.validate_model()
    return model


def _tokens_to_statements(tokens, curdir=None):
    statement = []
    EOS = Token.EOS
    for t in tokens:
        if curdir and '${CURDIR}' in t.value:
            t.value = t.value.replace('${CURDIR}', curdir)
        if t.type != EOS:
            statement.append(t)
        else:
            yield Statement.from_tokens(statement)
            statement = []


def _statements_to_model(statements, source=None):
    parser = FileParser(source=source)
    model = parser.model
    stack = [parser]
    for statement in statements:
        while not stack[-1].handles(statement):
            stack.pop()
        parser = stack[-1].parse(statement)
        if parser:
            stack.append(parser)
    return model




          

      

      

    

  

    
      
          
            
  Source code for robot.reporting.expandkeywordmatcher

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from robot.utils import MultiMatcher, is_list_like


[docs]class ExpandKeywordMatcher(object):

    def __init__(self, expand_keywords):
        self.matched_ids = []
        if not expand_keywords:
            expand_keywords = []
        elif not is_list_like(expand_keywords):
            expand_keywords = [expand_keywords]
        names = [n[5:] for n in expand_keywords if n[:5].lower() == 'name:']
        tags  = [p[4:] for p in expand_keywords if p[:4].lower() == 'tag:']
        self._match_name = MultiMatcher(names).match
        self._match_tags = MultiMatcher(tags).match_any

[docs]    def match(self, kw):
        if self._match_name(kw.name or '') or self._match_tags(kw.tags):
            self.matched_ids.append(kw.id)






          

      

      

    

  

    
      
          
            
  Source code for robot.reporting.jsbuildingcontext

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from contextlib import contextmanager
from os.path import exists, dirname

from robot.output.loggerhelper import LEVELS
from robot.utils import (attribute_escape, get_link_path, html_escape,
                         html_format, is_string, is_unicode, timestamp_to_secs,
                         unic)

from .expandkeywordmatcher import ExpandKeywordMatcher
from .stringcache import StringCache


[docs]class JsBuildingContext(object):

    def __init__(self, log_path=None, split_log=False, expand_keywords=None,
                 prune_input=False):
        # log_path can be a custom object in unit tests
        self._log_dir = dirname(log_path) if is_string(log_path) else None
        self._split_log = split_log
        self._prune_input = prune_input
        self._strings = self._top_level_strings = StringCache()
        self.basemillis = None
        self.split_results = []
        self.min_level = 'NONE'
        self._msg_links = {}
        self._expand_matcher = ExpandKeywordMatcher(expand_keywords) \
            if expand_keywords else None

[docs]    def string(self, string, escape=True, attr=False):
        if escape and string:
            if not is_unicode(string):
                string = unic(string)
            string = (html_escape if not attr else attribute_escape)(string)
        return self._strings.add(string)


[docs]    def html(self, string):
        return self.string(html_format(string), escape=False)


[docs]    def relative_source(self, source):
        rel_source = get_link_path(source, self._log_dir) \
            if self._log_dir and source and exists(source) else ''
        return self.string(rel_source)


[docs]    def timestamp(self, time):
        if not time:
            return None
        millis = int(timestamp_to_secs(time) * 1000)
        if self.basemillis is None:
            self.basemillis = millis
        return millis - self.basemillis


[docs]    def message_level(self, level):
        if LEVELS[level] < LEVELS[self.min_level]:
            self.min_level = level


[docs]    def create_link_target(self, msg):
        id = self._top_level_strings.add(msg.parent.id)
        self._msg_links[self._link_key(msg)] = id


[docs]    def check_expansion(self, kw):
        if self._expand_matcher is not None:
            self._expand_matcher.match(kw)


    @property
    def expand_keywords(self):
        return self._expand_matcher.matched_ids if self._expand_matcher else None

[docs]    def link(self, msg):
        return self._msg_links.get(self._link_key(msg))


    def _link_key(self, msg):
        return (msg.message, msg.level, msg.timestamp)

    @property
    def strings(self):
        return self._strings.dump()

[docs]    def start_splitting_if_needed(self, split=False):
        if self._split_log and split:
            self._strings = StringCache()
            return True
        return False


[docs]    def end_splitting(self, model):
        self.split_results.append((model, self.strings))
        self._strings = self._top_level_strings
        return len(self.split_results)


[docs]    @contextmanager
    def prune_input(self, *items):
        yield
        if self._prune_input:
            for item in items:
                item.clear()






          

      

      

    

  

    
      
          
            
  Source code for robot.reporting.jsexecutionresult

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

import time
from collections import OrderedDict

from robot.utils import IRONPYTHON, PY_VERSION

from .stringcache import StringIndex

# http://ironpython.codeplex.com/workitem/31549
if IRONPYTHON and PY_VERSION < (2, 7, 2):
    int = long


[docs]class JsExecutionResult(object):

    def __init__(self, suite, statistics, errors, strings, basemillis=None,
                 split_results=None, min_level=None, expand_keywords=None):
        self.suite = suite
        self.strings = strings
        self.min_level = min_level
        self.data = self._get_data(statistics, errors, basemillis or 0,
                                   expand_keywords)
        self.split_results = split_results or []

    def _get_data(self, statistics, errors, basemillis, expand_keywords):
        return OrderedDict([
            ('stats', statistics),
            ('errors', errors),
            ('baseMillis', basemillis),
            ('generated', int(time.time() * 1000) - basemillis),
            ('expand_keywords', expand_keywords)
        ])

[docs]    def remove_data_not_needed_in_report(self):
        self.data.pop('errors')
        remover = _KeywordRemover()
        self.suite = remover.remove_keywords(self.suite)
        self.suite, self.strings \
                = remover.remove_unused_strings(self.suite, self.strings)




class _KeywordRemover(object):

    def remove_keywords(self, suite):
        return self._remove_keywords_from_suite(suite)

    def _remove_keywords_from_suite(self, suite):
        return suite[:6] + (self._remove_keywords_from_suites(suite[6]),
                            self._remove_keywords_from_tests(suite[7]),
                            (), suite[9])

    def _remove_keywords_from_suites(self, suites):
        return tuple(self._remove_keywords_from_suite(s) for s in suites)

    def _remove_keywords_from_tests(self, tests):
        return tuple(self._remove_keywords_from_test(t) for t in tests)

    def _remove_keywords_from_test(self, test):
        return test[:-1] + ((),)

    def remove_unused_strings(self, model, strings):
        used = set(self._get_used_indices(model))
        remap = {}
        strings = tuple(self._get_used_strings(strings, used, remap))
        model = tuple(self._remap_string_indices(model, remap))
        return model, strings

    def _get_used_indices(self, model):
        for item in model:
            if isinstance(item, StringIndex):
                yield item
            elif isinstance(item, tuple):
                for i in self._get_used_indices(item):
                    yield i

    def _get_used_strings(self, strings, used_indices, remap):
        offset = 0
        for index, string in enumerate(strings):
            if index in used_indices:
                remap[index] = index - offset
                yield string
            else:
                offset += 1

    def _remap_string_indices(self, model, remap):
        for item in model:
            if isinstance(item, StringIndex):
                yield remap[item]
            elif isinstance(item, tuple):
                yield tuple(self._remap_string_indices(item, remap))
            else:
                yield item




          

      

      

    

  

    
      
          
            
  Source code for robot.reporting.jsmodelbuilders

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from robot.model import BodyItem
from robot.output import LEVELS

from .jsbuildingcontext import JsBuildingContext
from .jsexecutionresult import JsExecutionResult


IF_ELSE_ROOT = BodyItem.IF_ELSE_ROOT
STATUSES = {'FAIL': 0, 'PASS': 1, 'SKIP': 2, 'NOT RUN': 3}
KEYWORD_TYPES = {'KEYWORD': 0, 'SETUP': 1, 'TEARDOWN': 2,
                 'FOR': 3, 'FOR ITERATION': 4,
                 'IF': 5, 'ELSE IF': 6, 'ELSE': 7}
MESSAGE_TYPE = 8


[docs]class JsModelBuilder(object):

    def __init__(self, log_path=None, split_log=False, expand_keywords=None,
                 prune_input_to_save_memory=False):
        self._context = JsBuildingContext(log_path, split_log, expand_keywords,
                                          prune_input_to_save_memory)

[docs]    def build_from(self, result_from_xml):
        # Statistics must be build first because building suite may prune input.
        return JsExecutionResult(
            statistics=StatisticsBuilder().build(result_from_xml.statistics),
            suite=SuiteBuilder(self._context).build(result_from_xml.suite),
            errors=ErrorsBuilder(self._context).build(result_from_xml.errors),
            strings=self._context.strings,
            basemillis=self._context.basemillis,
            split_results=self._context.split_results,
            min_level=self._context.min_level,
            expand_keywords=self._context.expand_keywords
        )




class _Builder(object):

    def __init__(self, context):
        self._context = context
        self._string = self._context.string
        self._html = self._context.html
        self._timestamp = self._context.timestamp

    def _get_status(self, item):
        model = (STATUSES[item.status],
                 self._timestamp(item.starttime),
                 item.elapsedtime)
        msg = getattr(item, 'message', '')
        if not msg:
            return model
        elif msg.startswith('*HTML*'):
            msg = self._string(msg[6:].lstrip(), escape=False)
        else:
            msg = self._string(msg)
        return model + (msg,)

    def _build_keywords(self, steps, split=False):
        splitting = self._context.start_splitting_if_needed(split)
        # tuple([<listcomp>>]) is faster than tuple(<genex>) with short lists.
        model = tuple([self._build_keyword(step) for step in self._flatten_ifs(steps)])
        return model if not splitting else self._context.end_splitting(model)

    def _build_keyword(self, step):
        raise NotImplementedError

    def _flatten_ifs(self, steps):
        result = []
        for step in steps:
            if step.type != IF_ELSE_ROOT:
                result.append(step)
            else:
                result.extend(step.body)
        return result


[docs]class SuiteBuilder(_Builder):

    def __init__(self, context):
        _Builder.__init__(self, context)
        self._build_suite = self.build
        self._build_test = TestBuilder(context).build
        self._build_keyword = KeywordBuilder(context).build

[docs]    def build(self, suite):
        with self._context.prune_input(suite.tests, suite.suites):
            stats = self._get_statistics(suite)  # Must be done before pruning
            kws = [kw for kw in (suite.setup, suite.teardown) if kw]
            return (self._string(suite.name, attr=True),
                    self._string(suite.source),
                    self._context.relative_source(suite.source),
                    self._html(suite.doc),
                    tuple(self._yield_metadata(suite)),
                    self._get_status(suite),
                    tuple(self._build_suite(s) for s in suite.suites),
                    tuple(self._build_test(t) for t in suite.tests),
                    tuple(self._build_keyword(k, split=True) for k in kws),
                    stats)


    def _yield_metadata(self, suite):
        for name, value in suite.metadata.items():
            yield self._string(name)
            yield self._html(value)

    def _get_statistics(self, suite):
        stats = suite.statistics  # Access property only once
        return (stats.total, stats.passed, stats.failed, stats.skipped)



[docs]class TestBuilder(_Builder):

    def __init__(self, context):
        _Builder.__init__(self, context)
        self._build_keyword = KeywordBuilder(context).build

[docs]    def build(self, test):
        kws = self._get_keywords(test)
        with self._context.prune_input(test.body):
            return (self._string(test.name, attr=True),
                    self._string(test.timeout),
                    self._html(test.doc),
                    tuple(self._string(t) for t in test.tags),
                    self._get_status(test),
                    self._build_keywords(kws, split=True))


    def _get_keywords(self, test):
        kws = []
        if test.setup:
            kws.append(test.setup)
        kws.extend(test.body)
        if test.teardown:
            kws.append(test.teardown)
        return kws



[docs]class KeywordBuilder(_Builder):

    def __init__(self, context):
        _Builder.__init__(self, context)
        self._build_keyword = self.build
        self._build_message = MessageBuilder(context).build

[docs]    def build(self, item, split=False):
        if item.type == item.MESSAGE:
            return self._build_message(item)
        return self.build_keyword(item, split)


[docs]    def build_keyword(self, kw, split=False):
        self._context.check_expansion(kw)
        kws = list(kw.body)
        if getattr(kw, 'has_teardown', False):
            kws.append(kw.teardown)
        with self._context.prune_input(kw.body):
            return (KEYWORD_TYPES[kw.type],
                    self._string(kw.kwname, attr=True),
                    self._string(kw.libname, attr=True),
                    self._string(kw.timeout),
                    self._html(kw.doc),
                    self._string(', '.join(kw.args)),
                    self._string(', '.join(kw.assign)),
                    self._string(', '.join(kw.tags)),
                    self._get_status(kw),
                    self._build_keywords(kws, split))




[docs]class MessageBuilder(_Builder):

[docs]    def build(self, msg):
        if msg.level in ('WARN', 'ERROR'):
            self._context.create_link_target(msg)
        self._context.message_level(msg.level)
        return self._build(msg)


    def _build(self, msg):
        return (MESSAGE_TYPE,
                self._timestamp(msg.timestamp),
                LEVELS[msg.level],
                self._string(msg.html_message, escape=False))



[docs]class StatisticsBuilder(object):

[docs]    def build(self, statistics):
        return (self._build_stats(statistics.total),
                self._build_stats(statistics.tags),
                self._build_stats(statistics.suite, exclude_empty=False))


    def _build_stats(self, stats, exclude_empty=True):
        return tuple(stat.get_attributes(include_label=True,
                                         include_elapsed=True,
                                         exclude_empty=exclude_empty,
                                         html_escape=True)
                     for stat in stats)



[docs]class ErrorsBuilder(_Builder):

    def __init__(self, context):
        _Builder.__init__(self, context)
        self._build_message = ErrorMessageBuilder(context).build

[docs]    def build(self, errors):
        with self._context.prune_input(errors.messages):
            return tuple(self._build_message(msg) for msg in errors)




[docs]class ErrorMessageBuilder(MessageBuilder):

[docs]    def build(self, msg):
        model = self._build(msg)
        link = self._context.link(msg)
        return model if link is None else model + (link,)






          

      

      

    

  

    
      
          
            
  Source code for robot.reporting.jswriter

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from robot.htmldata import JsonWriter


[docs]class JsResultWriter(object):
    _output_attr = 'window.output'
    _settings_attr = 'window.settings'
    _suite_key = 'suite'
    _strings_key = 'strings'

    def __init__(self, output,
                 start_block='<script type="text/javascript">\n',
                 end_block='</script>\n',
                 split_threshold=9500):
        writer = JsonWriter(output, separator=end_block+start_block)
        self._write = writer.write
        self._write_json = writer.write_json
        self._start_block = start_block
        self._end_block = end_block
        self._split_threshold = split_threshold

[docs]    def write(self, result, settings):
        self._start_output_block()
        self._write_suite(result.suite)
        self._write_strings(result.strings)
        self._write_data(result.data)
        self._write_settings_and_end_output_block(settings)


    def _start_output_block(self):
        self._write(self._start_block, postfix='', separator=False)
        self._write('%s = {}' % self._output_attr)

    def _write_suite(self, suite):
        writer = SuiteWriter(self._write_json, self._split_threshold)
        writer.write(suite, self._output_var(self._suite_key))

    def _write_strings(self, strings):
        variable = self._output_var(self._strings_key)
        self._write('%s = []' % variable)
        prefix = '%s = %s.concat(' % (variable, variable)
        postfix = ');\n'
        threshold = self._split_threshold
        for index in range(0, len(strings), threshold):
            self._write_json(prefix, strings[index:index+threshold], postfix)

    def _write_data(self, data):
        for key in data:
            self._write_json('%s = ' % self._output_var(key), data[key])

    def _write_settings_and_end_output_block(self, settings):
        self._write_json('%s = ' % self._settings_attr, settings,
                         separator=False)
        self._write(self._end_block, postfix='', separator=False)

    def _output_var(self, key):
        return '%s["%s"]' % (self._output_attr, key)



[docs]class SuiteWriter(object):

    def __init__(self, write_json, split_threshold):
        self._write_json = write_json
        self._split_threshold = split_threshold

[docs]    def write(self, suite, variable):
        mapping = {}
        self._write_parts_over_threshold(suite, mapping)
        self._write_json('%s = ' % variable, suite, mapping=mapping)


    def _write_parts_over_threshold(self, data, mapping):
        if not isinstance(data, tuple):
            return 1
        not_written = 1 + sum(self._write_parts_over_threshold(item, mapping)
                              for item in data)
        if not_written > self._split_threshold:
            self._write_part(data, mapping)
            return 1
        return not_written

    def _write_part(self, data, mapping):
        part_name = 'window.sPart%d' % len(mapping)
        self._write_json('%s = ' % part_name, data, mapping=mapping)
        mapping[data] = part_name



[docs]class SplitLogWriter(object):

    def __init__(self, output):
        self._writer = JsonWriter(output)

[docs]    def write(self, keywords, strings, index, notify):
        self._writer.write_json('window.keywords%d = ' % index, keywords)
        self._writer.write_json('window.strings%d = ' % index, strings)
        self._writer.write('window.fileLoading.notify("%s")' % notify)






          

      

      

    

  

    
      
          
            
  Source code for robot.reporting.logreportwriters

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from os.path import basename, splitext

from robot.htmldata import HtmlFileWriter, ModelWriter, LOG, REPORT
from robot.utils import file_writer, is_string

from .jswriter import JsResultWriter, SplitLogWriter


class _LogReportWriter(object):
    usage = None

    def __init__(self, js_model):
        self._js_model = js_model

    def _write_file(self, path, config, template):
        outfile = file_writer(path, usage=self.usage) \
            if is_string(path) else path  # unit test hook
        with outfile:
            model_writer = RobotModelWriter(outfile, self._js_model, config)
            writer = HtmlFileWriter(outfile, model_writer)
            writer.write(template)


[docs]class LogWriter(_LogReportWriter):
    usage = 'log'

[docs]    def write(self, path, config):
        self._write_file(path, config, LOG)
        if self._js_model.split_results:
            self._write_split_logs(splitext(path)[0])


    def _write_split_logs(self, base):
        for index, (keywords, strings) in enumerate(self._js_model.split_results,
                                                    start=1):
            self._write_split_log(index, keywords, strings, '%s-%d.js' % (base, index))

    def _write_split_log(self, index, keywords, strings, path):
        with file_writer(path, usage=self.usage) as outfile:
            writer = SplitLogWriter(outfile)
            writer.write(keywords, strings, index, basename(path))



[docs]class ReportWriter(_LogReportWriter):
    usage = 'report'

[docs]    def write(self, path, config):
        self._write_file(path, config, REPORT)




[docs]class RobotModelWriter(ModelWriter):

    def __init__(self, output, model, config):
        self._output = output
        self._model = model
        self._config = config

[docs]    def write(self, line):
        JsResultWriter(self._output).write(self._model, self._config)






          

      

      

    

  

    
      
          
            
  Source code for robot.reporting.outputwriter

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from robot.output.xmllogger import XmlLogger


[docs]class OutputWriter(XmlLogger):

    def __init__(self, output, rpa=False):
        XmlLogger.__init__(self, output, rpa=rpa, generator='Rebot')

[docs]    def start_message(self, msg):
        self._write_message(msg)


[docs]    def close(self):
        self._writer.end('robot')
        self._writer.close()


[docs]    def end_result(self, result):
        self.close()






          

      

      

    

  

    
      
          
            
  Source code for robot.reporting.resultwriter

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from robot.conf import RebotSettings
from robot.errors import DataError
from robot.model import ModelModifier
from robot.output import LOGGER
from robot.result import ExecutionResult, Result

from .jsmodelbuilders import JsModelBuilder
from .logreportwriters import LogWriter, ReportWriter
from .xunitwriter import XUnitWriter


[docs]class ResultWriter(object):
    """A class to create log, report, output XML and xUnit files.

    :param sources: Either one :class:`~robot.result.executionresult.Result`
        object, or one or more paths to existing output XML files.

    By default writes ``report.html`` and ``log.html``, but no output XML
    or xUnit files. Custom file names can be given and results disabled
    or enabled using ``settings`` or ``options`` passed to the
    :meth:`write_results` method. The latter is typically more convenient::

        writer = ResultWriter(result)
        writer.write_results(report='custom.html', log=None, xunit='xunit.xml')
    """

    def __init__(self, *sources):
        self._sources = sources

[docs]    def write_results(self, settings=None, **options):
        """Writes results based on the given ``settings``  or ``options``.

        :param settings: :class:`~robot.conf.settings.RebotSettings` object
            to configure result writing.
        :param options: Used to construct new
            :class:`~robot.conf.settings.RebotSettings` object if ``settings``
            are not given.
        """
        settings = settings or RebotSettings(options)
        results = Results(settings, *self._sources)
        if settings.output:
            self._write_output(results.result, settings.output)
        if settings.xunit:
            self._write_xunit(results.result, settings.xunit)
        if settings.log:
            config = dict(settings.log_config,
                          minLevel=results.js_result.min_level)
            self._write_log(results.js_result, settings.log, config)
        if settings.report:
            results.js_result.remove_data_not_needed_in_report()
            self._write_report(results.js_result, settings.report,
                               settings.report_config)
        return results.return_code


    def _write_output(self, result, path):
        self._write('Output', result.save, path)

    def _write_xunit(self, result, path):
        self._write('XUnit', XUnitWriter(result).write, path)

    def _write_log(self, js_result, path, config):
        self._write('Log', LogWriter(js_result).write, path, config)

    def _write_report(self, js_result, path, config):
        self._write('Report', ReportWriter(js_result).write, path, config)

    def _write(self, name, writer, path, *args):
        try:
            writer(path, *args)
        except DataError as err:
            LOGGER.error(err.message)
        else:
            LOGGER.output_file(name, path)



[docs]class Results(object):

    def __init__(self, settings, *sources):
        self._settings = settings
        self._sources = sources
        if len(sources) == 1 and isinstance(sources[0], Result):
            self._result = sources[0]
            self._prune = False
            self.return_code = self._result.return_code
        else:
            self._result = None
            self._prune = True
            self.return_code = -1
        self._js_result = None

    @property
    def result(self):
        if self._result is None:
            include_keywords = bool(self._settings.log or self._settings.output)
            flattened = self._settings.flatten_keywords
            self._result = ExecutionResult(include_keywords=include_keywords,
                                           flattened_keywords=flattened,
                                           merge=self._settings.merge,
                                           rpa=self._settings.rpa,
                                           *self._sources)
            if self._settings.rpa is None:
                self._settings.rpa = self._result.rpa
            modifier = ModelModifier(self._settings.pre_rebot_modifiers,
                                     self._settings.process_empty_suite,
                                     LOGGER)
            self._result.suite.visit(modifier)
            self._result.configure(self._settings.status_rc,
                                   self._settings.suite_config,
                                   self._settings.statistics_config)
            self.return_code = self._result.return_code
        return self._result

    @property
    def js_result(self):
        if self._js_result is None:
            builder = JsModelBuilder(log_path=self._settings.log,
                                     split_log=self._settings.split_log,
                                     expand_keywords=self._settings.expand_keywords,
                                     prune_input_to_save_memory=self._prune)
            self._js_result = builder.build_from(self.result)
            if self._prune:
                self._result = None
        return self._js_result





          

      

      

    

  

    
      
          
            
  Source code for robot.reporting.stringcache

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from collections import OrderedDict

from robot.utils import compress_text


[docs]class StringIndex(int):
    pass



[docs]class StringCache(object):
    _compress_threshold = 80
    _use_compressed_threshold = 1.1
    _zero_index = StringIndex(0)

    def __init__(self):
        self._cache = OrderedDict({'*': self._zero_index})

[docs]    def add(self, text):
        if not text:
            return self._zero_index
        text = self._encode(text)
        if text not in self._cache:
            self._cache[text] = StringIndex(len(self._cache))
        return self._cache[text]


    def _encode(self, text):
        raw = self._raw(text)
        if raw in self._cache or len(raw) < self._compress_threshold:
            return raw
        compressed = compress_text(text)
        if len(compressed) * self._use_compressed_threshold < len(raw):
            return compressed
        return raw

    def _raw(self, text):
        return '*'+text

[docs]    def dump(self):
        return tuple(self._cache)






          

      

      

    

  

    
      
          
            
  Source code for robot.reporting.xunitwriter

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from __future__ import division

from robot.result import ResultVisitor
from robot.utils import XmlWriter


[docs]class XUnitWriter(object):

    def __init__(self, execution_result):
        self._execution_result = execution_result

[docs]    def write(self, output):
        xml_writer = XmlWriter(output, usage='xunit')
        writer = XUnitFileWriter(xml_writer)
        self._execution_result.visit(writer)




[docs]class XUnitFileWriter(ResultVisitor):
    """Provides an xUnit-compatible result file.

    Attempts to adhere to the de facto schema guessed by Peter Reilly, see:
    http://marc.info/?l=ant-dev&m=123551933508682
    """

    def __init__(self, xml_writer):
        self._writer = xml_writer
        self._root_suite = None

[docs]    def start_suite(self, suite):
        if self._root_suite:
            return
        self._root_suite = suite
        tests, failures, skipped = self._get_stats(suite.statistics)
        attrs = {'name': suite.name,
                 'tests': tests,
                 'errors': '0',
                 'failures': failures,
                 'skipped': skipped,
                 'time': self._time_as_seconds(suite.elapsedtime)}
        self._writer.start('testsuite', attrs)


    def _get_stats(self, statistics):
        return (
            str(statistics.total),
            str(statistics.failed),
            str(statistics.skipped)
        )

[docs]    def end_suite(self, suite):
        if suite is self._root_suite:
            self._writer.end('testsuite')


[docs]    def visit_test(self, test):
        self._writer.start('testcase',
                           {'classname': test.parent.longname,
                            'name': test.name,
                            'time': self._time_as_seconds(test.elapsedtime)})
        if test.failed:
            self._writer.element('failure', attrs={'message': test.message,
                                                   'type': 'AssertionError'})
        if test.skipped:
            self._writer.element('skipped', attrs={'message': test.message,
                                                   'type': 'SkipExecution'})
        self._writer.end('testcase')


    def _time_as_seconds(self, millis):
        return '{:.3f}'.format(millis / 1000)

[docs]    def visit_keyword(self, kw):
        pass


[docs]    def visit_statistics(self, stats):
        pass


[docs]    def visit_errors(self, errors):
        pass


[docs]    def end_result(self, result):
        self._writer.close()






          

      

      

    

  

    
      
          
            
  Source code for robot.result.configurer

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from robot import model
from robot.utils import is_string, secs_to_timestamp, timestamp_to_secs


[docs]class SuiteConfigurer(model.SuiteConfigurer):
    """Result suite configured.

    Calls suite's
    :meth:`~robot.result.testsuite.TestSuite.remove_keywords` and
    :meth:`~robot.result.testsuite.TestSuite.filter_messages` methods
    and sets its start and end time based on the given named parameters.

    ``base_config`` is forwarded to
    :class:`robot.model.SuiteConfigurer <robot.model.configurer.SuiteConfigurer>`
    that will do further configuration based on them.
    """

    def __init__(self, remove_keywords=None, log_level=None, start_time=None,
                 end_time=None, **base_config):
        model.SuiteConfigurer.__init__(self, **base_config)
        self.remove_keywords = self._get_remove_keywords(remove_keywords)
        self.log_level = log_level
        self.start_time = self._get_time(start_time)
        self.end_time = self._get_time(end_time)

    def _get_remove_keywords(self, value):
        if value is None:
            return []
        if is_string(value):
            return [value]
        return value

    def _get_time(self, timestamp):
        if not timestamp:
            return None
        try:
            secs = timestamp_to_secs(timestamp, seps=' :.-_')
        except ValueError:
            return None
        return secs_to_timestamp(secs, millis=True)

[docs]    def visit_suite(self, suite):
        model.SuiteConfigurer.visit_suite(self, suite)
        self._remove_keywords(suite)
        self._set_times(suite)
        suite.filter_messages(self.log_level)


    def _remove_keywords(self, suite):
        for how in self.remove_keywords:
            suite.remove_keywords(how)

    def _set_times(self, suite):
        if self.start_time:
            suite.starttime = self.start_time
        if self.end_time:
            suite.endtime = self.end_time





          

      

      

    

  

    
      
          
            
  Source code for robot.result.executionerrors

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from robot.model import ItemList, Message
from robot.utils import setter


[docs]class ExecutionErrors(object):
    """Represents errors occurred during the execution of tests.

    An error might be, for example, that importing a library has failed.
    """
    id = 'errors'

    def __init__(self, messages=None):
        #: A :class:`list-like object <robot.model.itemlist.ItemList>` of
        #: :class:`~robot.model.message.Message` instances.
        self.messages = messages

    @setter
    def messages(self, messages):
        return ItemList(Message, {'parent': self}, items=messages)

[docs]    def add(self, other):
        self.messages.extend(other.messages)


[docs]    def visit(self, visitor):
        visitor.visit_errors(self)


    def __iter__(self):
        return iter(self.messages)

    def __len__(self):
        return len(self.messages)

    def __getitem__(self, index):
        return self.messages[index]





          

      

      

    

  

    
      
          
            
  Source code for robot.result.executionresult

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from robot.errors import DataError
from robot.model import Statistics

from .executionerrors import ExecutionErrors
from .model import TestSuite


[docs]class Result(object):
    """Test execution results.

    Can be created based on XML output files using the
    :func:`~.resultbuilder.ExecutionResult`
    factory method. Also returned by the
    :meth:`robot.running.TestSuite.run <robot.running.model.TestSuite.run>`
    method.
    """

    def __init__(self, source=None, root_suite=None, errors=None, rpa=None):
        #: Path to the XML file where results are read from.
        self.source = source
        #: Hierarchical execution results as a
        #: :class:`~.result.model.TestSuite` object.
        self.suite = root_suite or TestSuite()
        #: Execution errors as an
        #: :class:`~.executionerrors.ExecutionErrors` object.
        self.errors = errors or ExecutionErrors()
        self.generated_by_robot = True
        self._status_rc = True
        self._stat_config = {}
        self.rpa = rpa

    @property
    def statistics(self):
        """Test execution statistics.

        Statistics are an instance of
        :class:`~robot.model.statistics.Statistics` that is created based
        on the contained ``suite`` and possible
        :func:`configuration <configure>`.

        Statistics are created every time this property is accessed. Saving
        them to a variable is thus often a good idea to avoid re-creating
        them unnecessarily::

            from robot.api import ExecutionResult

            result = ExecutionResult('output.xml')
            result.configure(stat_config={'suite_stat_level': 2,
                                          'tag_stat_combine': 'tagANDanother'})
            stats = result.statistics
            print(stats.total.failed)
            print(stats.total.passed)
            print(stats.tags.combined[0].total)
        """
        return Statistics(self.suite, rpa=self.rpa, **self._stat_config)

    @property
    def return_code(self):
        """Return code (integer) of test execution.

        By default returns the number of failed tests (max 250),
        but can be :func:`configured <configure>` to always return 0.
        """
        if self._status_rc:
            return min(self.suite.statistics.failed, 250)
        return 0

[docs]    def configure(self, status_rc=True, suite_config=None, stat_config=None):
        """Configures the result object and objects it contains.

        :param status_rc: If set to ``False``, :attr:`return_code` always
            returns 0.
        :param suite_config: A dictionary of configuration options passed
            to :meth:`~.result.testsuite.TestSuite.configure` method of
            the contained ``suite``.
        :param stat_config: A dictionary of configuration options used when
            creating :attr:`statistics`.
        """
        if suite_config:
            self.suite.configure(**suite_config)
        self._status_rc = status_rc
        self._stat_config = stat_config or {}


[docs]    def save(self, path=None):
        """Save results as a new output XML file.

        :param path: Path to save results to. If omitted, overwrites the
            original file.
        """
        from robot.reporting.outputwriter import OutputWriter
        self.visit(OutputWriter(path or self.source, rpa=self.rpa))


[docs]    def visit(self, visitor):
        """An entry point to visit the whole result object.

        :param visitor: An instance of :class:`~.visitor.ResultVisitor`.

        Visitors can gather information, modify results, etc. See
        :mod:`~robot.result` package for a simple usage example.

        Notice that it is also possible to call :meth:`result.suite.visit
        <robot.result.testsuite.TestSuite.visit>` if there is no need to
        visit the contained ``statistics`` or ``errors``.
        """
        visitor.visit_result(self)


[docs]    def handle_suite_teardown_failures(self):
        """Internal usage only."""
        if self.generated_by_robot:
            self.suite.handle_suite_teardown_failures()


[docs]    def set_execution_mode(self, other):
        """Set execution mode based on other result. Internal usage only."""
        if other.rpa is None:
            pass
        elif self.rpa is None:
            self.rpa = other.rpa
        elif self.rpa is not other.rpa:
            this, that = ('task', 'test') if other.rpa else ('test', 'task')
            raise DataError("Conflicting execution modes. File '%s' has %ss "
                            "but files parsed earlier have %ss. Use '--rpa' "
                            "or '--norpa' options to set the execution mode "
                            "explicitly." % (other.source, this, that))




[docs]class CombinedResult(Result):
    """Combined results of multiple test executions."""

    def __init__(self, results=None):
        Result.__init__(self)
        for result in results or ():
            self.add_result(result)

[docs]    def add_result(self, other):
        self.set_execution_mode(other)
        self.suite.suites.append(other.suite)
        self.errors.add(other.errors)






          

      

      

    

  

    
      
          
            
  Source code for robot.result.flattenkeywordmatcher

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from robot.errors import DataError
from robot.model import TagPatterns
from robot.utils import MultiMatcher, is_list_like, py3to2


[docs]def validate_flatten_keyword(options):
    for opt in options:
        low = opt.lower()
        if not (low in ('for', 'foritem') or
                low.startswith('name:') or
                low.startswith('tag:')):
            raise DataError("Expected 'FOR', 'FORITEM', 'TAG:<pattern>', or "
                            "'NAME:<pattern>' but got '%s'." % opt)



[docs]@py3to2
class FlattenByTypeMatcher(object):

    def __init__(self, flatten):
        if not is_list_like(flatten):
            flatten = [flatten]
        flatten = [f.lower() for f in flatten]
        self.types = set()
        if 'for' in flatten:
            self.types.add('for')
        if 'foritem' in flatten:
            self.types.add('iter')

[docs]    def match(self, tag):
        return tag in self.types


    def __bool__(self):
        return bool(self.types)



[docs]@py3to2
class FlattenByNameMatcher(object):

    def __init__(self, flatten):
        if not is_list_like(flatten):
            flatten = [flatten]
        names = [n[5:] for n in flatten if n[:5].lower() == 'name:']
        self._matcher = MultiMatcher(names)

[docs]    def match(self, kwname, libname=None):
        name = '%s.%s' % (libname, kwname) if libname else kwname
        return self._matcher.match(name)


    def __bool__(self):
        return bool(self._matcher)



[docs]@py3to2
class FlattenByTagMatcher(object):

    def __init__(self, flatten):
        if not is_list_like(flatten):
            flatten = [flatten]
        patterns = [p[4:] for p in flatten if p[:4].lower() == 'tag:']
        self._matcher = TagPatterns(patterns)

[docs]    def match(self, kwtags):
        return self._matcher.match(kwtags)


    def __bool__(self):
        return bool(self._matcher)





          

      

      

    

  

    
      
          
            
  Source code for robot.result.keywordremover

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from robot.errors import DataError
from robot.model import SuiteVisitor, TagPattern
from robot.utils import Matcher, plural_or_not


[docs]def KeywordRemover(how):
    upper = how.upper()
    if upper.startswith('NAME:'):
        return ByNameKeywordRemover(pattern=how[5:])
    if upper.startswith('TAG:'):
        return ByTagKeywordRemover(pattern=how[4:])
    try:
        return {'ALL': AllKeywordsRemover,
                'PASSED': PassedKeywordRemover,
                'FOR': ForLoopItemsRemover,
                'WUKS': WaitUntilKeywordSucceedsRemover}[upper]()
    except KeyError:
        raise DataError("Expected 'ALL', 'PASSED', 'NAME:<pattern>', "
                        "'TAG:<pattern>', 'FOR', or 'WUKS' but got '%s'." % how)



class _KeywordRemover(SuiteVisitor):
    _message = 'Keyword data removed using --RemoveKeywords option.'

    def __init__(self):
        self._removal_message = RemovalMessage(self._message)

    def _clear_content(self, item):
        item.body.clear()
        self._removal_message.set(item)

    def _failed_or_warning_or_error(self, item):
        return not item.passed or self._warning_or_error(item)

    def _warning_or_error(self, item):
        finder = WarningAndErrorFinder()
        item.visit(finder)
        return finder.found


[docs]class AllKeywordsRemover(_KeywordRemover):

[docs]    def visit_keyword(self, keyword):
        self._clear_content(keyword)


[docs]    def visit_for(self, for_):
        self._clear_content(for_)


[docs]    def visit_if_branch(self, branch):
        self._clear_content(branch)




[docs]class PassedKeywordRemover(_KeywordRemover):

[docs]    def start_suite(self, suite):
        if not suite.statistics.failed:
            for keyword in suite.setup, suite.teardown:
                if not self._warning_or_error(keyword):
                    self._clear_content(keyword)


[docs]    def visit_test(self, test):
        if not self._failed_or_warning_or_error(test):
            for keyword in test.body:
                self._clear_content(keyword)


[docs]    def visit_keyword(self, keyword):
        pass




[docs]class ByNameKeywordRemover(_KeywordRemover):

    def __init__(self, pattern):
        _KeywordRemover.__init__(self)
        self._matcher = Matcher(pattern, ignore='_')

[docs]    def start_keyword(self, kw):
        if self._matcher.match(kw.name) and not self._warning_or_error(kw):
            self._clear_content(kw)




[docs]class ByTagKeywordRemover(_KeywordRemover):

    def __init__(self, pattern):
        _KeywordRemover.__init__(self)
        self._pattern = TagPattern(pattern)

[docs]    def start_keyword(self, kw):
        if self._pattern.match(kw.tags) and not self._warning_or_error(kw):
            self._clear_content(kw)




[docs]class ForLoopItemsRemover(_KeywordRemover):
    _message = '%d passing step%s removed using --RemoveKeywords option.'

[docs]    def start_for(self, for_):
        before = len(for_.body)
        self._remove_keywords(for_.body)
        self._removal_message.set_if_removed(for_, before)


    def _remove_keywords(self, body):
        iterations = body.filter(messages=False)
        for it in iterations[:-1]:
            if not self._failed_or_warning_or_error(it):
                body.remove(it)



[docs]class WaitUntilKeywordSucceedsRemover(_KeywordRemover):
    _message = '%d failing step%s removed using --RemoveKeywords option.'

[docs]    def start_keyword(self, kw):
        if kw.libname == 'BuiltIn' and kw.kwname == 'Wait Until Keyword Succeeds':
            before = len(kw.body)
            self._remove_keywords(kw.body)
            self._removal_message.set_if_removed(kw, before)


    def _remove_keywords(self, body):
        keywords = body.filter(messages=False)
        if keywords:
            include_from_end = 2 if keywords[-1].passed else 1
            for kw in keywords[:-include_from_end]:
                if not self._warning_or_error(kw):
                    body.remove(kw)



[docs]class WarningAndErrorFinder(SuiteVisitor):

    def __init__(self):
        self.found = False

[docs]    def start_suite(self, suite):
        return not self.found


[docs]    def start_test(self, test):
        return not self.found


[docs]    def start_keyword(self, keyword):
        return not self.found


[docs]    def visit_message(self, msg):
        if msg.level in ('WARN', 'ERROR'):
            self.found = True




[docs]class RemovalMessage(object):

    def __init__(self, message):
        self._message = message

[docs]    def set_if_removed(self, kw, len_before):
        removed = len_before - len(kw.body)
        if removed:
            self.set(kw, self._message % (removed, plural_or_not(removed)))


[docs]    def set(self, kw, message=None):
        kw.doc = ('%s\n\n_%s_' % (kw.doc, message or self._message)).strip()






          

      

      

    

  

    
      
          
            
  Source code for robot.result.merger

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from robot.errors import DataError
from robot.model import SuiteVisitor
from robot.utils import html_escape, test_or_task


[docs]class Merger(SuiteVisitor):

    def __init__(self, result, rpa=False):
        self.result = result
        self.current = None
        self.rpa = rpa

[docs]    def merge(self, merged):
        self.result.set_execution_mode(merged)
        merged.suite.visit(self)
        self.result.errors.add(merged.errors)


[docs]    def start_suite(self, suite):
        if self.current is None:
            old = self._find_root(suite.name)
        else:
            old = self._find(self.current.suites, suite.name)
        if old is not None:
            old.starttime = old.endtime = None
            old.setup = suite.setup
            old.teardown = suite.teardown
            self.current = old
        else:
            suite.message = self._create_add_message(suite, suite=True)
            self.current.suites.append(suite)
        return bool(old)


    def _find_root(self, name):
        root = self.result.suite
        if root.name != name:
            raise DataError("Cannot merge outputs containing different root suites. "
                            "Original suite is '%s' and merged is '%s'."
                            % (root.name, name))
        return root

    def _find(self, items, name):
        for item in items:
            if item.name == name:
                return item
        return None

[docs]    def end_suite(self, suite):
        self.current = self.current.parent


[docs]    def visit_test(self, test):
        old = self._find(self.current.tests, test.name)
        if old is None:
            test.message = self._create_add_message(test)
            self.current.tests.append(test)
        elif test.skipped:
            old.message = self._create_skip_message(old, test)
        else:
            test.message = self._create_merge_message(test, old)
            index = self.current.tests.index(old)
            self.current.tests[index] = test


    def _create_add_message(self, item, suite=False):
        item_type = 'Suite' if suite else test_or_task('{Test}', self.rpa)
        prefix = '*HTML* %s added from merged output.' % item_type
        if not item.message:
            return prefix
        return ''.join([prefix, '<hr>', self._html(item.message)])

    def _html(self, message):
        if message.startswith('*HTML*'):
            return message[6:].lstrip()
        return html_escape(message)

    def _create_merge_message(self, new, old):
        header = test_or_task('*HTML* <span class="merge">'
                              '{Test} has been re-executed and results merged.'
                              '</span>', self.rpa)
        return ''.join([
            header,
            '<hr>',
            self._format_status_and_message('New', new),
            '<hr>',
            self._format_old_status_and_message(old, header)
        ])

    def _format_status_and_message(self, state, test):
        message = '%s %s<br>' % (self._status_header(state),
                                 self._status_text(test.status))
        if test.message:
            message += '%s %s<br>' % (self._message_header(state),
                                      self._html(test.message))
        return message

    def _status_header(self, state):
        return '<span class="%s-status">%s status:</span>' % (state.lower(), state)

    def _status_text(self, status):
        return '<span class="%s">%s</span>' % (status.lower(), status)

    def _message_header(self, state):
        return '<span class="%s-message">%s message:</span>' % (state.lower(), state)

    def _format_old_status_and_message(self, test, merge_header):
        if not test.message.startswith(merge_header):
            return self._format_status_and_message('Old', test)
        status_and_message = test.message.split('<hr>', 1)[1]
        return (
            status_and_message
            .replace(self._status_header('New'), self._status_header('Old'))
            .replace(self._message_header('New'), self._message_header('Old'))
        )

    def _create_skip_message(self, test, new):
        msg = test_or_task('*HTML* {Test} has been re-executed and results merged. '
                           'Latter result had %s status and was ignored. Message:\n%s'
                           % (self._status_text('SKIP'), self._html(new.message)))
        if not test.message:
            return msg
        return '%s<hr>Original message:\n%s' % (msg, self._html(test.message))





          

      

      

    

  

    
      
          
            
  Source code for robot.result.messagefilter

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from robot.output.loggerhelper import IsLogged

from robot.model import SuiteVisitor


[docs]class MessageFilter(SuiteVisitor):

    def __init__(self, log_level=None):
        self.is_logged = IsLogged(log_level or 'TRACE')

[docs]    def start_suite(self, suite):
        if self.is_logged.level == 'TRACE':
            return False


[docs]    def start_keyword(self, keyword):
        for item in list(keyword.body):
            if item.type == item.MESSAGE and not self.is_logged(item.level):
                keyword.body.remove(item)






          

      

      

    

  

    
      
          
            
  Source code for robot.result.model

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

"""Module implementing result related model objects.

During test execution these objects are created internally by various runners.
At that time they can inspected and modified by listeners__.

When results are parsed from XML output files after execution to be able to
create logs and reports, these objects are created by the
:func:`~.resultbuilder.ExecutionResult` factory method.
At that point they can be inspected and modified by `pre-Rebot modifiers`__.

The :func:`~.resultbuilder.ExecutionResult` factory method can also be used
by custom scripts and tools. In such usage it is often easiest to inspect and
modify these objects using the :mod:`visitor interface <robot.model.visitor>`.

__ http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#listener-interface
__ http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#programmatic-modification-of-results

"""

from collections import OrderedDict
from itertools import chain
import warnings

from robot import model
from robot.model import BodyItem, Keywords, TotalStatisticsBuilder
from robot.utils import get_elapsed_time, setter

from .configurer import SuiteConfigurer
from .messagefilter import MessageFilter
from .modeldeprecation import deprecated, DeprecatedAttributesMixin
from .keywordremover import KeywordRemover
from .suiteteardownfailed import SuiteTeardownFailed, SuiteTeardownFailureHandler


[docs]class Body(model.Body):
    message_class = None
    __slots__ = []

[docs]    def create_message(self, *args, **kwargs):
        return self.append(self.message_class(*args, **kwargs))


[docs]    def filter(self, keywords=None, fors=None, ifs=None, messages=None, predicate=None):
        return self._filter([(self.keyword_class, keywords),
                             (self.for_class, fors),
                             (self.if_class, ifs),
                             (self.message_class, messages)], predicate)




[docs]class ForIterations(Body):
    for_iteration_class = None
    if_class = None
    for_class = None
    __slots__ = []

[docs]    def create_iteration(self, *args, **kwargs):
        return self.append(self.for_iteration_class(*args, **kwargs))




[docs]class IfBranches(Body, model.IfBranches):
    __slots__ = []



[docs]@Body.register
class Message(model.Message):
    __slots__ = []



[docs]class StatusMixin(object):
    __slots__ = []
    PASS = 'PASS'
    FAIL = 'FAIL'
    SKIP = 'SKIP'
    NOT_RUN = 'NOT RUN'
    NOT_SET = 'NOT SET'

    @property
    def elapsedtime(self):
        """Total execution time in milliseconds."""
        return get_elapsed_time(self.starttime, self.endtime)

    @property
    def passed(self):
        """``True`` when :attr:`status` is 'PASS', ``False`` otherwise."""
        return self.status == self.PASS

    @passed.setter
    def passed(self, passed):
        self.status = self.PASS if passed else self.FAIL

    @property
    def failed(self):
        """``True`` when :attr:`status` is 'FAIL', ``False`` otherwise."""
        return self.status == self.FAIL

    @failed.setter
    def failed(self, failed):
        self.status = self.FAIL if failed else self.PASS

    @property
    def skipped(self):
        """``True`` when :attr:`status` is 'SKIP', ``False`` otherwise.

        Setting to ``False`` value is ambiguous and raises an exception.
        """
        return self.status == self.SKIP

    @skipped.setter
    def skipped(self, skipped):
        if not skipped:
            raise ValueError("`skipped` value must be truthy, got '%s'." % skipped)
        self.status = self.SKIP

    @property
    def not_run(self):
        """``True`` when :attr:`status` is 'NOT RUN', ``False`` otherwise.

        Setting to ``False`` value is ambiguous and raises an exception.
        """
        return self.status == self.NOT_RUN

    @not_run.setter
    def not_run(self, not_run):
        if not not_run:
            raise ValueError("`not_run` value must be truthy, got '%s'." % not_run)
        self.status = self.NOT_RUN



[docs]@ForIterations.register
class ForIteration(BodyItem, StatusMixin, DeprecatedAttributesMixin):
    type = BodyItem.FOR_ITERATION
    body_class = Body
    repr_args = ('variables',)
    __slots__ = ['variables', 'status', 'starttime', 'endtime', 'doc']

    def __init__(self, variables=None, status='FAIL', starttime=None, endtime=None,
                 doc='', parent=None):
        self.variables = variables or OrderedDict()
        self.parent = parent
        self.status = status
        self.starttime = starttime
        self.endtime = endtime
        self.doc = doc
        self.body = None

    @setter
    def body(self, body):
        return self.body_class(self, body)

[docs]    def visit(self, visitor):
        visitor.visit_for_iteration(self)


    @property
    @deprecated
    def name(self):
        return ', '.join('%s = %s' % item for item in self.variables.items())



[docs]@Body.register
class For(model.For, StatusMixin, DeprecatedAttributesMixin):
    body_class = ForIterations
    __slots__ = ['status', 'starttime', 'endtime', 'doc']

    def __init__(self, variables=(),  flavor='IN', values=(), status='FAIL',
                 starttime=None, endtime=None, doc='', parent=None):
        model.For.__init__(self, variables, flavor, values, parent)
        self.status = status
        self.starttime = starttime
        self.endtime = endtime
        self.doc = doc

    @property
    @deprecated
    def name(self):
        return '%s %s [ %s ]' % (' | '.join(self.variables), self.flavor,
                                 ' | '.join(self.values))



[docs]@Body.register
class If(model.If, StatusMixin, DeprecatedAttributesMixin):
    body_class = IfBranches
    __slots__ = ['status', 'starttime', 'endtime', 'doc']

    def __init__(self, parent=None, status='FAIL', starttime=None, endtime=None, doc=''):
        model.If.__init__(self, parent)
        self.status = status
        self.starttime = starttime
        self.endtime = endtime
        self.doc = doc



[docs]@IfBranches.register
class IfBranch(model.IfBranch, StatusMixin, DeprecatedAttributesMixin):
    body_class = Body
    __slots__ = ['status', 'starttime', 'endtime', 'doc']

    def __init__(self, type=BodyItem.IF, condition=None, status='FAIL',
                 starttime=None, endtime=None, doc='', parent=None):
        model.IfBranch.__init__(self, type, condition, parent)
        self.status = status
        self.starttime = starttime
        self.endtime = endtime
        self.doc = doc

    @property
    @deprecated
    def name(self):
        return self.condition



[docs]@Body.register
class Keyword(model.Keyword, StatusMixin):
    """Represents results of a single keyword.

    See the base class for documentation of attributes not documented here.
    """
    body_class = Body
    __slots__ = ['kwname', 'libname', 'status', 'starttime', 'endtime', 'message',
                 'sourcename']

    def __init__(self, kwname='', libname='', doc='', args=(), assign=(), tags=(),
                 timeout=None, type=BodyItem.KEYWORD, status='FAIL', starttime=None,
                 endtime=None, parent=None, sourcename=None):
        model.Keyword.__init__(self, None, doc, args, assign, tags, timeout, type, parent)
        #: Name of the keyword without library or resource name.
        self.kwname = kwname
        #: Name of the library or resource containing this keyword.
        self.libname = libname
        #: Execution status as a string. ``PASS``, ``FAIL``, ``SKIP`` or ``NOT RUN``.
        self.status = status
        #: Keyword execution start time in format ``%Y%m%d %H:%M:%S.%f``.
        self.starttime = starttime
        #: Keyword execution end time in format ``%Y%m%d %H:%M:%S.%f``.
        self.endtime = endtime
        #: Keyword status message. Used only if suite teardowns fails.
        self.message = ''
        #: Original name of keyword with embedded arguments.
        self.sourcename = sourcename
        self.body = None

    @setter
    def body(self, body):
        """Child keywords and messages as a :class:`~.Body` object."""
        return self.body_class(self, body)

    @property
    def keywords(self):
        """Deprecated since Robot Framework 4.0.

        Use :attr:`body` or :attr:`teardown` instead.
        """
        keywords = self.body.filter(messages=False)
        if self.teardown:
            keywords.append(self.teardown)
        return Keywords(self, keywords)

    @keywords.setter
    def keywords(self, keywords):
        Keywords.raise_deprecation_error()

    @property
    def messages(self):
        """Keyword's messages.

        Starting from Robot Framework 4.0 this is a list generated from messages
        in :attr:`body`.
        """
        return self.body.filter(messages=True)

    @property
    def children(self):
        """List of child keywords and messages in creation order.

        Deprecated since Robot Framework 4.0. Use :att:`body` instead.
        """
        warnings.warn("'Keyword.children' is deprecated. Use 'Keyword.body' instead.")
        return list(self.body)

    @property
    def name(self):
        """Keyword name in format ``libname.kwname``.

        Just ``kwname`` if :attr:`libname` is empty. In practice that is the
        case only with user keywords in the same file as the executed test case
        or test suite.

        Cannot be set directly. Set :attr:`libname` and :attr:`kwname`
        separately instead.
        """
        if not self.libname:
            return self.kwname
        return '%s.%s' % (self.libname, self.kwname)

    @name.setter
    def name(self, name):
        if name is not None:
            raise AttributeError("Cannot set 'name' attribute directly. "
                                 "Set 'kwname' and 'libname' separately instead.")
        self.kwname = None
        self.libname = None



[docs]class TestCase(model.TestCase, StatusMixin):
    """Represents results of a single test case.

    See the base class for documentation of attributes not documented here.
    """
    __slots__ = ['status', 'message', 'starttime', 'endtime']
    body_class = Body
    fixture_class = Keyword

    def __init__(self, name='', doc='', tags=None, timeout=None, status='FAIL',
                 message='', starttime=None, endtime=None):
        model.TestCase.__init__(self, name, doc, tags, timeout)
        #: Status as a string ``PASS`` or ``FAIL``. See also :attr:`passed`.
        self.status = status
        #: Test message. Typically a failure message but can be set also when
        #: test passes.
        self.message = message
        #: Test case execution start time in format ``%Y%m%d %H:%M:%S.%f``.
        self.starttime = starttime
        #: Test case execution end time in format ``%Y%m%d %H:%M:%S.%f``.
        self.endtime = endtime

    @property
    def not_run(self):
        return False

    @property
    def critical(self):
        warnings.warn("'TestCase.critical' is deprecated and always returns 'True'.")
        return True



[docs]class TestSuite(model.TestSuite, StatusMixin):
    """Represents results of a single test suite.

    See the base class for documentation of attributes not documented here.
    """
    __slots__ = ['message', 'starttime', 'endtime']
    test_class = TestCase
    fixture_class = Keyword

    def __init__(self, name='', doc='', metadata=None, source=None,
                 message='', starttime=None, endtime=None, rpa=False):
        model.TestSuite.__init__(self, name, doc, metadata, source, rpa)
        #: Possible suite setup or teardown error message.
        self.message = message
        #: Suite execution start time in format ``%Y%m%d %H:%M:%S.%f``.
        self.starttime = starttime
        #: Suite execution end time in format ``%Y%m%d %H:%M:%S.%f``.
        self.endtime = endtime

    @property
    def passed(self):
        """``True`` if no test has failed but some have passed, ``False`` otherwise."""
        return self.status == self.PASS

    @property
    def failed(self):
        """``True`` if any test has failed, ``False`` otherwise."""
        return self.status == self.FAIL

    @property
    def skipped(self):
        """``True`` if there are no passed or failed tests, ``False`` otherwise."""
        return self.status == self.SKIP

    @property
    def not_run(self):
        return False

    @property
    def status(self):
        """'PASS', 'FAIL' or 'SKIP' depending on test statuses.

        - If any test has failed, status is 'FAIL'.
        - If no test has failed but at least some test has passed, status is 'PASS'.
        - If there are no failed or passed tests, status is 'SKIP'. This covers both
          the case when all tests have been skipped and when there are no tests.
        """
        stats = self.statistics  # Local variable avoids recreating stats.
        if stats.failed:
            return self.FAIL
        if stats.passed:
            return self.PASS
        return self.SKIP

    @property
    def statistics(self):
        """Suite statistics as a :class:`~robot.model.totalstatistics.TotalStatistics` object.

        Recreated every time this property is accessed, so saving the results
        to a variable and inspecting it is often a good idea::

            stats = suite.statistics
            print(stats.failed)
            print(stats.total)
            print(stats.message)
        """
        return TotalStatisticsBuilder(self, self.rpa).stats

    @property
    def full_message(self):
        """Combination of :attr:`message` and :attr:`stat_message`."""
        if not self.message:
            return self.stat_message
        return '%s\n\n%s' % (self.message, self.stat_message)

    @property
    def stat_message(self):
        """String representation of the :attr:`statistics`."""
        return self.statistics.message

    @property
    def elapsedtime(self):
        """Total execution time in milliseconds."""
        if self.starttime and self.endtime:
            return get_elapsed_time(self.starttime, self.endtime)
        return sum(child.elapsedtime for child in
                   chain(self.suites, self.tests, (self.setup, self.teardown)))

[docs]    def remove_keywords(self, how):
        """Remove keywords based on the given condition.

        :param how: What approach to use when removing keywords. Either
            ``ALL``, ``PASSED``, ``FOR``, ``WUKS``, or ``NAME:<pattern>``.

        For more information about the possible values see the documentation
        of the ``--removekeywords`` command line option.
        """
        self.visit(KeywordRemover(how))


[docs]    def filter_messages(self, log_level='TRACE'):
        """Remove log messages below the specified ``log_level``."""
        self.visit(MessageFilter(log_level))


[docs]    def configure(self, **options):
        """A shortcut to configure a suite using one method call.

        Can only be used with the root test suite.

        :param options: Passed to
            :class:`~robot.result.configurer.SuiteConfigurer` that will then
            set suite attributes, call :meth:`filter`, etc. as needed.

        Example::

            suite.configure(remove_keywords='PASSED',
                            doc='Smoke test results.')

        Not to be confused with :meth:`config` method that suites, tests,
        and keywords have to make it possible to set multiple attributes in
        one call.
        """
        model.TestSuite.configure(self)    # Parent validates call is allowed.
        self.visit(SuiteConfigurer(**options))


[docs]    def handle_suite_teardown_failures(self):
        """Internal usage only."""
        self.visit(SuiteTeardownFailureHandler())


[docs]    def suite_teardown_failed(self, error):
        """Internal usage only."""
        self.visit(SuiteTeardownFailed(error))


[docs]    def suite_teardown_skipped(self, message):
        """Internal usage only."""
        self.visit(SuiteTeardownFailed(message, skipped=True))






          

      

      

    

  

    
      
          
            
  Source code for robot.result.modeldeprecation

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from robot.model import Tags


[docs]def deprecated(method):
    def wrapper(self, *args, **kws):
        """Deprecated."""
        return method(self, *args, **kws)
    return wrapper



[docs]class DeprecatedAttributesMixin(object):
    __slots__ = []

    @property
    @deprecated
    def name(self):
        return ''

    @property
    @deprecated
    def kwname(self):
        return self.name

    @property
    @deprecated
    def libname(self):
        return None

    @property
    @deprecated
    def args(self):
        return ()

    @property
    @deprecated
    def assign(self):
        return ()

    @property
    @deprecated
    def tags(self):
        return Tags()

    @property
    @deprecated
    def timeout(self):
        return None

    @property
    @deprecated
    def message(self):
        return ''





          

      

      

    

  

    
      
          
            
  Source code for robot.result.resultbuilder

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from robot.errors import DataError
from robot.model import SuiteVisitor
from robot.utils import ET, ETSource, get_error_message, unic

from .executionresult import Result, CombinedResult
from .flattenkeywordmatcher import (FlattenByNameMatcher, FlattenByTypeMatcher,
                                    FlattenByTagMatcher)
from .merger import Merger
from .xmlelementhandlers import XmlElementHandler


[docs]def ExecutionResult(*sources, **options):
    """Factory method to constructs :class:`~.executionresult.Result` objects.

    :param sources: XML source(s) containing execution results.
        Can be specified as paths, opened file objects, or strings/bytes
        containing XML directly. Support for bytes is new in RF 3.2.
    :param options: Configuration options.
        Using ``merge=True`` causes multiple results to be combined so that
        tests in the latter results replace the ones in the original.
        Setting ``rpa`` either to ``True`` (RPA mode) or ``False`` (test
        automation) sets execution mode explicitly. By default it is got
        from processed output files and conflicting modes cause an error.
        Other options are passed directly to the
        :class:`ExecutionResultBuilder` object used internally.
    :returns: :class:`~.executionresult.Result` instance.

    Should be imported by external code via the :mod:`robot.api` package.
    See the :mod:`robot.result` package for a usage example.
    """
    if not sources:
        raise DataError('One or more data source needed.')
    if options.pop('merge', False):
        return _merge_results(sources[0], sources[1:], options)
    if len(sources) > 1:
        return _combine_results(sources, options)
    return _single_result(sources[0], options)



def _merge_results(original, merged, options):
    result = ExecutionResult(original, **options)
    merger = Merger(result, rpa=result.rpa)
    for path in merged:
        merged = ExecutionResult(path, **options)
        merger.merge(merged)
    return result


def _combine_results(sources, options):
    return CombinedResult(ExecutionResult(src, **options) for src in sources)


def _single_result(source, options):
    ets = ETSource(source)
    result = Result(source, rpa=options.pop('rpa', None))
    try:
        return ExecutionResultBuilder(ets, **options).build(result)
    except IOError as err:
        error = err.strerror
    except:
        error = get_error_message()
    raise DataError("Reading XML source '%s' failed: %s" % (unic(ets), error))


[docs]class ExecutionResultBuilder(object):
    """Builds :class:`~.executionresult.Result` objects based on output files.

    Instead of using this builder directly, it is recommended to use the
    :func:`ExecutionResult` factory method.
    """

    def __init__(self, source, include_keywords=True, flattened_keywords=None):
        """
        :param source: Path to the XML output file to build
            :class:`~.executionresult.Result` objects from.
        :param include_keywords: Boolean controlling whether to include
            keyword information in the result or not. Keywords are
            not needed when generating only report. Although the the option name
            has word "keyword", it controls also including FOR and IF structures.
        :param flatten_keywords: List of patterns controlling what keywords to
            flatten. See the documentation of ``--flattenkeywords`` option for
            more details.
        """
        self._source = source \
            if isinstance(source, ETSource) else ETSource(source)
        self._include_keywords = include_keywords
        self._flattened_keywords = flattened_keywords

[docs]    def build(self, result):
        # Parsing is performance optimized. Do not change without profiling!
        handler = XmlElementHandler(result)
        with self._source as source:
            self._parse(source, handler.start, handler.end)
        result.handle_suite_teardown_failures()
        if not self._include_keywords:
            result.suite.visit(RemoveKeywords())
        return result


    def _parse(self, source, start, end):
        context = ET.iterparse(source, events=('start', 'end'))
        if not self._include_keywords:
            context = self._omit_keywords(context)
        elif self._flattened_keywords:
            context = self._flatten_keywords(context, self._flattened_keywords)
        for event, elem in context:
            if event == 'start':
                start(elem)
            else:
                end(elem)
                elem.clear()

    def _omit_keywords(self, context):
        omitted_kws = 0
        for event, elem in context:
            # Teardowns aren't omitted yet to allow checking suite teardown status.
            # They'll be removed later when not needed in `build()`.
            omit = elem.tag in ('kw', 'for', 'if') and elem.get('type') != 'TEARDOWN'
            start = event == 'start'
            if omit and start:
                omitted_kws += 1
            if not omitted_kws:
                yield event, elem
            elif not start:
                elem.clear()
            if omit and not start:
                omitted_kws -= 1

    def _flatten_keywords(self, context, flattened):
        # Performance optimized. Do not change without profiling!
        name_match, by_name = self._get_matcher(FlattenByNameMatcher, flattened)
        type_match, by_type = self._get_matcher(FlattenByTypeMatcher, flattened)
        tags_match, by_tags = self._get_matcher(FlattenByTagMatcher, flattened)
        started = -1  # if 0 or more, we are flattening
        tags = []
        containers = {'kw', 'for', 'iter', 'if'}
        inside_kw = 0  # to make sure we don't read tags from a test
        seen_doc = False
        for event, elem in context:
            tag = elem.tag
            start = event == 'start'
            end = not start
            if start and tag in containers:
                inside_kw += 1
                if started >= 0:
                    started += 1
                elif by_name and name_match(elem.get('name', ''), elem.get('library')):
                    started = 0
                    seen_doc = False
                elif by_type and type_match(tag):
                    started = 0
                    seen_doc = False
            elif started < 0 and by_tags and inside_kw:
                if end and tag == 'tag':
                    tags.append(elem.text or '')
                elif end and tags:
                    if tags_match(tags):
                        started = 0
                        seen_doc = False
                    tags = []
            if end and tag in containers:
                inside_kw -= 1
                if started == 0 and not seen_doc:
                    doc = ET.Element('doc')
                    doc.text = '_*Keyword content flattened.*_'
                    yield 'start', doc
                    yield 'end', doc
            if started == 0 and end and tag == 'doc':
                seen_doc = True
                elem.text = ('%s\n\n_*Keyword content flattened.*_'
                             % (elem.text or '')).strip()
            if started <= 0 or tag == 'msg':
                yield event, elem
            else:
                elem.clear()
            if started >= 0 and end and tag in containers:
                started -= 1

    def _get_matcher(self, matcher_class, flattened):
        matcher = matcher_class(flattened)
        return matcher.match, bool(matcher)



[docs]class RemoveKeywords(SuiteVisitor):

[docs]    def start_suite(self, suite):
        suite.setup = None
        suite.teardown = None


[docs]    def visit_test(self, test):
        test.body = []






          

      

      

    

  

    
      
          
            
  Source code for robot.result.suiteteardownfailed

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from robot.model import SuiteVisitor


[docs]class SuiteTeardownFailureHandler(SuiteVisitor):

[docs]    def end_suite(self, suite):
        teardown = suite.teardown
        # Both 'PASS' and 'NOT RUN' statuses are OK.
        if teardown and teardown.status == teardown.FAIL:
            suite.suite_teardown_failed(teardown.message)
        if teardown and teardown.status == teardown.SKIP:
            suite.suite_teardown_skipped(teardown.message)


[docs]    def visit_test(self, test):
        pass


[docs]    def visit_keyword(self, keyword):
        pass




[docs]class SuiteTeardownFailed(SuiteVisitor):
    _normal_msg = 'Parent suite teardown failed:\n%s'
    _also_msg = '\n\nAlso parent suite teardown failed:\n%s'
    _normal_skip_msg = 'Skipped in parent suite teardown:\n%s'
    _also_skip_msg = 'Skipped in parent suite teardown:\n%s\n\nEarlier message:\n%s'

    def __init__(self, message, skipped=False):
        self.message = message
        self.skipped = skipped

[docs]    def visit_test(self, test):
        if not self.skipped:
            self._suite_teardown_failed(test)
        else:
            self._suite_teardown_skipped(test)


    def _suite_teardown_failed(self, test):
        if not test.skipped:
            test.status = test.FAIL
        prefix = self._also_msg if test.message else self._normal_msg
        test.message += prefix % self.message

    def _suite_teardown_skipped(self, test):
        test.status = test.SKIP
        if test.message:
            test.message = self._also_skip_msg % (self.message, test.message)
        else:
            test.message = self._normal_skip_msg % self.message

[docs]    def visit_keyword(self, keyword):
        pass






          

      

      

    

  

    
      
          
            
  Source code for robot.result.visitor

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

"""Visitors can be used to easily traverse result structures.

This module contains :class:`ResultVisitor` for traversing the whole
:class:`~robot.result.executionresult.Result` object. It extends
:class:`~robot.model.visitor.SuiteVisitor` that contains visiting logic
for the test suite structure.
"""

from robot.model import SuiteVisitor


[docs]class ResultVisitor(SuiteVisitor):
    """Abstract class to conveniently travel :class:`~robot.result.executionresult.Result` objects.

    A visitor implementation can be given to the :meth:`visit` method of a
    result object. This will cause the result object to be traversed and the
    visitor's :meth:`visit_x`, :meth:`start_x`, and :meth:`end_x` methods to
    be called for each suite, test, keyword and message, as well as for errors,
    statistics, and other information in the result object. See methods below
    for a full list of available visitor methods.

    See the :mod:`result package level <robot.result>` documentation for
    more information about handling results and a concrete visitor example.
    For more information about the visitor algorithm see documentation in
    :mod:`robot.model.visitor` module.
    """
[docs]    def visit_result(self, result):
        if self.start_result(result) is not False:
            result.suite.visit(self)
            result.statistics.visit(self)
            result.errors.visit(self)
            self.end_result(result)


[docs]    def start_result(self, result):
        pass


[docs]    def end_result(self, result):
        pass


[docs]    def visit_statistics(self, stats):
        if self.start_statistics(stats) is not False:
            stats.total.visit(self)
            stats.tags.visit(self)
            stats.suite.visit(self)
            self.end_statistics(stats)


[docs]    def start_statistics(self, stats):
        pass


[docs]    def end_statistics(self, stats):
        pass


[docs]    def visit_total_statistics(self, stats):
        if self.start_total_statistics(stats) is not False:
            stats.visit(self)
            self.end_total_statistics(stats)


[docs]    def start_total_statistics(self, stats):
        pass


[docs]    def end_total_statistics(self, stats):
        pass


[docs]    def visit_tag_statistics(self, stats):
        if self.start_tag_statistics(stats) is not False:
            for stat in stats:
                stat.visit(self)
            self.end_tag_statistics(stats)


[docs]    def start_tag_statistics(self, stats):
        pass


[docs]    def end_tag_statistics(self, stats):
        pass


[docs]    def visit_suite_statistics(self, stats):
        if self.start_suite_statistics(stats) is not False:
            for stat in stats:
                stat.visit(self)
            self.end_suite_statistics(stats)


[docs]    def start_suite_statistics(self, stats):
        pass


[docs]    def end_suite_statistics(self, suite_stats):
        pass


[docs]    def visit_stat(self, stat):
        if self.start_stat(stat) is not False:
            self.end_stat(stat)


[docs]    def start_stat(self, stat):
        pass


[docs]    def end_stat(self, stat):
        pass


[docs]    def visit_errors(self, errors):
        self.start_errors(errors)
        for msg in errors:
            msg.visit(self)
        self.end_errors(errors)


[docs]    def start_errors(self, errors):
        pass


[docs]    def end_errors(self, errors):
        pass






          

      

      

    

  

    
      
          
            
  Source code for robot.result.xmlelementhandlers

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from robot.errors import DataError


[docs]class XmlElementHandler(object):

    def __init__(self, execution_result, root_handler=None):
        self._stack = [(root_handler or RootHandler(), execution_result)]

[docs]    def start(self, elem):
        handler, result = self._stack[-1]
        handler = handler.get_child_handler(elem.tag)
        result = handler.start(elem, result)
        self._stack.append((handler, result))


[docs]    def end(self, elem):
        handler, result = self._stack.pop()
        handler.end(elem, result)




[docs]class ElementHandler(object):
    element_handlers = {}
    tag = None
    children = frozenset()

[docs]    @classmethod
    def register(cls, handler):
        cls.element_handlers[handler.tag] = handler()
        return handler


[docs]    def get_child_handler(self, tag):
        if tag not in self.children:
            if not self.tag:
                raise DataError("Incompatible root element '%s'." % tag)
            raise DataError("Incompatible child element '%s' for '%s'."
                            % (tag, self.tag))
        return self.element_handlers[tag]


[docs]    def start(self, elem, result):
        return result


[docs]    def end(self, elem, result):
        pass


    def _timestamp(self, elem, attr_name):
        timestamp = elem.get(attr_name)
        return timestamp if timestamp != 'N/A' else None



[docs]class RootHandler(ElementHandler):
    children = frozenset(('robot',))



[docs]@ElementHandler.register
class RobotHandler(ElementHandler):
    tag = 'robot'
    children = frozenset(('suite', 'statistics', 'errors'))

[docs]    def start(self, elem, result):
        generator = elem.get('generator', 'unknown').split()[0].upper()
        result.generated_by_robot = generator == 'ROBOT'
        if result.rpa is None:
            result.rpa = elem.get('rpa', 'false') == 'true'
        return result




[docs]@ElementHandler.register
class SuiteHandler(ElementHandler):
    tag = 'suite'
    # 'metadata' is for RF < 4 compatibility.
    children = frozenset(('doc', 'metadata', 'meta', 'status', 'kw', 'test', 'suite'))

[docs]    def start(self, elem, result):
        if hasattr(result, 'suite'):    # root
            return result.suite.config(name=elem.get('name', ''),
                                       source=elem.get('source'),
                                       rpa=result.rpa)
        return result.suites.create(name=elem.get('name', ''),
                                    source=elem.get('source'),
                                    rpa=result.rpa)


[docs]    def get_child_handler(self, tag):
        if tag == 'status':
            return StatusHandler(set_status=False)
        return ElementHandler.get_child_handler(self, tag)




[docs]@ElementHandler.register
class TestHandler(ElementHandler):
    tag = 'test'
    # 'tags' is for RF < 4 compatibility.
    children = frozenset(('doc', 'tags', 'tag', 'timeout', 'status', 'kw', 'if', 'for',
                          'msg'))

[docs]    def start(self, elem, result):
        return result.tests.create(name=elem.get('name', ''))




[docs]@ElementHandler.register
class KeywordHandler(ElementHandler):
    tag = 'kw'
    # 'arguments', 'assign' and 'tags' are for RF < 4 compatibility.
    children = frozenset(('doc', 'arguments', 'arg', 'assign', 'var', 'tags', 'tag',
                          'timeout', 'status', 'msg', 'kw', 'if', 'for'))

[docs]    def start(self, elem, result):
        elem_type = elem.get('type')
        if not elem_type:
            creator = self._create_keyword
        else:
            creator = getattr(self, '_create_%s' % elem_type.lower().replace(' ', '_'))
        return creator(elem, result)


    def _create_keyword(self, elem, result):
        try:
            body = result.body
        except AttributeError:
            body = self._get_body_for_suite_level_keyword(result)
        return body.create_keyword(kwname=elem.get('name', ''),
                                   libname=elem.get('library'),
                                   sourcename=elem.get('sourcename'))

    def _get_body_for_suite_level_keyword(self, result):
        # Someone, most likely a listener, has created a `<kw>` element on suite level.
        # Add the keyword into a suite setup or teardown, depending on have we already
        # seen tests or not. Create an implicit setup/teardown if needed. Possible real
        # setup/teardown parsed later will reset the implicit one otherwise, but leaves
        # the added keyword into its body.
        kw_type = 'teardown' if result.tests or result.suites else 'setup'
        keyword = getattr(result, kw_type)
        if not keyword:
            keyword.config(kwname='Implicit %s' % kw_type, status=keyword.PASS)
        return keyword.body

    def _create_setup(self, elem, result):
        return result.setup.config(kwname=elem.get('name', ''),
                                   libname=elem.get('library'))

    def _create_teardown(self, elem, result):
        return result.teardown.config(kwname=elem.get('name', ''),
                                      libname=elem.get('library'))

    # RF < 4 compatibility.

    def _create_for(self, elem, result):
        return result.body.create_keyword(kwname=elem.get('name'), type='FOR')

    def _create_foritem(self, elem, result):
        return result.body.create_keyword(kwname=elem.get('name'), type='FOR ITERATION')

    _create_for_iteration = _create_foritem



[docs]@ElementHandler.register
class ForHandler(ElementHandler):
    tag = 'for'
    children = frozenset(('var', 'value', 'doc', 'status', 'iter', 'msg', 'kw'))

[docs]    def start(self, elem, result):
        return result.body.create_for(flavor=elem.get('flavor'))




[docs]@ElementHandler.register
class ForIterationHandler(ElementHandler):
    tag = 'iter'
    children = frozenset(('var', 'doc', 'status', 'kw', 'if', 'for', 'msg'))

[docs]    def start(self, elem, result):
        return result.body.create_iteration()




[docs]@ElementHandler.register
class IfHandler(ElementHandler):
    tag = 'if'
    children = frozenset(('status', 'branch', 'msg', 'doc'))

[docs]    def start(self, elem, result):
        return result.body.create_if()




[docs]@ElementHandler.register
class IfBranchHandler(ElementHandler):
    tag = 'branch'
    children = frozenset(('status', 'kw', 'if', 'for', 'msg', 'doc'))

[docs]    def start(self, elem, result):
        return result.body.create_branch(elem.get('type'), elem.get('condition'))




[docs]@ElementHandler.register
class MessageHandler(ElementHandler):
    tag = 'msg'

[docs]    def end(self, elem, result):
        html_true = ('true', 'yes')    # 'yes' is compatibility for RF < 4.
        result.body.create_message(elem.text or '',
                                   elem.get('level', 'INFO'),
                                   elem.get('html') in html_true,
                                   self._timestamp(elem, 'timestamp'))




[docs]@ElementHandler.register
class StatusHandler(ElementHandler):
    tag = 'status'

    def __init__(self, set_status=True):
        self.set_status = set_status

[docs]    def end(self, elem, result):
        if self.set_status:
            result.status = elem.get('status', 'FAIL')
        result.starttime = self._timestamp(elem, 'starttime')
        result.endtime = self._timestamp(elem, 'endtime')
        if elem.text:
            result.message = elem.text




[docs]@ElementHandler.register
class DocHandler(ElementHandler):
    tag = 'doc'

[docs]    def end(self, elem, result):
        result.doc = elem.text or ''




[docs]@ElementHandler.register
class MetadataHandler(ElementHandler):   # RF < 4 compatibility.
    tag = 'metadata'
    children = frozenset(('item',))



[docs]@ElementHandler.register
class MetadataItemHandler(ElementHandler):    # RF < 4 compatibility.
    tag = 'item'

[docs]    def end(self, elem, result):
        result.metadata[elem.get('name', '')] = elem.text or ''




[docs]@ElementHandler.register
class MetaHandler(ElementHandler):
    tag = 'meta'

[docs]    def end(self, elem, result):
        result.metadata[elem.get('name', '')] = elem.text or ''




[docs]@ElementHandler.register
class TagsHandler(ElementHandler):    # RF < 4 compatibility.
    tag = 'tags'
    children = frozenset(('tag',))



[docs]@ElementHandler.register
class TagHandler(ElementHandler):
    tag = 'tag'

[docs]    def end(self, elem, result):
        result.tags.add(elem.text or '')




[docs]@ElementHandler.register
class TimeoutHandler(ElementHandler):
    tag = 'timeout'

[docs]    def end(self, elem, result):
        result.timeout = elem.get('value')




[docs]@ElementHandler.register
class AssignHandler(ElementHandler):    # RF < 4 compatibility.
    tag = 'assign'
    children = frozenset(('var',))



[docs]@ElementHandler.register
class VarHandler(ElementHandler):
    tag = 'var'

[docs]    def end(self, elem, result):
        value = elem.text or ''
        if result.type == result.KEYWORD:
            result.assign += (value,)
        elif result.type == result.FOR:
            result.variables += (value,)
        elif result.type == result.FOR_ITERATION:
            result.variables[elem.get('name')] = value
        else:
            raise DataError("Invalid element '%s' for result '%r'." % (elem, result))




[docs]@ElementHandler.register
class ArgumentsHandler(ElementHandler):    # RF < 4 compatibility.
    tag = 'arguments'
    children = frozenset(('arg',))



[docs]@ElementHandler.register
class ArgumentHandler(ElementHandler):
    tag = 'arg'

[docs]    def end(self, elem, result):
        result.args += (elem.text or '',)




[docs]@ElementHandler.register
class ValueHandler(ElementHandler):
    tag = 'value'

[docs]    def end(self, elem, result):
        result.values += (elem.text or '',)




[docs]@ElementHandler.register
class ErrorsHandler(ElementHandler):
    tag = 'errors'

[docs]    def start(self, elem, result):
        return result.errors


[docs]    def get_child_handler(self, tag):
        return ErrorMessageHandler()




[docs]class ErrorMessageHandler(ElementHandler):

[docs]    def end(self, elem, result):
        html_true = ('true', 'yes')    # 'yes' is compatibility for RF < 4.
        result.messages.create(elem.text or '',
                               elem.get('level', 'INFO'),
                               elem.get('html') in html_true,
                               self._timestamp(elem, 'timestamp'))




[docs]@ElementHandler.register
class StatisticsHandler(ElementHandler):
    tag = 'statistics'

[docs]    def get_child_handler(self, tag):
        return self






          

      

      

    

  

    
      
          
            
  Source code for robot.running.bodyrunner

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from collections import OrderedDict
from contextlib import contextmanager

from robot.errors import (ExecutionFailed, ExecutionFailures, ExecutionPassed,
                          ExecutionStatus, ExitForLoop, ContinueForLoop, DataError)
from robot.result import For as ForResult, If as IfResult, IfBranch as IfBranchResult
from robot.output import librarylogger as logger
from robot.utils import (cut_assign_value, frange, get_error_message,
                         is_list_like, is_number, is_unicode, plural_or_not as s,
                         split_from_equals, type_name)
from robot.variables import is_dict_variable, evaluate_expression

from .statusreporter import StatusReporter


[docs]class BodyRunner(object):

    def __init__(self, context, run=True, templated=False):
        self._context = context
        self._run = run
        self._templated = templated

[docs]    def run(self, body):
        errors = []
        for step in body:
            try:
                step.run(self._context, self._run, self._templated)
            except ExecutionPassed as exception:
                exception.set_earlier_failures(errors)
                raise exception
            except ExecutionFailed as exception:
                errors.extend(exception.get_errors())
                self._run = exception.can_continue(self._context,
                                                   self._templated)
        if errors:
            raise ExecutionFailures(errors)




[docs]class KeywordRunner(object):

    def __init__(self, context, run=True):
        self._context = context
        self._run = run

[docs]    def run(self, step, name=None):
        context = self._context
        runner = context.get_runner(name or step.name)
        if context.dry_run:
            return runner.dry_run(step, context)
        return runner.run(step, context, self._run)




[docs]class IfRunner(object):
    _dry_run_stack = []

    def __init__(self, context, run=True, templated=False):
        self._context = context
        self._run = run
        self._templated = templated

[docs]    def run(self, data):
        with self._dry_run_recursion_detection(data) as recursive_dry_run:
            error = None
            with StatusReporter(data, IfResult(), self._context, self._run):
                for branch in data.body:
                    try:
                        if self._run_if_branch(branch, recursive_dry_run, data.error):
                            self._run = False
                    except ExecutionStatus as err:
                        error = err
                        self._run = False
                if error:
                    raise error


    @contextmanager
    def _dry_run_recursion_detection(self, data):
        dry_run = self._context.dry_run
        if dry_run:
            recursive_dry_run = data in self._dry_run_stack
            self._dry_run_stack.append(data)
        else:
            recursive_dry_run = False
        try:
            yield recursive_dry_run
        finally:
            if dry_run:
                self._dry_run_stack.pop()

    def _run_if_branch(self, branch, recursive_dry_run=False, error=None):
        result = IfBranchResult(branch.type, branch.condition)
        try:
            run_branch = self._should_run_branch(branch.condition, recursive_dry_run)
        except:
            error = get_error_message()
            run_branch = False
        with StatusReporter(branch, result, self._context, run_branch):
            if error and self._run:
                raise DataError(error)
            runner = BodyRunner(self._context, run_branch, self._templated)
            if not recursive_dry_run:
                runner.run(branch.body)
        return run_branch

    def _should_run_branch(self, condition, recursive_dry_run=False):
        if self._context.dry_run:
            return not recursive_dry_run
        if not self._run:
            return False
        if condition is None:
            return True
        condition = self._context.variables.replace_scalar(condition)
        if is_unicode(condition):
            return evaluate_expression(condition, self._context.variables.current.store)
        return bool(condition)



[docs]def ForRunner(context, flavor='IN', run=True, templated=False):
    runners = {'IN': ForInRunner,
               'IN RANGE': ForInRangeRunner,
               'IN ZIP': ForInZipRunner,
               'IN ENUMERATE': ForInEnumerateRunner}
    runner = runners[flavor or 'IN']
    return runner(context, run, templated)



[docs]class ForInRunner(object):
    flavor = 'IN'

    def __init__(self, context, run=True, templated=False):
        self._context = context
        self._run = run
        self._templated = templated

[docs]    def run(self, data):
        result = ForResult(data.variables, data.flavor, data.values)
        with StatusReporter(data, result, self._context, self._run):
            if self._run:
                if data.error:
                    raise DataError(data.error)
                self._run_loop(data, result)
            else:
                self._run_one_round(data, result)


    def _run_loop(self, data, result):
        errors = []
        for values in self._get_values_for_rounds(data):
            try:
                self._run_one_round(data, result, values)
            except ExitForLoop as exception:
                if exception.earlier_failures:
                    errors.extend(exception.earlier_failures.get_errors())
                break
            except ContinueForLoop as exception:
                if exception.earlier_failures:
                    errors.extend(exception.earlier_failures.get_errors())
                continue
            except ExecutionPassed as exception:
                exception.set_earlier_failures(errors)
                raise exception
            except ExecutionFailed as exception:
                errors.extend(exception.get_errors())
                if not exception.can_continue(self._context,
                                              self._templated):
                    break
        if errors:
            raise ExecutionFailures(errors)

    def _get_values_for_rounds(self, data):
        if self._context.dry_run:
            return [None]
        values_per_round = len(data.variables)
        if self._is_dict_iteration(data.values):
            values = self._resolve_dict_values(data.values)
            values = self._map_dict_values_to_rounds(values, values_per_round)
        else:
            values = self._resolve_values(data.values)
            values = self._map_values_to_rounds(values, values_per_round)
        return values

    def _is_dict_iteration(self, values):
        all_name_value = True
        for item in values:
            if is_dict_variable(item):
                return True
            if split_from_equals(item)[1] is None:
                all_name_value = False
        if all_name_value:
            name, value = split_from_equals(values[0])
            logger.warn(
                "FOR loop iteration over values that are all in 'name=value' "
                "format like '%s' is deprecated. In the future this syntax "
                "will mean iterating over names and values separately like "
                "when iterating over '&{dict} variables. Escape at least one "
                "of the values like '%s\\=%s' to use normal FOR loop "
                "iteration and to disable this warning."
                % (values[0], name, value)
            )
        return False

    def _resolve_dict_values(self, values):
        result = OrderedDict()
        replace_scalar = self._context.variables.replace_scalar
        for item in values:
            if is_dict_variable(item):
                result.update(replace_scalar(item))
            else:
                key, value = split_from_equals(item)
                if value is None:
                    raise DataError(
                        "Invalid FOR loop value '%s'. When iterating over "
                        "dictionaries, values must be '&{dict}' variables "
                        "or use 'key=value' syntax." % item
                    )
                try:
                    result[replace_scalar(key)] = replace_scalar(value)
                except TypeError:
                    raise DataError(
                        "Invalid dictionary item '%s': %s"
                        % (item, get_error_message())
                    )
        return result.items()

    def _map_dict_values_to_rounds(self, values, per_round):
        if per_round > 2:
            raise DataError(
                'Number of FOR loop variables must be 1 or 2 when iterating '
                'over dictionaries, got %d.' % per_round
            )
        return values

    def _resolve_values(self, values):
        return self._context.variables.replace_list(values)

    def _map_values_to_rounds(self, values, per_round):
        count = len(values)
        if count % per_round != 0:
            self._raise_wrong_variable_count(per_round, count)
        # Map list of values to list of lists containing values per round.
        return (values[i:i+per_round] for i in range(0, count, per_round))

    def _raise_wrong_variable_count(self, variables, values):
        raise DataError(
            'Number of FOR loop values should be multiple of its variables. '
            'Got %d variables but %d value%s.' % (variables, values, s(values))
        )

    def _run_one_round(self, data, result, values=None):
        result = result.body.create_iteration()
        if values is not None:
            variables = self._context.variables
        else:    # Not really run (earlier failure, unexecuted IF branch, dry-run)
            variables = {}
            values = data.variables
        for name, value in self._map_variables_and_values(data.variables, values):
            variables[name] = value
            result.variables[name] = cut_assign_value(value)
        runner = BodyRunner(self._context, self._run, self._templated)
        with StatusReporter(data, result, self._context, self._run):
            runner.run(data.body)

    def _map_variables_and_values(self, variables, values):
        if len(variables) == 1 and len(values) != 1:
            return [(variables[0], tuple(values))]
        return zip(variables, values)



[docs]class ForInRangeRunner(ForInRunner):
    flavor = 'IN RANGE'

    def _resolve_dict_values(self, values):
        raise DataError(
            'FOR IN RANGE loops do not support iterating over dictionaries.'
        )

    def _map_values_to_rounds(self, values, per_round):
        if not 1 <= len(values) <= 3:
            raise DataError(
                'FOR IN RANGE expected 1-3 values, got %d.' % len(values)
            )
        try:
            values = [self._to_number_with_arithmetic(v) for v in values]
        except:
            raise DataError(
                'Converting FOR IN RANGE values failed: %s.'
                % get_error_message()
            )
        values = frange(*values)
        return ForInRunner._map_values_to_rounds(self, values, per_round)

    def _to_number_with_arithmetic(self, item):
        if is_number(item):
            return item
        number = eval(str(item), {})
        if not is_number(number):
            raise TypeError("Expected number, got %s." % type_name(item))
        return number



[docs]class ForInZipRunner(ForInRunner):
    flavor = 'IN ZIP'
    _start = 0

    def _resolve_dict_values(self, values):
        raise DataError(
            'FOR IN ZIP loops do not support iterating over dictionaries.'
        )

    def _map_values_to_rounds(self, values, per_round):
        for item in values:
            if not is_list_like(item):
                raise DataError(
                    "FOR IN ZIP items must all be list-like, got %s '%s'."
                    % (type_name(item), item)
                )
        if len(values) % per_round != 0:
            self._raise_wrong_variable_count(per_round, len(values))
        return zip(*(list(item) for item in values))



[docs]class ForInEnumerateRunner(ForInRunner):
    flavor = 'IN ENUMERATE'

    def _resolve_dict_values(self, values):
        self._start, values = self._get_start(values)
        return ForInRunner._resolve_dict_values(self, values)

    def _resolve_values(self, values):
        self._start, values = self._get_start(values)
        return ForInRunner._resolve_values(self, values)

    def _get_start(self, values):
        if not values[-1].startswith('start='):
            return 0, values
        start = self._context.variables.replace_string(values[-1][6:])
        if len(values) == 1:
            raise DataError('FOR loop has no loop values.')
        try:
            return int(start), values[:-1]
        except ValueError:
            raise ValueError("Invalid FOR IN ENUMERATE start value '%s'." % start)

    def _map_dict_values_to_rounds(self, values, per_round):
        if per_round > 3:
            raise DataError(
                'Number of FOR IN ENUMERATE loop variables must be 1-3 when '
                'iterating over dictionaries, got %d.' % per_round
            )
        if per_round == 2:
            return ((i, v) for i, v in enumerate(values, start=self._start))
        return ((i,) + v for i, v in enumerate(values, start=self._start))

    def _map_values_to_rounds(self, values, per_round):
        per_round = max(per_round-1, 1)
        values = ForInRunner._map_values_to_rounds(self, values, per_round)
        return ([i] + v for i, v in enumerate(values, start=self._start))

    def _raise_wrong_variable_count(self, variables, values):
        raise DataError(
            'Number of FOR IN ENUMERATE loop values should be multiple of '
            'its variables (excluding the index). Got %d variables but %d '
            'value%s.' % (variables, values, s(values))
        )





          

      

      

    

  

    
      
          
            
  Source code for robot.running.context

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from contextlib import contextmanager

from robot.errors import DataError
from robot.utils import unic


[docs]class ExecutionContexts(object):

    def __init__(self):
        self._contexts = []

    @property
    def current(self):
        return self._contexts[-1] if self._contexts else None

    @property
    def top(self):
        return self._contexts[0] if self._contexts else None

    def __iter__(self):
        return iter(self._contexts)

    @property
    def namespaces(self):
        return (context.namespace for context in self)

[docs]    def start_suite(self, suite, namespace, output, dry_run=False):
        ctx = _ExecutionContext(suite, namespace, output, dry_run)
        self._contexts.append(ctx)
        return ctx


[docs]    def end_suite(self):
        self._contexts.pop()




# This is ugly but currently needed e.g. by BuiltIn
EXECUTION_CONTEXTS = ExecutionContexts()


class _ExecutionContext(object):
    _started_keywords_threshold = 42  # Jython on Windows don't work with higher

    def __init__(self, suite, namespace, output, dry_run=False):
        self.suite = suite
        self.test = None
        self.timeouts = set()
        self.namespace = namespace
        self.output = output
        self.dry_run = dry_run
        self.in_suite_teardown = False
        self.in_test_teardown = False
        self.in_keyword_teardown = 0
        self._started_keywords = 0
        self.timeout_occurred = False
        self.user_keywords = []

    @contextmanager
    def suite_teardown(self):
        self.in_suite_teardown = True
        try:
            yield
        finally:
            self.in_suite_teardown = False

    @contextmanager
    def test_teardown(self, test):
        self.variables.set_test('${TEST_STATUS}', test.status)
        self.variables.set_test('${TEST_MESSAGE}', test.message)
        self.in_test_teardown = True
        self._remove_timeout(test.timeout)
        try:
            yield
        finally:
            self.in_test_teardown = False

    @contextmanager
    def keyword_teardown(self, error):
        self.variables.set_keyword('${KEYWORD_STATUS}', 'FAIL' if error else 'PASS')
        self.variables.set_keyword('${KEYWORD_MESSAGE}', unic(error or ''))
        self.in_keyword_teardown += 1
        try:
            yield
        finally:
            self.in_keyword_teardown -= 1

    @contextmanager
    def user_keyword(self, handler):
        self.user_keywords.append(handler)
        self.namespace.start_user_keyword()
        try:
            yield
        finally:
            self.namespace.end_user_keyword()
            self.user_keywords.pop()

    @contextmanager
    def timeout(self, timeout):
        self._add_timeout(timeout)
        try:
            yield
        finally:
            self._remove_timeout(timeout)

    @property
    def in_teardown(self):
        return bool(self.in_suite_teardown or
                    self.in_test_teardown or
                    self.in_keyword_teardown)

    @property
    def variables(self):
        return self.namespace.variables

    @property
    def continue_on_failure(self):
        parents = ([self.test] if self.test else []) + self.user_keywords
        if not parents:
            return False
        if 'robot:continue-on-failure' in parents[-1].tags:
            return True
        return any('robot:recursive-continue-on-failure' in p.tags for p in parents)

    def end_suite(self, suite):
        for name in ['${PREV_TEST_NAME}',
                     '${PREV_TEST_STATUS}',
                     '${PREV_TEST_MESSAGE}']:
            self.variables.set_global(name, self.variables[name])
        self.output.end_suite(suite)
        self.namespace.end_suite(suite)
        EXECUTION_CONTEXTS.end_suite()

    def set_suite_variables(self, suite):
        self.variables['${SUITE_NAME}'] = suite.longname
        self.variables['${SUITE_SOURCE}'] = suite.source or ''
        self.variables['${SUITE_DOCUMENTATION}'] = suite.doc
        self.variables['${SUITE_METADATA}'] = suite.metadata.copy()

    def report_suite_status(self, status, message):
        self.variables['${SUITE_STATUS}'] = status
        self.variables['${SUITE_MESSAGE}'] = message

    def start_test(self, test):
        self.test = test
        self._add_timeout(test.timeout)
        self.namespace.start_test()
        self.variables.set_test('${TEST_NAME}', test.name)
        self.variables.set_test('${TEST_DOCUMENTATION}', test.doc)
        self.variables.set_test('@{TEST_TAGS}', list(test.tags))

    def _add_timeout(self, timeout):
        if timeout:
            timeout.start()
            self.timeouts.add(timeout)

    def _remove_timeout(self, timeout):
        if timeout in self.timeouts:
            self.timeouts.remove(timeout)

    def end_test(self, test):
        self.test = None
        self._remove_timeout(test.timeout)
        self.namespace.end_test()
        self.variables.set_suite('${PREV_TEST_NAME}', test.name)
        self.variables.set_suite('${PREV_TEST_STATUS}', test.status)
        self.variables.set_suite('${PREV_TEST_MESSAGE}', test.message)
        self.timeout_occurred = False

    def start_keyword(self, keyword):
        self._started_keywords += 1
        if self._started_keywords > self._started_keywords_threshold:
            raise DataError('Maximum limit of started keywords exceeded.')
        self.output.start_keyword(keyword)

    def end_keyword(self, keyword):
        self.output.end_keyword(keyword)
        self._started_keywords -= 1

    def get_runner(self, name):
        return self.namespace.get_runner(name)

    def trace(self, message):
        self.output.trace(message)

    def debug(self, message):
        self.output.debug(message)

    def info(self, message):
        self.output.info(message)

    def warn(self, message):
        self.output.warn(message)

    def fail(self, message):
        self.output.fail(message)

    def skip(self, message):
        self.output.skip(message)




          

      

      

    

  

    
      
          
            
  Source code for robot.running.dynamicmethods

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from robot.errors import DataError
from robot.utils import (get_error_message, is_java_method, is_bytes,
                         is_list_like, is_unicode, py3to2, type_name)

from .arguments import JavaArgumentParser, PythonArgumentParser


[docs]def no_dynamic_method(*args):
    return None



@py3to2
class _DynamicMethod(object):
    _underscore_name = NotImplemented

    def __init__(self, lib):
        self.method = self._get_method(lib)

    def _get_method(self, lib):
        for name in self._underscore_name, self._camelCaseName:
            method = getattr(lib, name, None)
            if callable(method):
                return method
        return no_dynamic_method

    @property
    def _camelCaseName(self):
        tokens = self._underscore_name.split('_')
        return ''.join([tokens[0]] + [t.capitalize() for t in tokens[1:]])

    @property
    def name(self):
        return self.method.__name__

    def __call__(self, *args):
        try:
            return self._handle_return_value(self.method(*args))
        except:
            raise DataError("Calling dynamic method '%s' failed: %s"
                            % (self.name, get_error_message()))

    def _handle_return_value(self, value):
        raise NotImplementedError

    def _to_string(self, value, allow_tuple=False, allow_none=False):
        if is_unicode(value):
            return value
        if is_bytes(value):
            return value.decode('UTF-8')
        if allow_tuple and is_list_like(value) and len(value) > 0:
            return tuple(value)
        if allow_none and value is None:
            return value
        or_tuple = ' or a non-empty tuple' if allow_tuple else ''
        raise DataError('Return value must be a string%s, got %s.'
                        % (or_tuple, type_name(value)))

    def _to_list(self, value):
        if value is None:
            return ()
        if not is_list_like(value):
            raise DataError
        return value

    def _to_list_of_strings(self, value, allow_tuples=False):
        try:
            return [self._to_string(item, allow_tuples)
                    for item in self._to_list(value)]
        except DataError:
            raise DataError('Return value must be a list of strings%s.'
                            % (' or non-empty tuples' if allow_tuples else ''))

    def __bool__(self):
        return self.method is not no_dynamic_method


[docs]class GetKeywordNames(_DynamicMethod):
    _underscore_name = 'get_keyword_names'

    def _handle_return_value(self, value):
        names = self._to_list_of_strings(value)
        return list(self._remove_duplicates(names))

    def _remove_duplicates(self, names):
        seen = set()
        for name in names:
            if name not in seen:
                seen.add(name)
                yield name



[docs]class RunKeyword(_DynamicMethod):
    _underscore_name = 'run_keyword'

    @property
    def supports_kwargs(self):
        if is_java_method(self.method):
            return self._supports_java_kwargs(self.method)
        return self._supports_python_kwargs(self.method)

    def _supports_python_kwargs(self, method):
        spec = PythonArgumentParser().parse(method)
        return len(spec.positional) == 3

    def _supports_java_kwargs(self, method):
        func = self.method.im_func if hasattr(method, 'im_func') else method
        signatures = func.argslist[:func.nargs]
        spec = JavaArgumentParser().parse(signatures)
        return (self._java_single_signature_kwargs(spec) or
                self._java_multi_signature_kwargs(spec))

    def _java_single_signature_kwargs(self, spec):
        return len(spec.positional) == 1 and spec.var_positional and spec.var_named

    def _java_multi_signature_kwargs(self, spec):
        return len(spec.positional) == 3 and not (spec.var_positional or spec.var_named)



[docs]class GetKeywordDocumentation(_DynamicMethod):
    _underscore_name = 'get_keyword_documentation'

    def _handle_return_value(self, value):
        return self._to_string(value or '')



[docs]class GetKeywordArguments(_DynamicMethod):
    _underscore_name = 'get_keyword_arguments'

    def __init__(self, lib):
        _DynamicMethod.__init__(self, lib)
        self._supports_kwargs = RunKeyword(lib).supports_kwargs

    def _handle_return_value(self, value):
        if value is None:
            if self._supports_kwargs:
                return ['*varargs', '**kwargs']
            return ['*varargs']
        return self._to_list_of_strings(value, allow_tuples=True)



[docs]class GetKeywordTypes(_DynamicMethod):
    _underscore_name = 'get_keyword_types'

    def _handle_return_value(self, value):
        return value if self else {}



[docs]class GetKeywordTags(_DynamicMethod):
    _underscore_name = 'get_keyword_tags'

    def _handle_return_value(self, value):
        return self._to_list_of_strings(value)



[docs]class GetKeywordSource(_DynamicMethod):
    _underscore_name = 'get_keyword_source'

    def _handle_return_value(self, value):
        return self._to_string(value, allow_none=True)





          

      

      

    

  

    
      
          
            
  Source code for robot.running.handlers

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from copy import copy
import inspect

from robot.utils import (getdoc, getshortdoc, is_java_init, is_java_method,
                         is_list_like, normpath, printable_name,
                         split_tags_from_doc, type_name, unwrap)
from robot.errors import DataError
from robot.model import Tags

from .arguments import (ArgumentSpec, DynamicArgumentParser,
                        JavaArgumentCoercer, JavaArgumentParser,
                        PythonArgumentParser)
from .dynamicmethods import GetKeywordSource, GetKeywordTypes
from .librarykeywordrunner import (EmbeddedArgumentsRunner,
                                   LibraryKeywordRunner, RunKeywordRunner)
from .runkwregister import RUN_KW_REGISTER


[docs]def Handler(library, name, method):
    if RUN_KW_REGISTER.is_run_keyword(library.orig_name, name):
        return _RunKeywordHandler(library, name, method)
    if is_java_method(method):
        return _JavaHandler(library, name, method)
    else:
        return _PythonHandler(library, name, method)



[docs]def DynamicHandler(library, name, method, doc, argspec, tags=None):
    if RUN_KW_REGISTER.is_run_keyword(library.orig_name, name):
        return _DynamicRunKeywordHandler(library, name, method, doc, argspec, tags)
    return _DynamicHandler(library, name, method, doc, argspec, tags)



[docs]def InitHandler(library, method=None, docgetter=None):
    Init = _PythonInitHandler if not is_java_init(method) else _JavaInitHandler
    return Init(library, '__init__', method, docgetter)



class _RunnableHandler(object):

    def __init__(self, library, handler_name, handler_method, doc='', tags=None):
        self.library = library
        self._handler_name = handler_name
        self.name = self._get_name(handler_name, handler_method)
        self.arguments = self._parse_arguments(handler_method)
        self._method = self._get_initial_handler(library, handler_name,
                                                 handler_method)
        doc, tags_from_doc = split_tags_from_doc(doc or '')
        tags_from_attr = self._get_tags_from_attribute(handler_method)
        self._doc = doc
        self.tags = Tags(tuple(tags_from_doc) +
                         tuple(tags_from_attr) +
                         tuple(tags or ()))

    def _get_name(self, handler_name, handler_method):
        robot_name = getattr(handler_method, 'robot_name', None)
        name = robot_name or printable_name(handler_name, code_style=True)
        if not name:
            raise DataError('Keyword name cannot be empty.')
        return name

    def _parse_arguments(self, handler_method):
        raise NotImplementedError

    def _get_tags_from_attribute(self, handler_method):
        tags = getattr(handler_method, 'robot_tags', ())
        if not is_list_like(tags):
            raise DataError("Expected tags to be list-like, got %s."
                            % type_name(tags))
        return tags

    def _get_initial_handler(self, library, name, method):
        if library.scope.is_global:
            return self._get_global_handler(method, name)
        return None

    def resolve_arguments(self, args, variables=None):
        return self.arguments.resolve(args, variables)

    @property
    def doc(self):
        return self._doc

    @property
    def longname(self):
        return '%s.%s' % (self.library.name, self.name)

    @property
    def shortdoc(self):
        return getshortdoc(self.doc)

    @property
    def libname(self):
        return self.library.name

    @property
    def source(self):
        return self.library.source

    @property
    def lineno(self):
        return -1

    def create_runner(self, name):
        return LibraryKeywordRunner(self)

    def current_handler(self):
        if self._method:
            return self._method
        return self._get_handler(self.library.get_instance(), self._handler_name)

    def _get_global_handler(self, method, name):
        return method

    def _get_handler(self, lib_instance, handler_name):
        try:
            return getattr(lib_instance, handler_name)
        except AttributeError:
            # Occurs with old-style classes.
            if handler_name == '__init__':
                return None
            raise


class _PythonHandler(_RunnableHandler):

    def __init__(self, library, handler_name, handler_method):
        _RunnableHandler.__init__(self, library, handler_name, handler_method,
                                  getdoc(handler_method))

    def _parse_arguments(self, handler_method):
        return PythonArgumentParser().parse(handler_method, self.longname)

    @property
    def source(self):
        handler = self.current_handler()
        # `getsourcefile` can return None and raise TypeError.
        try:
            source = inspect.getsourcefile(unwrap(handler))
        except TypeError:
            source = None
        return normpath(source) if source else self.library.source

    @property
    def lineno(self):
        handler = self.current_handler()
        try:
            lines, start_lineno = inspect.getsourcelines(unwrap(handler))
        except (TypeError, OSError, IOError):
            return -1
        for increment, line in enumerate(lines):
            if line.strip().startswith('def '):
                return start_lineno + increment
        return start_lineno


class _JavaHandler(_RunnableHandler):

    def __init__(self, library, handler_name, handler_method):
        _RunnableHandler.__init__(self, library, handler_name, handler_method)
        signatures = self._get_signatures(handler_method)
        self._arg_coercer = JavaArgumentCoercer(signatures, self.arguments)

    def _parse_arguments(self, handler_method):
        signatures = self._get_signatures(handler_method)
        return JavaArgumentParser().parse(signatures, self.longname)

    def _get_signatures(self, handler):
        code_object = getattr(handler, 'im_func', handler)
        return code_object.argslist[:code_object.nargs]

    def resolve_arguments(self, args, variables=None):
        positional, named = self.arguments.resolve(args, variables,
                                                   dict_to_kwargs=True)
        arguments = self._arg_coercer.coerce(positional, named,
                                             dryrun=not variables)
        return arguments, []


class _DynamicHandler(_RunnableHandler):

    def __init__(self, library, handler_name, dynamic_method, doc='',
                 argspec=None, tags=None):
        self._argspec = argspec
        self._run_keyword_method_name = dynamic_method.name
        self._supports_kwargs = dynamic_method.supports_kwargs
        _RunnableHandler.__init__(self, library, handler_name,
                                  dynamic_method.method, doc, tags)
        self._source_info = None

    def _parse_arguments(self, handler_method):
        spec = DynamicArgumentParser().parse(self._argspec, self.longname)
        if not self._supports_kwargs:
            if spec.var_named:
                raise DataError("Too few '%s' method parameters for **kwargs "
                                "support." % self._run_keyword_method_name)
            if spec.named_only:
                raise DataError("Too few '%s' method parameters for "
                                "keyword-only arguments support."
                                % self._run_keyword_method_name)
        get_keyword_types = GetKeywordTypes(self.library.get_instance())
        spec.types = get_keyword_types(self._handler_name)
        return spec

    @property
    def source(self):
        if self._source_info is None:
            self._source_info = self._get_source_info()
        return self._source_info[0]

    def _get_source_info(self):
        get_keyword_source = GetKeywordSource(self.library.get_instance())
        try:
            source = get_keyword_source(self._handler_name)
        except DataError as err:
            self.library.report_error(
                "Getting source information for keyword '%s' failed: %s"
                % (self.name, err.message), err.details
            )
            return None, -1
        if not source:
            return self.library.source, -1
        if ':' not in source:
            return source, -1
        path, lineno = source.rsplit(':', 1)
        try:
            return path or self.library.source, int(lineno)
        except ValueError:
            return source, -1

    @property
    def lineno(self):
        if self._source_info is None:
            self._source_info = self._get_source_info()
        return self._source_info[1]

    def resolve_arguments(self, arguments, variables=None):
        positional, named = self.arguments.resolve(arguments, variables)
        if not self._supports_kwargs:
            positional, named = self.arguments.map(positional, named)
        return positional, named

    def _get_handler(self, lib_instance, handler_name):
        runner = getattr(lib_instance, self._run_keyword_method_name)
        return self._get_dynamic_handler(runner, handler_name)

    def _get_global_handler(self, method, name):
        return self._get_dynamic_handler(method, name)

    def _get_dynamic_handler(self, runner, name):
        def handler(*positional, **kwargs):
            if self._supports_kwargs:
                return runner(name, positional, kwargs)
            else:
                return runner(name, positional)
        return handler


class _RunKeywordHandler(_PythonHandler):

    def create_runner(self, name):
        default_dry_run_keywords = ('name' in self.arguments.positional and
                                    self._args_to_process)
        return RunKeywordRunner(self, default_dry_run_keywords)

    @property
    def _args_to_process(self):
        return RUN_KW_REGISTER.get_args_to_process(self.library.orig_name,
                                                   self.name)

    def resolve_arguments(self, args, variables=None):
        args_to_process = self._args_to_process
        return self.arguments.resolve(args, variables, resolve_named=False,
                                      resolve_variables_until=args_to_process)


class _DynamicRunKeywordHandler(_DynamicHandler, _RunKeywordHandler):
    _parse_arguments = _RunKeywordHandler._parse_arguments
    resolve_arguments = _RunKeywordHandler.resolve_arguments


class _PythonInitHandler(_PythonHandler):

    def __init__(self, library, handler_name, handler_method, docgetter):
        _PythonHandler.__init__(self, library, handler_name, handler_method)
        self._docgetter = docgetter

    @property
    def doc(self):
        if self._docgetter:
            self._doc = self._docgetter() or self._doc
            self._docgetter = None
        return self._doc

    def _parse_arguments(self, init_method):
        parser = PythonArgumentParser(type='Library')
        return parser.parse(init_method or (lambda: None), self.library.name)


class _JavaInitHandler(_JavaHandler):

    def __init__(self, library, handler_name, handler_method, docgetter):
        _JavaHandler.__init__(self, library, handler_name, handler_method)
        self._docgetter = docgetter

    @property
    def doc(self):
        if self._docgetter:
            self._doc = self._docgetter() or self._doc
            self._docgetter = None
        return self._doc

    def _parse_arguments(self, handler_method):
        parser = JavaArgumentParser(type='Library')
        signatures = self._get_signatures(handler_method)
        return parser.parse(signatures, self.library.name)


[docs]class EmbeddedArgumentsHandler(object):

    def __init__(self, name_regexp, orig_handler):
        self.arguments = ArgumentSpec()  # Show empty argument spec for Libdoc
        self.name_regexp = name_regexp
        self._orig_handler = orig_handler

    def __getattr__(self, item):
        return getattr(self._orig_handler, item)

    @property
    def library(self):
        return self._orig_handler.library

    @library.setter
    def library(self, library):
        self._orig_handler.library = library

[docs]    def matches(self, name):
        return self.name_regexp.match(name) is not None


[docs]    def create_runner(self, name):
        return EmbeddedArgumentsRunner(self, name)


    def __copy__(self):
        orig_handler = copy(self._orig_handler)
        return EmbeddedArgumentsHandler(self.name_regexp, orig_handler)





          

      

      

    

  

    
      
          
            
  Source code for robot.running.handlerstore

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from operator import attrgetter

from robot.errors import DataError, KeywordError
from robot.utils import NormalizedDict

from .usererrorhandler import UserErrorHandler


[docs]class HandlerStore(object):
    TEST_LIBRARY_TYPE = 'Test library'
    TEST_CASE_FILE_TYPE = 'Test case file'
    RESOURCE_FILE_TYPE = 'Resource file'

    def __init__(self, source, source_type):
        self.source = source
        self.source_type = source_type
        self._normal = NormalizedDict(ignore='_')
        self._embedded = []

[docs]    def add(self, handler, embedded=False):
        if embedded:
            self._embedded.append(handler)
        elif handler.name not in self._normal:
            self._normal[handler.name] = handler
        else:
            error = DataError('Keyword with same name defined multiple times.')
            self._normal[handler.name] = UserErrorHandler(error, handler.name,
                                                          handler.libname)
            raise error


    def __iter__(self):
        handlers = list(self._normal.values()) + self._embedded
        return iter(sorted(handlers, key=attrgetter('name')))

    def __len__(self):
        return len(self._normal) + len(self._embedded)

    def __contains__(self, name):
        if name in self._normal:
            return True
        return any(template.matches(name) for template in self._embedded)

[docs]    def create_runner(self, name):
        return self[name].create_runner(name)


    def __getitem__(self, name):
        try:
            return self._normal[name]
        except KeyError:
            return self._find_embedded(name)

    def _find_embedded(self, name):
        embedded = [template for template in self._embedded
                    if template.matches(name)]
        if len(embedded) == 1:
            return embedded[0]
        self._raise_no_single_match(name, embedded)

    def _raise_no_single_match(self, name, found):
        if self.source_type == self.TEST_CASE_FILE_TYPE:
            source = self.source_type
        else:
            source = "%s '%s'" % (self.source_type, self.source)
        if not found:
            raise KeywordError("%s contains no keywords matching name '%s'."
                                % (source, name))
        error = ["%s contains multiple keywords matching name '%s':"
                 % (source, name)]
        names = sorted(handler.name for handler in found)
        raise KeywordError('\n    '.join(error + names))





          

      

      

    

  

    
      
          
            
  Source code for robot.running.importer

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

import copy
import os.path
import os

from robot.output import LOGGER
from robot.errors import FrameworkError, DataError
from robot.utils import normpath, seq2str, seq2str2, is_string

from .builder import ResourceFileBuilder
from .handlerstore import HandlerStore
from .testlibraries import TestLibrary


RESOURCE_EXTENSIONS = ('.resource', '.robot', '.txt', '.tsv', '.rst', '.rest')


[docs]class Importer(object):

    def __init__(self):
        self._library_cache = ImportCache()
        self._resource_cache = ImportCache()

[docs]    def reset(self):
        self.__init__()


[docs]    def close_global_library_listeners(self):
        for lib in self._library_cache.values():
            lib.close_global_listeners()


[docs]    def import_library(self, name, args, alias, variables):
        lib = TestLibrary(name, args, variables, create_handlers=False)
        positional, named = lib.positional_args, lib.named_args
        lib = self._import_library(name, positional, named, lib)
        if alias:
            alias = variables.replace_scalar(alias)
            lib = self._copy_library(lib, alias)
            LOGGER.info("Imported library '%s' with name '%s'" % (name, alias))
        return lib


[docs]    def import_resource(self, path):
        self._validate_resource_extension(path)
        if path in self._resource_cache:
            LOGGER.info("Found resource file '%s' from cache" % path)
        else:
            resource = ResourceFileBuilder().build(path)
            self._resource_cache[path] = resource
        return self._resource_cache[path]


    def _validate_resource_extension(self, path):
        extension = os.path.splitext(path)[1]
        if extension.lower() not in RESOURCE_EXTENSIONS:
            raise DataError("Invalid resource file extension '%s'. "
                            "Supported extensions are %s."
                            % (extension, seq2str(RESOURCE_EXTENSIONS)))

    def _import_library(self, name, positional, named, lib):
        args = positional + ['%s=%s' % arg for arg in named]
        key = (name, positional, named)
        if key in self._library_cache:
            LOGGER.info("Found test library '%s' with arguments %s from cache"
                        % (name, seq2str2(args)))
            return self._library_cache[key]
        lib.create_handlers()
        self._library_cache[key] = lib
        self._log_imported_library(name, args, lib)
        return lib

    def _log_imported_library(self, name, args, lib):
        type = lib.__class__.__name__.replace('Library', '').lower()[1:]
        listener = ', with listener' if lib.has_listener else ''
        LOGGER.info("Imported library '%s' with arguments %s "
                    "(version %s, %s type, %s scope, %d keywords%s)"
                    % (name, seq2str2(args), lib.version or '<unknown>',
                       type, lib.scope, len(lib), listener))
        if not lib:
            LOGGER.warn("Imported library '%s' contains no keywords." % name)

    def _copy_library(self, orig, name):
        # This is pretty ugly. Hopefully we can remove cache and copying
        # altogether in 3.0 and always just re-import libraries:
        # https://github.com/robotframework/robotframework/issues/2106
        # Could then also remove __copy__ methods added to some handlers as
        # a workaround for this IronPython bug:
        # https://github.com/IronLanguages/main/issues/1192
        lib = copy.copy(orig)
        lib.name = name
        lib.scope = type(lib.scope)(lib)
        lib.reset_instance()
        lib.handlers = HandlerStore(orig.handlers.source,
                                    orig.handlers.source_type)
        for handler in orig.handlers._normal.values():
            handler = copy.copy(handler)
            handler.library = lib
            lib.handlers.add(handler)
        for handler in orig.handlers._embedded:
            handler = copy.copy(handler)
            handler.library = lib
            lib.handlers.add(handler, embedded=True)
        return lib



[docs]class ImportCache(object):
    """Keeps track on and optionally caches imported items.

    Handles paths in keys case-insensitively on case-insensitive OSes.
    Unlike dicts, this storage accepts mutable values in keys.
    """

    def __init__(self):
        self._keys = []
        self._items = []

    def __setitem__(self, key, item):
        if not is_string(key) and not isinstance(key, tuple):
            raise FrameworkError('Invalid key for ImportCache')
        key = self._norm_path_key(key)
        if key not in self._keys:
            self._keys.append(key)
            self._items.append(item)
        else:
            self._items[self._keys.index(key)] = item

[docs]    def add(self, key, item=None):
        self.__setitem__(key, item)


    def __getitem__(self, key):
        key = self._norm_path_key(key)
        if key not in self._keys:
            raise KeyError
        return self._items[self._keys.index(key)]

    def __contains__(self, key):
        return self._norm_path_key(key) in self._keys

[docs]    def values(self):
        return self._items


    def _norm_path_key(self, key):
        if self._is_path(key):
            return normpath(key, case_normalize=True)
        if isinstance(key, tuple):
            return tuple(self._norm_path_key(k) for k in key)
        return key

    def _is_path(self, key):
        return is_string(key) and os.path.isabs(key) and os.path.exists(key)





          

      

      

    

  

    
      
          
            
  Source code for robot.running.librarykeywordrunner

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from robot.errors import DataError
from robot.output import LOGGER
from robot.result import Keyword as KeywordResult
from robot.utils import prepr, unic
from robot.variables import contains_variable, is_list_variable, VariableAssignment

from .bodyrunner import BodyRunner
from .model import Keyword
from .outputcapture import OutputCapturer
from .signalhandler import STOP_SIGNAL_MONITOR
from .statusreporter import StatusReporter


[docs]class LibraryKeywordRunner(object):

    def __init__(self, handler, name=None):
        self._handler = handler
        self.name = name or handler.name
        self.pre_run_messages = None

    @property
    def library(self):
        return self._handler.library

    @property
    def libname(self):
        return self._handler.library.name

    @property
    def longname(self):
        return '%s.%s' % (self.library.name, self.name)

[docs]    def run(self, kw, context, run=True):
        assignment = VariableAssignment(kw.assign)
        result = self._get_result(kw, assignment)
        with StatusReporter(kw, result, context, run):
            if run:
                with assignment.assigner(context) as assigner:
                    return_value = self._run(context, kw.args)
                    assigner.assign(return_value)
                    return return_value


    def _get_result(self, kw, assignment):
        handler = self._handler
        return KeywordResult(kwname=self.name,
                             libname=handler.libname,
                             doc=handler.shortdoc,
                             args=kw.args,
                             assign=tuple(assignment),
                             tags=handler.tags,
                             type=kw.type)

    def _run(self, context, args):
        if self.pre_run_messages:
            for message in self.pre_run_messages:
                context.output.message(message)
        variables = context.variables if not context.dry_run else None
        positional, named = self._handler.resolve_arguments(args, variables)
        context.output.trace(lambda: self._trace_log_args(positional, named))
        runner = self._runner_for(context, self._handler.current_handler(),
                                  positional, dict(named))
        return self._run_with_output_captured_and_signal_monitor(runner, context)

    def _trace_log_args(self, positional, named):
        args = [prepr(arg) for arg in positional]
        args += ['%s=%s' % (unic(n), prepr(v)) for n, v in named]
        return 'Arguments: [ %s ]' % ' | '.join(args)

    def _runner_for(self, context, handler, positional, named):
        timeout = self._get_timeout(context)
        if timeout and timeout.active:
            def runner():
                with LOGGER.delayed_logging:
                    context.output.debug(timeout.get_message)
                    return timeout.run(handler, args=positional, kwargs=named)
            return runner
        return lambda: handler(*positional, **named)

    def _get_timeout(self, context):
        return min(context.timeouts) if context.timeouts else None

    def _run_with_output_captured_and_signal_monitor(self, runner, context):
        with OutputCapturer():
            return self._run_with_signal_monitoring(runner, context)

    def _run_with_signal_monitoring(self, runner, context):
        try:
            STOP_SIGNAL_MONITOR.start_running_keyword(context.in_teardown)
            return runner()
        finally:
            STOP_SIGNAL_MONITOR.stop_running_keyword()

[docs]    def dry_run(self, kw, context):
        assignment = VariableAssignment(kw.assign)
        result = self._get_result(kw, assignment)
        with StatusReporter(kw, result, context, run=False):
            assignment.validate_assignment()
            self._dry_run(context, kw.args)


    def _dry_run(self, context, args):
        if self._executed_in_dry_run(self._handler):
            self._run(context, args)
        else:
            self._handler.resolve_arguments(args)

    def _executed_in_dry_run(self, handler):
        keywords_to_execute = ('BuiltIn.Import Library',
                               'BuiltIn.Set Library Search Order',
                               'BuiltIn.Set Tags',
                               'BuiltIn.Remove Tags')
        return (handler.libname == 'Reserved' or
                handler.longname in keywords_to_execute)



[docs]class EmbeddedArgumentsRunner(LibraryKeywordRunner):

    def __init__(self, handler, name):
        LibraryKeywordRunner.__init__(self, handler, name)
        self._embedded_args = handler.name_regexp.match(name).groups()

    def _run(self, context, args):
        if args:
            raise DataError("Positional arguments are not allowed when using "
                            "embedded arguments.")
        return LibraryKeywordRunner._run(self, context, self._embedded_args)

    def _dry_run(self, context, args):
        return LibraryKeywordRunner._dry_run(self, context, self._embedded_args)

    def _get_result(self, kw, assignment):
        result = LibraryKeywordRunner._get_result(self, kw, assignment)
        result.sourcename = self._handler.name
        return result



[docs]class RunKeywordRunner(LibraryKeywordRunner):

    def __init__(self, handler, default_dry_run_keywords=False):
        LibraryKeywordRunner.__init__(self, handler)
        self._default_dry_run_keywords = default_dry_run_keywords

    def _get_timeout(self, context):
        return None

    def _run_with_output_captured_and_signal_monitor(self, runner, context):
        return self._run_with_signal_monitoring(runner, context)

    def _dry_run(self, context, args):
        LibraryKeywordRunner._dry_run(self, context, args)
        keywords = [kw for kw in self._get_dry_run_keywords(args)
                    if not contains_variable(kw.name)]
        BodyRunner(context).run(keywords)

    def _get_dry_run_keywords(self, args):
        name = self._handler.name
        if name == 'Run Keyword If':
            return self._get_run_kw_if_keywords(args)
        if name == 'Run Keywords':
            return self._get_run_kws_keywords(args)
        if self._default_dry_run_keywords:
            return self._get_default_run_kw_keywords(args)
        return []

    def _get_run_kw_if_keywords(self, given_args):
        for kw_call in self._get_run_kw_if_calls(given_args):
            if kw_call:
                yield Keyword(name=kw_call[0], args=kw_call[1:])

    def _get_run_kw_if_calls(self, given_args):
        while 'ELSE IF' in given_args:
            kw_call, given_args = self._split_run_kw_if_args(given_args, 'ELSE IF', 2)
            yield kw_call
        if 'ELSE' in given_args:
            kw_call, else_call = self._split_run_kw_if_args(given_args, 'ELSE', 1)
            yield kw_call
            yield else_call
        elif self._validate_kw_call(given_args):
            expr, kw_call = given_args[0], given_args[1:]
            if not is_list_variable(expr):
                yield kw_call

    def _split_run_kw_if_args(self, given_args, control_word, required_after):
        index = list(given_args).index(control_word)
        expr_and_call = given_args[:index]
        remaining = given_args[index+1:]
        if not (self._validate_kw_call(expr_and_call) and
                    self._validate_kw_call(remaining, required_after)):
            raise DataError("Invalid 'Run Keyword If' usage.")
        if is_list_variable(expr_and_call[0]):
            return (), remaining
        return expr_and_call[1:], remaining

    def _validate_kw_call(self, kw_call, min_length=2):
        if len(kw_call) >= min_length:
            return True
        return any(is_list_variable(item) for item in kw_call)

    def _get_run_kws_keywords(self, given_args):
        for kw_call in self._get_run_kws_calls(given_args):
            yield Keyword(name=kw_call[0], args=kw_call[1:])

    def _get_run_kws_calls(self, given_args):
        if 'AND' not in given_args:
            for kw_call in given_args:
                yield [kw_call,]
        else:
            while 'AND' in given_args:
                index = list(given_args).index('AND')
                kw_call, given_args = given_args[:index], given_args[index + 1:]
                yield kw_call
            if given_args:
                yield given_args

    def _get_default_run_kw_keywords(self, given_args):
        index = list(self._handler.arguments.positional).index('name')
        return [Keyword(name=given_args[index], args=given_args[index+1:])]





          

      

      

    

  

    
      
          
            
  Source code for robot.running.libraryscopes

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

import inspect

from robot.utils import normalize, unic


[docs]def LibraryScope(libcode, library):
    scope = _get_scope(libcode)
    if scope == 'GLOBAL':
        return GlobalScope(library)
    if scope in ('SUITE', 'TESTSUITE'):
        return TestSuiteScope(library)
    return TestCaseScope(library)



def _get_scope(libcode):
    if inspect.ismodule(libcode):
        return 'GLOBAL'
    scope = getattr(libcode, 'ROBOT_LIBRARY_SCOPE', '')
    return normalize(unic(scope), ignore='_').upper()


[docs]class GlobalScope(object):
    is_global = True

    def __init__(self, library):
        self._register_listeners = library.register_listeners
        self._unregister_listeners = library.unregister_listeners

[docs]    def start_suite(self):
        self._register_listeners()


[docs]    def end_suite(self):
        self._unregister_listeners()


[docs]    def start_test(self):
        pass


[docs]    def end_test(self):
        pass


    def __str__(self):
        return 'GLOBAL'



[docs]class TestSuiteScope(GlobalScope):
    is_global = False

    def __init__(self, library):
        GlobalScope.__init__(self, library)
        self._reset_instance = library.reset_instance
        self._instance_cache = []

[docs]    def start_suite(self):
        prev = self._reset_instance()
        self._instance_cache.append(prev)
        self._register_listeners()


[docs]    def end_suite(self):
        self._unregister_listeners(close=True)
        prev = self._instance_cache.pop()
        self._reset_instance(prev)


    def __str__(self):
        return 'SUITE'



[docs]class TestCaseScope(TestSuiteScope):

[docs]    def start_test(self):
        self._unregister_listeners()
        prev = self._reset_instance()
        self._instance_cache.append(prev)
        self._register_listeners()


[docs]    def end_test(self):
        self._unregister_listeners(close=True)
        prev = self._instance_cache.pop()
        self._reset_instance(prev)
        self._register_listeners()


    def __str__(self):
        return 'TEST'





          

      

      

    

  

    
      
          
            
  Source code for robot.running.model

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

"""Module implementing test execution related model objects.

When tests are executed normally, these objects are created based on the test
data on the file system by :class:`~.builder.TestSuiteBuilder`, but external
tools can also create an executable test suite model structure directly.
Regardless the approach to create it, the model is executed by calling
:meth:`~TestSuite.run` method of the root test suite. See the
:mod:`robot.running` package level documentation for more information and
examples.

The most important classes defined in this module are :class:`TestSuite`,
:class:`TestCase` and :class:`Keyword`. When tests are executed, these objects
can be inspected and modified by `pre-run modifiers`__ and `listeners`__.
The aforementioned objects are considered stable, but other objects in this
module may still be changed in the future major releases.

__ http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#programmatic-modification-of-results
__ http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#listener-interface
"""

import os

from robot import model
from robot.conf import RobotSettings
from robot.model import Keywords, BodyItem
from robot.output import LOGGER, Output, pyloggingconf
from robot.utils import seq2str, setter

from .bodyrunner import ForRunner, IfRunner, KeywordRunner
from .randomizer import Randomizer


[docs]class Body(model.Body):
    __slots__ = []



[docs]class IfBranches(model.IfBranches):
    __slots__ = []



[docs]@Body.register
class Keyword(model.Keyword):
    """Represents a single executable keyword.

    These keywords never have child keywords or messages. The actual keyword
    that is executed depends on the context where this model is executed.

    See the base class for documentation of attributes not documented here.
    """
    __slots__ = ['lineno']

    def __init__(self, name='', doc='', args=(), assign=(), tags=(), timeout=None,
                 type=BodyItem.KEYWORD, parent=None, lineno=None):
        model.Keyword.__init__(self, name, doc, args, assign, tags, timeout, type,
                               parent)
        self.lineno = lineno

    @property
    def source(self):
        return self.parent.source if self.parent is not None else None

[docs]    def run(self, context, run=True, templated=None):
        return KeywordRunner(context, run).run(self)




[docs]@Body.register
class For(model.For):
    __slots__ = ['lineno', 'error']
    body_class = Body

    def __init__(self, variables, flavor, values, parent=None, lineno=None, error=None):
        model.For.__init__(self, variables, flavor, values, parent)
        self.lineno = lineno
        self.error = error

    @property
    def source(self):
        return self.parent.source if self.parent is not None else None

[docs]    def run(self, context, run=True, templated=False):
        return ForRunner(context, self.flavor, run, templated).run(self)




[docs]@Body.register
class If(model.If):
    __slots__ = ['lineno', 'error']
    body_class = IfBranches

    def __init__(self, parent=None, lineno=None, error=None):
        model.If.__init__(self, parent)
        self.lineno = lineno
        self.error = error

    @property
    def source(self):
        return self.parent.source if self.parent is not None else None

[docs]    def run(self, context, run=True, templated=False):
        return IfRunner(context, run, templated).run(self)




[docs]@IfBranches.register
class IfBranch(model.IfBranch):
    __slots__ = ['lineno']
    body_class = Body

    def __init__(self, type=BodyItem.IF, condition=None, parent=None, lineno=None):
        model.IfBranch.__init__(self, type, condition, parent)
        self.lineno = lineno

    @property
    def source(self):
        return self.parent.source if self.parent is not None else None



[docs]class TestCase(model.TestCase):
    """Represents a single executable test case.

    See the base class for documentation of attributes not documented here.
    """
    __slots__ = ['template', 'lineno']
    body_class = Body        #: Internal usage only.
    fixture_class = Keyword  #: Internal usage only.

    def __init__(self, name='', doc='', tags=None, timeout=None, template=None,
                 lineno=None):
        model.TestCase.__init__(self, name, doc, tags, timeout)
        #: Name of the keyword that has been used as a template when building the test.
        # ``None`` if template is not used.
        self.template = template
        self.lineno = lineno

    @property
    def source(self):
        return self.parent.source if self.parent is not None else None



[docs]class TestSuite(model.TestSuite):
    """Represents a single executable test suite.

    See the base class for documentation of attributes not documented here.
    """
    __slots__ = ['resource']
    test_class = TestCase    #: Internal usage only.
    fixture_class = Keyword  #: Internal usage only.

    def __init__(self,  name='', doc='', metadata=None, source=None, rpa=None):
        model.TestSuite.__init__(self, name, doc, metadata, source, rpa)
        #: :class:`ResourceFile` instance containing imports, variables and
        #: keywords the suite owns. When data is parsed from the file system,
        #: this data comes from the same test case file that creates the suite.
        self.resource = ResourceFile(source=source)

[docs]    @classmethod
    def from_file_system(cls, *paths, **config):
        """Create a :class:`TestSuite` object based on the given ``paths``.

        ``paths`` are file or directory paths where to read the data from.

        Internally utilizes the :class:`~.builders.TestSuiteBuilder` class
        and ``config`` can be used to configure how it is initialized.

        New in Robot Framework 3.2.
        """
        from .builder import TestSuiteBuilder
        return TestSuiteBuilder(**config).build(*paths)


[docs]    @classmethod
    def from_model(cls, model, name=None):
        """Create a :class:`TestSuite` object based on the given ``model``.

        The model can be created by using the
        :func:`~robot.parsing.parser.parser.get_model` function and possibly
        modified by other tooling in the :mod:`robot.parsing` module.

        New in Robot Framework 3.2.
        """
        from .builder import RobotParser
        return RobotParser().build_suite(model, name)


[docs]    def configure(self, randomize_suites=False, randomize_tests=False,
                  randomize_seed=None, **options):
        """A shortcut to configure a suite using one method call.

        Can only be used with the root test suite.

        :param randomize_xxx: Passed to :meth:`randomize`.
        :param options: Passed to
            :class:`~robot.model.configurer.SuiteConfigurer` that will then
            set suite attributes, call :meth:`filter`, etc. as needed.

        Example::

            suite.configure(included_tags=['smoke'],
                            doc='Smoke test results.')

        Not to be confused with :meth:`config` method that suites, tests,
        and keywords have to make it possible to set multiple attributes in
        one call.
        """
        model.TestSuite.configure(self, **options)
        self.randomize(randomize_suites, randomize_tests, randomize_seed)


[docs]    def randomize(self, suites=True, tests=True, seed=None):
        """Randomizes the order of suites and/or tests, recursively.

        :param suites: Boolean controlling should suites be randomized.
        :param tests: Boolean controlling should tests be randomized.
        :param seed: Random seed. Can be given if previous random order needs
            to be re-created. Seed value is always shown in logs and reports.
        """
        self.visit(Randomizer(suites, tests, seed))


[docs]    def run(self, settings=None, **options):
        """Executes the suite based based the given ``settings`` or ``options``.

        :param settings: :class:`~robot.conf.settings.RobotSettings` object
            to configure test execution.
        :param options: Used to construct new
            :class:`~robot.conf.settings.RobotSettings` object if ``settings``
            are not given.
        :return: :class:`~robot.result.executionresult.Result` object with
            information about executed suites and tests.

        If ``options`` are used, their names are the same as long command line
        options except without hyphens. Some options are ignored (see below),
        but otherwise they have the same semantics as on the command line.
        Options that can be given on the command line multiple times can be
        passed as lists like ``variable=['VAR1:value1', 'VAR2:value2']``.
        If such an option is used only once, it can be given also as a single
        string like ``variable='VAR:value'``.

        Additionally listener option allows passing object directly instead of
        listener name, e.g. ``run('tests.robot', listener=Listener())``.

        To capture stdout and/or stderr streams, pass open file objects in as
        special keyword arguments ``stdout`` and ``stderr``, respectively.

        Only options related to the actual test execution have an effect.
        For example, options related to selecting or modifying test cases or
        suites (e.g. ``--include``, ``--name``, ``--prerunmodifier``) or
        creating logs and reports are silently ignored. The output XML
        generated as part of the execution can be configured, though. This
        includes disabling it with ``output=None``.

        Example::

            stdout = StringIO()
            result = suite.run(variable='EXAMPLE:value',
                               output='example.xml',
                               exitonfailure=True,
                               stdout=stdout)
            print(result.return_code)

        To save memory, the returned
        :class:`~robot.result.executionresult.Result` object does not
        have any information about the executed keywords. If that information
        is needed, the created output XML file needs to be read  using the
        :class:`~robot.result.resultbuilder.ExecutionResult` factory method.

        See the :mod:`package level <robot.running>` documentation for
        more examples, including how to construct executable test suites and
        how to create logs and reports based on the execution results.

        See the :func:`robot.run <robot.run.run>` function for a higher-level
        API for executing tests in files or directories.
        """
        from .namespace import IMPORTER
        from .signalhandler import STOP_SIGNAL_MONITOR
        from .suiterunner import SuiteRunner

        with LOGGER:
            if not settings:
                settings = RobotSettings(options)
                LOGGER.register_console_logger(**settings.console_output_config)
            with pyloggingconf.robot_handler_enabled(settings.log_level):
                with STOP_SIGNAL_MONITOR:
                    IMPORTER.reset()
                    output = Output(settings)
                    runner = SuiteRunner(output, settings)
                    self.visit(runner)
                output.close(runner.result)
        return runner.result




[docs]class Variable(object):

    def __init__(self, name, value, source=None, lineno=None, error=None):
        self.name = name
        self.value = value
        self.source = source
        self.lineno = lineno
        self.error = error

[docs]    def report_invalid_syntax(self, message, level='ERROR'):
        source = self.source or '<unknown>'
        line = ' on line %s' % self.lineno if self.lineno is not None else ''
        LOGGER.write("Error in file '%s'%s: Setting variable '%s' failed: %s"
                     % (source, line, self.name, message), level)




[docs]class ResourceFile(object):

    def __init__(self, doc='', source=None):
        self.doc = doc
        self.source = source
        self.imports = []
        self.keywords = []
        self.variables = []

    @setter
    def imports(self, imports):
        return Imports(self.source, imports)

    @setter
    def keywords(self, keywords):
        return model.ItemList(UserKeyword, {'parent': self}, items=keywords)

    @setter
    def variables(self, variables):
        return model.ItemList(Variable, {'source': self.source}, items=variables)



[docs]class UserKeyword(object):

    def __init__(self, name, args=(), doc='', tags=(), return_=None,
                 timeout=None, lineno=None, parent=None, error=None):
        self.name = name
        self.args = args
        self.doc = doc
        self.tags = tags
        self.return_ = return_ or ()
        self.timeout = timeout
        self.lineno = lineno
        self.parent = parent
        self.error = error
        self.body = None
        self._teardown = None

    @setter
    def body(self, body):
        """Child keywords as a :class:`~.Body` object."""
        return Body(self, body)

    @property
    def keywords(self):
        """Deprecated since Robot Framework 4.0.

        Use :attr:`body` or :attr:`teardown` instead.
        """
        kws = list(self.body)
        if self.teardown:
            kws.append(self.teardown)
        return Keywords(self, kws)

    @keywords.setter
    def keywords(self, keywords):
        Keywords.raise_deprecation_error()

    @property
    def teardown(self):
        if self._teardown is None:
            self._teardown = Keyword(None, parent=self, type=Keyword.TEARDOWN)
        return self._teardown

    @setter
    def tags(self, tags):
        return model.Tags(tags)

    @property
    def source(self):
        return self.parent.source if self.parent is not None else None



[docs]class Import(object):
    ALLOWED_TYPES = ('Library', 'Resource', 'Variables')

    def __init__(self, type, name, args=(), alias=None, source=None, lineno=None):
        if type not in self.ALLOWED_TYPES:
            raise ValueError("Invalid import type '%s'. Should be one of %s."
                             % (type, seq2str(self.ALLOWED_TYPES, lastsep=' or ')))
        self.type = type
        self.name = name
        self.args = args
        self.alias = alias
        self.source = source
        self.lineno = lineno

    @property
    def directory(self):
        if not self.source:
            return None
        if os.path.isdir(self.source):
            return self.source
        return os.path.dirname(self.source)

[docs]    def report_invalid_syntax(self, message, level='ERROR'):
        source = self.source or '<unknown>'
        line = ' on line %s' % self.lineno if self.lineno is not None else ''
        LOGGER.write("Error in file '%s'%s: %s" % (source, line, message), level)




[docs]class Imports(model.ItemList):

    def __init__(self, source, imports=None):
        model.ItemList.__init__(self, Import, {'source': source}, items=imports)

[docs]    def library(self, name, args=(), alias=None, lineno=None):
        self.create('Library', name, args, alias, lineno)


[docs]    def resource(self, path, lineno=None):
        self.create('Resource', path, lineno)


[docs]    def variables(self, path, args=(), lineno=None):
        self.create('Variables', path, args, lineno)






          

      

      

    

  

    
      
          
            
  Source code for robot.running.modelcombiner

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.


[docs]class ModelCombiner(object):
    __slots__ = ['data', 'result', 'priority']

    def __init__(self, data, result, **priority):
        self.data = data
        self.result = result
        self.priority = priority

    def __getattr__(self, name):
        if name in self.priority:
            return self.priority[name]
        if hasattr(self.result, name):
            return getattr(self.result, name)
        if hasattr(self.data, name):
            return getattr(self.data, name)
        raise AttributeError(name)





          

      

      

    

  

    
      
          
            
  Source code for robot.running.namespace

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

import copy
import os
from collections import OrderedDict
from itertools import chain

from robot.errors import DataError, KeywordError
from robot.libraries import STDLIBS
from robot.output import LOGGER, Message
from robot.utils import (RecommendationFinder, eq, find_file, is_string,
                         normalize, printable_name, seq2str2)

from .importer import ImportCache, Importer
from .model import Import
from .runkwregister import RUN_KW_REGISTER
from .usererrorhandler import UserErrorHandler
from .userkeyword import UserLibrary

IMPORTER = Importer()


[docs]class Namespace(object):
    _default_libraries = ('BuiltIn', 'Reserved', 'Easter')
    _library_import_by_path_endings = ('.py', '.java', '.class', '/', os.sep)

    def __init__(self, variables, suite, resource):
        LOGGER.info("Initializing namespace for test suite '%s'" % suite.longname)
        self.variables = variables
        self._imports = resource.imports
        self._kw_store = KeywordStore(resource)
        self._imported_variable_files = ImportCache()
        self._suite_name = suite.longname
        self._running_test = False

    @property
    def libraries(self):
        return self._kw_store.libraries.values()

[docs]    def handle_imports(self):
        self._import_default_libraries()
        self._handle_imports(self._imports)


    def _import_default_libraries(self):
        for name in self._default_libraries:
            self.import_library(name, notify=name == 'BuiltIn')

    def _handle_imports(self, import_settings):
        for item in import_settings:
            try:
                if not item.name:
                    raise DataError('%s setting requires value.' % item.type)
                self._import(item)
            except DataError as err:
                item.report_invalid_syntax(err.message)

    def _import(self, import_setting):
        action = {'Library': self._import_library,
                  'Resource': self._import_resource,
                  'Variables': self._import_variables}[import_setting.type]
        action(import_setting)

[docs]    def import_resource(self, name, overwrite=True):
        self._import_resource(Import('Resource', name), overwrite=overwrite)


    def _import_resource(self, import_setting, overwrite=False):
        path = self._resolve_name(import_setting)
        self._validate_not_importing_init_file(path)
        if overwrite or path not in self._kw_store.resources:
            resource = IMPORTER.import_resource(path)
            self.variables.set_from_variable_table(resource.variables, overwrite)
            user_library = UserLibrary(resource)
            self._kw_store.resources[path] = user_library
            self._handle_imports(resource.imports)
            LOGGER.imported("Resource", user_library.name,
                            importer=import_setting.source,
                            source=path)
        else:
            LOGGER.info("Resource file '%s' already imported by suite '%s'"
                        % (path, self._suite_name))

    def _validate_not_importing_init_file(self, path):
        name = os.path.splitext(os.path.basename(path))[0]
        if name.lower() == '__init__':
            raise DataError("Initialization file '%s' cannot be imported as "
                            "a resource file." % path)

[docs]    def import_variables(self, name, args, overwrite=False):
        self._import_variables(Import('Variables', name, args), overwrite)


    def _import_variables(self, import_setting, overwrite=False):
        path = self._resolve_name(import_setting)
        args = self._resolve_args(import_setting)
        if overwrite or (path, args) not in self._imported_variable_files:
            self._imported_variable_files.add((path, args))
            self.variables.set_from_file(path, args, overwrite)
            LOGGER.imported("Variables", os.path.basename(path),
                            args=list(args),
                            importer=import_setting.source,
                            source=path)
        else:
            msg = "Variable file '%s'" % path
            if args:
                msg += " with arguments %s" % seq2str2(args)
            LOGGER.info("%s already imported by suite '%s'"
                        % (msg, self._suite_name))

[docs]    def import_library(self, name, args=(), alias=None, notify=True):
        self._import_library(Import('Library', name, args, alias),
                             notify=notify)


    def _import_library(self, import_setting, notify=True):
        name = self._resolve_name(import_setting)
        lib = IMPORTER.import_library(name, import_setting.args,
                                      import_setting.alias, self.variables)
        if lib.name in self._kw_store.libraries:
            LOGGER.info("Test library '%s' already imported by suite '%s'"
                        % (lib.name, self._suite_name))
            return
        if notify:
            LOGGER.imported("Library", lib.name,
                            args=list(import_setting.args),
                            originalname=lib.orig_name,
                            importer=import_setting.source,
                            source=lib.source)
        self._kw_store.libraries[lib.name] = lib
        lib.start_suite()
        if self._running_test:
            lib.start_test()

    def _resolve_name(self, import_setting):
        name = import_setting.name
        try:
            name = self.variables.replace_string(name)
        except DataError as err:
            self._raise_replacing_vars_failed(import_setting, err)
        return self._get_name(name, import_setting)

    def _raise_replacing_vars_failed(self, import_setting, err):
        raise DataError("Replacing variables from setting '%s' failed: %s"
                        % (import_setting.type, err.message))

    def _get_name(self, name, import_setting):
        if import_setting.type == 'Library' and not self._is_library_by_path(name):
            return name
        return find_file(name, import_setting.directory,
                         file_type=import_setting.type)

    def _is_library_by_path(self, path):
        return path.lower().endswith(self._library_import_by_path_endings)

    def _resolve_args(self, import_setting):
        try:
            return self.variables.replace_list(import_setting.args)
        except DataError as err:
            self._raise_replacing_vars_failed(import_setting, err)

[docs]    def set_search_order(self, new_order):
        old_order = self._kw_store.search_order
        self._kw_store.search_order = new_order
        return old_order


[docs]    def start_test(self):
        self._running_test = True
        self.variables.start_test()
        for lib in self.libraries:
            lib.start_test()


[docs]    def end_test(self):
        self.variables.end_test()
        for lib in self.libraries:
            lib.end_test()
        self._running_test = True


[docs]    def start_suite(self):
        self.variables.start_suite()


[docs]    def end_suite(self, suite):
        for lib in self.libraries:
            lib.end_suite()
        if not suite.parent:
            IMPORTER.close_global_library_listeners()
        self.variables.end_suite()


[docs]    def start_user_keyword(self):
        self.variables.start_keyword()


[docs]    def end_user_keyword(self):
        self.variables.end_keyword()


[docs]    def get_library_instance(self, libname):
        return self._kw_store.get_library(libname).get_instance()


[docs]    def get_library_instances(self):
        return dict((name, lib.get_instance())
                    for name, lib in self._kw_store.libraries.items())


[docs]    def reload_library(self, libname_or_instance):
        library = self._kw_store.get_library(libname_or_instance)
        library.reload()
        return library


[docs]    def get_runner(self, name):
        try:
            return self._kw_store.get_runner(name)
        except DataError as error:
            return UserErrorHandler(error, name)




[docs]class KeywordStore(object):

    def __init__(self, resource):
        self.user_keywords = UserLibrary(resource,
                                         UserLibrary.TEST_CASE_FILE_TYPE)
        self.libraries = OrderedDict()
        self.resources = ImportCache()
        self.search_order = ()

[docs]    def get_library(self, name_or_instance):
        if name_or_instance is None:
            raise DataError("Library can not be None.")
        if is_string(name_or_instance):
            return self._get_lib_by_name(name_or_instance)
        return self._get_lib_by_instance(name_or_instance)


    def _get_lib_by_name(self, name):
        if name in self.libraries:
            return self.libraries[name]
        matches = [lib for lib in self.libraries.values() if eq(lib.name, name)]
        if len(matches) == 1:
            return matches[0]
        self._no_library_found(name, multiple=bool(matches))

    def _no_library_found(self, name, multiple=False):
        if multiple:
            raise DataError("Multiple libraries matching '%s' found." % name)
        raise DataError("No library '%s' found." % name)

    def _get_lib_by_instance(self, instance):
        for lib in self.libraries.values():
            if lib.get_instance(create=False) is instance:
                return lib
        self._no_library_found(instance)

[docs]    def get_runner(self, name):
        runner = self._get_runner(name)
        if runner is None:
            self._raise_no_keyword_found(name)
        return runner


    def _raise_no_keyword_found(self, name):
        if name.strip(': ').upper() == 'FOR':
            raise KeywordError(
                "Support for the old for loop syntax has been removed. "
                "Replace '%s' with 'FOR', end the loop with 'END', and "
                "remove escaping backslashes." % name
            )
        if name == '\\':
            raise KeywordError(
                "No keyword with name '\\' found. If it is used inside a for "
                "loop, remove escaping backslashes and end the loop with 'END'."
            )
        msg = "No keyword with name '%s' found." % name
        finder = KeywordRecommendationFinder(self.user_keywords,
                                             self.libraries,
                                             self.resources)
        recommendations = finder.recommend_similar_keywords(name)
        msg = finder.format_recommendations(msg, recommendations)
        raise KeywordError(msg)

    def _get_runner(self, name):
        if not name:
            raise DataError('Keyword name cannot be empty.')
        if not is_string(name):
            raise DataError('Keyword name must be a string.')
        runner = self._get_runner_from_test_case_file(name)
        if not runner and '.' in name:
            runner = self._get_explicit_runner(name)
        if not runner:
            runner = self._get_implicit_runner(name)
        if not runner:
            runner = self._get_bdd_style_runner(name)
        return runner

    def _get_bdd_style_runner(self, name):
        lower = name.lower()
        for prefix in ['given ', 'when ', 'then ', 'and ', 'but ']:
            if lower.startswith(prefix):
                runner = self._get_runner(name[len(prefix):])
                if runner:
                    runner = copy.copy(runner)
                    runner.name = name
                return runner
        return None

    def _get_implicit_runner(self, name):
        runner = self._get_runner_from_resource_files(name)
        if not runner:
            runner = self._get_runner_from_libraries(name)
        return runner

    def _get_runner_from_test_case_file(self, name):
        if name in self.user_keywords.handlers:
            return self.user_keywords.handlers.create_runner(name)

    def _get_runner_from_resource_files(self, name):
        found = [lib.handlers.create_runner(name)
                 for lib in self.resources.values()
                 if name in lib.handlers]
        if not found:
            return None
        if len(found) > 1:
            found = self._get_runner_based_on_search_order(found)
        if len(found) == 1:
            return found[0]
        self._raise_multiple_keywords_found(name, found)

    def _get_runner_from_libraries(self, name):
        found = [lib.handlers.create_runner(name) for lib in self.libraries.values()
                 if name in lib.handlers]
        if not found:
            return None
        if len(found) > 1:
            found = self._get_runner_based_on_search_order(found)
        if len(found) == 2:
            found = self._filter_stdlib_runner(*found)
        if len(found) == 1:
            return found[0]
        self._raise_multiple_keywords_found(name, found)

    def _get_runner_based_on_search_order(self, runners):
        for libname in self.search_order:
            for runner in runners:
                if eq(libname, runner.libname):
                    return [runner]
        return runners

    def _filter_stdlib_runner(self, runner1, runner2):
        stdlibs_without_remote = STDLIBS - {'Remote'}
        if runner1.library.orig_name in stdlibs_without_remote:
            standard, custom = runner1, runner2
        elif runner2.library.orig_name in stdlibs_without_remote:
            standard, custom = runner2, runner1
        else:
            return [runner1, runner2]
        if not RUN_KW_REGISTER.is_run_keyword(custom.library.orig_name, custom.name):
            self._custom_and_standard_keyword_conflict_warning(custom, standard)
        return [custom]

    def _custom_and_standard_keyword_conflict_warning(self, custom, standard):
        custom_with_name = standard_with_name = ''
        if custom.library.name != custom.library.orig_name:
            custom_with_name = " imported as '%s'" % custom.library.name
        if standard.library.name != standard.library.orig_name:
            standard_with_name = " imported as '%s'" % standard.library.name
        warning = Message("Keyword '%s' found both from a custom test library "
                          "'%s'%s and a standard library '%s'%s. The custom "
                          "keyword is used. To select explicitly, and to get "
                          "rid of this warning, use either '%s' or '%s'."
                          % (standard.name,
                             custom.library.orig_name, custom_with_name,
                             standard.library.orig_name, standard_with_name,
                             custom.longname, standard.longname), level='WARN')
        if custom.pre_run_messages:
            custom.pre_run_messages.append(warning)
        else:
            custom.pre_run_messages = [warning]

    def _get_explicit_runner(self, name):
        found = []
        for owner_name, kw_name in self._yield_owner_and_kw_names(name):
            found.extend(self._find_keywords(owner_name, kw_name))
        if len(found) > 1:
            self._raise_multiple_keywords_found(name, found, implicit=False)
        return found[0] if found else None

    def _yield_owner_and_kw_names(self, full_name):
        tokens = full_name.split('.')
        for i in range(1, len(tokens)):
            yield '.'.join(tokens[:i]), '.'.join(tokens[i:])

    def _find_keywords(self, owner_name, name):
        return [owner.handlers.create_runner(name)
                for owner in chain(self.libraries.values(), self.resources.values())
                if eq(owner.name, owner_name) and name in owner.handlers]

    def _raise_multiple_keywords_found(self, name, found, implicit=True):
        error = "Multiple keywords with name '%s' found" % name
        if implicit:
            error += ". Give the full name of the keyword you want to use"
        names = sorted(runner.longname for runner in found)
        raise KeywordError('\n    '.join([error+':'] + names))



[docs]class KeywordRecommendationFinder(object):

    def __init__(self, user_keywords, libraries, resources):
        self.user_keywords = user_keywords
        self.libraries = libraries
        self.resources = resources

[docs]    def recommend_similar_keywords(self, name):
        """Return keyword names similar to `name`."""
        candidates = self._get_candidates('.' in name)
        finder = RecommendationFinder(
            lambda name: normalize(candidates.get(name, name), ignore='_')
        )
        return finder.find(name, candidates)


[docs]    @staticmethod
    def format_recommendations(message, recommendations):
        return RecommendationFinder().format(message, recommendations)


    def _get_candidates(self, use_full_name):
        names = {}
        for owner, name in self._get_all_handler_names():
            full_name = '%s.%s' % (owner, name) if owner else name
            names[full_name] = full_name if use_full_name else name
        return names

    def _get_all_handler_names(self):
        """Return a list of `(library_name, handler_name)` tuples."""
        handlers = [('', printable_name(handler.name, True))
                    for handler in self.user_keywords.handlers]
        for library in chain(self.libraries.values(), self.resources.values()):
            if library.name != 'Reserved':
                handlers.extend(
                    ((library.name or '',
                      printable_name(handler.name, code_style=True))
                     for handler in library.handlers))
        # sort handlers to ensure consistent ordering between Jython and Python
        return sorted(handlers)





          

      

      

    

  

    
      
          
            
  Source code for robot.running.outputcapture

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

import sys
from robot.utils import StringIO

from robot.output import LOGGER
from robot.utils import console_decode, console_encode, JYTHON


[docs]class OutputCapturer(object):

    def __init__(self, library_import=False):
        self._library_import = library_import
        self._python_out = PythonCapturer(stdout=True)
        self._python_err = PythonCapturer(stdout=False)
        self._java_out = JavaCapturer(stdout=True)
        self._java_err = JavaCapturer(stdout=False)

    def __enter__(self):
        if self._library_import:
            LOGGER.enable_library_import_logging()
        return self

    def __exit__(self, exc_type, exc_value, exc_trace):
        self._release_and_log()
        if self._library_import:
            LOGGER.disable_library_import_logging()
        return False

    def _release_and_log(self):
        stdout, stderr = self._release()
        if stdout:
            LOGGER.log_output(stdout)
        if stderr:
            LOGGER.log_output(stderr)
            sys.__stderr__.write(console_encode(stderr, stream=sys.__stderr__))

    def _release(self):
        stdout = self._python_out.release() + self._java_out.release()
        stderr = self._python_err.release() + self._java_err.release()
        return stdout, stderr



[docs]class PythonCapturer(object):

    def __init__(self, stdout=True):
        if stdout:
            self._original = sys.stdout
            self._set_stream = self._set_stdout
        else:
            self._original = sys.stderr
            self._set_stream = self._set_stderr
        self._stream = StringIO()
        self._set_stream(self._stream)

    def _set_stdout(self, stream):
        sys.stdout = stream

    def _set_stderr(self, stream):
        sys.stderr = stream

[docs]    def release(self):
        # Original stream must be restored before closing the current
        self._set_stream(self._original)
        try:
            return self._get_value(self._stream)
        finally:
            self._stream.close()
            self._avoid_at_exit_errors(self._stream)


    def _get_value(self, stream):
        try:
            return console_decode(stream.getvalue())
        except UnicodeError:
            # Error occurs if non-ASCII chars logged both as str and unicode.
            stream.buf = console_decode(stream.buf)
            stream.buflist = [console_decode(item) for item in stream.buflist]
            return stream.getvalue()

    def _avoid_at_exit_errors(self, stream):
        # Avoid ValueError at program exit when logging module tries to call
        # methods of streams it has intercepted that are already closed.
        # Which methods are called, and does logging silence possible errors,
        # depends on Python/Jython version. For related discussion see
        # http://bugs.python.org/issue6333
        stream.write = lambda s: None
        stream.flush = lambda: None



if not JYTHON:

    class JavaCapturer(object):

        def __init__(self, stdout=True):
            pass

        def release(self):
            return u''

else:

    from java.io import ByteArrayOutputStream, PrintStream
    from java.lang import System

[docs]    class JavaCapturer(object):

        def __init__(self, stdout=True):
            if stdout:
                self._original = System.out
                self._set_stream = System.setOut
            else:
                self._original = System.err
                self._set_stream = System.setErr
            self._bytes = ByteArrayOutputStream()
            self._stream = PrintStream(self._bytes, False, 'UTF-8')
            self._set_stream(self._stream)

[docs]        def release(self):
            # Original stream must be restored before closing the current
            self._set_stream(self._original)
            self._stream.close()
            output = self._bytes.toString('UTF-8')
            self._bytes.reset()
            return output






          

      

      

    

  

    
      
          
            
  Source code for robot.running.randomizer

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from random import Random

from robot.model import SuiteVisitor


[docs]class Randomizer(SuiteVisitor):

    def __init__(self, randomize_suites=True, randomize_tests=True, seed=None):
        self.randomize_suites = randomize_suites
        self.randomize_tests = randomize_tests
        self.seed = seed
        # Cannot use just Random(seed) due to
        # https://ironpython.codeplex.com/workitem/35155
        args = (seed,) if seed is not None else ()
        self._shuffle = Random(*args).shuffle

[docs]    def start_suite(self, suite):
        if not self.randomize_suites and not self.randomize_tests:
            return False
        if self.randomize_suites:
            self._shuffle(suite.suites)
        if self.randomize_tests:
            self._shuffle(suite.tests)
        if not suite.parent:
            suite.metadata['Randomized'] = self._get_message()


    def _get_message(self):
        possibilities = {(True, True): 'Suites and tests',
                         (True, False): 'Suites',
                         (False, True): 'Tests'}
        randomized = (self.randomize_suites, self.randomize_tests)
        return '%s (seed %s)' % (possibilities[randomized], self.seed)

[docs]    def visit_test(self, test):
        pass


[docs]    def visit_keyword(self, kw):
        pass






          

      

      

    

  

    
      
          
            
  Source code for robot.running.status

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from robot.errors import ExecutionStatus, PassExecution
from robot.model import TagPatterns
from robot.utils import html_escape, py3to2, unic, test_or_task


[docs]@py3to2
class Failure(object):

    def __init__(self):
        self.setup = None
        self.test = None
        self.teardown = None
        self.setup_skipped = None
        self.test_skipped = None
        self.teardown_skipped = None

    def __bool__(self):
        return bool(
            self.setup or self.test or self.teardown or
            self.setup_skipped or self.test_skipped or self.teardown_skipped
        )



[docs]@py3to2
class Exit(object):

    def __init__(self, failure_mode=False, error_mode=False, skip_teardown_mode=False):
        self.failure_mode = failure_mode
        self.error_mode = error_mode
        self.skip_teardown_mode = skip_teardown_mode
        self.failure = False
        self.error = False
        self.fatal = False

[docs]    def failure_occurred(self, failure=None):
        if isinstance(failure, ExecutionStatus) and failure.exit:
            self.fatal = True
        if self.failure_mode:
            self.failure = True


[docs]    def error_occurred(self):
        if self.error_mode:
            self.error = True


    @property
    def teardown_allowed(self):
        return not (self.skip_teardown_mode and self)

    def __bool__(self):
        return self.failure or self.error or self.fatal



class _ExecutionStatus(object):

    def __init__(self, parent=None, *exit_modes):
        self.parent = parent
        self.children = []
        self.failure = Failure()
        self.exit = parent.exit if parent else Exit(*exit_modes)
        self.skipped = False
        self._teardown_allowed = False
        self._rpa = False
        if parent:
            parent.children.append(self)

    def setup_executed(self, failure=None):
        if failure and not isinstance(failure, PassExecution):
            if failure.skip:
                self.failure.setup_skipped = unic(failure)
                self.skipped = True
            elif self._skip_on_failure():
                msg = self._skip_on_failure_message('Setup failed:\n%s' % failure)
                self.failure.test = msg
                self.skipped = True
            else:
                self.failure.setup = unic(failure)
                self.exit.failure_occurred(failure)

        self._teardown_allowed = True

    def teardown_executed(self, failure=None):
        if failure and not isinstance(failure, PassExecution):
            if failure.skip:
                self.failure.teardown_skipped = unic(failure)
                # Keep the Skip status in case the teardown failed
                self.skipped = self.skipped or failure.skip
            elif self._skip_on_failure():
                msg = self._skip_on_failure_message('Teardown failed:\n%s' % failure)
                self.failure.test = msg
                self.skipped = True
            else:
                self.failure.teardown = unic(failure)
                self.exit.failure_occurred(failure)

    def failure_occurred(self):
        self.exit.failure_occurred()

    def error_occurred(self):
        self.exit.error_occurred()

    @property
    def teardown_allowed(self):
        return self.exit.teardown_allowed and self._teardown_allowed

    @property
    def failed(self):
        return bool(self.parent and self.parent.failed or self.failure or self.exit)

    @property
    def status(self):
        if self.skipped or (self.parent and self.parent.skipped):
            return 'SKIP'
        if self.failed:
            return 'FAIL'
        return 'PASS'

    def _skip_on_failure(self):
        return False

    def _skip_on_failure_message(self, failure):
        return test_or_task(
            "{Test} failed but its tags matched '--SkipOnFailure' and it was marked "
            "skipped.\n\nOriginal failure:\n%s" % unic(failure), rpa=self._rpa
        )

    @property
    def message(self):
        if self.failure or self.exit:
            return self._my_message()
        if self.parent and self.parent.failed:
            return self._parent_message()
        return ''

    def _my_message(self):
        raise NotImplementedError

    def _parent_message(self):
        return ParentMessage(self.parent).message


[docs]class SuiteStatus(_ExecutionStatus):

    def __init__(self, parent=None, exit_on_failure_mode=False,
                 exit_on_error_mode=False, skip_teardown_on_exit_mode=False):
        _ExecutionStatus.__init__(self, parent, exit_on_failure_mode,
                                  exit_on_error_mode, skip_teardown_on_exit_mode)

    def _my_message(self):
        return SuiteMessage(self).message



[docs]class TestStatus(_ExecutionStatus):

    def __init__(self, parent, test, skip_on_failure=None, critical_tags=None,
                 rpa=False):
        _ExecutionStatus.__init__(self, parent)
        self.exit = parent.exit
        self._test = test
        self._skip_on_failure_tags = skip_on_failure
        self._critical_tags = critical_tags
        self._rpa = rpa

[docs]    def test_failed(self, failure):
        if hasattr(failure, 'skip') and failure.skip:
            self.test_skipped(failure)
        elif self._skip_on_failure():
            msg = self._skip_on_failure_message(failure)
            self.failure.test = msg
            self.skipped = True
        else:
            self.failure.test = unic(failure)
            self.exit.failure_occurred(failure)


[docs]    def test_skipped(self, reason):
        self.skipped = True
        self.failure.test_skipped = unic(reason)


[docs]    def skip_if_needed(self):
        if not self.skipped and self.failed and self._skip_on_failure():
            msg = self._skip_on_failure_message(self.failure.test)
            self.failure.test = msg
            self.skipped = True
            return True
        return False


    def _skip_on_failure(self):
        tags = self._test.tags
        critical_pattern = TagPatterns(self._critical_tags)
        critical = not critical_pattern or critical_pattern.match(tags)
        skip_on_fail_pattern = TagPatterns(self._skip_on_failure_tags)
        skip_on_fail = skip_on_fail_pattern and skip_on_fail_pattern.match(tags)
        return not critical or skip_on_fail

    def _my_message(self):
        return TestMessage(self).message



class _Message(object):
    setup_message = NotImplemented
    setup_skipped_message = NotImplemented
    teardown_skipped_message = NotImplemented
    teardown_message = NotImplemented
    also_teardown_message = NotImplemented

    def __init__(self, status):
        self.failure = status.failure
        self.skipped = status.skipped

    @property
    def message(self):
        message = self._get_message_before_teardown()
        return self._get_message_after_teardown(message)

    def _get_message_before_teardown(self):
        if self.failure.setup_skipped:
            return self._format_setup_or_teardown_message(
                self.setup_skipped_message, self.failure.setup_skipped)
        if self.failure.setup:
            return self._format_setup_or_teardown_message(
                self.setup_message, self.failure.setup)
        return self.failure.test_skipped or self.failure.test or ''

    def _format_setup_or_teardown_message(self, prefix, message):
        if message.startswith('*HTML*'):
            prefix = '*HTML* ' + prefix
            message = message[6:].lstrip()
        return prefix % message

    def _get_message_after_teardown(self, message):
        if not (self.failure.teardown or self.failure.teardown_skipped):
            return message
        if not message:
            if self.failure.teardown:
                prefix, msg = self.teardown_message, self.failure.teardown
            else:
                prefix, msg = self.teardown_skipped_message, self.failure.teardown_skipped
            return self._format_setup_or_teardown_message(prefix, msg)
        return self._format_message_with_teardown_message(message)

    def _format_message_with_teardown_message(self, message):
        teardown = self.failure.teardown or self.failure.teardown_skipped
        if teardown.startswith('*HTML*'):
            teardown = teardown[6:].lstrip()
            if not message.startswith('*HTML*'):
                message = '*HTML* ' + html_escape(message)
        elif message.startswith('*HTML*'):
            teardown = html_escape(teardown)
        if self.failure.teardown:
            return self.also_teardown_message % (message, teardown)
        return self.also_teardown_skip_message % (teardown, message)


[docs]class TestMessage(_Message):
    setup_message = 'Setup failed:\n%s'
    teardown_message = 'Teardown failed:\n%s'
    setup_skipped_message = '%s'
    teardown_skipped_message = '%s'
    also_teardown_message = '%s\n\nAlso teardown failed:\n%s'
    also_teardown_skip_message = 'Skipped in teardown:\n%s\n\nEarlier message:\n%s'
    exit_on_fatal_message = 'Test execution stopped due to a fatal error.'
    exit_on_failure_message = \
        'Failure occurred and exit-on-failure mode is in use.'
    exit_on_error_message = 'Error occurred and exit-on-error mode is in use.'

    def __init__(self, status):
        _Message.__init__(self, status)
        self.exit = status.exit

    @property
    def message(self):
        message = super(TestMessage, self).message
        if message:
            return message
        if self.exit.failure:
            return self.exit_on_failure_message
        if self.exit.fatal:
            return self.exit_on_fatal_message
        if self.exit.error:
            return self.exit_on_error_message
        return ''



[docs]class SuiteMessage(_Message):
    setup_message = 'Suite setup failed:\n%s'
    setup_skipped_message = 'Skipped in suite setup:\n%s'
    teardown_skipped_message = 'Skipped in suite teardown:\n%s'
    teardown_message = 'Suite teardown failed:\n%s'
    also_teardown_message = '%s\n\nAlso suite teardown failed:\n%s'
    also_teardown_skip_message = 'Skipped in suite teardown:\n%s\n\nEarlier message:\n%s'



[docs]class ParentMessage(SuiteMessage):
    setup_message = 'Parent suite setup failed:\n%s'
    setup_skipped_message = 'Skipped in parent suite setup:\n%s'
    teardown_skipped_message = 'Skipped in parent suite teardown:\n%s'
    teardown_message = 'Parent suite teardown failed:\n%s'
    also_teardown_message = '%s\n\nAlso parent suite teardown failed:\n%s'

    def __init__(self, status):
        while status.parent and status.parent.failed:
            status = status.parent
        SuiteMessage.__init__(self, status)





          

      

      

    

  

    
      
          
            
  Source code for robot.running.statusreporter

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from robot.errors import (ExecutionFailed, ExecutionStatus, DataError,
                          HandlerExecutionFailed, KeywordError, VariableError)
from robot.utils import ErrorDetails, get_timestamp

from .modelcombiner import ModelCombiner


[docs]class StatusReporter(object):

    def __init__(self, data, result, context, run=True):
        self.data = data
        self.result = result
        self.context = context
        if run:
            self.pass_status = result.PASS
            result.status = result.NOT_SET
        else:
            self.pass_status = result.status = result.NOT_RUN
        self.initial_test_status = None

    def __enter__(self):
        context = self.context
        result = self.result
        self.initial_test_status = context.test.status if context.test else None
        result.starttime = get_timestamp()
        context.start_keyword(ModelCombiner(self.data, result))
        self._warn_if_deprecated(result.doc, result.name)
        return self

    def _warn_if_deprecated(self, doc, name):
        if doc.startswith('*DEPRECATED') and '*' in doc[1:]:
            message = ' ' + doc.split('*', 2)[-1].strip()
            self.context.warn("Keyword '%s' is deprecated.%s" % (name, message))

    def __exit__(self, exc_type, exc_val, exc_tb):
        context = self.context
        result = self.result
        failure = self._get_failure(exc_type, exc_val, exc_tb, context)
        if failure is None:
            result.status = self.pass_status
        else:
            result.status = failure.status
            if result.type == result.TEARDOWN:
                result.message = failure.message
        if self.initial_test_status == 'PASS':
            context.test.status = result.status
        result.endtime = get_timestamp()
        context.end_keyword(ModelCombiner(self.data, result))
        if failure is not exc_val:
            raise failure

    def _get_failure(self, exc_type, exc_value, exc_tb, context):
        if exc_value is None:
            return None
        if isinstance(exc_value, ExecutionStatus):
            return exc_value
        if isinstance(exc_value, DataError):
            msg = exc_value.message
            context.fail(msg)
            syntax = not isinstance(exc_value, (KeywordError, VariableError))
            return ExecutionFailed(msg, syntax=syntax)
        exc_info = (exc_type, exc_value, exc_tb)
        failure = HandlerExecutionFailed(ErrorDetails(exc_info))
        if failure.timeout:
            context.timeout_occurred = True
        if failure.skip:
            context.skip(failure.full_message)
        else:
            context.fail(failure.full_message)
        if failure.traceback:
            context.debug(failure.traceback)
        return failure





          

      

      

    

  

    
      
          
            
  Source code for robot.running.suiterunner

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from robot.errors import ExecutionFailed, ExecutionStatus, DataError, PassExecution
from robot.model import SuiteVisitor, TagPatterns
from robot.result import TestSuite, Result
from robot.utils import get_timestamp, is_list_like, NormalizedDict, unic, test_or_task
from robot.variables import VariableScopes

from .bodyrunner import BodyRunner, KeywordRunner
from .context import EXECUTION_CONTEXTS
from .modelcombiner import ModelCombiner
from .namespace import Namespace
from .status import SuiteStatus, TestStatus
from .timeouts import TestTimeout


[docs]class SuiteRunner(SuiteVisitor):

    def __init__(self, output, settings):
        self.result = None
        self._output = output
        self._settings = settings
        self._variables = VariableScopes(settings)
        self._suite = None
        self._suite_status = None
        self._executed_tests = None
        self._skipped_tags = TagPatterns(settings.skipped_tags)

    @property
    def _context(self):
        return EXECUTION_CONTEXTS.current

[docs]    def start_suite(self, suite):
        self._output.library_listeners.new_suite_scope()
        result = TestSuite(source=suite.source,
                           name=suite.name,
                           doc=suite.doc,
                           metadata=suite.metadata,
                           starttime=get_timestamp(),
                           rpa=self._settings.rpa)
        if not self.result:
            self.result = Result(root_suite=result, rpa=self._settings.rpa)
            self.result.configure(status_rc=self._settings.status_rc,
                                  stat_config=self._settings.statistics_config)
        else:
            self._suite.suites.append(result)
        self._suite = result
        self._suite_status = SuiteStatus(self._suite_status,
                                         self._settings.exit_on_failure,
                                         self._settings.exit_on_error,
                                         self._settings.skip_teardown_on_exit)
        ns = Namespace(self._variables, result, suite.resource)
        ns.start_suite()
        ns.variables.set_from_variable_table(suite.resource.variables)
        EXECUTION_CONTEXTS.start_suite(result, ns, self._output,
                                       self._settings.dry_run)
        self._context.set_suite_variables(result)
        if not self._suite_status.failed:
            ns.handle_imports()
            ns.variables.resolve_delayed()
        result.doc = self._resolve_setting(result.doc)
        result.metadata = [(self._resolve_setting(n), self._resolve_setting(v))
                           for n, v in result.metadata.items()]
        self._context.set_suite_variables(result)
        self._output.start_suite(ModelCombiner(suite, result,
                                               tests=suite.tests,
                                               suites=suite.suites,
                                               test_count=suite.test_count))
        self._output.register_error_listener(self._suite_status.error_occurred)
        self._run_setup(suite.setup, self._suite_status)
        self._executed_tests = NormalizedDict(ignore='_')


    def _resolve_setting(self, value):
        if is_list_like(value):
            return self._variables.replace_list(value, ignore_errors=True)
        return self._variables.replace_string(value, ignore_errors=True)

[docs]    def end_suite(self, suite):
        self._suite.message = self._suite_status.message
        self._context.report_suite_status(self._suite.status,
                                          self._suite.full_message)
        with self._context.suite_teardown():
            failure = self._run_teardown(suite.teardown, self._suite_status)
            if failure:
                if failure.skip:
                    self._suite.suite_teardown_skipped(unic(failure))
                else:
                    self._suite.suite_teardown_failed(unic(failure))
        self._suite.endtime = get_timestamp()
        self._suite.message = self._suite_status.message
        self._context.end_suite(ModelCombiner(suite, self._suite))
        self._suite = self._suite.parent
        self._suite_status = self._suite_status.parent
        self._output.library_listeners.discard_suite_scope()


[docs]    def visit_test(self, test):
        if test.name in self._executed_tests:
            self._output.warn("Multiple test cases with name '%s' executed in "
                              "test suite '%s'." % (test.name, self._suite.longname))
        self._executed_tests[test.name] = True
        result = self._suite.tests.create(name=self._resolve_setting(test.name),
                                          doc=self._resolve_setting(test.doc),
                                          tags=self._resolve_setting(test.tags),
                                          starttime=get_timestamp(),
                                          timeout=self._get_timeout(test))
        self._context.start_test(result)
        self._output.start_test(ModelCombiner(test, result))
        status = TestStatus(self._suite_status, result,
                            self._settings.skip_on_failure,
                            self._settings.critical_tags,
                            self._settings.rpa)
        if status.exit:
            self._add_exit_combine()
            result.tags.add('robot:exit')
        if self._skipped_tags.match(test.tags):
            status.test_skipped(
                test_or_task(
                    "{Test} skipped with '--skip' command line option.",
                    self._settings.rpa))
        if not status.failed and not test.name:
            status.test_failed(
                test_or_task('{Test} case name cannot be empty.',
                             self._settings.rpa))
        if not status.failed and not test.body:
            status.test_failed(
                test_or_task('{Test} case contains no keywords.',
                             self._settings.rpa))
        self._run_setup(test.setup, status, result)
        try:
            if not status.failed:
                BodyRunner(self._context, templated=bool(test.template)).run(test.body)
            else:
                if status.skipped:
                    status.test_skipped(status.message)
                else:
                    status.test_failed(status.message)
        except PassExecution as exception:
            err = exception.earlier_failures
            if err:
                status.test_failed(err)
            else:
                result.message = exception.message
        except ExecutionStatus as err:
            status.test_failed(err)
        result.status = status.status
        result.message = status.message or result.message
        with self._context.test_teardown(result):
            self._run_teardown(test.teardown, status, result)
        if not status.failed and result.timeout and result.timeout.timed_out():
            status.test_failed(result.timeout.get_message())
            result.message = status.message
        if status.skip_if_needed():
            result.message = status.message or result.message
        result.status = status.status
        result.endtime = get_timestamp()
        failed_before_listeners = result.failed
        self._output.end_test(ModelCombiner(test, result))
        if result.failed and not failed_before_listeners:
            status.failure_occurred()
        self._context.end_test(result)


    def _add_exit_combine(self):
        exit_combine = ('NOT robot:exit', '')
        if exit_combine not in self._settings['TagStatCombine']:
            self._settings['TagStatCombine'].append(exit_combine)

    def _get_timeout(self, test):
        if not test.timeout:
            return None
        return TestTimeout(test.timeout, self._variables, rpa=test.parent.rpa)

    def _run_setup(self, setup, status, result=None):
        if not status.failed:
            exception = self._run_setup_or_teardown(setup)
            status.setup_executed(exception)
            if result and isinstance(exception, PassExecution):
                result.message = exception.message
        else:
            if status.parent and status.parent.skipped:
                status.skipped = True

    def _run_teardown(self, teardown, status, result=None):
        if status.teardown_allowed:
            exception = self._run_setup_or_teardown(teardown)
            status.teardown_executed(exception)
            failed = exception and not isinstance(exception, PassExecution)
            if result and exception:
                if failed or status.skipped or exception.skip:
                    result.message = status.message
                else:
                    # Pass execution used in teardown,
                    # and it overrides previous failure message
                    result.message = exception.message
            return exception if failed else None

    def _run_setup_or_teardown(self, data):
        if not data:
            return None
        try:
            name = self._variables.replace_string(data.name)
        except DataError as err:
            if self._settings.dry_run:
                return None
            return ExecutionFailed(message=err.message)
        if name.upper() in ('', 'NONE'):
            return None
        try:
            KeywordRunner(self._context).run(data, name=name)
        except ExecutionStatus as err:
            return err





          

      

      

    

  

    
      
          
            
  Source code for robot.running.testlibraries

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

import inspect
import os

from robot.errors import DataError
from robot.libraries import STDLIBS
from robot.output import LOGGER
from robot.utils import (getdoc, get_error_details, Importer, is_init,
                         is_java_method, JYTHON, normalize, seq2str2, unic,
                         is_list_like, py3to2, type_name)

from .arguments import EmbeddedArguments
from .context import EXECUTION_CONTEXTS
from .dynamicmethods import (GetKeywordArguments, GetKeywordDocumentation,
                             GetKeywordNames, GetKeywordTags, RunKeyword)
from .handlers import Handler, InitHandler, DynamicHandler, EmbeddedArgumentsHandler
from .handlerstore import HandlerStore
from .libraryscopes import LibraryScope
from .outputcapture import OutputCapturer


if JYTHON:
    from java.lang import Object
else:
    Object = None


[docs]def TestLibrary(name, args=None, variables=None, create_handlers=True,
                logger=LOGGER):
    if name in STDLIBS:
        import_name = 'robot.libraries.' + name
    else:
        import_name = name
    with OutputCapturer(library_import=True):
        importer = Importer('library', logger=LOGGER)
        libcode, source = importer.import_class_or_module(import_name,
                                                          return_source=True)
    libclass = _get_lib_class(libcode)
    lib = libclass(libcode, name, args or [], source, logger, variables)
    if create_handlers:
        lib.create_handlers()
    return lib



def _get_lib_class(libcode):
    if inspect.ismodule(libcode):
        return _ModuleLibrary
    if GetKeywordNames(libcode):
        if RunKeyword(libcode):
            return _DynamicLibrary
        else:
            return _HybridLibrary
    return _ClassLibrary


@py3to2
class _BaseTestLibrary(object):
    get_handler_error_level = 'INFO'

    def __init__(self, libcode, name, args, source, logger, variables):
        if os.path.exists(name):
            name = os.path.splitext(os.path.basename(os.path.abspath(name)))[0]
        self.version = self._get_version(libcode)
        self.name = name
        self.orig_name = name  # Stores original name when importing WITH NAME
        self.source = source
        self.logger = logger
        self.handlers = HandlerStore(self.name, HandlerStore.TEST_LIBRARY_TYPE)
        self.has_listener = None  # Set when first instance is created
        self._doc = None
        self.doc_format = self._get_doc_format(libcode)
        self.scope = LibraryScope(libcode, self)
        self.init = self._create_init_handler(libcode)
        self.positional_args, self.named_args \
            = self.init.resolve_arguments(args, variables)
        self._libcode = libcode
        self._libinst = None

    def __len__(self):
        return len(self.handlers)

    def __bool__(self):
        return bool(self.handlers) or self.has_listener

    @property
    def doc(self):
        if self._doc is None:
            self._doc = getdoc(self.get_instance())
        return self._doc

    @property
    def lineno(self):
        if inspect.ismodule(self._libcode):
            return 1
        try:
            lines, start_lineno = inspect.getsourcelines(self._libcode)
        except (TypeError, OSError, IOError):
            return -1
        for increment, line in enumerate(lines):
            if line.strip().startswith('class '):
                return start_lineno + increment
        return start_lineno

    def create_handlers(self):
        self._create_handlers(self.get_instance())
        self.reset_instance()

    def reload(self):
        self.handlers = HandlerStore(self.name, HandlerStore.TEST_LIBRARY_TYPE)
        self._create_handlers(self.get_instance())

    def start_suite(self):
        self.scope.start_suite()

    def end_suite(self):
        self.scope.end_suite()

    def start_test(self):
        self.scope.start_test()

    def end_test(self):
        self.scope.end_test()

    def report_error(self, message, details=None, level='ERROR',
                     details_level='INFO'):
        prefix = 'Error in' if level in ('ERROR', 'WARN') else 'In'
        self.logger.write("%s library '%s': %s" % (prefix, self.name, message),
                          level)
        if details:
            self.logger.write('Details:\n%s' % details, details_level)

    def _get_version(self, libcode):
        return self._get_attr(libcode, 'ROBOT_LIBRARY_VERSION') \
            or self._get_attr(libcode, '__version__')

    def _get_attr(self, object, attr, default='', upper=False):
        value = unic(getattr(object, attr, default))
        if upper:
            value = normalize(value, ignore='_').upper()
        return value

    def _get_doc_format(self, libcode):
        return self._get_attr(libcode, 'ROBOT_LIBRARY_DOC_FORMAT', upper=True)

    def _create_init_handler(self, libcode):
        return InitHandler(self, self._resolve_init_method(libcode))

    def _resolve_init_method(self, libcode):
        init = getattr(libcode, '__init__', None)
        return init if is_init(init) else None

    def reset_instance(self, instance=None):
        prev = self._libinst
        if not self.scope.is_global:
            self._libinst = instance
        return prev

    def get_instance(self, create=True):
        if not create:
            return self._libinst
        if self._libinst is None:
            self._libinst = self._get_instance(self._libcode)
        if self.has_listener is None:
            self.has_listener = bool(self.get_listeners(self._libinst))
        return self._libinst

    def _get_instance(self, libcode):
        with OutputCapturer(library_import=True):
            try:
                return libcode(*self.positional_args, **dict(self.named_args))
            except:
                self._raise_creating_instance_failed()

    def get_listeners(self, libinst=None):
        if libinst is None:
            libinst = self.get_instance()
        listeners = getattr(libinst, 'ROBOT_LIBRARY_LISTENER', None)
        if listeners is None:
            return []
        if is_list_like(listeners):
            return listeners
        return [listeners]

    def register_listeners(self):
        if self.has_listener:
            try:
                listeners = EXECUTION_CONTEXTS.current.output.library_listeners
                listeners.register(self.get_listeners(), self)
            except DataError as err:
                self.has_listener = False
                # Error should have information about suite where the
                # problem occurred but we don't have such info here.
                self.report_error("Registering listeners failed: %s" % err)

    def unregister_listeners(self, close=False):
        if self.has_listener:
            listeners = EXECUTION_CONTEXTS.current.output.library_listeners
            listeners.unregister(self, close)

    def close_global_listeners(self):
        if self.scope.is_global:
            for listener in self.get_listeners():
                self._close_listener(listener)

    def _close_listener(self, listener):
        method = (getattr(listener, 'close', None) or
                  getattr(listener, '_close', None))
        try:
            if method:
                method()
        except:
            message, details = get_error_details()
            name = getattr(listener, '__name__', None) or type_name(listener)
            self.report_error("Calling method '%s' of listener '%s' failed: %s"
                              % (method.__name__, name, message), details)

    def _create_handlers(self, libcode):
        try:
            names = self._get_handler_names(libcode)
        except:
            message, details = get_error_details()
            raise DataError("Getting keyword names from library '%s' failed: %s"
                            % (self.name, message), details)
        for name in names:
            method = self._try_to_get_handler_method(libcode, name)
            if method:
                handler, embedded = self._try_to_create_handler(name, method)
                if handler:
                    try:
                        self.handlers.add(handler, embedded)
                    except DataError as err:
                        self._adding_keyword_failed(handler.name, err)
                    else:
                        self.logger.debug("Created keyword '%s'" % handler.name)

    def _get_handler_names(self, libcode):
        def has_robot_name(name):
            try:
                handler = self._get_handler_method(libcode, name)
            except DataError:
                return False
            return hasattr(handler, 'robot_name')

        auto_keywords = getattr(libcode, 'ROBOT_AUTO_KEYWORDS', True)
        if auto_keywords:
            predicate = lambda name: name[:1] != '_' or has_robot_name(name)
        else:
            predicate = has_robot_name
        return [name for name in dir(libcode) if predicate(name)]

    def _try_to_get_handler_method(self, libcode, name):
        try:
            return self._get_handler_method(libcode, name)
        except DataError as err:
            self._adding_keyword_failed(name, err, self.get_handler_error_level)
            return None

    def _adding_keyword_failed(self, name, error, level='ERROR'):
        self.report_error(
            "Adding keyword '%s' failed: %s" % (name, error.message),
            error.details,
            level=level,
            details_level='DEBUG'
        )

    def _get_handler_method(self, libcode, name):
        try:
            method = getattr(libcode, name)
        except:
            message, details = get_error_details()
            raise DataError('Getting handler method failed: %s' % message,
                            details)
        self._validate_handler_method(method)
        return method

    def _validate_handler_method(self, method):
        if not inspect.isroutine(method):
            raise DataError('Not a method or function.')
        if getattr(method, 'robot_not_keyword', False) is True:
            raise DataError('Not exposed as a keyword.')
        return method

    def _try_to_create_handler(self, name, method):
        try:
            handler = self._create_handler(name, method)
        except DataError as err:
            self._adding_keyword_failed(name, err)
            return None, False
        try:
            return self._get_possible_embedded_args_handler(handler)
        except DataError as err:
            self._adding_keyword_failed(handler.name, err)
            return None, False

    def _create_handler(self, handler_name, handler_method):
        return Handler(self, handler_name, handler_method)

    def _get_possible_embedded_args_handler(self, handler):
        embedded = EmbeddedArguments(handler.name)
        if embedded:
            self._validate_embedded_count(embedded, handler.arguments)
            return EmbeddedArgumentsHandler(embedded.name, handler), True
        return handler, False

    def _validate_embedded_count(self, embedded, arguments):
        if not (arguments.minargs <= len(embedded.args) <= arguments.maxargs):
            raise DataError('Embedded argument count does not match number of '
                            'accepted arguments.')

    def _raise_creating_instance_failed(self):
        msg, details = get_error_details()
        if self.positional_args or self.named_args:
            args = self.positional_args \
                + ['%s=%s' % item for item in self.named_args]
            args_text = 'arguments %s' % seq2str2(args)
        else:
            args_text = 'no arguments'
        raise DataError("Initializing library '%s' with %s failed: %s\n%s"
                        % (self.name, args_text, msg, details))


class _ClassLibrary(_BaseTestLibrary):

    def _get_handler_method(self, libinst, name):
        # Type is checked before using getattr to avoid calling properties,
        # most importantly bean properties generated by Jython (issue 188).
        for item in (libinst,) + inspect.getmro(libinst.__class__):
            if item in (object, Object):
                continue
            if hasattr(item, '__dict__') and name in item.__dict__:
                self._validate_handler_method(item.__dict__[name])
                return getattr(libinst, name)
        raise DataError('No non-implicit implementation found.')

    def _validate_handler_method(self, method):
        _BaseTestLibrary._validate_handler_method(self, method)
        if self._is_implicit_java_or_jython_method(method):
            raise DataError('Implicit methods are ignored.')

    def _is_implicit_java_or_jython_method(self, handler):
        if not is_java_method(handler):
            return False
        for signature in handler.argslist[:handler.nargs]:
            cls = signature.declaringClass
            if not (cls is Object or cls.__module__ == 'org.python.proxies'):
                return False
        return True


class _ModuleLibrary(_BaseTestLibrary):

    def _get_handler_method(self, libcode, name):
        method = _BaseTestLibrary._get_handler_method(self, libcode, name)
        if hasattr(libcode, '__all__') and name not in libcode.__all__:
            raise DataError('Not exposed as a keyword.')
        return method

    def get_instance(self, create=True):
        if not create:
            return self._libcode
        if self.has_listener is None:
            self.has_listener = bool(self.get_listeners(self._libcode))
        return self._libcode

    def _create_init_handler(self, libcode):
        return InitHandler(self)


class _HybridLibrary(_BaseTestLibrary):
    get_handler_error_level = 'ERROR'

    def _get_handler_names(self, instance):
        return GetKeywordNames(instance)()


class _DynamicLibrary(_BaseTestLibrary):
    get_handler_error_level = 'ERROR'

    def __init__(self, libcode, name, args, source, logger, variables=None):
        _BaseTestLibrary.__init__(self, libcode, name, args, source, logger,
                                  variables)

    @property
    def doc(self):
        if self._doc is None:
            self._doc = (self._get_kw_doc('__intro__') or
                         _BaseTestLibrary.doc.fget(self))
        return self._doc

    def _get_kw_doc(self, name):
        getter = GetKeywordDocumentation(self.get_instance())
        return getter(name)

    def _get_kw_args(self, name):
        getter = GetKeywordArguments(self.get_instance())
        return getter(name)

    def _get_kw_tags(self, name):
        getter = GetKeywordTags(self.get_instance())
        return getter(name)

    def _get_handler_names(self, instance):
        return GetKeywordNames(instance)()

    def _get_handler_method(self, instance, name):
        return RunKeyword(instance)

    def _create_handler(self, name, method):
        argspec = self._get_kw_args(name)
        tags = self._get_kw_tags(name)
        doc = self._get_kw_doc(name)
        return DynamicHandler(self, name, method, doc, argspec, tags)

    def _create_init_handler(self, libcode):
        docgetter = lambda: self._get_kw_doc('__init__')
        return InitHandler(self, self._resolve_init_method(libcode), docgetter)




          

      

      

    

  

    
      
          
            
  Source code for robot.running.timeouts

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

import time

from robot.utils import (IRONPYTHON, JYTHON, py3to2, Sortable, secs_to_timestr,
                         timestr_to_secs, WINDOWS)
from robot.errors import TimeoutError, DataError, FrameworkError

if JYTHON:
    from .jython import Timeout
elif IRONPYTHON:
    from .ironpython import Timeout
elif WINDOWS:
    from .windows import Timeout
else:
    from .posix import Timeout


@py3to2
class _Timeout(Sortable):

    def __init__(self, timeout=None, variables=None):
        self.string = timeout or ''
        self.secs = -1
        self.starttime = -1
        self.error = None
        if variables:
            self.replace_variables(variables)

    @property
    def active(self):
        return self.starttime > 0

    def replace_variables(self, variables):
        try:
            self.string = variables.replace_string(self.string)
            if not self:
                return
            self.secs = timestr_to_secs(self.string)
            self.string = secs_to_timestr(self.secs)
        except (DataError, ValueError) as err:
            self.secs = 0.000001  # to make timeout active
            self.error = (u'Setting %s timeout failed: %s'
                          % (self.type.lower(), err))

    def start(self):
        if self.secs > 0:
            self.starttime = time.time()

    def time_left(self):
        if not self.active:
            return -1
        elapsed = time.time() - self.starttime
        # Timeout granularity is 1ms. Without rounding some timeout tests fail
        # intermittently on Windows, probably due to threading.Event.wait().
        return round(self.secs - elapsed, 3)

    def timed_out(self):
        return self.active and self.time_left() <= 0

    def run(self, runnable, args=None, kwargs=None):
        if self.error:
            raise DataError(self.error)
        if not self.active:
            raise FrameworkError('Timeout is not active')
        timeout = self.time_left()
        error = TimeoutError(self._timeout_error,
                             test_timeout=isinstance(self, TestTimeout))
        if timeout <= 0:
            raise error
        executable = lambda: runnable(*(args or ()), **(kwargs or {}))
        return Timeout(timeout, error).execute(executable)

    def get_message(self):
        if not self.active:
            return '%s timeout not active.' % self.type
        if not self.timed_out():
            return '%s timeout %s active. %s seconds left.' \
                % (self.type, self.string, self.time_left())
        return self._timeout_error

    @property
    def _timeout_error(self):
        return '%s timeout %s exceeded.' % (self.type, self.string)

    def __str__(self):
        return self.string

    def __bool__(self):
        return bool(self.string and self.string.upper() != 'NONE')

    @property
    def _sort_key(self):
        return not self.active, self.time_left()

    def __eq__(self, other):
        return self is other

    def __ne__(self, other):
        return not self == other

    def __hash__(self):
        return id(self)


[docs]class TestTimeout(_Timeout):
    type = 'Test'
    _keyword_timeout_occurred = False

    def __init__(self, timeout=None, variables=None, rpa=False):
        if rpa:
            self.type = 'Task'
        _Timeout.__init__(self, timeout, variables)

[docs]    def set_keyword_timeout(self, timeout_occurred):
        if timeout_occurred:
            self._keyword_timeout_occurred = True


[docs]    def any_timeout_occurred(self):
        return self.timed_out() or self._keyword_timeout_occurred




[docs]class KeywordTimeout(_Timeout):
    type = 'Keyword'





          

      

      

    

  

    
      
          
            
  Source code for robot.running.usererrorhandler

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from robot.model import Tags
from robot.result import Keyword as KeywordResult

from .arguments import ArgumentSpec
from .statusreporter import StatusReporter


[docs]class UserErrorHandler(object):
    """Created if creating handlers fail -- running raises DataError.

    The idea is not to raise DataError at processing time and prevent all
    tests in affected test case file from executing. Instead UserErrorHandler
    is created and if it is ever run DataError is raised then.
    """

    def __init__(self, error, name, libname=None):
        """
        :param robot.errors.DataError error: Occurred error.
        :param str name: Name of the affected keyword.
        :param str libname: Name of the affected library or resource.
        """
        self.name = name
        self.libname = libname
        self.error = error
        self.source = None
        self.lineno = -1
        self.arguments = ArgumentSpec()
        self.timeout = None
        self.tags = Tags()

    @property
    def longname(self):
        return '%s.%s' % (self.libname, self.name) if self.libname else self.name

    @property
    def doc(self):
        return '*Creating keyword failed:* %s' % self.error

    @property
    def shortdoc(self):
        return self.doc.splitlines()[0]

[docs]    def create_runner(self, name):
        return self


[docs]    def run(self, kw, context, run=True):
        result = KeywordResult(kwname=self.name,
                               libname=self.libname,
                               args=kw.args,
                               assign=kw.assign,
                               type=kw.type)
        with StatusReporter(kw, result, context, run):
            if run:
                raise self.error


    dry_run = run





          

      

      

    

  

    
      
          
            
  Source code for robot.running.userkeyword

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

import os

from robot.errors import DataError
from robot.output import LOGGER
from robot.utils import getshortdoc, unic

from .arguments import EmbeddedArguments, UserKeywordArgumentParser
from .handlerstore import HandlerStore
from .userkeywordrunner import UserKeywordRunner, EmbeddedArgumentsRunner
from .usererrorhandler import UserErrorHandler


[docs]class UserLibrary(object):
    TEST_CASE_FILE_TYPE = HandlerStore.TEST_CASE_FILE_TYPE
    RESOURCE_FILE_TYPE = HandlerStore.RESOURCE_FILE_TYPE

    def __init__(self, resource, source_type=RESOURCE_FILE_TYPE):
        source = resource.source
        basename = os.path.basename(source) if source else None
        self.name = os.path.splitext(basename)[0] \
            if source_type == self.RESOURCE_FILE_TYPE else None
        self.doc = resource.doc
        self.handlers = HandlerStore(basename, source_type)
        self.source = source
        self.source_type = source_type
        for kw in resource.keywords:
            try:
                handler = self._create_handler(kw)
            except DataError as error:
                handler = UserErrorHandler(error, kw.name, self.name)
                self._log_creating_failed(handler, error)
            embedded = isinstance(handler, EmbeddedArgumentsHandler)
            try:
                self.handlers.add(handler, embedded)
            except DataError as error:
                self._log_creating_failed(handler, error)

    def _create_handler(self, kw):
        if kw.error:
            raise DataError(kw.error)
        embedded = EmbeddedArguments(kw.name)
        if not embedded:
            return UserKeywordHandler(kw, self.name)
        if kw.args:
            raise DataError('Keyword cannot have both normal and embedded arguments.')
        return EmbeddedArgumentsHandler(kw, self.name, embedded)

    def _log_creating_failed(self, handler, error):
        LOGGER.error("Error in %s '%s': Creating keyword '%s' failed: %s"
                     % (self.source_type.lower(), self.source,
                        handler.name, error.message))



# TODO: Should be merged with running.model.UserKeyword

[docs]class UserKeywordHandler(object):

    def __init__(self, keyword, libname):
        self.name = keyword.name
        self.libname = libname
        self.doc = unic(keyword.doc)
        self.source = keyword.source
        self.lineno = keyword.lineno
        self.tags = keyword.tags
        self.arguments = UserKeywordArgumentParser().parse(tuple(keyword.args),
                                                           self.longname)
        self._kw = keyword
        self.timeout = keyword.timeout
        self.body = keyword.body
        self.return_value = tuple(keyword.return_)
        self.teardown = keyword.teardown

    @property
    def longname(self):
        return '%s.%s' % (self.libname, self.name) if self.libname else self.name

    @property
    def shortdoc(self):
        return getshortdoc(self.doc)

[docs]    def create_runner(self, name):
        return UserKeywordRunner(self)




[docs]class EmbeddedArgumentsHandler(UserKeywordHandler):

    def __init__(self, keyword, libname, embedded):
        UserKeywordHandler.__init__(self, keyword, libname)
        self.keyword = keyword
        self.embedded_name = embedded.name
        self.embedded_args = embedded.args

[docs]    def matches(self, name):
        return self.embedded_name.match(name) is not None


[docs]    def create_runner(self, name):
        return EmbeddedArgumentsRunner(self, name)






          

      

      

    

  

    
      
          
            
  Source code for robot.running.userkeywordrunner

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from itertools import chain

from robot.errors import (ExecutionFailed, ExecutionPassed, ExecutionStatus,
                          ExitForLoop, ContinueForLoop, DataError,
                          PassExecution, ReturnFromKeyword,
                          UserKeywordExecutionFailed, VariableError)
from robot.result import Keyword as KeywordResult
from robot.utils import getshortdoc, DotDict, prepr, split_tags_from_doc
from robot.variables import is_list_variable, VariableAssignment

from .arguments import DefaultValue
from .bodyrunner import BodyRunner, KeywordRunner
from .statusreporter import StatusReporter
from .timeouts import KeywordTimeout


[docs]class UserKeywordRunner(object):

    def __init__(self, handler, name=None):
        self._handler = handler
        self.name = name or handler.name

    @property
    def longname(self):
        libname = self._handler.libname
        return '%s.%s' % (libname, self.name) if libname else self.name

    @property
    def libname(self):
        return self._handler.libname

    @property
    def arguments(self):
        """:rtype: :py:class:`robot.running.arguments.ArgumentSpec`"""
        return self._handler.arguments

[docs]    def run(self, kw, context, run=True):
        assignment = VariableAssignment(kw.assign)
        result = self._get_result(kw, assignment, context.variables)
        with StatusReporter(kw, result, context, run):
            with assignment.assigner(context) as assigner:
                if run:
                    return_value = self._run(context, kw.args, result)
                    assigner.assign(return_value)
                    return return_value


    def _get_result(self, kw, assignment, variables):
        handler = self._handler
        doc = variables.replace_string(handler.doc, ignore_errors=True)
        doc, tags = split_tags_from_doc(doc)
        tags = variables.replace_list(handler.tags, ignore_errors=True) + tags
        return KeywordResult(kwname=self.name,
                             libname=handler.libname,
                             doc=getshortdoc(doc),
                             args=kw.args,
                             assign=tuple(assignment),
                             tags=tags,
                             type=kw.type)

    def _run(self, context, args, result):
        variables = context.variables
        args = self._resolve_arguments(args, variables)
        with context.user_keyword(self._handler):
            self._set_arguments(args, context)
            timeout = self._get_timeout(variables)
            if timeout is not None:
                result.timeout = str(timeout)
            with context.timeout(timeout):
                exception, return_ = self._execute(context)
                if exception and not exception.can_continue(context):
                    raise exception
                return_value = self._get_return_value(variables, return_)
                if exception:
                    exception.return_value = return_value
                    raise exception
                return return_value

    def _get_timeout(self, variables=None):
        timeout = self._handler.timeout
        return KeywordTimeout(timeout, variables) if timeout else None

    def _resolve_arguments(self, arguments, variables=None):
        return self.arguments.resolve(arguments, variables)

    def _set_arguments(self, arguments, context):
        positional, named = arguments
        variables = context.variables
        args, kwargs = self.arguments.map(positional, named,
                                          replace_defaults=False)
        self._set_variables(args, kwargs, variables)
        context.output.trace(lambda: self._trace_log_args_message(variables))

    def _set_variables(self, positional, kwargs, variables):
        spec = self.arguments
        args, varargs = self._split_args_and_varargs(positional)
        kwonly, kwargs = self._split_kwonly_and_kwargs(kwargs)
        for name, value in chain(zip(spec.positional, args), kwonly):
            if isinstance(value, DefaultValue):
                value = value.resolve(variables)
            variables['${%s}' % name] = value
        if spec.var_positional:
            variables['@{%s}' % spec.var_positional] = varargs
        if spec.var_named:
            variables['&{%s}' % spec.var_named] = DotDict(kwargs)

    def _split_args_and_varargs(self, args):
        if not self.arguments.var_positional:
            return args, []
        positional = len(self.arguments.positional)
        return args[:positional], args[positional:]

    def _split_kwonly_and_kwargs(self, all_kwargs):
        kwonly = []
        kwargs = []
        for name, value in all_kwargs:
            target = kwonly if name in self.arguments.named_only else kwargs
            target.append((name, value))
        return kwonly, kwargs

    def _trace_log_args_message(self, variables):
        args = ['${%s}' % arg for arg in self.arguments.positional]
        if self.arguments.var_positional:
            args.append('@{%s}' % self.arguments.var_positional)
        if self.arguments.var_named:
            args.append('&{%s}' % self.arguments.var_named)
        return self._format_trace_log_args_message(args, variables)

    def _format_trace_log_args_message(self, args, variables):
        args = ['%s=%s' % (name, prepr(variables[name])) for name in args]
        return 'Arguments: [ %s ]' % ' | '.join(args)

    def _execute(self, context):
        handler = self._handler
        if not (handler.body or handler.return_value):
            raise DataError("User keyword '%s' contains no keywords." % self.name)
        if context.dry_run and 'robot:no-dry-run' in handler.tags:
            return None, None
        error = return_ = pass_ = None
        try:
            BodyRunner(context).run(handler.body)
        except ReturnFromKeyword as exception:
            return_ = exception
            error = exception.earlier_failures
        except (ExitForLoop, ContinueForLoop) as exception:
            pass_ = exception
        except ExecutionPassed as exception:
            pass_ = exception
            error = exception.earlier_failures
            if error:
                error.continue_on_failure = False
        except ExecutionFailed as exception:
            error = exception
        with context.keyword_teardown(error):
            td_error = self._run_teardown(context)
        if error or td_error:
            error = UserKeywordExecutionFailed(error, td_error)
        return error or pass_, return_

    def _get_return_value(self, variables, return_):
        ret = self._handler.return_value if not return_ else return_.return_value
        if not ret:
            return None
        contains_list_var = any(is_list_variable(item) for item in ret)
        try:
            ret = variables.replace_list(ret)
        except DataError as err:
            raise VariableError('Replacing variables from keyword return '
                                'value failed: %s' % err.message)
        if len(ret) != 1 or contains_list_var:
            return ret
        return ret[0]

    def _run_teardown(self, context):
        if not self._handler.teardown:
            return None
        try:
            name = context.variables.replace_string(self._handler.teardown.name)
        except DataError as err:
            if context.dry_run:
                return None
            return ExecutionFailed(err.message, syntax=True)
        if name.upper() in ('', 'NONE'):
            return None
        try:
            KeywordRunner(context).run(self._handler.teardown, name)
        except PassExecution:
            return None
        except ExecutionStatus as err:
            return err
        return None

[docs]    def dry_run(self, kw, context):
        assignment = VariableAssignment(kw.assign)
        result = self._get_result(kw, assignment, context.variables)
        with StatusReporter(kw, result, context):
            assignment.validate_assignment()
            self._dry_run(context, kw.args, result)


    def _dry_run(self, context, args, result):
        self._resolve_arguments(args)
        with context.user_keyword(self._handler):
            timeout = self._get_timeout()
            if timeout:
                result.timeout = str(timeout)
            error, _ = self._execute(context)
            if error:
                raise error



[docs]class EmbeddedArgumentsRunner(UserKeywordRunner):

    def __init__(self, handler, name):
        UserKeywordRunner.__init__(self, handler, name)
        match = handler.embedded_name.match(name)
        if not match:
            raise ValueError('Does not match given name')
        self.embedded_args = list(zip(handler.embedded_args, match.groups()))

    def _resolve_arguments(self, args, variables=None):
        # Validates that no arguments given.
        self.arguments.resolve(args, variables)
        if not variables:
            return []
        return [(n, variables.replace_scalar(v)) for n, v in self.embedded_args]

    def _set_arguments(self, embedded_args, context):
        variables = context.variables
        for name, value in embedded_args:
            variables['${%s}' % name] = value
        context.output.trace(lambda: self._trace_log_args_message(variables))

    def _trace_log_args_message(self, variables):
        args = ['${%s}' % arg for arg, _ in self.embedded_args]
        return self._format_trace_log_args_message(args, variables)

    def _get_result(self, kw, assignment, variables):
        result = UserKeywordRunner._get_result(self, kw, assignment, variables)
        result.sourcename = self._handler.name
        return result





          

      

      

    

  

    
      
          
            
  Source code for robot.running.arguments.argumentconverter

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from robot.variables import contains_variable

from .typeconverters import TypeConverter


[docs]class ArgumentConverter(object):

    def __init__(self, argspec, dry_run=False):
        """:type argspec: :py:class:`robot.running.arguments.ArgumentSpec`"""
        self._argspec = argspec
        self._dry_run = dry_run

[docs]    def convert(self, positional, named):
        return self._convert_positional(positional), self._convert_named(named)


    def _convert_positional(self, positional):
        names = self._argspec.positional
        converted = [self._convert(name, value)
                     for name, value in zip(names, positional)]
        if self._argspec.var_positional:
            converted.extend(self._convert(self._argspec.var_positional, value)
                             for value in positional[len(names):])
        return converted

    def _convert_named(self, named):
        names = set(self._argspec.positional) | set(self._argspec.named_only)
        var_named = self._argspec.var_named
        return [(name, self._convert(name if name in names else var_named, value))
                for name, value in named]

    def _convert(self, name, value):
        spec = self._argspec
        if (spec.types is None
                or self._dry_run and contains_variable(value, identifiers='$@&%')):
            return value
        conversion_error = None
        if name in spec.types:
            converter = TypeConverter.converter_for(spec.types[name])
            if converter:
                try:
                    return converter.convert(name, value)
                except ValueError as err:
                    conversion_error = err
        if name in spec.defaults:
            converter = TypeConverter.converter_for(type(spec.defaults[name]))
            if converter:
                try:
                    return converter.convert(name, value, explicit_type=False,
                                             strict=bool(conversion_error))
                except ValueError as err:
                    conversion_error = conversion_error or err
        if conversion_error:
            raise conversion_error
        return value





          

      

      

    

  

    
      
          
            
  Source code for robot.running.arguments.argumentmapper

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from robot.errors import DataError


[docs]class ArgumentMapper(object):

    def __init__(self, argspec):
        """:type argspec: :py:class:`robot.running.arguments.ArgumentSpec`"""
        self._argspec = argspec

[docs]    def map(self, positional, named, replace_defaults=True):
        template = KeywordCallTemplate(self._argspec)
        template.fill_positional(positional)
        template.fill_named(named)
        if replace_defaults:
            template.replace_defaults()
        return template.args, template.kwargs




[docs]class KeywordCallTemplate(object):

    def __init__(self, argspec):
        """:type argspec: :py:class:`robot.running.arguments.ArgumentSpec`"""
        self._argspec = argspec
        self.args = [None if arg not in argspec.defaults
                     else DefaultValue(argspec.defaults[arg])
                     for arg in argspec.positional]
        self.kwargs = []

[docs]    def fill_positional(self, positional):
        self.args[:len(positional)] = positional


[docs]    def fill_named(self, named):
        spec = self._argspec
        for name, value in named:
            if name in spec.positional_or_named:
                index = spec.positional_or_named.index(name)
                self.args[index] = value
            elif spec.var_named or name in spec.named_only:
                self.kwargs.append((name, value))
            else:
                raise DataError("Non-existing named argument '%s'." % name)
        named_names = {name for name, _ in named}
        for name in spec.named_only:
            if name not in named_names:
                value = DefaultValue(spec.defaults[name])
                self.kwargs.append((name, value))


[docs]    def replace_defaults(self):
        is_default = lambda arg: isinstance(arg, DefaultValue)
        while self.args and is_default(self.args[-1]):
            self.args.pop()
        self.args = [a if not is_default(a) else a.value for a in self.args]
        self.kwargs = [(n, v) for n, v in self.kwargs if not is_default(v)]




[docs]class DefaultValue(object):

    def __init__(self, value):
        self.value = value

[docs]    def resolve(self, variables):
        try:
            return variables.replace_scalar(self.value)
        except DataError as err:
            raise DataError('Resolving argument default values failed: %s'
                            % err.message)






          

      

      

    

  

    
      
          
            
  Source code for robot.running.arguments.argumentparser

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from robot.errors import DataError
from robot.utils import JYTHON, PY2, is_string, split_from_equals
from robot.variables import is_assign, is_scalar_assign

from .argumentspec import ArgumentSpec

# Move PythonArgumentParser to this module when Python 2 support is dropped.
if PY2:
    from .py2argumentparser import PythonArgumentParser
else:
    from .py3argumentparser import PythonArgumentParser

if JYTHON:
    from java.lang import Class
    from java.util import List, Map


class _ArgumentParser(object):

    def __init__(self, type='Keyword'):
        self._type = type

    def parse(self, source, name=None):
        raise NotImplementedError


[docs]class JavaArgumentParser(_ArgumentParser):

[docs]    def parse(self, signatures, name=None):
        if not signatures:
            return self._no_signatures_arg_spec(name)
        elif len(signatures) == 1:
            return self._single_signature_arg_spec(signatures[0], name)
        else:
            return self._multi_signature_arg_spec(signatures, name)


    def _no_signatures_arg_spec(self, name):
        # Happens when a class has no public constructors
        return self._format_arg_spec(name)

    def _single_signature_arg_spec(self, signature, name):
        varargs, kwargs = self._get_varargs_and_kwargs_support(signature.args)
        positional = len(signature.args) - int(varargs) - int(kwargs)
        return self._format_arg_spec(name, positional, varargs=varargs,
                                     kwargs=kwargs)

    def _get_varargs_and_kwargs_support(self, args):
        if not args:
            return False, False
        if self._is_varargs_type(args[-1]):
            return True, False
        if not self._is_kwargs_type(args[-1]):
            return False, False
        if len(args) > 1 and self._is_varargs_type(args[-2]):
            return True, True
        return False, True

    def _is_varargs_type(self, arg):
        return arg is List or isinstance(arg, Class) and arg.isArray()

    def _is_kwargs_type(self, arg):
        return arg is Map

    def _multi_signature_arg_spec(self, signatures, name):
        mina = maxa = len(signatures[0].args)
        for sig in signatures[1:]:
            argc = len(sig.args)
            mina = min(argc, mina)
            maxa = max(argc, maxa)
        return self._format_arg_spec(name, maxa, maxa-mina)

    def _format_arg_spec(self, name, positional=0, defaults=0, varargs=False,
                         kwargs=False):
        positional = ['arg%d' % (i+1) for i in range(positional)]
        if defaults:
            defaults = {name: '' for name in positional[-defaults:]}
        else:
            defaults = {}
        return ArgumentSpec(name, self._type,
                            positional_only=positional,
                            var_positional='varargs' if varargs else None,
                            var_named='kwargs' if kwargs else None,
                            defaults=defaults)



class _ArgumentSpecParser(_ArgumentParser):

    def __init__(self, type='Keyword', error_reporter=None):
        _ArgumentParser.__init__(self, type)
        self._error_reporter = error_reporter

    def parse(self, argspec, name=None):
        spec = ArgumentSpec(name, self._type)
        named_only = False
        for arg in argspec:
            arg = self._validate_arg(arg)
            if spec.var_named:
                self._report_error('Only last argument can be kwargs.')
            elif isinstance(arg, tuple):
                arg, default = arg
                arg = self._add_arg(spec, arg, named_only)
                spec.defaults[arg] = default
            elif self._is_kwargs(arg):
                spec.var_named = self._format_kwargs(arg)
            elif self._is_varargs(arg):
                if named_only:
                    self._report_error('Cannot have multiple varargs.')
                if not self._is_kw_only_separator(arg):
                    spec.var_positional = self._format_varargs(arg)
                named_only = True
            elif spec.defaults and not named_only:
                self._report_error('Non-default argument after default arguments.')
            else:
                self._add_arg(spec, arg, named_only)
        return spec

    def _validate_arg(self, arg):
        raise NotImplementedError

    def _report_error(self, error):
        if self._error_reporter:
            self._error_reporter(error)
        else:
            raise DataError('Invalid argument specification: %s' % error)

    def _is_kwargs(self, arg):
        raise NotImplementedError

    def _format_kwargs(self, kwargs):
        raise NotImplementedError

    def _is_kw_only_separator(self, arg):
        raise NotImplementedError

    def _is_varargs(self, arg):
        raise NotImplementedError

    def _format_varargs(self, varargs):
        raise NotImplementedError

    def _format_arg(self, arg):
        return arg

    def _add_arg(self, spec, arg, named_only=False):
        arg = self._format_arg(arg)
        target = spec.positional_or_named if not named_only else spec.named_only
        target.append(arg)
        return arg


[docs]class DynamicArgumentParser(_ArgumentSpecParser):

    def _validate_arg(self, arg):
        if isinstance(arg, tuple):
            if self._is_invalid_tuple(arg):
                self._report_error('Invalid argument "%s".' % (arg,))
            if len(arg) == 1:
                return arg[0]
            return arg
        if '=' in arg:
            return tuple(arg.split('=', 1))
        return arg

    def _is_invalid_tuple(self, arg):
        return (len(arg) > 2
                or not is_string(arg[0])
                or (arg[0].startswith('*') and len(arg) > 1))

    def _is_kwargs(self, arg):
        return arg.startswith('**')

    def _format_kwargs(self, kwargs):
        return kwargs[2:]

    def _is_varargs(self, arg):
        return arg.startswith('*')

    def _is_kw_only_separator(self, arg):
        return arg == '*'

    def _format_varargs(self, varargs):
        return varargs[1:]



[docs]class UserKeywordArgumentParser(_ArgumentSpecParser):

    def _validate_arg(self, arg):
        arg, default = split_from_equals(arg)
        if not (is_assign(arg) or arg == '@{}'):
            self._report_error("Invalid argument syntax '%s'." % arg)
        if default is None:
            return arg
        if not is_scalar_assign(arg):
            typ = 'list' if arg[0] == '@' else 'dictionary'
            self._report_error("Only normal arguments accept default values, "
                               "%s arguments like '%s' do not." % (typ, arg))
        return arg, default

    def _is_kwargs(self, arg):
        return arg[0] == '&'

    def _format_kwargs(self, kwargs):
        return kwargs[2:-1]

    def _is_varargs(self, arg):
        return arg[0] == '@'

    def _is_kw_only_separator(self, arg):
        return arg == '@{}'

    def _format_varargs(self, varargs):
        return varargs[2:-1]

    def _format_arg(self, arg):
        return arg[2:-1]





          

      

      

    

  

    
      
          
            
  Source code for robot.running.arguments.argumentresolver

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from robot.errors import DataError
from robot.utils import is_string, is_dict_like, split_from_equals
from robot.variables import is_dict_variable

from .argumentvalidator import ArgumentValidator


[docs]class ArgumentResolver(object):

    def __init__(self, argspec, resolve_named=True,
                 resolve_variables_until=None, dict_to_kwargs=False):
        self._named_resolver = NamedArgumentResolver(argspec) \
            if resolve_named else NullNamedArgumentResolver()
        self._variable_replacer = VariableReplacer(resolve_variables_until)
        self._dict_to_kwargs = DictToKwargs(argspec, dict_to_kwargs)
        self._argument_validator = ArgumentValidator(argspec)

[docs]    def resolve(self, arguments, variables=None):
        positional, named = self._named_resolver.resolve(arguments, variables)
        positional, named = self._variable_replacer.replace(positional, named,
                                                            variables)
        positional, named = self._dict_to_kwargs.handle(positional, named)
        self._argument_validator.validate(positional, named,
                                          dryrun=variables is None)
        return positional, named




[docs]class NamedArgumentResolver(object):

    def __init__(self, argspec):
        """:type argspec: :py:class:`robot.running.arguments.ArgumentSpec`"""
        self._argspec = argspec

[docs]    def resolve(self, arguments, variables=None):
        positional = []
        named = []
        for arg in arguments:
            if is_dict_variable(arg):
                named.append(arg)
            elif self._is_named(arg, named, variables):
                named.append(split_from_equals(arg))
            elif named:
                self._raise_positional_after_named()
            else:
                positional.append(arg)
        return positional, named


    def _is_named(self, arg, previous_named, variables=None):
        name, value = split_from_equals(arg)
        if value is None:
            return False
        if variables:
            try:
                name = variables.replace_scalar(name)
            except DataError:
                return False
        spec = self._argspec
        return bool(previous_named or
                    spec.var_named or
                    name in spec.positional_or_named or
                    name in spec.named_only)

    def _raise_positional_after_named(self):
        raise DataError("%s '%s' got positional argument after named arguments."
                        % (self._argspec.type.capitalize(), self._argspec.name))



[docs]class NullNamedArgumentResolver(object):

[docs]    def resolve(self, arguments, variables=None):
        return arguments, {}




[docs]class DictToKwargs(object):

    def __init__(self, argspec, enabled=False):
        self._maxargs = argspec.maxargs
        self._enabled = enabled and bool(argspec.var_named)

[docs]    def handle(self, positional, named):
        if self._enabled and self._extra_arg_has_kwargs(positional, named):
            named = positional.pop().items()
        return positional, named


    def _extra_arg_has_kwargs(self, positional, named):
        if named or len(positional) != self._maxargs + 1:
            return False
        return is_dict_like(positional[-1])



[docs]class VariableReplacer(object):

    def __init__(self, resolve_until=None):
        self._resolve_until = resolve_until

[docs]    def replace(self, positional, named, variables=None):
        # `variables` is None in dry-run mode and when using Libdoc.
        if variables:
            positional = variables.replace_list(positional, self._resolve_until)
            named = list(self._replace_named(named, variables.replace_scalar))
        else:
            positional = list(positional)
            named = [item for item in named if isinstance(item, tuple)]
        return positional, named


    def _replace_named(self, named, replace_scalar):
        for item in named:
            for name, value in self._get_replaced_named(item, replace_scalar):
                if not is_string(name):
                    raise DataError('Argument names must be strings.')
                yield name, value

    def _get_replaced_named(self, item, replace_scalar):
        if not isinstance(item, tuple):
            return replace_scalar(item).items()
        name, value = item
        return [(replace_scalar(name), replace_scalar(value))]





          

      

      

    

  

    
      
          
            
  Source code for robot.running.arguments.argumentspec

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from inspect import isclass
import re
import sys

try:
    from typing import Union
except ImportError:
    class Union(object):
        pass

try:
    from enum import Enum
except ImportError:    # Standard in Py 3.4+ but can be separately installed
[docs]    class Enum(object):
        pass


from robot.utils import setter, py3to2, unicode, unic

from .argumentconverter import ArgumentConverter
from .argumentmapper import ArgumentMapper
from .argumentresolver import ArgumentResolver
from .typevalidator import TypeValidator


[docs]@py3to2
class ArgumentSpec(object):

    def __init__(self, name=None, type='Keyword', positional_only=None,
                 positional_or_named=None, var_positional=None, named_only=None,
                 var_named=None, defaults=None, types=None):
        self.name = name
        self.type = type
        self.positional_only = positional_only or []
        self.positional_or_named = positional_or_named or []
        self.var_positional = var_positional
        self.named_only = named_only or []
        self.var_named = var_named
        self.defaults = defaults or {}
        self.types = types

    @setter
    def types(self, types):
        return TypeValidator(self).validate(types)

    @property
    def positional(self):
        return self.positional_only + self.positional_or_named

    @property
    def minargs(self):
        return len([arg for arg in self.positional if arg not in self.defaults])

    @property
    def maxargs(self):
        return len(self.positional) if not self.var_positional else sys.maxsize

    @property
    def argument_names(self):
        return (self.positional_only +
                self.positional_or_named +
                ([self.var_positional] if self.var_positional else []) +
                self.named_only +
                ([self.var_named] if self.var_named else []))

[docs]    def resolve(self, arguments, variables=None, resolve_named=True,
                resolve_variables_until=None, dict_to_kwargs=False):
        resolver = ArgumentResolver(self, resolve_named,
                                    resolve_variables_until, dict_to_kwargs)
        positional, named = resolver.resolve(arguments, variables)
        if self.types or self.defaults:
            converter = ArgumentConverter(self, dry_run=not variables)
            positional, named = converter.convert(positional, named)
        return positional, named


[docs]    def map(self, positional, named, replace_defaults=True):
        mapper = ArgumentMapper(self)
        return mapper.map(positional, named, replace_defaults)


    def __iter__(self):
        notset = ArgInfo.NOTSET
        get_type = (self.types or {}).get
        get_default = self.defaults.get
        for arg in self.positional_only:
            yield ArgInfo(ArgInfo.POSITIONAL_ONLY, arg,
                          get_type(arg, notset), get_default(arg, notset))
        if self.positional_only:
            yield ArgInfo(ArgInfo.POSITIONAL_ONLY_MARKER)
        for arg in self.positional_or_named:
            yield ArgInfo(ArgInfo.POSITIONAL_OR_NAMED, arg,
                          get_type(arg, notset), get_default(arg, notset))
        if self.var_positional:
            yield ArgInfo(ArgInfo.VAR_POSITIONAL, self.var_positional,
                          get_type(self.var_positional, notset))
        elif self.named_only:
            yield ArgInfo(ArgInfo.NAMED_ONLY_MARKER)
        for arg in self.named_only:
            yield ArgInfo(ArgInfo.NAMED_ONLY, arg,
                          get_type(arg, notset), get_default(arg, notset))
        if self.var_named:
            yield ArgInfo(ArgInfo.VAR_NAMED, self.var_named,
                          get_type(self.var_named, notset))

    def __bool__(self):
        return any([self.positional_only, self.positional_or_named, self.var_positional,
                    self.named_only, self.var_named])

    def __str__(self):
        return ', '.join(unicode(arg) for arg in self)



[docs]@py3to2
class ArgInfo(object):
    NOTSET = object()
    POSITIONAL_ONLY = 'POSITIONAL_ONLY'
    POSITIONAL_ONLY_MARKER = 'POSITIONAL_ONLY_MARKER'
    POSITIONAL_OR_NAMED = 'POSITIONAL_OR_NAMED'
    VAR_POSITIONAL = 'VAR_POSITIONAL'
    NAMED_ONLY_MARKER = 'NAMED_ONLY_MARKER'
    NAMED_ONLY = 'NAMED_ONLY'
    VAR_NAMED = 'VAR_NAMED'

    def __init__(self, kind, name='', types=NOTSET, default=NOTSET):
        self.kind = kind
        self.name = name
        self.types = types
        self.default = default

    @setter
    def types(self, typ):
        if not typ or typ is self.NOTSET:
            return tuple()
        if isinstance(typ, tuple):
            return typ
        if getattr(typ, '__origin__', None) is Union:
            return self._get_union_args(typ)
        return (typ,)

    def _get_union_args(self, union):
        try:
            return union.__args__
        except AttributeError:
            # Python 3.5.2's typing uses __union_params__ instead
            # of __args__. This block can likely be safely removed
            # when Python 3.5 support is dropped
            return union.__union_params__

    @property
    def required(self):
        if self.kind in (self.POSITIONAL_ONLY,
                         self.POSITIONAL_OR_NAMED,
                         self.NAMED_ONLY):
            return self.default is self.NOTSET
        return False

    @property
    def types_reprs(self):
        return [self._type_repr(t) for t in self.types]

    def _type_repr(self, typ):
        if typ is type(None):
            return 'None'
        if isclass(typ):
            return typ.__name__
        return re.sub(r'^typing\.(.+)', r'\1', unic(typ))

    @property
    def default_repr(self):
        if self.default is self.NOTSET:
            return None
        if isinstance(self.default, Enum):
            return self.default.name
        return unic(self.default)

    def __str__(self):
        if self.kind == self.POSITIONAL_ONLY_MARKER:
            return '/'
        if self.kind == self.NAMED_ONLY_MARKER:
            return '*'
        ret = self.name
        if self.kind == self.VAR_POSITIONAL:
            ret = '*' + ret
        elif self.kind == self.VAR_NAMED:
            ret = '**' + ret
        if self.types:
            ret = '%s: %s' % (ret, ' | '.join(self.types_reprs))
            default_sep = ' = '
        else:
            default_sep = '='
        if self.default is not self.NOTSET:
            ret = '%s%s%s' % (ret, default_sep, self.default_repr)
        return ret





          

      

      

    

  

    
      
          
            
  Source code for robot.running.arguments.argumentvalidator

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from robot.errors import DataError
from robot.utils import plural_or_not, seq2str
from robot.variables import is_list_variable


[docs]class ArgumentValidator(object):

    def __init__(self, argspec):
        """:type argspec: :py:class:`robot.running.arguments.ArgumentSpec`"""
        self._argspec = argspec

[docs]    def validate(self, positional, named, dryrun=False):
        if dryrun and any(is_list_variable(arg) for arg in positional):
            return
        named = set(name for name, value in named)
        self._validate_no_multiple_values(positional, named, self._argspec)
        self._validate_no_positional_only_as_named(named, self._argspec)
        self._validate_positional_limits(positional, named, self._argspec)
        self._validate_no_mandatory_missing(positional, named, self._argspec)
        self._validate_no_named_only_missing(named, self._argspec)
        self._validate_no_extra_named(named, self._argspec)


    def _validate_no_multiple_values(self, positional, named, spec):
        for name in spec.positional[:len(positional)]:
            if name in named and name not in spec.positional_only:
                self._raise_error("got multiple values for argument '%s'" % name)

    def _raise_error(self, message):
        raise DataError("%s '%s' %s." % (self._argspec.type.capitalize(),
                                         self._argspec.name, message))

    def _validate_no_positional_only_as_named(self, named, spec):
        if not spec.var_named:
            for name in named:
                if name in spec.positional_only:
                    self._raise_error("does not accept argument '%s' as named "
                                      "argument" % name)

    def _validate_positional_limits(self, positional, named, spec):
        count = len(positional) + self._named_positionals(named, spec)
        if not spec.minargs <= count <= spec.maxargs:
            self._raise_wrong_count(count, spec)

    def _named_positionals(self, named, spec):
        return sum(1 for n in named if n in spec.positional_or_named)

    def _raise_wrong_count(self, count, spec):
        minend = plural_or_not(spec.minargs)
        if spec.minargs == spec.maxargs:
            expected = '%d argument%s' % (spec.minargs, minend)
        elif not spec.var_positional:
            expected = '%d to %d arguments' % (spec.minargs, spec.maxargs)
        else:
            expected = 'at least %d argument%s' % (spec.minargs, minend)
        if spec.var_named or spec.named_only:
            expected = expected.replace('argument', 'non-named argument')
        self._raise_error("expected %s, got %d" % (expected, count))

    def _validate_no_mandatory_missing(self, positional, named, spec):
        for name in spec.positional[len(positional):]:
            if name not in spec.defaults and name not in named:
                self._raise_error("missing value for argument '%s'" % name)

    def _validate_no_named_only_missing(self, named, spec):
        defined = set(named) | set(spec.defaults)
        missing = [arg for arg in spec.named_only if arg not in defined]
        if missing:
            self._raise_error("missing named-only argument%s %s"
                              % (plural_or_not(missing), seq2str(sorted(missing))))

    def _validate_no_extra_named(self, named, spec):
        if not spec.var_named:
            extra = set(named) - set(spec.positional_or_named) - set(spec.named_only)
            if extra:
                self._raise_error("got unexpected named argument%s %s"
                                  % (plural_or_not(extra), seq2str(sorted(extra))))





          

      

      

    

  

    
      
          
            
  Source code for robot.running.arguments.embedded

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

import re

from robot.errors import DataError
from robot.utils import get_error_message, py3to2
from robot.variables import VariableIterator


[docs]@py3to2
class EmbeddedArguments(object):

    def __init__(self, name):
        if '${' in name:
            self.name, self.args = EmbeddedArgumentParser().parse(name)
        else:
            self.name, self.args = None, []

    def __bool__(self):
        return self.name is not None



[docs]class EmbeddedArgumentParser(object):
    _regexp_extension = re.compile(r'(?<!\\)\(\?.+\)')
    _regexp_group_start = re.compile(r'(?<!\\)\((.*?)\)')
    _escaped_curly = re.compile(r'(\\+)([{}])')
    _regexp_group_escape = r'(?:\1)'
    _default_pattern = '.*?'
    _variable_pattern = r'\$\{[^\}]+\}'

[docs]    def parse(self, string):
        args = []
        name_regexp = ['^']
        for before, variable, string in VariableIterator(string, identifiers='$'):
            name, pattern = self._get_name_and_pattern(variable[2:-1])
            args.append(name)
            name_regexp.extend([re.escape(before), '(%s)' % pattern])
        name_regexp.extend([re.escape(string), '$'])
        name = self._compile_regexp(name_regexp) if args else None
        return name, args


    def _get_name_and_pattern(self, name):
        if ':' not in name:
            return name, self._default_pattern
        name, pattern = name.split(':', 1)
        return name, self._format_custom_regexp(pattern)

    def _format_custom_regexp(self, pattern):
        for formatter in (self._regexp_extensions_are_not_allowed,
                          self._make_groups_non_capturing,
                          self._unescape_curly_braces,
                          self._add_automatic_variable_pattern):
            pattern = formatter(pattern)
        return pattern

    def _regexp_extensions_are_not_allowed(self, pattern):
        if not self._regexp_extension.search(pattern):
            return pattern
        raise DataError('Regexp extensions are not allowed in embedded '
                        'arguments.')

    def _make_groups_non_capturing(self, pattern):
        return self._regexp_group_start.sub(self._regexp_group_escape, pattern)

    def _unescape_curly_braces(self, pattern):
        def unescaper(match):
            backslashes = len(match.group(1))
            return '\\' * (backslashes // 2 * 2) + match.group(2)
        return self._escaped_curly.sub(unescaper, pattern)

    def _add_automatic_variable_pattern(self, pattern):
        return '%s|%s' % (pattern, self._variable_pattern)

    def _compile_regexp(self, pattern):
        try:
            return re.compile(''.join(pattern), re.IGNORECASE)
        except:
            raise DataError("Compiling embedded arguments regexp failed: %s"
                            % get_error_message())





          

      

      

    

  

    
      
          
            
  Source code for robot.running.arguments.py2argumentparser

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from inspect import getargspec, ismethod

from .argumentspec import ArgumentSpec


[docs]class PythonArgumentParser(object):

    def __init__(self, type='Keyword'):
        self._type = type

[docs]    def parse(self, handler, name=None):
        try:
            args, varargs, kws, defaults = getargspec(handler)
        except TypeError:    # Can occur w/ C functions (incl. many builtins).
            args, varargs, kws, defaults = [], 'args', None, None
        if ismethod(handler) or handler.__name__ == '__init__':
            args = args[1:]    # Drop 'self'.
        spec = ArgumentSpec(
            name,
            self._type,
            positional_or_named=args,
            var_positional=varargs,
            var_named=kws,
            defaults=self._get_defaults(args, defaults),
            types=getattr(handler, 'robot_types', ())
        )
        return spec


    def _get_defaults(self, args, default_values):
        if not default_values:
            return {}
        return dict(zip(args[-len(default_values):], default_values))





          

      

      

    

  

    
      
          
            
  Source code for robot.running.arguments.typeconverters

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from ast import literal_eval
from collections import OrderedDict
try:
    from collections import abc
except ImportError:    # Python 2
    import collections as abc
try:
    from types import UnionType
except ImportError:    # Python < 3.10
    UnionType = ()
try:
    from typing import Union
except ImportError:
    class Union(object):
        pass
from datetime import datetime, date, timedelta
from decimal import InvalidOperation, Decimal
try:
    from enum import Enum
except ImportError:    # Standard in Py 3.4+ but can be separately installed
[docs]    class Enum(object):
        pass

from numbers import Integral, Real

from robot.libraries.DateTime import convert_date, convert_time
from robot.utils import (FALSE_STRINGS, IRONPYTHON, TRUE_STRINGS, PY2,
                         eq, get_error_message, is_string, seq2str, type_name,
                         unic, unicode)


[docs]class TypeConverter(object):
    type = None
    type_name = None
    abc = None
    aliases = ()
    value_types = (unicode,)
    _converters = OrderedDict()
    _type_aliases = {}

    def __init__(self, used_type):
        self.used_type = used_type

[docs]    @classmethod
    def register(cls, converter):
        cls._converters[converter.type] = converter
        for name in (converter.type_name,) + converter.aliases:
            if name is not None and not isinstance(name, property):
                cls._type_aliases[name.lower()] = converter.type
        return converter


[docs]    @classmethod
    def converter_for(cls, type_):
        if getattr(type_, '__origin__', None) and type_.__origin__ is not Union:
            type_ = type_.__origin__
        if isinstance(type_, (str, unicode)):
            try:
                type_ = cls._type_aliases[type_.lower()]
            except KeyError:
                return None
        if type_ in cls._converters:
            return cls._converters[type_](type_)
        for converter in cls._converters.values():
            if converter.handles(type_):
                return converter(type_)
        return None


[docs]    @classmethod
    def handles(cls, type_):
        handled = (cls.type, cls.abc) if cls.abc else cls.type
        return isinstance(type_, type) and issubclass(type_, handled)


[docs]    def convert(self, name, value, explicit_type=True, strict=True):
        if self.no_conversion_needed(value):
            return value
        if not self._handles_value(value):
            return self._handle_error(name, value, strict=strict)
        try:
            if not isinstance(value, unicode):
                return self._non_string_convert(value, explicit_type)
            return self._convert(value, explicit_type)
        except ValueError as error:
            return self._handle_error(name, value, error, strict)


[docs]    def no_conversion_needed(self, value):
        try:
            return isinstance(value, self.used_type)
        except TypeError:
            # If the used type doesn't like `isinstance` (e.g. TypedDict),
            # compare the value to the generic type instead.
            if self.type and self.type is not self.used_type:
                return isinstance(value, self.type)
            raise


    def _handles_value(self, value):
        return isinstance(value, self.value_types)

    def _non_string_convert(self, value, explicit_type=True):
        return self._convert(value, explicit_type)

    def _convert(self, value, explicit_type=True):
        raise NotImplementedError

    def _handle_error(self, name, value, error=None, strict=True):
        if not strict:
            return value
        value_type = '' if isinstance(value, unicode) else ' (%s)' % type_name(value)
        ending = u': %s' % error if (error and error.args) else '.'
        raise ValueError(
            "Argument '%s' got value '%s'%s that cannot be converted to %s%s"
            % (name, unic(value), value_type, self.type_name, ending)
        )

    def _literal_eval(self, value, expected):
        # ast.literal_eval has some issues with sets:
        if expected is set:
            # On Python 2 it doesn't handle sets at all.
            if PY2:
                raise ValueError('Sets are not supported on Python 2.')
            # There is no way to define an empty set.
            if value == 'set()':
                return set()
        try:
            value = literal_eval(value)
        except (ValueError, SyntaxError):
            # Original errors aren't too informative in these cases.
            raise ValueError('Invalid expression.')
        except TypeError as err:
            raise ValueError('Evaluating expression failed: %s' % err)
        if not isinstance(value, expected):
            raise ValueError('Value is %s, not %s.' % (type_name(value),
                                                       expected.__name__))
        return value

    def _remove_number_separators(self, value):
        if is_string(value):
            for sep in ' ', '_':
                if sep in value:
                    value = value.replace(sep, '')
        return value



[docs]@TypeConverter.register
class EnumConverter(TypeConverter):
    type = Enum

    @property
    def type_name(self):
        return self.used_type.__name__

    @property
    def value_types(self):
        return (unicode, int) if issubclass(self.used_type, int) else (unicode,)

    def _convert(self, value, explicit_type=True):
        enum = self.used_type
        if isinstance(value, int):
            return self._find_by_int_value(enum, value)
        try:
            # This is compatible with the enum module in Python 3.4, its
            # enum34 backport, and the older enum module. `enum[value]`
            # wouldn't work with the old enum module.
            return getattr(enum, value)
        except AttributeError:
            return self._find_by_normalized_name_or_int_value(enum, value)

    def _find_by_normalized_name_or_int_value(self, enum, value):
        members = sorted(self._get_members(enum))
        matches = [m for m in members if eq(m, value, ignore='_')]
        if len(matches) == 1:
            return getattr(enum, matches[0])
        if len(matches) > 1:
            raise ValueError("%s has multiple members matching '%s'. Available: %s"
                             % (self.type_name, value, seq2str(matches)))
        try:
            if issubclass(self.used_type, int):
                return self._find_by_int_value(enum, value)
        except ValueError:
            members = ['%s (%d)' % (m, getattr(enum, m)) for m in members]
        raise ValueError("%s does not have member '%s'. Available: %s"
                         % (self.type_name, value, seq2str(members)))

    def _get_members(self, enum):
        try:
            return list(enum.__members__)
        except AttributeError:    # old enum module
            return [attr for attr in dir(enum) if not attr.startswith('_')]

    def _find_by_int_value(self, enum, value):
        value = int(value)
        for member in enum:
            if member.value == value:
                return member
        values = sorted(member.value for member in enum)
        raise ValueError("%s does not have value '%d'. Available: %s"
                         % (self.type_name, value, seq2str(values)))



[docs]@TypeConverter.register
class StringConverter(TypeConverter):
    type = unicode
    type_name = 'string'
    aliases = ('string', 'str', 'unicode')

    def _handles_value(self, value):
        return True

    def _convert(self, value, explicit_type=True):
        if not explicit_type:
            return value
        try:
            return unicode(value)
        except Exception:
            raise ValueError(get_error_message())



[docs]@TypeConverter.register
class BooleanConverter(TypeConverter):
    value_types = (unicode, int, float, type(None))
    type = bool
    type_name = 'boolean'
    aliases = ('bool',)

    def _non_string_convert(self, value, explicit_type=True):
        return value

    def _convert(self, value, explicit_type=True):
        upper = value.upper()
        if upper == 'NONE':
            return None
        if upper in TRUE_STRINGS:
            return True
        if upper in FALSE_STRINGS:
            return False
        return value



[docs]@TypeConverter.register
class IntegerConverter(TypeConverter):
    type = int
    abc = Integral
    type_name = 'integer'
    aliases = ('int', 'long')
    value_types = (unicode, float)

    def _non_string_convert(self, value, explicit_type=True):
        if value.is_integer():
            return int(value)
        raise ValueError('Conversion would lose precision.')

    def _convert(self, value, explicit_type=True):
        value = self._remove_number_separators(value)
        value, base = self._get_base(value)
        try:
            return int(value, base)
        except ValueError:
            if base == 10 and not explicit_type:
                try:
                    return float(value)
                except ValueError:
                    pass
        raise ValueError

    def _get_base(self, value):
        value = value.lower()
        for prefix, base in [('0x', 16), ('0o', 8), ('0b', 2)]:
            if prefix in value:
                parts = value.split(prefix)
                if len(parts) == 2 and parts[0] in ('', '-', '+'):
                    return ''.join(parts), base
        return value, 10



[docs]@TypeConverter.register
class FloatConverter(TypeConverter):
    type = float
    abc = Real
    type_name = 'float'
    aliases = ('double',)
    value_types = (unicode, Real)

    def _convert(self, value, explicit_type=True):
        try:
            return float(self._remove_number_separators(value))
        except ValueError:
            raise ValueError



[docs]@TypeConverter.register
class DecimalConverter(TypeConverter):
    type = Decimal
    type_name = 'decimal'
    value_types = (unicode, int, float)

    def _convert(self, value, explicit_type=True):
        try:
            return Decimal(self._remove_number_separators(value))
        except InvalidOperation:
            # With Python 3 error messages by decimal module are not very
            # useful and cannot be included in our error messages:
            # https://bugs.python.org/issue26208
            raise ValueError



[docs]@TypeConverter.register
class BytesConverter(TypeConverter):
    type = bytes
    abc = getattr(abc, 'ByteString', None)    # ByteString is new in Python 3
    type_name = 'bytes'
    value_types = (unicode, bytearray)

    def _non_string_convert(self, value, explicit_type=True):
        return bytes(value)

    def _convert(self, value, explicit_type=True):
        if PY2 and not explicit_type:
            return value
        try:
            value = value.encode('latin-1')
        except UnicodeEncodeError as err:
            raise ValueError("Character '%s' cannot be mapped to a byte."
                             % value[err.start:err.start+1])
        return value if not IRONPYTHON else bytes(value)



[docs]@TypeConverter.register
class ByteArrayConverter(TypeConverter):
    type = bytearray
    type_name = 'bytearray'
    value_types = (unicode, bytes)

    def _non_string_convert(self, value, explicit_type=True):
        return bytearray(value)

    def _convert(self, value, explicit_type=True):
        try:
            return bytearray(value, 'latin-1')
        except UnicodeEncodeError as err:
            raise ValueError("Character '%s' cannot be mapped to a byte."
                             % value[err.start:err.start+1])



[docs]@TypeConverter.register
class DateTimeConverter(TypeConverter):
    type = datetime
    type_name = 'datetime'
    value_types = (unicode, int, float)

    def _convert(self, value, explicit_type=True):
        return convert_date(value, result_format='datetime')



[docs]@TypeConverter.register
class DateConverter(TypeConverter):
    type = date
    type_name = 'date'

    def _convert(self, value, explicit_type=True):
        dt = convert_date(value, result_format='datetime')
        if dt.hour or dt.minute or dt.second or dt.microsecond:
            raise ValueError("Value is datetime, not date.")
        return dt.date()



[docs]@TypeConverter.register
class TimeDeltaConverter(TypeConverter):
    type = timedelta
    type_name = 'timedelta'
    value_types = (unicode, int, float)

    def _convert(self, value, explicit_type=True):
        return convert_time(value, result_format='timedelta')



[docs]@TypeConverter.register
class NoneConverter(TypeConverter):
    type = type(None)
    type_name = 'None'

    def __init__(self, used_type):
        if used_type is None:
            used_type = type(None)
        TypeConverter.__init__(self, used_type)

[docs]    @classmethod
    def handles(cls, type_):
        return type_ in (type(None), None)


    def _convert(self, value, explicit_type=True):
        if value.upper() == 'NONE':
            return None
        raise ValueError



[docs]@TypeConverter.register
class ListConverter(TypeConverter):
    type = list
    type_name = 'list'
    abc = abc.Sequence
    value_types = (unicode, tuple)

[docs]    def no_conversion_needed(self, value):
        if isinstance(value, (str, unicode)):
            return False
        return TypeConverter.no_conversion_needed(self, value)


    def _non_string_convert(self, value, explicit_type=True):
        return list(value)

    def _convert(self, value, explicit_type=True):
        return self._literal_eval(value, list)



[docs]@TypeConverter.register
class TupleConverter(TypeConverter):
    type = tuple
    type_name = 'tuple'
    value_types = (unicode, list)

    def _non_string_convert(self, value, explicit_type=True):
        return tuple(value)

    def _convert(self, value, explicit_type=True):
        return self._literal_eval(value, tuple)



[docs]@TypeConverter.register
class DictionaryConverter(TypeConverter):
    type = dict
    abc = abc.Mapping
    type_name = 'dictionary'
    aliases = ('dict', 'map')

    def _convert(self, value, explicit_type=True):
        return self._literal_eval(value, dict)



[docs]@TypeConverter.register
class SetConverter(TypeConverter):
    type = set
    type_name = 'set'
    value_types = (unicode, frozenset, list, tuple, abc.Mapping)
    abc = abc.Set

    def _non_string_convert(self, value, explicit_type=True):
        return set(value)

    def _convert(self, value, explicit_type=True):
        return self._literal_eval(value, set)



[docs]@TypeConverter.register
class FrozenSetConverter(TypeConverter):
    type = frozenset
    type_name = 'frozenset'
    value_types = (unicode, set, list, tuple, abc.Mapping)

    def _non_string_convert(self, value, explicit_type=True):
        return frozenset(value)

    def _convert(self, value, explicit_type=True):
        # There are issues w/ literal_eval. See self._literal_eval for details.
        if value == 'frozenset()' and not PY2:
            return frozenset()
        return frozenset(self._literal_eval(value, set))



[docs]@TypeConverter.register
class CombinedConverter(TypeConverter):
    type = Union

    def __init__(self, union):
        self.types = self._none_to_nonetype(self._get_types(union))
        self.converters = [TypeConverter.converter_for(t) for t in self.types]

    def _get_types(self, union):
        if not union:
            return ()
        if isinstance(union, tuple):
            return union
        try:
            return union.__args__
        except AttributeError:
            # Python 3.5.2's typing uses __union_params__ instead
            # of __args__. This block can likely be safely removed
            # when Python 3.5 support is dropped
            return union.__union_params__

    def _none_to_nonetype(self, types):
        return tuple(t if t is not None else type(None) for t in types)

    @property
    def type_name(self):
        return ' or '.join(type_name(t) for t in self.types) if self.types else None

[docs]    @classmethod
    def handles(cls, type_):
        return (isinstance(type_, (UnionType, tuple))
                or getattr(type_, '__origin__', None) is Union)


    def _handles_value(self, value):
        return True

[docs]    def no_conversion_needed(self, value):
        for converter in self.converters:
            if converter and converter.no_conversion_needed(value):
                return True
        return False


    def _convert(self, value, explicit_type=True):
        for converter in self.converters:
            if not converter:
                return value
            try:
                return converter.convert('', value, explicit_type)
            except ValueError:
                pass
        raise ValueError





          

      

      

    

  

    
      
          
            
  Source code for robot.running.arguments.typevalidator

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from robot.errors import DataError
from robot.utils import (is_dict_like, is_list_like, plural_or_not as s,
                         seq2str, type_name)


[docs]class TypeValidator(object):

    def __init__(self, argspec):
        """:type argspec: :py:class:`robot.running.arguments.ArgumentSpec`"""
        self._argspec = argspec

[docs]    def validate(self, types):
        if types is None:
            return None
        if not types:
            return {}
        if is_dict_like(types):
            return self.validate_type_dict(types)
        if is_list_like(types):
            return self.convert_type_list_to_dict(types)
        raise DataError('Type information must be given as a dictionary or '
                        'a list, got %s.' % type_name(types))


[docs]    def validate_type_dict(self, types):
        # 'return' isn't used for anything yet but it may be shown by Libdoc
        # in the future. Trying to be forward compatible.
        names = set(self._argspec.argument_names + ['return'])
        extra = [t for t in types if t not in names]
        if extra:
            raise DataError('Type information given to non-existing '
                            'argument%s %s.'
                            % (s(extra), seq2str(sorted(extra))))
        return types


[docs]    def convert_type_list_to_dict(self, types):
        names = self._argspec.argument_names
        if len(types) > len(names):
            raise DataError('Type information given to %d argument%s but '
                            'keyword has only %d argument%s.'
                            % (len(types), s(types), len(names), s(names)))
        return {name: value for name, value in zip(names, types) if value}






          

      

      

    

  

    
      
          
            
  Source code for robot.running.builder.builders

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

import os

from robot.errors import DataError
from robot.output import LOGGER
from robot.parsing import SuiteStructureBuilder, SuiteStructureVisitor

from .parsers import RobotParser, NoInitFileDirectoryParser, RestParser
from .testsettings import TestDefaults


[docs]class TestSuiteBuilder(object):
    """Builder to construct ``TestSuite`` objects based on data on the disk.

    The :meth:`build` method constructs executable
    :class:`~robot.running.model.TestSuite` objects based on test data files
    or directories. There are two main use cases for this API:

    - Execute the created suite by using its
      :meth:`~robot.running.model.TestSuite.run` method. The suite can be
      can be modified before execution if needed.

    - Inspect the suite to see, for example, what tests it has or what tags
      tests have. This can be more convenient than using the lower level
      :mod:`~robot.parsing` APIs but does not allow saving modified data
      back to the disk.

    Both modifying the suite and inspecting what data it contains are easiest
    done by using the :mod:`~robot.model.visitor` interface.

    This class is part of the public API and should be imported via the
    :mod:`robot.api` package.
    """

    def __init__(self, included_suites=None, included_extensions=('robot',),
                 rpa=None, allow_empty_suite=False, process_curdir=True):
        """
        :param include_suites:
            List of suite names to include. If ``None`` or an empty list,
            all suites are included. Same as using :option:`--suite` on
            the command line.
        :param included_extensions:
            List of extensions of files to parse. Same as :option:`--extension`.
            This parameter was named ``extension`` before RF 3.2.
        :param rpa: Explicit test execution mode. ``True`` for RPA and
           ``False`` for test automation. By default mode is got from test
           data headers and possible conflicting headers cause an error.
           Same as :option:`--rpa` or :option:`--norpa`.
        :param allow_empty_suite:
            Specify is it an error if the built suite contains no tests.
            Same as :option:`--runemptysuite`. New in RF 3.2.
        :param process_curdir:
            Control processing the special ``${CURDIR}`` variable. It is
            resolved already at parsing time by default, but that can be
            changed by giving this argument ``False`` value. New in RF 3.2.
        """
        self.rpa = rpa
        self.included_suites = included_suites
        self.included_extensions = included_extensions
        self.allow_empty_suite = allow_empty_suite
        self.process_curdir = process_curdir

[docs]    def build(self, *paths):
        """
        :param paths: Paths to test data files or directories.
        :return: :class:`~robot.running.model.TestSuite` instance.
        """
        structure = SuiteStructureBuilder(self.included_extensions,
                                          self.included_suites).build(paths)
        parser = SuiteStructureParser(self.included_extensions,
                                      self.rpa, self.process_curdir)
        suite = parser.parse(structure)
        if not self.included_suites and not self.allow_empty_suite:
            self._validate_test_counts(suite, multisource=len(paths) > 1)
        suite.remove_empty_suites(preserve_direct_children=len(paths) > 1)
        return suite


    def _validate_test_counts(self, suite, multisource=False):
        def validate(suite):
            if not suite.has_tests:
                raise DataError("Suite '%s' contains no tests or tasks."
                                % suite.name)
        if not multisource:
            validate(suite)
        else:
            for s in suite.suites:
                validate(s)



[docs]class SuiteStructureParser(SuiteStructureVisitor):

    def __init__(self, included_extensions, rpa=None, process_curdir=True):
        self.rpa = rpa
        self._rpa_given = rpa is not None
        self.suite = None
        self._stack = []
        self.parsers = self._get_parsers(included_extensions, process_curdir)

    def _get_parsers(self, extensions, process_curdir):
        robot_parser = RobotParser(process_curdir)
        rest_parser = RestParser(process_curdir)
        parsers = {
            None: NoInitFileDirectoryParser(),
            'robot': robot_parser,
            'rst': rest_parser,
            'rest': rest_parser
        }
        for ext in extensions:
            if ext not in parsers:
                parsers[ext] = robot_parser
        return parsers

    def _get_parser(self, extension):
        try:
            return self.parsers[extension]
        except KeyError:
            return self.parsers['robot']

[docs]    def parse(self, structure):
        structure.visit(self)
        self.suite.rpa = self.rpa
        return self.suite


[docs]    def visit_file(self, structure):
        LOGGER.info("Parsing file '%s'." % structure.source)
        suite, _ = self._build_suite(structure)
        if self._stack:
            self._stack[-1][0].suites.append(suite)
        else:
            self.suite = suite


[docs]    def start_directory(self, structure):
        if structure.source:
            LOGGER.info("Parsing directory '%s'." % structure.source)
        suite, defaults = self._build_suite(structure)
        if self.suite is None:
            self.suite = suite
        else:
            self._stack[-1][0].suites.append(suite)
        self._stack.append((suite, defaults))


[docs]    def end_directory(self, structure):
        suite, _ = self._stack.pop()
        if suite.rpa is None and suite.suites:
            suite.rpa = suite.suites[0].rpa


    def _build_suite(self, structure):
        parent_defaults = self._stack[-1][-1] if self._stack else None
        source = structure.source
        defaults = TestDefaults(parent_defaults)
        parser = self._get_parser(structure.extension)
        try:
            if structure.is_directory:
                suite = parser.parse_init_file(structure.init_file or source, defaults)
            else:
                suite = parser.parse_suite_file(source, defaults)
                if not suite.tests:
                    LOGGER.info("Data source '%s' has no tests or tasks." % source)
            self._validate_execution_mode(suite)
        except DataError as err:
            raise DataError("Parsing '%s' failed: %s" % (source, err.message))
        return suite, defaults

    def _validate_execution_mode(self, suite):
        if self._rpa_given:
            suite.rpa = self.rpa
        elif suite.rpa is None:
            pass
        elif self.rpa is None:
            self.rpa = suite.rpa
        elif self.rpa is not suite.rpa:
            this, that = ('tasks', 'tests') if suite.rpa else ('tests', 'tasks')
            raise DataError("Conflicting execution modes. File has %s "
                            "but files parsed earlier have %s. Fix headers "
                            "or use '--rpa' or '--norpa' options to set the "
                            "execution mode explicitly." % (this, that))



[docs]class ResourceFileBuilder(object):

    def __init__(self, process_curdir=True):
        self.process_curdir = process_curdir

[docs]    def build(self, source):
        LOGGER.info("Parsing resource file '%s'." % source)
        resource = self._parse(source)
        if resource.imports or resource.variables or resource.keywords:
            LOGGER.info("Imported resource file '%s' (%d keywords)."
                        % (source, len(resource.keywords)))
        else:
            LOGGER.warn("Imported resource file '%s' is empty." % source)
        return resource


    def _parse(self, source):
        if os.path.splitext(source)[1].lower() in ('.rst', '.rest'):
            return RestParser(self.process_curdir).parse_resource_file(source)
        return RobotParser(self.process_curdir).parse_resource_file(source)





          

      

      

    

  

    
      
          
            
  Source code for robot.running.builder.parsers

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

import os
from ast import NodeVisitor

from robot.errors import DataError
from robot.output import LOGGER
from robot.parsing import get_model, get_resource_model, get_init_model, Token
from robot.utils import FileReader, read_rest_data

from .testsettings import TestDefaults
from .transformers import SuiteBuilder, SettingsBuilder, ResourceBuilder
from ..model import TestSuite, ResourceFile


[docs]class BaseParser(object):

[docs]    def parse_init_file(self, source, defaults=None):
        raise NotImplementedError


[docs]    def parse_suite_file(self, source, defaults=None):
        raise NotImplementedError


[docs]    def parse_resource_file(self, source):
        raise NotImplementedError




[docs]class RobotParser(BaseParser):

    def __init__(self, process_curdir=True):
        self.process_curdir = process_curdir

[docs]    def parse_init_file(self, source, defaults=None):
        directory = os.path.dirname(source)
        suite = TestSuite(name=format_name(directory), source=directory)
        return self._build(suite, source, defaults, get_model=get_init_model)


[docs]    def parse_suite_file(self, source, defaults=None):
        suite = TestSuite(name=format_name(source), source=source)
        return self._build(suite, source, defaults)


[docs]    def build_suite(self, model, name=None, defaults=None):
        source = model.source
        suite = TestSuite(name=name or format_name(source), source=source)
        return self._build(suite, source, defaults, model)


    def _build(self, suite, source, defaults, model=None, get_model=get_model):
        if defaults is None:
            defaults = TestDefaults()
        if model is None:
            model = get_model(self._get_source(source), data_only=True,
                              curdir=self._get_curdir(source))
        ErrorReporter(source).visit(model)
        SettingsBuilder(suite, defaults).visit(model)
        SuiteBuilder(suite, defaults).visit(model)
        suite.rpa = self._get_rpa_mode(model)
        return suite

    def _get_curdir(self, source):
        if not self.process_curdir:
            return None
        return os.path.dirname(source).replace('\\', '\\\\')

    def _get_source(self, source):
        return source

[docs]    def parse_resource_file(self, source):
        model = get_resource_model(self._get_source(source), data_only=True,
                                   curdir=self._get_curdir(source))
        resource = ResourceFile(source=source)
        ErrorReporter(source).visit(model)
        ResourceBuilder(resource).visit(model)
        return resource


    def _get_rpa_mode(self, data):
        if not data:
            return None
        tasks = [s.tasks for s in data.sections if hasattr(s, 'tasks')]
        if all(tasks) or not any(tasks):
            return tasks[0] if tasks else None
        raise DataError('One file cannot have both tests and tasks.')



[docs]class RestParser(RobotParser):

    def _get_source(self, source):
        with FileReader(source) as reader:
            return read_rest_data(reader)



[docs]class NoInitFileDirectoryParser(BaseParser):

[docs]    def parse_init_file(self, source, defaults=None):
        return TestSuite(name=format_name(source), source=source)




[docs]def format_name(source):
    def strip_possible_prefix_from_name(name):
        return name.split('__', 1)[-1]

    def format_name(name):
        name = strip_possible_prefix_from_name(name)
        name = name.replace('_', ' ').strip()
        return name.title() if name.islower() else name

    if source is None:
        return None
    if os.path.isdir(source):
        basename = os.path.basename(source)
    else:
        basename = os.path.splitext(os.path.basename(source))[0]
    return format_name(basename)



[docs]class ErrorReporter(NodeVisitor):

    def __init__(self, source):
        self.source = source

[docs]    def visit_Error(self, node):
        fatal = node.get_token(Token.FATAL_ERROR)
        if fatal:
            raise DataError(self._format_message(fatal))
        for error in node.get_tokens(Token.ERROR):
            LOGGER.error(self._format_message(error))


    def _format_message(self, token):
        return ("Error in file '%s' on line %s: %s"
                % (self.source, token.lineno, token.error))





          

      

      

    

  

    
      
          
            
  Source code for robot.running.builder.testsettings

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

NOTSET = object()


[docs]class TestDefaults(object):

    def __init__(self, parent=None):
        self.parent = parent
        self._setup = {}
        self._teardown = {}
        self._force_tags = ()
        self.default_tags = ()
        self.template = None
        self._timeout = None

    @property
    def setup(self):
        if self._setup:
            return self._setup
        if self.parent:
            return self.parent.setup
        return {}

    @setup.setter
    def setup(self, setup):
        self._setup = setup

    @property
    def teardown(self):
        if self._teardown:
            return self._teardown
        if self.parent:
            return self.parent.teardown
        return {}

    @teardown.setter
    def teardown(self, teardown):
        self._teardown = teardown

    @property
    def force_tags(self):
        parent_force_tags = self.parent.force_tags if self.parent else ()
        return self._force_tags + parent_force_tags

    @force_tags.setter
    def force_tags(self, force_tags):
        self._force_tags = force_tags

    @property
    def timeout(self):
        if self._timeout:
            return self._timeout
        if self.parent:
            return self.parent.timeout
        return None

    @timeout.setter
    def timeout(self, timeout):
        self._timeout = timeout



[docs]class TestSettings(object):

    def __init__(self, defaults):
        self.defaults = defaults
        self._setup = NOTSET
        self._teardown = NOTSET
        self._timeout = NOTSET
        self._template = NOTSET
        self._tags = NOTSET

    @property
    def setup(self):
        if self._setup is NOTSET:
            return self.defaults.setup
        return self._setup

    @setup.setter
    def setup(self, setup):
        self._setup = setup

    @property
    def teardown(self):
        if self._teardown is NOTSET:
            return self.defaults.teardown
        return self._teardown

    @teardown.setter
    def teardown(self, teardown):
        self._teardown = teardown

    @property
    def timeout(self):
        if self._timeout is NOTSET:
            return self.defaults.timeout
        return self._timeout

    @timeout.setter
    def timeout(self, timeout):
        self._timeout = timeout

    @property
    def template(self):
        if self._template is NOTSET:
            return self.defaults.template
        return self._template

    @template.setter
    def template(self, template):
        self._template = template

    @property
    def tags(self):
        if self._tags is NOTSET:
            tags = self.defaults.default_tags
        else:
            tags = self._tags
        return tags + self.defaults.force_tags

    @tags.setter
    def tags(self, tags):
        self._tags = tags





          

      

      

    

  

    
      
          
            
  Source code for robot.running.builder.transformers

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from ast import NodeVisitor

from robot.variables import VariableIterator

from .testsettings import TestSettings


[docs]class SettingsBuilder(NodeVisitor):

    def __init__(self, suite, test_defaults):
        self.suite = suite
        self.test_defaults = test_defaults

[docs]    def visit_Documentation(self, node):
        self.suite.doc = node.value


[docs]    def visit_Metadata(self, node):
        self.suite.metadata[node.name] = node.value


[docs]    def visit_SuiteSetup(self, node):
        self.suite.setup.config(name=node.name, args=node.args,
                                lineno=node.lineno)


[docs]    def visit_SuiteTeardown(self, node):
        self.suite.teardown.config(name=node.name, args=node.args,
                                   lineno=node.lineno)


[docs]    def visit_TestSetup(self, node):
        self.test_defaults.setup = {
            'name': node.name, 'args': node.args, 'lineno': node.lineno
        }


[docs]    def visit_TestTeardown(self, node):
        self.test_defaults.teardown = {
            'name': node.name, 'args': node.args, 'lineno': node.lineno
        }


[docs]    def visit_TestTimeout(self, node):
        self.test_defaults.timeout = node.value


[docs]    def visit_DefaultTags(self, node):
        self.test_defaults.default_tags = node.values


[docs]    def visit_ForceTags(self, node):
        self.test_defaults.force_tags = node.values


[docs]    def visit_TestTemplate(self, node):
        self.test_defaults.template = node.value


[docs]    def visit_ResourceImport(self, node):
        self.suite.resource.imports.create(type='Resource', name=node.name,
                                           lineno=node.lineno)


[docs]    def visit_LibraryImport(self, node):
        self.suite.resource.imports.create(type='Library', name=node.name,
                                           args=node.args, alias=node.alias,
                                           lineno=node.lineno)


[docs]    def visit_VariablesImport(self, node):
        self.suite.resource.imports.create(type='Variables', name=node.name,
                                           args=node.args, lineno=node.lineno)


[docs]    def visit_VariableSection(self, node):
        pass


[docs]    def visit_TestCaseSection(self, node):
        pass


[docs]    def visit_KeywordSection(self, node):
        pass




[docs]class SuiteBuilder(NodeVisitor):

    def __init__(self, suite, test_defaults):
        self.suite = suite
        self.test_defaults = test_defaults

[docs]    def visit_SettingSection(self, node):
        pass


[docs]    def visit_Variable(self, node):
        self.suite.resource.variables.create(name=node.name,
                                             value=node.value,
                                             lineno=node.lineno,
                                             error=format_error(node.errors))


[docs]    def visit_TestCase(self, node):
        TestCaseBuilder(self.suite, self.test_defaults).visit(node)


[docs]    def visit_Keyword(self, node):
        KeywordBuilder(self.suite.resource).visit(node)




[docs]class ResourceBuilder(NodeVisitor):

    def __init__(self, resource):
        self.resource = resource

[docs]    def visit_Documentation(self, node):
        self.resource.doc = node.value


[docs]    def visit_LibraryImport(self, node):
        self.resource.imports.create(type='Library', name=node.name,
                                     args=node.args, alias=node.alias,
                                     lineno=node.lineno)


[docs]    def visit_ResourceImport(self, node):
        self.resource.imports.create(type='Resource', name=node.name,
                                     lineno=node.lineno)


[docs]    def visit_VariablesImport(self, node):
        self.resource.imports.create(type='Variables', name=node.name,
                                     args=node.args, lineno=node.lineno)


[docs]    def visit_Variable(self, node):
        self.resource.variables.create(name=node.name,
                                       value=node.value,
                                       lineno=node.lineno,
                                       error=format_error(node.errors))


[docs]    def visit_Keyword(self, node):
        KeywordBuilder(self.resource).visit(node)




[docs]class TestCaseBuilder(NodeVisitor):

    def __init__(self, suite, defaults):
        self.suite = suite
        self.settings = TestSettings(defaults)
        self.test = None

[docs]    def visit_TestCase(self, node):
        self.test = self.suite.tests.create(name=node.name, lineno=node.lineno)
        self.generic_visit(node)
        self._set_settings(self.test, self.settings)


    def _set_settings(self, test, settings):
        if settings.setup:
            test.setup.config(**settings.setup)
        if settings.teardown:
            test.teardown.config(**settings.teardown)
        if settings.timeout:
            test.timeout = settings.timeout
        if settings.tags:
            test.tags = settings.tags
        if settings.template:
            test.template = settings.template
            self._set_template(test, settings.template)

    def _set_template(self, parent, template):
        for item in parent.body:
            if item.type == item.FOR:
                self._set_template(item, template)
            elif item.type == item.IF_ELSE_ROOT:
                for branch in item.body:
                    self._set_template(branch, template)
            elif item.type == item.KEYWORD:
                name, args = self._format_template(template, item.args)
                item.name = name
                item.args = args

    def _format_template(self, template, arguments):
        variables = VariableIterator(template, identifiers='$')
        count = len(variables)
        if count == 0 or count != len(arguments):
            return template, arguments
        temp = []
        for (before, _, after), arg in zip(variables, arguments):
            temp.extend([before, arg])
        temp.append(after)
        return ''.join(temp), ()

[docs]    def visit_For(self, node):
        ForBuilder(self.test).build(node)


[docs]    def visit_If(self, node):
        IfBuilder(self.test).build(node)


[docs]    def visit_TemplateArguments(self, node):
        self.test.body.create_keyword(args=node.args, lineno=node.lineno)


[docs]    def visit_Documentation(self, node):
        self.test.doc = node.value


[docs]    def visit_Setup(self, node):
        self.settings.setup = {
            'name': node.name, 'args': node.args, 'lineno': node.lineno
        }


[docs]    def visit_Teardown(self, node):
        self.settings.teardown = {
            'name': node.name, 'args': node.args, 'lineno': node.lineno
        }


[docs]    def visit_Timeout(self, node):
        self.settings.timeout = node.value


[docs]    def visit_Tags(self, node):
        self.settings.tags = node.values


[docs]    def visit_Template(self, node):
        self.settings.template = node.value


[docs]    def visit_KeywordCall(self, node):
        self.test.body.create_keyword(name=node.keyword, args=node.args,
                                      assign=node.assign, lineno=node.lineno)




[docs]class KeywordBuilder(NodeVisitor):

    def __init__(self, resource):
        self.resource = resource
        self.kw = None
        self.teardown = None

[docs]    def visit_Keyword(self, node):
        self.kw = self.resource.keywords.create(name=node.name,
                                                lineno=node.lineno)
        self.generic_visit(node)
        if self.teardown is not None:
            self.kw.teardown.config(**self.teardown)


[docs]    def visit_Documentation(self, node):
        self.kw.doc = node.value


[docs]    def visit_Arguments(self, node):
        self.kw.args = node.values
        if node.errors:
            self.kw.error = ('Invalid argument specification: %s'
                             % format_error(node.errors))


[docs]    def visit_Tags(self, node):
        self.kw.tags = node.values


[docs]    def visit_Return(self, node):
        self.kw.return_ = node.values


[docs]    def visit_Timeout(self, node):
        self.kw.timeout = node.value


[docs]    def visit_Teardown(self, node):
        self.teardown = {
            'name': node.name, 'args': node.args, 'lineno': node.lineno
        }


[docs]    def visit_KeywordCall(self, node):
        self.kw.body.create_keyword(name=node.keyword, args=node.args,
                                    assign=node.assign, lineno=node.lineno)


[docs]    def visit_For(self, node):
        ForBuilder(self.kw).build(node)


[docs]    def visit_If(self, node):
        IfBuilder(self.kw).build(node)




[docs]class ForBuilder(NodeVisitor):

    def __init__(self, parent):
        self.parent = parent
        self.model = None

[docs]    def build(self, node):
        error = format_error(self._get_errors(node))
        self.model = self.parent.body.create_for(
            node.variables, node.flavor, node.values, lineno=node.lineno, error=error
        )
        for step in node.body:
            self.visit(step)
        return self.model


    def _get_errors(self, node):
        errors = node.header.errors + node.errors
        if node.end:
            errors += node.end.errors
        return errors

[docs]    def visit_KeywordCall(self, node):
        self.model.body.create_keyword(name=node.keyword, args=node.args,
                                       assign=node.assign, lineno=node.lineno)


[docs]    def visit_TemplateArguments(self, node):
        self.model.body.create_keyword(args=node.args, lineno=node.lineno)


[docs]    def visit_For(self, node):
        ForBuilder(self.model).build(node)


[docs]    def visit_If(self, node):
        IfBuilder(self.model).build(node)




[docs]class IfBuilder(NodeVisitor):

    def __init__(self, parent):
        self.parent = parent
        self.model = None

[docs]    def build(self, node):
        model = self.parent.body.create_if(lineno=node.lineno,
                                           error=format_error(self._get_errors(node)))
        while node:
            self.model = model.body.create_branch(node.type, node.condition,
                                                  lineno=node.lineno)
            for step in node.body:
                self.visit(step)
            node = node.orelse
        return model


    def _get_errors(self, node):
        errors = node.header.errors + node.errors
        if node.orelse:
            errors += self._get_errors(node.orelse)
        if node.end:
            errors += node.end.errors
        return errors

[docs]    def visit_KeywordCall(self, node):
        self.model.body.create_keyword(name=node.keyword, args=node.args,
                                       assign=node.assign, lineno=node.lineno)


[docs]    def visit_TemplateArguments(self, node):
        self.model.body.create_keyword(args=node.args, lineno=node.lineno)


[docs]    def visit_If(self, node):
        IfBuilder(self.model).build(node)


[docs]    def visit_For(self, node):
        ForBuilder(self.model).build(node)




[docs]def format_error(errors):
    if not errors:
        return None
    if len(errors) == 1:
        return errors[0]
    return '\n- '.join(('Multiple errors:',) + errors)





          

      

      

    

  

    
      
          
            
  Source code for robot.running.timeouts.posix

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from signal import setitimer, signal, SIGALRM, ITIMER_REAL


[docs]class Timeout(object):

    def __init__(self, timeout, error):
        self._timeout = timeout
        self._error = error

[docs]    def execute(self, runnable):
        self._start_timer()
        try:
            return runnable()
        finally:
            self._stop_timer()


    def _start_timer(self):
        signal(SIGALRM, self._raise_timeout_error)
        setitimer(ITIMER_REAL, self._timeout)

    def _raise_timeout_error(self, signum, frame):
        raise self._error

    def _stop_timer(self):
        setitimer(ITIMER_REAL, 0)





          

      

      

    

  

    
      
          
            
  Source code for robot.running.timeouts.windows

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

import ctypes
import time
from threading import current_thread, Lock, Timer


[docs]class Timeout(object):

    def __init__(self, timeout, error):
        self._runner_thread_id = current_thread().ident
        self._timer = Timer(timeout, self._timed_out)
        self._error = error
        self._timeout_occurred = False
        self._finished = False
        self._lock = Lock()

[docs]    def execute(self, runnable):
        try:
            self._start_timer()
            try:
                result = runnable()
            finally:
                self._cancel_timer()
            self._wait_for_raised_timeout()
            return result
        finally:
            if self._timeout_occurred:
                raise self._error


    def _start_timer(self):
        self._timer.start()

    def _cancel_timer(self):
        with self._lock:
            self._finished = True
            self._timer.cancel()

    def _wait_for_raised_timeout(self):
        if self._timeout_occurred:
            while True:
                time.sleep(0)

    def _timed_out(self):
        with self._lock:
            if self._finished:
                return
            self._timeout_occurred = True
        self._raise_timeout()

    def _raise_timeout(self):
        # See, for example, http://tomerfiliba.com/recipes/Thread2/
        # for more information about using PyThreadState_SetAsyncExc
        tid = ctypes.c_long(self._runner_thread_id)
        error = ctypes.py_object(type(self._error))
        while ctypes.pythonapi.PyThreadState_SetAsyncExc(tid, error) > 1:
            ctypes.pythonapi.PyThreadState_SetAsyncExc(tid, None)
            time.sleep(0)  # give time for other threads





          

      

      

    

  

    
      
          
            
  Source code for robot.tidypkg.transformers

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from itertools import takewhile

from robot.parsing import Token, ModelTransformer
from robot.parsing.model.statements import EmptyLine, End
from robot.utils import normalize_whitespace


[docs]class Cleaner(ModelTransformer):
    """Clean up and normalize data.

    Following transformations are made:
    1) section headers are normalized to format `***  Section Name ***`
    2) setting names are normalize in setting table and in test cases and
       user keywords to format `Setting Name` or `[Setting Name]`
    3) settings without values are removed
    4) Empty lines after section headers and within items are removed
    5) For loop declaration and end tokens are normalized to `FOR` and `END`
    6) Old style for loop indent (i.e. a cell with only a `\\`) are removed
    """

    def __init__(self):
        self.in_data_section = False

[docs]    def visit_CommentSection(self, section):
        self.generic_visit(section)
        return section


[docs]    def visit_Section(self, section):
        self.in_data_section = True
        self._normalize_section_header(section)
        self.generic_visit(section)
        return section


    def _normalize_section_header(self, section):
        header_token = section.header.data_tokens[0]
        normalized = self._normalize_name(header_token.value, remove='*')
        header_token.value = '*** %s ***' % normalized

[docs]    def visit_Statement(self, statement):
        if statement.type in Token.SETTING_TOKENS:
            self._normalize_setting_name(statement)
        self.generic_visit(statement)
        if self._is_setting_without_value(statement) or \
                self._is_empty_line_in_data(statement):
            return None
        if self.in_data_section:
            self._remove_empty_lines_within_statement(statement)
        return statement


    def _normalize_setting_name(self, statement):
        name = statement.data_tokens[0].value
        if name.startswith('['):
            cleaned = '[%s]' % self._normalize_name(name[1:-1])
        else:
            cleaned = self._normalize_name(name)
        statement.data_tokens[0].value = cleaned

    def _normalize_name(self, marker, remove=None):
        if remove:
            marker = marker.replace(remove, '')
        return normalize_whitespace(marker).strip().title()

    def _is_setting_without_value(self, statement):
        return statement.type in Token.SETTING_TOKENS and \
               len(statement.data_tokens) == 1

    def _is_empty_line_in_data(self, statement):
        return self.in_data_section and statement.type == Token.EOL

    def _remove_empty_lines_within_statement(self, statement):
        new_tokens = []
        for line in statement.lines:
            if len(line) == 1 and line[0].type == Token.EOL:
                continue
            new_tokens.extend(line)
        statement.tokens = new_tokens

[docs]    def visit_For(self, loop):
        loop.header.data_tokens[0].value = 'FOR'
        if loop.end:
            loop.end.data_tokens[0].value = 'END'
        else:
            loop.end = End([Token(Token.SEPARATOR), Token(Token.END, 'END')])
        self.generic_visit(loop)
        return loop




[docs]class NewlineNormalizer(ModelTransformer):
    """Normalize new lines in test data

    After this transformation, there is exactly one empty line between each
    section and between each test or user keyword.
    """

    def __init__(self, newline, short_test_name_length):
        self.newline = newline
        self.short_test_name_length = short_test_name_length
        self.custom_test_section_headers = False
        self.last_test = None
        self.last_keyword = None
        self.last_section = None

[docs]    def visit_File(self, node):
        self.last_section = node.sections[-1] if node.sections else None
        return self.generic_visit(node)


[docs]    def visit_Section(self, node):
        if node is not self.last_section:
            node.body.append(EmptyLine.from_params(self.newline))
        return self.generic_visit(node)


[docs]    def visit_CommentSection(self, node):
        return self.generic_visit(node)


[docs]    def visit_TestCaseSection(self, node):
        self.last_test = node.body[-1] if node.body else None
        self.custom_test_section_headers = len(node.header.data_tokens) > 1
        section = self.visit_Section(node)
        self.custom_test_section_headers = False
        return section


[docs]    def visit_TestCase(self, node):
        if not node.body or node is not self.last_test:
            node.body.append(EmptyLine.from_params(self.newline))
        return self.generic_visit(node)


[docs]    def visit_KeywordSection(self, node):
        self.last_keyword = node.body[-1] if node.body else None
        return self.visit_Section(node)


[docs]    def visit_Keyword(self, node):
        if not node.body or node is not self.last_keyword:
            node.body.append(EmptyLine.from_params(self.newline))
        return self.generic_visit(node)


[docs]    def visit_Statement(self, statement):
        if statement[-1].type != Token.EOL:
            if not self._should_write_content_after_name(statement):
                statement.tokens.append(Token(Token.EOL, self.newline))
        new_tokens = []
        for line in statement.lines:
            if line[-1].type == Token.EOL:
                if self._should_write_content_after_name(statement):
                    line.pop()
                else:
                    line[-1].value = self.newline
            new_tokens.extend(line)
        statement.tokens = new_tokens
        return statement


    def _should_write_content_after_name(self, statement):
        return (statement.type in (Token.TESTCASE_NAME, Token.KEYWORD_NAME) and
                self.custom_test_section_headers and
                len(statement.tokens[0].value) < self.short_test_name_length)



[docs]class SeparatorNormalizer(ModelTransformer):
    """Make separators and indentation consistent."""

    def __init__(self, use_pipes, space_count):
        self.use_pipes = use_pipes
        self.space_count = space_count
        self.indent = 0

[docs]    def visit_TestCase(self, node):
        self.visit_Statement(node.header)
        self.indent += 1
        node.body = [self.visit(item) for item in node.body]
        self.indent -= 1
        return node


[docs]    def visit_Keyword(self, node):
        self.visit_Statement(node.header)
        self.indent += 1
        node.body = [self.visit(item) for item in node.body]
        self.indent -= 1
        return node


[docs]    def visit_For(self, node):
        self.visit_Statement(node.header)
        self.indent += 1
        node.body = [self.visit(item) for item in node.body]
        self.indent -= 1
        self.visit_Statement(node.end)
        return node


[docs]    def visit_If(self, node):
        self.visit_Statement(node.header)
        self.indent += 1
        node.body = [self.visit(item) for item in node.body]
        self.indent -= 1
        if node.orelse:
            self.visit(node.orelse)
        if node.end:
            self.visit_Statement(node.end)
        return node


[docs]    def visit_Statement(self, statement):
        has_pipes = statement.tokens[0].value.startswith('|')
        if self.use_pipes:
            return self._handle_pipes(statement, has_pipes)
        return self._handle_spaces(statement, has_pipes)


    def _handle_spaces(self, statement, has_pipes=False):
        new_tokens = []
        for line in statement.lines:
            if has_pipes and len(line) > 1:
                line = self._remove_consecutive_separators(line)
            new_tokens.extend([self._normalize_spaces(i, t, len(line))
                               for i, t in enumerate(line)])
        statement.tokens = new_tokens
        self.generic_visit(statement)
        return statement

    def _remove_consecutive_separators(self, line):
        sep_count = len(list(
            takewhile(lambda t: t.type == Token.SEPARATOR, line)
        ))
        return line[sep_count - 1:]

    def _normalize_spaces(self, index, token, line_length):
        if token.type == Token.SEPARATOR:
            spaces = self.space_count * self.indent \
                if index == 0 else self.space_count
            token.value = ' ' * spaces
        # The last token is always EOL, this removes all dangling whitespace
        # from the token before the EOL
        if index == line_length - 2:
            token.value = token.value.rstrip()
        return token

    def _handle_pipes(self, statement, has_pipes=False):
        new_tokens = []
        for line in statement.lines:
            if len(line) == 1 and line[0].type == Token.EOL:
                new_tokens.extend(line)
                continue

            if not has_pipes:
                line = self._insert_leading_and_trailing_separators(line)
            for index, token in enumerate(line):
                if token.type == Token.SEPARATOR:
                    if index == 0:
                        if self.indent:
                            token.value = '|   '
                        else:
                            token.value = '| '
                    elif index < self.indent:
                        token.value = ' |   '
                    elif len(line) > 1 and index == len(line) - 2:
                        # This is the separator before EOL.
                        token.value = ' |'
                    else:
                        token.value = ' | '
            new_tokens.extend(line)
        statement.tokens = new_tokens
        return statement

    def _insert_leading_and_trailing_separators(self, line):
        """Add missing separators to the beginning and the end of the line.

        When converting from spaces to pipes, a separator token is needed
        in the beginning of the line, for each indent level and in the
        end of the line.
        """
        separators_needed = 1
        if self.indent > 1:
            # Space format has 1 separator token regardless of the indent level.
            # With pipes, we need to add one separator for each indent level
            # beyond 1.
            separators_needed += self.indent - 1
        for _ in range(separators_needed):
            line = [Token(Token.SEPARATOR, '')] + line
        if len(line) > 1:
            if line[-2].type != Token.SEPARATOR:
                line = line[:-1] + [Token(Token.SEPARATOR, ''), line[-1]]
        return line



[docs]class ColumnAligner(ModelTransformer):

    def __init__(self, short_test_name_length, widths):
        self.short_test_name_length = short_test_name_length
        self.widths = widths
        self.test_name_len = 0
        self.indent = 0
        self.first_statement_after_name_seen = False

[docs]    def visit_TestCase(self, node):
        self.first_statement_after_name_seen = False
        return self.generic_visit(node)


[docs]    def visit_For(self, node):
        self.indent += 1
        self.generic_visit(node)
        self.indent -= 1
        return node


[docs]    def visit_Statement(self, statement):
        if statement.type == Token.TESTCASE_NAME:
            self.test_name_len = len(statement.tokens[0].value)
        elif statement.type == Token.TESTCASE_HEADER:
            self.align_header(statement)
        else:
            self.align_statement(statement)
        return statement


[docs]    def align_header(self, statement):
        for token, width in zip(statement.data_tokens[:-1], self.widths):
            token.value = token.value.ljust(width)


[docs]    def align_statement(self, statement):
        for line in statement.lines:
            line = [t for t in line if t.type
                    not in (Token.SEPARATOR, Token.EOL)]
            line_pos = 0
            exp_pos = 0
            widths = self.widths_for_line(line)
            for token, width in zip(line, widths):
                exp_pos += width
                if self.should_write_content_after_name(line_pos):
                    exp_pos -= self.test_name_len
                    self.first_statement_after_name_seen = True
                token.value = (exp_pos - line_pos) * ' ' + token.value
                line_pos += len(token.value)


[docs]    def widths_for_line(self, line):
        if self.indent > 0 and self._should_be_indented(line):
            widths = self.widths[1:]
            widths[0] = widths[0] + self.widths[0]
            return widths
        return self.widths


    def _should_be_indented(self, line):
        return line[0].type in (Token.KEYWORD, Token.ASSIGN,
                                Token.CONTINUATION)

[docs]    def should_write_content_after_name(self, line_pos):
        return line_pos == 0 and not self.first_statement_after_name_seen \
               and self.test_name_len < self.short_test_name_length




[docs]class ColumnWidthCounter(ModelTransformer):

    def __init__(self):
        self.widths = []

[docs]    def visit_Statement(self, statement):
        if statement.type == Token.TESTCASE_HEADER:
            self._count_widths_from_statement(statement)
        elif statement.type != Token.TESTCASE_NAME:
            self._count_widths_from_statement(statement, indent=1)
        return statement


    def _count_widths_from_statement(self, statement, indent=0):
        for line in statement.lines:
            line = [t for t in line if t.type not in (Token.SEPARATOR, Token.EOL)]
            for index, token in enumerate(line, start=indent):
                if index >= len(self.widths):
                    self.widths.append(len(token.value))
                elif len(token.value) > self.widths[index]:
                    self.widths[index] = len(token.value)



[docs]class Aligner(ModelTransformer):

    def __init__(self, short_test_name_length,
                 setting_and_variable_name_length, pipes_mode):
        self.short_test_name_length = short_test_name_length
        self.setting_and_variable_name_length = \
            setting_and_variable_name_length
        self.pipes_mode = pipes_mode

[docs]    def visit_TestCaseSection(self, section):
        if len(section.header.data_tokens) > 1:
            counter = ColumnWidthCounter()
            counter.visit(section)
            ColumnAligner(self.short_test_name_length,
                          counter.widths).visit(section)
        return section


[docs]    def visit_KeywordSection(self, section):
        return section


[docs]    def visit_Statement(self, statement):
        for line in statement.lines:
            value_tokens = [t for t in line if t.type
                            not in (Token.SEPARATOR, Token.EOL)]
            if self._should_be_aligned(value_tokens):
                first = value_tokens[0]
                first.value = first.value.ljust(
                    self.setting_and_variable_name_length
                )
        return statement


    def _should_be_aligned(self, tokens):
        if not tokens:
            return False
        if len(tokens) == 1:
            return self.pipes_mode
        if len(tokens) == 2:
            return tokens[0].type != Token.CONTINUATION or tokens[1].value
        return True





          

      

      

    

  

    
      
          
            
  Source code for robot.utils.application

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from __future__ import print_function

import sys

from robot.errors import (INFO_PRINTED, DATA_ERROR, STOPPED_BY_USER,
                          FRAMEWORK_ERROR, Information, DataError)

from .argumentparser import ArgumentParser
from .encoding import console_encode
from .error import get_error_details


[docs]class Application(object):

    def __init__(self, usage, name=None, version=None, arg_limits=None,
                 env_options=None, logger=None, **auto_options):
        self._ap = ArgumentParser(usage, name, version, arg_limits,
                                  self.validate, env_options, **auto_options)
        self._logger = logger or DefaultLogger()

[docs]    def main(self, arguments, **options):
        raise NotImplementedError


[docs]    def validate(self, options, arguments):
        return options, arguments


[docs]    def execute_cli(self, cli_arguments, exit=True):
        with self._logger:
            self._logger.info('%s %s' % (self._ap.name, self._ap.version))
            options, arguments = self._parse_arguments(cli_arguments)
            rc = self._execute(arguments, options)
        if exit:
            self._exit(rc)
        return rc


[docs]    def console(self, msg):
        if msg:
            print(console_encode(msg))


    def _parse_arguments(self, cli_args):
        try:
            options, arguments = self.parse_arguments(cli_args)
        except Information as msg:
            self._report_info(msg.message)
        except DataError as err:
            self._report_error(err.message, help=True, exit=True)
        else:
            self._logger.info('Arguments: %s' % ','.join(arguments))
            return options, arguments

[docs]    def parse_arguments(self, cli_args):
        """Public interface for parsing command line arguments.

        :param    cli_args: Command line arguments as a list
        :returns: options (dict), arguments (list)
        :raises:  :class:`~robot.errors.Information` when --help or --version used
        :raises:  :class:`~robot.errors.DataError` when parsing fails
        """
        return self._ap.parse_args(cli_args)


[docs]    def execute(self, *arguments, **options):
        with self._logger:
            self._logger.info('%s %s' % (self._ap.name, self._ap.version))
            return self._execute(list(arguments), options)


    def _execute(self, arguments, options):
        try:
            rc = self.main(arguments, **options)
        except DataError as err:
            return self._report_error(err.message, help=True)
        except (KeyboardInterrupt, SystemExit):
            return self._report_error('Execution stopped by user.',
                                      rc=STOPPED_BY_USER)
        except:
            error, details = get_error_details(exclude_robot_traces=False)
            return self._report_error('Unexpected error: %s' % error,
                                      details, rc=FRAMEWORK_ERROR)
        else:
            return rc or 0

    def _report_info(self, message):
        self.console(message)
        self._exit(INFO_PRINTED)

    def _report_error(self, message, details=None, help=False, rc=DATA_ERROR,
                      exit=False):
        if help:
            message += '\n\nTry --help for usage information.'
        if details:
            message += '\n' + details
        self._logger.error(message)
        if exit:
            self._exit(rc)
        return rc

    def _exit(self, rc):
        sys.exit(rc)



[docs]class DefaultLogger(object):

[docs]    def info(self, message):
        pass


[docs]    def error(self, message):
        print(console_encode(message))


[docs]    def close(self):
        pass


    def __enter__(self):
        pass

    def __exit__(self, *exc_info):
        pass





          

      

      

    

  

    
      
          
            
  Source code for robot.utils.argumentparser

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

import getopt     # optparse was not supported by Jython 2.2
import os
import re
import shlex
import sys
import glob
import string

from robot.errors import DataError, Information, FrameworkError
from robot.version import get_full_version

from .encoding import console_decode, system_decode
from .filereader import FileReader
from .misc import plural_or_not
from .platform import PY2
from .robottypes import is_falsy, is_integer, is_string, is_unicode


[docs]def cmdline2list(args, escaping=False):
    if PY2 and is_unicode(args):
        args = args.encode('UTF-8')
        decode = lambda item: item.decode('UTF-8')
    else:
        decode = lambda item: item
    lexer = shlex.shlex(args, posix=True)
    if is_falsy(escaping):
        lexer.escape = ''
    lexer.escapedquotes = '"\''
    lexer.commenters = ''
    lexer.whitespace_split = True
    try:
        return [decode(token) for token in lexer]
    except ValueError as err:
        raise ValueError("Parsing '%s' failed: %s" % (args, err))



[docs]class ArgumentParser(object):
    _opt_line_re = re.compile(r'''
    ^\s{1,4}      # 1-4 spaces in the beginning of the line
    ((-\S\s)*)    # all possible short options incl. spaces (group 1)
    --(\S{2,})    # required long option (group 3)
    (\s\S+)?      # optional value (group 4)
    (\s\*)?       # optional '*' telling option allowed multiple times (group 5)
    ''', re.VERBOSE)

    def __init__(self, usage, name=None, version=None, arg_limits=None,
                 validator=None, env_options=None, auto_help=True,
                 auto_version=True, auto_pythonpath=True,
                 auto_argumentfile=True):
        """Available options and tool name are read from the usage.

        Tool name is got from the first row of the usage. It is either the
        whole row or anything before first ' -- '.
        """
        if not usage:
            raise FrameworkError('Usage cannot be empty')
        self.name = name or usage.splitlines()[0].split(' -- ')[0].strip()
        self.version = version or get_full_version()
        self._usage = usage
        self._arg_limit_validator = ArgLimitValidator(arg_limits)
        self._validator = validator
        self._auto_help = auto_help
        self._auto_version = auto_version
        self._auto_pythonpath = auto_pythonpath
        self._auto_argumentfile = auto_argumentfile
        self._env_options = env_options
        self._short_opts = ''
        self._long_opts = []
        self._multi_opts = []
        self._flag_opts = []
        self._short_to_long = {}
        self._expected_args = ()
        self._create_options(usage)

[docs]    def parse_args(self, args):
        """Parse given arguments and return options and positional arguments.

        Arguments must be given as a list and are typically sys.argv[1:].

        Options are returned as a dictionary where long options are keys. Value
        is a string for those options that can be given only one time (if they
        are given multiple times the last value is used) or None if the option
        is not used at all. Value for options that can be given multiple times
        (denoted with '*' in the usage) is a list which contains all the given
        values and is empty if options are not used. Options not taken
        arguments have value False when they are not set and True otherwise.

        Positional arguments are returned as a list in the order they are given.

        If 'check_args' is True, this method will automatically check that
        correct number of arguments, as parsed from the usage line, are given.
        If the last argument in the usage line ends with the character 's',
        the maximum number of arguments is infinite.

        Possible errors in processing arguments are reported using DataError.

        Some options have a special meaning and are handled automatically
        if defined in the usage and given from the command line:

        --argumentfile can be used to automatically read arguments from
        a specified file. When --argumentfile is used, the parser always
        allows using it multiple times. Adding '*' to denote that is thus
        recommend. A special value 'stdin' can be used to read arguments from
        stdin instead of a file.

        --pythonpath can be used to add extra path(s) to sys.path.

        --help and --version automatically generate help and version messages.
        Version is generated based on the tool name and version -- see __init__
        for information how to set them. Help contains the whole usage given to
        __init__. Possible <VERSION> text in the usage is replaced with the
        given version. Both help and version are wrapped to Information
        exception.
        """
        args = self._get_env_options() + list(args)
        args = [system_decode(a) for a in args]
        if self._auto_argumentfile:
            args = self._process_possible_argfile(args)
        opts, args = self._parse_args(args)
        if self._auto_argumentfile and opts.get('argumentfile'):
            raise DataError("Using '--argumentfile' option in shortened format "
                            "like '--argumentf' is not supported.")
        opts, args = self._handle_special_options(opts, args)
        self._arg_limit_validator(args)
        if self._validator:
            opts, args = self._validator(opts, args)
        return opts, args


    def _get_env_options(self):
        if self._env_options:
            options = os.getenv(self._env_options)
            if options:
                return cmdline2list(options)
        return []

    def _handle_special_options(self, opts, args):
        if self._auto_help and opts.get('help'):
            self._raise_help()
        if self._auto_version and opts.get('version'):
            self._raise_version()
        if self._auto_pythonpath and opts.get('pythonpath'):
            sys.path = self._get_pythonpath(opts['pythonpath']) + sys.path
        for auto, opt in [(self._auto_help, 'help'),
                          (self._auto_version, 'version'),
                          (self._auto_pythonpath, 'pythonpath'),
                          (self._auto_argumentfile, 'argumentfile')]:
            if auto and opt in opts:
                opts.pop(opt)
        return opts, args

    def _parse_args(self, args):
        args = [self._lowercase_long_option(a) for a in args]
        try:
            opts, args = getopt.getopt(args, self._short_opts, self._long_opts)
        except getopt.GetoptError as err:
            raise DataError(err.msg)
        return self._process_opts(opts), self._glob_args(args)

    def _lowercase_long_option(self, opt):
        if not opt.startswith('--'):
            return opt
        if '=' not in opt:
            return opt.lower()
        opt, value = opt.split('=', 1)
        return '%s=%s' % (opt.lower(), value)

    def _process_possible_argfile(self, args):
        options = ['--argumentfile']
        for short_opt, long_opt in self._short_to_long.items():
            if long_opt == 'argumentfile':
                options.append('-'+short_opt)
        return ArgFileParser(options).process(args)

    def _process_opts(self, opt_tuple):
        opts = self._get_default_opts()
        for name, value in opt_tuple:
            name = self._get_name(name)
            if name in self._multi_opts:
                opts[name].append(value)
            elif name in self._flag_opts:
                opts[name] = True
            elif name.startswith('no') and name[2:] in self._flag_opts:
                opts[name[2:]] = False
            else:
                opts[name] = value
        return opts

    def _get_default_opts(self):
        defaults = {}
        for opt in self._long_opts:
            opt = opt.rstrip('=')
            if opt.startswith('no') and opt[2:] in self._flag_opts:
                continue
            defaults[opt] = [] if opt in self._multi_opts else None
        return defaults

    def _glob_args(self, args):
        temp = []
        for path in args:
            paths = sorted(glob.glob(path))
            if paths:
                temp.extend(paths)
            else:
                temp.append(path)
        return temp

    def _get_name(self, name):
        name = name.lstrip('-')
        try:
            return self._short_to_long[name]
        except KeyError:
            return name

    def _create_options(self, usage):
        for line in usage.splitlines():
            res = self._opt_line_re.match(line)
            if res:
                self._create_option(short_opts=[o[1] for o in res.group(1).split()],
                                    long_opt=res.group(3).lower(),
                                    takes_arg=bool(res.group(4)),
                                    is_multi=bool(res.group(5)))

    def _create_option(self, short_opts, long_opt, takes_arg, is_multi):
        self._verify_long_not_already_used(long_opt, not takes_arg)
        for sopt in short_opts:
            if sopt in self._short_to_long:
                self._raise_option_multiple_times_in_usage('-' + sopt)
            self._short_to_long[sopt] = long_opt
        if is_multi:
            self._multi_opts.append(long_opt)
        if takes_arg:
            long_opt += '='
            short_opts = [sopt+':' for sopt in short_opts]
        else:
            if long_opt.startswith('no'):
                long_opt = long_opt[2:]
            self._long_opts.append('no' + long_opt)
            self._flag_opts.append(long_opt)
        self._long_opts.append(long_opt)
        self._short_opts += (''.join(short_opts))

    def _verify_long_not_already_used(self, opt, flag=False):
        if flag:
            if opt.startswith('no'):
                opt = opt[2:]
            self._verify_long_not_already_used(opt)
            self._verify_long_not_already_used('no' + opt)
        elif opt in [o.rstrip('=') for o in self._long_opts]:
            self._raise_option_multiple_times_in_usage('--' + opt)

    def _get_pythonpath(self, paths):
        if is_string(paths):
            paths = [paths]
        temp = []
        for path in self._split_pythonpath(paths):
            temp.extend(glob.glob(path))
        return [os.path.abspath(path) for path in temp if path]

    def _split_pythonpath(self, paths):
        # paths may already contain ':' as separator
        tokens = ':'.join(paths).split(':')
        if os.sep == '/':
            return tokens
        # Fix paths split like 'c:\temp' -> 'c', '\temp'
        ret = []
        drive = ''
        for item in tokens:
            item = item.replace('/', '\\')
            if drive and item.startswith('\\'):
                ret.append('%s:%s' % (drive, item))
                drive = ''
                continue
            if drive:
                ret.append(drive)
                drive = ''
            if len(item) == 1 and item in string.ascii_letters:
                drive = item
            else:
                ret.append(item)
        if drive:
            ret.append(drive)
        return ret

    def _raise_help(self):
        usage = self._usage
        if self.version:
            usage = usage.replace('<VERSION>', self.version)
        raise Information(usage)

    def _raise_version(self):
        raise Information('%s %s' % (self.name, self.version))

    def _raise_option_multiple_times_in_usage(self, opt):
        raise FrameworkError("Option '%s' multiple times in usage" % opt)



[docs]class ArgLimitValidator(object):

    def __init__(self, arg_limits):
        self._min_args, self._max_args = self._parse_arg_limits(arg_limits)

    def _parse_arg_limits(self, arg_limits):
        if arg_limits is None:
            return 0, sys.maxsize
        if is_integer(arg_limits):
            return arg_limits, arg_limits
        if len(arg_limits) == 1:
            return arg_limits[0], sys.maxsize
        return arg_limits[0], arg_limits[1]

    def __call__(self, args):
        if not (self._min_args <= len(args) <= self._max_args):
            self._raise_invalid_args(self._min_args, self._max_args, len(args))

    def _raise_invalid_args(self, min_args, max_args, arg_count):
        min_end = plural_or_not(min_args)
        if min_args == max_args:
            expectation = "%d argument%s" % (min_args, min_end)
        elif max_args != sys.maxsize:
            expectation = "%d to %d arguments" % (min_args, max_args)
        else:
            expectation = "at least %d argument%s" % (min_args, min_end)
        raise DataError("Expected %s, got %d." % (expectation, arg_count))



[docs]class ArgFileParser(object):

    def __init__(self, options):
        self._options = options

[docs]    def process(self, args):
        while True:
            path, replace = self._get_index(args)
            if not path:
                break
            args[replace] = self._get_args(path)
        return args


    def _get_index(self, args):
        for opt in self._options:
            start = opt + '=' if opt.startswith('--') else opt
            for index, arg in enumerate(args):
                normalized_arg = arg.lower() if opt.startswith('--') else arg
                # Handles `--argumentfile foo` and `-A foo`
                if normalized_arg == opt and index + 1 < len(args):
                    return args[index+1], slice(index, index+2)
                # Handles `--argumentfile=foo` and `-Afoo`
                if normalized_arg.startswith(start):
                    return arg[len(start):], slice(index, index+1)
        return None, -1

    def _get_args(self, path):
        if path.upper() != 'STDIN':
            content = self._read_from_file(path)
        else:
            content = self._read_from_stdin()
        return self._process_file(content)

    def _read_from_file(self, path):
        try:
            with FileReader(path) as reader:
                return reader.read()
        except (IOError, UnicodeError) as err:
            raise DataError("Opening argument file '%s' failed: %s"
                            % (path, err))

    def _read_from_stdin(self):
        return console_decode(sys.__stdin__.read())

    def _process_file(self, content):
        args = []
        for line in content.splitlines():
            line = line.strip()
            if line.startswith('-'):
                args.extend(self._split_option(line))
            elif line and not line.startswith('#'):
                args.append(line)
        return args

    def _split_option(self, line):
        separator = self._get_option_separator(line)
        if not separator:
            return [line]
        option, value = line.split(separator, 1)
        if separator == ' ':
            value = value.strip()
        return [option, value]

    def _get_option_separator(self, line):
        if ' ' not in line and '=' not in line:
            return None
        if '=' not in line:
            return ' '
        if ' ' not in line:
            return '='
        return ' ' if line.index(' ') < line.index('=') else '='





          

      

      

    

  

    
      
          
            
  Source code for robot.utils.asserts

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

"""Convenience functions for testing both in unit and higher levels.

Benefits:
  - Integrates 100% with unittest (see example below)
  - Can be easily used without unittest (using unittest.TestCase when you
    only need convenient asserts is not so nice)
  - Saved typing and shorter lines because no need to have 'self.' before
    asserts. These are static functions after all so that is OK.
  - All 'equals' methods (by default) report given values even if optional
    message given. This behavior can be controlled with the optional values
    argument.

Drawbacks:
  - unittest is not able to filter as much non-interesting traceback away
    as with its own methods because AssertionErrors occur outside.

Most of the functions are copied more or less directly from unittest.TestCase
which comes with the following license. Further information about unittest in
general can be found from http://pyunit.sourceforge.net/. This module can be
used freely in same terms as unittest.

unittest license::

    Copyright (c) 1999-2003 Steve Purcell
    This module is free software, and you may redistribute it and/or modify
    it under the same terms as Python itself, so long as this copyright message
    and disclaimer are retained in their original form.

    IN NO EVENT SHALL THE AUTHOR BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT,
    SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF
    THIS CODE, EVEN IF THE AUTHOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
    DAMAGE.

    THE AUTHOR SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT
    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
    PARTICULAR PURPOSE.  THE CODE PROVIDED HEREUNDER IS ON AN "AS IS" BASIS,
    AND THERE IS NO OBLIGATION WHATSOEVER TO PROVIDE MAINTENANCE,
    SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Examples::

    import unittest
    from robot.utils.asserts import assert_equal

    class MyTests(unittest.TestCase):

        def test_old_style(self):
            self.assertEqual(1, 2, 'my msg')

        def test_new_style(self):
            assert_equal(1, 2, 'my msg')

Example output::

    FF
    ======================================================================
    FAIL: test_old_style (example.MyTests)
    ----------------------------------------------------------------------
    Traceback (most recent call last):
      File "example.py", line 7, in test_old_style
        self.assertEqual(1, 2, 'my msg')
    AssertionError: my msg

    ======================================================================
    FAIL: test_new_style (example.MyTests)
    ----------------------------------------------------------------------
    Traceback (most recent call last):
      File "example.py", line 10, in test_new_style
        assert_equal(1, 2, 'my msg')
      File "/path/to/robot/utils/asserts.py", line 181, in assert_equal
        _report_inequality_failure(first, second, msg, values, '!=')
      File "/path/to/robot/utils/asserts.py", line 229, in _report_inequality_failure
        raise AssertionError(msg)
    AssertionError: my msg: 1 != 2

    ----------------------------------------------------------------------
    Ran 2 tests in 0.000s

    FAILED (failures=2)
"""

from .robottypes import type_name
from .unic import unic


[docs]def fail(msg=None):
    """Fail test immediately with the given message."""
    _report_failure(msg)



[docs]def assert_false(expr, msg=None):
    """Fail the test if the expression is True."""
    if expr:
        _report_failure(msg)



[docs]def assert_true(expr, msg=None):
    """Fail the test unless the expression is True."""
    if not expr:
        _report_failure(msg)



[docs]def assert_not_none(obj, msg=None, values=True):
    """Fail the test if given object is None."""
    _msg = 'is None'
    if obj is None:
        if msg is None:
            msg = _msg
        elif values is True:
            msg = '%s: %s' % (msg, _msg)
        _report_failure(msg)



[docs]def assert_none(obj, msg=None, values=True):
    """Fail the test if given object is not None."""
    _msg = '%r is not None' % obj
    if obj is not None:
        if msg is None:
            msg = _msg
        elif values is True:
            msg = '%s: %s' % (msg, _msg)
        _report_failure(msg)



[docs]def assert_raises(exc_class, callable_obj, *args, **kwargs):
    """Fail unless an exception of class exc_class is thrown by callable_obj.

    callable_obj is invoked with arguments args and keyword arguments
    kwargs. If a different type of exception is thrown, it will not be
    caught, and the test case will be deemed to have suffered an
    error, exactly as for an unexpected exception.

    If a correct exception is raised, the exception instance is returned
    by this method.
    """
    try:
        callable_obj(*args, **kwargs)
    except exc_class as err:
        return err
    else:
        if hasattr(exc_class,'__name__'):
            exc_name = exc_class.__name__
        else:
            exc_name = str(exc_class)
        _report_failure('%s not raised' % exc_name)



[docs]def assert_raises_with_msg(exc_class, expected_msg, callable_obj, *args,
                           **kwargs):
    """Similar to fail_unless_raises but also checks the exception message."""
    try:
        callable_obj(*args, **kwargs)
    except exc_class as err:
        assert_equal(expected_msg, unic(err),
                     'Correct exception but wrong message')
    else:
        if hasattr(exc_class,'__name__'):
            exc_name = exc_class.__name__
        else:
            exc_name = str(exc_class)
        _report_failure('%s not raised' % exc_name)



[docs]def assert_equal(first, second, msg=None, values=True, formatter=None):
    """Fail if given objects are unequal as determined by the '==' operator."""
    if not first == second:
        _report_inequality(first, second, '!=', msg, values, formatter)



[docs]def assert_not_equal(first, second, msg=None, values=True, formatter=None):
    """Fail if given objects are equal as determined by the '==' operator."""
    if first == second:
        _report_inequality(first, second, '==', msg, values, formatter)



[docs]def assert_almost_equal(first, second, places=7, msg=None, values=True):
    """Fail if the two objects are unequal after rounded to given places.

    inequality is determined by object's difference rounded to the
    given number of decimal places (default 7) and comparing to zero.
    Note that decimal places (from zero) are usually not the same as
    significant digits (measured from the most significant digit).
    """
    if round(second - first, places) != 0:
        extra = 'within %r places' % places
        _report_inequality(first, second, '!=', msg, values, extra=extra)



[docs]def assert_not_almost_equal(first, second, places=7, msg=None, values=True):
    """Fail if the two objects are unequal after rounded to given places.

    Equality is determined by object's difference rounded to to the
    given number of decimal places (default 7) and comparing to zero.
    Note that decimal places (from zero) are usually not the same as
    significant digits (measured from the most significant digit).
    """
    if round(second-first, places) == 0:
        extra = 'within %r places' % places
        _report_inequality(first, second, '==', msg, values, extra=extra)



def _report_failure(msg):
    if msg is None:
        raise AssertionError()
    raise AssertionError(msg)


def _report_inequality(obj1, obj2, delim, msg=None, values=False,
                       formatter=None, extra=None):
    if not msg:
        msg = _format_message(obj1, obj2, delim, formatter)
    elif values:
        msg = '%s: %s' % (msg, _format_message(obj1, obj2, delim, formatter))
    if values and extra:
        msg += ' ' + extra
    raise AssertionError(msg)


def _format_message(obj1, obj2, delim, formatter=None):
    formatter = formatter or unic
    str1 = formatter(obj1)
    str2 = formatter(obj2)
    if delim == '!=' and str1 == str2:
        return '%s (%s) != %s (%s)' % (str1, type_name(obj1),
                                       str2, type_name(obj2))
    return '%s %s %s' % (str1, delim, str2)




          

      

      

    

  

    
      
          
            
  Source code for robot.utils.charwidth

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

"""A module to handle different character widths on the console.

Some East Asian characters have width of two on console, and combining
characters themselves take no extra space.

See issue 604 [1] for more details about East Asian characters. The issue also
contains `generate_wild_chars.py` script that was originally used to create
`_EAST_ASIAN_WILD_CHARS` mapping. An updated version of the script is attached
to issue 1096. Big thanks for xieyanbo for the script and the original patch.

Note that Python's `unicodedata` module is not used here because importing
it takes several seconds on Jython.

[1] https://github.com/robotframework/robotframework/issues/604
[2] https://github.com/robotframework/robotframework/issues/1096
"""

[docs]def get_char_width(char):
    char = ord(char)
    if _char_in_map(char, _COMBINING_CHARS):
        return 0
    if _char_in_map(char, _EAST_ASIAN_WILD_CHARS):
        return 2
    return 1


def _char_in_map(char, map):
    for begin, end in map:
        if char < begin:
            break
        if begin <= char <= end:
            return True
    return False


_COMBINING_CHARS = [(768, 879)]

_EAST_ASIAN_WILD_CHARS = [
        (888, 889), (895, 899), (907, 907), (909, 909), (930, 930),
        (1316, 1328), (1367, 1368), (1376, 1376), (1416, 1416),
        (1419, 1424), (1480, 1487), (1515, 1519), (1525, 1535),
        (1540, 1541), (1564, 1565), (1568, 1568), (1631, 1631),
        (1806, 1806), (1867, 1868), (1970, 1983), (2043, 2304),
        (2362, 2363), (2382, 2383), (2389, 2391), (2419, 2426),
        (2432, 2432), (2436, 2436), (2445, 2446), (2449, 2450),
        (2473, 2473), (2481, 2481), (2483, 2485), (2490, 2491),
        (2501, 2502), (2505, 2506), (2511, 2518), (2520, 2523),
        (2526, 2526), (2532, 2533), (2555, 2560), (2564, 2564),
        (2571, 2574), (2577, 2578), (2601, 2601), (2609, 2609),
        (2612, 2612), (2615, 2615), (2618, 2619), (2621, 2621),
        (2627, 2630), (2633, 2634), (2638, 2640), (2642, 2648),
        (2653, 2653), (2655, 2661), (2678, 2688), (2692, 2692),
        (2702, 2702), (2706, 2706), (2729, 2729), (2737, 2737),
        (2740, 2740), (2746, 2747), (2758, 2758), (2762, 2762),
        (2766, 2767), (2769, 2783), (2788, 2789), (2800, 2800),
        (2802, 2816), (2820, 2820), (2829, 2830), (2833, 2834),
        (2857, 2857), (2865, 2865), (2868, 2868), (2874, 2875),
        (2885, 2886), (2889, 2890), (2894, 2901), (2904, 2907),
        (2910, 2910), (2916, 2917), (2930, 2945), (2948, 2948),
        (2955, 2957), (2961, 2961), (2966, 2968), (2971, 2971),
        (2973, 2973), (2976, 2978), (2981, 2983), (2987, 2989),
        (3002, 3005), (3011, 3013), (3017, 3017), (3022, 3023),
        (3025, 3030), (3032, 3045), (3067, 3072), (3076, 3076),
        (3085, 3085), (3089, 3089), (3113, 3113), (3124, 3124),
        (3130, 3132), (3141, 3141), (3145, 3145), (3150, 3156),
        (3159, 3159), (3162, 3167), (3172, 3173), (3184, 3191),
        (3200, 3201), (3204, 3204), (3213, 3213), (3217, 3217),
        (3241, 3241), (3252, 3252), (3258, 3259), (3269, 3269),
        (3273, 3273), (3278, 3284), (3287, 3293), (3295, 3295),
        (3300, 3301), (3312, 3312), (3315, 3329), (3332, 3332),
        (3341, 3341), (3345, 3345), (3369, 3369), (3386, 3388),
        (3397, 3397), (3401, 3401), (3406, 3414), (3416, 3423),
        (3428, 3429), (3446, 3448), (3456, 3457), (3460, 3460),
        (3479, 3481), (3506, 3506), (3516, 3516), (3518, 3519),
        (3527, 3529), (3531, 3534), (3541, 3541), (3543, 3543),
        (3552, 3569), (3573, 3584), (3643, 3646), (3676, 3712),
        (3715, 3715), (3717, 3718), (3721, 3721), (3723, 3724),
        (3726, 3731), (3736, 3736), (3744, 3744), (3748, 3748),
        (3750, 3750), (3752, 3753), (3756, 3756), (3770, 3770),
        (3774, 3775), (3781, 3781), (3783, 3783), (3790, 3791),
        (3802, 3803), (3806, 3839), (3912, 3912), (3949, 3952),
        (3980, 3983), (3992, 3992), (4029, 4029), (4045, 4045),
        (4053, 4095), (4250, 4253), (4294, 4303), (4349, 4447),
        (4515, 4519), (4602, 4607), (4681, 4681), (4686, 4687),
        (4695, 4695), (4697, 4697), (4702, 4703), (4745, 4745),
        (4750, 4751), (4785, 4785), (4790, 4791), (4799, 4799),
        (4801, 4801), (4806, 4807), (4823, 4823), (4881, 4881),
        (4886, 4887), (4955, 4958), (4989, 4991), (5018, 5023),
        (5109, 5120), (5751, 5759), (5789, 5791), (5873, 5887),
        (5901, 5901), (5909, 5919), (5943, 5951), (5972, 5983),
        (5997, 5997), (6001, 6001), (6004, 6015), (6110, 6111),
        (6122, 6127), (6138, 6143), (6159, 6159), (6170, 6175),
        (6264, 6271), (6315, 6399), (6429, 6431), (6444, 6447),
        (6460, 6463), (6465, 6467), (6510, 6511), (6517, 6527),
        (6570, 6575), (6602, 6607), (6618, 6621), (6684, 6685),
        (6688, 6911), (6988, 6991), (7037, 7039), (7083, 7085),
        (7098, 7167), (7224, 7226), (7242, 7244), (7296, 7423),
        (7655, 7677), (7958, 7959), (7966, 7967), (8006, 8007),
        (8014, 8015), (8024, 8024), (8026, 8026), (8028, 8028),
        (8030, 8030), (8062, 8063), (8117, 8117), (8133, 8133),
        (8148, 8149), (8156, 8156), (8176, 8177), (8181, 8181),
        (8191, 8191), (8293, 8297), (8306, 8307), (8335, 8335),
        (8341, 8351), (8374, 8399), (8433, 8447), (8528, 8530),
        (8585, 8591), (9001, 9002), (9192, 9215), (9255, 9279),
        (9291, 9311), (9886, 9887), (9917, 9919), (9924, 9984),
        (9989, 9989), (9994, 9995), (10024, 10024), (10060, 10060),
        (10062, 10062), (10067, 10069), (10071, 10071), (10079, 10080),
        (10133, 10135), (10160, 10160), (10175, 10175), (10187, 10187),
        (10189, 10191), (11085, 11087), (11093, 11263), (11311, 11311),
        (11359, 11359), (11376, 11376), (11390, 11391), (11499, 11512),
        (11558, 11567), (11622, 11630), (11632, 11647), (11671, 11679),
        (11687, 11687), (11695, 11695), (11703, 11703), (11711, 11711),
        (11719, 11719), (11727, 11727), (11735, 11735), (11743, 11743),
        (11825, 12350), (12352, 19903), (19968, 42239), (42540, 42559),
        (42592, 42593), (42612, 42619), (42648, 42751), (42893, 43002),
        (43052, 43071), (43128, 43135), (43205, 43213), (43226, 43263),
        (43348, 43358), (43360, 43519), (43575, 43583), (43598, 43599),
        (43610, 43611), (43616, 55295), (63744, 64255), (64263, 64274),
        (64280, 64284), (64311, 64311), (64317, 64317), (64319, 64319),
        (64322, 64322), (64325, 64325), (64434, 64466), (64832, 64847),
        (64912, 64913), (64968, 65007), (65022, 65023), (65040, 65055),
        (65063, 65135), (65141, 65141), (65277, 65278), (65280, 65376),
        (65471, 65473), (65480, 65481), (65488, 65489), (65496, 65497),
        (65501, 65511), (65519, 65528), (65534, 65535),
        ]




          

      

      

    

  

    
      
          
            
  Source code for robot.utils.compat

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

import sys

from .platform import IRONPYTHON, PY2


if PY2:
    from inspect import ismethod
    from StringIO import StringIO    # io.StringIO accepts only Unicode strings.


[docs]    def unwrap(func):
        return func


    def py2to3(cls):
        """Deprecated since RF 4.0. Use 'py3to2' instead."""
        if hasattr(cls, '__unicode__'):
            cls.__str__ = lambda self: unicode(self).encode('UTF-8')
        return cls

    def py3to2(cls):
        if ismethod(cls.__str__) and cls.__str__.im_func is not unicode_to_str:
            cls.__unicode__ = cls.__str__
            cls.__str__ = unicode_to_str
        if hasattr(cls, '__bool__'):
            cls.__nonzero__ = cls.__bool__
        return cls

[docs]    def unicode_to_str(self):
        return unicode(self).encode('UTF-8')


else:
    from inspect import unwrap
    from io import StringIO


[docs]    def py2to3(cls):
        """Deprecated since RF 4.0. Use 'py3to2' instead."""
        if hasattr(cls, '__unicode__'):
            cls.__str__ = lambda self: self.__unicode__()
        if hasattr(cls, '__nonzero__'):
            cls.__bool__ = lambda self: self.__nonzero__()
        return cls


[docs]    def py3to2(cls):
        return cls



# Copied from Jinja2, released under the BSD license.
# https://github.com/mitsuhiko/jinja2/blob/743598d788528921df825479d64f492ef60bef82/jinja2/_compat.py#L88
[docs]def with_metaclass(meta, *bases):
    """Create a base class with a metaclass."""
    # This requires a bit of explanation: the basic idea is to make a
    # dummy metaclass for one level of class instantiation that replaces
    # itself with the actual metaclass.
    class metaclass(type):
        def __new__(cls, name, this_bases, d):
            return meta(name, bases, d)
    return type.__new__(metaclass, 'temporary_class', (), {})



# On IronPython sys.stdxxx.isatty() always returns True
if not IRONPYTHON:

    def isatty(stream):
        # first check if buffer was detached
        if hasattr(stream, 'buffer') and stream.buffer is None:
            return False
        if not hasattr(stream, 'isatty'):
            return False
        try:
            return stream.isatty()
        except ValueError:    # Occurs if file is closed.
            return False

else:

    from ctypes import windll

    _HANDLE_IDS = {sys.__stdout__ : -11, sys.__stderr__ : -12}
    _CONSOLE_TYPE = 2

[docs]    def isatty(stream):
        if stream not in _HANDLE_IDS:
            return False
        handle = windll.kernel32.GetStdHandle(_HANDLE_IDS[stream])
        return windll.kernel32.GetFileType(handle) == _CONSOLE_TYPE





          

      

      

    

  

    
      
          
            
  Source code for robot.utils.compress

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

import base64

from .platform import JYTHON, PY2


[docs]def compress_text(text):
    result = base64.b64encode(_compress(text.encode('UTF-8')))
    return result if PY2 else result.decode('ASCII')



if not JYTHON:

    import zlib

    def _compress(text):
        return zlib.compress(text, 9)

else:

    # Custom compress implementation was originally used to avoid memory leak
    # (http://bugs.jython.org/issue1775). Kept around still because it is a bit
    # faster than Jython's standard zlib.compress.

    from java.util.zip import Deflater
    import jarray

    _DEFLATOR = Deflater(9, False)

    def _compress(text):
        _DEFLATOR.setInput(text)
        _DEFLATOR.finish()
        buf = jarray.zeros(1024, 'b')
        compressed = []
        while not _DEFLATOR.finished():
            length = _DEFLATOR.deflate(buf, 0, 1024)
            compressed.append(buf[:length].tostring())
        _DEFLATOR.reset()
        return ''.join(compressed)




          

      

      

    

  

    
      
          
            
  Source code for robot.utils.connectioncache

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

import warnings

from .compat import py3to2
from .normalizing import NormalizedDict
from .robottypes import is_string


[docs]@py3to2
class ConnectionCache(object):
    """Cache for test libs to use with concurrent connections, processes, etc.

    The cache stores the registered connections (or other objects) and allows
    switching between them using generated indices or user given aliases.
    This is useful with any test library where there's need for multiple
    concurrent connections, processes, etc.

    This class can, and is, used also outside the core framework by SSHLibrary,
    Selenium(2)Library, etc. Backwards compatibility is thus important when
    doing changes.
    """

    def __init__(self, no_current_msg='No open connection.'):
        self._no_current = NoConnection(no_current_msg)
        self.current = self._no_current  #: Current active connection.
        self._connections = []
        self._aliases = NormalizedDict()

    @property
    def current_index(self):
        if not self:
            return None
        for index, conn in enumerate(self):
            if conn is self.current:
                return index + 1

    @current_index.setter
    def current_index(self, index):
        self.current = self._connections[index - 1] \
            if index is not None else self._no_current

[docs]    def register(self, connection, alias=None):
        """Registers given connection with optional alias and returns its index.

        Given connection is set to be the :attr:`current` connection.

        If alias is given, it must be a string. Aliases are case and space
        insensitive.

        The index of the first connection after initialization, and after
        :meth:`close_all` or :meth:`empty_cache`, is 1, second is 2, etc.
        """
        self.current = connection
        self._connections.append(connection)
        index = len(self._connections)
        if is_string(alias):
            self._aliases[alias] = index
        return index


[docs]    def switch(self, alias_or_index):
        """Switches to the connection specified by the given alias or index.

        Updates :attr:`current` and also returns its new value.

        Alias is whatever was given to :meth:`register` method and indices
        are returned by it. Index can be given either as an integer or
        as a string that can be converted to an integer. Raises an error
        if no connection with the given index or alias found.
        """
        self.current = self.get_connection(alias_or_index)
        return self.current


[docs]    def get_connection(self, alias_or_index=None):
        """Get the connection specified by the given alias or index..

        If ``alias_or_index`` is ``None``, returns the current connection
        if it is active, or raises an error if it is not.

        Alias is whatever was given to :meth:`register` method and indices
        are returned by it. Index can be given either as an integer or
        as a string that can be converted to an integer. Raises an error
        if no connection with the given index or alias found.
        """
        if alias_or_index is None:
            if not self:
                self.current.raise_error()
            return self.current
        try:
            index = self.resolve_alias_or_index(alias_or_index)
        except ValueError as err:
            raise RuntimeError(err.args[0])
        return self._connections[index-1]


    __getitem__ = get_connection

[docs]    def close_all(self, closer_method='close'):
        """Closes connections using given closer method and empties cache.

        If simply calling the closer method is not adequate for closing
        connections, clients should close connections themselves and use
        :meth:`empty_cache` afterwards.
        """
        for conn in self._connections:
            getattr(conn, closer_method)()
        self.empty_cache()
        return self.current


[docs]    def empty_cache(self):
        """Empties the connection cache.

        Indexes of the new connections starts from 1 after this.
        """
        self.current = self._no_current
        self._connections = []
        self._aliases = NormalizedDict()


    def __iter__(self):
        return iter(self._connections)

    def __len__(self):
        return len(self._connections)

    def __bool__(self):
        return self.current is not self._no_current

[docs]    def resolve_alias_or_index(self, alias_or_index):
        for resolver in self._resolve_alias, self._resolve_index:
            try:
                return resolver(alias_or_index)
            except ValueError:
                pass
        raise ValueError("Non-existing index or alias '%s'." % alias_or_index)


    def _resolve_alias(self, alias):
        if is_string(alias) and alias in self._aliases:
            return self._aliases[alias]
        raise ValueError

    def _resolve_index(self, index):
        try:
            index = int(index)
        except TypeError:
            raise ValueError
        if not 0 < index <= len(self._connections):
            raise ValueError
        return index



[docs]@py3to2
class NoConnection(object):

    def __init__(self, message):
        self.message = message

    def __getattr__(self, name):
        if name.startswith('__') and name.endswith('__'):
            raise AttributeError
        self.raise_error()

[docs]    def raise_error(self):
        raise RuntimeError(self.message)


    def __bool__(self):
        return False





          

      

      

    

  

    
      
          
            
  Source code for robot.utils.dotdict

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from collections import OrderedDict

from .robottypes import is_dict_like


[docs]class DotDict(OrderedDict):

    def __init__(self, *args, **kwds):
        args = [self._convert_nested_initial_dicts(a) for a in args]
        kwds = self._convert_nested_initial_dicts(kwds)
        OrderedDict.__init__(self, *args, **kwds)

    def _convert_nested_initial_dicts(self, value):
        items = value.items() if is_dict_like(value) else value
        return OrderedDict((key, self._convert_nested_dicts(value))
                           for key, value in items)

    def _convert_nested_dicts(self, value):
        if isinstance(value, DotDict):
            return value
        if is_dict_like(value):
            return DotDict(value)
        if isinstance(value, list):
            value[:] = [self._convert_nested_dicts(item) for item in value]
        return value

    def __getattr__(self, key):
        try:
            return self[key]
        except KeyError:
            raise AttributeError(key)

    def __setattr__(self, key, value):
        if not key.startswith('_OrderedDict__'):
            self[key] = value
        else:
            OrderedDict.__setattr__(self, key, value)

    def __delattr__(self, key):
        try:
            self.pop(key)
        except KeyError:
            OrderedDict.__delattr__(self, key)

    def __eq__(self, other):
        return dict.__eq__(self, other)

    def __ne__(self, other):
        return not self == other

    def __str__(self):
        return '{%s}' % ', '.join('%r: %r' % (key, self[key]) for key in self)

    # Must use original dict.__repr__ to allow customising PrettyPrinter.
    __repr__ = dict.__repr__





          

      

      

    

  

    
      
          
            
  Source code for robot.utils.encoding

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

import os
import sys

from .encodingsniffer import get_console_encoding, get_system_encoding
from .compat import isatty
from .platform import JYTHON, IRONPYTHON, PY3, PY_VERSION
from .robottypes import is_unicode
from .unic import unic


CONSOLE_ENCODING = get_console_encoding()
SYSTEM_ENCODING = get_system_encoding()
PYTHONIOENCODING = os.getenv('PYTHONIOENCODING')


[docs]def console_decode(string, encoding=CONSOLE_ENCODING, force=False):
    """Decodes bytes from console encoding to Unicode.

    By default uses the system console encoding, but that can be configured
    using the `encoding` argument. In addition to the normal encodings,
    it is possible to use case-insensitive values `CONSOLE` and `SYSTEM` to
    use the system console and system encoding, respectively.

    By default returns Unicode strings as-is. The `force` argument can be used
    on IronPython where all strings are `unicode` and caller knows decoding
    is needed.
    """
    if is_unicode(string) and not (IRONPYTHON and force):
        return string
    encoding = {'CONSOLE': CONSOLE_ENCODING,
                'SYSTEM': SYSTEM_ENCODING}.get(encoding.upper(), encoding)
    try:
        return string.decode(encoding)
    except UnicodeError:
        return unic(string)



[docs]def console_encode(string, encoding=None, errors='replace', stream=sys.__stdout__,
                   force=False):
    """Encodes Unicode to bytes in console or system encoding.

    If encoding is not given, determines it based on the given stream and system
    configuration. In addition to the normal encodings, it is possible to use
    case-insensitive values `CONSOLE` and `SYSTEM` to use the system console
    and system encoding, respectively.

    On Python 3 and IronPython returns Unicode unless `force` is True in which
    case returns bytes. Otherwise always returns bytes.
    """
    if encoding:
        encoding = {'CONSOLE': CONSOLE_ENCODING,
                    'SYSTEM': SYSTEM_ENCODING}.get(encoding.upper(), encoding)
    else:
        encoding = _get_console_encoding(stream)
    if PY3 and encoding != 'UTF-8':
        encoded = string.encode(encoding, errors)
        return encoded if force else encoded.decode(encoding)
    if (PY3 or IRONPYTHON) and not force:
        return string
    return string.encode(encoding, errors)



def _get_console_encoding(stream):
    encoding = getattr(stream, 'encoding', None)
    if isatty(stream):
        return encoding or CONSOLE_ENCODING
    if PYTHONIOENCODING:
        return PYTHONIOENCODING
    # Jython and IronPython have wrong encoding if outputs are redirected.
    if encoding and not (JYTHON or IRONPYTHON):
        return encoding
    return SYSTEM_ENCODING


# These interpreters handle communication with system APIs using Unicode.
if PY3 or IRONPYTHON or (JYTHON and PY_VERSION < (2, 7, 1)):

    def system_decode(string):
        return string if is_unicode(string) else unic(string)

    def system_encode(string, errors='replace'):
        return string if is_unicode(string) else unic(string)

else:

    # Jython 2.7.1+ uses UTF-8 with cli args etc. regardless the actual system
    # encoding. Cannot set the "real" SYSTEM_ENCODING to that value because
    # we use it also for other purposes.
    _SYSTEM_ENCODING = SYSTEM_ENCODING if not JYTHON else 'UTF-8'

[docs]    def system_decode(string):
        """Decodes bytes from system (e.g. cli args or env vars) to Unicode.

        Depending on the usage, at least cli args may already be Unicode.
        """
        if is_unicode(string):
            return string
        try:
            return string.decode(_SYSTEM_ENCODING)
        except UnicodeError:
            return unic(string)


[docs]    def system_encode(string, errors='replace'):
        """Encodes Unicode to system encoding (e.g. cli args and env vars).

        Non-Unicode values are first converted to Unicode.
        """
        if not is_unicode(string):
            string = unic(string)
        return string.encode(_SYSTEM_ENCODING, errors)





          

      

      

    

  

    
      
          
            
  Source code for robot.utils.encodingsniffer

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

import os
import sys
import locale

from .compat import isatty
from .platform import JYTHON, PY2, PY3, PY_VERSION, UNIXY, WINDOWS


if UNIXY:
    DEFAULT_CONSOLE_ENCODING = 'UTF-8'
    DEFAULT_SYSTEM_ENCODING = 'UTF-8'
else:
    DEFAULT_CONSOLE_ENCODING = 'cp437'
    DEFAULT_SYSTEM_ENCODING = 'cp1252'


[docs]def get_system_encoding():
    platform_getters = [(True, _get_python_system_encoding),
                        (JYTHON, _get_java_system_encoding),
                        (UNIXY, _get_unixy_encoding),
                        (WINDOWS, _get_windows_system_encoding)]
    return _get_encoding(platform_getters, DEFAULT_SYSTEM_ENCODING)



[docs]def get_console_encoding():
    platform_getters = [(True, _get_stream_output_encoding),
                        (UNIXY, _get_unixy_encoding),
                        (WINDOWS, _get_windows_console_encoding)]
    return _get_encoding(platform_getters, DEFAULT_CONSOLE_ENCODING)



def _get_encoding(platform_getters, default):
    for platform, getter in platform_getters:
        if platform:
            encoding = getter()
            if _is_valid(encoding):
                return encoding
    return default


def _get_python_system_encoding():
    # `locale.getpreferredencoding(False)` should return exactly what we want,
    # but it doesn't seem to work outside Windows on Python 2. Luckily on these
    # platforms `sys.getfilesystemencoding()` seems to do the right thing.
    # Jython 2.7.1+ actually uses UTF-8 regardless the system encoding, but
    # that's handled by `system_decode/encode` utilities separately.
    if PY2 and not WINDOWS:
        return sys.getfilesystemencoding()
    return locale.getpreferredencoding(False)


def _get_java_system_encoding():
    # This is only used with Jython 2.7.0, others get encoding already
    # from `_get_python_system_encoding`.
    from java.lang import System
    return System.getProperty('file.encoding')


def _get_unixy_encoding():
    # Cannot use `locale.getdefaultlocale()` because it raises ValueError
    # if encoding is invalid. Using same environment variables here anyway.
    # https://docs.python.org/3/library/locale.html#locale.getdefaultlocale
    for name in 'LC_ALL', 'LC_CTYPE', 'LANG', 'LANGUAGE':
        if name in os.environ:
            # Encoding can be in format like `UTF-8` or `en_US.UTF-8`
            encoding = os.environ[name].split('.')[-1]
            if _is_valid(encoding):
                return encoding
    return None


def _get_stream_output_encoding():
    # Python 3.6+ uses UTF-8 as encoding with output streams.
    # We want the real console encoding regardless the platform.
    if WINDOWS and PY_VERSION >= (3, 6):
        return None
    for stream in sys.__stdout__, sys.__stderr__, sys.__stdin__:
        if isatty(stream):
            encoding = getattr(stream, 'encoding', None)
            if _is_valid(encoding):
                return encoding
    return None


def _get_windows_system_encoding():
    return _get_code_page('GetACP')


def _get_windows_console_encoding():
    return _get_code_page('GetConsoleOutputCP')


def _get_code_page(method_name):
    from ctypes import cdll
    try:
        method = getattr(cdll.kernel32, method_name)
    except TypeError:       # Occurred few times with IronPython on CI.
        return None
    method.argtypes = ()    # Needed with Jython.
    return 'cp%s' % method()


def _is_valid(encoding):
    if not encoding:
        return False
    try:
        'test'.encode(encoding)
    except LookupError:
        return False
    else:
        return True




          

      

      

    

  

    
      
          
            
  Source code for robot.utils.error

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

import os
import re
import sys
import traceback

from robot.errors import RobotError

from .encoding import system_decode
from .platform import JYTHON, PY3, PY_VERSION, RERAISED_EXCEPTIONS
from .unic import unic


EXCLUDE_ROBOT_TRACES = not os.getenv('ROBOT_INTERNAL_TRACES')
if JYTHON:
    from java.io import StringWriter, PrintWriter
    from java.lang import Throwable, OutOfMemoryError
else:
    Throwable = ()


[docs]def get_error_message():
    """Returns error message of the last occurred exception.

    This method handles also exceptions containing unicode messages. Thus it
    MUST be used to get messages from all exceptions originating outside the
    framework.
    """
    return ErrorDetails().message



[docs]def get_error_details(exclude_robot_traces=EXCLUDE_ROBOT_TRACES):
    """Returns error message and details of the last occurred exception."""
    details = ErrorDetails(exclude_robot_traces=exclude_robot_traces)
    return details.message, details.traceback



[docs]def ErrorDetails(exc_info=None, exclude_robot_traces=EXCLUDE_ROBOT_TRACES):
    """This factory returns an object that wraps the last occurred exception

    It has attributes `message`, `traceback` and `error`, where `message`
    contains type and message of the original error, `traceback` contains the
    traceback/stack trace and `error` contains the original error instance.
    """
    exc_type, exc_value, exc_traceback = exc_info or sys.exc_info()
    if exc_type in RERAISED_EXCEPTIONS:
        raise exc_value
    details = PythonErrorDetails \
            if not isinstance(exc_value, Throwable) else JavaErrorDetails
    return details(exc_type, exc_value, exc_traceback, exclude_robot_traces)



class _ErrorDetails(object):
    _generic_exception_names = ('AssertionError', 'AssertionFailedError',
                                'Exception', 'Error', 'RuntimeError',
                                'RuntimeException')

    def __init__(self, exc_type, exc_value, exc_traceback,
                 exclude_robot_traces=True):
        self.error = exc_value
        self._exc_type = exc_type
        self._exc_traceback = exc_traceback
        self._exclude_robot_traces = exclude_robot_traces
        self._message = None
        self._traceback = None

    @property
    def message(self):
        if self._message is None:
            self._message = self._get_message()
        return self._message

    def _get_message(self):
        raise NotImplementedError

    @property
    def traceback(self):
        if self._traceback is None:
            self._traceback = self._get_details()
        return self._traceback

    def _get_details(self):
        raise NotImplementedError

    def _get_name(self, exc_type):
        try:
            return exc_type.__name__
        except AttributeError:
            return unic(exc_type)

    def _format_message(self, name, message):
        message = unic(message or '')
        message = self._clean_up_message(message, name)
        name = name.split('.')[-1]  # Use only last part of the name
        if not message:
            return name
        if self._is_generic_exception(name):
            return message
        if message.startswith('*HTML*'):
            name = '*HTML* ' + name
            message = message.split('*', 2)[-1].lstrip()
        return '%s: %s' % (name, message)

    def _is_generic_exception(self, name):
        return (name in self._generic_exception_names or
                isinstance(self.error, RobotError) or
                getattr(self.error, 'ROBOT_SUPPRESS_NAME', False))

    def _clean_up_message(self, message, name):
        return message


[docs]class PythonErrorDetails(_ErrorDetails):

    def _get_message(self):
        name = self._get_name(self._exc_type)
        return self._format_message(name, unic(self.error))

    def _get_details(self):
        if isinstance(self.error, RobotError):
            return self.error.details
        return 'Traceback (most recent call last):\n' + self._get_traceback()

    def _get_traceback(self):
        tb = self._exc_traceback
        while tb and self._is_excluded_traceback(tb):
            tb = tb.tb_next
        if not tb:
            return '  None'
        if PY3:
            # Everything is Unicode so we can simply use `format_tb`.
            formatted = traceback.format_tb(tb)
        else:
            # Entries are bytes and may even have different encoding.
            entries = [self._decode_entry(e) for e in traceback.extract_tb(tb)]
            formatted = traceback.format_list(entries)
        return ''.join(formatted).rstrip()

    def _is_excluded_traceback(self, traceback):
        if not self._exclude_robot_traces:
            return False
        module = traceback.tb_frame.f_globals.get('__name__')
        return module and module.startswith('robot.')

    def _decode_entry(self, traceback_entry):
        path, lineno, func, text = traceback_entry
        # Traceback entries in Python 2 use bytes using different encodings.
        # path: system encoding (except on Jython 2.7.0 where it's latin1)
        # line: integer
        # func: always ASCII on Python 2
        # text: depends on source encoding; UTF-8 is an ASCII compatible guess
        buggy_jython = JYTHON and PY_VERSION < (2, 7, 1)
        if not buggy_jython:
            path = system_decode(path)
        else:
            path = path.decode('latin1', 'replace')
        if text is not None:
            text = text.decode('UTF-8', 'replace')
        return path, lineno, func, text



[docs]class JavaErrorDetails(_ErrorDetails):
    _java_trace_re = re.compile(r'^\s+at (\w.+)')
    _ignored_java_trace = ('org.python.', 'robot.running.', 'robot$py.',
                           'sun.reflect.', 'java.lang.reflect.')

    def _get_message(self):
        exc_name = self._get_name(self._exc_type)
        # OOME.getMessage and even toString seem to throw NullPointerException
        if not self._is_out_of_memory_error(self._exc_type):
            exc_msg = self.error.getMessage()
        else:
            exc_msg = str(self.error)
        return self._format_message(exc_name, exc_msg)

    def _is_out_of_memory_error(self, exc_type):
        return exc_type is OutOfMemoryError

    def _get_details(self):
        # OOME.printStackTrace seems to throw NullPointerException
        if self._is_out_of_memory_error(self._exc_type):
            return ''
        output = StringWriter()
        self.error.printStackTrace(PrintWriter(output))
        details = '\n'.join(line for line in output.toString().splitlines()
                            if not self._is_ignored_stack_trace_line(line))
        msg = unic(self.error.getMessage() or '')
        if msg:
            details = details.replace(msg, '', 1)
        return details

    def _is_ignored_stack_trace_line(self, line):
        if not line:
            return True
        res = self._java_trace_re.match(line)
        if res is None:
            return False
        location = res.group(1)
        for entry in self._ignored_java_trace:
            if location.startswith(entry):
                return True
        return False

    def _clean_up_message(self, msg, name):
        msg = self._remove_stack_trace_lines(msg)
        return self._remove_exception_name(msg, name).strip()

    def _remove_stack_trace_lines(self, msg):
        lines = msg.splitlines()
        while lines:
            if self._java_trace_re.match(lines[-1]):
                lines.pop()
            else:
                break
        return '\n'.join(lines)

    def _remove_exception_name(self, msg, name):
        tokens = msg.split(':', 1)
        if len(tokens) == 2 and tokens[0] == name:
            msg = tokens[1]
        return msg





          

      

      

    

  

    
      
          
            
  Source code for robot.utils.escaping

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

import re

from .platform import PY3
from .robottypes import is_string


if PY3:
    unichr = chr

_CONTROL_WORDS = frozenset(('ELSE', 'ELSE IF', 'AND', 'WITH NAME'))
_SEQUENCES_TO_BE_ESCAPED = ('\\', '${', '@{', '%{', '&{', '*{', '=')


[docs]def escape(item):
    if not is_string(item):
        return item
    if item in _CONTROL_WORDS:
        return '\\' + item
    for seq in _SEQUENCES_TO_BE_ESCAPED:
        if seq in item:
            item = item.replace(seq, '\\' + seq)
    return item



[docs]def glob_escape(item):
    # Python 3.4+ has `glob.escape()` but it has special handling for drives
    # that we don't want.
    for char in '[*?':
        if char in item:
            item = item.replace(char, '[%s]' % char)
    return item



[docs]class Unescaper(object):
    _escape_sequences = re.compile(r'''
        (\\+)                # escapes
        (n|r|t            # n, r, or t
         |x[0-9a-fA-F]{2}    # x+HH
         |u[0-9a-fA-F]{4}    # u+HHHH
         |U[0-9a-fA-F]{8}    # U+HHHHHHHH
        )?                   # optionally
    ''', re.VERBOSE)

    def __init__(self):
        self._escape_handlers = {
            '': lambda value: value,
            'n': lambda value: '\n',
            'r': lambda value: '\r',
            't': lambda value: '\t',
            'x': self._hex_to_unichr,
            'u': self._hex_to_unichr,
            'U': self._hex_to_unichr
        }

    def _hex_to_unichr(self, value):
        ordinal = int(value, 16)
        # No Unicode code points above 0x10FFFF
        if ordinal > 0x10FFFF:
            return 'U' + value
        # unichr only supports ordinals up to 0xFFFF with narrow Python builds
        if ordinal > 0xFFFF:
            return eval(r"u'\U%08x'" % ordinal)
        return unichr(ordinal)

[docs]    def unescape(self, item):
        if not (is_string(item) and '\\' in item):
            return item
        return self._escape_sequences.sub(self._handle_escapes, item)


    def _handle_escapes(self, match):
        escapes, text = match.groups()
        half, is_escaped = divmod(len(escapes), 2)
        escapes = escapes[:half]
        text = text or ''
        if is_escaped:
            marker, value = text[:1], text[1:]
            text = self._escape_handlers[marker](value)
        return escapes + text



unescape = Unescaper().unescape


[docs]def split_from_equals(string):
    from robot.variables import VariableIterator
    if not is_string(string) or '=' not in string:
        return string, None
    variables = VariableIterator(string, ignore_errors=True)
    if not variables and '\\' not in string:
        return tuple(string.split('=', 1))
    try:
        index = _find_split_index(string, variables)
    except ValueError:
        return string, None
    return string[:index], string[index+1:]



def _find_split_index(string, variables):
    relative_index = 0
    for before, match, string in variables:
        try:
            return _find_split_index_from_part(before) + relative_index
        except ValueError:
            relative_index += len(before) + len(match)
    return _find_split_index_from_part(string) + relative_index


def _find_split_index_from_part(string):
    index = 0
    while '=' in string[index:]:
        index += string[index:].index('=')
        if _not_escaping(string[:index]):
            return index
        index += 1
    raise ValueError


def _not_escaping(name):
    backslashes = len(name) - len(name.rstrip('\\'))
    return backslashes % 2 == 0




          

      

      

    

  

    
      
          
            
  Source code for robot.utils.etreewrapper

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from io import BytesIO
import re

from .compat import py3to2
from .platform import IRONPYTHON, PY_VERSION, PY3
from .robottypes import is_bytes, is_pathlike, is_string

if PY3:
    from os import fsdecode
else:
    from .encoding import console_decode as fsdecode


IRONPYTHON_WITH_BROKEN_ETREE = IRONPYTHON and PY_VERSION < (2, 7, 9)
NO_ETREE_ERROR = 'No valid ElementTree XML parser module found'


if not IRONPYTHON_WITH_BROKEN_ETREE:
    try:
        from xml.etree import cElementTree as ET
    except ImportError:
        try:
            from xml.etree import ElementTree as ET
        except ImportError:
            raise ImportError(NO_ETREE_ERROR)
else:
    # Standard ElementTree works only with IronPython 2.7.9+
    # https://github.com/IronLanguages/ironpython2/issues/370
    try:
        from elementtree import ElementTree as ET
    except ImportError:
        raise ImportError(NO_ETREE_ERROR)
    from StringIO import StringIO


# cElementTree.VERSION seems to always be 1.0.6. We want real API version.
if ET.VERSION < '1.3' and hasattr(ET, 'tostringlist'):
    ET.VERSION = '1.3'


[docs]@py3to2
class ETSource(object):

    def __init__(self, source):
        # ET on Python < 3.6 doesn't support pathlib.Path
        if PY_VERSION < (3, 6) and is_pathlike(source):
            source = str(source)
        self._source = source
        self._opened = None

    def __enter__(self):
        self._opened = self._open_if_necessary(self._source)
        return self._opened or self._source

    def _open_if_necessary(self, source):
        if self._is_path(source) or self._is_already_open(source):
            return None
        if IRONPYTHON_WITH_BROKEN_ETREE:
            return StringIO(source)
        if is_bytes(source):
            return BytesIO(source)
        encoding = self._find_encoding(source)
        return BytesIO(source.encode(encoding))

    def _is_path(self, source):
        if is_pathlike(source):
            return True
        elif is_string(source):
            prefix = '<'
        elif is_bytes(source):
            prefix = b'<'
        else:
            return False
        return not source.lstrip().startswith(prefix)

    def _is_already_open(self, source):
        return not (is_string(source) or is_bytes(source))

    def _find_encoding(self, source):
        match = re.match(r"\s*<\?xml .*encoding=(['\"])(.*?)\1.*\?>", source)
        return match.group(2) if match else 'UTF-8'

    def __exit__(self, exc_type, exc_value, exc_trace):
        if self._opened:
            self._opened.close()

    def __str__(self):
        source = self._source
        if self._is_path(source):
            return self._path_to_string(source)
        if hasattr(source, 'name'):
            return self._path_to_string(source.name)
        return u'<in-memory file>'

    def _path_to_string(self, path):
        if is_pathlike(path):
            return str(path)
        if is_bytes(path):
            return fsdecode(path)
        return path





          

      

      

    

  

    
      
          
            
  Source code for robot.utils.filereader

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

import os.path

from .compat import StringIO
from .platform import IRONPYTHON
from .robottypes import is_bytes, is_pathlike, is_string


[docs]class FileReader(object):
    """Utility to ease reading different kind of files.

    Supports different sources where to read the data:

    - The source can be a path to a file, either as a string or as a
      ``pathlib.Path`` instance in Python 3. The file itself must be
      UTF-8 encoded.

    - Alternatively the source can be an already opened file object,
      including a StringIO or BytesIO object. The file can contain either
      Unicode text or UTF-8 encoded bytes.

    - The third options is giving the source as Unicode text directly.
      This requires setting ``accept_text=True`` when creating the reader.

    In all cases bytes are automatically decoded to Unicode and possible
    BOM removed.
    """

    def __init__(self, source, accept_text=False):
        self.file, self.name, self._opened = self._get_file(source, accept_text)

    def _get_file(self, source, accept_text):
        path = self._get_path(source, accept_text)
        if path:
            try:
                file = open(path, 'rb')
            except ValueError:
                # Converting ValueError to IOError needed due to this IPY bug:
                # https://github.com/IronLanguages/ironpython2/issues/700
                raise IOError("Invalid path '%s'." % path)
            opened = True
        elif is_string(source):
            file = StringIO(source)
            opened = True
        else:
            file = source
            opened = False
        name = getattr(file, 'name', '<in-memory file>')
        return file, name, opened

    def _get_path(self, source, accept_text):
        if is_pathlike(source):
            return str(source)
        if not is_string(source):
            return None
        if not accept_text:
            return source
        if '\n' in source:
            return None
        if os.path.isabs(source) or os.path.exists(source):
            return source
        return None

    def __enter__(self):
        return self

    def __exit__(self, *exc_info):
        if self._opened:
            self.file.close()

[docs]    def read(self):
        return self._decode(self.file.read())


[docs]    def readlines(self):
        first_line = True
        for line in self.file.readlines():
            yield self._decode(line, remove_bom=first_line)
            first_line = False


    def _decode(self, content, remove_bom=True):
        force_decode = IRONPYTHON and self._is_binary_file()
        if is_bytes(content) or force_decode:
            content = content.decode('UTF-8')
        if remove_bom and content.startswith(u'\ufeff'):
            content = content[1:]
        if '\r\n' in content:
            content = content.replace('\r\n', '\n')
        return content

    def _is_binary_file(self):
        mode = getattr(self.file, 'mode', '')
        encoding = getattr(self.file, 'encoding', 'ascii').lower()
        return 'r' in mode and encoding == 'ascii'





          

      

      

    

  

    
      
          
            
  Source code for robot.utils.frange

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from .misc import roundup
from .robottypes import is_integer, is_string


[docs]def frange(*args):
    """Like ``range()`` but accepts float arguments."""
    if all(is_integer(arg) for arg in args):
        return list(range(*args))
    start, stop, step = _get_start_stop_step(args)
    digits = max(_digits(start), _digits(stop), _digits(step))
    factor = pow(10, digits)
    return [x/float(factor) for x in range(roundup(start*factor),
                                           roundup(stop*factor),
                                           roundup(step*factor))]



def _get_start_stop_step(args):
    if len(args) == 1:
        return 0, args[0], 1
    if len(args) == 2:
        return args[0], args[1], 1
    if len(args) == 3:
        return args
    raise TypeError('frange expected 1-3 arguments, got %d.' % len(args))


def _digits(number):
    if not is_string(number):
        number = repr(number)
    if 'e' in number:
        return _digits_with_exponent(number)
    if '.' in number:
        return _digits_with_fractional(number)
    return 0


def _digits_with_exponent(number):
    mantissa, exponent = number.split('e')
    mantissa_digits = _digits(mantissa)
    exponent_digits = int(exponent) * -1
    return max(mantissa_digits + exponent_digits, 0)


def _digits_with_fractional(number):
    fractional = number.split('.')[1]
    if fractional == '0':
        return 0
    return len(fractional)




          

      

      

    

  

    
      
          
            
  Source code for robot.utils.htmlformatters

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

import re
from functools import partial
from itertools import cycle


[docs]class LinkFormatter(object):
    _image_exts = ('.jpg', '.jpeg', '.png', '.gif', '.bmp', '.svg')
    _link = re.compile(r'\[(.+?\|.*?)\]')
    _url = re.compile(r'''
((^|\ ) ["'(\[{]*)           # begin of line or space and opt. any char "'([{
([a-z][\w+-.]*://[^\s|]+?)   # url
(?=[)\]}"'.,!?:;|]* ($|\ ))  # opt. any char )]}"'.,!?:;| and eol or space
''', re.VERBOSE|re.MULTILINE|re.IGNORECASE)

[docs]    def format_url(self, text):
        return self._format_url(text, format_as_image=False)


    def _format_url(self, text, format_as_image=True):
        if '://' not in text:
            return text
        return self._url.sub(partial(self._replace_url, format_as_image), text)

    def _replace_url(self, format_as_image, match):
        pre = match.group(1)
        url = match.group(3)
        if format_as_image and self._is_image(url):
            return pre + self._get_image(url)
        return pre + self._get_link(url)

    def _get_image(self, src, title=None):
        return '<img src="%s" title="%s">' \
                % (self._quot(src), self._quot(title or src))

    def _get_link(self, href, content=None):
        return '<a href="%s">%s</a>' % (self._quot(href), content or href)

    def _quot(self, attr):
        return attr if '"' not in attr else attr.replace('"', '&quot;')

[docs]    def format_link(self, text):
        # 2nd, 4th, etc. token contains link, others surrounding content
        tokens = self._link.split(text)
        formatters = cycle((self._format_url, self._format_link))
        return ''.join(f(t) for f, t in zip(formatters, tokens))


    def _format_link(self, text):
        link, content = [t.strip() for t in text.split('|', 1)]
        if self._is_image(content):
            content = self._get_image(content, link)
        elif self._is_image(link):
            return self._get_image(link, content)
        return self._get_link(link, content)

    def _is_image(self, text):

        return (text.startswith('data:image/')
                or text.lower().endswith(self._image_exts))



[docs]class LineFormatter(object):
    handles = lambda self, line: True
    newline = '\n'
    _bold = re.compile(r'''
(                         # prefix (group 1)
  (^|\ )                  # begin of line or space
  ["'(]* _?               # optionally any char "'( and optional begin of italic
)                         #
\*                        # start of bold
([^\ ].*?)                # no space and then anything (group 3)
\*                        # end of bold
(?=                       # start of postfix (non-capturing group)
  _? ["').,!?:;]*         # optional end of italic and any char "').,!?:;
  ($|\ )                  # end of line or space
)
''', re.VERBOSE)
    _italic = re.compile(r'''
( (^|\ ) ["'(]* )          # begin of line or space and opt. any char "'(
_                          # start of italic
([^\ _].*?)                # no space or underline and then anything
_                          # end of italic
(?= ["').,!?:;]* ($|\ ) )  # opt. any char "').,!?:; and end of line or space
''', re.VERBOSE)
    _code = re.compile(r'''
( (^|\ ) ["'(]* )          # same as above with _ changed to ``
``
([^\ `].*?)
``
(?= ["').,!?:;]* ($|\ ) )
''', re.VERBOSE)

    def __init__(self):
        self._formatters = [('*', self._format_bold),
                            ('_', self._format_italic),
                            ('``', self._format_code),
                            ('', LinkFormatter().format_link)]

[docs]    def format(self, line):
        for marker, formatter in self._formatters:
            if marker in line:
                line = formatter(line)
        return line


    def _format_bold(self, line):
        return self._bold.sub('\\1<b>\\3</b>', line)

    def _format_italic(self, line):
        return self._italic.sub('\\1<i>\\3</i>', line)

    def _format_code(self, line):
        return self._code.sub('\\1<code>\\3</code>', line)



[docs]class HtmlFormatter(object):

    def __init__(self):
        self._formatters = [TableFormatter(),
                            PreformattedFormatter(),
                            ListFormatter(),
                            HeaderFormatter(),
                            RulerFormatter()]
        self._formatters.append(ParagraphFormatter(self._formatters[:]))
        self._current = None

[docs]    def format(self, text):
        results = []
        for line in text.splitlines():
            self._process_line(line, results)
        self._end_current(results)
        return '\n'.join(results)


    def _process_line(self, line, results):
        if not line.strip():
            self._end_current(results)
        elif self._current and self._current.handles(line):
            self._current.add(line)
        else:
            self._end_current(results)
            self._current = self._find_formatter(line)
            self._current.add(line)

    def _end_current(self, results):
        if self._current:
            results.append(self._current.end())
            self._current = None

    def _find_formatter(self, line):
        for formatter in self._formatters:
            if formatter.handles(line):
                return formatter



class _Formatter(object):
    _strip_lines = True

    def __init__(self):
        self._lines = []

    def handles(self, line):
        return self._handles(line.strip() if self._strip_lines else line)

    def _handles(self, line):
        raise NotImplementedError

    def add(self, line):
        self._lines.append(line.strip() if self._strip_lines else line)

    def end(self):
        result = self.format(self._lines)
        self._lines = []
        return result

    def format(self, lines):
        raise NotImplementedError


class _SingleLineFormatter(_Formatter):

    def _handles(self, line):
        return not self._lines and self.match(line)

    def match(self, line):
        raise NotImplementedError

    def format(self, lines):
        return self.format_line(lines[0])

    def format_line(self, line):
        raise NotImplementedError


[docs]class RulerFormatter(_SingleLineFormatter):
    match = re.compile('^-{3,}$').match

[docs]    def format_line(self, line):
        return '<hr>'




[docs]class HeaderFormatter(_SingleLineFormatter):
    match = re.compile(r'^(={1,3})\s+(\S.*?)\s+\1$').match

[docs]    def format_line(self, line):
        level, text = self.match(line).groups()
        level = len(level) + 1
        return '<h%d>%s</h%d>' % (level, text, level)




[docs]class ParagraphFormatter(_Formatter):
    _format_line = LineFormatter().format

    def __init__(self, other_formatters):
        _Formatter.__init__(self)
        self._other_formatters = other_formatters

    def _handles(self, line):
        return not any(other.handles(line)
                       for other in self._other_formatters)

[docs]    def format(self, lines):
        return '<p>%s</p>' % self._format_line(' '.join(lines))




[docs]class TableFormatter(_Formatter):
    _table_line = re.compile(r'^\| (.* |)\|$')
    _line_splitter = re.compile(r' \|(?= )')
    _format_cell_content = LineFormatter().format

    def _handles(self, line):
        return self._table_line.match(line) is not None

[docs]    def format(self, lines):
        return self._format_table([self._split_to_cells(l) for l in lines])


    def _split_to_cells(self, line):
        return [cell.strip() for cell in self._line_splitter.split(line[1:-1])]

    def _format_table(self, rows):
        maxlen = max(len(row) for row in rows)
        table = ['<table border="1">']
        for row in rows:
            row += [''] * (maxlen - len(row))  # fix ragged tables
            table.append('<tr>')
            table.extend(self._format_cell(cell) for cell in row)
            table.append('</tr>')
        table.append('</table>')
        return '\n'.join(table)

    def _format_cell(self, content):
        if content.startswith('=') and content.endswith('='):
            tx = 'th'
            content = content[1:-1].strip()
        else:
            tx = 'td'
        return '<%s>%s</%s>' % (tx, self._format_cell_content(content), tx)



[docs]class PreformattedFormatter(_Formatter):
    _format_line = LineFormatter().format

    def _handles(self, line):
        return line.startswith('| ') or line == '|'

[docs]    def format(self, lines):
        lines = [self._format_line(line[2:]) for line in lines]
        return '\n'.join(['<pre>'] + lines + ['</pre>'])




[docs]class ListFormatter(_Formatter):
    _strip_lines = False
    _format_item = LineFormatter().format

    def _handles(self, line):
        return line.strip().startswith('- ') or line.startswith(' ') and self._lines

[docs]    def format(self, lines):
        items = ['<li>%s</li>' % self._format_item(line)
                 for line in self._combine_lines(lines)]
        return '\n'.join(['<ul>'] + items + ['</ul>'])


    def _combine_lines(self, lines):
        current = []
        for line in lines:
            line = line.strip()
            if not line.startswith('- '):
                current.append(line)
                continue
            if current:
                yield ' '.join(current)
            current = [line[2:].strip()]
        yield ' '.join(current)





          

      

      

    

  

    
      
          
            
  Source code for robot.utils.importer

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

import os
import sys
import inspect

from robot.errors import DataError

from .encoding import system_decode, system_encode
from .error import get_error_details
from .platform import JYTHON, IRONPYTHON, PY2, PY3, PYPY
from .robotpath import abspath, normpath
from .robotinspect import is_java_init, is_init
from .robottypes import type_name, is_unicode

if PY3:
    from importlib import invalidate_caches as invalidate_import_caches
else:
    invalidate_import_caches = lambda: None
if JYTHON:
    from java.lang.System import getProperty


[docs]class Importer(object):
    """Utility that can import modules and classes based on names and paths.

    Imported classes can optionally be instantiated automatically.
    """

    def __init__(self, type=None, logger=None):
        """
        :param type:
            Type of the thing being imported. Used in error and log messages.
        :param logger:
            Logger to be notified about successful imports and other events.
            Currently only needs the ``info`` method, but other level specific
            methods may be needed in the future. If not given, logging is disabled.
        """
        self._type = type or ''
        self._logger = logger or NoLogger()
        self._importers = (ByPathImporter(logger),
                           NonDottedImporter(logger),
                           DottedImporter(logger))
        self._by_path_importer = self._importers[0]

[docs]    def import_class_or_module(self, name_or_path, instantiate_with_args=None,
                               return_source=False):
        """Imports Python class/module or Java class based on the given name or path.

        :param name_or_path:
            Name or path of the module or class to import.
        :param instantiate_with_args:
            When arguments are given, imported classes are automatically initialized
            using them.
        :param return_source:
            When true, returns a tuple containing the imported module or class
            and a path to it. By default returns only the imported module or class.

        The class or module to import can be specified either as a name, in which
        case it must be in the module search path, or as a path to the file or
        directory implementing the module. See :meth:`import_class_or_module_by_path`
        for more information about importing classes and modules by path.

        Classes can be imported from the module search path using name like
        ``modulename.ClassName``. If the class name and module name are same, using
        just ``CommonName`` is enough. When importing a class by a path, the class
        name and the module name must match.

        Optional arguments to use when creating an instance are given as a list.
        Starting from Robot Framework 4.0, both positional and named arguments are
        supported (e.g. ``['positional', 'name=value']``) and arguments are converted
        automatically based on type hints and default values.

        If arguments needed when creating an instance are initially embedded into
        the name or path like ``Example:arg1:arg2``, separate
        :func:`~robot.utils.text.split_args_from_name_or_path` function can be
        used to split them before calling this method.
        """
        try:
            imported, source = self._import_class_or_module(name_or_path)
            self._log_import_succeeded(imported, name_or_path, source)
            imported = self._instantiate_if_needed(imported, instantiate_with_args)
        except DataError as err:
            self._raise_import_failed(name_or_path, err)
        else:
            return self._handle_return_values(imported, source, return_source)


    def _import_class_or_module(self, name):
        for importer in self._importers:
            if importer.handles(name):
                return importer.import_(name)

    def _handle_return_values(self, imported, source, return_source=False):
        if not return_source:
            return imported
        if source and os.path.exists(source):
            source = self._sanitize_source(source)
        return imported, source

    def _sanitize_source(self, source):
        source = normpath(source)
        if os.path.isdir(source):
            candidate = os.path.join(source, '__init__.py')
        elif source.endswith('.pyc'):
            candidate = source[:-4] + '.py'
        elif source.endswith('$py.class'):
            candidate = source[:-9] + '.py'
        elif source.endswith('.class'):
            candidate = source[:-6] + '.java'
        else:
            return source
        return candidate if os.path.exists(candidate) else source

[docs]    def import_class_or_module_by_path(self, path, instantiate_with_args=None):
        """Import a Python module or Java class using a file system path.

        :param path:
            Path to the module or class to import.
        :param instantiate_with_args:
            When arguments are given, imported classes are automatically initialized
            using them.

        When importing a Python file, the path must end with :file:`.py` and the
        actual file must also exist. When importing Java classes, the path must
        end with :file:`.java` or :file:`.class`. The Java class file must exist
        in both cases and in the former case also the source file must exist.

        Use :meth:`import_class_or_module` to support importing also using name,
        not only path. See the documentation of that function for more information
        about creating instances automatically.
        """
        try:
            imported, source = self._by_path_importer.import_(path)
            self._log_import_succeeded(imported, imported.__name__, source)
            return self._instantiate_if_needed(imported, instantiate_with_args)
        except DataError as err:
            self._raise_import_failed(path, err)


    def _log_import_succeeded(self, item, name, source):
        import_type = '%s ' % self._type.lower() if self._type else ''
        item_type = 'module' if inspect.ismodule(item) else 'class'
        location = ("'%s'" % source) if source else 'unknown location'
        self._logger.info("Imported %s%s '%s' from %s."
                          % (import_type, item_type, name, location))

    def _raise_import_failed(self, name, error):
        import_type = '%s ' % self._type.lower() if self._type else ''
        msg = "Importing %s'%s' failed: %s" % (import_type, name, error.message)
        if not error.details:
            raise DataError(msg)
        msg = [msg, error.details]
        msg.extend(self._get_items_in('PYTHONPATH', sys.path))
        if JYTHON:
            classpath = getProperty('java.class.path').split(os.path.pathsep)
            msg.extend(self._get_items_in('CLASSPATH', classpath))
        raise DataError('\n'.join(msg))

    def _get_items_in(self, type, items):
        yield '%s:' % type
        for item in items:
            if item:
                yield '  %s' % (item if is_unicode(item)
                                else system_decode(item))

    def _instantiate_if_needed(self, imported, args):
        if args is None:
            return imported
        if inspect.isclass(imported):
            return self._instantiate_class(imported, args)
        if args:
            raise DataError("Modules do not take arguments.")
        return imported

    def _instantiate_class(self, imported, args):
        spec = self._get_arg_spec(imported)
        try:
            positional, named = spec.resolve(args)
        except ValueError as err:
            raise DataError(err.args[0])
        try:
            return imported(*positional, **dict(named))
        except:
            raise DataError('Creating instance failed: %s\n%s' % get_error_details())

    def _get_arg_spec(self, imported):
        # Avoid cyclic import. Yuck.
        from robot.running.arguments import ArgumentSpec, PythonArgumentParser

        init = getattr(imported, '__init__', None)
        name = imported.__name__
        if not is_init(init):
            return ArgumentSpec(name, self._type)
        if is_java_init(init):
            return ArgumentSpec(name, self._type, var_positional='varargs')
        return PythonArgumentParser(self._type).parse(init, name)



class _Importer(object):

    def __init__(self, logger):
        self._logger = logger

    def _import(self, name, fromlist=None, retry=True):
        if name in sys.builtin_module_names:
            raise DataError('Cannot import custom module with same name as '
                            'Python built-in module.')
        invalidate_import_caches()
        try:
            try:
                return __import__(name, fromlist=fromlist)
            except ImportError:
                # Hack to support standalone Jython. For more information, see:
                # https://github.com/robotframework/robotframework/issues/515
                # http://bugs.jython.org/issue1778514
                if JYTHON and fromlist and retry:
                    __import__('%s.%s' % (name, fromlist[0]))
                    return self._import(name, fromlist, retry=False)
                # IronPython loses traceback when using plain raise.
                # https://github.com/IronLanguages/main/issues/989
                if IRONPYTHON:
                    exec('raise sys.exc_type, sys.exc_value, sys.exc_traceback')
                raise
        except:
            raise DataError(*get_error_details())

    def _verify_type(self, imported):
        if inspect.isclass(imported) or inspect.ismodule(imported):
            return imported
        raise DataError('Expected class or module, got %s.'
                        % type_name(imported))

    def _get_class_from_module(self, module, name=None):
        klass = getattr(module, name or module.__name__, None)
        return klass if inspect.isclass(klass) else None

    def _get_source(self, imported):
        try:
            source = inspect.getfile(imported)
        except TypeError:
            return None
        return abspath(source) if source else None


[docs]class ByPathImporter(_Importer):
    _valid_import_extensions = ('.py', '.java', '.class', '')

[docs]    def handles(self, path):
        return os.path.isabs(path)


[docs]    def import_(self, path):
        self._verify_import_path(path)
        self._remove_wrong_module_from_sys_modules(path)
        module = self._import_by_path(path)
        imported = self._get_class_from_module(module) or module
        return self._verify_type(imported), path


    def _verify_import_path(self, path):
        if not os.path.exists(path):
            raise DataError('File or directory does not exist.')
        if not os.path.isabs(path):
            raise DataError('Import path must be absolute.')
        if not os.path.splitext(path)[1] in self._valid_import_extensions:
            raise DataError('Not a valid file or directory to import.')

    def _remove_wrong_module_from_sys_modules(self, path):
        importing_from, name = self._split_path_to_module(path)
        importing_package = os.path.splitext(path)[1] == ''
        if self._wrong_module_imported(name, importing_from, importing_package):
            del sys.modules[name]
            self._logger.info("Removed module '%s' from sys.modules to import "
                              "fresh module." % name)

    def _split_path_to_module(self, path):
        module_dir, module_file = os.path.split(abspath(path))
        module_name = os.path.splitext(module_file)[0]
        if module_name.endswith('$py'):
            module_name = module_name[:-3]
        return module_dir, module_name

    def _wrong_module_imported(self, name, importing_from, importing_package):
        if name not in sys.modules:
            return False
        source = getattr(sys.modules[name], '__file__', None)
        if not source:  # play safe (occurs at least with java based modules)
            return True
        imported_from, imported_package = self._get_import_information(source)
        return (normpath(importing_from, case_normalize=True) !=
                normpath(imported_from, case_normalize=True) or
                importing_package != imported_package)

    def _get_import_information(self, source):
        imported_from, imported_file = self._split_path_to_module(source)
        imported_package = imported_file == '__init__'
        if imported_package:
            imported_from = os.path.dirname(imported_from)
        return imported_from, imported_package

    def _import_by_path(self, path):
        module_dir, module_name = self._split_path_to_module(path)
        # Other interpreters work also with Unicode paths.
        # https://bitbucket.org/pypy/pypy/issues/3112
        if PYPY and PY2:
            module_dir = system_encode(module_dir)
        sys.path.insert(0, module_dir)
        try:
            return self._import(module_name)
        finally:
            sys.path.remove(module_dir)



[docs]class NonDottedImporter(_Importer):

[docs]    def handles(self, name):
        return '.' not in name


[docs]    def import_(self, name):
        module = self._import(name)
        imported = self._get_class_from_module(module) or module
        return self._verify_type(imported), self._get_source(imported)




[docs]class DottedImporter(_Importer):

[docs]    def handles(self, name):
        return '.' in name


[docs]    def import_(self, name):
        parent_name, lib_name = name.rsplit('.', 1)
        parent = self._import(parent_name, fromlist=[str(lib_name)])
        try:
            imported = getattr(parent, lib_name)
        except AttributeError:
            raise DataError("Module '%s' does not contain '%s'."
                            % (parent_name, lib_name))
        imported = self._get_class_from_module(imported, lib_name) or imported
        return self._verify_type(imported), self._get_source(imported)




[docs]class NoLogger(object):
    error = warn = info = debug = trace = lambda self, *args, **kws: None





          

      

      

    

  

    
      
          
            
  Source code for robot.utils.markuputils

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

import re

from .htmlformatters import LinkFormatter, HtmlFormatter


_format_url = LinkFormatter().format_url
_format_html = HtmlFormatter().format
_generic_escapes = (('&', '&amp;'), ('<', '&lt;'), ('>', '&gt;'))
_attribute_escapes = _generic_escapes \
         + (('"', '&quot;'), ('\n', '&#10;'), ('\r', '&#13;'), ('\t', '&#09;'))
_illegal_chars_in_xml = re.compile(u'[\x00-\x08\x0B\x0C\x0E-\x1F\uFFFE\uFFFF]')


[docs]def html_escape(text, linkify=True):
    text = _escape(text)
    if linkify and '://' in text:
        text = _format_url(text)
    return text



[docs]def xml_escape(text):
    return _illegal_chars_in_xml.sub('', _escape(text))



[docs]def html_format(text):
    return _format_html(_escape(text))



[docs]def attribute_escape(attr):
    attr = _escape(attr, _attribute_escapes)
    return _illegal_chars_in_xml.sub('', attr)



def _escape(text, escapes=_generic_escapes):
    for name, value in escapes:
        if name in text:  # performance optimization
            text = text.replace(name, value)
    return text




          

      

      

    

  

    
      
          
            
  Source code for robot.utils.markupwriters

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from .markuputils import attribute_escape, html_escape, xml_escape
from .robottypes import is_string, is_pathlike
from .robotio import file_writer


class _MarkupWriter(object):

    def __init__(self, output, write_empty=True, usage=None):
        """
        :param output: Either an opened, file like object, or a path to the
            desired output file. In the latter case, the file is created
            and clients should use :py:meth:`close` method to close it.
        :param write_empty: Whether to write empty elements and attributes.
        """
        if is_string(output) or is_pathlike(output):
            output = file_writer(output, usage=usage)
        self.output = output
        self._write_empty = write_empty
        self._preamble()

    def _preamble(self):
        pass

    def start(self, name, attrs=None, newline=True):
        attrs = self._format_attrs(attrs)
        self._start(name, attrs, newline)

    def _start(self, name, attrs, newline):
        self._write('<%s %s>' % (name, attrs) if attrs else '<%s>' % name, newline)

    def _format_attrs(self, attrs):
        if not attrs:
            return ''
        write_empty = self._write_empty
        return ' '.join('%s="%s"' % (name, attribute_escape(value or ''))
                        for name, value in self._order_attrs(attrs)
                        if write_empty or value)

    def _order_attrs(self, attrs):
        return attrs.items()

    def content(self, content=None, escape=True, newline=False):
        if content:
            self._write(self._escape(content) if escape else content, newline)

    def _escape(self, content):
        raise NotImplementedError

    def end(self, name, newline=True):
        self._write('</%s>' % name, newline)

    def element(self, name, content=None, attrs=None, escape=True, newline=True):
        attrs = self._format_attrs(attrs)
        if self._write_empty or content or attrs:
            self._start(name, attrs, newline=False)
            self.content(content, escape)
            self.end(name, newline)

    def close(self):
        """Closes the underlying output file."""
        self.output.close()

    def _write(self, text, newline=False):
        self.output.write(text)
        if newline:
            self.output.write('\n')


[docs]class HtmlWriter(_MarkupWriter):

    def _order_attrs(self, attrs):
        return sorted(attrs.items())  # eases testing

    def _escape(self, content):
        return html_escape(content)



[docs]class XmlWriter(_MarkupWriter):

    def _preamble(self):
        self._write('<?xml version="1.0" encoding="UTF-8"?>', newline=True)

    def _escape(self, text):
        return xml_escape(text)

[docs]    def element(self, name, content=None, attrs=None, escape=True, newline=True):
        if content:
            _MarkupWriter.element(self, name, content, attrs, escape, newline)
        else:
            self._self_closing_element(name, attrs, newline)


    def _self_closing_element(self, name, attrs, newline):
        attrs = self._format_attrs(attrs)
        if self._write_empty or attrs:
            self._write('<%s %s/>' % (name, attrs) if attrs else '<%s/>' % name, newline)



[docs]class NullMarkupWriter(object):
    """Null implementation of the _MarkupWriter interface."""

    __init__ = start = content = element = end = close = lambda *args, **kwargs: None





          

      

      

    

  

    
      
          
            
  Source code for robot.utils.match

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

import re
import fnmatch
from functools import partial

from .compat import py3to2
from .normalizing import normalize
from .platform import IRONPYTHON, PY3
from .robottypes import is_string


[docs]def eq(str1, str2, ignore=(), caseless=True, spaceless=True):
    str1 = normalize(str1, ignore, caseless, spaceless)
    str2 = normalize(str2, ignore, caseless, spaceless)
    return str1 == str2



[docs]@py3to2
class Matcher(object):

    def __init__(self, pattern, ignore=(), caseless=True, spaceless=True,
                 regexp=False):
        if PY3 and isinstance(pattern, bytes):
            raise TypeError('Matching bytes is not supported on Python 3.')
        self.pattern = pattern
        self._normalize = partial(normalize, ignore=ignore, caseless=caseless,
                                  spaceless=spaceless)
        self._regexp = self._compile(self._normalize(pattern), regexp=regexp)

    def _compile(self, pattern, regexp=False):
        if not regexp:
            pattern = fnmatch.translate(pattern)
            # https://github.com/IronLanguages/ironpython2/issues/515
            if IRONPYTHON and "\\'" in pattern:
                pattern = pattern.replace("\\'", "'")
        return re.compile(pattern, re.DOTALL)

[docs]    def match(self, string):
        return self._regexp.match(self._normalize(string)) is not None


[docs]    def match_any(self, strings):
        return any(self.match(s) for s in strings)


    def __bool__(self):
        return bool(self._normalize(self.pattern))



[docs]class MultiMatcher(object):

    def __init__(self, patterns=None, ignore=(), caseless=True, spaceless=True,
                 match_if_no_patterns=False, regexp=False):
        self._matchers = [Matcher(pattern, ignore, caseless, spaceless, regexp)
                          for pattern in self._ensure_list(patterns)]
        self._match_if_no_patterns = match_if_no_patterns

    def _ensure_list(self, patterns):
        if patterns is None:
            return []
        if is_string(patterns):
            return [patterns]
        return patterns

[docs]    def match(self, string):
        if self._matchers:
            return any(m.match(string) for m in self._matchers)
        return self._match_if_no_patterns


[docs]    def match_any(self, strings):
        return any(self.match(s) for s in strings)


    def __len__(self):
        return len(self._matchers)

    def __iter__(self):
        for matcher in self._matchers:
            yield matcher.pattern





          

      

      

    

  

    
      
          
            
  Source code for robot.utils.misc

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from __future__ import division

from operator import add, sub
import re

from .platform import PY2
from .robottypes import is_integer
from .unic import unic


[docs]def roundup(number, ndigits=0, return_type=None):
    """Rounds number to the given number of digits.

    Numbers equally close to a certain precision are always rounded away from
    zero. By default return value is float when ``ndigits`` is positive and
    int otherwise, but that can be controlled with ``return_type``.

    With the built-in ``round()`` rounding equally close numbers as well as
    the return type depends on the Python version.
    """
    result = _roundup(number, ndigits)
    if not return_type:
        return_type = float if ndigits > 0 else int
    return return_type(result)



# Python 2 rounds half away from zero (as taught in school) but Python 3
# uses "bankers' rounding" that rounds half towards the even number. We want
# consistent rounding and expect Python 2 style to be more familiar for users.
if PY2:
    _roundup = round
else:
    def _roundup(number, ndigits):
        precision = 10 ** (-1 * ndigits)
        if number % (0.5 * precision) == 0 and number % precision != 0:
            operator = add if number > 0 else sub
            number = operator(number, 0.1 * precision)
        return round(number, ndigits)


[docs]def printable_name(string, code_style=False):
    """Generates and returns printable name from the given string.

    Examples:
    'simple'           -> 'Simple'
    'name with spaces' -> 'Name With Spaces'
    'more   spaces'    -> 'More Spaces'
    'Cases AND spaces' -> 'Cases AND Spaces'
    ''                 -> ''

    If 'code_style' is True:

    'mixedCAPSCamel'   -> 'Mixed CAPS Camel'
    'camelCaseName'    -> 'Camel Case Name'
    'under_score_name' -> 'Under Score Name'
    'under_and space'  -> 'Under And Space'
    'miXed_CAPS_nAMe'  -> 'MiXed CAPS NAMe'
    ''                 -> ''
    """
    if code_style and '_' in string:
        string = string.replace('_', ' ')
    parts = string.split()
    if code_style and len(parts) == 1 \
            and not (string.isalpha() and string.islower()):
        parts = _split_camel_case(parts[0])
    return ' '.join(part[0].upper() + part[1:] for part in parts)



def _split_camel_case(string):
    tokens = []
    token = []
    for prev, char, next in zip(' ' + string, string, string[1:] + ' '):
        if _is_camel_case_boundary(prev, char, next):
            if token:
                tokens.append(''.join(token))
            token = [char]
        else:
            token.append(char)
    if token:
        tokens.append(''.join(token))
    return tokens


def _is_camel_case_boundary(prev, char, next):
    if prev.isdigit():
        return not char.isdigit()
    if char.isupper():
        return next.islower() or prev.isalpha() and not prev.isupper()
    return char.isdigit()


[docs]def plural_or_not(item):
    count = item if is_integer(item) else len(item)
    return '' if count in (1, -1) else 's'



[docs]def seq2str(sequence, quote="'", sep=', ', lastsep=' and '):
    """Returns sequence in format `'item 1', 'item 2' and 'item 3'`."""
    sequence = [quote + unic(item) + quote for item in sequence]
    if not sequence:
        return ''
    if len(sequence) == 1:
        return sequence[0]
    last_two = lastsep.join(sequence[-2:])
    return sep.join(sequence[:-2] + [last_two])



[docs]def seq2str2(sequence):
    """Returns sequence in format `[ item 1 | item 2 | ... ]`."""
    if not sequence:
        return '[ ]'
    return '[ %s ]' % ' | '.join(unic(item) for item in sequence)



[docs]def test_or_task(text, rpa=False):
    """Replaces `{test}` in `text` with `test` or `task` depending on `rpa`."""
    def replace(match):
        test = match.group(1)
        if not rpa:
            return test
        upper = [c.isupper() for c in test]
        return ''.join(c.upper() if up else c for c, up in zip('task', upper))
    return re.sub('{(test)}', replace, text, flags=re.IGNORECASE)





          

      

      

    

  

    
      
          
            
  Source code for robot.utils.normalizing

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

import re

from .platform import IRONPYTHON, JYTHON, PY_VERSION, PY3
from .robottypes import is_dict_like, is_unicode, MutableMapping


[docs]def normalize(string, ignore=(), caseless=True, spaceless=True):
    """Normalizes given string according to given spec.

    By default string is turned to lower case and all whitespace is removed.
    Additional characters can be removed by giving them in ``ignore`` list.
    """
    empty = u'' if is_unicode(string) else b''
    if PY3 and isinstance(ignore, bytes):
        # Iterating bytes in Python3 yields integers.
        ignore = [bytes([i]) for i in ignore]
    if spaceless:
        # https://bugs.jython.org/issue2772
        if JYTHON and PY_VERSION < (2, 7, 2):
            string = normalize_whitespace(string)
        string = empty.join(string.split())
    if caseless:
        string = lower(string)
        ignore = [lower(i) for i in ignore]
    # both if statements below enhance performance a little
    if ignore:
        for ign in ignore:
            if ign in string:
                string = string.replace(ign, empty)
    return string



[docs]def normalize_whitespace(string):
    return re.sub(r'\s', ' ', string, flags=re.UNICODE)



# http://ironpython.codeplex.com/workitem/33133
if IRONPYTHON and PY_VERSION < (2, 7, 5):
    def lower(string):
        return ('A' + string).lower()[1:]
else:
[docs]    def lower(string):
        return string.lower()



[docs]class NormalizedDict(MutableMapping):
    """Custom dictionary implementation automatically normalizing keys."""

    def __init__(self, initial=None, ignore=(), caseless=True, spaceless=True):
        """Initialized with possible initial value and normalizing spec.

        Initial values can be either a dictionary or an iterable of name/value
        pairs. In the latter case items are added in the given order.

        Normalizing spec has exact same semantics as with the :func:`normalize`
        function.
        """
        self._data = {}
        self._keys = {}
        self._normalize = lambda s: normalize(s, ignore, caseless, spaceless)
        if initial:
            self._add_initial(initial)

    def _add_initial(self, initial):
        items = initial.items() if hasattr(initial, 'items') else initial
        for key, value in items:
            self[key] = value

    def __getitem__(self, key):
        return self._data[self._normalize(key)]

    def __setitem__(self, key, value):
        norm_key = self._normalize(key)
        self._data[norm_key] = value
        self._keys.setdefault(norm_key, key)

    def __delitem__(self, key):
        norm_key = self._normalize(key)
        del self._data[norm_key]
        del self._keys[norm_key]

    def __iter__(self):
        return (self._keys[norm_key] for norm_key in sorted(self._keys))

    def __len__(self):
        return len(self._data)

    def __str__(self):
        return '{%s}' % ', '.join('%r: %r' % (key, self[key]) for key in self)

    def __eq__(self, other):
        if not is_dict_like(other):
            return False
        if not isinstance(other, NormalizedDict):
            other = NormalizedDict(other)
        return self._data == other._data

    def __ne__(self, other):
        return not self == other

[docs]    def copy(self):
        copy = NormalizedDict()
        copy._data = self._data.copy()
        copy._keys = self._keys.copy()
        copy._normalize = self._normalize
        return copy


    # Speed-ups. Following methods are faster than default implementations.

    def __contains__(self, key):
        return self._normalize(key) in self._data

[docs]    def clear(self):
        self._data.clear()
        self._keys.clear()






          

      

      

    

  

    
      
          
            
  Source code for robot.utils.recommendations

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

import difflib


[docs]class RecommendationFinder(object):

    def __init__(self, normalizer=None):
        self.normalizer = normalizer or (lambda x: x)
        self.recommendations = None

[docs]    def find_and_format(self, name, candidates, message, max_matches=10):
        self.find(name, candidates, max_matches)
        return self.format(message)


[docs]    def find(self, name, candidates, max_matches=10):
        """Return a list of close matches to `name` from `candidates`."""
        if not name or not candidates:
            return []
        norm_name = self.normalizer(name)
        norm_candidates = self._get_normalized_candidates(candidates)
        cutoff = self._calculate_cutoff(norm_name)
        norm_matches = difflib.get_close_matches(
            norm_name, norm_candidates, n=max_matches, cutoff=cutoff
        )
        self.recommendations = self._get_original_candidates(
            norm_candidates, norm_matches
        )
        return self.recommendations


[docs]    def format(self, message, recommendations=None):
        """Add recommendations to the given message.

        The recommendation string looks like::

            <message> Did you mean:
                <recommendations[0]>
                <recommendations[1]>
                <recommendations[2]>
        """
        recommendations = recommendations or self.recommendations
        if recommendations:
            message += " Did you mean:"
            for rec in recommendations:
                message += "\n    %s" % rec
        return message


    def _get_normalized_candidates(self, candidates):
        norm_candidates = {}
        # sort before normalization for consistent Python/Jython ordering
        for cand in sorted(candidates):
            norm = self.normalizer(cand)
            norm_candidates.setdefault(norm, []).append(cand)
        return norm_candidates

    def _get_original_candidates(self, norm_candidates, norm_matches):
        candidates = []
        for norm_match in norm_matches:
            candidates.extend(norm_candidates[norm_match])
        return candidates

    def _calculate_cutoff(self, string, min_cutoff=.5, max_cutoff=.85,
                          step=.03):
        """Calculate a cutoff depending on string length.

        Default values determined by manual tuning until the results
        "look right".
        """
        cutoff = min_cutoff + len(string) * step
        return min(cutoff, max_cutoff)





          

      

      

    

  

    
      
          
            
  Source code for robot.utils.setter

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.


class setter(object):

    def __init__(self, method):
        self.method = method
        self.attr_name = '_setter__' + method.__name__
        self.__doc__ = method.__doc__

    def __get__(self, instance, owner):
        if instance is None:
            return self
        try:
            return getattr(instance, self.attr_name)
        except AttributeError:
            raise AttributeError(self.method.__name__)

    def __set__(self, instance, value):
        if instance is None:
            return
        setattr(instance, self.attr_name, self.method(instance, value))


class SetterAwareType(type):

    def __new__(cls, name, bases, dct):
        slots = dct.get('__slots__')
        if slots is not None:
            for item in dct.values():
                if isinstance(item, setter):
                    slots.append(item.attr_name)
        return type.__new__(cls, name, bases, dct)




          

      

      

    

  

    
      
          
            
  Source code for robot.variables.assigner

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

import re

from robot.errors import (DataError, ExecutionStatus, HandlerExecutionFailed,
                          VariableError)
from robot.utils import (ErrorDetails, format_assign_message, get_error_message,
                         is_number, is_string, prepr, rstrip, type_name)


[docs]class VariableAssignment(object):

    def __init__(self, assignment):
        validator = AssignmentValidator()
        try:
            self.assignment = [validator.validate(var) for var in assignment]
            self.error = None
        except DataError as err:
            self.assignment = assignment
            self.error = err

    def __iter__(self):
        return iter(self.assignment)

    def __len__(self):
        return len(self.assignment)

[docs]    def validate_assignment(self):
        if self.error:
            raise self.error


[docs]    def assigner(self, context):
        self.validate_assignment()
        return VariableAssigner(self.assignment, context)




[docs]class AssignmentValidator(object):

    def __init__(self):
        self._seen_list = False
        self._seen_dict = False
        self._seen_any_var = False
        self._seen_assign_mark = False

[docs]    def validate(self, variable):
        variable = self._validate_assign_mark(variable)
        self._validate_state(is_list=variable[0] == '@',
                             is_dict=variable[0] == '&')
        return variable


    def _validate_assign_mark(self, variable):
        if self._seen_assign_mark:
            raise DataError("Assign mark '=' can be used only with the last "
                            "variable.")
        if variable.endswith('='):
            self._seen_assign_mark = True
            return rstrip(variable[:-1])
        return variable

    def _validate_state(self, is_list, is_dict):
        if is_list and self._seen_list:
            raise DataError('Assignment can contain only one list variable.')
        if self._seen_dict or is_dict and self._seen_any_var:
            raise DataError('Dictionary variable cannot be assigned with '
                            'other variables.')
        self._seen_list += is_list
        self._seen_dict += is_dict
        self._seen_any_var = True



[docs]class VariableAssigner(object):
    _valid_extended_attr = re.compile(r'^[_a-zA-Z]\w*$')

    def __init__(self, assignment, context):
        self._assignment = assignment
        self._context = context

    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_val is None:
            return
        failure = self._get_failure(exc_type, exc_val, exc_tb)
        if failure.can_continue(self._context):
            self.assign(failure.return_value)

    def _get_failure(self, exc_type, exc_val, exc_tb):
        if isinstance(exc_val, ExecutionStatus):
            return exc_val
        exc_info = (exc_type, exc_val, exc_tb)
        return HandlerExecutionFailed(ErrorDetails(exc_info))

[docs]    def assign(self, return_value):
        context = self._context
        context.trace(lambda: 'Return: %s' % prepr(return_value))
        resolver = ReturnValueResolver(self._assignment)
        for name, value in resolver.resolve(return_value):
            if not self._extended_assign(name, value, context.variables):
                value = self._normal_assign(name, value, context.variables)
            context.info(format_assign_message(name, value))


    def _extended_assign(self, name, value, variables):
        if name[0] != '$' or '.' not in name or name in variables:
            return False
        base, attr = [token.strip() for token in name[2:-1].rsplit('.', 1)]
        try:
            var = variables.replace_scalar('${%s}' % base)
        except VariableError:
            return False
        if not (self._variable_supports_extended_assign(var) and
                self._is_valid_extended_attribute(attr)):
            return False
        try:
            setattr(var, attr, value)
        except:
            raise VariableError("Setting attribute '%s' to variable '${%s}' failed: %s"
                                % (attr, base, get_error_message()))
        return True

    def _variable_supports_extended_assign(self, var):
        return not (is_string(var) or is_number(var))

    def _is_valid_extended_attribute(self, attr):
        return self._valid_extended_attr.match(attr) is not None

    def _normal_assign(self, name, value, variables):
        variables[name] = value
        # Always return the actually assigned value.
        return value if name[0] == '$' else variables[name]



[docs]def ReturnValueResolver(assignment):
    if not assignment:
        return NoReturnValueResolver()
    if len(assignment) == 1:
        return OneReturnValueResolver(assignment[0])
    if any(a[0] == '@' for a in assignment):
        return ScalarsAndListReturnValueResolver(assignment)
    return ScalarsOnlyReturnValueResolver(assignment)



[docs]class NoReturnValueResolver(object):

[docs]    def resolve(self, return_value):
        return []




[docs]class OneReturnValueResolver(object):

    def __init__(self, variable):
        self._variable = variable

[docs]    def resolve(self, return_value):
        if return_value is None:
            identifier = self._variable[0]
            return_value = {'$': None, '@': [], '&': {}}[identifier]
        return [(self._variable, return_value)]




class _MultiReturnValueResolver(object):

    def __init__(self, variables):
        self._variables = variables
        self._min_count = len(variables)

    def resolve(self, return_value):
        return_value = self._convert_to_list(return_value)
        self._validate(len(return_value))
        return self._resolve(return_value)

    def _convert_to_list(self, return_value):
        if return_value is None:
            return [None] * self._min_count
        if is_string(return_value):
            self._raise_expected_list(return_value)
        try:
            return list(return_value)
        except TypeError:
            self._raise_expected_list(return_value)

    def _raise_expected_list(self, ret):
        self._raise('Expected list-like value, got %s.' % type_name(ret))

    def _raise(self, error):
        raise VariableError('Cannot set variables: %s' % error)

    def _validate(self, return_count):
        raise NotImplementedError

    def _resolve(self, return_value):
        raise NotImplementedError


[docs]class ScalarsOnlyReturnValueResolver(_MultiReturnValueResolver):

    def _validate(self, return_count):
        if return_count != self._min_count:
            self._raise('Expected %d return values, got %d.'
                        % (self._min_count, return_count))

    def _resolve(self, return_value):
        return list(zip(self._variables, return_value))



[docs]class ScalarsAndListReturnValueResolver(_MultiReturnValueResolver):

    def __init__(self, variables):
        _MultiReturnValueResolver.__init__(self, variables)
        self._min_count -= 1

    def _validate(self, return_count):
        if return_count < self._min_count:
            self._raise('Expected %d or more return values, got %d.'
                        % (self._min_count, return_count))

    def _resolve(self, return_value):
        before_vars, list_var, after_vars \
            = self._split_variables(self._variables)
        before_items, list_items, after_items \
            = self._split_return(return_value, before_vars, after_vars)
        before = list(zip(before_vars, before_items))
        after = list(zip(after_vars, after_items))
        return before + [(list_var, list_items)] + after

    def _split_variables(self, variables):
        list_index = [v[0] for v in variables].index('@')
        return (variables[:list_index],
                variables[list_index],
                variables[list_index+1:])

    def _split_return(self, return_value, before_vars, after_vars):
        list_start = len(before_vars)
        list_end = len(return_value) - len(after_vars)
        return (return_value[:list_start],
                return_value[list_start:list_end],
                return_value[list_end:])





          

      

      

    

  

    
      
          
            
  Source code for robot.variables.evaluation

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from tokenize import generate_tokens, untokenize
import token

from robot.errors import DataError
from robot.utils import (get_error_message, is_string, MutableMapping, PY2,
                         StringIO, type_name)

from .notfound import variable_not_found


if PY2:
    import __builtin__ as builtins
else:
    import builtins
PYTHON_BUILTINS = set(builtins.__dict__)


[docs]def evaluate_expression(expression, variable_store, modules=None,
                        namespace=None):
    try:
        if not is_string(expression):
            raise TypeError("Expression must be string, got %s."
                            % type_name(expression))
        if not expression:
            raise ValueError("Expression cannot be empty.")
        return _evaluate(expression, variable_store, modules, namespace)
    except:
        raise DataError("Evaluating expression '%s' failed: %s"
                        % (expression, get_error_message()))



def _evaluate(expression, variable_store, modules=None, namespace=None):
    if '$' in expression:
        expression = _decorate_variables(expression, variable_store)
    # Given namespace must be included in our custom local namespace to make
    # it possible to detect which names are not found and should be imported
    # automatically as modules. It must be also be used as the global namespace
    # with `eval()` because lambdas and possibly other special constructs don't
    # see the local namespace at all.
    namespace = dict(namespace) if namespace else {}
    if modules:
        namespace.update(_import_modules(modules))
    local_ns = EvaluationNamespace(variable_store, namespace)
    return eval(expression, namespace, local_ns)


def _decorate_variables(expression, variable_store):
    variable_started = False
    variable_found = False
    tokens = []
    for toknum, tokval, _, _, _ in generate_tokens(StringIO(expression).readline):
        if variable_started:
            if toknum == token.NAME:
                if tokval not in variable_store:
                    variable_not_found('$%s' % tokval,
                                       variable_store.as_dict(decoration=False),
                                       deco_braces=False)
                tokval = 'RF_VAR_' + tokval
                variable_found = True
            else:
                tokens.append((token.ERRORTOKEN, '$'))
            variable_started = False
        if toknum == token.ERRORTOKEN and tokval == '$':
            variable_started = True
        else:
            tokens.append((toknum, tokval))
    return untokenize(tokens).strip() if variable_found else expression


def _import_modules(module_names):
    modules = {}
    for name in module_names.replace(' ', '').split(','):
        if not name:
            continue
        modules[name] = __import__(name)
        # If we just import module 'root.sub', module 'root' is not found.
        while '.' in name:
            name, _ = name.rsplit('.', 1)
            modules[name] = __import__(name)
    return modules


# TODO: In Python 3 this could probably be just Mapping, not MutableMapping.
# With Python 2 at least list comprehensions need to mutate the evaluation
# namespace. Using just Mapping would allow removing __set/delitem__.
[docs]class EvaluationNamespace(MutableMapping):

    def __init__(self, variable_store, namespace):
        self.namespace = namespace
        self.variables = variable_store

    def __getitem__(self, key):
        if key.startswith('RF_VAR_'):
            return self.variables[key[7:]]
        if key in self.namespace:
            return self.namespace[key]
        return self._import_module(key)

    def _import_module(self, name):
        if name in PYTHON_BUILTINS:
            raise KeyError
        try:
            return __import__(name)
        except ImportError:
            raise NameError("name '%s' is not defined nor importable as module"
                            % name)

    def __setitem__(self, key, value):
        if key.startswith('RF_VAR_'):
            self.variables[key[7:]] = value
        else:
            self.namespace[key] = value

    def __delitem__(self, key):
        if key.startswith('RF_VAR_'):
            del self.variables[key[7:]]
        else:
            del self.namespace[key]

    def __iter__(self):
        for key in self.variables:
            yield key
        for key in self.namespace:
            yield key

    def __len__(self):
        return len(self.variables) + len(self.namespace)





          

      

      

    

  

    
      
          
            
  Source code for robot.variables.filesetter

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

import inspect
import io
try:
    import yaml
except ImportError:
    yaml = None

from robot.errors import DataError
from robot.output import LOGGER
from robot.utils import (get_error_message, is_dict_like, is_list_like,
                         is_string, seq2str2, type_name, DotDict, Importer)


[docs]class VariableFileSetter(object):

    def __init__(self, store):
        self._store = store

[docs]    def set(self, path_or_variables, args=None, overwrite=False):
        variables = self._import_if_needed(path_or_variables, args)
        self._set(variables, overwrite)
        return variables


    def _import_if_needed(self, path_or_variables, args=None):
        if not is_string(path_or_variables):
            return path_or_variables
        LOGGER.info("Importing variable file '%s' with args %s"
                    % (path_or_variables, args))
        if path_or_variables.lower().endswith(('.yaml', '.yml')):
            importer = YamlImporter()
        else:
            importer = PythonImporter()
        try:
            return importer.import_variables(path_or_variables, args)
        except:
            args = 'with arguments %s ' % seq2str2(args) if args else ''
            raise DataError("Processing variable file '%s' %sfailed: %s"
                            % (path_or_variables, args, get_error_message()))

    def _set(self, variables, overwrite=False):
        for name, value in variables:
            self._store.add(name, value, overwrite)



[docs]class YamlImporter(object):

[docs]    def import_variables(self, path, args=None):
        if args:
            raise DataError('YAML variable files do not accept arguments.')
        variables = self._import(path)
        return [('${%s}' % name, self._dot_dict(value))
                for name, value in variables]


    def _import(self, path):
        with io.open(path, encoding='UTF-8') as stream:
            variables = self._load_yaml(stream)
        if not is_dict_like(variables):
            raise DataError('YAML variable file must be a mapping, got %s.'
                            % type_name(variables))
        return variables.items()

    def _load_yaml(self, stream):
        if not yaml:
            raise DataError('Using YAML variable files requires PyYAML module '
                            'to be installed. Typically you can install it '
                            'by running `pip install pyyaml`.')
        if yaml.__version__.split('.')[0] == '3':
            return yaml.load(stream)
        return yaml.full_load(stream)

    def _dot_dict(self, value):
        if is_dict_like(value):
            value = DotDict((n, self._dot_dict(v)) for n, v in value.items())
        return value



[docs]class PythonImporter(object):

[docs]    def import_variables(self, path, args=None):
        importer = Importer('variable file', LOGGER).import_class_or_module_by_path
        var_file = importer(path, instantiate_with_args=())
        return self._get_variables(var_file, args)


    def _get_variables(self, var_file, args):
        if self._is_dynamic(var_file):
            variables = self._get_dynamic(var_file, args)
        else:
            variables = self._get_static(var_file)
        return list(self._decorate_and_validate(variables))

    def _is_dynamic(self, var_file):
        return (hasattr(var_file, 'get_variables') or
                hasattr(var_file, 'getVariables'))

    def _get_dynamic(self, var_file, args):
        get_variables = (getattr(var_file, 'get_variables', None) or
                         getattr(var_file, 'getVariables'))
        variables = get_variables(*args)
        if is_dict_like(variables):
            return variables.items()
        raise DataError("Expected '%s' to return dict-like value, got %s."
                        % (get_variables.__name__, type_name(variables)))

    def _get_static(self, var_file):
        names = [attr for attr in dir(var_file) if not attr.startswith('_')]
        if hasattr(var_file, '__all__'):
            names = [name for name in names if name in var_file.__all__]
        variables = [(name, getattr(var_file, name)) for name in names]
        if not inspect.ismodule(var_file):
            variables = [(n, v) for n, v in variables if not callable(v)]
        return variables

    def _decorate_and_validate(self, variables):
        for name, value in variables:
            name = self._decorate(name)
            self._validate(name, value)
            yield name, value

    def _decorate(self, name):
        if name.startswith('LIST__'):
            return '@{%s}' % name[6:]
        if name.startswith('DICT__'):
            return '&{%s}' % name[6:]
        return '${%s}' % name

    def _validate(self, name, value):
        if name[0] == '@' and not is_list_like(value):
            raise DataError("Invalid variable '%s': Expected list-like value, "
                            "got %s." % (name, type_name(value)))
        if name[0] == '&' and not is_dict_like(value):
            raise DataError("Invalid variable '%s': Expected dict-like value, "
                            "got %s." % (name, type_name(value)))





          

      

      

    

  

    
      
          
            
  Source code for robot.variables.finders

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

import re

try:
    from java.lang.System import getProperties as get_java_properties, getProperty
    get_java_property = lambda name: getProperty(name) if name else None
except ImportError:
    get_java_property = lambda name: None
    get_java_properties = lambda: {}

from robot.errors import DataError, VariableError
from robot.utils import (get_env_var, get_env_vars, get_error_message, normalize,
                         NormalizedDict)

from .evaluation import evaluate_expression
from .notfound import variable_not_found
from .search import search_variable, VariableMatch


NOT_FOUND = object()


[docs]class VariableFinder(object):

    def __init__(self, variable_store):
        self._finders = (StoredFinder(variable_store),
                         NumberFinder(),
                         EmptyFinder(),
                         InlinePythonFinder(variable_store),
                         EnvironmentFinder(),
                         ExtendedFinder(self))
        self._store = variable_store

[docs]    def find(self, variable):
        match = self._get_match(variable)
        name = match.name
        for finder in self._finders:
            if match.identifier in finder.identifiers:
                result = finder.find(name)
                if result is not NOT_FOUND:
                    return result
        variable_not_found(name, self._store.data)


    def _get_match(self, variable):
        if isinstance(variable, VariableMatch):
            return variable
        match = search_variable(variable)
        if not match.is_variable() or match.items:
            raise DataError("Invalid variable name '%s'." % variable)
        return match



[docs]class StoredFinder(object):
    identifiers = '$@&'

    def __init__(self, store):
        self._store = store

[docs]    def find(self, name):
        return self._store.get(name, NOT_FOUND)




[docs]class NumberFinder(object):
    identifiers = '$'

[docs]    def find(self, name):
        number = normalize(name)[2:-1]
        for converter in self._get_int, float:
            try:
                return converter(number)
            except ValueError:
                pass
        return NOT_FOUND


    def _get_int(self, number):
        bases = {'0b': 2, '0o': 8, '0x': 16}
        if number.startswith(tuple(bases)):
            return int(number[2:], bases[number[:2]])
        return int(number)



[docs]class EmptyFinder(object):
    identifiers = '$@&'
    empty = NormalizedDict({'${EMPTY}': u'', '@{EMPTY}': (), '&{EMPTY}': {}}, ignore='_')

[docs]    def find(self, name):
        return self.empty.get(name, NOT_FOUND)




[docs]class InlinePythonFinder(object):
    identifiers = '$@&'

    def __init__(self, variables):
        self._variables = variables

[docs]    def find(self, name):
        base = name[2:-1]
        if not base or base[0] != '{' or base[-1] != '}':
            return NOT_FOUND
        try:
            return evaluate_expression(base[1:-1].strip(), self._variables)
        except DataError as err:
            raise VariableError("Resolving variable '%s' failed: %s" % (name, err))




[docs]class ExtendedFinder(object):
    identifiers = '$@&'
    _match_extended = re.compile(r'''
        (.+?)          # base name (group 1)
        ([^\s\w].+)    # extended part (group 2)
    ''', re.UNICODE|re.VERBOSE).match

    def __init__(self, finder):
        self._find_variable = finder.find

[docs]    def find(self, name):
        match = self._match_extended(name[2:-1])
        if match is None:
            return NOT_FOUND
        base_name, extended = match.groups()
        try:
            variable = self._find_variable('${%s}' % base_name)
        except DataError as err:
            raise VariableError("Resolving variable '%s' failed: %s"
                                % (name, err.message))
        try:
            return eval('_BASE_VAR_' + extended, {'_BASE_VAR_': variable})
        except:
            raise VariableError("Resolving variable '%s' failed: %s"
                                % (name, get_error_message()))




[docs]class EnvironmentFinder(object):
    identifiers = '%'

[docs]    def find(self, name):
        var_name, has_default, default_value = name[2:-1].partition('=')
        for getter in get_env_var, get_java_property:
            value = getter(var_name)
            if value is not None:
                return value
        if has_default:     # in case if '' is desired default value
            return default_value
        variable_not_found(name, self._get_candidates(),
                           "Environment variable '%s' not found." % name)


    def _get_candidates(self):
        candidates = dict(get_java_properties())
        candidates.update(get_env_vars())
        return candidates





          

      

      

    

  

    
      
          
            
  Source code for robot.variables.notfound

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from functools import partial

from robot.errors import VariableError
from robot.utils import is_dict_like, is_list_like, normalize, RecommendationFinder


[docs]def variable_not_found(name, candidates, message=None, deco_braces=True):
    """Raise DataError for missing variable name.

    Return recommendations for similar variable names if any are found.
    """
    candidates = _decorate_candidates(name[0], candidates, deco_braces)
    normalizer = partial(normalize, ignore='$@&%{}_')
    message = RecommendationFinder(normalizer).find_and_format(
        name, candidates,
        message=message or "Variable '%s' not found." % name
    )
    raise VariableError(message)



def _decorate_candidates(identifier, candidates, deco_braces=True):
    template = '%s{%s}' if deco_braces else '%s%s'
    is_included = {'$': lambda value: True,
                   '@': is_list_like,
                   '&': is_dict_like,
                   '%': lambda value: True}[identifier]
    return [template % (identifier, name)
            for name in candidates if is_included(candidates[name])]




          

      

      

    

  

    
      
          
            
  Source code for robot.variables.replacer

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from robot.errors import DataError, VariableError
from robot.output import librarylogger as logger
from robot.utils import (escape, get_error_message, is_dict_like, is_list_like,
                         is_string, type_name, unescape, unic, DotDict)

from .finders import VariableFinder
from .search import VariableMatch, search_variable


[docs]class VariableReplacer(object):

    def __init__(self, variable_store):
        self._finder = VariableFinder(variable_store)

[docs]    def replace_list(self, items, replace_until=None, ignore_errors=False):
        """Replaces variables from a list of items.

        If an item in a list is a @{list} variable its value is returned.
        Possible variables from other items are replaced using 'replace_scalar'.
        Result is always a list.

        'replace_until' can be used to limit replacing arguments to certain
        index from the beginning. Used with Run Keyword variants that only
        want to resolve some of the arguments in the beginning and pass others
        to called keywords unmodified.
        """
        items = list(items or [])
        if replace_until is not None:
            return self._replace_list_until(items, replace_until, ignore_errors)
        return list(self._replace_list(items, ignore_errors))


    def _replace_list_until(self, items, replace_until, ignore_errors):
        # @{list} variables can contain more or less arguments than needed.
        # Therefore we need to go through items one by one, and escape possible
        # extra items we got.
        replaced = []
        while len(replaced) < replace_until and items:
            replaced.extend(self._replace_list([items.pop(0)], ignore_errors))
        if len(replaced) > replace_until:
            replaced[replace_until:] = [escape(item)
                                        for item in replaced[replace_until:]]
        return replaced + items

    def _replace_list(self, items, ignore_errors):
        for item in items:
            for value in self._replace_list_item(item, ignore_errors):
                yield value

    def _replace_list_item(self, item, ignore_errors):
        match = search_variable(item, ignore_errors=ignore_errors)
        if not match:
            return [unescape(match.string)]
        value = self.replace_scalar(match, ignore_errors)
        if match.is_list_variable() and is_list_like(value):
            return value
        return [value]

[docs]    def replace_scalar(self, item, ignore_errors=False):
        """Replaces variables from a scalar item.

        If the item is not a string it is returned as is. If it is a variable,
        its value is returned. Otherwise possible variables are replaced with
        'replace_string'. Result may be any object.
        """
        match = self._search_variable(item, ignore_errors=ignore_errors)
        if not match:
            return unescape(match.string)
        return self._replace_scalar(match, ignore_errors)


    def _search_variable(self, item, ignore_errors):
        if isinstance(item, VariableMatch):
            return item
        return search_variable(item, ignore_errors=ignore_errors)

    def _replace_scalar(self, match, ignore_errors=False):
        if not match.is_variable():
            return self.replace_string(match, ignore_errors=ignore_errors)
        return self._get_variable_value(match, ignore_errors)

[docs]    def replace_string(self, item, custom_unescaper=None, ignore_errors=False):
        """Replaces variables from a string. Result is always a string.

        Input can also be an already found VariableMatch.
        """
        unescaper = custom_unescaper or unescape
        match = self._search_variable(item, ignore_errors=ignore_errors)
        if not match:
            return unic(unescaper(match.string))
        return self._replace_string(match, unescaper, ignore_errors)


    def _replace_string(self, match, unescaper, ignore_errors):
        parts = []
        while match:
            parts.extend([
                unescaper(match.before),
                unic(self._get_variable_value(match, ignore_errors))
            ])
            match = search_variable(match.after, ignore_errors=ignore_errors)
        parts.append(unescaper(match.string))
        return ''.join(parts)

    def _get_variable_value(self, match, ignore_errors):
        match.resolve_base(self, ignore_errors)
        # TODO: Do we anymore need to reserve `*{var}` syntax for anything?
        if match.identifier == '*':
            logger.warn(r"Syntax '%s' is reserved for future use. Please "
                        r"escape it like '\%s'." % (match, match))
            return unic(match)
        try:
            value = self._finder.find(match)
            if match.items:
                value = self._get_variable_item(match, value)
            try:
                value = self._validate_value(match, value)
            except VariableError:
                raise
            except:
                raise VariableError("Resolving variable '%s' failed: %s"
                                    % (match, get_error_message()))
        except DataError:
            if not ignore_errors:
                raise
            value = unescape(match.match)
        return value

    def _get_variable_item(self, match, value):
        name = match.name
        for item in match.items:
            if is_dict_like(value):
                value = self._get_dict_variable_item(name, value, item)
            elif hasattr(value, '__getitem__'):
                value = self._get_sequence_variable_item(name, value, item)
            else:
                raise VariableError(
                    "Variable '%s' is %s, which is not subscriptable, and "
                    "thus accessing item '%s' from it is not possible. To use "
                    "'[%s]' as a literal value, it needs to be escaped like "
                    "'\\[%s]'." % (name, type_name(value), item, item, item)
                )
            name = '%s[%s]' % (name, item)
        return value

    def _get_sequence_variable_item(self, name, variable, index):
        index = self.replace_scalar(index)
        try:
            index = self._parse_sequence_variable_index(index)
        except ValueError:
            try:
                return variable[index]
            except TypeError:
                raise VariableError("%s '%s' used with invalid index '%s'. "
                                    "To use '[%s]' as a literal value, it needs "
                                    "to be escaped like '\\[%s]'."
                                    % (type_name(variable, capitalize=True), name,
                                       index, index, index))
            except:
                raise VariableError("Accessing '%s[%s]' failed: %s"
                                    % (name, index, get_error_message()))
        try:
            return variable[index]
        except IndexError:
            raise VariableError("%s '%s' has no item in index %d."
                                % (type_name(variable, capitalize=True), name, index))

    def _parse_sequence_variable_index(self, index):
        if isinstance(index, (int, slice)):
            return index
        if not is_string(index):
            raise ValueError
        if ':' not in index:
            return int(index)
        if index.count(':') > 2:
            raise ValueError
        return slice(*[int(i) if i else None for i in index.split(':')])

    def _get_dict_variable_item(self, name, variable, key):
        key = self.replace_scalar(key)
        try:
            return variable[key]
        except KeyError:
            raise VariableError("Dictionary '%s' has no key '%s'."
                                % (name, key))
        except TypeError as err:
            raise VariableError("Dictionary '%s' used with invalid key: %s"
                                % (name, err))

    def _validate_value(self, match, value):
        if match.identifier == '@':
            if not is_list_like(value):
                raise VariableError("Value of variable '%s' is not list or "
                                    "list-like." % match)
            return list(value)
        if match.identifier == '&':
            if not is_dict_like(value):
                raise VariableError("Value of variable '%s' is not dictionary "
                                    "or dictionary-like." % match)
            return DotDict(value)
        return value





          

      

      

    

  

    
      
          
            
  Source code for robot.variables.scopes

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

import os
import tempfile

from robot.errors import DataError
from robot.output import LOGGER
from robot.utils import abspath, find_file, get_error_details, NormalizedDict

from .variables import Variables


[docs]class VariableScopes(object):

    def __init__(self, settings):
        self._global = GlobalVariables(settings)
        self._suite = None
        self._test = None
        self._scopes = [self._global]
        self._variables_set = SetVariables()

    @property
    def current(self):
        return self._scopes[-1]

    @property
    def _all_scopes(self):
        return reversed(self._scopes)

    @property
    def _scopes_until_suite(self):
        for scope in self._all_scopes:
            yield scope
            if scope is self._suite:
                break

    @property
    def _scopes_until_test(self):
        for scope in self._scopes_until_suite:
            yield scope
            if scope is self._test:
                break

[docs]    def start_suite(self):
        self._suite = self._global.copy()
        self._scopes.append(self._suite)
        self._variables_set.start_suite()
        self._variables_set.update(self._suite)


[docs]    def end_suite(self):
        self._scopes.pop()
        self._suite = self._scopes[-1] if len(self._scopes) > 1 else None
        self._variables_set.end_suite()


[docs]    def start_test(self):
        self._test = self._suite.copy()
        self._scopes.append(self._test)
        self._variables_set.start_test()


[docs]    def end_test(self):
        self._scopes.pop()
        self._test = None
        self._variables_set.end_test()


[docs]    def start_keyword(self):
        kw = self._suite.copy()
        self._variables_set.start_keyword()
        self._variables_set.update(kw)
        self._scopes.append(kw)


[docs]    def end_keyword(self):
        self._scopes.pop()
        self._variables_set.end_keyword()


    def __getitem__(self, name):
        return self.current[name]

    def __setitem__(self, name, value):
        self.current[name] = value

    def __contains__(self, name):
        return name in self.current

[docs]    def replace_list(self, items, replace_until=None, ignore_errors=False):
        return self.current.replace_list(items, replace_until, ignore_errors)


[docs]    def replace_scalar(self, items, ignore_errors=False):
        return self.current.replace_scalar(items, ignore_errors)


[docs]    def replace_string(self, string, custom_unescaper=None, ignore_errors=False):
        return self.current.replace_string(string, custom_unescaper, ignore_errors)


[docs]    def set_from_file(self, path, args, overwrite=False):
        variables = None
        for scope in self._scopes_until_suite:
            if variables is None:
                variables = scope.set_from_file(path, args, overwrite)
            else:
                scope.set_from_file(variables, overwrite=overwrite)


[docs]    def set_from_variable_table(self, variables, overwrite=False):
        for scope in self._scopes_until_suite:
            scope.set_from_variable_table(variables, overwrite)


[docs]    def resolve_delayed(self):
        for scope in self._scopes_until_suite:
            scope.resolve_delayed()


[docs]    def set_global(self, name, value):
        for scope in self._all_scopes:
            name, value = self._set_global_suite_or_test(scope, name, value)
        self._variables_set.set_global(name, value)


    def _set_global_suite_or_test(self, scope, name, value):
        scope[name] = value
        # Avoid creating new list/dict objects in different scopes.
        if name[0] != '$':
            name = '$' + name[1:]
            value = scope[name]
        return name, value

[docs]    def set_suite(self, name, value, top=False, children=False):
        if top:
            self._scopes[1][name] = value
            return
        for scope in self._scopes_until_suite:
            name, value = self._set_global_suite_or_test(scope, name, value)
        if children:
            self._variables_set.set_suite(name, value)


[docs]    def set_test(self, name, value):
        if self._test is None:
            raise DataError('Cannot set test variable when no test is started.')
        for scope in self._scopes_until_test:
            name, value = self._set_global_suite_or_test(scope, name, value)
        self._variables_set.set_test(name, value)


[docs]    def set_keyword(self, name, value):
        self.current[name] = value
        self._variables_set.set_keyword(name, value)


[docs]    def set_local_variable(self, name, value):
        self.current[name] = value


[docs]    def as_dict(self, decoration=True):
        return self.current.as_dict(decoration=decoration)




[docs]class GlobalVariables(Variables):

    def __init__(self, settings):
        Variables.__init__(self)
        self._set_cli_variables(settings)
        self._set_built_in_variables(settings)

    def _set_cli_variables(self, settings):
        for path, args in settings.variable_files:
            try:
                path = find_file(path, file_type='Variable file')
                self.set_from_file(path, args)
            except:
                msg, details = get_error_details()
                LOGGER.error(msg)
                LOGGER.info(details)
        for varstr in settings.variables:
            try:
                name, value = varstr.split(':', 1)
            except ValueError:
                name, value = varstr, ''
            self['${%s}' % name] = value

    def _set_built_in_variables(self, settings):
        for name, value in [('${TEMPDIR}', abspath(tempfile.gettempdir())),
                            ('${EXECDIR}', abspath('.')),
                            ('${/}', os.sep),
                            ('${:}', os.pathsep),
                            ('${\\n}', os.linesep),
                            ('${SPACE}', ' '),
                            ('${True}', True),
                            ('${False}', False),
                            ('${None}', None),
                            ('${null}', None),
                            ('${OUTPUT_DIR}', settings.output_directory),
                            ('${OUTPUT_FILE}', settings.output or 'NONE'),
                            ('${REPORT_FILE}', settings.report or 'NONE'),
                            ('${LOG_FILE}', settings.log or 'NONE'),
                            ('${DEBUG_FILE}', settings.debug_file or 'NONE'),
                            ('${LOG_LEVEL}', settings.log_level),
                            ('${PREV_TEST_NAME}', ''),
                            ('${PREV_TEST_STATUS}', ''),
                            ('${PREV_TEST_MESSAGE}', '')]:
            self[name] = value



[docs]class SetVariables(object):

    def __init__(self):
        self._suite = None
        self._test = None
        self._scopes = []

[docs]    def start_suite(self):
        if not self._scopes:
            self._suite = NormalizedDict(ignore='_')
        else:
            self._suite = self._scopes[-1].copy()
        self._scopes.append(self._suite)


[docs]    def end_suite(self):
        self._scopes.pop()
        self._suite = self._scopes[-1] if self._scopes else None


[docs]    def start_test(self):
        self._test = self._scopes[-1].copy()
        self._scopes.append(self._test)


[docs]    def end_test(self):
        self._test = None
        self._scopes.pop()


[docs]    def start_keyword(self):
        self._scopes.append(self._scopes[-1].copy())


[docs]    def end_keyword(self):
        self._scopes.pop()


[docs]    def set_global(self, name, value):
        for scope in self._scopes:
            if name in scope:
                scope.pop(name)


[docs]    def set_suite(self, name, value):
        self._suite[name] = value


[docs]    def set_test(self, name, value):
        for scope in reversed(self._scopes):
            scope[name] = value
            if scope is self._test:
                break


[docs]    def set_keyword(self, name, value):
        self._scopes[-1][name] = value


[docs]    def update(self, variables):
        for name, value in self._scopes[-1].items():
            variables[name] = value






          

      

      

    

  

    
      
          
            
  Source code for robot.variables.search

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

import re

from robot.errors import VariableError
from robot.utils import is_string, py3to2, rstrip


[docs]def search_variable(string, identifiers='$@&%*', ignore_errors=False):
    if not (is_string(string) and '{' in string):
        return VariableMatch(string)
    return VariableSearcher(identifiers, ignore_errors).search(string)



[docs]def contains_variable(string, identifiers='$@&'):
    match = search_variable(string, identifiers, ignore_errors=True)
    return bool(match)



[docs]def is_variable(string, identifiers='$@&'):
    match = search_variable(string, identifiers, ignore_errors=True)
    return match.is_variable()



[docs]def is_scalar_variable(string):
    return is_variable(string, '$')



# TODO: Nowadays is_list_variable and is_dict_variable ought to be able to use
# is_variable same way as is_scalar variable. That wasn't the case before RF 4.

[docs]def is_list_variable(string):
    match = search_variable(string, '@', ignore_errors=True)
    return match.is_list_variable()



[docs]def is_dict_variable(string):
    match = search_variable(string, '&', ignore_errors=True)
    return match.is_dict_variable()



[docs]def is_assign(string, identifiers='$@&', allow_assign_mark=False):
    match = search_variable(string, identifiers, ignore_errors=True)
    return match.is_assign(allow_assign_mark)



[docs]def is_scalar_assign(string, allow_assign_mark=False):
    return is_assign(string, '$', allow_assign_mark)



[docs]def is_list_assign(string, allow_assign_mark=False):
    return is_assign(string, '@', allow_assign_mark)



[docs]def is_dict_assign(string, allow_assign_mark=False):
    return is_assign(string, '&', allow_assign_mark)



[docs]@py3to2
class VariableMatch(object):

    def __init__(self, string, identifier=None, base=None, items=(),
                 start=-1, end=-1):
        self.string = string
        self.identifier = identifier
        self.base = base
        self.items = items
        self.start = start
        self.end = end

[docs]    def resolve_base(self, variables, ignore_errors=False):
        if self.identifier:
            internal = search_variable(self.base)
            self.base = variables.replace_string(
                internal,
                custom_unescaper=unescape_variable_syntax,
                ignore_errors=ignore_errors,
            )


    @property
    def name(self):
        return '%s{%s}' % (self.identifier, self.base) if self else None

    @property
    def before(self):
        return self.string[:self.start] if self.identifier else self.string

    @property
    def match(self):
        return self.string[self.start:self.end] if self.identifier else None

    @property
    def after(self):
        return self.string[self.end:] if self.identifier else None

[docs]    def is_variable(self):
        return bool(self.identifier
                    and self.base
                    and self.start == 0
                    and self.end == len(self.string))


[docs]    def is_scalar_variable(self):
        return self.identifier == '$' and self.is_variable()


[docs]    def is_list_variable(self):
        return self.identifier == '@' and self.is_variable()


[docs]    def is_dict_variable(self):
        return self.identifier == '&' and self.is_variable()


[docs]    def is_assign(self, allow_assign_mark=False):
        if allow_assign_mark and self.string.endswith('='):
            match = search_variable(rstrip(self.string[:-1]), ignore_errors=True)
            return match.is_assign()
        return (self.is_variable()
                and self.identifier in '$@&'
                and not self.items
                and not search_variable(self.base))


[docs]    def is_scalar_assign(self, allow_assign_mark=False):
        return self.identifier == '$' and self.is_assign(allow_assign_mark)


[docs]    def is_list_assign(self, allow_assign_mark=False):
        return self.identifier == '@' and self.is_assign(allow_assign_mark)


[docs]    def is_dict_assign(self, allow_assign_mark=False):
        return self.identifier == '&' and self.is_assign(allow_assign_mark)


    def __bool__(self):
        return self.identifier is not None

    def __str__(self):
        if not self:
            return '<no match>'
        items = ''.join('[%s]' % i for i in self.items) if self.items else ''
        return '%s{%s}%s' % (self.identifier, self.base, items)



[docs]class VariableSearcher(object):

    def __init__(self, identifiers, ignore_errors=False):
        self.identifiers = identifiers
        self._ignore_errors = ignore_errors
        self.start = -1
        self.variable_chars = []
        self.item_chars = []
        self.items = []
        self._open_brackets = 0    # Used both with curly and square brackets
        self._escaped = False

[docs]    def search(self, string):
        if not self._search(string):
            return VariableMatch(string)
        match = VariableMatch(string=string,
                              identifier=self.variable_chars[0],
                              base=''.join(self.variable_chars[2:-1]),
                              start=self.start,
                              end=self.start + len(self.variable_chars))
        if self.items:
            match.items = tuple(self.items)
            match.end += sum(len(i) for i in self.items) + 2 * len(self.items)
        return match


    def _search(self, string):
        start = self._find_variable_start(string)
        if start == -1:
            return False
        self.start = start
        self._open_brackets += 1
        self.variable_chars = [string[start], '{']
        start += 2
        state = self.variable_state
        for char in string[start:]:
            state = state(char)
            self._escaped = False if char != '\\' else not self._escaped
            if state is None:
                break
        if state:
            try:
                self._validate_end_state(state)
            except VariableError:
                if self._ignore_errors:
                    return False
                raise
        return True

    def _find_variable_start(self, string):
        start = 1
        while True:
            start = string.find('{', start) - 1
            if start < 0:
                return -1
            if self._start_index_is_ok(string, start):
                return start
            start += 2

    def _start_index_is_ok(self, string, index):
        return (string[index] in self.identifiers
                and not self._is_escaped(string, index))

    def _is_escaped(self, string, index):
        escaped = False
        while index > 0 and string[index-1] == '\\':
            index -= 1
            escaped = not escaped
        return escaped

[docs]    def variable_state(self, char):
        self.variable_chars.append(char)
        if char == '}' and not self._escaped:
            self._open_brackets -= 1
            if self._open_brackets == 0:
                if not self._can_have_items():
                    return None
                return self.waiting_item_state
        elif char == '{' and not self._escaped:
            self._open_brackets += 1
        return self.variable_state


    def _can_have_items(self):
        return self.variable_chars[0] in '$@&'

[docs]    def waiting_item_state(self, char):
        if char == '[':
            self._open_brackets += 1
            return self.item_state
        return None


[docs]    def item_state(self, char):
        if char == ']' and not self._escaped:
            self._open_brackets -= 1
            if self._open_brackets == 0:
                self.items.append(''.join(self.item_chars))
                self.item_chars = []
                return self.waiting_item_state
        elif char == '[' and not self._escaped:
            self._open_brackets += 1
        self.item_chars.append(char)
        return self.item_state


    def _validate_end_state(self, state):
        if state == self.variable_state:
            incomplete = ''.join(self.variable_chars)
            raise VariableError("Variable '%s' was not closed properly."
                                % incomplete)
        if state == self.item_state:
            variable = ''.join(self.variable_chars)
            items = ''.join('[%s]' % i for i in self.items)
            incomplete = ''.join(self.item_chars)
            raise VariableError("Variable item '%s%s[%s' was not closed "
                                "properly." % (variable, items, incomplete))



[docs]def unescape_variable_syntax(item):

    def handle_escapes(match):
        escapes, text = match.groups()
        if len(escapes) % 2 == 1 and starts_with_variable_or_curly(text):
            return escapes[1:]
        return escapes

    def starts_with_variable_or_curly(text):
        if text[0] in '{}':
            return True
        match = search_variable(text, ignore_errors=True)
        return match and match.start == 0

    return re.sub(r'(\\+)(?=(.+))', handle_escapes, item)



[docs]@py3to2
class VariableIterator(object):

    def __init__(self, string, identifiers='$@&%', ignore_errors=False):
        self.string = string
        self.identifiers = identifiers
        self.ignore_errors = ignore_errors

    def __iter__(self):
        remaining = self.string
        while True:
            match = search_variable(remaining, self.identifiers,
                                    self.ignore_errors)
            if not match:
                break
            remaining = match.after
            yield match.before, match.match, remaining

    def __len__(self):
        return sum(1 for _ in self)

    def __bool__(self):
        try:
            next(iter(self))
        except StopIteration:
            return False
        else:
            return True





          

      

      

    

  

    
      
          
            
  Source code for robot.variables.store

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from robot.errors import DataError, VariableError
from robot.utils import DotDict, is_dict_like, is_list_like, NormalizedDict, type_name

from .notfound import variable_not_found
from .search import is_assign
from .tablesetter import VariableTableValueBase


NOT_SET = object()


[docs]class VariableStore(object):

    def __init__(self, variables):
        self.data = NormalizedDict(ignore='_')
        self._variables = variables

[docs]    def resolve_delayed(self, item=None):
        if item:
            return self._resolve_delayed(*item)
        for name, value in list(self.data.items()):
            try:
                self._resolve_delayed(name, value)
            except DataError:
                pass


    def _resolve_delayed(self, name, value):
        if not self._is_resolvable(value):
            return value
        try:
            self.data[name] = value.resolve(self._variables)
        except DataError as err:
            # Recursive resolving may have already removed variable.
            if name in self.data:
                self.data.pop(name)
                value.report_error(err)
            variable_not_found('${%s}' % name, self.data)
        return self.data[name]

    def _is_resolvable(self, value):
        try: # isinstance can throw an exception in ironpython and jython
            return isinstance(value, VariableTableValueBase)
        except Exception:
            return False

    def __getitem__(self, name):
        if name not in self.data:
            variable_not_found('${%s}' % name, self.data)
        return self._resolve_delayed(name, self.data[name])

[docs]    def get(self, name, default=NOT_SET, decorated=True):
        try:
            if decorated:
                name = self._undecorate(name)
            return self[name]
        except VariableError:
            if default is NOT_SET:
                raise
            return default


[docs]    def update(self, store):
        self.data.update(store.data)


[docs]    def clear(self):
        self.data.clear()


[docs]    def add(self, name, value, overwrite=True, decorated=True):
        if decorated:
            name, value = self._undecorate_and_validate(name, value)
        if overwrite or name not in self.data:
            self.data[name] = value


    def _undecorate(self, name):
        if not is_assign(name):
            raise VariableError("Invalid variable name '%s'." % name)
        return name[2:-1]

    def _undecorate_and_validate(self, name, value):
        undecorated = self._undecorate(name)
        if name[0] == '@':
            if not is_list_like(value):
                self._raise_cannot_set_type(name, value, 'list')
            value = list(value)
        if name[0] == '&':
            if not is_dict_like(value):
                self._raise_cannot_set_type(name, value, 'dictionary')
            value = DotDict(value)
        return undecorated, value

    def _raise_cannot_set_type(self, name, value, expected):
        raise VariableError("Cannot set variable '%s': Expected %s-like value, got %s."
                            % (name, expected, type_name(value)))

    def __len__(self):
        return len(self.data)

    def __iter__(self):
        return iter(self.data)

    def __contains__(self, name):
        return name in self.data

[docs]    def as_dict(self, decoration=True):
        if decoration:
            variables = (self._decorate(name, self[name]) for name in self)
        else:
            variables = self.data
        return NormalizedDict(variables,  ignore='_')


    def _decorate(self, name, value):
        if is_dict_like(value):
            name = '&{%s}' % name
        elif is_list_like(value):
            name = '@{%s}' % name
        else:
            name = '${%s}' % name
        return name, value





          

      

      

    

  

    
      
          
            
  Source code for robot.variables.tablesetter

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from contextlib import contextmanager

from robot.errors import DataError
from robot.utils import DotDict, is_string, split_from_equals, unic

from .search import is_assign, is_list_variable, is_dict_variable


[docs]class VariableTableSetter(object):

    def __init__(self, store):
        self._store = store

[docs]    def set(self, variables, overwrite=False):
        for name, value in self._get_items(variables):
            self._store.add(name, value, overwrite, decorated=False)


    def _get_items(self, variables):
        for var in variables:
            if var.error:
                var.report_invalid_syntax(var.error)
                continue
            try:
                value = VariableTableValue(var.value, var.name,
                                           var.report_invalid_syntax)
            except DataError as err:
                var.report_invalid_syntax(err)
            else:
                yield var.name[2:-1], value



[docs]def VariableTableValue(value, name, error_reporter=None):
    if not is_assign(name):
        raise DataError("Invalid variable name '%s'." % name)
    VariableTableValue = {'$': ScalarVariableTableValue,
                          '@': ListVariableTableValue,
                          '&': DictVariableTableValue}[name[0]]
    return VariableTableValue(value, error_reporter)



[docs]class VariableTableValueBase(object):

    def __init__(self, values, error_reporter=None):
        self._values = self._format_values(values)
        self._error_reporter = error_reporter
        self._resolving = False

    def _format_values(self, values):
        return values

[docs]    def resolve(self, variables):
        with self._avoid_recursion:
            return self._replace_variables(self._values, variables)


    @property
    @contextmanager
    def _avoid_recursion(self):
        if self._resolving:
            raise DataError('Recursive variable definition.')
        self._resolving = True
        try:
            yield
        finally:
            self._resolving = False

    def _replace_variables(self, value, variables):
        raise NotImplementedError

[docs]    def report_error(self, error):
        if self._error_reporter:
            self._error_reporter(unic(error))




[docs]class ScalarVariableTableValue(VariableTableValueBase):

    def _format_values(self, values):
        separator = None
        if is_string(values):
            values = [values]
        elif values and values[0].startswith('SEPARATOR='):
            separator = values[0][10:]
            values = values[1:]
        return separator, values

    def _replace_variables(self, values, variables):
        separator, values = values
        # Avoid converting single value to string.
        if self._is_single_value(separator, values):
            return variables.replace_scalar(values[0])
        if separator is None:
            separator = ' '
        separator = variables.replace_string(separator)
        values = variables.replace_list(values)
        return separator.join(unic(item) for item in values)

    def _is_single_value(self, separator, values):
        return (separator is None and len(values) == 1 and
                not is_list_variable(values[0]))



[docs]class ListVariableTableValue(VariableTableValueBase):

    def _replace_variables(self, values, variables):
        return variables.replace_list(values)



[docs]class DictVariableTableValue(VariableTableValueBase):

    def _format_values(self, values):
        return list(self._yield_formatted(values))

    def _yield_formatted(self, values):
        for item in values:
            if is_dict_variable(item):
                yield item
            else:
                name, value = split_from_equals(item)
                if value is None:
                    raise DataError(
                        "Invalid dictionary variable item '%s'. "
                        "Items must use 'name=value' syntax or be dictionary "
                        "variables themselves." % item
                    )
                yield name, value

    def _replace_variables(self, values, variables):
        try:
            return DotDict(self._yield_replaced(values,
                                                variables.replace_scalar))
        except TypeError as err:
            raise DataError('Creating dictionary failed: %s' % err)

    def _yield_replaced(self, values, replace_scalar):
        for item in values:
            if isinstance(item, tuple):
                key, values = item
                yield replace_scalar(key), replace_scalar(values)
            else:
                for key, values in replace_scalar(item).items():
                    yield key, values





          

      

      

    

  

    
      
          
            
  Source code for robot.variables.variables

#  Copyright 2008-2015 Nokia Networks
#  Copyright 2016-     Robot Framework Foundation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from robot.utils import is_list_like, type_name

from .filesetter import VariableFileSetter
from .replacer import VariableReplacer
from .store import VariableStore
from .tablesetter import VariableTableSetter


[docs]class Variables(object):
    """Represents a set of variables.

    Contains methods for replacing variables from list, scalars, and strings.
    On top of ${scalar}, @{list} and &{dict} variables, these methods handle
    also %{environment} variables.
    """

    def __init__(self):
        self.store = VariableStore(self)
        self._replacer = VariableReplacer(self.store)

    def __setitem__(self, name, value):
        self.store.add(name, value)

    def __getitem__(self, name):
        return self.store.get(name)

    def __contains__(self, name):
        return name in self.store

[docs]    def resolve_delayed(self):
        self.store.resolve_delayed()


[docs]    def replace_list(self, items, replace_until=None, ignore_errors=False):
        if not is_list_like(items):
            raise ValueError("'replace_list' requires list-like input, "
                             "got %s." % type_name(items))
        return self._replacer.replace_list(items, replace_until, ignore_errors)


[docs]    def replace_scalar(self, item, ignore_errors=False):
        return self._replacer.replace_scalar(item, ignore_errors)


[docs]    def replace_string(self, item, custom_unescaper=None, ignore_errors=False):
        return self._replacer.replace_string(item, custom_unescaper, ignore_errors)


[docs]    def set_from_file(self, path_or_variables, args=None, overwrite=False):
        setter = VariableFileSetter(self.store)
        return setter.set(path_or_variables, args, overwrite)


[docs]    def set_from_variable_table(self, variables, overwrite=False):
        setter = VariableTableSetter(self.store)
        setter.set(variables, overwrite)


[docs]    def clear(self):
        self.store.clear()


[docs]    def copy(self):
        variables = Variables()
        variables.store.data = self.store.data.copy()
        return variables


[docs]    def update(self, variables):
        self.store.update(variables.store)


[docs]    def as_dict(self, decoration=True):
        return self.store.as_dict(decoration=decoration)






          

      

      

    

  _static/plus.png





_static/up-pressed.png





_static/up.png





_static/down-pressed.png





_static/comment.png





_static/down.png





_static/minus.png





_static/file.png





nav.xhtml

    
      Table of Contents


      
        		
          Robot Framework API documentation
        


        		
          robot package
          
            		
              Subpackages
              
                		
                  robot.api package
                


                		
                  robot.conf package
                


                		
                  robot.htmldata package
                


                		
                  robot.libdocpkg package
                


                		
                  robot.libraries package
                


                		
                  robot.model package
                


                		
                  robot.output package
                


                		
                  robot.parsing package
                


                		
                  robot.reporting package
                


                		
                  robot.result package
                


                		
                  robot.running package
                


                		
                  robot.tidypkg package
                


                		
                  robot.utils package
                


                		
                  robot.variables package
                


              


            


            		
              Submodules
            


            		
              robot.errors module
            


            		
              robot.jarrunner module
            


            		
              robot.libdoc module
            


            		
              robot.pythonpathsetter module
            


            		
              robot.rebot module
            


            		
              robot.run module
            


            		
              robot.testdoc module
            


            		
              robot.tidy module
            


            		
              robot.version module
            


          


        


        		
          robot.api package
          
            		
              Submodules
            


            		
              robot.api.deco module
            


            		
              robot.api.exceptions module
            


            		
              robot.api.logger module
              
                		
                  Log levels
                


                		
                  Logging HTML
                


                		
                  Example
                


              


            


            		
              robot.api.parsing module
              
                		
                  Exposed API
                


                		
                  Parsing data to tokens
                


                		
                  Parsing data to model
                


                		
                  Model objects
                


                		
                  Inspecting model
                


                		
                  Handling errors in model
                


                		
                  Modifying data
                


                		
                  Adding and removing nodes
                


                		
                  Executing model
                


              


            


          


        


        		
          robot.conf package
          
            		
              Submodules
            


            		
              robot.conf.gatherfailed module
            


            		
              robot.conf.settings module
            


          


        


        		
          robot.htmldata package
          
            		
              Submodules
            


            		
              robot.htmldata.htmlfilewriter module
            


            		
              robot.htmldata.jartemplate module
            


            		
              robot.htmldata.jsonwriter module
            


            		
              robot.htmldata.normaltemplate module
            


            		
              robot.htmldata.template module
            


          


        


        		
          robot.libdocpkg package
          
            		
              Submodules
            


            		
              robot.libdocpkg.builder module
            


            		
              robot.libdocpkg.consoleviewer module
            


            		
              robot.libdocpkg.datatypes module
            


            		
              robot.libdocpkg.htmlutils module
            


            		
              robot.libdocpkg.htmlwriter module
            


            		
              robot.libdocpkg.java9builder module
            


            		
              robot.libdocpkg.javabuilder module
            


            		
              robot.libdocpkg.jsonbuilder module
            


            		
              robot.libdocpkg.jsonwriter module
            


            		
              robot.libdocpkg.model module
            


            		
              robot.libdocpkg.output module
            


            		
              robot.libdocpkg.robotbuilder module
            


            		
              robot.libdocpkg.specbuilder module
            


            		
              robot.libdocpkg.writer module
            


            		
              robot.libdocpkg.xmlwriter module
            


          


        


        		
          robot.libraries package
          
            		
              Submodules
            


            		
              robot.libraries.BuiltIn module
            


            		
              robot.libraries.Collections module
            


            		
              robot.libraries.DateTime module
            


            		
              robot.libraries.Dialogs module
            


            		
              robot.libraries.Easter module
            


            		
              robot.libraries.OperatingSystem module
            


            		
              robot.libraries.Process module
            


            		
              robot.libraries.Remote module
            


            		
              robot.libraries.Reserved module
            


            		
              robot.libraries.Screenshot module
            


            		
              robot.libraries.String module
            


            		
              robot.libraries.Telnet module
            


            		
              robot.libraries.XML module
            


            		
              robot.libraries.dialogs_ipy module
            


            		
              robot.libraries.dialogs_jy module
            


            		
              robot.libraries.dialogs_py module
            


          


        


        		
          robot.model package
          
            		
              Submodules
            


            		
              robot.model.body module
            


            		
              robot.model.configurer module
            


            		
              robot.model.control module
            


            		
              robot.model.filter module
            


            		
              robot.model.fixture module
            


            		
              robot.model.itemlist module
            


            		
              robot.model.keyword module
            


            		
              robot.model.message module
            


            		
              robot.model.metadata module
            


            		
              robot.model.modelobject module
            


            		
              robot.model.modifier module
            


            		
              robot.model.namepatterns module
            


            		
              robot.model.statistics module
            


            		
              robot.model.stats module
            


            		
              robot.model.suitestatistics module
            


            		
              robot.model.tags module
            


            		
              robot.model.tagsetter module
            


            		
              robot.model.tagstatistics module
            


            		
              robot.model.testcase module
            


            		
              robot.model.testsuite module
            


            		
              robot.model.totalstatistics module
            


            		
              robot.model.visitor module
              
                		
                  Visitor algorithm
                


                		
                  Examples
                


              


            


          


        


        		
          robot.output package
          
            		
              Subpackages
              
                		
                  robot.output.console package
                


              


            


            		
              Submodules
            


            		
              robot.output.debugfile module
            


            		
              robot.output.filelogger module
            


            		
              robot.output.librarylogger module
            


            		
              robot.output.listenerarguments module
            


            		
              robot.output.listenermethods module
            


            		
              robot.output.listeners module
            


            		
              robot.output.logger module
            


            		
              robot.output.loggerhelper module
            


            		
              robot.output.output module
            


            		
              robot.output.pyloggingconf module
            


            		
              robot.output.stdoutlogsplitter module
            


            		
              robot.output.xmllogger module
            


          


        


        		
          robot.parsing package
          
            		
              Subpackages
              
                		
                  robot.parsing.lexer package
                


                		
                  robot.parsing.model package
                


                		
                  robot.parsing.parser package
                


              


            


            		
              Submodules
            


            		
              robot.parsing.suitestructure module
            


          


        


        		
          robot.reporting package
          
            		
              Submodules
            


            		
              robot.reporting.expandkeywordmatcher module
            


            		
              robot.reporting.jsbuildingcontext module
            


            		
              robot.reporting.jsexecutionresult module
            


            		
              robot.reporting.jsmodelbuilders module
            


            		
              robot.reporting.jswriter module
            


            		
              robot.reporting.logreportwriters module
            


            		
              robot.reporting.outputwriter module
            


            		
              robot.reporting.resultwriter module
            


            		
              robot.reporting.stringcache module
            


            		
              robot.reporting.xunitwriter module
            


          


        


        		
          robot.result package
          
            		
              Example
            


            		
              Submodules
            


            		
              robot.result.configurer module
            


            		
              robot.result.executionerrors module
            


            		
              robot.result.executionresult module
            


            		
              robot.result.flattenkeywordmatcher module
            


            		
              robot.result.keywordremover module
            


            		
              robot.result.merger module
            


            		
              robot.result.messagefilter module
            


            		
              robot.result.model module
            


            		
              robot.result.modeldeprecation module
            


            		
              robot.result.resultbuilder module
            


            		
              robot.result.suiteteardownfailed module
            


            		
              robot.result.visitor module
            


            		
              robot.result.xmlelementhandlers module
            


          


        


        		
          robot.running package
          
            		
              Examples
            


            		
              Subpackages
              
                		
                  robot.running.arguments package
                


                		
                  robot.running.builder package
                


                		
                  robot.running.timeouts package
                


              


            


            		
              Submodules
            


            		
              robot.running.bodyrunner module
            


            		
              robot.running.context module
            


            		
              robot.running.dynamicmethods module
            


            		
              robot.running.handlers module
            


            		
              robot.running.handlerstore module
            


            		
              robot.running.importer module
            


            		
              robot.running.librarykeywordrunner module
            


            		
              robot.running.libraryscopes module
            


            		
              robot.running.model module
            


            		
              robot.running.modelcombiner module
            


            		
              robot.running.namespace module
            


            		
              robot.running.outputcapture module
            


            		
              robot.running.randomizer module
            


            		
              robot.running.runkwregister module
            


            		
              robot.running.signalhandler module
            


            		
              robot.running.status module
            


            		
              robot.running.statusreporter module
            


            		
              robot.running.suiterunner module
            


            		
              robot.running.testlibraries module
            


            		
              robot.running.usererrorhandler module
            


            		
              robot.running.userkeyword module
            


            		
              robot.running.userkeywordrunner module
            


          


        


        		
          robot.utils package
          
            		
              Submodules
            


            		
              robot.utils.application module
            


            		
              robot.utils.argumentparser module
            


            		
              robot.utils.asserts module
            


            		
              robot.utils.charwidth module
            


            		
              robot.utils.compat module
            


            		
              robot.utils.compress module
            


            		
              robot.utils.connectioncache module
            


            		
              robot.utils.dotdict module
            


            		
              robot.utils.encoding module
            


            		
              robot.utils.encodingsniffer module
            


            		
              robot.utils.error module
            


            		
              robot.utils.escaping module
            


            		
              robot.utils.etreewrapper module
            


            		
              robot.utils.filereader module
            


            		
              robot.utils.frange module
            


            		
              robot.utils.htmlformatters module
            


            		
              robot.utils.importer module
            


            		
              robot.utils.markuputils module
            


            		
              robot.utils.markupwriters module
            


            		
              robot.utils.match module
            


            		
              robot.utils.misc module
            


            		
              robot.utils.normalizing module
            


            		
              robot.utils.platform module
            


            		
              robot.utils.recommendations module
            


            		
              robot.utils.restreader module
            


            		
              robot.utils.robotenv module
            


            		
              robot.utils.robotinspect module
            


            		
              robot.utils.robotio module
            


            		
              robot.utils.robotpath module
            


            		
              robot.utils.robottime module
            


            		
              robot.utils.robottypes module
            


            		
              robot.utils.robottypes2 module
            


            		
              robot.utils.robottypes3 module
            


            		
              robot.utils.setter module
            


            		
              robot.utils.sortable module
            


            		
              robot.utils.text module
            


            		
              robot.utils.unic module
            


          


        


        		
          robot.variables package
          
            		
              Submodules
            


            		
              robot.variables.assigner module
            


            		
              robot.variables.evaluation module
            


            		
              robot.variables.filesetter module
            


            		
              robot.variables.finders module
            


            		
              robot.variables.notfound module
            


            		
              robot.variables.replacer module
            


            		
              robot.variables.scopes module
            


            		
              robot.variables.search module
            


            		
              robot.variables.store module
            


            		
              robot.variables.tablesetter module
            


            		
              robot.variables.variables module
            


          


        


      


    
  

_static/ajax-loader.gif





_static/comment-close.png





_static/comment-bright.png





