

Robot Framework API documentation

This documentation describes the public API of Robot Framework [http://robotframework.org].
Installation, basic usage and wealth of other topics are
covered by the Robot Framework User Guide [http://robotframework.org/robotframework/#user-guide].

Main API entry points are documented here, but the lower level
implementation details are not always that well documented. If the
documentation is insufficient, it is possible to view the source code
by clicking [source] link in the documentation. In case viewing the
source is not helpful either, questions may be sent to the
robotframework-users [http://groups.google.com/group/robotframework-users] mailing list.

Entry points

Command line entry points are implemented as Python modules and they also
provide programmatic APIs. Following entry points exist:

	robot.run entry point for executing tests.

	robot.rebot entry point for post-processing outputs (Rebot).

	robot.libdoc entry point for Libdoc tool.

	robot.testdoc entry point for Testdoc tool.

	robot.tidy entry point for Tidy tool.

See built-in tool documentation [http://robotframework.org/robotframework/#built-in-tools] for more details about Rebot, Libdoc,
Testdoc, and Tidy tools.

Java entry points

The Robot Framework Jar distribution contains also a Java API, in the form
of the org.robotframework.RobotFramework class.

Public API

robot.api package exposes the public APIs of Robot Framework.

Unless stated otherwise, the APIs exposed in this package are considered
stable, and thus safe to use when building external tools on top of
Robot Framework. Notice that all parsing APIs were rewritten in Robot
Framework 3.2.

Currently exposed APIs are:

	logger module for test libraries’ logging purposes.

	deco module with decorators test libraries can utilize.

	Various functions and classes for parsing test data to tokens
or to a higher level model represented as an abstract syntax tree (AST).
See the parsing module documentation for a list of exposed
functions and classes as well as for more documentation and examples.

	TestSuite class for creating executable
test suites programmatically and
TestSuiteBuilder class
for creating such suites based on existing test data on the file system.

	SuiteVisitor abstract class for processing testdata
before execution. This can be used as a base for implementing a pre-run
modifier that is taken into use with --prerunmodifier commandline option.

	ExecutionResult() factory method
for reading execution results from XML output files and
ResultVisitor abstract class to ease
further processing the results.
ResultVisitor can also be used as a base
for pre-Rebot modifier that is taken into use with --prerebotmodifier
commandline option.

	ResultWriter class for writing
reports, logs, XML outputs, and XUnit files. Can write results based on
XML outputs on the file system, as well as based on the result objects
returned by the ExecutionResult() or
an executed TestSuite.

All of the above names can be imported like:

from robot.api import ApiName

See documentations of the individual APIs for more details.

Tip

APIs related to the command line entry points are exposed directly
via the robot root package.

All packages

All robot packages are listed below. Typically you should not
need to import anything from them directly, but the above public APIs may
return objects implemented in them.

	robot package

	robot.api package

	robot.conf package

	robot.htmldata package

	robot.libdocpkg package

	robot.libraries package

	robot.model package

	robot.output package

	robot.parsing package

	robot.reporting package

	robot.result package

	robot.running package

	robot.utils package

	robot.variables package

Indices

	Index

	Module Index

	Search Page

robot package

The root of the Robot Framework package.

The command line entry points provided by the framework are exposed for
programmatic usage as follows:

	run(): Function to run tests.

	run_cli(): Function to run tests
with command line argument processing.

	rebot(): Function to post-process outputs.

	rebot_cli(): Function to post-process outputs
with command line argument processing.

	libdoc: Module for library documentation generation.

	testdoc: Module for test case documentation generation.

	tidy: Module for test data clean-up and format change.

All the functions above can be imported like from robot import run.
Functions and classes provided by the modules need to be imported like
from robot.libdoc import libdoc_cli.

The functions and modules listed above are considered stable. Other modules in
this package are for for internal usage and may change without prior notice.

Tip

More public APIs are exposed by the robot.api package.

	
robot.run(*tests, **options)

	Programmatic entry point for running tests.

	Parameters

	
	tests – Paths to test case files/directories to be executed similarly
as when running the robot command on the command line.

	options – Options to configure and control execution. Accepted
options are mostly same as normal command line options to the robot
command. Option names match command line option long names without
hyphens so that, for example, --name becomes name.

Most options that can be given from the command line work. An exception
is that options --pythonpath, --argumentfile, --help and
--version are not supported.

Options that can be given on the command line multiple times can be
passed as lists. For example, include=['tag1', 'tag2'] is equivalent
to --include tag1 --include tag2. If such options are used only once,
they can be given also as a single string like include='tag'.

Options that accept no value can be given as Booleans. For example,
dryrun=True is same as using the --dryrun option.

Options that accept string NONE as a special value can also be used
with Python None. For example, using log=None is equivalent to
--log NONE.

listener, prerunmodifier and prerebotmodifier options allow
passing values as Python objects in addition to module names these command
line options support. For example, run('tests', listener=MyListener()).

To capture the standard output and error streams, pass an open file or
file-like object as special keyword arguments stdout and stderr,
respectively.

A return code is returned similarly as when running on the command line.
Zero means that tests were executed and no critical test failed, values up
to 250 denote the number of failed critical tests, and values between
251-255 are for other statuses documented in the Robot Framework User Guide.

Example:

from robot import run

run('path/to/tests.robot')
run('tests.robot', include=['tag1', 'tag2'], splitlog=True)
with open('stdout.txt', 'w') as stdout:
 run('t1.robot', 't2.robot', name='Example', log=None, stdout=stdout)

Equivalent command line usage:

robot path/to/tests.robot
robot --include tag1 --include tag2 --splitlog tests.robot
robot --name Example --log NONE t1.robot t2.robot > stdout.txt

	
robot.run_cli(arguments=None, exit=True)

	Command line execution entry point for running tests.

	Parameters

	
	arguments – Command line options and arguments as a list of strings.
Starting from RF 3.1, defaults to sys.argv[1:] if not given.

	exit – If True, call sys.exit with the return code denoting
execution status, otherwise just return the rc. New in RF 3.0.1.

Entry point used when running tests from the command line, but can also
be used by custom scripts that execute tests. Especially useful if the
script itself needs to accept same arguments as accepted by Robot Framework,
because the script can just pass them forward directly along with the
possible default values it sets itself.

Example:

from robot import run_cli

Run tests and return the return code.
rc = run_cli(['--name', 'Example', 'tests.robot'], exit=False)

Run tests and exit to the system automatically.
run_cli(['--name', 'Example', 'tests.robot'])

See also the run() function that allows setting options as keyword
arguments like name="Example" and generally has a richer API for
programmatic test execution.

	
robot.rebot(*outputs, **options)

	Programmatic entry point for post-processing outputs.

	Parameters

	
	outputs – Paths to Robot Framework output files similarly
as when running the rebot command on the command line.

	options – Options to configure processing outputs. Accepted
options are mostly same as normal command line options to the rebot
command. Option names match command line option long names without
hyphens so that, for example, --name becomes name.

The semantics related to passing options are exactly the same as with the
run() function. See its documentation for more details.

Examples:

from robot import rebot

rebot('path/to/output.xml')
with open('stdout.txt', 'w') as stdout:
 rebot('o1.xml', 'o2.xml', name='Example', log=None, stdout=stdout)

Equivalent command line usage:

rebot path/to/output.xml
rebot --name Example --log NONE o1.xml o2.xml > stdout.txt

	
robot.rebot_cli(arguments=None, exit=True)

	Command line execution entry point for post-processing outputs.

	Parameters

	
	arguments – Command line options and arguments as a list of strings.
Starting from RF 3.1, defaults to sys.argv[1:] if not given.

	exit – If True, call sys.exit with the return code denoting
execution status, otherwise just return the rc. New in RF 3.0.1.

Entry point used when post-processing outputs from the command line, but
can also be used by custom scripts. Especially useful if the script itself
needs to accept same arguments as accepted by Rebot, because the script can
just pass them forward directly along with the possible default values it
sets itself.

Example:

from robot import rebot_cli

rebot_cli(['--name', 'Example', '--log', 'NONE', 'o1.xml', 'o2.xml'])

See also the rebot() function that allows setting options as keyword
arguments like name="Example" and generally has a richer API for
programmatic Rebot execution.

Subpackages

	robot.api package
	Submodules

	robot.api.deco module

	robot.api.logger module
	Log levels

	Logging HTML

	Example

	robot.conf package
	Submodules

	robot.conf.gatherfailed module

	robot.conf.settings module

	robot.htmldata package
	Submodules

	robot.htmldata.htmlfilewriter module

	robot.htmldata.jartemplate module

	robot.htmldata.jsonwriter module

	robot.htmldata.normaltemplate module

	robot.htmldata.template module

	robot.libdocpkg package
	Submodules

	robot.libdocpkg.builder module

	robot.libdocpkg.consoleviewer module

	robot.libdocpkg.htmlwriter module

	robot.libdocpkg.java9builder module

	robot.libdocpkg.javabuilder module

	robot.libdocpkg.model module

	robot.libdocpkg.output module

	robot.libdocpkg.robotbuilder module

	robot.libdocpkg.specbuilder module

	robot.libdocpkg.writer module

	robot.libdocpkg.xmlwriter module

	robot.libraries package
	Submodules

	robot.libraries.BuiltIn module

	robot.libraries.Collections module

	robot.libraries.DateTime module

	robot.libraries.Dialogs module

	robot.libraries.Easter module

	robot.libraries.OperatingSystem module

	robot.libraries.Process module

	robot.libraries.Remote module

	robot.libraries.Reserved module

	robot.libraries.Screenshot module

	robot.libraries.String module

	robot.libraries.Telnet module

	robot.libraries.XML module

	robot.libraries.dialogs_ipy module

	robot.libraries.dialogs_jy module

	robot.libraries.dialogs_py module

	robot.model package
	Submodules

	robot.model.configurer module

	robot.model.criticality module

	robot.model.filter module

	robot.model.itemlist module

	robot.model.keyword module

	robot.model.message module

	robot.model.metadata module

	robot.model.modelobject module

	robot.model.modifier module

	robot.model.namepatterns module

	robot.model.statistics module

	robot.model.stats module

	robot.model.suitestatistics module

	robot.model.tags module

	robot.model.tagsetter module

	robot.model.tagstatistics module

	robot.model.testcase module

	robot.model.testsuite module

	robot.model.totalstatistics module

	robot.model.visitor module
	Visitor algorithm

	Examples

	robot.output package
	Subpackages
	robot.output.console package
	Submodules

	robot.output.console.dotted module

	robot.output.console.highlighting module

	robot.output.console.quiet module

	robot.output.console.verbose module

	Submodules

	robot.output.debugfile module

	robot.output.filelogger module

	robot.output.librarylogger module

	robot.output.listenerarguments module

	robot.output.listenermethods module

	robot.output.listeners module

	robot.output.logger module

	robot.output.loggerhelper module

	robot.output.output module

	robot.output.pyloggingconf module

	robot.output.stdoutlogsplitter module

	robot.output.xmllogger module

	robot.parsing package
	Exposed API

	Parsing data to tokens

	Parsing data to model
	Inspecting model

	Modifying token values

	Adding and removing nodes

	Executing model

	Subpackages
	robot.parsing.lexer package
	Submodules

	robot.parsing.lexer.blocklexers module

	robot.parsing.lexer.context module

	robot.parsing.lexer.lexer module

	robot.parsing.lexer.sections module

	robot.parsing.lexer.settings module

	robot.parsing.lexer.statementlexers module

	robot.parsing.lexer.tokenizer module

	robot.parsing.lexer.tokens module

	robot.parsing.model package
	Submodules

	robot.parsing.model.blocks module

	robot.parsing.model.statements module

	robot.parsing.model.visitor module

	robot.parsing.parser package
	Submodules

	robot.parsing.parser.blockparsers module

	robot.parsing.parser.fileparser module

	robot.parsing.parser.parser module

	Submodules

	robot.parsing.suitestructure module

	robot.reporting package
	Submodules

	robot.reporting.expandkeywordmatcher module

	robot.reporting.jsbuildingcontext module

	robot.reporting.jsexecutionresult module

	robot.reporting.jsmodelbuilders module

	robot.reporting.jswriter module

	robot.reporting.logreportwriters module

	robot.reporting.outputwriter module

	robot.reporting.resultwriter module

	robot.reporting.stringcache module

	robot.reporting.xunitwriter module

	robot.result package
	Example

	Submodules

	robot.result.configurer module

	robot.result.executionerrors module

	robot.result.executionresult module

	robot.result.flattenkeywordmatcher module

	robot.result.keywordremover module

	robot.result.merger module

	robot.result.messagefilter module

	robot.result.model module

	robot.result.resultbuilder module

	robot.result.suiteteardownfailed module

	robot.result.visitor module

	robot.result.xmlelementhandlers module

	robot.running package
	Examples

	Subpackages
	robot.running.arguments package
	Submodules

	robot.running.arguments.argumentconverter module

	robot.running.arguments.argumentmapper module

	robot.running.arguments.argumentparser module

	robot.running.arguments.argumentresolver module

	robot.running.arguments.argumentspec module

	robot.running.arguments.argumentvalidator module

	robot.running.arguments.embedded module

	robot.running.arguments.javaargumentcoercer module

	robot.running.arguments.typeconverters module

	robot.running.arguments.typevalidator module

	robot.running.builder package
	Submodules

	robot.running.builder.builders module

	robot.running.builder.parsers module

	robot.running.builder.testsettings module

	robot.running.builder.transformers module

	robot.running.timeouts package
	Submodules

	robot.running.timeouts.ironpython module

	robot.running.timeouts.jython module

	robot.running.timeouts.posix module

	robot.running.timeouts.windows module

	Submodules

	robot.running.context module

	robot.running.dynamicmethods module

	robot.running.handlers module

	robot.running.handlerstore module

	robot.running.importer module

	robot.running.librarykeywordrunner module

	robot.running.libraryscopes module

	robot.running.model module

	robot.running.namespace module

	robot.running.outputcapture module

	robot.running.randomizer module

	robot.running.runkwregister module

	robot.running.runner module

	robot.running.signalhandler module

	robot.running.status module

	robot.running.statusreporter module

	robot.running.steprunner module

	robot.running.testlibraries module

	robot.running.usererrorhandler module

	robot.running.userkeyword module

	robot.running.userkeywordrunner module

	robot.tidypkg package
	Submodules

	robot.tidypkg.transformers module

	robot.utils package
	Submodules

	robot.utils.application module

	robot.utils.argumentparser module

	robot.utils.asserts module

	robot.utils.charwidth module

	robot.utils.compat module

	robot.utils.compress module

	robot.utils.connectioncache module

	robot.utils.dotdict module

	robot.utils.encoding module

	robot.utils.encodingsniffer module

	robot.utils.error module

	robot.utils.escaping module

	robot.utils.etreewrapper module

	robot.utils.filereader module

	robot.utils.frange module

	robot.utils.htmlformatters module

	robot.utils.importer module

	robot.utils.markuputils module

	robot.utils.markupwriters module

	robot.utils.match module

	robot.utils.misc module

	robot.utils.normalizing module

	robot.utils.platform module

	robot.utils.recommendations module

	robot.utils.restreader module

	robot.utils.robotenv module

	robot.utils.robotinspect module

	robot.utils.robotio module

	robot.utils.robotpath module

	robot.utils.robottime module

	robot.utils.robottypes module

	robot.utils.robottypes2 module

	robot.utils.robottypes3 module

	robot.utils.setter module

	robot.utils.sortable module

	robot.utils.text module

	robot.utils.unic module

	robot.variables package
	Submodules

	robot.variables.assigner module

	robot.variables.evaluation module

	robot.variables.filesetter module

	robot.variables.finders module

	robot.variables.notfound module

	robot.variables.replacer module

	robot.variables.scopes module

	robot.variables.search module

	robot.variables.store module

	robot.variables.tablesetter module

	robot.variables.variables module

Submodules

robot.errors module

Exceptions and return codes used internally.

External libraries should not used exceptions defined here.

	
exception robot.errors.RobotError(message='', details='')

	Bases: exceptions.Exception

Base class for Robot Framework errors.

Do not raise this method but use more specific errors instead.

	
message

	

	
args

	

	
exception robot.errors.FrameworkError(message='', details='')

	Bases: robot.errors.RobotError

Can be used when the core framework goes to unexpected state.

It is good to explicitly raise a FrameworkError if some framework
component is used incorrectly. This is pretty much same as
‘Internal Error’ and should of course never happen.

	
args

	

	
message

	

	
exception robot.errors.DataError(message='', details='')

	Bases: robot.errors.RobotError

Used when the provided test data is invalid.

DataErrors are not caught by keywords that run other keywords
(e.g. Run Keyword And Expect Error).

	
args

	

	
message

	

	
exception robot.errors.VariableError(message='', details='')

	Bases: robot.errors.DataError

Used when variable does not exist.

VariableErrors are caught by keywords that run other keywords
(e.g. Run Keyword And Expect Error).

	
args

	

	
message

	

	
exception robot.errors.KeywordError(message='', details='')

	Bases: robot.errors.DataError

Used when no keyword is found or there is more than one match.

KeywordErrors are caught by keywords that run other keywords
(e.g. Run Keyword And Expect Error).

	
args

	

	
message

	

	
exception robot.errors.TimeoutError(message='', test_timeout=True)

	Bases: robot.errors.RobotError

Used when a test or keyword timeout occurs.

This exception is handled specially so that execution of the
current test is always stopped immediately and it is not caught by
keywords executing other keywords (e.g. Run Keyword And Expect
Error).

	
keyword_timeout

	

	
args

	

	
message

	

	
exception robot.errors.Information(message='', details='')

	Bases: robot.errors.RobotError

Used by argument parser with –help or –version.

	
args

	

	
message

	

	
exception robot.errors.ExecutionStatus(message, test_timeout=False, keyword_timeout=False, syntax=False, exit=False, continue_on_failure=False, return_value=None)

	Bases: robot.errors.RobotError

Base class for exceptions communicating status in test execution.

	
timeout

	

	
dont_continue

	

	
continue_on_failure

	

	
can_continue(teardown=False, templated=False, dry_run=False)

	

	
get_errors()

	

	
status

	

	
args

	

	
message

	

	
exception robot.errors.ExecutionFailed(message, test_timeout=False, keyword_timeout=False, syntax=False, exit=False, continue_on_failure=False, return_value=None)

	Bases: robot.errors.ExecutionStatus

Used for communicating failures in test execution.

	
args

	

	
can_continue(teardown=False, templated=False, dry_run=False)

	

	
continue_on_failure

	

	
dont_continue

	

	
get_errors()

	

	
message

	

	
status

	

	
timeout

	

	
exception robot.errors.HandlerExecutionFailed(details)

	Bases: robot.errors.ExecutionFailed

	
args

	

	
can_continue(teardown=False, templated=False, dry_run=False)

	

	
continue_on_failure

	

	
dont_continue

	

	
get_errors()

	

	
message

	

	
status

	

	
timeout

	

	
exception robot.errors.ExecutionFailures(errors, message=None)

	Bases: robot.errors.ExecutionFailed

	
get_errors()

	

	
args

	

	
can_continue(teardown=False, templated=False, dry_run=False)

	

	
continue_on_failure

	

	
dont_continue

	

	
message

	

	
status

	

	
timeout

	

	
exception robot.errors.UserKeywordExecutionFailed(run_errors=None, teardown_errors=None)

	Bases: robot.errors.ExecutionFailures

	
args

	

	
can_continue(teardown=False, templated=False, dry_run=False)

	

	
continue_on_failure

	

	
dont_continue

	

	
get_errors()

	

	
message

	

	
status

	

	
timeout

	

	
exception robot.errors.ExecutionPassed(message=None, **kwargs)

	Bases: robot.errors.ExecutionStatus

Base class for all exceptions communicating that execution passed.

Should not be raised directly, but more detailed exceptions used instead.

	
set_earlier_failures(failures)

	

	
earlier_failures

	

	
status

	

	
args

	

	
can_continue(teardown=False, templated=False, dry_run=False)

	

	
continue_on_failure

	

	
dont_continue

	

	
get_errors()

	

	
message

	

	
timeout

	

	
exception robot.errors.PassExecution(message)

	Bases: robot.errors.ExecutionPassed

Used by ‘Pass Execution’ keyword.

	
args

	

	
can_continue(teardown=False, templated=False, dry_run=False)

	

	
continue_on_failure

	

	
dont_continue

	

	
earlier_failures

	

	
get_errors()

	

	
message

	

	
set_earlier_failures(failures)

	

	
status

	

	
timeout

	

	
exception robot.errors.ContinueForLoop(message=None, **kwargs)

	Bases: robot.errors.ExecutionPassed

Used by ‘Continue For Loop’ keyword.

	
args

	

	
can_continue(teardown=False, templated=False, dry_run=False)

	

	
continue_on_failure

	

	
dont_continue

	

	
earlier_failures

	

	
get_errors()

	

	
message

	

	
set_earlier_failures(failures)

	

	
status

	

	
timeout

	

	
exception robot.errors.ExitForLoop(message=None, **kwargs)

	Bases: robot.errors.ExecutionPassed

Used by ‘Exit For Loop’ keyword.

	
args

	

	
can_continue(teardown=False, templated=False, dry_run=False)

	

	
continue_on_failure

	

	
dont_continue

	

	
earlier_failures

	

	
get_errors()

	

	
message

	

	
set_earlier_failures(failures)

	

	
status

	

	
timeout

	

	
exception robot.errors.ReturnFromKeyword(return_value=None, failures=None)

	Bases: robot.errors.ExecutionPassed

Used by ‘Return From Keyword’ keyword.

	
args

	

	
can_continue(teardown=False, templated=False, dry_run=False)

	

	
continue_on_failure

	

	
dont_continue

	

	
earlier_failures

	

	
get_errors()

	

	
message

	

	
set_earlier_failures(failures)

	

	
status

	

	
timeout

	

	
exception robot.errors.RemoteError(message='', details='', fatal=False, continuable=False)

	Bases: robot.errors.RobotError

Used by Remote library to report remote errors.

	
args

	

	
message

	

robot.jarrunner module

robot.libdoc module

Module implementing the command line entry point for the Libdoc tool.

This module can be executed from the command line using the following
approaches:

python -m robot.libdoc
python path/to/robot/libdoc.py

Instead of python it is possible to use also other Python interpreters.

This module also provides libdoc() and libdoc_cli() functions
that can be used programmatically. Other code is for internal usage.

Libdoc itself is implemented in the libdocpkg package.

	
class robot.libdoc.LibDoc

	Bases: robot.utils.application.Application

	
validate(options, arguments)

	

	
main(args, name='', version='', format=None, docformat=None)

	

	
console(msg)

	

	
execute(*arguments, **options)

	

	
execute_cli(cli_arguments, exit=True)

	

	
parse_arguments(cli_args)

	Public interface for parsing command line arguments.

	Parameters

	cli_args – Command line arguments as a list

	Returns

	options (dict), arguments (list)

	Raises

	Information when –help or –version used

	Raises

	DataError when parsing fails

	
robot.libdoc.libdoc_cli(arguments)

	Executes Libdoc similarly as from the command line.

	Parameters

	arguments – Command line arguments as a list of strings.

For programmatic usage the libdoc() function is typically better. It
has a better API for that usage and does not call sys.exit() like
this function.

Example:

from robot.libdoc import libdoc_cli

libdoc_cli(['--version', '1.0', 'MyLibrary.py', 'MyLibraryDoc.html'])

	
robot.libdoc.libdoc(library_or_resource, outfile, name='', version='', format=None, docformat=None)

	Executes Libdoc.

	Parameters

	
	library_or_resource – Name or path of the library or resource
file to be documented.

	outfile – Path path to the file where to write outputs.

	name – Custom name to give to the documented library or resource.

	version – Version to give to the documented library or resource.

	format – Specifies whether to generate HTML or XML output. If this
options is not used, the format is got from the extension of
the output file. Possible values are 'HTML' and 'XML'.

	docformat – Documentation source format. Possible values are
'ROBOT', 'reST', 'HTML' and 'TEXT'. The default value
can be specified in library source code and the initial default
is 'ROBOT'. New in Robot Framework 3.0.3.

Arguments have same semantics as Libdoc command line options with
same names. Run python -m robot.libdoc --help or consult the Libdoc
section in the Robot Framework User Guide for more details.

Example:

from robot.libdoc import libdoc

libdoc('MyLibrary.py', 'MyLibraryDoc.html', version='1.0')

robot.pythonpathsetter module

Module that adds directories needed by Robot to sys.path when imported.

	
robot.pythonpathsetter.add_path(path, end=False)

	

	
robot.pythonpathsetter.remove_path(path)

	

robot.rebot module

Module implementing the command line entry point for post-processing outputs.

This module can be executed from the command line using the following
approaches:

python -m robot.rebot
python path/to/robot/rebot.py

Instead of python it is possible to use also other Python interpreters.
This module is also used by the installed rebot start-up script.

This module also provides rebot() and rebot_cli() functions
that can be used programmatically. Other code is for internal usage.

	
class robot.rebot.Rebot

	Bases: robot.run.RobotFramework

	
main(datasources, **options)

	

	
console(msg)

	

	
execute(*arguments, **options)

	

	
execute_cli(cli_arguments, exit=True)

	

	
parse_arguments(cli_args)

	Public interface for parsing command line arguments.

	Parameters

	cli_args – Command line arguments as a list

	Returns

	options (dict), arguments (list)

	Raises

	Information when –help or –version used

	Raises

	DataError when parsing fails

	
validate(options, arguments)

	

	
robot.rebot.rebot_cli(arguments=None, exit=True)

	Command line execution entry point for post-processing outputs.

	Parameters

	
	arguments – Command line options and arguments as a list of strings.
Starting from RF 3.1, defaults to sys.argv[1:] if not given.

	exit – If True, call sys.exit with the return code denoting
execution status, otherwise just return the rc. New in RF 3.0.1.

Entry point used when post-processing outputs from the command line, but
can also be used by custom scripts. Especially useful if the script itself
needs to accept same arguments as accepted by Rebot, because the script can
just pass them forward directly along with the possible default values it
sets itself.

Example:

from robot import rebot_cli

rebot_cli(['--name', 'Example', '--log', 'NONE', 'o1.xml', 'o2.xml'])

See also the rebot() function that allows setting options as keyword
arguments like name="Example" and generally has a richer API for
programmatic Rebot execution.

	
robot.rebot.rebot(*outputs, **options)

	Programmatic entry point for post-processing outputs.

	Parameters

	
	outputs – Paths to Robot Framework output files similarly
as when running the rebot command on the command line.

	options – Options to configure processing outputs. Accepted
options are mostly same as normal command line options to the rebot
command. Option names match command line option long names without
hyphens so that, for example, --name becomes name.

The semantics related to passing options are exactly the same as with the
run() function. See its documentation for more details.

Examples:

from robot import rebot

rebot('path/to/output.xml')
with open('stdout.txt', 'w') as stdout:
 rebot('o1.xml', 'o2.xml', name='Example', log=None, stdout=stdout)

Equivalent command line usage:

rebot path/to/output.xml
rebot --name Example --log NONE o1.xml o2.xml > stdout.txt

robot.run module

Module implementing the command line entry point for executing tests.

This module can be executed from the command line using the following
approaches:

python -m robot.run
python path/to/robot/run.py

Instead of python it is possible to use also other Python interpreters.
This module is also used by the installed robot start-up script.

This module also provides run() and run_cli() functions
that can be used programmatically. Other code is for internal usage.

	
class robot.run.RobotFramework

	Bases: robot.utils.application.Application

	
main(datasources, **options)

	

	
validate(options, arguments)

	

	
console(msg)

	

	
execute(*arguments, **options)

	

	
execute_cli(cli_arguments, exit=True)

	

	
parse_arguments(cli_args)

	Public interface for parsing command line arguments.

	Parameters

	cli_args – Command line arguments as a list

	Returns

	options (dict), arguments (list)

	Raises

	Information when –help or –version used

	Raises

	DataError when parsing fails

	
robot.run.run_cli(arguments=None, exit=True)

	Command line execution entry point for running tests.

	Parameters

	
	arguments – Command line options and arguments as a list of strings.
Starting from RF 3.1, defaults to sys.argv[1:] if not given.

	exit – If True, call sys.exit with the return code denoting
execution status, otherwise just return the rc. New in RF 3.0.1.

Entry point used when running tests from the command line, but can also
be used by custom scripts that execute tests. Especially useful if the
script itself needs to accept same arguments as accepted by Robot Framework,
because the script can just pass them forward directly along with the
possible default values it sets itself.

Example:

from robot import run_cli

Run tests and return the return code.
rc = run_cli(['--name', 'Example', 'tests.robot'], exit=False)

Run tests and exit to the system automatically.
run_cli(['--name', 'Example', 'tests.robot'])

See also the run() function that allows setting options as keyword
arguments like name="Example" and generally has a richer API for
programmatic test execution.

	
robot.run.run(*tests, **options)

	Programmatic entry point for running tests.

	Parameters

	
	tests – Paths to test case files/directories to be executed similarly
as when running the robot command on the command line.

	options – Options to configure and control execution. Accepted
options are mostly same as normal command line options to the robot
command. Option names match command line option long names without
hyphens so that, for example, --name becomes name.

Most options that can be given from the command line work. An exception
is that options --pythonpath, --argumentfile, --help and
--version are not supported.

Options that can be given on the command line multiple times can be
passed as lists. For example, include=['tag1', 'tag2'] is equivalent
to --include tag1 --include tag2. If such options are used only once,
they can be given also as a single string like include='tag'.

Options that accept no value can be given as Booleans. For example,
dryrun=True is same as using the --dryrun option.

Options that accept string NONE as a special value can also be used
with Python None. For example, using log=None is equivalent to
--log NONE.

listener, prerunmodifier and prerebotmodifier options allow
passing values as Python objects in addition to module names these command
line options support. For example, run('tests', listener=MyListener()).

To capture the standard output and error streams, pass an open file or
file-like object as special keyword arguments stdout and stderr,
respectively.

A return code is returned similarly as when running on the command line.
Zero means that tests were executed and no critical test failed, values up
to 250 denote the number of failed critical tests, and values between
251-255 are for other statuses documented in the Robot Framework User Guide.

Example:

from robot import run

run('path/to/tests.robot')
run('tests.robot', include=['tag1', 'tag2'], splitlog=True)
with open('stdout.txt', 'w') as stdout:
 run('t1.robot', 't2.robot', name='Example', log=None, stdout=stdout)

Equivalent command line usage:

robot path/to/tests.robot
robot --include tag1 --include tag2 --splitlog tests.robot
robot --name Example --log NONE t1.robot t2.robot > stdout.txt

robot.testdoc module

Module implementing the command line entry point for the Testdoc tool.

This module can be executed from the command line using the following
approaches:

python -m robot.testdoc
python path/to/robot/testdoc.py

Instead of python it is possible to use also other Python interpreters.

This module also provides testdoc() and testdoc_cli() functions
that can be used programmatically. Other code is for internal usage.

	
class robot.testdoc.TestDoc

	Bases: robot.utils.application.Application

	
main(datasources, title=None, **options)

	

	
console(msg)

	

	
execute(*arguments, **options)

	

	
execute_cli(cli_arguments, exit=True)

	

	
parse_arguments(cli_args)

	Public interface for parsing command line arguments.

	Parameters

	cli_args – Command line arguments as a list

	Returns

	options (dict), arguments (list)

	Raises

	Information when –help or –version used

	Raises

	DataError when parsing fails

	
validate(options, arguments)

	

	
robot.testdoc.TestSuiteFactory(datasources, **options)

	

	
class robot.testdoc.TestdocModelWriter(output, suite, title=None)

	Bases: robot.htmldata.htmlfilewriter.ModelWriter

	
write(line)

	

	
write_data()

	

	
handles(line)

	

	
class robot.testdoc.JsonConverter(output_path=None)

	Bases: object

	
convert(suite)

	

	
robot.testdoc.testdoc_cli(arguments)

	Executes Testdoc similarly as from the command line.

	Parameters

	arguments – command line arguments as a list of strings.

For programmatic usage the testdoc() function is typically better. It
has a better API for that and does not call sys.exit() like
this function.

Example:

from robot.testdoc import testdoc_cli

testdoc_cli(['--title', 'Test Plan', 'mytests', 'plan.html'])

	
robot.testdoc.testdoc(*arguments, **options)

	Executes Testdoc programmatically.

Arguments and options have same semantics, and options have same names,
as arguments and options to Testdoc.

Example:

from robot.testdoc import testdoc

testdoc('mytests', 'plan.html', title='Test Plan')

robot.tidy module

Module implementing the command line entry point for the Tidy tool.

This module can be executed from the command line using the following
approaches:

python -m robot.tidy
python path/to/robot/tidy.py

Instead of python it is possible to use also other Python interpreters.

This module also provides Tidy class and tidy_cli() function
that can be used programmatically. Other code is for internal usage.

	
class robot.tidy.Tidy(space_count=4, use_pipes=False, line_separator='n')

	Bases: robot.parsing.suitestructure.SuiteStructureVisitor

Programmatic API for the Tidy tool.

Arguments accepted when creating an instance have same semantics as
Tidy command line options with same names.

	
file(path, outpath=None)

	Tidy a file.

	Parameters

	
	path – Path of the input file.

	outpath – Path of the output file. If not given, output is
returned.

Use inplace() to tidy files in-place.

	
inplace(*paths)

	Tidy file(s) in-place.

	Parameters

	paths – Paths of the files to to process.

	
directory(path)

	Tidy a directory.

	Parameters

	path – Path of the directory to process.

All files in a directory, recursively, are processed in-place.

	
visit_file(file)

	

	
visit_directory(directory)

	

	
end_directory(structure)

	

	
start_directory(structure)

	

	
class robot.tidy.TidyCommandLine

	Bases: robot.utils.application.Application

Command line interface for the Tidy tool.

Typically tidy_cli() is a better suited for command line style
usage and Tidy for other programmatic usage.

	
main(arguments, recursive=False, inplace=False, usepipes=False, spacecount=4, lineseparator='\n')

	

	
validate(opts, args)

	

	
console(msg)

	

	
execute(*arguments, **options)

	

	
execute_cli(cli_arguments, exit=True)

	

	
parse_arguments(cli_args)

	Public interface for parsing command line arguments.

	Parameters

	cli_args – Command line arguments as a list

	Returns

	options (dict), arguments (list)

	Raises

	Information when –help or –version used

	Raises

	DataError when parsing fails

	
class robot.tidy.ArgumentValidator

	Bases: object

	
mode_and_args(args, recursive, inplace, **others)

	

	
line_sep(lineseparator, **others)

	

	
spacecount(spacecount)

	

	
robot.tidy.tidy_cli(arguments)

	Executes Tidy similarly as from the command line.

	Parameters

	arguments – Command line arguments as a list of strings.

Example:

from robot.tidy import tidy_cli

tidy_cli(['--spacecount', '2', 'tests.robot'])

robot.version module

	
robot.version.get_version(naked=False)

	

	
robot.version.get_full_version(program=None, naked=False)

	

	
robot.version.get_interpreter()

	

robot.api package

robot.api package exposes the public APIs of Robot Framework.

Unless stated otherwise, the APIs exposed in this package are considered
stable, and thus safe to use when building external tools on top of
Robot Framework. Notice that all parsing APIs were rewritten in Robot
Framework 3.2.

Currently exposed APIs are:

	logger module for test libraries’ logging purposes.

	deco module with decorators test libraries can utilize.

	Various functions and classes for parsing test data to tokens
or to a higher level model represented as an abstract syntax tree (AST).
See the parsing module documentation for a list of exposed
functions and classes as well as for more documentation and examples.

	TestSuite class for creating executable
test suites programmatically and
TestSuiteBuilder class
for creating such suites based on existing test data on the file system.

	SuiteVisitor abstract class for processing testdata
before execution. This can be used as a base for implementing a pre-run
modifier that is taken into use with --prerunmodifier commandline option.

	ExecutionResult() factory method
for reading execution results from XML output files and
ResultVisitor abstract class to ease
further processing the results.
ResultVisitor can also be used as a base
for pre-Rebot modifier that is taken into use with --prerebotmodifier
commandline option.

	ResultWriter class for writing
reports, logs, XML outputs, and XUnit files. Can write results based on
XML outputs on the file system, as well as based on the result objects
returned by the ExecutionResult() or
an executed TestSuite.

All of the above names can be imported like:

from robot.api import ApiName

See documentations of the individual APIs for more details.

Tip

APIs related to the command line entry points are exposed directly
via the robot root package.

Submodules

robot.api.deco module

	
robot.api.deco.not_keyword(func)

	Decorator to disable exposing functions or methods as keywords.

Examples:

@not_keyword
def not_exposed_as_keyword():
 # ...

def exposed_as_keyword():
 # ...

Alternatively the automatic keyword discovery can be disabled with
the library() decorator or by setting the ROBOT_AUTO_KEYWORDS
attribute to a false value.

New in Robot Framework 3.2.

	
robot.api.deco.keyword(name=None, tags=(), types=())

	Decorator to set custom name, tags and argument types to keywords.

This decorator creates robot_name, robot_tags and robot_types
attributes on the decorated keyword function or method based on the
provided arguments. Robot Framework checks them to determine the keyword’s
name, tags, and argument types, respectively.

Name must be given as a string, tags as a list of strings, and types
either as a dictionary mapping argument names to types or as a list
of types mapped to arguments based on position. It is OK to specify types
only to some arguments, and setting types to None disables type
conversion altogether.

If the automatic keyword discovery has been disabled with the
library() decorator or by setting the ROBOT_AUTO_KEYWORDS
attribute to a false value, this decorator is needed to mark functions
or methods keywords.

Examples:

@keyword
def example():
 # ...

@keyword('Login as user "${user}" with password "${password}"',
 tags=['custom name', 'embedded arguments', 'tags'])
def login(user, password):
 # ...

@keyword(types={'length': int, 'case_insensitive': bool})
def types_as_dict(length, case_insensitive):
 # ...

@keyword(types=[int, bool])
def types_as_list(length, case_insensitive):
 # ...

@keyword(types=None])
def no_conversion(length, case_insensitive=False):
 # ...

	
robot.api.deco.library(scope=None, version=None, doc_format=None, listener=None, auto_keywords=False)

	Class decorator to control keyword discovery and other library settings.

By default disables automatic keyword detection by setting class attribute
ROBOT_AUTO_KEYWORDS = False to the decorated library. In that mode
only methods decorated explicitly with the keyword() decorator become
keywords. If that is not desired, automatic keyword discovery can be
enabled by using auto_keywords=True.

Arguments scope, version, doc_format and listener set the
library scope, version, documentation format and listener by using class
attributes ROBOT_LIBRARY_SCOPE, ROBOT_LIBRARY_VERSION,
ROBOT_LIBRARY_DOC_FORMAT and ROBOT_LIBRARY_LISTENER, respectively.
These attributes are only set if the related arguments are given and they
override possible existing attributes in the decorated class.

Examples:

@library
class KeywordDiscovery:

 @keyword
 def do_something(self):
 # ...

 def not_keyword(self):
 # ...

@library(scope='GLOBAL', version='3.2')
class LibraryConfiguration:
 # ...

The @library decorator is new in Robot Framework 3.2.

robot.api.logger module

Public logging API for test libraries.

This module provides a public API for writing messages to the log file
and the console. Test libraries can use this API like:

logger.info('My message')

instead of logging through the standard output like:

print '*INFO* My message'

In addition to a programmatic interface being cleaner to use, this API
has a benefit that the log messages have accurate timestamps.

If the logging methods are used when Robot Framework is not running,
the messages are redirected to the standard Python logging module
using logger named RobotFramework.

Log levels

It is possible to log messages using levels TRACE, DEBUG, INFO,
WARN and ERROR either using the write() function or, more
commonly, with the log level specific trace(), debug(),
info(), warn(), error() functions. The support for the
error level and function is new in RF 2.9.

By default the trace and debug messages are not logged but that can be
changed with the --loglevel command line option. Warnings and errors are
automatically written also to the console and to the Test Execution Errors
section in the log file.

Logging HTML

All methods that are used for writing messages to the log file have an
optional html argument. If a message to be logged is supposed to be
shown as HTML, this argument should be set to True. Alternatively,
write() accepts a pseudo log level HTML.

Example

from robot.api import logger

def my_keyword(arg):
 logger.debug('Got argument %s.' % arg)
 do_something()
 logger.info('<i>This</i> is a boring example.', html=True)

	
robot.api.logger.write(msg, level='INFO', html=False)

	Writes the message to the log file using the given level.

Valid log levels are TRACE, DEBUG, INFO (default since RF
2.9.1), WARN, and ERROR (new in RF 2.9). Additionally it is
possible to use HTML pseudo log level that logs the message as HTML
using the INFO level.

Instead of using this method, it is generally better to use the level
specific methods such as info and debug that have separate
html argument to control the message format.

	
robot.api.logger.trace(msg, html=False)

	Writes the message to the log file using the TRACE level.

	
robot.api.logger.debug(msg, html=False)

	Writes the message to the log file using the DEBUG level.

	
robot.api.logger.info(msg, html=False, also_console=False)

	Writes the message to the log file using the INFO level.

If also_console argument is set to True, the message is
written both to the log file and to the console.

	
robot.api.logger.warn(msg, html=False)

	Writes the message to the log file using the WARN level.

	
robot.api.logger.error(msg, html=False)

	Writes the message to the log file using the ERROR level.

New in Robot Framework 2.9.

	
robot.api.logger.console(msg, newline=True, stream='stdout')

	Writes the message to the console.

If the newline argument is True, a newline character is
automatically added to the message.

By default the message is written to the standard output stream.
Using the standard error stream is possibly by giving the stream
argument value 'stderr'.

robot.conf package

Implements settings for both test execution and output processing.

This package implements RobotSettings and
RebotSettings classes used internally by
the framework. There should be no need to use these classes externally.

This package can be considered relatively stable. Aforementioned classes
are likely to be rewritten at some point to be more convenient to use.
Instantiating them is not likely to change, though.

Submodules

robot.conf.gatherfailed module

	
class robot.conf.gatherfailed.GatherFailedTests

	Bases: robot.model.visitor.SuiteVisitor

	
visit_test(test)

	Implements traversing through the test and its keywords.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
visit_keyword(kw)

	Implements traversing through the keyword and its child keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_message(msg)

	Implements visiting the message.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through the suite and its direct children.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
class robot.conf.gatherfailed.GatherFailedSuites

	Bases: robot.model.visitor.SuiteVisitor

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_test(test)

	Implements traversing through the test and its keywords.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
visit_keyword(kw)

	Implements traversing through the keyword and its child keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_message(msg)

	Implements visiting the message.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through the suite and its direct children.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
robot.conf.gatherfailed.gather_failed_tests(output)

	

	
robot.conf.gatherfailed.gather_failed_suites(output)

	

robot.conf.settings module

	
class robot.conf.settings.RobotSettings(options=None, **extra_options)

	Bases: robot.conf.settings._BaseSettings

	
get_rebot_settings()

	

	
listeners

	

	
debug_file

	

	
suite_config

	

	
randomize_seed

	

	
randomize_suites

	

	
randomize_tests

	

	
dry_run

	

	
exit_on_failure

	

	
exit_on_error

	

	
skip_teardown_on_exit

	

	
console_output_config

	

	
console_type

	

	
console_width

	

	
console_markers

	

	
max_error_lines

	

	
pre_run_modifiers

	

	
run_empty_suite

	

	
variables

	

	
variable_files

	

	
extension

	

	
console_colors

	

	
critical_tags

	

	
flatten_keywords

	

	
log

	

	
log_level

	

	
non_critical_tags

	

	
output

	

	
output_directory

	

	
pre_rebot_modifiers

	

	
remove_keywords

	

	
report

	

	
rpa

	

	
split_log

	

	
statistics_config

	

	
status_rc

	

	
xunit

	

	
xunit_skip_noncritical

	

	
class robot.conf.settings.RebotSettings(options=None, **extra_options)

	Bases: robot.conf.settings._BaseSettings

	
suite_config

	

	
log_config

	

	
report_config

	

	
merge

	

	
console_output_config

	

	
console_colors

	

	
critical_tags

	

	
flatten_keywords

	

	
log

	

	
log_level

	

	
non_critical_tags

	

	
output

	

	
output_directory

	

	
pre_rebot_modifiers

	

	
process_empty_suite

	

	
remove_keywords

	

	
report

	

	
rpa

	

	
split_log

	

	
statistics_config

	

	
status_rc

	

	
xunit

	

	
xunit_skip_noncritical

	

	
expand_keywords

	

robot.htmldata package

Package for writing output files in HTML format.

This package is considered stable but it is not part of the public API.

Submodules

robot.htmldata.htmlfilewriter module

	
class robot.htmldata.htmlfilewriter.HtmlFileWriter(output, model_writer)

	Bases: object

	
write(template)

	

	
class robot.htmldata.htmlfilewriter.ModelWriter

	Bases: robot.htmldata.htmlfilewriter._Writer

	
handles(line)

	

	
write(line)

	

	
class robot.htmldata.htmlfilewriter.LineWriter(output)

	Bases: robot.htmldata.htmlfilewriter._Writer

	
handles(line)

	

	
write(line)

	

	
class robot.htmldata.htmlfilewriter.GeneratorWriter(html_writer)

	Bases: robot.htmldata.htmlfilewriter._Writer

	
write(line)

	

	
handles(line)

	

	
class robot.htmldata.htmlfilewriter.JsFileWriter(html_writer, base_dir)

	Bases: robot.htmldata.htmlfilewriter._InliningWriter

	
write(line)

	

	
handles(line)

	

	
class robot.htmldata.htmlfilewriter.CssFileWriter(html_writer, base_dir)

	Bases: robot.htmldata.htmlfilewriter._InliningWriter

	
write(line)

	

	
handles(line)

	

robot.htmldata.jartemplate module

robot.htmldata.jsonwriter module

	
class robot.htmldata.jsonwriter.JsonWriter(output, separator='')

	Bases: object

	
write_json(prefix, data, postfix=';\n', mapping=None, separator=True)

	

	
write(string, postfix=';\n', separator=True)

	

	
class robot.htmldata.jsonwriter.JsonDumper(output)

	Bases: object

	
dump(data, mapping=None)

	

	
write(data)

	

	
class robot.htmldata.jsonwriter.StringDumper(jsondumper)

	Bases: robot.htmldata.jsonwriter._Dumper

	
dump(data, mapping)

	

	
handles(data, mapping)

	

	
class robot.htmldata.jsonwriter.IntegerDumper(jsondumper)

	Bases: robot.htmldata.jsonwriter._Dumper

	
dump(data, mapping)

	

	
handles(data, mapping)

	

	
class robot.htmldata.jsonwriter.DictDumper(jsondumper)

	Bases: robot.htmldata.jsonwriter._Dumper

	
dump(data, mapping)

	

	
handles(data, mapping)

	

	
class robot.htmldata.jsonwriter.TupleListDumper(jsondumper)

	Bases: robot.htmldata.jsonwriter._Dumper

	
dump(data, mapping)

	

	
handles(data, mapping)

	

	
class robot.htmldata.jsonwriter.MappingDumper(jsondumper)

	Bases: robot.htmldata.jsonwriter._Dumper

	
handles(data, mapping)

	

	
dump(data, mapping)

	

	
class robot.htmldata.jsonwriter.NoneDumper(jsondumper)

	Bases: robot.htmldata.jsonwriter._Dumper

	
handles(data, mapping)

	

	
dump(data, mapping)

	

robot.htmldata.normaltemplate module

	
class robot.htmldata.normaltemplate.HtmlTemplate(filename)

	Bases: object

robot.htmldata.template module

robot.libdocpkg package

Implements the Libdoc tool.

The command line entry point and programmatic interface for Libdoc
are provided by the separate robot.libdoc module.

This package is considered stable but it is not part of the public API.

Submodules

robot.libdocpkg.builder module

	
robot.libdocpkg.builder.JavaDocBuilder()

	

	
robot.libdocpkg.builder.LibraryDocumentation(library_or_resource, name=None, version=None, doc_format=None)

	

	
robot.libdocpkg.builder.DocumentationBuilder(library_or_resource)

	

robot.libdocpkg.consoleviewer module

	
class robot.libdocpkg.consoleviewer.ConsoleViewer(libdoc)

	Bases: object

	
classmethod handles(command)

	

	
classmethod validate_command(command, args)

	

	
view(command, *args)

	

	
list(*patterns)

	

	
show(*names)

	

	
version()

	

	
class robot.libdocpkg.consoleviewer.KeywordMatcher(libdoc)

	Bases: object

	
search(patterns)

	

robot.libdocpkg.htmlwriter module

	
class robot.libdocpkg.htmlwriter.LibdocHtmlWriter

	Bases: object

	
write(libdoc, output)

	

	
class robot.libdocpkg.htmlwriter.LibdocModelWriter(output, libdoc)

	Bases: robot.htmldata.htmlfilewriter.ModelWriter

	
write(line)

	

	
write_data()

	

	
handles(line)

	

	
class robot.libdocpkg.htmlwriter.JsonConverter(doc_formatter)

	Bases: object

	
convert(libdoc)

	

	
class robot.libdocpkg.htmlwriter.DocFormatter(keywords, introduction, doc_format='ROBOT')

	Bases: object

	
html(doc, intro=False)

	

	
class robot.libdocpkg.htmlwriter.DocToHtml(doc_format)

	Bases: object

robot.libdocpkg.java9builder module

robot.libdocpkg.javabuilder module

	
class robot.libdocpkg.javabuilder.JavaDocBuilder

	Bases: object

	
build(path)

	

	
robot.libdocpkg.javabuilder.ClassDoc(path)

	Process the given Java source file and return ClassDoc instance.

Processing is done using com.sun.tools.javadoc APIs. Returned object
implements com.sun.javadoc.ClassDoc interface:
http://docs.oracle.com/javase/7/docs/jdk/api/javadoc/doclet/

robot.libdocpkg.model module

	
class robot.libdocpkg.model.LibraryDoc(name='', doc='', version='', type='LIBRARY', scope='TEST', named_args=True, doc_format='ROBOT', source=None, lineno=-1)

	Bases: object

	
doc

	

	
doc_format

	

	
keywords

	

	
all_tags

	

	
save(output=None, format='HTML')

	

	
class robot.libdocpkg.model.KeywordDoc(name='', args=(), doc='', tags=(), source=None, lineno=-1)

	Bases: robot.utils.sortable.Sortable

	
shortdoc

	

	
deprecated

	

robot.libdocpkg.output module

	
class robot.libdocpkg.output.LibdocOutput(output_path, format)

	Bases: object

robot.libdocpkg.robotbuilder module

	
class robot.libdocpkg.robotbuilder.Enum

	Bases: object

	
class robot.libdocpkg.robotbuilder.LibraryDocBuilder

	Bases: object

	
build(library)

	

	
class robot.libdocpkg.robotbuilder.ResourceDocBuilder

	Bases: object

	
build(path)

	

	
class robot.libdocpkg.robotbuilder.KeywordDocBuilder(resource=False)

	Bases: object

	
build_keywords(lib)

	

	
build_keyword(kw)

	

robot.libdocpkg.specbuilder module

	
class robot.libdocpkg.specbuilder.SpecDocBuilder

	Bases: object

	
build(path)

	

robot.libdocpkg.writer module

	
robot.libdocpkg.writer.LibdocWriter(format=None)

	

robot.libdocpkg.xmlwriter module

	
class robot.libdocpkg.xmlwriter.LibdocXmlWriter(force_html_doc=False)

	Bases: object

	
write(libdoc, outfile)

	

	
class robot.libdocpkg.xmlwriter.DocFormatter(doc_format, force_html=False)

	Bases: object

robot.libraries package

Package hosting Robot Framework standard test libraries.

Libraries are mainly used externally in the test data, but they can be
also used by custom test libraries if there is a need. Especially
the BuiltIn library is often useful
when there is a need to interact with the framework.

Because libraries are documented using Robot Framework’s own documentation
syntax, the generated API docs are not that well formed. It is thus better
to find the generated library documentations, for example, via
the http://robotframework.org web site.

Submodules

robot.libraries.BuiltIn module

	
robot.libraries.BuiltIn.run_keyword_variant(resolve)

	

	
class robot.libraries.BuiltIn.BuiltIn

	Bases: robot.libraries.BuiltIn._Verify, robot.libraries.BuiltIn._Converter, robot.libraries.BuiltIn._Variables, robot.libraries.BuiltIn._RunKeyword, robot.libraries.BuiltIn._Control, robot.libraries.BuiltIn._Misc

An always available standard library with often needed keywords.

BuiltIn is Robot Framework’s standard library that provides a set
of generic keywords needed often. It is imported automatically and
thus always available. The provided keywords can be used, for example,
for verifications (e.g. Should Be Equal, Should Contain),
conversions (e.g. Convert To Integer) and for various other purposes
(e.g. Log, Sleep, Run Keyword If, Set Global Variable).

== Table of contents ==

%TOC%

= HTML error messages =

Many of the keywords accept an optional error message to use if the keyword
fails, and it is possible to use HTML in these messages by prefixing them
with *HTML*. See Fail keyword for a usage example. Notice that using
HTML in messages is not limited to BuiltIn library but works with any
error message.

= Evaluating expressions =

Many keywords, such as Evaluate, Run Keyword If and Should Be True,
accept an expression that is evaluated in Python.

== Evaluation namespace ==

Expressions are evaluated using Python’s
[http://docs.python.org/library/functions.html#eval|eval] function so
that all Python built-ins like len() and int() are available.
In addition to that, all unrecognized variables are considered to be
modules that are automatically imported. It is possible to use all
available Python modules, including the standard modules and the installed
third party modules.

Evaluate also allows configuring the execution namespace with a custom
namespace and with custom modules to be imported. The latter functionality
is useful when using nested modules like rootmod.submod that are
implemented so that the root module does not automatically import sub
modules. Otherwise the automatic module import mechanism described earlier
is enough to get the needed modules imported.

NOTE: Automatic module import is a new feature in Robot Framework 3.2.
Earlier modules needed to be explicitly taken into use when using the
Evaluate keyword and other keywords only had access to sys and
os modules.

== Using variables ==

When a variable is used in the expressing using the normal ${variable}
syntax, its value is replaced before the expression is evaluated. This
means that the value used in the expression will be the string
representation of the variable value, not the variable value itself.
This is not a problem with numbers and other objects that have a string
representation that can be evaluated directly, but with other objects
the behavior depends on the string representation. Most importantly,
strings must always be quoted, and if they can contain newlines, they must
be triple quoted.

Actual variables values are also available in the evaluation namespace.
They can be accessed using special variable syntax without the curly
braces like $variable. These variables should never be quoted.

Using the $variable syntax slows down expression evaluation a little.
This should not typically matter, but should be taken into account if
complex expressions are evaluated often and there are strict time
constrains.

Notice that instead of creating complicated expressions, it is often better
to move the logic into a test library. That eases maintenance and can also
enhance execution speed.

= Boolean arguments =

Some keywords accept arguments that are handled as Boolean values true or
false. If such an argument is given as a string, it is considered false if
it is an empty string or equal to FALSE, NONE, NO, OFF or
0, case-insensitively. Keywords verifying something that allow dropping
actual and expected values from the possible error message also consider
string no values to be false. Other strings are considered true unless
the keyword documentation explicitly states otherwise, and other argument
types are tested using the same
[http://docs.python.org/library/stdtypes.html#truth|rules as in Python].

True examples:

False examples:

Considering string NONE false is new in Robot Framework 3.0.3 and
considering also OFF and 0 false is new in Robot Framework 3.1.

= Pattern matching =

Many keywords accepts arguments as either glob or regular expression
patterns.

== Glob patterns ==

Some keywords, for example Should Match, support so called
[http://en.wikipedia.org/wiki/Glob_(programming)|glob patterns] where:

Unlike with glob patterns normally, path separator characters / and
\ and the newline character \n are matches by the above
wildcards.

Support for brackets like [abc] and [!a-z] is new in
Robot Framework 3.1.

== Regular expressions ==

Some keywords, for example Should Match Regexp, support
[http://en.wikipedia.org/wiki/Regular_expression|regular expressions]
that are more powerful but also more complicated that glob patterns.
The regular expression support is implemented using Python’s
[http://docs.python.org/library/re.html|re module] and its documentation
should be consulted for more information about the syntax.

Because the backslash character (\) is an escape character in
Robot Framework test data, possible backslash characters in regular
expressions need to be escaped with another backslash like \\d\\w+.
Strings that may contain special characters but should be handled
as literal strings, can be escaped with the Regexp Escape keyword.

= Multiline string comparison =

Should Be Equal and Should Be Equal As Strings report the failures using
[http://en.wikipedia.org/wiki/Diff_utility#Unified_format|unified diff
format] if both strings have more than two lines.

Results in the following error message:

= String representations =

Several keywords log values explicitly (e.g. Log) or implicitly (e.g.
Should Be Equal when there are failures). By default keywords log values
using “human readable” string representation, which means that strings
like Hello and numbers like 42 are logged as-is. Most of the time
this is the desired behavior, but there are some problems as well:

	It is not possible to see difference between different objects that
have same string representation like string 42 and integer 42.
Should Be Equal and some other keywords add the type information to
the error message in these cases, though.

	Non-printable characters such as the null byte are not visible.

	Trailing whitespace is not visible.

	Different newlines (\r\n on Windows, \n elsewhere) cannot
be separated from each others.

	There are several Unicode characters that are different but look the
same. One example is the Latin a (\u0061) and the Cyrillic
а (\u0430). Error messages like a != а are
not very helpful.

	Some Unicode characters can be represented using
[https://en.wikipedia.org/wiki/Unicode_equivalence|different forms].
For example, ä can be represented either as a single code point
\u00e4 or using two code points \u0061 and \u0308 combined
together. Such forms are considered canonically equivalent, but strings
containing them are not considered equal when compared in Python. Error
messages like ä != ä are not that helpful either.

	Containers such as lists and dictionaries are formatted into a single
line making it hard to see individual items they contain.

To overcome the above problems, some keywords such as Log and
Should Be Equal have an optional formatter argument that can be
used to configure the string representation. The supported values are
str (default), repr, and ascii that work similarly as
[https://docs.python.org/library/functions.html|Python built-in functions]
with same names. More detailed semantics are explained below.

The formatter argument is new in Robot Framework 3.1.2.

== str ==

Use the “human readable” string representation. Equivalent to using
str() in Python 3 and unicode() in Python 2. This is the default.

== repr ==

Use the “machine readable” string representation. Similar to using
repr() in Python, which means that strings like Hello are logged
like 'Hello', newlines and non-printable characters are escaped like
\n and \x00, and so on. Non-ASCII characters are shown as-is
like ä in Python 3 and in escaped format like \xe4 in Python 2.
Use ascii to always get the escaped format.

There are also some enhancements compared to the standard repr():
- Bigger lists, dictionaries and other containers are pretty-printed so

that there is one item per row.

	On Python 2 the u prefix is omitted with Unicode strings and
the b prefix is added to byte strings.

== ascii ==

Same as using ascii() in Python 3 or repr() in Python 2 where
ascii() does not exist. Similar to using repr explained above
but with the following differences:

	On Python 3 non-ASCII characters are escaped like \xe4 instead of
showing them as-is like ä. This makes it easier to see differences
between Unicode characters that look the same but are not equal. This
is how repr() works in Python 2.

	On Python 2 just uses the standard repr() meaning that Unicode
strings get the u prefix and no b prefix is added to byte
strings.

	Containers are not pretty-printed.

	
ROBOT_LIBRARY_SCOPE = 'GLOBAL'

	

	
ROBOT_LIBRARY_VERSION = '3.2.2'

	

	
call_method(object, method_name, *args, **kwargs)

	Calls the named method of the given object with the provided arguments.

The possible return value from the method is returned and can be
assigned to a variable. Keyword fails both if the object does not have
a method with the given name or if executing the method raises an
exception.

Possible equal signs in arguments must be escaped with a backslash
like \=.

	
catenate(*items)

	Catenates the given items together and returns the resulted string.

By default, items are catenated with spaces, but if the first item
contains the string SEPARATOR=<sep>, the separator <sep> is
used instead. Items are converted into strings when necessary.

	
comment(*messages)

	Displays the given messages in the log file as keyword arguments.

This keyword does nothing with the arguments it receives, but as they
are visible in the log, this keyword can be used to display simple
messages. Given arguments are ignored so thoroughly that they can even
contain non-existing variables. If you are interested about variable
values, you can use the Log or Log Many keywords.

	
continue_for_loop()

	Skips the current for loop iteration and continues from the next.

Skips the remaining keywords in the current for loop iteration and
continues from the next one. Can be used directly in a for loop or
in a keyword that the loop uses.

See Continue For Loop If to conditionally continue a for loop without
using Run Keyword If or other wrapper keywords.

	
continue_for_loop_if(condition)

	Skips the current for loop iteration if the condition is true.

A wrapper for Continue For Loop to continue a for loop based on
the given condition. The condition is evaluated using the same
semantics as with Should Be True keyword.

	
convert_to_binary(item, base=None, prefix=None, length=None)

	Converts the given item to a binary string.

The item, with an optional base, is first converted to an
integer using Convert To Integer internally. After that it
is converted to a binary number (base 2) represented as a
string such as 1011.

The returned value can contain an optional prefix and can be
required to be of minimum length (excluding the prefix and a
possible minus sign). If the value is initially shorter than
the required length, it is padded with zeros.

See also Convert To Integer, Convert To Octal and Convert To Hex.

	
convert_to_boolean(item)

	Converts the given item to Boolean true or false.

Handles strings True and False (case-insensitive) as expected,
otherwise returns item’s
[http://docs.python.org/library/stdtypes.html#truth|truth value]
using Python’s bool() method.

	
convert_to_bytes(input, input_type='text')

	Converts the given input to bytes according to the input_type.

Valid input types are listed below:

	text: Converts text to bytes character by character. All
characters with ordinal below 256 can be used and are converted to
bytes with same values. Many characters are easiest to represent
using escapes like \x00 or \xff. Supports both Unicode
strings and bytes.

	int: Converts integers separated by spaces to bytes. Similarly as
with Convert To Integer, it is possible to use binary, octal, or
hex values by prefixing the values with 0b, 0o, or 0x,
respectively.

	hex: Converts hexadecimal values to bytes. Single byte is always
two characters long (e.g. 01 or FF). Spaces are ignored and
can be used freely as a visual separator.

	bin: Converts binary values to bytes. Single byte is always eight
characters long (e.g. 00001010). Spaces are ignored and can be
used freely as a visual separator.

In addition to giving the input as a string, it is possible to use
lists or other iterables containing individual characters or numbers.
In that case numbers do not need to be padded to certain length and
they cannot contain extra spaces.

Use Encode String To Bytes in String library if you need to
convert text to bytes using a certain encoding.

	
convert_to_hex(item, base=None, prefix=None, length=None, lowercase=False)

	Converts the given item to a hexadecimal string.

The item, with an optional base, is first converted to an
integer using Convert To Integer internally. After that it
is converted to a hexadecimal number (base 16) represented as
a string such as FF0A.

The returned value can contain an optional prefix and can be
required to be of minimum length (excluding the prefix and a
possible minus sign). If the value is initially shorter than
the required length, it is padded with zeros.

By default the value is returned as an upper case string, but the
lowercase argument a true value (see Boolean arguments) turns
the value (but not the given prefix) to lower case.

See also Convert To Integer, Convert To Binary and Convert To Octal.

	
convert_to_integer(item, base=None)

	Converts the given item to an integer number.

If the given item is a string, it is by default expected to be an
integer in base 10. There are two ways to convert from other bases:

	Give base explicitly to the keyword as base argument.

	Prefix the given string with the base so that 0b means binary
(base 2), 0o means octal (base 8), and 0x means hex (base 16).
The prefix is considered only when base argument is not given and
may itself be prefixed with a plus or minus sign.

The syntax is case-insensitive and possible spaces are ignored.

See also Convert To Number, Convert To Binary, Convert To Octal,
Convert To Hex, and Convert To Bytes.

	
convert_to_number(item, precision=None)

	Converts the given item to a floating point number.

If the optional precision is positive or zero, the returned number
is rounded to that number of decimal digits. Negative precision means
that the number is rounded to the closest multiple of 10 to the power
of the absolute precision. If a number is equally close to a certain
precision, it is always rounded away from zero.

Notice that machines generally cannot store floating point numbers
accurately. This may cause surprises with these numbers in general
and also when they are rounded. For more information see, for example,
these resources:

	http://docs.python.org/tutorial/floatingpoint.html

	http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition

If you want to avoid possible problems with floating point numbers,
you can implement custom keywords using Python’s
[http://docs.python.org/library/decimal.html|decimal] or
[http://docs.python.org/library/fractions.html|fractions] modules.

If you need an integer number, use Convert To Integer instead.

	
convert_to_octal(item, base=None, prefix=None, length=None)

	Converts the given item to an octal string.

The item, with an optional base, is first converted to an
integer using Convert To Integer internally. After that it
is converted to an octal number (base 8) represented as a
string such as 775.

The returned value can contain an optional prefix and can be
required to be of minimum length (excluding the prefix and a
possible minus sign). If the value is initially shorter than
the required length, it is padded with zeros.

See also Convert To Integer, Convert To Binary and Convert To Hex.

	
convert_to_string(item)

	Converts the given item to a Unicode string.

Strings are also [http://www.macchiato.com/unicode/nfc-faq|
NFC normalized].

Use Encode String To Bytes and Decode Bytes To String keywords
in String library if you need to convert between Unicode and byte
strings using different encodings. Use Convert To Bytes if you just
want to create byte strings.

	
create_dictionary(*items)

	Creates and returns a dictionary based on the given items.

Items are typically given using the key=value syntax same way as
&{dictionary} variables are created in the Variable table. Both
keys and values can contain variables, and possible equal sign in key
can be escaped with a backslash like escaped\=key=value. It is
also possible to get items from existing dictionaries by simply using
them like &{dict}.

Alternatively items can be specified so that keys and values are given
separately. This and the key=value syntax can even be combined,
but separately given items must be first. If same key is used multiple
times, the last value has precedence.

The returned dictionary is ordered, and values with strings as keys
can also be accessed using a convenient dot-access syntax like
${dict.key}. Technically the returned dictionary is Robot
Framework’s own DotDict instance. If there is a need, it can be
converted into a regular Python dict instance by using the
Convert To Dictionary keyword from the Collections library.

	
create_list(*items)

	Returns a list containing given items.

The returned list can be assigned both to ${scalar} and @{list}
variables.

	
evaluate(expression, modules=None, namespace=None)

	Evaluates the given expression in Python and returns the result.

expression is evaluated in Python as explained in the
Evaluating expressions section.

modules argument can be used to specify a comma separated
list of Python modules to be imported and added to the evaluation
namespace.

namespace argument can be used to pass a custom evaluation
namespace as a dictionary. Possible modules are added to this
namespace.

Starting from Robot Framework 3.2, modules used in the expression are
imported automatically. modules argument is still needed with
nested modules like rootmod.submod that are implemented so that
the root module does not automatically import sub modules. This is
illustrated by the selenium.webdriver example below.

Variables used like ${variable} are replaced in the expression
before evaluation. Variables are also available in the evaluation
namespace and can be accessed using the special $variable syntax
as explained in the Evaluating expressions section.

NOTE: Prior to Robot Framework 3.2 using modules=rootmod.submod
was not enough to make the root module itself available in the
evaluation namespace. It needed to be taken into use explicitly like
modules=rootmod, rootmod.submod.

	
exit_for_loop()

	Stops executing the enclosing for loop.

Exits the enclosing for loop and continues execution after it.
Can be used directly in a for loop or in a keyword that the loop uses.

See Exit For Loop If to conditionally exit a for loop without
using Run Keyword If or other wrapper keywords.

	
exit_for_loop_if(condition)

	Stops executing the enclosing for loop if the condition is true.

A wrapper for Exit For Loop to exit a for loop based on
the given condition. The condition is evaluated using the same
semantics as with Should Be True keyword.

	
fail(msg=None, *tags)

	Fails the test with the given message and optionally alters its tags.

The error message is specified using the msg argument.
It is possible to use HTML in the given error message, similarly
as with any other keyword accepting an error message, by prefixing
the error with *HTML*.

It is possible to modify tags of the current test case by passing tags
after the message. Tags starting with a hyphen (e.g. -regression)
are removed and others added. Tags are modified using Set Tags and
Remove Tags internally, and the semantics setting and removing them
are the same as with these keywords.

See Fatal Error if you need to stop the whole test execution.

	
fatal_error(msg=None)

	Stops the whole test execution.

The test or suite where this keyword is used fails with the provided
message, and subsequent tests fail with a canned message.
Possible teardowns will nevertheless be executed.

See Fail if you only want to stop one test case unconditionally.

	
get_count(container, item)

	Returns and logs how many times item is found from container.

This keyword works with Python strings and lists and all objects
that either have count method or can be converted to Python lists.

	
get_length(item)

	Returns and logs the length of the given item as an integer.

The item can be anything that has a length, for example, a string,
a list, or a mapping. The keyword first tries to get the length with
the Python function len, which calls the item’s __len__ method
internally. If that fails, the keyword tries to call the item’s
possible length and size methods directly. The final attempt is
trying to get the value of the item’s length attribute. If all
these attempts are unsuccessful, the keyword fails.

See also Length Should Be, Should Be Empty and Should Not Be
Empty.

	
get_library_instance(name=None, all=False)

	Returns the currently active instance of the specified test library.

This keyword makes it easy for test libraries to interact with
other test libraries that have state. This is illustrated by
the Python example below:

It is also possible to use this keyword in the test data and
pass the returned library instance to another keyword. If a
library is imported with a custom name, the name used to get
the instance must be that name and not the original library name.

If the optional argument all is given a true value, then a
dictionary mapping all library names to instances will be returned.

	
get_time(format='timestamp', time_='NOW')

	Returns the given time in the requested format.

NOTE: DateTime library contains much more flexible keywords for
getting the current date and time and for date and time handling in
general.

How time is returned is determined based on the given format
string as follows. Note that all checks are case-insensitive.

	If format contains the word epoch, the time is returned
in seconds after the UNIX epoch (1970-01-01 00:00:00 UTC).
The return value is always an integer.

	If format contains any of the words year, month,
day, hour, min, or sec, only the selected parts are
returned. The order of the returned parts is always the one
in the previous sentence and the order of words in format
is not significant. The parts are returned as zero-padded
strings (e.g. May -> 05).

	Otherwise (and by default) the time is returned as a
timestamp string in the format 2006-02-24 15:08:31.

By default this keyword returns the current local time, but
that can be altered using time argument as explained below.
Note that all checks involving strings are case-insensitive.

	If time is a number, or a string that can be converted to
a number, it is interpreted as seconds since the UNIX epoch.
This documentation was originally written about 1177654467
seconds after the epoch.

	If time is a timestamp, that time will be used. Valid
timestamp formats are YYYY-MM-DD hh:mm:ss and
YYYYMMDD hhmmss.

	If time is equal to NOW (default), the current local
time is used.

	If time is equal to UTC, the current time in
[http://en.wikipedia.org/wiki/Coordinated_Universal_Time|UTC]
is used.

	If time is in the format like NOW - 1 day or UTC + 1 hour
30 min, the current local/UTC time plus/minus the time
specified with the time string is used. The time string format
is described in an appendix of Robot Framework User Guide.

UTC time is 2006-03-29 12:06:21):

	
get_variable_value(name, default=None)

	Returns variable value or default if the variable does not exist.

The name of the variable can be given either as a normal variable name
(e.g. ${NAME}) or in escaped format (e.g. \${NAME}). Notice
that the former has some limitations explained in Set Suite Variable.

See Set Variable If for another keyword to set variables dynamically.

	
get_variables(no_decoration=False)

	Returns a dictionary containing all variables in the current scope.

Variables are returned as a special dictionary that allows accessing
variables in space, case, and underscore insensitive manner similarly
as accessing variables in the test data. This dictionary supports all
same operations as normal Python dictionaries and, for example,
Collections library can be used to access or modify it. Modifying the
returned dictionary has no effect on the variables available in the
current scope.

By default variables are returned with ${}, @{} or &{}
decoration based on variable types. Giving a true value (see Boolean
arguments) to the optional argument no_decoration will return
the variables without the decoration.

	
import_library(name, *args)

	Imports a library with the given name and optional arguments.

This functionality allows dynamic importing of libraries while tests
are running. That may be necessary, if the library itself is dynamic
and not yet available when test data is processed. In a normal case,
libraries should be imported using the Library setting in the Setting
table.

This keyword supports importing libraries both using library
names and physical paths. When paths are used, they must be
given in absolute format or found from
[http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pythonpath-jythonpath-and-ironpythonpath|
search path]. Forward slashes can be used as path separators in all
operating systems.

It is possible to pass arguments to the imported library and also
named argument syntax works if the library supports it. WITH NAME
syntax can be used to give a custom name to the imported library.

	
import_resource(path)

	Imports a resource file with the given path.

Resources imported with this keyword are set into the test suite scope
similarly when importing them in the Setting table using the Resource
setting.

The given path must be absolute or found from
[http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pythonpath-jythonpath-and-ironpythonpath|
search path]. Forward slashes can be used as path separator regardless
the operating system.

	
import_variables(path, *args)

	Imports a variable file with the given path and optional arguments.

Variables imported with this keyword are set into the test suite scope
similarly when importing them in the Setting table using the Variables
setting. These variables override possible existing variables with
the same names. This functionality can thus be used to import new
variables, for example, for each test in a test suite.

The given path must be absolute or found from
[http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pythonpath-jythonpath-and-ironpythonpath|
search path]. Forward slashes can be used as path separator regardless
the operating system.

	
keyword_should_exist(name, msg=None)

	Fails unless the given keyword exists in the current scope.

Fails also if there are more than one keywords with the same name.
Works both with the short name (e.g. Log) and the full name
(e.g. BuiltIn.Log).

The default error message can be overridden with the msg argument.

See also Variable Should Exist.

	
length_should_be(item, length, msg=None)

	Verifies that the length of the given item is correct.

The length of the item is got using the Get Length keyword. The
default error message can be overridden with the msg argument.

	
log(message, level='INFO', html=False, console=False, repr=False, formatter='str')

	Logs the given message with the given level.

Valid levels are TRACE, DEBUG, INFO (default), HTML, WARN, and ERROR.
Messages below the current active log level are ignored. See
Set Log Level keyword and --loglevel command line option
for more details about setting the level.

Messages logged with the WARN or ERROR levels will be automatically
visible also in the console and in the Test Execution Errors section
in the log file.

If the html argument is given a true value (see Boolean
arguments), the message will be considered HTML and special characters
such as < are not escaped. For example, logging
 creates an image when html is true, but
otherwise the message is that exact string. An alternative to using
the html argument is using the HTML pseudo log level. It logs
the message as HTML using the INFO level.

If the console argument is true, the message will be written to
the console where test execution was started from in addition to
the log file. This keyword always uses the standard output stream
and adds a newline after the written message. Use Log To Console
instead if either of these is undesirable,

The formatter argument controls how to format the string
representation of the message. Possible values are str (default),
repr and ascii, and they work similarly to Python built-in
functions with same names. When using repr, bigger lists,
dictionaries and other containers are also pretty-printed so that
there is one item per row. For more details see String
representations. This is a new feature in Robot Framework 3.1.2.

The old way to control string representation was using the repr
argument, and repr=True is still equivalent to using
formatter=repr. The repr argument will be deprecated in the
future, though, and using formatter is thus recommended.

See Log Many if you want to log multiple messages in one go, and
Log To Console if you only want to write to the console.

	
log_many(*messages)

	Logs the given messages as separate entries using the INFO level.

Supports also logging list and dictionary variable items individually.

See Log and Log To Console keywords if you want to use alternative
log levels, use HTML, or log to the console.

	
log_to_console(message, stream='STDOUT', no_newline=False)

	Logs the given message to the console.

By default uses the standard output stream. Using the standard error
stream is possibly by giving the stream argument value STDERR
(case-insensitive).

By default appends a newline to the logged message. This can be
disabled by giving the no_newline argument a true value (see
Boolean arguments).

This keyword does not log the message to the normal log file. Use
Log keyword, possibly with argument console, if that is desired.

	
log_variables(level='INFO')

	Logs all variables in the current scope with given log level.

	
no_operation()

	Does absolutely nothing.

	
pass_execution(message, *tags)

	Skips rest of the current test, setup, or teardown with PASS status.

This keyword can be used anywhere in the test data, but the place where
used affects the behavior:

	When used in any setup or teardown (suite, test or keyword), passes
that setup or teardown. Possible keyword teardowns of the started
keywords are executed. Does not affect execution or statuses
otherwise.

	When used in a test outside setup or teardown, passes that particular
test case. Possible test and keyword teardowns are executed.

Possible continuable failures before this keyword is used, as well as
failures in executed teardowns, will fail the execution.

It is mandatory to give a message explaining why execution was passed.
By default the message is considered plain text, but starting it with
HTML allows using HTML formatting.

It is also possible to modify test tags passing tags after the message
similarly as with Fail keyword. Tags starting with a hyphen
(e.g. -regression) are removed and others added. Tags are modified
using Set Tags and Remove Tags internally, and the semantics
setting and removing them are the same as with these keywords.

This keyword is typically wrapped to some other keyword, such as
Run Keyword If, to pass based on a condition. The most common case
can be handled also with Pass Execution If:

Passing execution in the middle of a test, setup or teardown should be
used with care. In the worst case it leads to tests that skip all the
parts that could actually uncover problems in the tested application.
In cases where execution cannot continue do to external factors,
it is often safer to fail the test case and make it non-critical.

	
pass_execution_if(condition, message, *tags)

	Conditionally skips rest of the current test, setup, or teardown with PASS status.

A wrapper for Pass Execution to skip rest of the current test,
setup or teardown based the given condition. The condition is
evaluated similarly as with Should Be True keyword, and message
and *tags have same semantics as with Pass Execution.

	
regexp_escape(*patterns)

	Returns each argument string escaped for use as a regular expression.

This keyword can be used to escape strings to be used with
Should Match Regexp and Should Not Match Regexp keywords.

Escaping is done with Python’s re.escape() function.

	
reload_library(name_or_instance)

	Rechecks what keywords the specified library provides.

Can be called explicitly in the test data or by a library itself
when keywords it provides have changed.

The library can be specified by its name or as the active instance of
the library. The latter is especially useful if the library itself
calls this keyword as a method.

	
remove_tags(*tags)

	Removes given tags from the current test or all tests in a suite.

Tags can be given exactly or using a pattern with *, ? and
[chars] acting as wildcards. See the Glob patterns section
for more information.

This keyword can affect either one test case or all test cases in a
test suite similarly as Set Tags keyword.

The current tags are available as a built-in variable @{TEST TAGS}.

See Set Tags if you want to add certain tags and Fail if you want
to fail the test case after setting and/or removing tags.

	
repeat_keyword(repeat, name, *args)

	Executes the specified keyword multiple times.

name and args define the keyword that is executed similarly as
with Run Keyword. repeat specifies how many times (as a count) or
how long time (as a timeout) the keyword should be executed.

If repeat is given as count, it specifies how many times the
keyword should be executed. repeat can be given as an integer or
as a string that can be converted to an integer. If it is a string,
it can have postfix times or x (case and space insensitive)
to make the expression more explicit.

If repeat is given as timeout, it must be in Robot Framework’s
time format (e.g. 1 minute, 2 min 3 s). Using a number alone
(e.g. 1 or 1.5) does not work in this context.

If repeat is zero or negative, the keyword is not executed at
all. This keyword fails immediately if any of the execution
rounds fails.

Specifying repeat as a timeout is new in Robot Framework 3.0.

	
replace_variables(text)

	Replaces variables in the given text with their current values.

If the text contains undefined variables, this keyword fails.
If the given text contains only a single variable, its value is
returned as-is and it can be any object. Otherwise this keyword
always returns a string.

The file template.txt contains Hello ${NAME}! and variable
${NAME} has the value Robot.

	
return_from_keyword(*return_values)

	Returns from the enclosing user keyword.

This keyword can be used to return from a user keyword with PASS status
without executing it fully. It is also possible to return values
similarly as with the [Return] setting. For more detailed information
about working with the return values, see the User Guide.

This keyword is typically wrapped to some other keyword, such as
Run Keyword If or Run Keyword If Test Passed, to return based
on a condition:

It is possible to use this keyword to return from a keyword also inside
a for loop. That, as well as returning values, is demonstrated by the
Find Index keyword in the following somewhat advanced example.
Notice that it is often a good idea to move this kind of complicated
logic into a test library.

The most common use case, returning based on an expression, can be
accomplished directly with Return From Keyword If. See also
Run Keyword And Return and Run Keyword And Return If.

	
return_from_keyword_if(condition, *return_values)

	Returns from the enclosing user keyword if condition is true.

A wrapper for Return From Keyword to return based on the given
condition. The condition is evaluated using the same semantics as
with Should Be True keyword.

Given the same example as in Return From Keyword, we can rewrite the
Find Index keyword as follows:

See also Run Keyword And Return and Run Keyword And Return If.

	
run_keyword(name, *args)

	Executes the given keyword with the given arguments.

Because the name of the keyword to execute is given as an argument, it
can be a variable and thus set dynamically, e.g. from a return value of
another keyword or from the command line.

	
run_keyword_and_continue_on_failure(name, *args)

	Runs the keyword and continues execution even if a failure occurs.

The keyword name and arguments work as with Run Keyword.

The execution is not continued if the failure is caused by invalid syntax,
timeout, or fatal exception.

	
run_keyword_and_expect_error(expected_error, name, *args)

	Runs the keyword and checks that the expected error occurred.

The keyword to execute and its arguments are specified using name
and *args exactly like with Run Keyword.

The expected error must be given in the same format as in Robot
Framework reports. By default it is interpreted as a glob pattern
with *, ? and [chars] as wildcards, but starting from
Robot Framework 3.1 that can be changed by using various prefixes
explained in the table below. Prefixes are case-sensitive and they
must be separated from the actual message with a colon and an
optional space like PREFIX: Message or PREFIX:Message.

See the Pattern matching section for more information about glob
patterns and regular expressions.

If the expected error occurs, the error message is returned and it can
be further processed or tested if needed. If there is no error, or the
error does not match the expected error, this keyword fails.

Errors caused by invalid syntax, timeouts, or fatal exceptions are not
caught by this keyword.

	
run_keyword_and_ignore_error(name, *args)

	Runs the given keyword with the given arguments and ignores possible error.

This keyword returns two values, so that the first is either string
PASS or FAIL, depending on the status of the executed keyword.
The second value is either the return value of the keyword or the
received error message. See Run Keyword And Return Status If you are
only interested in the execution status.

The keyword name and arguments work as in Run Keyword. See
Run Keyword If for a usage example.

Errors caused by invalid syntax, timeouts, or fatal exceptions are not
caught by this keyword. Otherwise this keyword itself never fails.

	
run_keyword_and_return(name, *args)

	Runs the specified keyword and returns from the enclosing user keyword.

The keyword to execute is defined with name and *args exactly
like with Run Keyword. After running the keyword, returns from the
enclosing user keyword and passes possible return value from the
executed keyword further. Returning from a keyword has exactly same
semantics as with Return From Keyword.

Use Run Keyword And Return If if you want to run keyword and return
based on a condition.

	
run_keyword_and_return_if(condition, name, *args)

	Runs the specified keyword and returns from the enclosing user keyword.

A wrapper for Run Keyword And Return to run and return based on
the given condition. The condition is evaluated using the same
semantics as with Should Be True keyword.

Use Return From Keyword If if you want to return a certain value
based on a condition.

	
run_keyword_and_return_status(name, *args)

	Runs the given keyword with given arguments and returns the status as a Boolean value.

This keyword returns Boolean True if the keyword that is executed
succeeds and False if it fails. This is useful, for example, in
combination with Run Keyword If. If you are interested in the error
message or return value, use Run Keyword And Ignore Error instead.

The keyword name and arguments work as in Run Keyword.

Errors caused by invalid syntax, timeouts, or fatal exceptions are not
caught by this keyword. Otherwise this keyword itself never fails.

	
run_keyword_if(condition, name, *args)

	Runs the given keyword with the given arguments, if condition is true.

The given condition is evaluated in Python as explained in
Evaluating expressions, and name and *args have same
semantics as with Run Keyword.

In this example, only either Some Action or Another Action is
executed, based on the status of My Keyword. Instead of Run Keyword
And Ignore Error you can also use Run Keyword And Return Status.

Variables used like ${variable}, as in the examples above, are
replaced in the expression before evaluation. Variables are also
available in the evaluation namespace and can be accessed using special
syntax $variable as explained in the Evaluating expressions
section.

This keyword supports also optional ELSE and ELSE IF branches. Both
of them are defined in *args and must use exactly format ELSE
or ELSE IF, respectively. ELSE branches must contain first the
name of the keyword to execute and then its possible arguments. ELSE
IF branches must first contain a condition, like the first argument
to this keyword, and then the keyword to execute and its possible
arguments. It is possible to have ELSE branch after ELSE IF and to
have multiple ELSE IF branches. Nested Run Keyword If usage is not
supported when using ELSE and/or ELSE IF branches.

Given previous example, if/else construct can also be created like this:

The return value of this keyword is the return value of the actually
executed keyword or Python None if no keyword was executed (i.e.
if condition was false). Hence, it is recommended to use ELSE
and/or ELSE IF branches to conditionally assign return values from
keyword to variables (see Set Variable If if you need to set fixed
values conditionally). This is illustrated by the example below:

In this example, ${var2} will be set to None if ${condition} is
false.

Notice that ELSE and ELSE IF control words must be used
explicitly and thus cannot come from variables. If you need to use
literal ELSE and ELSE IF strings as arguments, you can escape
them with a backslash like \ELSE and \ELSE IF.

Python’s [http://docs.python.org/library/os.html|os] and
[http://docs.python.org/library/sys.html|sys] modules are
automatically imported when evaluating the condition.
Attributes they contain can thus be used in the condition:

	
run_keyword_if_all_critical_tests_passed(name, *args)

	Runs the given keyword with the given arguments, if all critical tests passed.

This keyword can only be used in suite teardown. Trying to use it in
any other place will result in an error.

Otherwise, this keyword works exactly like Run Keyword, see its
documentation for more details.

	
run_keyword_if_all_tests_passed(name, *args)

	Runs the given keyword with the given arguments, if all tests passed.

This keyword can only be used in a suite teardown. Trying to use it
anywhere else results in an error.

Otherwise, this keyword works exactly like Run Keyword, see its
documentation for more details.

	
run_keyword_if_any_critical_tests_failed(name, *args)

	Runs the given keyword with the given arguments, if any critical tests failed.

This keyword can only be used in a suite teardown. Trying to use it
anywhere else results in an error.

Otherwise, this keyword works exactly like Run Keyword, see its
documentation for more details.

	
run_keyword_if_any_tests_failed(name, *args)

	Runs the given keyword with the given arguments, if one or more tests failed.

This keyword can only be used in a suite teardown. Trying to use it
anywhere else results in an error.

Otherwise, this keyword works exactly like Run Keyword, see its
documentation for more details.

	
run_keyword_if_test_failed(name, *args)

	Runs the given keyword with the given arguments, if the test failed.

This keyword can only be used in a test teardown. Trying to use it
anywhere else results in an error.

Otherwise, this keyword works exactly like Run Keyword, see its
documentation for more details.

	
run_keyword_if_test_passed(name, *args)

	Runs the given keyword with the given arguments, if the test passed.

This keyword can only be used in a test teardown. Trying to use it
anywhere else results in an error.

Otherwise, this keyword works exactly like Run Keyword, see its
documentation for more details.

	
run_keyword_if_timeout_occurred(name, *args)

	Runs the given keyword if either a test or a keyword timeout has occurred.

This keyword can only be used in a test teardown. Trying to use it
anywhere else results in an error.

Otherwise, this keyword works exactly like Run Keyword, see its
documentation for more details.

	
run_keyword_unless(condition, name, *args)

	Runs the given keyword with the given arguments if condition is false.

See Run Keyword If for more information and an example. Notice that
this keyword does not support ELSE or ELSE IF branches like
Run Keyword If does, though.

	
run_keywords(*keywords)

	Executes all the given keywords in a sequence.

This keyword is mainly useful in setups and teardowns when they need
to take care of multiple actions and creating a new higher level user
keyword would be an overkill.

By default all arguments are expected to be keywords to be executed.

Keywords can also be run with arguments using upper case AND as
a separator between keywords. The keywords are executed so that the
first argument is the first keyword and proceeding arguments until
the first AND are arguments to it. First argument after the first
AND is the second keyword and proceeding arguments until the next
AND are its arguments. And so on.

Notice that the AND control argument must be used explicitly and
cannot itself come from a variable. If you need to use literal AND
string as argument, you can either use variables or escape it with
a backslash like \AND.

	
set_global_variable(name, *values)

	Makes a variable available globally in all tests and suites.

Variables set with this keyword are globally available in all
subsequent test suites, test cases and user keywords. Also variables
in variable tables are overridden. Variables assigned locally based
on keyword return values or by using Set Test Variable and
Set Suite Variable override these variables in that scope, but
the global value is not changed in those cases.

In practice setting variables with this keyword has the same effect
as using command line options --variable and --variablefile.
Because this keyword can change variables everywhere, it should be
used with care.

See Set Suite Variable for more information and examples.

	
set_library_search_order(*search_order)

	Sets the resolution order to use when a name matches multiple keywords.

The library search order is used to resolve conflicts when a keyword
name in the test data matches multiple keywords. The first library
(or resource, see below) containing the keyword is selected and that
keyword implementation used. If the keyword is not found from any library
(or resource), test executing fails the same way as when the search
order is not set.

When this keyword is used, there is no need to use the long
LibraryName.Keyword Name notation. For example, instead of
having

you can have

This keyword can be used also to set the order of keywords in different
resource files. In this case resource names must be given without paths
or extensions like:

NOTE:
- The search order is valid only in the suite where this keywords is used.
- Keywords in resources always have higher priority than

keywords in libraries regardless the search order.

	The old order is returned and can be used to reset the search order later.

	Library and resource names in the search order are both case and space
insensitive.

	
set_local_variable(name, *values)

	Makes a variable available everywhere within the local scope.

Variables set with this keyword are available within the
local scope of the currently executed test case or in the local scope
of the keyword in which they are defined. For example, if you set a
variable in a user keyword, it is available only in that keyword. Other
test cases or keywords will not see variables set with this keyword.

This keyword is equivalent to a normal variable assignment based on a
keyword return value.

is equivalent with

This keyword will provide the option of setting local variables inside keywords
like Run Keyword If, Run Keyword And Return If, Run Keyword Unless
which until now was not possible by using Set Variable.

It will also be possible to use this keyword from external libraries
that want to set local variables.

New in Robot Framework 3.2.

	
set_log_level(level)

	Sets the log threshold to the specified level and returns the old level.

Messages below the level will not logged. The default logging level is
INFO, but it can be overridden with the command line option
--loglevel.

The available levels: TRACE, DEBUG, INFO (default), WARN, ERROR and NONE (no
logging).

	
set_suite_documentation(doc, append=False, top=False)

	Sets documentation for the current test suite.

By default the possible existing documentation is overwritten, but
this can be changed using the optional append argument similarly
as with Set Test Message keyword.

This keyword sets the documentation of the current suite by default.
If the optional top argument is given a true value (see Boolean
arguments), the documentation of the top level suite is altered
instead.

The documentation of the current suite is available as a built-in
variable ${SUITE DOCUMENTATION}.

	
set_suite_metadata(name, value, append=False, top=False)

	Sets metadata for the current test suite.

By default possible existing metadata values are overwritten, but
this can be changed using the optional append argument similarly
as with Set Test Message keyword.

This keyword sets the metadata of the current suite by default.
If the optional top argument is given a true value (see Boolean
arguments), the metadata of the top level suite is altered instead.

The metadata of the current suite is available as a built-in variable
${SUITE METADATA} in a Python dictionary. Notice that modifying this
variable directly has no effect on the actual metadata the suite has.

	
set_suite_variable(name, *values)

	Makes a variable available everywhere within the scope of the current suite.

Variables set with this keyword are available everywhere within the
scope of the currently executed test suite. Setting variables with this
keyword thus has the same effect as creating them using the Variable
table in the test data file or importing them from variable files.

Possible child test suites do not see variables set with this keyword
by default, but that can be controlled by using children=<option>
as the last argument. If the specified <option> given a true value
(see Boolean arguments), the variable is set also to the child
suites. Parent and sibling suites will never see variables set with
this keyword.

The name of the variable can be given either as a normal variable name
(e.g. ${NAME}) or in escaped format as \${NAME} or $NAME.
Variable value can be given using the same syntax as when variables
are created in the Variable table.

If a variable already exists within the new scope, its value will be
overwritten. Otherwise a new variable is created. If a variable already
exists within the current scope, the value can be left empty and the
variable within the new scope gets the value within the current scope.

To override an existing value with an empty value, use built-in
variables ${EMPTY}, @{EMPTY} or &{EMPTY}:

NOTE: If the variable has value which itself is a variable (escaped
or not), you must always use the escaped format to set the variable:

This limitation applies also to Set Test Variable, Set Global
Variable, Variable Should Exist, Variable Should Not Exist and
Get Variable Value keywords.

	
set_tags(*tags)

	Adds given tags for the current test or all tests in a suite.

When this keyword is used inside a test case, that test gets
the specified tags and other tests are not affected.

If this keyword is used in a suite setup, all test cases in
that suite, recursively, gets the given tags. It is a failure
to use this keyword in a suite teardown.

The current tags are available as a built-in variable @{TEST TAGS}.

See Remove Tags if you want to remove certain tags and Fail if
you want to fail the test case after setting and/or removing tags.

	
set_task_variable(name, *values)

	Makes a variable available everywhere within the scope of the current task.

This is an alias for Set Test Variable that is more applicable when
creating tasks, not tests. New in RF 3.1.

	
set_test_documentation(doc, append=False)

	Sets documentation for the current test case.

By default the possible existing documentation is overwritten, but
this can be changed using the optional append argument similarly
as with Set Test Message keyword.

The current test documentation is available as a built-in variable
${TEST DOCUMENTATION}. This keyword can not be used in suite
setup or suite teardown.

	
set_test_message(message, append=False)

	Sets message for the current test case.

If the optional append argument is given a true value (see Boolean
arguments), the given message is added after the possible earlier
message by joining the messages with a space.

In test teardown this keyword can alter the possible failure message,
but otherwise failures override messages set by this keyword. Notice
that in teardown the message is available as a built-in variable
${TEST MESSAGE}.

It is possible to use HTML format in the message by starting the message
with *HTML*.

This keyword can not be used in suite setup or suite teardown.

	
set_test_variable(name, *values)

	Makes a variable available everywhere within the scope of the current test.

Variables set with this keyword are available everywhere within the
scope of the currently executed test case. For example, if you set a
variable in a user keyword, it is available both in the test case level
and also in all other user keywords used in the current test. Other
test cases will not see variables set with this keyword.

See Set Suite Variable for more information and examples.

	
set_variable(*values)

	Returns the given values which can then be assigned to a variables.

This keyword is mainly used for setting scalar variables.
Additionally it can be used for converting a scalar variable
containing a list to a list variable or to multiple scalar variables.
It is recommended to use Create List when creating new lists.

Variables created with this keyword are available only in the
scope where they are created. See Set Global Variable,
Set Test Variable and Set Suite Variable for information on how to
set variables so that they are available also in a larger scope.

	
set_variable_if(condition, *values)

	Sets variable based on the given condition.

The basic usage is giving a condition and two values. The
given condition is first evaluated the same way as with the
Should Be True keyword. If the condition is true, then the
first value is returned, and otherwise the second value is
returned. The second value can also be omitted, in which case
it has a default value None. This usage is illustrated in the
examples below, where ${rc} is assumed to be zero.

It is also possible to have ‘else if’ support by replacing the
second value with another condition, and having two new values
after it. If the first condition is not true, the second is
evaluated and one of the values after it is returned based on
its truth value. This can be continued by adding more
conditions without a limit.

Use Get Variable Value if you need to set variables
dynamically based on whether a variable exist or not.

	
should_be_empty(item, msg=None)

	Verifies that the given item is empty.

The length of the item is got using the Get Length keyword. The
default error message can be overridden with the msg argument.

	
should_be_equal(first, second, msg=None, values=True, ignore_case=False, formatter='str')

	Fails if the given objects are unequal.

Optional msg, values and formatter arguments specify how
to construct the error message if this keyword fails:

	If msg is not given, the error message is <first> != <second>.

	If msg is given and values gets a true value (default),
the error message is <msg>: <first> != <second>.

	If msg is given and values gets a false value (see
Boolean arguments), the error message is simply <msg>.

	formatter controls how to format the values. Possible values are
str (default), repr and ascii, and they work similarly
as Python built-in functions with same names. See String
representations for more details.

If ignore_case is given a true value (see Boolean arguments) and
both arguments are strings, comparison is done case-insensitively.
If both arguments are multiline strings, this keyword uses
multiline string comparison.

ignore_case and formatter are new features in Robot Framework
3.0.1 and 3.1.2, respectively.

	
should_be_equal_as_integers(first, second, msg=None, values=True, base=None)

	Fails if objects are unequal after converting them to integers.

See Convert To Integer for information how to convert integers from
other bases than 10 using base argument or 0b/0o/0x prefixes.

See Should Be Equal for an explanation on how to override the default
error message with msg and values.

	
should_be_equal_as_numbers(first, second, msg=None, values=True, precision=6)

	Fails if objects are unequal after converting them to real numbers.

The conversion is done with Convert To Number keyword using the
given precision.

As discussed in the documentation of Convert To Number, machines
generally cannot store floating point numbers accurately. Because of
this limitation, comparing floats for equality is problematic and
a correct approach to use depends on the context. This keyword uses
a very naive approach of rounding the numbers before comparing them,
which is both prone to rounding errors and does not work very well if
numbers are really big or small. For more information about comparing
floats, and ideas on how to implement your own context specific
comparison algorithm, see
http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/.

If you want to avoid possible problems with floating point numbers,
you can implement custom keywords using Python’s
[http://docs.python.org/library/decimal.html|decimal] or
[http://docs.python.org/library/fractions.html|fractions] modules.

See Should Not Be Equal As Numbers for a negative version of this
keyword and Should Be Equal for an explanation on how to override
the default error message with msg and values.

	
should_be_equal_as_strings(first, second, msg=None, values=True, ignore_case=False, formatter='str')

	Fails if objects are unequal after converting them to strings.

See Should Be Equal for an explanation on how to override the default
error message with msg, values and formatter.

If ignore_case is given a true value (see Boolean arguments),
comparison is done case-insensitively. If both arguments are
multiline strings, this keyword uses multiline string comparison.

Strings are always [http://www.macchiato.com/unicode/nfc-faq|
NFC normalized].

ignore_case and formatter are new features in Robot Framework
3.0.1 and 3.1.2, respectively.

	
should_be_true(condition, msg=None)

	Fails if the given condition is not true.

If condition is a string (e.g. ${rc} < 10), it is evaluated as
a Python expression as explained in Evaluating expressions and the
keyword status is decided based on the result. If a non-string item is
given, the status is got directly from its
[http://docs.python.org/library/stdtypes.html#truth|truth value].

The default error message (<condition> should be true) is not very
informative, but it can be overridden with the msg argument.

Variables used like ${variable}, as in the examples above, are
replaced in the expression before evaluation. Variables are also
available in the evaluation namespace, and can be accessed using
special $variable syntax as explained in the Evaluating
expressions section.

Should Be True automatically imports Python’s
[http://docs.python.org/library/os.html|os] and
[http://docs.python.org/library/sys.html|sys] modules that contain
several useful attributes:

	
should_contain(container, item, msg=None, values=True, ignore_case=False)

	Fails if container does not contain item one or more times.

Works with strings, lists, and anything that supports Python’s in
operator.

See Should Be Equal for an explanation on how to override the default
error message with arguments msg and values.

If ignore_case is given a true value (see Boolean arguments) and
compared items are strings, it indicates that comparison should be
case-insensitive. If the container is a list-like object, string
items in it are compared case-insensitively. New option in Robot
Framework 3.0.1.

	
should_contain_any(container, *items, **configuration)

	Fails if container does not contain any of the *items.

Works with strings, lists, and anything that supports Python’s in
operator.

Supports additional configuration parameters msg, values
and ignore_case, which have exactly the same semantics as arguments
with same names have with Should Contain. These arguments must
always be given using name=value syntax after all items.

Note that possible equal signs in items must be escaped with
a backslash (e.g. foo\=bar) to avoid them to be passed in
as **configuration.

New in Robot Framework 3.0.1.

	
should_contain_x_times(container, item, count, msg=None, ignore_case=False)

	Fails if container does not contain item count times.

Works with strings, lists and all objects that Get Count works
with. The default error message can be overridden with msg and
the actual count is always logged.

If ignore_case is given a true value (see Boolean arguments) and
compared items are strings, it indicates that comparison should be
case-insensitive. If the container is a list-like object, string
items in it are compared case-insensitively. New option in Robot
Framework 3.0.1.

	
should_end_with(str1, str2, msg=None, values=True, ignore_case=False)

	Fails if the string str1 does not end with the string str2.

See Should Be Equal for an explanation on how to override the default
error message with msg and values, as well as for semantics
of the ignore_case option.

	
should_match(string, pattern, msg=None, values=True, ignore_case=False)

	Fails if the given string does not match the given pattern.

Pattern matching is similar as matching files in a shell with
*, ? and [chars] acting as wildcards. See the
Glob patterns section for more information.

See Should Be Equal for an explanation on how to override the default
error message with msg and values, as well as for semantics
of the ignore_case option.

	
should_match_regexp(string, pattern, msg=None, values=True)

	Fails if string does not match pattern as a regular expression.

See the Regular expressions section for more information about
regular expressions and how to use then in Robot Framework test data.

Notice that the given pattern does not need to match the whole string.
For example, the pattern ello matches the string Hello world!.
If a full match is needed, the ^ and $ characters can be used
to denote the beginning and end of the string, respectively.
For example, ^ello$ only matches the exact string ello.

Possible flags altering how the expression is parsed (e.g.
re.IGNORECASE, re.MULTILINE) must be embedded to the
pattern like (?im)pattern. The most useful flags are i
(case-insensitive), m (multiline mode), s (dotall mode)
and x (verbose).

If this keyword passes, it returns the portion of the string that
matched the pattern. Additionally, the possible captured groups are
returned.

See the Should Be Equal keyword for an explanation on how to override
the default error message with the msg and values arguments.

	
should_not_be_empty(item, msg=None)

	Verifies that the given item is not empty.

The length of the item is got using the Get Length keyword. The
default error message can be overridden with the msg argument.

	
should_not_be_equal(first, second, msg=None, values=True, ignore_case=False)

	Fails if the given objects are equal.

See Should Be Equal for an explanation on how to override the default
error message with msg and values.

If ignore_case is given a true value (see Boolean arguments) and
both arguments are strings, comparison is done case-insensitively.
New option in Robot Framework 3.0.1.

	
should_not_be_equal_as_integers(first, second, msg=None, values=True, base=None)

	Fails if objects are equal after converting them to integers.

See Convert To Integer for information how to convert integers from
other bases than 10 using base argument or 0b/0o/0x prefixes.

See Should Be Equal for an explanation on how to override the default
error message with msg and values.

See Should Be Equal As Integers for some usage examples.

	
should_not_be_equal_as_numbers(first, second, msg=None, values=True, precision=6)

	Fails if objects are equal after converting them to real numbers.

The conversion is done with Convert To Number keyword using the
given precision.

See Should Be Equal As Numbers for examples on how to use
precision and why it does not always work as expected. See also
Should Be Equal for an explanation on how to override the default
error message with msg and values.

	
should_not_be_equal_as_strings(first, second, msg=None, values=True, ignore_case=False)

	Fails if objects are equal after converting them to strings.

See Should Be Equal for an explanation on how to override the default
error message with msg and values.

If ignore_case is given a true value (see Boolean arguments),
comparison is done case-insensitively.

Strings are always [http://www.macchiato.com/unicode/nfc-faq|
NFC normalized].

ignore_case is a new feature in Robot Framework 3.0.1.

	
should_not_be_true(condition, msg=None)

	Fails if the given condition is true.

See Should Be True for details about how condition is evaluated
and how msg can be used to override the default error message.

	
should_not_contain(container, item, msg=None, values=True, ignore_case=False)

	Fails if container contains item one or more times.

Works with strings, lists, and anything that supports Python’s in
operator.

See Should Be Equal for an explanation on how to override the default
error message with arguments msg and values. ignore_case
has exactly the same semantics as with Should Contain.

	
should_not_contain_any(container, *items, **configuration)

	Fails if container contains one or more of the *items.

Works with strings, lists, and anything that supports Python’s in
operator.

Supports additional configuration parameters msg, values
and ignore_case, which have exactly the same semantics as arguments
with same names have with Should Contain. These arguments must
always be given using name=value syntax after all items.

Note that possible equal signs in items must be escaped with
a backslash (e.g. foo\=bar) to avoid them to be passed in
as **configuration.

New in Robot Framework 3.0.1.

	
should_not_end_with(str1, str2, msg=None, values=True, ignore_case=False)

	Fails if the string str1 ends with the string str2.

See Should Be Equal for an explanation on how to override the default
error message with msg and values, as well as for semantics
of the ignore_case option.

	
should_not_match(string, pattern, msg=None, values=True, ignore_case=False)

	Fails if the given string matches the given pattern.

Pattern matching is similar as matching files in a shell with
*, ? and [chars] acting as wildcards. See the
Glob patterns section for more information.

See Should Be Equal for an explanation on how to override the default
error message with msg and values, as well as for semantics
of the ignore_case option.

	
should_not_match_regexp(string, pattern, msg=None, values=True)

	Fails if string matches pattern as a regular expression.

See Should Match Regexp for more information about arguments.

	
should_not_start_with(str1, str2, msg=None, values=True, ignore_case=False)

	Fails if the string str1 starts with the string str2.

See Should Be Equal for an explanation on how to override the default
error message with msg and values, as well as for semantics
of the ignore_case option.

	
should_start_with(str1, str2, msg=None, values=True, ignore_case=False)

	Fails if the string str1 does not start with the string str2.

See Should Be Equal for an explanation on how to override the default
error message with msg and values, as well as for semantics
of the ignore_case option.

	
sleep(time_, reason=None)

	Pauses the test executed for the given time.

time may be either a number or a time string. Time strings are in
a format such as 1 day 2 hours 3 minutes 4 seconds 5milliseconds or
1d 2h 3m 4s 5ms, and they are fully explained in an appendix of
Robot Framework User Guide. Optional reason can be used to explain why
sleeping is necessary. Both the time slept and the reason are logged.

	
variable_should_exist(name, msg=None)

	Fails unless the given variable exists within the current scope.

The name of the variable can be given either as a normal variable name
(e.g. ${NAME}) or in escaped format (e.g. \${NAME}). Notice
that the former has some limitations explained in Set Suite Variable.

The default error message can be overridden with the msg argument.

See also Variable Should Not Exist and Keyword Should Exist.

	
variable_should_not_exist(name, msg=None)

	Fails if the given variable exists within the current scope.

The name of the variable can be given either as a normal variable name
(e.g. ${NAME}) or in escaped format (e.g. \${NAME}). Notice
that the former has some limitations explained in Set Suite Variable.

The default error message can be overridden with the msg argument.

See also Variable Should Exist and Keyword Should Exist.

	
wait_until_keyword_succeeds(retry, retry_interval, name, *args)

	Runs the specified keyword and retries if it fails.

name and args define the keyword that is executed similarly
as with Run Keyword. How long to retry running the keyword is
defined using retry argument either as timeout or count.
retry_interval is the time to wait before trying to run the
keyword again after the previous run has failed.

If retry is given as timeout, it must be in Robot Framework’s
time format (e.g. 1 minute, 2 min 3 s, 4.5) that is
explained in an appendix of Robot Framework User Guide. If it is
given as count, it must have times or x postfix (e.g.
5 times, 10 x). retry_interval must always be given in
Robot Framework’s time format.

If the keyword does not succeed regardless of retries, this keyword
fails. If the executed keyword passes, its return value is returned.

All normal failures are caught by this keyword. Errors caused by
invalid syntax, test or keyword timeouts, or fatal exceptions (caused
e.g. by Fatal Error) are not caught.

Running the same keyword multiple times inside this keyword can create
lots of output and considerably increase the size of the generated
output files. It is possible to remove unnecessary keywords from
the outputs using --RemoveKeywords WUKS command line option.

	
exception robot.libraries.BuiltIn.RobotNotRunningError

	Bases: exceptions.AttributeError

Used when something cannot be done because Robot is not running.

Based on AttributeError to be backwards compatible with RF < 2.8.5.
May later be based directly on Exception, so new code should except
this exception explicitly.

	
args

	

	
message

	

	
robot.libraries.BuiltIn.register_run_keyword(library, keyword, args_to_process=None, deprecation_warning=True)

	Registers ‘run keyword’ so that its arguments can be handled correctly.

NOTE: This API will change in RF 3.1. For more information see
https://github.com/robotframework/robotframework/issues/2190. Use with
deprecation_warning=False to avoid related deprecation warnings.

	Why is this method needed

Keywords running other keywords internally (normally using Run Keyword
or some variants of it in BuiltIn) must have the arguments meant to the
internally executed keyword handled specially to prevent processing them
twice. This is done ONLY for keywords registered using this method.

If the register keyword has same name as any keyword from Robot Framework
standard libraries, it can be used without getting warnings. Normally
there is a warning in such cases unless the keyword is used in long
format (e.g. MyLib.Keyword).

Keywords executed by registered run keywords can be tested in dry-run mode
if they have ‘name’ argument which takes the name of the executed keyword.

	How to use this method

library is the name of the library where the registered keyword is
implemented.

keyword can be either a function or method implementing the
keyword, or name of the implemented keyword as a string.

args_to_process is needed when keyword is given as a string, and it
defines how many of the arguments to the registered keyword must be
processed normally. When keyword is a method or function, this
information is got directly from it so that varargs (those specified with
syntax ‘*args’) are not processed but others are.

	Examples

from robot.libraries.BuiltIn import BuiltIn, register_run_keyword

	def my_run_keyword(name, *args):

	# do something
return BuiltIn().run_keyword(name, *args)

Either one of these works
register_run_keyword(__name__, my_run_keyword)
register_run_keyword(__name__, ‘My Run Keyword’, 1)

from robot.libraries.BuiltIn import BuiltIn, register_run_keyword

	class MyLibrary:

	
	def my_run_keyword_if(self, expression, name, *args):

	# do something
return BuiltIn().run_keyword_if(expression, name, *args)

Either one of these works
register_run_keyword(‘MyLibrary’, MyLibrary.my_run_keyword_if)
register_run_keyword(‘MyLibrary’, ‘my_run_keyword_if’, 2)

robot.libraries.Collections module

	
class robot.libraries.Collections.NotSet

	Bases: object

	
class robot.libraries.Collections.Collections

	Bases: robot.libraries.Collections._List, robot.libraries.Collections._Dictionary

A test library providing keywords for handling lists and dictionaries.

Collections is Robot Framework’s standard library that provides a
set of keywords for handling Python lists and dictionaries. This
library has keywords, for example, for modifying and getting
values from lists and dictionaries (e.g. Append To List, Get
From Dictionary) and for verifying their contents (e.g. Lists
Should Be Equal, Dictionary Should Contain Value).

== Table of contents ==

%TOC%

= Related keywords in BuiltIn =

Following keywords in the BuiltIn library can also be used with
lists and dictionaries:

= Using with list-like and dictionary-like objects =

List keywords that do not alter the given list can also be used
with tuples, and to some extend also with other iterables.
Convert To List can be used to convert tuples and other iterables
to Python list objects.

Similarly dictionary keywords can, for most parts, be used with other
mappings. Convert To Dictionary can be used if real Python dict
objects are needed.

= Boolean arguments =

Some keywords accept arguments that are handled as Boolean values true or
false. If such an argument is given as a string, it is considered false if
it is an empty string or equal to FALSE, NONE, NO, OFF or
0, case-insensitively. Keywords verifying something that allow dropping
actual and expected values from the possible error message also consider
string no values to be false. Other strings are considered true
regardless their value, and other argument types are tested using the same
[http://docs.python.org/library/stdtypes.html#truth|rules as in Python].

True examples:

False examples:

Considering string NONE false is new in Robot Framework 3.0.3 and
considering also OFF and 0 false is new in Robot Framework 3.1.

= Data in examples =

List related keywords use variables in format ${Lx} in their examples.
They mean lists with as many alphabetic characters as specified by x.
For example, ${L1} means ['a'] and ${L3} means
['a', 'b', 'c'].

Dictionary keywords use similar ${Dx} variables. For example, ${D1}
means {'a': 1} and ${D3} means {'a': 1, 'b': 2, 'c': 3}.

	
ROBOT_LIBRARY_SCOPE = 'GLOBAL'

	

	
ROBOT_LIBRARY_VERSION = '3.2.2'

	

	
should_contain_match(list, pattern, msg=None, case_insensitive=False, whitespace_insensitive=False)

	Fails if pattern is not found in list.

By default, pattern matching is similar to matching files in a shell
and is case-sensitive and whitespace-sensitive. In the pattern syntax,
* matches to anything and ? matches to any single character. You
can also prepend glob= to your pattern to explicitly use this pattern
matching behavior.

If you prepend regexp= to your pattern, your pattern will be used
according to the Python
[http://docs.python.org/library/re.html|re module] regular expression
syntax. Important note: Backslashes are an escape character, and must
be escaped with another backslash (e.g. regexp=\\d{6} to search for
\d{6}). See BuiltIn.Should Match Regexp for more details.

If case_insensitive is given a true value (see Boolean arguments),
the pattern matching will ignore case.

If whitespace_insensitive is given a true value (see Boolean
arguments), the pattern matching will ignore whitespace.

Non-string values in lists are ignored when matching patterns.

Use the msg argument to override the default error message.

See also Should Not Contain Match.

	
should_not_contain_match(list, pattern, msg=None, case_insensitive=False, whitespace_insensitive=False)

	Fails if pattern is found in list.

Exact opposite of Should Contain Match keyword. See that keyword
for information about arguments and usage in general.

	
get_matches(list, pattern, case_insensitive=False, whitespace_insensitive=False)

	Returns a list of matches to pattern in list.

For more information on pattern, case_insensitive, and
whitespace_insensitive, see Should Contain Match.

	
get_match_count(list, pattern, case_insensitive=False, whitespace_insensitive=False)

	Returns the count of matches to pattern in list.

For more information on pattern, case_insensitive, and
whitespace_insensitive, see Should Contain Match.

	
append_to_list(list_, *values)

	Adds values to the end of list.

	
combine_lists(*lists)

	Combines the given lists together and returns the result.

The given lists are not altered by this keyword.

	
convert_to_dictionary(item)

	Converts the given item to a Python dict type.

Mainly useful for converting other mappings to normal dictionaries.
This includes converting Robot Framework’s own DotDict instances
that it uses if variables are created using the &{var} syntax.

Use Create Dictionary from the BuiltIn library for constructing new
dictionaries.

New in Robot Framework 2.9.

	
convert_to_list(item)

	Converts the given item to a Python list type.

Mainly useful for converting tuples and other iterable to lists.
Use Create List from the BuiltIn library for constructing new lists.

	
copy_dictionary(dictionary, deepcopy=False)

	Returns a copy of the given dictionary.

The deepcopy argument controls should the returned dictionary be
a [https://docs.python.org/library/copy.html|shallow or deep copy].
By default returns a shallow copy, but that can be changed by giving
deepcopy a true value (see Boolean arguments). This is a new
option in Robot Framework 3.1.2. Earlier versions always returned
shallow copies.

The given dictionary is never altered by this keyword.

	
copy_list(list_, deepcopy=False)

	Returns a copy of the given list.

If the optional deepcopy is given a true value, the returned
list is a deep copy. New option in Robot Framework 3.1.2.

The given list is never altered by this keyword.

	
count_values_in_list(list_, value, start=0, end=None)

	Returns the number of occurrences of the given value in list.

The search can be narrowed to the selected sublist by the start and
end indexes having the same semantics as with Get Slice From List
keyword. The given list is never altered by this keyword.

	
dictionaries_should_be_equal(dict1, dict2, msg=None, values=True)

	Fails if the given dictionaries are not equal.

First the equality of dictionaries’ keys is checked and after that all
the key value pairs. If there are differences between the values, those
are listed in the error message. The types of the dictionaries do not
need to be same.

See Lists Should Be Equal for more information about configuring
the error message with msg and values arguments.

	
dictionary_should_contain_item(dictionary, key, value, msg=None)

	An item of key / value must be found in a dictionary.

Value is converted to unicode for comparison.

Use the msg argument to override the default error message.

	
dictionary_should_contain_key(dictionary, key, msg=None)

	Fails if key is not found from dictionary.

Use the msg argument to override the default error message.

	
dictionary_should_contain_sub_dictionary(dict1, dict2, msg=None, values=True)

	Fails unless all items in dict2 are found from dict1.

See Lists Should Be Equal for more information about configuring
the error message with msg and values arguments.

	
dictionary_should_contain_value(dictionary, value, msg=None)

	Fails if value is not found from dictionary.

Use the msg argument to override the default error message.

	
dictionary_should_not_contain_key(dictionary, key, msg=None)

	Fails if key is found from dictionary.

Use the msg argument to override the default error message.

	
dictionary_should_not_contain_value(dictionary, value, msg=None)

	Fails if value is found from dictionary.

Use the msg argument to override the default error message.

	
get_dictionary_items(dictionary, sort_keys=True)

	Returns items of the given dictionary as a list.

Uses Get Dictionary Keys to get keys and then returns corresponding
items. By default keys are sorted and items returned in that order,
but this can be changed by giving sort_keys a false value (see
Boolean arguments). Notice that with Python 3.5 and earlier
dictionary order is undefined unless using ordered dictionaries.

Items are returned as a flat list so that first item is a key,
second item is a corresponding value, third item is the second key,
and so on.

The given dictionary is never altered by this keyword.

sort_keys is a new option in Robot Framework 3.1.2. Earlier items
were always sorted based on keys.

	
get_dictionary_keys(dictionary, sort_keys=True)

	Returns keys of the given dictionary as a list.

By default keys are returned in sorted order (assuming they are
sortable), but they can be returned in the original order by giving
sort_keys a false value (see Boolean arguments). Notice that
with Python 3.5 and earlier dictionary order is undefined unless using
ordered dictionaries.

The given dictionary is never altered by this keyword.

sort_keys is a new option in Robot Framework 3.1.2. Earlier keys
were always sorted.

	
get_dictionary_values(dictionary, sort_keys=True)

	Returns values of the given dictionary as a list.

Uses Get Dictionary Keys to get keys and then returns corresponding
values. By default keys are sorted and values returned in that order,
but this can be changed by giving sort_keys a false value (see
Boolean arguments). Notice that with Python 3.5 and earlier
dictionary order is undefined unless using ordered dictionaries.

The given dictionary is never altered by this keyword.

sort_keys is a new option in Robot Framework 3.1.2. Earlier values
were always sorted based on keys.

	
get_from_dictionary(dictionary, key)

	Returns a value from the given dictionary based on the given key.

If the given key cannot be found from the dictionary, this
keyword fails.

The given dictionary is never altered by this keyword.

	
get_from_list(list_, index)

	Returns the value specified with an index from list.

The given list is never altered by this keyword.

Index 0 means the first position, 1 the second, and so on.
Similarly, -1 is the last position, -2 the second last, and so on.
Using an index that does not exist on the list causes an error.
The index can be either an integer or a string that can be converted
to an integer.

	
get_index_from_list(list_, value, start=0, end=None)

	Returns the index of the first occurrence of the value on the list.

The search can be narrowed to the selected sublist by the start and
end indexes having the same semantics as with Get Slice From List
keyword. In case the value is not found, -1 is returned. The given list
is never altered by this keyword.

	
get_slice_from_list(list_, start=0, end=None)

	Returns a slice of the given list between start and end indexes.

The given list is never altered by this keyword.

If both start and end are given, a sublist containing values
from start to end is returned. This is the same as
list[start:end] in Python. To get all items from the beginning,
use 0 as the start value, and to get all items until and including
the end, use None (default) as the end value.

Using start or end not found on the list is the same as using
the largest (or smallest) available index.

	
insert_into_list(list_, index, value)

	Inserts value into list to the position specified with index.

Index 0 adds the value into the first position, 1 to the second,
and so on. Inserting from right works with negative indices so that
-1 is the second last position, -2 third last, and so on. Use
Append To List to add items to the end of the list.

If the absolute value of the index is greater than
the length of the list, the value is added at the end
(positive index) or the beginning (negative index). An index
can be given either as an integer or a string that can be
converted to an integer.

	
keep_in_dictionary(dictionary, *keys)

	Keeps the given keys in the dictionary and removes all other.

If the given key cannot be found from the dictionary, it
is ignored.

	
list_should_contain_sub_list(list1, list2, msg=None, values=True)

	Fails if not all of the elements in list2 are found in list1.

The order of values and the number of values are not taken into
account.

See Lists Should Be Equal for more information about configuring
the error message with msg and values arguments.

	
list_should_contain_value(list_, value, msg=None)

	Fails if the value is not found from list.

Use the msg argument to override the default error message.

	
list_should_not_contain_duplicates(list_, msg=None)

	Fails if any element in the list is found from it more than once.

The default error message lists all the elements that were found
from the list multiple times, but it can be overridden by giving
a custom msg. All multiple times found items and their counts are
also logged.

This keyword works with all iterables that can be converted to a list.
The original iterable is never altered.

	
list_should_not_contain_value(list_, value, msg=None)

	Fails if the value is found from list.

Use the msg argument to override the default error message.

	
lists_should_be_equal(list1, list2, msg=None, values=True, names=None, ignore_order=False)

	Fails if given lists are unequal.

The keyword first verifies that the lists have equal lengths, and then
it checks are all their values equal. Possible differences between the
values are listed in the default error message like Index 4: ABC !=
Abc. The types of the lists do not need to be the same. For example,
Python tuple and list with same content are considered equal.

The error message can be configured using msg and values
arguments:
- If msg is not given, the default error message is used.
- If msg is given and values gets a value considered true

(see Boolean arguments), the error message starts with the given
msg followed by a newline and the default message.

	If msg is given and values is not given a true value,
the error message is just the given msg.

The optional names argument can be used for naming the indices
shown in the default error message. It can either be a list of names
matching the indices in the lists or a dictionary where keys are
indices that need to be named. It is not necessary to name all of
the indices. When using a dictionary, keys can be either integers
or strings that can be converted to integers.

If the items in index 2 would differ in the above examples, the error
message would contain a row like Index 2 (email): name@foo.com !=
name@bar.com.

The optional ignore_order argument can be used to ignore the order
of the elements in the lists. Using it requires items to be sortable.
This is new in Robot Framework 3.2.

	
log_dictionary(dictionary, level='INFO')

	Logs the size and contents of the dictionary using given level.

Valid levels are TRACE, DEBUG, INFO (default), and WARN.

If you only want to log the size, use keyword Get Length from
the BuiltIn library.

	
log_list(list_, level='INFO')

	Logs the length and contents of the list using given level.

Valid levels are TRACE, DEBUG, INFO (default), and WARN.

If you only want to the length, use keyword Get Length from
the BuiltIn library.

	
pop_from_dictionary(dictionary, key, default=)

	Pops the given key from the dictionary and returns its value.

By default the keyword fails if the given key cannot be found from
the dictionary. If optional default value is given, it will be
returned instead of failing.

New in Robot Framework 2.9.2.

	
remove_duplicates(list_)

	Returns a list without duplicates based on the given list.

Creates and returns a new list that contains all items in the given
list so that one item can appear only once. Order of the items in
the new list is the same as in the original except for missing
duplicates. Number of the removed duplicates is logged.

	
remove_from_dictionary(dictionary, *keys)

	Removes the given keys from the dictionary.

If the given key cannot be found from the dictionary, it
is ignored.

	
remove_from_list(list_, index)

	Removes and returns the value specified with an index from list.

Index 0 means the first position, 1 the second and so on.
Similarly, -1 is the last position, -2 the second last, and so on.
Using an index that does not exist on the list causes an error.
The index can be either an integer or a string that can be converted
to an integer.

	
remove_values_from_list(list_, *values)

	Removes all occurrences of given values from list.

It is not an error if a value does not exist in the list at all.

	
reverse_list(list_)

	Reverses the given list in place.

Note that the given list is changed and nothing is returned. Use
Copy List first, if you need to keep also the original order.

	
set_list_value(list_, index, value)

	Sets the value of list specified by index to the given value.

Index 0 means the first position, 1 the second and so on.
Similarly, -1 is the last position, -2 second last, and so on.
Using an index that does not exist on the list causes an error.
The index can be either an integer or a string that can be converted to
an integer.

	
set_to_dictionary(dictionary, *key_value_pairs, **items)

	Adds the given key_value_pairs and items to the dictionary.

Giving items as key_value_pairs means giving keys and values
as separate arguments:

The latter syntax is typically more convenient to use, but it has
a limitation that keys must be strings.

If given keys already exist in the dictionary, their values are updated.

	
sort_list(list_)

	Sorts the given list in place.

Sorting fails if items in the list are not comparable with each others.
On Python 2 most objects are comparable, but on Python 3 comparing,
for example, strings with numbers is not possible.

Note that the given list is changed and nothing is returned. Use
Copy List first, if you need to keep also the original order.

robot.libraries.DateTime module

A test library for handling date and time values.

DateTime is a Robot Framework standard library that supports creating and
converting date and time values (e.g. Get Current Date, Convert Time),
as well as doing simple calculations with them (e.g. Subtract Time From Date,
Add Time To Time). It supports dates and times in various formats, and can
also be used by other libraries programmatically.

== Table of contents ==

%TOC%

= Terminology =

In the context of this library, date and time generally have following
meanings:

	
	date: An entity with both date and time components but without any

	timezone information. For example, 2014-06-11 10:07:42.

	time: A time interval. For example, 1 hour 20 minutes or 01:20:00.

This terminology differs from what Python’s standard
[http://docs.python.org/library/datetime.html|datetime] module uses.
Basically its
[http://docs.python.org/library/datetime.html#datetime-objects|datetime] and
[http://docs.python.org/library/datetime.html#timedelta-objects|timedelta]
objects match date and time as defined by this library.

= Date formats =

Dates can given to and received from keywords in timestamp, custom
timestamp, Python datetime and epoch time formats. These formats are
discussed thoroughly in subsequent sections.

Input format is determined automatically based on the given date except when
using custom timestamps, in which case it needs to be given using
date_format argument. Default result format is timestamp, but it can
be overridden using result_format argument.

== Timestamp ==

If a date is given as a string, it is always considered to be a timestamp.
If no custom formatting is given using date_format argument, the timestamp
is expected to be in [http://en.wikipedia.org/wiki/ISO_8601|ISO 8601] like
format YYYY-MM-DD hh:mm:ss.mil, where any non-digit character can be used
as a separator or separators can be omitted altogether. Additionally,
only the date part is mandatory, all possibly missing time components are
considered to be zeros.

Dates can also be returned in the same YYYY-MM-DD hh:mm:ss.mil format by
using timestamp value with result_format argument. This is also the
default format that keywords returning dates use. Milliseconds can be excluded
using exclude_millis as explained in Millisecond handling section.

== Custom timestamp ==

It is possible to use custom timestamps in both input and output.
The custom format is same as accepted by Python’s
[http://docs.python.org/library/datetime.html#strftime-strptime-behavior|
datatime.strptime] function. For example, the default timestamp discussed
in the previous section would match %Y-%m-%d %H:%M:%S.%f.

When using a custom timestamp in input, it must be specified using
date_format argument. The actual input value must be a string that matches
the specified format exactly. When using a custom timestamp in output, it must
be given using result_format argument.

Notice that locale aware directives like %b do not work correctly with
Jython on non-English locales: http://bugs.jython.org/issue2285

== Python datetime ==

Python’s standard
[http://docs.python.org/library/datetime.html#datetime-objects|datetime]
objects can be used both in input and output. In input they are recognized
automatically, and in output it is possible to get them by giving datetime
value to result_format argument.

One nice benefit with datetime objects is that they have different time
components available as attributes that can be easily accessed using the
extended variable syntax.

== Epoch time ==

Epoch time is the time in seconds since the
[http://en.wikipedia.org/wiki/Unix_time|UNIX epoch] i.e. 00:00:00.000 (UTC)
1 January 1970. To give a date in epoch time, it must be given as a number
(integer or float), not as a string. To return a date in epoch time,
it is possible to use epoch value with result_format argument.
Epoch time is returned as a floating point number.

Notice that epoch time itself is independent on timezones and thus same
around the world at a certain time. What local time a certain epoch time
matches obviously then depends on the timezone. For example, examples below
were tested in Finland but verifications would fail on other timezones.

== Earliest supported date ==

The earliest date that is supported depends on the date format and to some
extend on the platform:

	Timestamps support year 1900 and above.

	Python datetime objects support year 1 and above.

	Epoch time supports 1970 and above on Windows with Python and IronPython.

	On other platforms epoch time supports 1900 and above or even earlier.

Prior to Robot Framework 2.9.2, all formats had same limitation as epoch time
has nowadays.

= Time formats =

Similarly as dates, times can be given to and received from keywords in
various different formats. Supported formats are number, time string
(verbose and compact), timer string and Python timedelta.

Input format for time is always determined automatically based on the input.
Result format is number by default, but it can be customised using
result_format argument.

== Number ==

Time given as a number is interpreted to be seconds. It can be given
either as an integer or a float, or it can be a string that can be converted
to a number.

To return a time as a number, result_format argument must have value
number, which is also the default. Returned number is always a float.

== Time string ==

Time strings are strings in format like 1 minute 42 seconds or 1min 42s.
The basic idea of this format is having first a number and then a text
specifying what time that number represents. Numbers can be either
integers or floating point numbers, the whole format is case and space
insensitive, and it is possible to add a minus prefix to specify negative
times. The available time specifiers are:

	days, day, d

	hours, hour, h

	minutes, minute, mins, min, m

	seconds, second, secs, sec, s

	milliseconds, millisecond, millis, ms

When returning a time string, it is possible to select between verbose
and compact representations using result_format argument. The verbose
format uses long specifiers day, hour, minute, second and
millisecond, and adds s at the end when needed. The compact format uses
shorter specifiers d, h, min, s and ms, and even drops
the space between the number and the specifier.

== Timer string ==

Timer string is a string given in timer like format hh:mm:ss.mil. In this
format both hour and millisecond parts are optional, leading and trailing
zeros can be left out when they are not meaningful, and negative times can
be represented by adding a minus prefix.

To return a time as timer string, result_format argument must be given
value timer. Timer strings are by default returned in full hh:mm:ss.mil
format, but milliseconds can be excluded using exclude_millis as explained
in Millisecond handling section.

== Python timedelta ==

Python’s standard
[http://docs.python.org/library/datetime.html#datetime.timedelta|timedelta]
objects are also supported both in input and in output. In input they are
recognized automatically, and in output it is possible to receive them by
giving timedelta value to result_format argument.

= Millisecond handling =

This library handles dates and times internally using the precision of the
given input. With timestamp, time string, and timer string result
formats seconds are, however, rounded to millisecond accuracy. Milliseconds
may also be included even if there would be none.

All keywords returning dates or times have an option to leave milliseconds out
by giving a true value to exclude_millis argument. If the argument is given
as a string, it is considered true unless it is empty or case-insensitively
equal to false, none or no. Other argument types are tested using
same [http://docs.python.org/library/stdtypes.html#truth|rules as in
Python]. Notice that prior to Robot Framework 2.9, all strings except
the empty string were considered true, and that considering none false is
new in Robot Framework 3.0.3.

When milliseconds are excluded, seconds in returned dates and times are
rounded to the nearest full second. With timestamp and timer string
result formats, milliseconds will also be removed from the returned string
altogether.

= Programmatic usage =

In addition to be used as normal library, this library is intended to
provide a stable API for other libraries to use if they want to support
same date and time formats as this library. All the provided keywords
are available as functions that can be easily imported:

Additionally helper classes Date and Time can be used directly:

	
robot.libraries.DateTime.get_current_date(time_zone='local', increment=0, result_format='timestamp', exclude_millis=False)

	Returns current local or UTC time with an optional increment.

Arguments:
- time_zone: Get the current time on this time zone. Currently only

local (default) and UTC are supported.

	
	increment: Optional time increment to add to the returned date in

	one of the supported time formats. Can be negative.

	result_format: Format of the returned date (see date formats).

	
	exclude_millis: When set to any true value, rounds and drops

	milliseconds as explained in millisecond handling.

	
robot.libraries.DateTime.convert_date(date, result_format='timestamp', exclude_millis=False, date_format=None)

	Converts between supported date formats.

Arguments:
- date: Date in one of the supported date formats.
- result_format: Format of the returned date.
- exclude_millis: When set to any true value, rounds and drops

milliseconds as explained in millisecond handling.

	date_format: Specifies possible custom timestamp format.

	
robot.libraries.DateTime.convert_time(time, result_format='number', exclude_millis=False)

	Converts between supported time formats.

Arguments:
- time: Time in one of the supported time formats.
- result_format: Format of the returned time.
- exclude_millis: When set to any true value, rounds and drops

milliseconds as explained in millisecond handling.

	
robot.libraries.DateTime.subtract_date_from_date(date1, date2, result_format='number', exclude_millis=False, date1_format=None, date2_format=None)

	Subtracts date from another date and returns time between.

Arguments:
- date1: Date to subtract another date from in one of the

supported date formats.

	
	date2: Date that is subtracted in one of the supported

	date formats.

	result_format: Format of the returned time (see time formats).

	
	exclude_millis: When set to any true value, rounds and drops

	milliseconds as explained in millisecond handling.

	date1_format: Possible custom timestamp format of date1.

	date2_format: Possible custom timestamp format of date2.

Examples:

	
robot.libraries.DateTime.add_time_to_date(date, time, result_format='timestamp', exclude_millis=False, date_format=None)

	Adds time to date and returns the resulting date.

Arguments:
- date: Date to add time to in one of the supported

date formats.

	
	time: Time that is added in one of the supported

	time formats.

	result_format: Format of the returned date.

	
	exclude_millis: When set to any true value, rounds and drops

	milliseconds as explained in millisecond handling.

	date_format: Possible custom timestamp format of date.

	
robot.libraries.DateTime.subtract_time_from_date(date, time, result_format='timestamp', exclude_millis=False, date_format=None)

	Subtracts time from date and returns the resulting date.

Arguments:
- date: Date to subtract time from in one of the supported

date formats.

	
	time: Time that is subtracted in one of the supported

	time formats.

	result_format: Format of the returned date.

	
	exclude_millis: When set to any true value, rounds and drops

	milliseconds as explained in millisecond handling.

	date_format: Possible custom timestamp format of date.

	
robot.libraries.DateTime.add_time_to_time(time1, time2, result_format='number', exclude_millis=False)

	Adds time to another time and returns the resulting time.

Arguments:
- time1: First time in one of the supported time formats.
- time2: Second time in one of the supported time formats.
- result_format: Format of the returned time.
- exclude_millis: When set to any true value, rounds and drops

milliseconds as explained in millisecond handling.

	
robot.libraries.DateTime.subtract_time_from_time(time1, time2, result_format='number', exclude_millis=False)

	Subtracts time from another time and returns the resulting time.

Arguments:
- time1: Time to subtract another time from in one of

the supported time formats.

	time2: Time to subtract in one of the supported time formats.

	result_format: Format of the returned time.

	
	exclude_millis: When set to any true value, rounds and drops

	milliseconds as explained in millisecond handling.

robot.libraries.Dialogs module

A test library providing dialogs for interacting with users.

Dialogs is Robot Framework’s standard library that provides means
for pausing the test execution and getting input from users. The
dialogs are slightly different depending on whether tests are run on
Python, IronPython or Jython but they provide the same functionality.

Long lines in the provided messages are wrapped automatically. If you want
to wrap lines manually, you can add newlines using the \n character
sequence.

The library has a known limitation that it cannot be used with timeouts
on Python. Support for IronPython was added in Robot Framework 2.9.2.

	
robot.libraries.Dialogs.pause_execution(message='Test execution paused. Press OK to continue.')

	Pauses test execution until user clicks Ok button.

message is the message shown in the dialog.

	
robot.libraries.Dialogs.execute_manual_step(message, default_error='')

	Pauses test execution until user sets the keyword status.

User can press either PASS or FAIL button. In the latter case execution
fails and an additional dialog is opened for defining the error message.

message is the instruction shown in the initial dialog and
default_error is the default value shown in the possible error message
dialog.

	
robot.libraries.Dialogs.get_value_from_user(message, default_value='', hidden=False)

	Pauses test execution and asks user to input a value.

Value typed by the user, or the possible default value, is returned.
Returning an empty value is fine, but pressing Cancel fails the keyword.

message is the instruction shown in the dialog and default_value is
the possible default value shown in the input field.

If hidden is given a true value, the value typed by the user is hidden.
hidden is considered true if it is a non-empty string not equal to
false, none or no, case-insensitively. If it is not a string,
its truth value is got directly using same
[http://docs.python.org/library/stdtypes.html#truth|rules as in Python].

Considering strings false and no to be false is new in RF 2.9
and considering string none false is new in RF 3.0.3.

	
robot.libraries.Dialogs.get_selection_from_user(message, *values)

	Pauses test execution and asks user to select a value.

The selected value is returned. Pressing Cancel fails the keyword.

message is the instruction shown in the dialog and values are
the options given to the user.

	
robot.libraries.Dialogs.get_selections_from_user(message, *values)

	Pauses test execution and asks user to select multiple values.

The selected values are returned as a list. Selecting no values is OK
and in that case the returned list is empty. Pressing Cancel fails
the keyword.

message is the instruction shown in the dialog and values are
the options given to the user.

New in Robot Framework 3.1.

robot.libraries.Easter module

	
robot.libraries.Easter.none_shall_pass(who)

	

robot.libraries.OperatingSystem module

	
class robot.libraries.OperatingSystem.OperatingSystem

	Bases: object

A test library providing keywords for OS related tasks.

OperatingSystem is Robot Framework’s standard library that
enables various operating system related tasks to be performed in
the system where Robot Framework is running. It can, among other
things, execute commands (e.g. Run), create and remove files and
directories (e.g. Create File, Remove Directory), check
whether files or directories exists or contain something
(e.g. File Should Exist, Directory Should Be Empty) and
manipulate environment variables (e.g. Set Environment Variable).

== Table of contents ==

%TOC%

= Path separators =

Because Robot Framework uses the backslash (\) as an escape character
in the test data, using a literal backslash requires duplicating it like
in c:\\path\\file.txt. That can be inconvenient especially with
longer Windows paths, and thus all keywords expecting paths as arguments
convert forward slashes to backslashes automatically on Windows. This also
means that paths like ${CURDIR}/path/file.txt are operating system
independent.

Notice that the automatic path separator conversion does not work if
the path is only a part of an argument like with Run and Start Process
keywords. In these cases the built-in variable ${/} that contains
\ or /, depending on the operating system, can be used instead.

= Pattern matching =

Some keywords allow their arguments to be specified as
[http://en.wikipedia.org/wiki/Glob_(programming)|glob patterns] where:

Unless otherwise noted, matching is case-insensitive on
case-insensitive operating systems such as Windows.

Starting from Robot Framework 2.9.1, globbing is not done if the given path
matches an existing file even if it would contain a glob pattern.

= Tilde expansion =

Paths beginning with ~ or ~username are expanded to the current or
specified user’s home directory, respectively. The resulting path is
operating system dependent, but typically e.g. ~/robot is expanded to
C:\Users\<user>\robot on Windows and /home/<user>/robot on
Unixes.

The ~username form does not work on Jython.

= Boolean arguments =

Some keywords accept arguments that are handled as Boolean values true or
false. If such an argument is given as a string, it is considered false if
it is an empty string or equal to FALSE, NONE, NO, OFF or
0, case-insensitively. Other strings are considered true regardless
their value, and other argument types are tested using the same
[http://docs.python.org/library/stdtypes.html#truth|rules as in Python].

True examples:

False examples:

Considering string NONE false is new in Robot Framework 3.0.3 and
considering also OFF and 0 false is new in Robot Framework 3.1.

= Example =

	
ROBOT_LIBRARY_SCOPE = 'GLOBAL'

	

	
ROBOT_LIBRARY_VERSION = '3.2.2'

	

	
run(command)

	Runs the given command in the system and returns the output.

The execution status of the command is not checked by this
keyword, and it must be done separately based on the returned
output. If the execution return code is needed, either Run
And Return RC or Run And Return RC And Output can be used.

The standard error stream is automatically redirected to the standard
output stream by adding 2>&1 after the executed command. This
automatic redirection is done only when the executed command does not
contain additional output redirections. You can thus freely forward
the standard error somewhere else, for example, like
my_command 2>stderr.txt.

The returned output contains everything written into the standard
output or error streams by the command (unless either of them
is redirected explicitly). Many commands add an extra newline
(\n) after the output to make it easier to read in the
console. To ease processing the returned output, this possible
trailing newline is stripped by this keyword.

TIP: Run Process keyword provided by the
[http://robotframework.org/robotframework/latest/libraries/Process.html|
Process library] supports better process configuration and is generally
recommended as a replacement for this keyword.

	
run_and_return_rc(command)

	Runs the given command in the system and returns the return code.

The return code (RC) is returned as a positive integer in
range from 0 to 255 as returned by the executed command. On
some operating systems (notable Windows) original return codes
can be something else, but this keyword always maps them to
the 0-255 range. Since the RC is an integer, it must be
checked e.g. with the keyword Should Be Equal As Integers
instead of Should Be Equal (both are built-in keywords).

See Run and Run And Return RC And Output if you need to get the
output of the executed command.

TIP: Run Process keyword provided by the
[http://robotframework.org/robotframework/latest/libraries/Process.html|
Process library] supports better process configuration and is generally
recommended as a replacement for this keyword.

	
run_and_return_rc_and_output(command)

	Runs the given command in the system and returns the RC and output.

The return code (RC) is returned similarly as with Run And Return RC
and the output similarly as with Run.

TIP: Run Process keyword provided by the
[http://robotframework.org/robotframework/latest/libraries/Process.html|
Process library] supports better process configuration and is generally
recommended as a replacement for this keyword.

	
get_file(path, encoding='UTF-8', encoding_errors='strict')

	Returns the contents of a specified file.

This keyword reads the specified file and returns the contents.
Line breaks in content are converted to platform independent form.
See also Get Binary File.

encoding defines the encoding of the file. The default value is
UTF-8, which means that UTF-8 and ASCII encoded files are read
correctly. In addition to the encodings supported by the underlying
Python implementation, the following special encoding values can be
used:

	SYSTEM: Use the default system encoding.

	CONSOLE: Use the console encoding. Outside Windows this is same
as the system encoding.

encoding_errors argument controls what to do if decoding some bytes
fails. All values accepted by decode method in Python are valid, but
in practice the following values are most useful:

	strict: Fail if characters cannot be decoded (default).

	ignore: Ignore characters that cannot be decoded.

	replace: Replace characters that cannot be decoded with
a replacement character.

Support for SYSTEM and CONSOLE encodings in Robot Framework 3.0.

	
get_binary_file(path)

	Returns the contents of a specified file.

This keyword reads the specified file and returns the contents as is.
See also Get File.

	
grep_file(path, pattern, encoding='UTF-8', encoding_errors='strict')

	Returns the lines of the specified file that match the pattern.

This keyword reads a file from the file system using the defined
path, encoding and encoding_errors similarly as Get File.
A difference is that only the lines that match the given pattern are
returned. Lines are returned as a single string catenated back together
with newlines and the number of matched lines is automatically logged.
Possible trailing newline is never returned.

A line matches if it contains the pattern anywhere in it and
it does not need to match the pattern fully. The pattern
matching syntax is explained in introduction, and in this
case matching is case-sensitive.

If more complex pattern matching is needed, it is possible to use
Get File in combination with String library keywords like Get
Lines Matching Regexp.

	
log_file(path, encoding='UTF-8', encoding_errors='strict')

	Wrapper for Get File that also logs the returned file.

The file is logged with the INFO level. If you want something else,
just use Get File and the built-in keyword Log with the desired
level.

See Get File for more information about encoding and
encoding_errors arguments.

	
should_exist(path, msg=None)

	Fails unless the given path (file or directory) exists.

The path can be given as an exact path or as a glob pattern.
The pattern matching syntax is explained in introduction.
The default error message can be overridden with the msg argument.

	
should_not_exist(path, msg=None)

	Fails if the given path (file or directory) exists.

The path can be given as an exact path or as a glob pattern.
The pattern matching syntax is explained in introduction.
The default error message can be overridden with the msg argument.

	
file_should_exist(path, msg=None)

	Fails unless the given path points to an existing file.

The path can be given as an exact path or as a glob pattern.
The pattern matching syntax is explained in introduction.
The default error message can be overridden with the msg argument.

	
file_should_not_exist(path, msg=None)

	Fails if the given path points to an existing file.

The path can be given as an exact path or as a glob pattern.
The pattern matching syntax is explained in introduction.
The default error message can be overridden with the msg argument.

	
directory_should_exist(path, msg=None)

	Fails unless the given path points to an existing directory.

The path can be given as an exact path or as a glob pattern.
The pattern matching syntax is explained in introduction.
The default error message can be overridden with the msg argument.

	
directory_should_not_exist(path, msg=None)

	Fails if the given path points to an existing file.

The path can be given as an exact path or as a glob pattern.
The pattern matching syntax is explained in introduction.
The default error message can be overridden with the msg argument.

	
wait_until_removed(path, timeout='1 minute')

	Waits until the given file or directory is removed.

The path can be given as an exact path or as a glob pattern.
The pattern matching syntax is explained in introduction.
If the path is a pattern, the keyword waits until all matching
items are removed.

The optional timeout can be used to control the maximum time of
waiting. The timeout is given as a timeout string, e.g. in a format
15 seconds, 1min 10s or just 10. The time string format is
described in an appendix of Robot Framework User Guide.

If the timeout is negative, the keyword is never timed-out. The keyword
returns immediately, if the path does not exist in the first place.

	
wait_until_created(path, timeout='1 minute')

	Waits until the given file or directory is created.

The path can be given as an exact path or as a glob pattern.
The pattern matching syntax is explained in introduction.
If the path is a pattern, the keyword returns when an item matching
it is created.

The optional timeout can be used to control the maximum time of
waiting. The timeout is given as a timeout string, e.g. in a format
15 seconds, 1min 10s or just 10. The time string format is
described in an appendix of Robot Framework User Guide.

If the timeout is negative, the keyword is never timed-out. The keyword
returns immediately, if the path already exists.

	
directory_should_be_empty(path, msg=None)

	Fails unless the specified directory is empty.

The default error message can be overridden with the msg argument.

	
directory_should_not_be_empty(path, msg=None)

	Fails if the specified directory is empty.

The default error message can be overridden with the msg argument.

	
file_should_be_empty(path, msg=None)

	Fails unless the specified file is empty.

The default error message can be overridden with the msg argument.

	
file_should_not_be_empty(path, msg=None)

	Fails if the specified directory is empty.

The default error message can be overridden with the msg argument.

	
create_file(path, content='', encoding='UTF-8')

	Creates a file with the given content and encoding.

If the directory where the file is created does not exist, it is
automatically created along with possible missing intermediate
directories. Possible existing file is overwritten.

On Windows newline characters (\n) in content are automatically
converted to Windows native newline sequence (\r\n).

See Get File for more information about possible encoding values,
including special values SYSTEM and CONSOLE.

Use Append To File if you want to append to an existing file
and Create Binary File if you need to write bytes without encoding.
File Should Not Exist can be used to avoid overwriting existing
files.

The support for SYSTEM and CONSOLE encodings is new in Robot
Framework 3.0. Automatically converting \n to \r\n on
Windows is new in Robot Framework 3.1.

	
create_binary_file(path, content)

	Creates a binary file with the given content.

If content is given as a Unicode string, it is first converted to bytes
character by character. All characters with ordinal below 256 can be
used and are converted to bytes with same values. Using characters
with higher ordinal is an error.

Byte strings, and possible other types, are written to the file as is.

If the directory for the file does not exist, it is created, along
with missing intermediate directories.

Use Create File if you want to create a text file using a certain
encoding. File Should Not Exist can be used to avoid overwriting
existing files.

	
append_to_file(path, content, encoding='UTF-8')

	Appends the given content to the specified file.

If the file exists, the given text is written to its end. If the file
does not exist, it is created.

Other than not overwriting possible existing files, this keyword works
exactly like Create File. See its documentation for more details
about the usage.

Note that special encodings SYSTEM and CONSOLE only work
with this keyword starting from Robot Framework 3.1.2.

	
remove_file(path)

	Removes a file with the given path.

Passes if the file does not exist, but fails if the path does
not point to a regular file (e.g. it points to a directory).

The path can be given as an exact path or as a glob pattern.
The pattern matching syntax is explained in introduction.
If the path is a pattern, all files matching it are removed.

	
remove_files(*paths)

	Uses Remove File to remove multiple files one-by-one.

	
empty_directory(path)

	Deletes all the content from the given directory.

Deletes both files and sub-directories, but the specified directory
itself if not removed. Use Remove Directory if you want to remove
the whole directory.

	
create_directory(path)

	Creates the specified directory.

Also possible intermediate directories are created. Passes if the
directory already exists, but fails if the path exists and is not
a directory.

	
remove_directory(path, recursive=False)

	Removes the directory pointed to by the given path.

If the second argument recursive is given a true value (see
Boolean arguments), the directory is removed recursively. Otherwise
removing fails if the directory is not empty.

If the directory pointed to by the path does not exist, the keyword
passes, but it fails, if the path points to a file.

	
copy_file(source, destination)

	Copies the source file into the destination.

Source must be a path to an existing file or a glob pattern (see
Pattern matching) that matches exactly one file. How the
destination is interpreted is explained below.

1) If the destination is an existing file, the source file is copied
over it.

2) If the destination is an existing directory, the source file is
copied into it. A possible file with the same name as the source is
overwritten.

3) If the destination does not exist and it ends with a path
separator (/ or \), it is considered a directory. That
directory is created and a source file copied into it.
Possible missing intermediate directories are also created.

4) If the destination does not exist and it does not end with a path
separator, it is considered a file. If the path to the file does not
exist, it is created.

The resulting destination path is returned since Robot Framework 2.9.2.

See also Copy Files, Move File, and Move Files.

	
move_file(source, destination)

	Moves the source file into the destination.

Arguments have exactly same semantics as with Copy File keyword.
Destination file path is returned since Robot Framework 2.9.2.

If the source and destination are on the same filesystem, rename
operation is used. Otherwise file is copied to the destination
filesystem and then removed from the original filesystem.

See also Move Files, Copy File, and Copy Files.

	
copy_files(*sources_and_destination)

	Copies specified files to the target directory.

Source files can be given as exact paths and as glob patterns (see
Pattern matching). At least one source must be given, but it is
not an error if it is a pattern that does not match anything.

Last argument must be the destination directory. If the destination
does not exist, it will be created.

See also Copy File, Move File, and Move Files.

	
move_files(*sources_and_destination)

	Moves specified files to the target directory.

Arguments have exactly same semantics as with Copy Files keyword.

See also Move File, Copy File, and Copy Files.

	
copy_directory(source, destination)

	Copies the source directory into the destination.

If the destination exists, the source is copied under it. Otherwise
the destination directory and the possible missing intermediate
directories are created.

	
move_directory(source, destination)

	Moves the source directory into a destination.

Uses Copy Directory keyword internally, and source and
destination arguments have exactly same semantics as with
that keyword.

	
get_environment_variable(name, default=None)

	Returns the value of an environment variable with the given name.

If no such environment variable is set, returns the default value, if
given. Otherwise fails the test case.

Returned variables are automatically decoded to Unicode using
the system encoding.

Note that you can also access environment variables directly using
the variable syntax %{ENV_VAR_NAME}.

	
set_environment_variable(name, value)

	Sets an environment variable to a specified value.

Values are converted to strings automatically. Set variables are
automatically encoded using the system encoding.

	
append_to_environment_variable(name, *values, **config)

	Appends given values to environment variable name.

If the environment variable already exists, values are added after it,
and otherwise a new environment variable is created.

Values are, by default, joined together using the operating system
path separator (; on Windows, : elsewhere). This can be changed
by giving a separator after the values like separator=value. No
other configuration parameters are accepted.

	
remove_environment_variable(*names)

	Deletes the specified environment variable.

Does nothing if the environment variable is not set.

It is possible to remove multiple variables by passing them to this
keyword as separate arguments.

	
environment_variable_should_be_set(name, msg=None)

	Fails if the specified environment variable is not set.

The default error message can be overridden with the msg argument.

	
environment_variable_should_not_be_set(name, msg=None)

	Fails if the specified environment variable is set.

The default error message can be overridden with the msg argument.

	
get_environment_variables()

	Returns currently available environment variables as a dictionary.

Both keys and values are decoded to Unicode using the system encoding.
Altering the returned dictionary has no effect on the actual environment
variables.

	
log_environment_variables(level='INFO')

	Logs all environment variables using the given log level.

Environment variables are also returned the same way as with
Get Environment Variables keyword.

	
join_path(base, *parts)

	Joins the given path part(s) to the given base path.

The path separator (/ or \) is inserted when needed and
the possible absolute paths handled as expected. The resulted
path is also normalized.

	${path} = ‘my/path’

	${p2} = ‘my/path’

	${p3} = ‘my/path/my/file.txt’

	${p4} = ‘/path’

	${p5} = ‘/my/path2’

	
join_paths(base, *paths)

	Joins given paths with base and returns resulted paths.

See Join Path for more information.

	@{p1} = [‘base/example’, ‘base/other’]

	@{p2} = [‘/example’, ‘/my/base/other’]

	@{p3} = [‘my/base/example/path’, ‘my/base/other’, ‘my/base/one/more’]

	
normalize_path(path, case_normalize=False)

	Normalizes the given path.

	Collapses redundant separators and up-level references.

	Converts / to \ on Windows.

	Replaces initial ~ or ~user by that user’s home directory.
The latter is not supported on Jython.

	If case_normalize is given a true value (see Boolean arguments)
on Windows, converts the path to all lowercase. New in Robot
Framework 3.1.

	${path1} = ‘abc’

	${path2} = ‘def’

	${path3} = ‘abc/def/ghi’

	${path4} = ‘/home/robot/stuff’

On Windows result would use \ instead of / and home directory
would be different.

	
split_path(path)

	Splits the given path from the last path separator (/ or \).

The given path is first normalized (e.g. a possible trailing
path separator is removed, special directories .. and .
removed). The parts that are split are returned as separate
components.

	${path1} = ‘abc’ & ${dir} = ‘def’

	${path2} = ‘abc/def’ & ${file} = ‘ghi.txt’

	${path3} = ‘def’ & ${d2} = ‘ghi’

	
split_extension(path)

	Splits the extension from the given path.

The given path is first normalized (e.g. possible trailing
path separators removed, special directories .. and .
removed). The base path and extension are returned as separate
components so that the dot used as an extension separator is
removed. If the path contains no extension, an empty string is
returned for it. Possible leading and trailing dots in the file
name are never considered to be extension separators.

	${path} = ‘file’ & ${ext} = ‘extension’

	${p2} = ‘path/file’ & ${e2} = ‘ext’

	${p3} = ‘path/file’ & ${e3} = ‘’

	${p4} = ‘p2/file’ & ${e4} = ‘ext’

	${p5} = ‘path/.file’ & ${e5} = ‘ext’

	${p6} = ‘path/.file’ & ${e6} = ‘’

	
get_modified_time(path, format='timestamp')

	Returns the last modification time of a file or directory.

How time is returned is determined based on the given format
string as follows. Note that all checks are case-insensitive.
Returned time is also automatically logged.

	If format contains the word epoch, the time is returned
in seconds after the UNIX epoch. The return value is always
an integer.

	If format contains any of the words year, month,
day, hour, min or sec, only the selected parts are
returned. The order of the returned parts is always the one
in the previous sentence and the order of the words in
format is not significant. The parts are returned as
zero-padded strings (e.g. May -> 05).

	Otherwise, and by default, the time is returned as a
timestamp string in the format 2006-02-24 15:08:31.

2006-03-29 15:06:21):
- ${time} = ‘2006-03-29 15:06:21’
- ${secs} = 1143637581
- ${year} = ‘2006’
- ${y} = ‘2006’ & ${d} = ‘29’
- @{time} = [‘2006’, ‘03’, ‘29’, ‘15’, ‘06’, ‘21’]

	
set_modified_time(path, mtime)

	Sets the file modification and access times.

Changes the modification and access times of the given file to
the value determined by mtime. The time can be given in
different formats described below. Note that all checks
involving strings are case-insensitive. Modified time can only
be set to regular files.

	If mtime is a number, or a string that can be converted
to a number, it is interpreted as seconds since the UNIX
epoch (1970-01-01 00:00:00 UTC). This documentation was
originally written about 1177654467 seconds after the epoch.

	If mtime is a timestamp, that time will be used. Valid
timestamp formats are YYYY-MM-DD hh:mm:ss and
YYYYMMDD hhmmss.

	If mtime is equal to NOW, the current local time is used.

	If mtime is equal to UTC, the current time in
[http://en.wikipedia.org/wiki/Coordinated_Universal_Time|UTC]
is used.

	If mtime is in the format like NOW - 1 day or UTC + 1
hour 30 min, the current local/UTC time plus/minus the time
specified with the time string is used. The time string format
is described in an appendix of Robot Framework User Guide.

	
get_file_size(path)

	Returns and logs file size as an integer in bytes.

	
list_directory(path, pattern=None, absolute=False)

	Returns and logs items in a directory, optionally filtered with pattern.

File and directory names are returned in case-sensitive alphabetical
order, e.g. ['A Name', 'Second', 'a lower case name', 'one more'].
Implicit directories . and .. are not returned. The returned
items are automatically logged.

File and directory names are returned relative to the given path
(e.g. 'file.txt') by default. If you want them be returned in
absolute format (e.g. '/home/robot/file.txt'), give the absolute
argument a true value (see Boolean arguments).

If pattern is given, only items matching it are returned. The pattern
matching syntax is explained in introduction, and in this case
matching is case-sensitive.

	
list_files_in_directory(path, pattern=None, absolute=False)

	Wrapper for List Directory that returns only files.

	
list_directories_in_directory(path, pattern=None, absolute=False)

	Wrapper for List Directory that returns only directories.

	
count_items_in_directory(path, pattern=None)

	Returns and logs the number of all items in the given directory.

The argument pattern has the same semantics as with List Directory
keyword. The count is returned as an integer, so it must be checked e.g.
with the built-in keyword Should Be Equal As Integers.

	
count_files_in_directory(path, pattern=None)

	Wrapper for Count Items In Directory returning only file count.

	
count_directories_in_directory(path, pattern=None)

	Wrapper for Count Items In Directory returning only directory count.

	
touch(path)

	Emulates the UNIX touch command.

Creates a file, if it does not exist. Otherwise changes its access and
modification times to the current time.

Fails if used with the directories or the parent directory of the given
file does not exist.

robot.libraries.Process module

	
class robot.libraries.Process.Process

	Bases: object

Robot Framework test library for running processes.

This library utilizes Python’s
[http://docs.python.org/library/subprocess.html|subprocess]
module and its
[http://docs.python.org/library/subprocess.html#popen-constructor|Popen]
class.

The library has following main usages:

	Running processes in system and waiting for their completion using
Run Process keyword.

	Starting processes on background using Start Process.

	Waiting started process to complete using Wait For Process or
stopping them with Terminate Process or Terminate All Processes.

== Table of contents ==

%TOC%

= Specifying command and arguments =

Both Run Process and Start Process accept the command to execute and
all arguments passed to the command as separate arguments. This makes usage
convenient and also allows these keywords to automatically escape possible
spaces and other special characters in commands and arguments. Notice that
if a command accepts options that themselves accept values, these options
and their values must be given as separate arguments.

When running processes in shell, it is also possible to give the whole
command to execute as a single string. The command can then contain
multiple commands to be run together. When using this approach, the caller
is responsible on escaping.

Possible non-string arguments are converted to strings automatically.

= Process configuration =

Run Process and Start Process keywords can be configured using
optional **configuration keyword arguments. Configuration arguments
must be given after other arguments passed to these keywords and must
use syntax like name=value. Available configuration arguments are
listed below and discussed further in sections afterwards.

Note that because **configuration is passed using name=value syntax,
possible equal signs in other arguments passed to Run Process and
Start Process must be escaped with a backslash like name\=value.
See Run Process for an example.

== Running processes in shell ==

The shell argument specifies whether to run the process in a shell or
not. By default shell is not used, which means that shell specific commands,
like copy and dir on Windows, are not available. You can, however,
run shell scripts and batch files without using a shell.

Giving the shell argument any non-false value, such as shell=True,
changes the program to be executed in a shell. It allows using the shell
capabilities, but can also make the process invocation operating system
dependent. Having a shell between the actually started process and this
library can also interfere communication with the process such as stopping
it and reading its outputs. Because of these problems, it is recommended
to use the shell only when absolutely necessary.

When using a shell it is possible to give the whole command to execute
as a single string. See Specifying command and arguments section for
examples and more details in general.

== Current working directory ==

By default the child process will be executed in the same directory
as the parent process, the process running tests, is executed. This
can be changed by giving an alternative location using the cwd argument.
Forward slashes in the given path are automatically converted to
backslashes on Windows.

Standard output and error streams, when redirected to files,
are also relative to the current working directory possibly set using
the cwd argument.

== Environment variables ==

By default the child process will get a copy of the parent process’s
environment variables. The env argument can be used to give the
child a custom environment as a Python dictionary. If there is a need
to specify only certain environment variable, it is possible to use the
env:<name>=<value> format to set or override only that named variables.
It is also possible to use these two approaches together.

== Standard output and error streams ==

By default processes are run so that their standard output and standard
error streams are kept in the memory. This works fine normally,
but if there is a lot of output, the output buffers may get full and
the program can hang. Additionally on Jython, everything written to
these in-memory buffers can be lost if the process is terminated.

To avoid the above mentioned problems, it is possible to use stdout
and stderr arguments to specify files on the file system where to
redirect the outputs. This can also be useful if other processes or
other keywords need to read or manipulate the outputs somehow.

Given stdout and stderr paths are relative to the current working
directory. Forward slashes in the given paths are automatically converted
to backslashes on Windows.

As a special feature, it is possible to redirect the standard error to
the standard output by using stderr=STDOUT.

Regardless are outputs redirected to files or not, they are accessible
through the result object returned when the process ends. Commands are
expected to write outputs using the console encoding, but output encoding
can be configured using the output_encoding argument if needed.

If you are not interested in outputs at all, you can explicitly ignore them
by using a special value DEVNULL both with stdout and stderr. For
example, stdout=DEVNULL is the same as redirecting output on console
with > /dev/null on UNIX-like operating systems or > NUL on Windows.
This way the process will not hang even if there would be a lot of output,
but naturally output is not available after execution either.

Support for the special value DEVNULL is new in Robot Framework 3.2.

Note that the created output files are not automatically removed after
the test run. The user is responsible to remove them if needed.

== Output encoding ==

Executed commands are, by default, expected to write outputs to the
standard output and error streams using the encoding used by the
system console. If the command uses some other encoding, that can be
configured using the output_encoding argument. This is especially
useful on Windows where the console uses a different encoding than rest
of the system, and many commands use the general system encoding instead
of the console encoding.

The value used with the output_encoding argument must be a valid
encoding and must match the encoding actually used by the command. As a
convenience, it is possible to use strings CONSOLE and SYSTEM
to specify that the console or system encoding is used, respectively.
If produced outputs use different encoding then configured, values got
through the result object will be invalid.

The support to set output encoding is new in Robot Framework 3.0.

== Alias ==

A custom name given to the process that can be used when selecting the
active process.

= Active process =

The test library keeps record which of the started processes is currently
active. By default it is latest process started with Start Process,
but Switch Process can be used to select a different one. Using
Run Process does not affect the active process.

The keywords that operate on started processes will use the active process
by default, but it is possible to explicitly select a different process
using the handle argument. The handle can be the identifier returned by
Start Process or an alias explicitly given to Start Process or
Run Process.

= Result object =

Run Process, Wait For Process and Terminate Process keywords return a
result object that contains information about the process execution as its
attributes. The same result object, or some of its attributes, can also
be get using Get Process Result keyword. Attributes available in the
object are documented in the table below.

= Boolean arguments =

Some keywords accept arguments that are handled as Boolean values true or
false. If such an argument is given as a string, it is considered false if
it is an empty string or equal to FALSE, NONE, NO, OFF or
0, case-insensitively. Other strings are considered true regardless
their value, and other argument types are tested using the same
[http://docs.python.org/library/stdtypes.html#truth|rules as in Python].

True examples:

False examples:

Considering string NONE false is new in Robot Framework 3.0.3 and
considering also OFF and 0 false is new in Robot Framework 3.1.

= Example =

	
ROBOT_LIBRARY_SCOPE = 'GLOBAL'

	

	
ROBOT_LIBRARY_VERSION = '3.2.2'

	

	
TERMINATE_TIMEOUT = 30

	

	
KILL_TIMEOUT = 10

	

	
run_process(command, *arguments, **configuration)

	Runs a process and waits for it to complete.

command and *arguments specify the command to execute and
arguments passed to it. See Specifying command and arguments for
more details.

**configuration contains additional configuration related to
starting processes and waiting for them to finish. See Process
configuration for more details about configuration related to starting
processes. Configuration related to waiting for processes consists of
timeout and on_timeout arguments that have same semantics as
with Wait For Process keyword. By default there is no timeout, and
if timeout is defined the default action on timeout is terminate.

Returns a result object containing information about the execution.

Note that possible equal signs in *arguments must be escaped
with a backslash (e.g. name\=value) to avoid them to be passed in
as **configuration.

This keyword does not change the active process.

	
start_process(command, *arguments, **configuration)

	Starts a new process on background.

See Specifying command and arguments and Process configuration
for more information about the arguments, and Run Process keyword
for related examples.

Makes the started process new active process. Returns an identifier
that can be used as a handle to activate the started process if needed.

Processes are started so that they create a new process group. This
allows sending signals to and terminating also possible child
processes. This is not supported on Jython.

	
is_process_running(handle=None)

	Checks is the process running or not.

If handle is not given, uses the current active process.

Returns True if the process is still running and False otherwise.

	
process_should_be_running(handle=None, error_message='Process is not running.')

	Verifies that the process is running.

If handle is not given, uses the current active process.

Fails if the process has stopped.

	
process_should_be_stopped(handle=None, error_message='Process is running.')

	Verifies that the process is not running.

If handle is not given, uses the current active process.

Fails if the process is still running.

	
wait_for_process(handle=None, timeout=None, on_timeout='continue')

	Waits for the process to complete or to reach the given timeout.

The process to wait for must have been started earlier with
Start Process. If handle is not given, uses the current
active process.

timeout defines the maximum time to wait for the process. It can be
given in
[http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#time-format|
various time formats] supported by Robot Framework, for example, 42,
42 s, or 1 minute 30 seconds. The timeout is ignored if it is
Python None (default), string NONE (case-insensitively), zero,
or negative.

on_timeout defines what to do if the timeout occurs. Possible values
and corresponding actions are explained in the table below. Notice
that reaching the timeout never fails the test.

See Terminate Process keyword for more details how processes are
terminated and killed.

If the process ends before the timeout or it is terminated or killed,
this keyword returns a result object containing information about
the execution. If the process is left running, Python None is
returned instead.

Ignoring timeout if it is string NONE, zero, or negative is new
in Robot Framework 3.2.

	
terminate_process(handle=None, kill=False)

	Stops the process gracefully or forcefully.

If handle is not given, uses the current active process.

By default first tries to stop the process gracefully. If the process
does not stop in 30 seconds, or kill argument is given a true value,
(see Boolean arguments) kills the process forcefully. Stops also all
the child processes of the originally started process.

Waits for the process to stop after terminating it. Returns a result
object containing information about the execution similarly as Wait
For Process.

On Unix-like machines graceful termination is done using TERM (15)
signal and killing using KILL (9). Use Send Signal To Process
instead if you just want to send either of these signals without
waiting for the process to stop.

On Windows graceful termination is done using CTRL_BREAK_EVENT
event and killing using Win32 API function TerminateProcess().

Limitations:
- Graceful termination is not supported on Windows when using Jython.

Process is killed instead.

	Stopping the whole process group is not supported when using Jython.

	On Windows forceful kill only stops the main process, not possible
child processes.

	
terminate_all_processes(kill=False)

	Terminates all still running processes started by this library.

This keyword can be used in suite teardown or elsewhere to make
sure that all processes are stopped,

By default tries to terminate processes gracefully, but can be
configured to forcefully kill them immediately. See Terminate Process
that this keyword uses internally for more details.

	
send_signal_to_process(signal, handle=None, group=False)

	Sends the given signal to the specified process.

If handle is not given, uses the current active process.

Signal can be specified either as an integer as a signal name. In the
latter case it is possible to give the name both with or without SIG
prefix, but names are case-sensitive. For example, all the examples
below send signal INT (2):

This keyword is only supported on Unix-like machines, not on Windows.
What signals are supported depends on the system. For a list of
existing signals on your system, see the Unix man pages related to
signal handling (typically man signal or man 7 signal).

By default sends the signal only to the parent process, not to possible
child processes started by it. Notice that when running processes in
shell, the shell is the parent process and it depends on the system
does the shell propagate the signal to the actual started process.

To send the signal to the whole process group, group argument can
be set to any true value (see Boolean arguments). This is not
supported by Jython, however.

	
get_process_id(handle=None)

	Returns the process ID (pid) of the process as an integer.

If handle is not given, uses the current active process.

Notice that the pid is not the same as the handle returned by
Start Process that is used internally by this library.

	
get_process_object(handle=None)

	Return the underlying subprocess.Popen object.

If handle is not given, uses the current active process.

	
get_process_result(handle=None, rc=False, stdout=False, stderr=False, stdout_path=False, stderr_path=False)

	Returns the specified result object or some of its attributes.

The given handle specifies the process whose results should be
returned. If no handle is given, results of the current active
process are returned. In either case, the process must have been
finishes before this keyword can be used. In practice this means
that processes started with Start Process must be finished either
with Wait For Process or Terminate Process before using this
keyword.

If no other arguments than the optional handle are given, a whole
result object is returned. If one or more of the other arguments
are given any true value, only the specified attributes of the
result object are returned. These attributes are always returned
in the same order as arguments are specified in the keyword signature.
See Boolean arguments section for more details about true and false
values.

Although getting results of a previously executed process can be handy
in general, the main use case for this keyword is returning results
over the remote library interface. The remote interface does not
support returning the whole result object, but individual attributes
can be returned without problems.

	
switch_process(handle)

	Makes the specified process the current active process.

The handle can be an identifier returned by Start Process or
the alias given to it explicitly.

	
split_command_line(args, escaping=False)

	Splits command line string into a list of arguments.

String is split from spaces, but argument surrounded in quotes may
contain spaces in them. If escaping is given a true value, then
backslash is treated as an escape character. It can escape unquoted
spaces, quotes inside quotes, and so on, but it also requires using
double backslashes when using Windows paths.

New in Robot Framework 2.9.2.

	
join_command_line(*args)

	Joins arguments into one command line string.

In resulting command line string arguments are delimited with a space,
arguments containing spaces are surrounded with quotes, and possible
quotes are escaped with a backslash.

If this keyword is given only one argument and that is a list like
object, then the values of that list are joined instead.

New in Robot Framework 2.9.2.

	
class robot.libraries.Process.ExecutionResult(process, stdout, stderr, rc=None, output_encoding=None)

	Bases: object

	
stdout

	

	
stderr

	

	
close_streams()

	

	
class robot.libraries.Process.ProcessConfiguration(cwd=None, shell=False, stdout=None, stderr=None, output_encoding='CONSOLE', alias=None, env=None, **rest)

	Bases: object

	
get_command(command, arguments)

	

	
popen_config

	

	
result_config

	

robot.libraries.Remote module

	
class robot.libraries.Remote.Remote(uri='http://127.0.0.1:8270', timeout=None)

	Bases: object

Connects to a remote server at uri.

Optional timeout can be used to specify a timeout to wait when
initially connecting to the server and if a connection accidentally
closes. Timeout can be given as seconds (e.g. 60) or using
Robot Framework time format (e.g. 60s, 2 minutes 10 seconds).

The default timeout is typically several minutes, but it depends on
the operating system and its configuration. Notice that setting
a timeout that is shorter than keyword execution time will interrupt
the keyword.

Timeouts do not work with IronPython.

	
ROBOT_LIBRARY_SCOPE = 'TEST SUITE'

	

	
get_keyword_names(attempts=2)

	

	
get_keyword_arguments(name)

	

	
get_keyword_types(name)

	

	
get_keyword_tags(name)

	

	
get_keyword_documentation(name)

	

	
run_keyword(name, args, kwargs)

	

	
class robot.libraries.Remote.ArgumentCoercer

	Bases: object

	
binary = <_sre.SRE_Pattern object>

	

	
non_ascii = <_sre.SRE_Pattern object>

	

	
coerce(argument)

	

	
class robot.libraries.Remote.RemoteResult(result)

	Bases: object

	
class robot.libraries.Remote.XmlRpcRemoteClient(uri, timeout=None)

	Bases: object

	
get_keyword_names()

	

	
get_keyword_arguments(name)

	

	
get_keyword_types(name)

	

	
get_keyword_tags(name)

	

	
get_keyword_documentation(name)

	

	
run_keyword(name, args, kwargs)

	

	
class robot.libraries.Remote.TimeoutHTTPTransport(use_datetime=0, timeout=None)

	Bases: xmlrpclib.Transport

	
make_connection(host)

	

	
accept_gzip_encoding = True

	

	
close()

	

	
encode_threshold = None

	

	
get_host_info(host)

	

	
getparser()

	

	
parse_response(response)

	

	
request(host, handler, request_body, verbose=0)

	

	
send_content(connection, request_body)

	

	
send_host(connection, host)

	

	
send_request(connection, handler, request_body)

	

	
send_user_agent(connection)

	

	
single_request(host, handler, request_body, verbose=0)

	

	
user_agent = 'xmlrpclib.py/1.0.1 (by www.pythonware.com)'

	

	
class robot.libraries.Remote.TimeoutHTTPSTransport(use_datetime=0, timeout=None)

	Bases: robot.libraries.Remote.TimeoutHTTPTransport

	
accept_gzip_encoding = True

	

	
close()

	

	
encode_threshold = None

	

	
get_host_info(host)

	

	
getparser()

	

	
make_connection(host)

	

	
parse_response(response)

	

	
request(host, handler, request_body, verbose=0)

	

	
send_content(connection, request_body)

	

	
send_host(connection, host)

	

	
send_request(connection, handler, request_body)

	

	
send_user_agent(connection)

	

	
single_request(host, handler, request_body, verbose=0)

	

	
user_agent = 'xmlrpclib.py/1.0.1 (by www.pythonware.com)'

	

robot.libraries.Reserved module

	
class robot.libraries.Reserved.Reserved

	Bases: object

	
ROBOT_LIBRARY_SCOPE = 'GLOBAL'

	

	
get_keyword_names()

	

	
run_keyword(name, args)

	

robot.libraries.Screenshot module

	
class robot.libraries.Screenshot.Screenshot(screenshot_directory=None, screenshot_module=None)

	Bases: object

Test library for taking screenshots on the machine where tests are run.

Notice that successfully taking screenshots requires tests to be run with
a physical or virtual display.

== Table of contents ==

%TOC%

= Using with Python =

How screenshots are taken when using Python depends on the operating
system. On OSX screenshots are taken using the built-in screencapture
utility. On other operating systems you need to have one of the following
tools or Python modules installed. You can specify the tool/module to use
when importing the library. If no tool or module is specified, the first
one found will be used.

	wxPython :: http://wxpython.org :: Required also by RIDE so many Robot
Framework users already have this module installed.

	PyGTK :: http://pygtk.org :: This module is available by default on most
Linux distributions.

	Pillow :: http://python-pillow.github.io ::
Only works on Windows. Also the original PIL package is supported.

	Scrot :: http://en.wikipedia.org/wiki/Scrot :: Not used on Windows.
Install with apt-get install scrot or similar.

Using screencapture on OSX and specifying explicit screenshot module
are new in Robot Framework 2.9.2. The support for using scrot is new
in Robot Framework 3.0.

= Using with Jython and IronPython =

With Jython and IronPython this library uses APIs provided by JVM and .NET
platforms, respectively. These APIs are always available and thus no
external modules are needed.

= Where screenshots are saved =

By default screenshots are saved into the same directory where the Robot
Framework log file is written. If no log is created, screenshots are saved
into the directory where the XML output file is written.

It is possible to specify a custom location for screenshots using
screenshot_directory argument when importing the library and
using Set Screenshot Directory keyword during execution. It is also
possible to save screenshots using an absolute path.

= ScreenCapLibrary =

[https://github.com/mihaiparvu/ScreenCapLibrary|ScreenCapLibrary] is an
external Robot Framework library that can be used as an alternative,
which additionally provides support for multiple formats, adjusting the
quality, using GIFs and video capturing.

Configure where screenshots are saved.

If screenshot_directory is not given, screenshots are saved into
same directory as the log file. The directory can also be set using
Set Screenshot Directory keyword.

screenshot_module specifies the module or tool to use when using
this library on Python outside OSX. Possible values are wxPython,
PyGTK, PIL and scrot, case-insensitively. If no value is
given, the first module/tool found is used in that order. See Using
with Python for more information.

Specifying explicit screenshot module is new in Robot Framework 2.9.2.

	
ROBOT_LIBRARY_SCOPE = 'TEST SUITE'

	

	
ROBOT_LIBRARY_VERSION = '3.2.2'

	

	
set_screenshot_directory(path)

	Sets the directory where screenshots are saved.

It is possible to use / as a path separator in all operating
systems. Path to the old directory is returned.

The directory can also be set in importing.

	
take_screenshot(name='screenshot', width='800px')

	Takes a screenshot in JPEG format and embeds it into the log file.

Name of the file where the screenshot is stored is derived from the
given name. If the name ends with extension .jpg or
.jpeg, the screenshot will be stored with that exact name.
Otherwise a unique name is created by adding an underscore, a running
index and an extension to the name.

The name will be interpreted to be relative to the directory where
the log file is written. It is also possible to use absolute paths.
Using / as a path separator works in all operating systems.

width specifies the size of the screenshot in the log file.

The path where the screenshot is saved is returned.

	
take_screenshot_without_embedding(name='screenshot')

	Takes a screenshot and links it from the log file.

This keyword is otherwise identical to Take Screenshot but the saved
screenshot is not embedded into the log file. The screenshot is linked
so it is nevertheless easily available.

	
class robot.libraries.Screenshot.ScreenshotTaker(module_name=None)

	Bases: object

	
test(path=None)

	

robot.libraries.String module

	
class robot.libraries.String.String

	Bases: object

A test library for string manipulation and verification.

String is Robot Framework’s standard library for manipulating
strings (e.g. Replace String Using Regexp, Split To Lines) and
verifying their contents (e.g. Should Be String).

Following keywords from BuiltIn library can also be used with strings:

	Catenate

	Get Length

	Length Should Be

	Should (Not) Be Empty

	Should (Not) Be Equal (As Strings/Integers/Numbers)

	Should (Not) Match (Regexp)

	Should (Not) Contain

	Should (Not) Start With

	Should (Not) End With

	Convert To String

	Convert To Bytes

	
ROBOT_LIBRARY_SCOPE = 'GLOBAL'

	

	
ROBOT_LIBRARY_VERSION = '3.2.2'

	

	
convert_to_lower_case(string)

	Converts string to lower case.

Uses Python’s standard
[https://docs.python.org/library/stdtypes.html#str.lower|lower()]
method.

	
convert_to_upper_case(string)

	Converts string to upper case.

Uses Python’s standard
[https://docs.python.org/library/stdtypes.html#str.upper|upper()]
method.

	
convert_to_title_case(string, exclude=None)

	Converts string to title case.

Uses the following algorithm:

	Split the string to words from whitespace characters (spaces,
newlines, etc.).

	Exclude words that are not all lower case. This preserves,
for example, “OK” and “iPhone”.

	Exclude also words listed in the optional exclude argument.

	Title case the first alphabetical character of each word that has
not been excluded.

	Join all words together so that original whitespace is preserved.

Explicitly excluded words can be given as a list or as a string with
words separated by a comma and an optional space. Excluded words are
actually considered to be regular expression patterns, so it is
possible to use something like “example[.!?]?” to match the word
“example” on it own and also if followed by “.”, “!” or “?”.
See BuiltIn.Should Match Regexp for more information about Python
regular expression syntax in general and how to use it in Robot
Framework test data in particular.

The reason this keyword does not use Python’s standard
[https://docs.python.org/library/stdtypes.html#str.title|title()]
method is that it can yield undesired results, for example, if
strings contain upper case letters or special characters like
apostrophes. It would, for example, convert “it’s an OK iPhone”
to “It’S An Ok Iphone”.

New in Robot Framework 3.2.

	
encode_string_to_bytes(string, encoding, errors='strict')

	Encodes the given Unicode string to bytes using the given encoding.

errors argument controls what to do if encoding some characters fails.
All values accepted by encode method in Python are valid, but in
practice the following values are most useful:

	strict: fail if characters cannot be encoded (default)

	ignore: ignore characters that cannot be encoded

	replace: replace characters that cannot be encoded with
a replacement character

Use Convert To Bytes in BuiltIn if you want to create bytes based
on character or integer sequences. Use Decode Bytes To String if you
need to convert byte strings to Unicode strings and Convert To String
in BuiltIn if you need to convert arbitrary objects to Unicode.

	
decode_bytes_to_string(bytes, encoding, errors='strict')

	Decodes the given bytes to a Unicode string using the given encoding.

errors argument controls what to do if decoding some bytes fails.
All values accepted by decode method in Python are valid, but in
practice the following values are most useful:

	strict: fail if characters cannot be decoded (default)

	ignore: ignore characters that cannot be decoded

	replace: replace characters that cannot be decoded with
a replacement character

Use Encode String To Bytes if you need to convert Unicode strings to
byte strings, and Convert To String in BuiltIn if you need to
convert arbitrary objects to Unicode strings.

	
format_string(template, *positional, **named)

	Formats a template using the given positional and named arguments.

The template can be either be a string or an absolute path to
an existing file. In the latter case the file is read and its contents
are used as the template. If the template file contains non-ASCII
characters, it must be encoded using UTF-8.

The template is formatted using Python’s
[https://docs.python.org/library/string.html#format-string-syntax|format
string syntax]. Placeholders are marked using {} with possible
field name and format specification inside. Literal curly braces
can be inserted by doubling them like {{ and }}.

New in Robot Framework 3.1.

	
get_line_count(string)

	Returns and logs the number of lines in the given string.

	
split_to_lines(string, start=0, end=None)

	Splits the given string to lines.

It is possible to get only a selection of lines from start
to end so that start index is inclusive and end is
exclusive. Line numbering starts from 0, and it is possible to
use negative indices to refer to lines from the end.

Lines are returned without the newlines. The number of
returned lines is automatically logged.

Use Get Line if you only need to get a single line.

	
get_line(string, line_number)

	Returns the specified line from the given string.

Line numbering starts from 0 and it is possible to use
negative indices to refer to lines from the end. The line is
returned without the newline character.

Use Split To Lines if all lines are needed.

	
get_lines_containing_string(string, pattern, case_insensitive=False)

	Returns lines of the given string that contain the pattern.

The pattern is always considered to be a normal string, not a glob
or regexp pattern. A line matches if the pattern is found anywhere
on it.

The match is case-sensitive by default, but giving case_insensitive
a true value makes it case-insensitive. The value is considered true
if it is a non-empty string that is not equal to false, none or
no. If the value is not a string, its truth value is got directly
in Python. Considering none false is new in RF 3.0.3.

Lines are returned as one string catenated back together with
newlines. Possible trailing newline is never returned. The
number of matching lines is automatically logged.

See Get Lines Matching Pattern and Get Lines Matching Regexp
if you need more complex pattern matching.

	
get_lines_matching_pattern(string, pattern, case_insensitive=False)

	Returns lines of the given string that match the pattern.

The pattern is a _glob pattern_ where:

A line matches only if it matches the pattern fully.

The match is case-sensitive by default, but giving case_insensitive
a true value makes it case-insensitive. The value is considered true
if it is a non-empty string that is not equal to false, none or
no. If the value is not a string, its truth value is got directly
in Python. Considering none false is new in RF 3.0.3.

Lines are returned as one string catenated back together with
newlines. Possible trailing newline is never returned. The
number of matching lines is automatically logged.

See Get Lines Matching Regexp if you need more complex
patterns and Get Lines Containing String if searching
literal strings is enough.

	
get_lines_matching_regexp(string, pattern, partial_match=False)

	Returns lines of the given string that match the regexp pattern.

See BuiltIn.Should Match Regexp for more information about
Python regular expression syntax in general and how to use it
in Robot Framework test data in particular.

By default lines match only if they match the pattern fully, but
partial matching can be enabled by giving the partial_match
argument a true value. The value is considered true
if it is a non-empty string that is not equal to false, none or
no. If the value is not a string, its truth value is got directly
in Python. Considering none false is new in RF 3.0.3.

If the pattern is empty, it matches only empty lines by default.
When partial matching is enabled, empty pattern matches all lines.

Notice that to make the match case-insensitive, you need to prefix
the pattern with case-insensitive flag (?i).

Lines are returned as one string concatenated back together with
newlines. Possible trailing newline is never returned. The
number of matching lines is automatically logged.

See Get Lines Matching Pattern and Get Lines Containing
String if you do not need full regular expression powers (and
complexity).

	partial_match argument is new in Robot Framework 2.9. In earlier

	versions exact match was always required.

	
get_regexp_matches(string, pattern, *groups)

	Returns a list of all non-overlapping matches in the given string.

string is the string to find matches from and pattern is the
regular expression. See BuiltIn.Should Match Regexp for more
information about Python regular expression syntax in general and how
to use it in Robot Framework test data in particular.

If no groups are used, the returned list contains full matches. If one
group is used, the list contains only contents of that group. If
multiple groups are used, the list contains tuples that contain
individual group contents. All groups can be given as indexes (starting
from 1) and named groups also as names.

New in Robot Framework 2.9.

	
replace_string(string, search_for, replace_with, count=-1)

	Replaces search_for in the given string with replace_with.

search_for is used as a literal string. See Replace String
Using Regexp if more powerful pattern matching is needed.
If you need to just remove a string see Remove String.

If the optional argument count is given, only that many
occurrences from left are replaced. Negative count means
that all occurrences are replaced (default behaviour) and zero
means that nothing is done.

A modified version of the string is returned and the original
string is not altered.

	
replace_string_using_regexp(string, pattern, replace_with, count=-1)

	Replaces pattern in the given string with replace_with.

This keyword is otherwise identical to Replace String, but
the pattern to search for is considered to be a regular
expression. See BuiltIn.Should Match Regexp for more
information about Python regular expression syntax in general
and how to use it in Robot Framework test data in particular.

If you need to just remove a string see Remove String Using Regexp.

	
remove_string(string, *removables)

	Removes all removables from the given string.

removables are used as literal strings. Each removable will be
matched to a temporary string from which preceding removables have
been already removed. See second example below.

Use Remove String Using Regexp if more powerful pattern matching is
needed. If only a certain number of matches should be removed,
Replace String or Replace String Using Regexp can be used.

A modified version of the string is returned and the original
string is not altered.

	
remove_string_using_regexp(string, *patterns)

	Removes patterns from the given string.

This keyword is otherwise identical to Remove String, but
the patterns to search for are considered to be a regular
expression. See Replace String Using Regexp for more information
about the regular expression syntax. That keyword can also be
used if there is a need to remove only a certain number of
occurrences.

	
split_string(string, separator=None, max_split=-1)

	Splits the string using separator as a delimiter string.

If a separator is not given, any whitespace string is a
separator. In that case also possible consecutive whitespace
as well as leading and trailing whitespace is ignored.

Split words are returned as a list. If the optional
max_split is given, at most max_split splits are done, and
the returned list will have maximum max_split + 1 elements.

See Split String From Right if you want to start splitting
from right, and Fetch From Left and Fetch From Right if
you only want to get first/last part of the string.

	
split_string_from_right(string, separator=None, max_split=-1)

	Splits the string using separator starting from right.

Same as Split String, but splitting is started from right. This has
an effect only when max_split is given.

	
split_string_to_characters(string)

	Splits the given string to characters.

	
fetch_from_left(string, marker)

	Returns contents of the string before the first occurrence of marker.

If the marker is not found, whole string is returned.

See also Fetch From Right, Split String and Split String
From Right.

	
fetch_from_right(string, marker)

	Returns contents of the string after the last occurrence of marker.

If the marker is not found, whole string is returned.

See also Fetch From Left, Split String and Split String
From Right.

	
generate_random_string(length=8, chars='[LETTERS][NUMBERS]')

	Generates a string with a desired length from the given chars.

The population sequence chars contains the characters to use
when generating the random string. It can contain any
characters, and it is possible to use special markers
explained in the table below:

	
get_substring(string, start, end=None)

	Returns a substring from start index to end index.

The start index is inclusive and end is exclusive.
Indexing starts from 0, and it is possible to use
negative indices to refer to characters from the end.

	
strip_string(string, mode='both', characters=None)

	Remove leading and/or trailing whitespaces from the given string.

mode is either left to remove leading characters, right to
remove trailing characters, both (default) to remove the
characters from both sides of the string or none to return the
unmodified string.

If the optional characters is given, it must be a string and the
characters in the string will be stripped in the string. Please note,
that this is not a substring to be removed but a list of characters,
see the example below.

New in Robot Framework 3.0.

	
should_be_string(item, msg=None)

	Fails if the given item is not a string.

With Python 2, except with IronPython, this keyword passes regardless
is the item a Unicode string or a byte string. Use Should Be
Unicode String or Should Be Byte String if you want to restrict
the string type. Notice that with Python 2, except with IronPython,
'string' creates a byte string and u'unicode' must be used to
create a Unicode string.

With Python 3 and IronPython, this keyword passes if the string is
a Unicode string but fails if it is bytes. Notice that with both
Python 3 and IronPython, 'string' creates a Unicode string, and
b'bytes' must be used to create a byte string.

The default error message can be overridden with the optional
msg argument.

	
should_not_be_string(item, msg=None)

	Fails if the given item is a string.

See Should Be String for more details about Unicode strings and byte
strings.

The default error message can be overridden with the optional
msg argument.

	
should_be_unicode_string(item, msg=None)

	Fails if the given item is not a Unicode string.

Use Should Be Byte String if you want to verify the item is a
byte string, or Should Be String if both Unicode and byte strings
are fine. See Should Be String for more details about Unicode
strings and byte strings.

The default error message can be overridden with the optional
msg argument.

	
should_be_byte_string(item, msg=None)

	Fails if the given item is not a byte string.

Use Should Be Unicode String if you want to verify the item is a
Unicode string, or Should Be String if both Unicode and byte strings
are fine. See Should Be String for more details about Unicode strings
and byte strings.

The default error message can be overridden with the optional
msg argument.

	
should_be_lowercase(string, msg=None)

	Fails if the given string is not in lowercase.

For example, 'string' and 'with specials!' would pass, and
'String', '' and ' ' would fail.

The default error message can be overridden with the optional
msg argument.

See also Should Be Uppercase and Should Be Titlecase.

	
should_be_uppercase(string, msg=None)

	Fails if the given string is not in uppercase.

For example, 'STRING' and 'WITH SPECIALS!' would pass, and
'String', '' and ' ' would fail.

The default error message can be overridden with the optional
msg argument.

See also Should Be Titlecase and Should Be Lowercase.

	
should_be_titlecase(string, msg=None)

	Fails if given string is not title.

string is a titlecased string if there is at least one
character in it, uppercase characters only follow uncased
characters and lowercase characters only cased ones.

For example, 'This Is Title' would pass, and 'Word In UPPER',
'Word In lower', '' and ' ' would fail.

The default error message can be overridden with the optional
msg argument.

See also Should Be Uppercase and Should Be Lowercase.

robot.libraries.Telnet module

	
class robot.libraries.Telnet.Telnet(timeout='3 seconds', newline='CRLF', prompt=None, prompt_is_regexp=False, encoding='UTF-8', encoding_errors='ignore', default_log_level='INFO', window_size=None, environ_user=None, terminal_emulation=False, terminal_type=None, telnetlib_log_level='TRACE', connection_timeout=None)

	Bases: object

A test library providing communication over Telnet connections.

Telnet is Robot Framework’s standard library that makes it possible to
connect to Telnet servers and execute commands on the opened connections.

== Table of contents ==

%TOC%

= Connections =

The first step of using Telnet is opening a connection with Open
Connection keyword. Typically the next step is logging in with Login
keyword, and in the end the opened connection can be closed with Close
Connection.

It is possible to open multiple connections and switch the active one
using Switch Connection. Close All Connections can be used to close
all the connections, which is especially useful in suite teardowns to
guarantee that all connections are always closed.

= Writing and reading =

After opening a connection and possibly logging in, commands can be
executed or text written to the connection for other reasons using Write
and Write Bare keywords. The main difference between these two is that
the former adds a [#Configuration|configurable newline] after the text
automatically.

After writing something to the connection, the resulting output can be
read using Read, Read Until, Read Until Regexp, and Read Until
Prompt keywords. Which one to use depends on the context, but the latest
one is often the most convenient.

As a convenience when running a command, it is possible to use Execute
Command that simply uses Write and Read Until Prompt internally.
Write Until Expected Output is useful if you need to wait until writing
something produces a desired output.

Written and read text is automatically encoded/decoded using a
[#Configuration|configured encoding].

The ANSI escape codes, like cursor movement and color codes, are
normally returned as part of the read operation. If an escape code occurs
in middle of a search pattern it may also prevent finding the searched
string. Terminal emulation can be used to process these
escape codes as they would be if a real terminal would be in use.

= Configuration =

Many aspects related the connections can be easily configured either
globally or per connection basis. Global configuration is done when
[#Importing|library is imported], and these values can be overridden per
connection by Open Connection or with setting specific keywords
Set Timeout, Set Newline, Set Prompt, Set Encoding,
Set Default Log Level and Set Telnetlib Log Level.

Values of environ_user, window_size, terminal_emulation, and
terminal_type can not be changed after opening the connection.

== Timeout ==

Timeout defines how long is the maximum time to wait when reading
output. It is used internally by Read Until, Read Until Regexp,
Read Until Prompt, and Login keywords. The default value is 3 seconds.

== Connection Timeout ==

Connection Timeout defines how long is the maximum time to wait when
opening the telnet connection. It is used internally by Open Connection.
The default value is the system global default timeout.

New in Robot Framework 2.9.2.

== Newline ==

Newline defines which line separator Write keyword should use. The
default value is CRLF that is typically used by Telnet connections.

Newline can be given either in escaped format using \n and \r or
with special LF and CR syntax.

== Prompt ==

Often the easiest way to read the output of a command is reading all
the output until the next prompt with Read Until Prompt. It also makes
it easier, and faster, to verify did Login succeed.

Prompt can be specified either as a normal string or a regular expression.
The latter is especially useful if the prompt changes as a result of
the executed commands. Prompt can be set to be a regular expression
by giving prompt_is_regexp argument a true value (see Boolean
arguments).

== Encoding ==

To ease handling text containing non-ASCII characters, all written text is
encoded and read text decoded by default. The default encoding is UTF-8
that works also with ASCII. Encoding can be disabled by using a special
encoding value NONE. This is mainly useful if you need to get the bytes
received from the connection as-is.

Notice that when writing to the connection, only Unicode strings are
encoded using the defined encoding. Byte strings are expected to be already
encoded correctly. Notice also that normal text in test data is passed to
the library as Unicode and you need to use variables to use bytes.

It is also possible to configure the error handler to use if encoding or
decoding characters fails. Accepted values are the same that encode/decode
functions in Python strings accept. In practice the following values are
the most useful:

	ignore: ignore characters that cannot be encoded (default)

	strict: fail if characters cannot be encoded

	replace: replace characters that cannot be encoded with a replacement
character

== Default log level ==

Default log level specifies the log level keywords use for logging unless
they are given an explicit log level. The default value is INFO, and
changing it, for example, to DEBUG can be a good idea if there is lot
of unnecessary output that makes log files big.

== Terminal type ==

By default the Telnet library does not negotiate any specific terminal type
with the server. If a specific terminal type, for example vt100, is
desired, the terminal type can be configured in importing and with
Open Connection.

== Window size ==

Window size for negotiation with the server can be configured when
importing the library and with Open Connection.

== USER environment variable ==

Telnet protocol allows the USER environment variable to be sent when
connecting to the server. On some servers it may happen that there is no
login prompt, and on those cases this configuration option will allow still
to define the desired username. The option environ_user can be used in
importing and with Open Connection.

= Terminal emulation =

Telnet library supports terminal
emulation with [http://pyte.readthedocs.io|Pyte]. Terminal emulation
will process the output in a virtual screen. This means that ANSI escape
codes, like cursor movements, and also control characters, like
carriage returns and backspaces, have the same effect on the result as they
would have on a normal terminal screen. For example the sequence
acdc\x1b[3Dbba will result in output abba.

Terminal emulation is taken into use by giving terminal_emulation
argument a true value (see Boolean arguments) either in the library
initialization or with Open Connection.

As Pyte approximates vt-style terminal, you may also want to set the
terminal type as vt100. We also recommend that you increase the window
size, as the terminal emulation will break all lines that are longer than
the window row length.

When terminal emulation is used, the newline and encoding can not be
changed anymore after opening the connection.

As a prerequisite for using terminal emulation, you need to have Pyte
installed. Due to backwards incompatible changes in Pyte, different
Robot Framework versions support different Pyte versions:

	Pyte 0.6 and newer are supported by Robot Framework 3.0.3.
Latest Pyte version can be installed (or upgraded) with
pip install --upgrade pyte.

	Pyte 0.5.2 and older are supported by Robot Framework 3.0.2 and earlier.
Pyte 0.5.2 can be installed with pip install pyte==0.5.2.

= Logging =

All keywords that read something log the output. These keywords take the
log level to use as an optional argument, and if no log level is specified
they use the [#Configuration|configured] default value.

The valid log levels to use are TRACE, DEBUG, INFO (default),
and WARN. Levels below INFO are not shown in log files by default
whereas warnings are shown more prominently.

The [http://docs.python.org/library/telnetlib.html|telnetlib module]
used by this library has a custom logging system for logging content it
sends and receives. By default these messages are written using TRACE
level, but the level is configurable with the telnetlib_log_level
option either in the library initialization, to the Open Connection
or by using the Set Telnetlib Log Level keyword to the active
connection. Special level NONE con be used to disable the logging
altogether.

= Time string format =

Timeouts and other times used must be given as a time string using format
like 15 seconds or 1min 10s. If the timeout is given as just
a number, for example, 10 or 1.5, it is considered to be seconds.
The time string format is described in more detail in an appendix of
[http://robotframework.org/robotframework/#user-guide|Robot Framework User Guide].

= Boolean arguments =

Some keywords accept arguments that are handled as Boolean values true or
false. If such an argument is given as a string, it is considered false if
it is an empty string or equal to FALSE, NONE, NO, OFF or
0, case-insensitively. Other strings are considered true regardless
their value, and other argument types are tested using the same
[http://docs.python.org/library/stdtypes.html#truth|rules as in Python].

True examples:

False examples:

Considering string NONE false is new in Robot Framework 3.0.3 and
considering also OFF and 0 false is new in Robot Framework 3.1.

Telnet library can be imported with optional configuration parameters.

Configuration parameters are used as default values when new
connections are opened with Open Connection keyword. They can also be
overridden after opening the connection using the Set … keywords.
See these keywords as well as Configuration, Terminal emulation and
Logging sections above for more information about these parameters
and their possible values.

See Time string format and Boolean arguments sections for
information about using arguments accepting times and Boolean values,
respectively.

	
ROBOT_LIBRARY_SCOPE = 'TEST_SUITE'

	

	
ROBOT_LIBRARY_VERSION = '3.2.2'

	

	
get_keyword_names()

	

	
open_connection(host, alias=None, port=23, timeout=None, newline=None, prompt=None, prompt_is_regexp=False, encoding=None, encoding_errors=None, default_log_level=None, window_size=None, environ_user=None, terminal_emulation=None, terminal_type=None, telnetlib_log_level=None, connection_timeout=None)

	Opens a new Telnet connection to the given host and port.

The timeout, newline, prompt, prompt_is_regexp,
encoding, default_log_level, window_size, environ_user,
terminal_emulation, terminal_type and telnetlib_log_level
arguments get default values when the library is [#Importing|imported].
Setting them here overrides those values for the opened connection.
See Configuration, Terminal emulation and Logging sections for
more information about these parameters and their possible values.

Possible already opened connections are cached and it is possible to
switch back to them using Switch Connection keyword. It is possible to
switch either using explicitly given alias or using index returned
by this keyword. Indexing starts from 1 and is reset back to it by
Close All Connections keyword.

	
switch_connection(index_or_alias)

	Switches between active connections using an index or an alias.

Aliases can be given to Open Connection keyword which also always
returns the connection index.

This keyword returns the index of previous active connection.

The example above expects that there were no other open
connections when opening the first one, because it used index
1 when switching to the connection later. If you are not
sure about that, you can store the index into a variable as
shown below.

	
close_all_connections()

	Closes all open connections and empties the connection cache.

If multiple connections are opened, this keyword should be used in
a test or suite teardown to make sure that all connections are closed.
It is not an error is some of the connections have already been closed
by Close Connection.

After this keyword, new indexes returned by Open Connection
keyword are reset to 1.

	
class robot.libraries.Telnet.TelnetConnection(host=None, port=23, timeout=3.0, newline='CRLF', prompt=None, prompt_is_regexp=False, encoding='UTF-8', encoding_errors='ignore', default_log_level='INFO', window_size=None, environ_user=None, terminal_emulation=False, terminal_type=None, telnetlib_log_level='TRACE', connection_timeout=None)

	Bases: telnetlib.Telnet

	
NEW_ENVIRON_IS = '\x00'

	

	
NEW_ENVIRON_VAR = '\x00'

	

	
NEW_ENVIRON_VALUE = '\x01'

	

	
INTERNAL_UPDATE_FREQUENCY = 0.03

	

	
set_timeout(timeout)

	Sets the timeout used for waiting output in the current connection.

Read operations that expect some output to appear (Read Until, Read
Until Regexp, Read Until Prompt, Login) use this timeout and fail
if the expected output does not appear before this timeout expires.

The timeout must be given in time string format. The old timeout
is returned and can be used to restore the timeout later.

See Configuration section for more information about global and
connection specific configuration.

	
set_newline(newline)

	Sets the newline used by Write keyword in the current connection.

The old newline is returned and can be used to restore the newline later.
See Set Timeout for a similar example.

If terminal emulation is used, the newline can not be changed on an open
connection.

See Configuration section for more information about global and
connection specific configuration.

	
set_prompt(prompt, prompt_is_regexp=False)

	Sets the prompt used by Read Until Prompt and Login in the current connection.

If prompt_is_regexp is given a true value (see Boolean arguments),
the given prompt is considered to be a regular expression.

The old prompt is returned and can be used to restore the prompt later.

See the documentation of
[http://docs.python.org/library/re.html|Python re module]
for more information about the supported regular expression syntax.
Notice that possible backslashes need to be escaped in Robot Framework
test data.

See Configuration section for more information about global and
connection specific configuration.

	
set_encoding(encoding=None, errors=None)

	Sets the encoding to use for writing and reading in the current connection.

The given encoding specifies the encoding to use when written/read
text is encoded/decoded, and errors specifies the error handler to
use if encoding/decoding fails. Either of these can be omitted and in
that case the old value is not affected. Use string NONE to disable
encoding altogether.

See Configuration section for more information about encoding and
error handlers, as well as global and connection specific configuration
in general.

The old values are returned and can be used to restore the encoding
and the error handler later. See Set Prompt for a similar example.

If terminal emulation is used, the encoding can not be changed on an open
connection.

	
set_telnetlib_log_level(level)

	Sets the log level used for logging in the underlying telnetlib.

Note that telnetlib can be very noisy thus using the level NONE
can shutdown the messages generated by this library.

	
set_default_log_level(level)

	Sets the default log level used for logging in the current connection.

The old default log level is returned and can be used to restore the
log level later.

See Configuration section for more information about global and
connection specific configuration.

	
close_connection(loglevel=None)

	Closes the current Telnet connection.

Remaining output in the connection is read, logged, and returned.
It is not an error to close an already closed connection.

Use Close All Connections if you want to make sure all opened
connections are closed.

See Logging section for more information about log levels.

	
login(username, password, login_prompt='login: ', password_prompt='Password: ', login_timeout='1 second', login_incorrect='Login incorrect')

	Logs in to the Telnet server with the given user information.

This keyword reads from the connection until the login_prompt is
encountered and then types the given username. Then it reads until
the password_prompt and types the given password. In both cases
a newline is appended automatically and the connection specific
timeout used when waiting for outputs.

How logging status is verified depends on whether a prompt is set for
this connection or not:

1) If the prompt is set, this keyword reads the output until the prompt
is found using the normal timeout. If no prompt is found, login is
considered failed and also this keyword fails. Note that in this case
both login_timeout and login_incorrect arguments are ignored.

2) If the prompt is not set, this keywords sleeps until login_timeout
and then reads all the output available on the connection. If the
output contains login_incorrect text, login is considered failed
and also this keyword fails.

See Configuration section for more information about setting
newline, timeout, and prompt.

	
write(text, loglevel=None)

	Writes the given text plus a newline into the connection.

The newline character sequence to use can be [#Configuration|configured]
both globally and per connection basis. The default value is CRLF.

This keyword consumes the written text, until the added newline, from
the output and logs and returns it. The given text itself must not
contain newlines. Use Write Bare instead if either of these features
causes a problem.

Note: This keyword does not return the possible output of the executed
command. To get the output, one of the Read … keywords must be
used. See Writing and reading section for more details.

See Logging section for more information about log levels.

	
write_bare(text)

	Writes the given text, and nothing else, into the connection.

This keyword does not append a newline nor consume the written text.
Use Write if these features are needed.

	
write_until_expected_output(text, expected, timeout, retry_interval, loglevel=None)

	Writes the given text repeatedly, until expected appears in the output.

text is written without appending a newline and it is consumed from
the output before trying to find expected. If expected does not
appear in the output within timeout, this keyword fails.

retry_interval defines the time to wait expected to appear before
writing the text again. Consuming the written text is subject to
the normal [#Configuration|configured timeout].

Both timeout and retry_interval must be given in time string
format. See Logging section for more information about log levels.

The above example writes command ps -ef | grep myprocess\r\n until
myprocess appears in the output. The command is written every 0.5
seconds and the keyword fails if myprocess does not appear in
the output in 5 seconds.

	
write_control_character(character)

	Writes the given control character into the connection.

The control character is prepended with an IAC (interpret as command)
character.

The following control character names are supported: BRK, IP, AO, AYT,
EC, EL, NOP. Additionally, you can use arbitrary numbers to send any
control character.

	
read(loglevel=None)

	Reads everything that is currently available in the output.

Read output is both returned and logged. See Logging section for more
information about log levels.

	
read_until(expected, loglevel=None)

	Reads output until expected text is encountered.

Text up to and including the match is returned and logged. If no match
is found, this keyword fails. How much to wait for the output depends
on the [#Configuration|configured timeout].

See Logging section for more information about log levels. Use
Read Until Regexp if more complex matching is needed.

	
read_until_regexp(*expected)

	Reads output until any of the expected regular expressions match.

This keyword accepts any number of regular expressions patterns or
compiled Python regular expression objects as arguments. Text up to
and including the first match to any of the regular expressions is
returned and logged. If no match is found, this keyword fails. How much
to wait for the output depends on the [#Configuration|configured timeout].

If the last given argument is a [#Logging|valid log level], it is used
as loglevel similarly as with Read Until keyword.

See the documentation of
[http://docs.python.org/library/re.html|Python re module]
for more information about the supported regular expression syntax.
Notice that possible backslashes need to be escaped in Robot Framework
test data.

	
read_until_prompt(loglevel=None, strip_prompt=False)

	Reads output until the prompt is encountered.

This keyword requires the prompt to be [#Configuration|configured]
either in importing or with Open Connection or Set Prompt keyword.

By default, text up to and including the prompt is returned and logged.
If no prompt is found, this keyword fails. How much to wait for the
output depends on the [#Configuration|configured timeout].

If you want to exclude the prompt from the returned output, set
strip_prompt to a true value (see Boolean arguments). If your
prompt is a regular expression, make sure that the expression spans the
whole prompt, because only the part of the output that matches the
regular expression is stripped away.

See Logging section for more information about log levels.

	
execute_command(command, loglevel=None, strip_prompt=False)

	Executes the given command and reads, logs, and returns everything until the prompt.

This keyword requires the prompt to be [#Configuration|configured]
either in importing or with Open Connection or Set Prompt keyword.

This is a convenience keyword that uses Write and Read Until Prompt
internally. Following two examples are thus functionally identical:

See Logging section for more information about log levels and Read
Until Prompt for more information about the strip_prompt parameter.

	
msg(msg, *args)

	

	
close()

	Close the connection.

	
expect(list, timeout=None)

	Read until one from a list of a regular expressions matches.

The first argument is a list of regular expressions, either
compiled (re.RegexObject instances) or uncompiled (strings).
The optional second argument is a timeout, in seconds; default
is no timeout.

Return a tuple of three items: the index in the list of the
first regular expression that matches; the match object
returned; and the text read up till and including the match.

If EOF is read and no text was read, raise EOFError.
Otherwise, when nothing matches, return (-1, None, text) where
text is the text received so far (may be the empty string if a
timeout happened).

If a regular expression ends with a greedy match (e.g. ‘.*’)
or if more than one expression can match the same input, the
results are undeterministic, and may depend on the I/O timing.

	
fileno()

	Return the fileno() of the socket object used internally.

	
fill_rawq()

	Fill raw queue from exactly one recv() system call.

Block if no data is immediately available. Set self.eof when
connection is closed.

	
get_socket()

	Return the socket object used internally.

	
interact()

	Interaction function, emulates a very dumb telnet client.

	
listener()

	Helper for mt_interact() – this executes in the other thread.

	
mt_interact()

	Multithreaded version of interact().

	
open(host, port=0, timeout=<object object>)

	Connect to a host.

The optional second argument is the port number, which
defaults to the standard telnet port (23).

Don’t try to reopen an already connected instance.

	
process_rawq()

	Transfer from raw queue to cooked queue.

Set self.eof when connection is closed. Don’t block unless in
the midst of an IAC sequence.

	
rawq_getchar()

	Get next char from raw queue.

Block if no data is immediately available. Raise EOFError
when connection is closed.

	
read_all()

	Read all data until EOF; block until connection closed.

	
read_eager()

	Read readily available data.

Raise EOFError if connection closed and no cooked data
available. Return ‘’ if no cooked data available otherwise.
Don’t block unless in the midst of an IAC sequence.

	
read_lazy()

	Process and return data that’s already in the queues (lazy).

Raise EOFError if connection closed and no data available.
Return ‘’ if no cooked data available otherwise. Don’t block
unless in the midst of an IAC sequence.

	
read_sb_data()

	Return any data available in the SB … SE queue.

Return ‘’ if no SB … SE available. Should only be called
after seeing a SB or SE command. When a new SB command is
found, old unread SB data will be discarded. Don’t block.

	
read_some()

	Read at least one byte of cooked data unless EOF is hit.

Return ‘’ if EOF is hit. Block if no data is immediately
available.

	
read_very_eager()

	Read everything that’s possible without blocking in I/O (eager).

Raise EOFError if connection closed and no cooked data
available. Return ‘’ if no cooked data available otherwise.
Don’t block unless in the midst of an IAC sequence.

	
read_very_lazy()

	Return any data available in the cooked queue (very lazy).

Raise EOFError if connection closed and no data available.
Return ‘’ if no cooked data available otherwise. Don’t block.

	
set_debuglevel(debuglevel)

	Set the debug level.

The higher it is, the more debug output you get (on sys.stdout).

	
set_option_negotiation_callback(callback)

	Provide a callback function called after each receipt of a telnet option.

	
sock_avail()

	Test whether data is available on the socket.

	
class robot.libraries.Telnet.TerminalEmulator(window_size=None, newline='rn')

	Bases: object

	
current_output

	

	
feed(text)

	

	
read()

	

	
read_until(expected)

	

	
read_until_regexp(regexp_list)

	

	
exception robot.libraries.Telnet.NoMatchError(expected, timeout, output=None)

	Bases: exceptions.AssertionError

	
ROBOT_SUPPRESS_NAME = True

	

	
args

	

	
message

	

robot.libraries.XML module

	
class robot.libraries.XML.XML(use_lxml=False)

	Bases: object

Robot Framework test library for verifying and modifying XML documents.

As the name implies, _XML_ is a test library for verifying contents of XML
files. In practice it is a pretty thin wrapper on top of Python’s
[http://docs.python.org/library/xml.etree.elementtree.html|ElementTree XML API].

The library has the following main usages:

	Parsing an XML file, or a string containing XML, into an XML element
structure and finding certain elements from it for for further analysis
(e.g. Parse XML and Get Element keywords).

	Getting text or attributes of elements
(e.g. Get Element Text and Get Element Attribute).

	Directly verifying text, attributes, or whole elements
(e.g Element Text Should Be and Elements Should Be Equal).

	Modifying XML and saving it (e.g. Set Element Text, Add Element
and Save XML).

== Table of contents ==

%TOC%

= Parsing XML =

XML can be parsed into an element structure using Parse XML keyword.
The XML to be parsed can be specified using a path to an XML file or as
a string or bytes that contain XML directly. The keyword returns the root
element of the structure, which then contains other elements as its
children and their children. Possible comments and processing instructions
in the source XML are removed.

XML is not validated during parsing even if has a schema defined. How
possible doctype elements are handled otherwise depends on the used XML
module and on the platform. The standard ElementTree strips doctypes
altogether but when using lxml they are preserved when XML is saved.

The element structure returned by Parse XML, as well as elements
returned by keywords such as Get Element, can be used as the source
argument with other keywords. In addition to an already parsed XML
structure, other keywords also accept paths to XML files and strings
containing XML similarly as Parse XML. Notice that keywords that modify
XML do not write those changes back to disk even if the source would be
given as a path to a file. Changes must always saved explicitly using
Save XML keyword.

When the source is given as a path to a file, the forward slash character
(/) can be used as the path separator regardless the operating system.
On Windows also the backslash works, but it the test data it needs to be
escaped by doubling it (\\). Using the built-in variable ${/}
naturally works too.

Note: Support for XML as bytes is new in Robot Framework 3.2.

= Using lxml =

By default this library uses Python’s standard
[http://docs.python.org/library/xml.etree.elementtree.html|ElementTree]
module for parsing XML, but it can be configured to use
[http://lxml.de|lxml] module instead when importing the library.
The resulting element structure has same API regardless which module
is used for parsing.

The main benefits of using lxml is that it supports richer xpath syntax
than the standard ElementTree and enables using Evaluate Xpath keyword.
It also preserves the doctype and possible namespace prefixes saving XML.

= Example =

The following simple example demonstrates parsing XML and verifying its
contents both using keywords in this library and in _BuiltIn_ and
Collections libraries. How to use xpath expressions to find elements
and what attributes the returned elements contain are discussed, with
more examples, in Finding elements with xpath and Element attributes
sections.

In this example, as well as in many other examples in this documentation,
${XML} refers to the following example XML document. In practice
${XML} could either be a path to an XML file or it could contain the XML
itself.

Notice that in the example three last lines are equivalent. Which one to
use in practice depends on which other elements you need to get or verify.
If you only need to do one verification, using the last line alone would
suffice. If more verifications are needed, parsing the XML with Parse XML
only once would be more efficient.

= Finding elements with xpath =

ElementTree, and thus also this library, supports finding elements using
xpath expressions. ElementTree does not, however, support the full xpath
standard. The supported xpath syntax is explained below and
[https://docs.python.org/library/xml.etree.elementtree.html#xpath-support|
ElementTree documentation] provides more details. In the examples
${XML} refers to the same XML structure as in the earlier example.

If lxml support is enabled when importing the library, the whole
[http://www.w3.org/TR/xpath/|xpath 1.0 standard] is supported.
That includes everything listed below but also lot of other useful
constructs.

== Tag names ==

When just a single tag name is used, xpath matches all direct child
elements that have that tag name.

== Paths ==

Paths are created by combining tag names with a forward slash (/). For
example, parent/child matches all child elements under parent
element. Notice that if there are multiple parent elements that all
have child elements, parent/child xpath will match all these
child elements.

== Wildcards ==

An asterisk (*) can be used in paths instead of a tag name to denote
any element.

== Current element ==

The current element is denoted with a dot (.). Normally the current
element is implicit and does not need to be included in the xpath.

== Parent element ==

The parent element of another element is denoted with two dots (..).
Notice that it is not possible to refer to the parent of the current
element.

== Search all sub elements ==

Two forward slashes (//) mean that all sub elements, not only the
direct children, are searched. If the search is started from the current
element, an explicit dot is required.

== Predicates ==

Predicates allow selecting elements using also other criteria than tag
names, for example, attributes or position. They are specified after the
normal tag name or path using syntax path[predicate]. The path can have
wildcards and other special syntax explained earlier. What predicates
the standard ElementTree supports is explained in the table below.

Predicates can also be stacked like path[predicate1][predicate2].
A limitation is that possible position predicate must always be first.

= Element attributes =

All keywords returning elements, such as Parse XML, and Get Element,
return ElementTree’s
[http://docs.python.org/library/xml.etree.elementtree.html#element-objects|Element objects].
These elements can be used as inputs for other keywords, but they also
contain several useful attributes that can be accessed directly using
the extended variable syntax.

The attributes that are both useful and convenient to use in the test
data are explained below. Also other attributes, including methods, can
be accessed, but that is typically better to do in custom libraries than
directly in the test data.

The examples use the same ${XML} structure as the earlier examples.

== tag ==

The tag of the element.

== text ==

The text that the element contains or Python None if the element has no
text. Notice that the text _does not_ contain texts of possible child
elements nor text after or between children. Notice also that in XML
whitespace is significant, so the text contains also possible indentation
and newlines. To get also text of the possible children, optionally
whitespace normalized, use Get Element Text keyword.

== tail ==

The text after the element before the next opening or closing tag. Python
None if the element has no tail. Similarly as with text, also
tail contains possible indentation and newlines.

== attrib ==

A Python dictionary containing attributes of the element.

= Handling XML namespaces =

ElementTree and lxml handle possible namespaces in XML documents by adding
the namespace URI to tag names in so called Clark Notation. That is
inconvenient especially with xpaths, and by default this library strips
those namespaces away and moves them to xmlns attribute instead. That
can be avoided by passing keep_clark_notation argument to Parse XML
keyword. Alternatively Parse XML supports stripping namespace information
altogether by using strip_namespaces argument. The pros and cons of
different approaches are discussed in more detail below.

== How ElementTree handles namespaces ==

If an XML document has namespaces, ElementTree adds namespace information
to tag names in [http://www.jclark.com/xml/xmlns.htm|Clark Notation]
(e.g. {http://ns.uri}tag) and removes original xmlns attributes.
This is done both with default namespaces and with namespaces with a prefix.
How it works in practice is illustrated by the following example, where
${NS} variable contains this XML document:

As you can see, including the namespace URI in tag names makes xpaths
really long and complex.

If you save the XML, ElementTree moves namespace information back to
xmlns attributes. Unfortunately it does not restore the original
prefixes:

The resulting output is semantically same as the original, but mangling
prefixes like this may still not be desirable. Notice also that the actual
output depends slightly on ElementTree version.

== Default namespace handling ==

Because the way ElementTree handles namespaces makes xpaths so complicated,
this library, by default, strips namespaces from tag names and moves that
information back to xmlns attributes. How this works in practice is
shown by the example below, where ${NS} variable contains the same XML
document as in the previous example.

Now that tags do not contain namespace information, xpaths are simple again.

A minor limitation of this approach is that namespace prefixes are lost.
As a result the saved output is not exactly same as the original one in
this case either:

Also this output is semantically same as the original. If the original XML
had only default namespaces, the output would also look identical.

== Namespaces when using lxml ==

This library handles namespaces same way both when using lxml and when
not using it. There are, however, differences how lxml internally handles
namespaces compared to the standard ElementTree. The main difference is
that lxml stores information about namespace prefixes and they are thus
preserved if XML is saved. Another visible difference is that lxml includes
namespace information in child elements got with Get Element if the
parent element has namespaces.

== Stripping namespaces altogether ==

Because namespaces often add unnecessary complexity, Parse XML supports
stripping them altogether by using strip_namespaces=True. When this
option is enabled, namespaces are not shown anywhere nor are they included
if XML is saved.

== Attribute namespaces ==

Attributes in XML documents are, by default, in the same namespaces as
the element they belong to. It is possible to use different namespaces
by using prefixes, but this is pretty rare.

If an attribute has a namespace prefix, ElementTree will replace it with
Clark Notation the same way it handles elements. Because stripping
namespaces from attributes could cause attribute conflicts, this library
does not handle attribute namespaces at all. Thus the following example
works the same way regardless how namespaces are handled.

= Boolean arguments =

Some keywords accept arguments that are handled as Boolean values true or
false. If such an argument is given as a string, it is considered false if
it is an empty string or equal to FALSE, NONE, NO, OFF or
0, case-insensitively. Other strings are considered true regardless
their value, and other argument types are tested using the same
[http://docs.python.org/library/stdtypes.html#truth|rules as in Python].

True examples:

False examples:

Considering string NONE false is new in Robot Framework 3.0.3 and
considering also OFF and 0 false is new in Robot Framework 3.1.

== Pattern matching ==

Some keywords, for example Elements Should Match, support so called
[http://en.wikipedia.org/wiki/Glob_(programming)|glob patterns] where:

Unlike with glob patterns normally, path separator characters / and
\ and the newline character \n are matches by the above
wildcards.

Support for brackets like [abc] and [!a-z] is new in
Robot Framework 3.1

Import library with optionally lxml mode enabled.

By default this library uses Python’s standard
[http://docs.python.org/library/xml.etree.elementtree.html|ElementTree]
module for parsing XML. If use_lxml argument is given a true value
(see Boolean arguments), the library will use [http://lxml.de|lxml]
module instead. See Using lxml section for benefits provided by lxml.

Using lxml requires that the lxml module is installed on the system.
If lxml mode is enabled but the module is not installed, this library
will emit a warning and revert back to using the standard ElementTree.

	
ROBOT_LIBRARY_SCOPE = 'GLOBAL'

	

	
ROBOT_LIBRARY_VERSION = '3.2.2'

	

	
parse_xml(source, keep_clark_notation=False, strip_namespaces=False)

	Parses the given XML file or string into an element structure.

The source can either be a path to an XML file or a string
containing XML. In both cases the XML is parsed into ElementTree
[http://docs.python.org/library/xml.etree.elementtree.html#element-objects|element structure]
and the root element is returned. Possible comments and processing
instructions in the source XML are removed.

As discussed in Handling XML namespaces section, this keyword, by
default, removes namespace information ElementTree has added to tag
names and moves it into xmlns attributes. This typically eases
handling XML documents with namespaces considerably. If you do not
want that to happen, or want to avoid the small overhead of going
through the element structure when your XML does not have namespaces,
you can disable this feature by giving keep_clark_notation argument
a true value (see Boolean arguments).

If you want to strip namespace information altogether so that it is
not included even if XML is saved, you can give a true value to
strip_namespaces argument. This functionality is new in Robot
Framework 3.0.2.

Use Get Element keyword if you want to get a certain element and not
the whole structure. See Parsing XML section for more details and
examples.

	
get_element(source, xpath='.')

	Returns an element in the source matching the xpath.

The source can be a path to an XML file, a string containing XML, or
an already parsed XML element. The xpath specifies which element to
find. See the introduction for more details about both the possible
sources and the supported xpath syntax.

The keyword fails if more, or less, than one element matches the
xpath. Use Get Elements if you want all matching elements to be
returned.

Parse XML is recommended for parsing XML when the whole structure
is needed. It must be used if there is a need to configure how XML
namespaces are handled.

Many other keywords use this keyword internally, and keywords modifying
XML are typically documented to both to modify the given source and
to return it. Modifying the source does not apply if the source is
given as a string. The XML structure parsed based on the string and
then modified is nevertheless returned.

	
get_elements(source, xpath)

	Returns a list of elements in the source matching the xpath.

The source can be a path to an XML file, a string containing XML, or
an already parsed XML element. The xpath specifies which element to
find. See the introduction for more details.

Elements matching the xpath are returned as a list. If no elements
match, an empty list is returned. Use Get Element if you want to get
exactly one match.

	
get_child_elements(source, xpath='.')

	Returns the child elements of the specified element as a list.

The element whose children to return is specified using source and
xpath. They have exactly the same semantics as with Get Element
keyword.

All the direct child elements of the specified element are returned.
If the element has no children, an empty list is returned.

	
get_element_count(source, xpath='.')

	Returns and logs how many elements the given xpath matches.

Arguments source and xpath have exactly the same semantics as
with Get Elements keyword that this keyword uses internally.

See also Element Should Exist and Element Should Not Exist.

	
element_should_exist(source, xpath='.', message=None)

	Verifies that one or more element match the given xpath.

Arguments source and xpath have exactly the same semantics as
with Get Elements keyword. Keyword passes if the xpath matches
one or more elements in the source. The default error message can
be overridden with the message argument.

See also Element Should Not Exist as well as Get Element Count
that this keyword uses internally.

	
element_should_not_exist(source, xpath='.', message=None)

	Verifies that no element match the given xpath.

Arguments source and xpath have exactly the same semantics as
with Get Elements keyword. Keyword fails if the xpath matches any
element in the source. The default error message can be overridden
with the message argument.

See also Element Should Exist as well as Get Element Count
that this keyword uses internally.

	
get_element_text(source, xpath='.', normalize_whitespace=False)

	Returns all text of the element, possibly whitespace normalized.

The element whose text to return is specified using source and
xpath. They have exactly the same semantics as with Get Element
keyword.

This keyword returns all the text of the specified element, including
all the text its children and grandchildren contain. If the element
has no text, an empty string is returned. The returned text is thus not
always the same as the text attribute of the element.

By default all whitespace, including newlines and indentation, inside
the element is returned as-is. If normalize_whitespace is given
a true value (see Boolean arguments), then leading and trailing
whitespace is stripped, newlines and tabs converted to spaces, and
multiple spaces collapsed into one. This is especially useful when
dealing with HTML data.

See also Get Elements Texts, Element Text Should Be and
Element Text Should Match.

	
get_elements_texts(source, xpath, normalize_whitespace=False)

	Returns text of all elements matching xpath as a list.

The elements whose text to return is specified using source and
xpath. They have exactly the same semantics as with Get Elements
keyword.

The text of the matched elements is returned using the same logic
as with Get Element Text. This includes optional whitespace
normalization using the normalize_whitespace option.

	
element_text_should_be(source, expected, xpath='.', normalize_whitespace=False, message=None)

	Verifies that the text of the specified element is expected.

The element whose text is verified is specified using source and
xpath. They have exactly the same semantics as with Get Element
keyword.

The text to verify is got from the specified element using the same
logic as with Get Element Text. This includes optional whitespace
normalization using the normalize_whitespace option.

The keyword passes if the text of the element is equal to the
expected value, and otherwise it fails. The default error message
can be overridden with the message argument. Use Element Text
Should Match to verify the text against a pattern instead of an exact
value.

	
element_text_should_match(source, pattern, xpath='.', normalize_whitespace=False, message=None)

	Verifies that the text of the specified element matches expected.

This keyword works exactly like Element Text Should Be except that
the expected value can be given as a pattern that the text of the
element must match.

Pattern matching is similar as matching files in a shell with
*, ? and [chars] acting as wildcards. See the
Pattern matching section for more information.

	
get_element_attribute(source, name, xpath='.', default=None)

	Returns the named attribute of the specified element.

The element whose attribute to return is specified using source and
xpath. They have exactly the same semantics as with Get Element
keyword.

The value of the attribute name of the specified element is returned.
If the element does not have such element, the default value is
returned instead.

See also Get Element Attributes, Element Attribute Should Be,
Element Attribute Should Match and Element Should Not Have Attribute.

	
get_element_attributes(source, xpath='.')

	Returns all attributes of the specified element.

The element whose attributes to return is specified using source and
xpath. They have exactly the same semantics as with Get Element
keyword.

Attributes are returned as a Python dictionary. It is a copy of the
original attributes so modifying it has no effect on the XML structure.

Use Get Element Attribute to get the value of a single attribute.

	
element_attribute_should_be(source, name, expected, xpath='.', message=None)

	Verifies that the specified attribute is expected.

The element whose attribute is verified is specified using source
and xpath. They have exactly the same semantics as with
Get Element keyword.

The keyword passes if the attribute name of the element is equal to
the expected value, and otherwise it fails. The default error
message can be overridden with the message argument.

To test that the element does not have a certain attribute, Python
None (i.e. variable ${NONE}) can be used as the expected value.
A cleaner alternative is using Element Should Not Have Attribute.

See also Element Attribute Should Match and Get Element Attribute.

	
element_attribute_should_match(source, name, pattern, xpath='.', message=None)

	Verifies that the specified attribute matches expected.

This keyword works exactly like Element Attribute Should Be except
that the expected value can be given as a pattern that the attribute of
the element must match.

Pattern matching is similar as matching files in a shell with
*, ? and [chars] acting as wildcards. See the
Pattern matching section for more information.

	
element_should_not_have_attribute(source, name, xpath='.', message=None)

	Verifies that the specified element does not have attribute name.

The element whose attribute is verified is specified using source
and xpath. They have exactly the same semantics as with
Get Element keyword.

The keyword fails if the specified element has attribute name. The
default error message can be overridden with the message argument.

See also Get Element Attribute, Get Element Attributes,
Element Text Should Be and Element Text Should Match.

	
elements_should_be_equal(source, expected, exclude_children=False, normalize_whitespace=False)

	Verifies that the given source element is equal to expected.

Both source and expected can be given as a path to an XML file,
as a string containing XML, or as an already parsed XML element
structure. See introduction for more information about parsing XML in
general.

The keyword passes if the source element and expected element
are equal. This includes testing the tag names, texts, and attributes
of the elements. By default also child elements are verified the same
way, but this can be disabled by setting exclude_children to a
true value (see Boolean arguments).

All texts inside the given elements are verified, but possible text
outside them is not. By default texts must match exactly, but setting
normalize_whitespace to a true value makes text verification
independent on newlines, tabs, and the amount of spaces. For more
details about handling text see Get Element Text keyword and
discussion about elements’ text and tail attributes in the
introduction.

The last example may look a bit strange because the <p> element
only has text Text with. The reason is that rest of the text
inside <p> actually belongs to the child elements. This includes
the . at the end that is the tail text of the <i> element.

See also Elements Should Match.

	
elements_should_match(source, expected, exclude_children=False, normalize_whitespace=False)

	Verifies that the given source element matches expected.

This keyword works exactly like Elements Should Be Equal except that
texts and attribute values in the expected value can be given as
patterns.

Pattern matching is similar as matching files in a shell with
*, ? and [chars] acting as wildcards. See the
Pattern matching section for more information.

See Elements Should Be Equal for more examples.

	
set_element_tag(source, tag, xpath='.')

	Sets the tag of the specified element.

The element whose tag to set is specified using source and
xpath. They have exactly the same semantics as with Get Element
keyword. The resulting XML structure is returned, and if the source
is an already parsed XML structure, it is also modified in place.

Can only set the tag of a single element. Use Set Elements Tag to set
the tag of multiple elements in one call.

	
set_elements_tag(source, tag, xpath='.')

	Sets the tag of the specified elements.

Like Set Element Tag but sets the tag of all elements matching
the given xpath.

	
set_element_text(source, text=None, tail=None, xpath='.')

	Sets text and/or tail text of the specified element.

The element whose text to set is specified using source and
xpath. They have exactly the same semantics as with Get Element
keyword. The resulting XML structure is returned, and if the source
is an already parsed XML structure, it is also modified in place.

Element’s text and tail text are changed only if new text and/or
tail values are given. See Element attributes section for more
information about text and tail in general.

Can only set the text/tail of a single element. Use Set Elements Text
to set the text/tail of multiple elements in one call.

	
set_elements_text(source, text=None, tail=None, xpath='.')

	Sets text and/or tail text of the specified elements.

Like Set Element Text but sets the text or tail of all elements
matching the given xpath.

	
set_element_attribute(source, name, value, xpath='.')

	Sets attribute name of the specified element to value.

The element whose attribute to set is specified using source and
xpath. They have exactly the same semantics as with Get Element
keyword. The resulting XML structure is returned, and if the source
is an already parsed XML structure, it is also modified in place.

It is possible to both set new attributes and to overwrite existing.
Use Remove Element Attribute or Remove Element Attributes for
removing them.

Can only set an attribute of a single element. Use Set Elements
Attribute to set an attribute of multiple elements in one call.

	
set_elements_attribute(source, name, value, xpath='.')

	Sets attribute name of the specified elements to value.

Like Set Element Attribute but sets the attribute of all elements
matching the given xpath.

	
remove_element_attribute(source, name, xpath='.')

	Removes attribute name from the specified element.

The element whose attribute to remove is specified using source and
xpath. They have exactly the same semantics as with Get Element
keyword. The resulting XML structure is returned, and if the source
is an already parsed XML structure, it is also modified in place.

It is not a failure to remove a non-existing attribute. Use Remove
Element Attributes to remove all attributes and Set Element Attribute
to set them.

Can only remove an attribute from a single element. Use Remove Elements
Attribute to remove an attribute of multiple elements in one call.

	
remove_elements_attribute(source, name, xpath='.')

	Removes attribute name from the specified elements.

Like Remove Element Attribute but removes the attribute of all
elements matching the given xpath.

	
remove_element_attributes(source, xpath='.')

	Removes all attributes from the specified element.

The element whose attributes to remove is specified using source and
xpath. They have exactly the same semantics as with Get Element
keyword. The resulting XML structure is returned, and if the source
is an already parsed XML structure, it is also modified in place.

Use Remove Element Attribute to remove a single attribute and
Set Element Attribute to set them.

Can only remove attributes from a single element. Use Remove Elements
Attributes to remove all attributes of multiple elements in one call.

	
remove_elements_attributes(source, xpath='.')

	Removes all attributes from the specified elements.

Like Remove Element Attributes but removes all attributes of all
elements matching the given xpath.

	
add_element(source, element, index=None, xpath='.')

	Adds a child element to the specified element.

The element to whom to add the new element is specified using source
and xpath. They have exactly the same semantics as with Get Element
keyword. The resulting XML structure is returned, and if the source
is an already parsed XML structure, it is also modified in place.

The element to add can be specified as a path to an XML file or
as a string containing XML, or it can be an already parsed XML element.
The element is copied before adding so modifying either the original
or the added element has no effect on the other
.
The element is added as the last child by default, but a custom index
can be used to alter the position. Indices start from zero (0 = first
position, 1 = second position, etc.), and negative numbers refer to
positions at the end (-1 = second last position, -2 = third last, etc.).

Use Remove Element or Remove Elements to remove elements.

	
remove_element(source, xpath='', remove_tail=False)

	Removes the element matching xpath from the source structure.

The element to remove from the source is specified with xpath
using the same semantics as with Get Element keyword. The resulting
XML structure is returned, and if the source is an already parsed
XML structure, it is also modified in place.

The keyword fails if xpath does not match exactly one element.
Use Remove Elements to remove all matched elements.

Element’s tail text is not removed by default, but that can be changed
by giving remove_tail a true value (see Boolean arguments). See
Element attributes section for more information about tail in
general.

	
remove_elements(source, xpath='', remove_tail=False)

	Removes all elements matching xpath from the source structure.

The elements to remove from the source are specified with xpath
using the same semantics as with Get Elements keyword. The resulting
XML structure is returned, and if the source is an already parsed
XML structure, it is also modified in place.

It is not a failure if xpath matches no elements. Use Remove
Element to remove exactly one element.

Element’s tail text is not removed by default, but that can be changed
by using remove_tail argument similarly as with Remove Element.

	
clear_element(source, xpath='.', clear_tail=False)

	Clears the contents of the specified element.

The element to clear is specified using source and xpath. They
have exactly the same semantics as with Get Element keyword.
The resulting XML structure is returned, and if the source is
an already parsed XML structure, it is also modified in place.

Clearing the element means removing its text, attributes, and children.
Element’s tail text is not removed by default, but that can be changed
by giving clear_tail a true value (see Boolean arguments). See
Element attributes section for more information about tail in
general.

Use Remove Element to remove the whole element.

	
copy_element(source, xpath='.')

	Returns a copy of the specified element.

The element to copy is specified using source and xpath. They
have exactly the same semantics as with Get Element keyword.

If the copy or the original element is modified afterwards, the changes
have no effect on the other.

	
element_to_string(source, xpath='.', encoding=None)

	Returns the string representation of the specified element.

The element to convert to a string is specified using source and
xpath. They have exactly the same semantics as with Get Element
keyword.

By default the string is returned as Unicode. If encoding argument
is given any value, the string is returned as bytes in the specified
encoding. The resulting string never contains the XML declaration.

See also Log Element and Save XML.

	
log_element(source, level='INFO', xpath='.')

	Logs the string representation of the specified element.

The element specified with source and xpath is first converted
into a string using Element To String keyword internally. The
resulting string is then logged using the given level.

The logged string is also returned.

	
save_xml(source, path, encoding='UTF-8')

	Saves the given element to the specified file.

The element to save is specified with source using the same
semantics as with Get Element keyword.

The file where the element is saved is denoted with path and the
encoding to use with encoding. The resulting file always contains
the XML declaration.

The resulting XML file may not be exactly the same as the original:
- Comments and processing instructions are always stripped.
- Possible doctype and namespace prefixes are only preserved when

using lxml.

	Other small differences are possible depending on the ElementTree
or lxml version.

Use Element To String if you just need a string representation of
the element.

	
evaluate_xpath(source, expression, context='.')

	Evaluates the given xpath expression and returns results.

The element in which context the expression is executed is specified
using source and context arguments. They have exactly the same
semantics as source and xpath arguments have with Get Element
keyword.

The xpath expression to evaluate is given as expression argument.
The result of the evaluation is returned as-is.

This keyword works only if lxml mode is taken into use when importing
the library.

	
class robot.libraries.XML.NameSpaceStripper(etree, lxml_etree=False)

	Bases: object

	
strip(elem, preserve=True, current_ns=None, top=True)

	

	
unstrip(elem, current_ns=None, copied=False)

	

	
class robot.libraries.XML.ElementFinder(etree, modern=True, lxml=False)

	Bases: object

	
find_all(elem, xpath)

	

	
class robot.libraries.XML.ElementComparator(comparator, normalizer=None, exclude_children=False)

	Bases: object

	
compare(actual, expected, location=None)

	

	
class robot.libraries.XML.Location(path, is_root=True)

	Bases: object

	
child(tag)

	

robot.libraries.dialogs_ipy module

robot.libraries.dialogs_jy module

robot.libraries.dialogs_py module

	
class robot.libraries.dialogs_py.MessageDialog(message, value=None, **extra)

	Bases: robot.libraries.dialogs_py._TkDialog

	
after(ms, func=None, *args)

	Call function once after given time.

MS specifies the time in milliseconds. FUNC gives the
function which shall be called. Additional parameters
are given as parameters to the function call. Return
identifier to cancel scheduling with after_cancel.

	
after_cancel(id)

	Cancel scheduling of function identified with ID.

Identifier returned by after or after_idle must be
given as first parameter.

	
after_idle(func, *args)

	Call FUNC once if the Tcl main loop has no event to
process.

Return an identifier to cancel the scheduling with
after_cancel.

	
aspect(minNumer=None, minDenom=None, maxNumer=None, maxDenom=None)

	Instruct the window manager to set the aspect ratio (width/height)
of this widget to be between MINNUMER/MINDENOM and MAXNUMER/MAXDENOM. Return a tuple
of the actual values if no argument is given.

	
attributes(*args)

	This subcommand returns or sets platform specific attributes

The first form returns a list of the platform specific flags and
their values. The second form returns the value for the specific
option. The third form sets one or more of the values. The values
are as follows:

On Windows, -disabled gets or sets whether the window is in a
disabled state. -toolwindow gets or sets the style of the window
to toolwindow (as defined in the MSDN). -topmost gets or sets
whether this is a topmost window (displays above all other
windows).

On Macintosh, XXXXX

On Unix, there are currently no special attribute values.

	
bbox(column=None, row=None, col2=None, row2=None)

	Return a tuple of integer coordinates for the bounding
box of this widget controlled by the geometry manager grid.

If COLUMN, ROW is given the bounding box applies from
the cell with row and column 0 to the specified
cell. If COL2 and ROW2 are given the bounding box
starts at that cell.

The returned integers specify the offset of the upper left
corner in the master widget and the width and height.

	
bell(displayof=0)

	Ring a display’s bell.

	
bind(sequence=None, func=None, add=None)

	Bind to this widget at event SEQUENCE a call to function FUNC.

SEQUENCE is a string of concatenated event
patterns. An event pattern is of the form
<MODIFIER-MODIFIER-TYPE-DETAIL> where MODIFIER is one
of Control, Mod2, M2, Shift, Mod3, M3, Lock, Mod4, M4,
Button1, B1, Mod5, M5 Button2, B2, Meta, M, Button3,
B3, Alt, Button4, B4, Double, Button5, B5 Triple,
Mod1, M1. TYPE is one of Activate, Enter, Map,
ButtonPress, Button, Expose, Motion, ButtonRelease
FocusIn, MouseWheel, Circulate, FocusOut, Property,
Colormap, Gravity Reparent, Configure, KeyPress, Key,
Unmap, Deactivate, KeyRelease Visibility, Destroy,
Leave and DETAIL is the button number for ButtonPress,
ButtonRelease and DETAIL is the Keysym for KeyPress and
KeyRelease. Examples are
<Control-Button-1> for pressing Control and mouse button 1 or
<Alt-A> for pressing A and the Alt key (KeyPress can be omitted).
An event pattern can also be a virtual event of the form
<<AString>> where AString can be arbitrary. This
event can be generated by event_generate.
If events are concatenated they must appear shortly
after each other.

FUNC will be called if the event sequence occurs with an
instance of Event as argument. If the return value of FUNC is
“break” no further bound function is invoked.

An additional boolean parameter ADD specifies whether FUNC will
be called additionally to the other bound function or whether
it will replace the previous function.

Bind will return an identifier to allow deletion of the bound function with
unbind without memory leak.

If FUNC or SEQUENCE is omitted the bound function or list
of bound events are returned.

	
bind_all(sequence=None, func=None, add=None)

	Bind to all widgets at an event SEQUENCE a call to function FUNC.
An additional boolean parameter ADD specifies whether FUNC will
be called additionally to the other bound function or whether
it will replace the previous function. See bind for the return value.

	
bind_class(className, sequence=None, func=None, add=None)

	Bind to widgets with bindtag CLASSNAME at event
SEQUENCE a call of function FUNC. An additional
boolean parameter ADD specifies whether FUNC will be
called additionally to the other bound function or
whether it will replace the previous function. See bind for
the return value.

	
bindtags(tagList=None)

	Set or get the list of bindtags for this widget.

With no argument return the list of all bindtags associated with
this widget. With a list of strings as argument the bindtags are
set to this list. The bindtags determine in which order events are
processed (see bind).

	
cget(key)

	Return the resource value for a KEY given as string.

	
client(name=None)

	Store NAME in WM_CLIENT_MACHINE property of this widget. Return
current value.

	
clipboard_append(string, **kw)

	Append STRING to the Tk clipboard.

A widget specified at the optional displayof keyword
argument specifies the target display. The clipboard
can be retrieved with selection_get.

	
clipboard_clear(**kw)

	Clear the data in the Tk clipboard.

A widget specified for the optional displayof keyword
argument specifies the target display.

	
clipboard_get(**kw)

	Retrieve data from the clipboard on window’s display.

The window keyword defaults to the root window of the Tkinter
application.

The type keyword specifies the form in which the data is
to be returned and should be an atom name such as STRING
or FILE_NAME. Type defaults to STRING, except on X11, where the default
is to try UTF8_STRING and fall back to STRING.

This command is equivalent to:

selection_get(CLIPBOARD)

	
colormapwindows(*wlist)

	Store list of window names (WLIST) into WM_COLORMAPWINDOWS property
of this widget. This list contains windows whose colormaps differ from their
parents. Return current list of widgets if WLIST is empty.

	
colormodel(value=None)

	Useless. Not implemented in Tk.

	
columnconfigure(index, cnf={}, **kw)

	Configure column INDEX of a grid.

Valid resources are minsize (minimum size of the column),
weight (how much does additional space propagate to this column)
and pad (how much space to let additionally).

	
command(value=None)

	Store VALUE in WM_COMMAND property. It is the command
which shall be used to invoke the application. Return current
command if VALUE is None.

	
config(cnf=None, **kw)

	Configure resources of a widget.

The values for resources are specified as keyword
arguments. To get an overview about
the allowed keyword arguments call the method keys.

	
configure(cnf=None, **kw)

	Configure resources of a widget.

The values for resources are specified as keyword
arguments. To get an overview about
the allowed keyword arguments call the method keys.

	
deiconify()

	Deiconify this widget. If it was never mapped it will not be mapped.
On Windows it will raise this widget and give it the focus.

	
deletecommand(name)

	Internal function.

Delete the Tcl command provided in NAME.

	
destroy()

	Destroy this and all descendants widgets.

	
event_add(virtual, *sequences)

	Bind a virtual event VIRTUAL (of the form <<Name>>)
to an event SEQUENCE such that the virtual event is triggered
whenever SEQUENCE occurs.

	
event_delete(virtual, *sequences)

	Unbind a virtual event VIRTUAL from SEQUENCE.

	
event_generate(sequence, **kw)

	Generate an event SEQUENCE. Additional
keyword arguments specify parameter of the event
(e.g. x, y, rootx, rooty).

	
event_info(virtual=None)

	Return a list of all virtual events or the information
about the SEQUENCE bound to the virtual event VIRTUAL.

	
focus()

	Direct input focus to this widget.

If the application currently does not have the focus
this widget will get the focus if the application gets
the focus through the window manager.

	
focus_displayof()

	Return the widget which has currently the focus on the
display where this widget is located.

Return None if the application does not have the focus.

	
focus_force()

	Direct input focus to this widget even if the
application does not have the focus. Use with
caution!

	
focus_get()

	Return the widget which has currently the focus in the
application.

Use focus_displayof to allow working with several
displays. Return None if application does not have
the focus.

	
focus_lastfor()

	Return the widget which would have the focus if top level
for this widget gets the focus from the window manager.

	
focus_set()

	Direct input focus to this widget.

If the application currently does not have the focus
this widget will get the focus if the application gets
the focus through the window manager.

	
focusmodel(model=None)

	Set focus model to MODEL. “active” means that this widget will claim
the focus itself, “passive” means that the window manager shall give
the focus. Return current focus model if MODEL is None.

	
frame()

	Return identifier for decorative frame of this widget if present.

	
geometry(newGeometry=None)

	Set geometry to NEWGEOMETRY of the form =widthxheight+x+y. Return
current value if None is given.

	
getboolean(s)

	Return a boolean value for Tcl boolean values true and false given as parameter.

	
getdouble

	alias of __builtin__.float

	
getint

	alias of __builtin__.int

	
getvar(name='PY_VAR')

	Return value of Tcl variable NAME.

	
grab_current()

	Return widget which has currently the grab in this application
or None.

	
grab_release()

	Release grab for this widget if currently set.

	
grab_set(timeout=30)

	

	
grab_set_global()

	Set global grab for this widget.

A global grab directs all events to this and
descendant widgets on the display. Use with caution -
other applications do not get events anymore.

	
grab_status()

	Return None, “local” or “global” if this widget has
no, a local or a global grab.

	
grid(baseWidth=None, baseHeight=None, widthInc=None, heightInc=None)

	Instruct the window manager that this widget shall only be
resized on grid boundaries. WIDTHINC and HEIGHTINC are the width and
height of a grid unit in pixels. BASEWIDTH and BASEHEIGHT are the
number of grid units requested in Tk_GeometryRequest.

	
grid_bbox(column=None, row=None, col2=None, row2=None)

	Return a tuple of integer coordinates for the bounding
box of this widget controlled by the geometry manager grid.

If COLUMN, ROW is given the bounding box applies from
the cell with row and column 0 to the specified
cell. If COL2 and ROW2 are given the bounding box
starts at that cell.

The returned integers specify the offset of the upper left
corner in the master widget and the width and height.

	
grid_columnconfigure(index, cnf={}, **kw)

	Configure column INDEX of a grid.

Valid resources are minsize (minimum size of the column),
weight (how much does additional space propagate to this column)
and pad (how much space to let additionally).

	
grid_location(x, y)

	Return a tuple of column and row which identify the cell
at which the pixel at position X and Y inside the master
widget is located.

	
grid_propagate(flag=['_noarg_'])

	Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information
of the slaves will determine the size of this widget. If no argument
is given, the current setting will be returned.

	
grid_rowconfigure(index, cnf={}, **kw)

	Configure row INDEX of a grid.

Valid resources are minsize (minimum size of the row),
weight (how much does additional space propagate to this row)
and pad (how much space to let additionally).

	
grid_size()

	Return a tuple of the number of column and rows in the grid.

	
grid_slaves(row=None, column=None)

	Return a list of all slaves of this widget
in its packing order.

	
group(pathName=None)

	Set the group leader widgets for related widgets to PATHNAME. Return
the group leader of this widget if None is given.

	
iconbitmap(bitmap=None, default=None)

	Set bitmap for the iconified widget to BITMAP. Return
the bitmap if None is given.

Under Windows, the DEFAULT parameter can be used to set the icon
for the widget and any descendents that don’t have an icon set
explicitly. DEFAULT can be the relative path to a .ico file
(example: root.iconbitmap(default=’myicon.ico’)). See Tk
documentation for more information.

	
iconify()

	Display widget as icon.

	
iconmask(bitmap=None)

	Set mask for the icon bitmap of this widget. Return the
mask if None is given.

	
iconname(newName=None)

	Set the name of the icon for this widget. Return the name if
None is given.

	
iconposition(x=None, y=None)

	Set the position of the icon of this widget to X and Y. Return
a tuple of the current values of X and X if None is given.

	
iconwindow(pathName=None)

	Set widget PATHNAME to be displayed instead of icon. Return the current
value if None is given.

	
image_names()

	Return a list of all existing image names.

	
image_types()

	Return a list of all available image types (e.g. photo bitmap).

	
keys()

	Return a list of all resource names of this widget.

	
lift(aboveThis=None)

	Raise this widget in the stacking order.

	
lower(belowThis=None)

	Lower this widget in the stacking order.

	
mainloop(n=0)

	Call the mainloop of Tk.

	
maxsize(width=None, height=None)

	Set max WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
minsize(width=None, height=None)

	Set min WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
nametowidget(name)

	Return the Tkinter instance of a widget identified by
its Tcl name NAME.

	
option_add(pattern, value, priority=None)

	Set a VALUE (second parameter) for an option
PATTERN (first parameter).

An optional third parameter gives the numeric priority
(defaults to 80).

	
option_clear()

	Clear the option database.

It will be reloaded if option_add is called.

	
option_get(name, className)

	Return the value for an option NAME for this widget
with CLASSNAME.

Values with higher priority override lower values.

	
option_readfile(fileName, priority=None)

	Read file FILENAME into the option database.

An optional second parameter gives the numeric
priority.

	
overrideredirect(boolean=None)

	Instruct the window manager to ignore this widget
if BOOLEAN is given with 1. Return the current value if None
is given.

	
pack_propagate(flag=['_noarg_'])

	Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information
of the slaves will determine the size of this widget. If no argument
is given the current setting will be returned.

	
pack_slaves()

	Return a list of all slaves of this widget
in its packing order.

	
place_slaves()

	Return a list of all slaves of this widget
in its packing order.

	
positionfrom(who=None)

	Instruct the window manager that the position of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
propagate(flag=['_noarg_'])

	Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information
of the slaves will determine the size of this widget. If no argument
is given the current setting will be returned.

	
protocol(name=None, func=None)

	Bind function FUNC to command NAME for this widget.
Return the function bound to NAME if None is given. NAME could be
e.g. “WM_SAVE_YOURSELF” or “WM_DELETE_WINDOW”.

	
quit()

	Quit the Tcl interpreter. All widgets will be destroyed.

	
register(func, subst=None, needcleanup=1)

	Return a newly created Tcl function. If this
function is called, the Python function FUNC will
be executed. An optional function SUBST can
be given which will be executed before FUNC.

	
resizable(width=None, height=None)

	Instruct the window manager whether this width can be resized
in WIDTH or HEIGHT. Both values are boolean values.

	
rowconfigure(index, cnf={}, **kw)

	Configure row INDEX of a grid.

Valid resources are minsize (minimum size of the row),
weight (how much does additional space propagate to this row)
and pad (how much space to let additionally).

	
selection_clear(**kw)

	Clear the current X selection.

	
selection_get(**kw)

	Return the contents of the current X selection.

A keyword parameter selection specifies the name of
the selection and defaults to PRIMARY. A keyword
parameter displayof specifies a widget on the display
to use. A keyword parameter type specifies the form of data to be
fetched, defaulting to STRING except on X11, where UTF8_STRING is tried
before STRING.

	
selection_handle(command, **kw)

	Specify a function COMMAND to call if the X
selection owned by this widget is queried by another
application.

This function must return the contents of the
selection. The function will be called with the
arguments OFFSET and LENGTH which allows the chunking
of very long selections. The following keyword
parameters can be provided:
selection - name of the selection (default PRIMARY),
type - type of the selection (e.g. STRING, FILE_NAME).

	
selection_own(**kw)

	Become owner of X selection.

A keyword parameter selection specifies the name of
the selection (default PRIMARY).

	
selection_own_get(**kw)

	Return owner of X selection.

The following keyword parameter can
be provided:
selection - name of the selection (default PRIMARY),
type - type of the selection (e.g. STRING, FILE_NAME).

	
send(interp, cmd, *args)

	Send Tcl command CMD to different interpreter INTERP to be executed.

	
setvar(name='PY_VAR', value='1')

	Set Tcl variable NAME to VALUE.

	
show()

	

	
size()

	Return a tuple of the number of column and rows in the grid.

	
sizefrom(who=None)

	Instruct the window manager that the size of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
slaves()

	Return a list of all slaves of this widget
in its packing order.

	
state(newstate=None)

	Query or set the state of this widget as one of normal, icon,
iconic (see wm_iconwindow), withdrawn, or zoomed (Windows only).

	
title(string=None)

	Set the title of this widget.

	
tk_bisque()

	Change the color scheme to light brown as used in Tk 3.6 and before.

	
tk_focusFollowsMouse()

	The widget under mouse will get automatically focus. Can not
be disabled easily.

	
tk_focusNext()

	Return the next widget in the focus order which follows
widget which has currently the focus.

The focus order first goes to the next child, then to
the children of the child recursively and then to the
next sibling which is higher in the stacking order. A
widget is omitted if it has the takefocus resource set
to 0.

	
tk_focusPrev()

	Return previous widget in the focus order. See tk_focusNext for details.

	
tk_menuBar(*args)

	Do not use. Needed in Tk 3.6 and earlier.

	
tk_setPalette(*args, **kw)

	Set a new color scheme for all widget elements.

A single color as argument will cause that all colors of Tk
widget elements are derived from this.
Alternatively several keyword parameters and its associated
colors can be given. The following keywords are valid:
activeBackground, foreground, selectColor,
activeForeground, highlightBackground, selectBackground,
background, highlightColor, selectForeground,
disabledForeground, insertBackground, troughColor.

	
tk_strictMotif(boolean=None)

	Set Tcl internal variable, whether the look and feel
should adhere to Motif.

A parameter of 1 means adhere to Motif (e.g. no color
change if mouse passes over slider).
Returns the set value.

	
tkraise(aboveThis=None)

	Raise this widget in the stacking order.

	
transient(master=None)

	Instruct the window manager that this widget is transient
with regard to widget MASTER.

	
unbind(sequence, funcid=None)

	Unbind for this widget for event SEQUENCE the
function identified with FUNCID.

	
unbind_all(sequence)

	Unbind for all widgets for event SEQUENCE all functions.

	
unbind_class(className, sequence)

	Unbind for all widgets with bindtag CLASSNAME for event SEQUENCE
all functions.

	
update()

	Enter event loop until all pending events have been processed by Tcl.

	
update_idletasks()

	Enter event loop until all idle callbacks have been called. This
will update the display of windows but not process events caused by
the user.

	
wait_variable(name='PY_VAR')

	Wait until the variable is modified.

A parameter of type IntVar, StringVar, DoubleVar or
BooleanVar must be given.

	
wait_visibility(window=None)

	Wait until the visibility of a WIDGET changes
(e.g. it appears).

If no parameter is given self is used.

	
wait_window(window=None)

	Wait until a WIDGET is destroyed.

If no parameter is given self is used.

	
waitvar(name='PY_VAR')

	Wait until the variable is modified.

A parameter of type IntVar, StringVar, DoubleVar or
BooleanVar must be given.

	
winfo_atom(name, displayof=0)

	Return integer which represents atom NAME.

	
winfo_atomname(id, displayof=0)

	Return name of atom with identifier ID.

	
winfo_cells()

	Return number of cells in the colormap for this widget.

	
winfo_children()

	Return a list of all widgets which are children of this widget.

	
winfo_class()

	Return window class name of this widget.

	
winfo_colormapfull()

	Return true if at the last color request the colormap was full.

	
winfo_containing(rootX, rootY, displayof=0)

	Return the widget which is at the root coordinates ROOTX, ROOTY.

	
winfo_depth()

	Return the number of bits per pixel.

	
winfo_exists()

	Return true if this widget exists.

	
winfo_fpixels(number)

	Return the number of pixels for the given distance NUMBER
(e.g. “3c”) as float.

	
winfo_geometry()

	Return geometry string for this widget in the form “widthxheight+X+Y”.

	
winfo_height()

	Return height of this widget.

	
winfo_id()

	Return identifier ID for this widget.

	
winfo_interps(displayof=0)

	Return the name of all Tcl interpreters for this display.

	
winfo_ismapped()

	Return true if this widget is mapped.

	
winfo_manager()

	Return the window manager name for this widget.

	
winfo_name()

	Return the name of this widget.

	
winfo_parent()

	Return the name of the parent of this widget.

	
winfo_pathname(id, displayof=0)

	Return the pathname of the widget given by ID.

	
winfo_pixels(number)

	Rounded integer value of winfo_fpixels.

	
winfo_pointerx()

	Return the x coordinate of the pointer on the root window.

	
winfo_pointerxy()

	Return a tuple of x and y coordinates of the pointer on the root window.

	
winfo_pointery()

	Return the y coordinate of the pointer on the root window.

	
winfo_reqheight()

	Return requested height of this widget.

	
winfo_reqwidth()

	Return requested width of this widget.

	
winfo_rgb(color)

	Return tuple of decimal values for red, green, blue for
COLOR in this widget.

	
winfo_rootx()

	Return x coordinate of upper left corner of this widget on the
root window.

	
winfo_rooty()

	Return y coordinate of upper left corner of this widget on the
root window.

	
winfo_screen()

	Return the screen name of this widget.

	
winfo_screencells()

	Return the number of the cells in the colormap of the screen
of this widget.

	
winfo_screendepth()

	Return the number of bits per pixel of the root window of the
screen of this widget.

	
winfo_screenheight()

	Return the number of pixels of the height of the screen of this widget
in pixel.

	
winfo_screenmmheight()

	Return the number of pixels of the height of the screen of
this widget in mm.

	
winfo_screenmmwidth()

	Return the number of pixels of the width of the screen of
this widget in mm.

	
winfo_screenvisual()

	Return one of the strings directcolor, grayscale, pseudocolor,
staticcolor, staticgray, or truecolor for the default
colormodel of this screen.

	
winfo_screenwidth()

	Return the number of pixels of the width of the screen of
this widget in pixel.

	
winfo_server()

	Return information of the X-Server of the screen of this widget in
the form “XmajorRminor vendor vendorVersion”.

	
winfo_toplevel()

	Return the toplevel widget of this widget.

	
winfo_viewable()

	Return true if the widget and all its higher ancestors are mapped.

	
winfo_visual()

	Return one of the strings directcolor, grayscale, pseudocolor,
staticcolor, staticgray, or truecolor for the
colormodel of this widget.

	
winfo_visualid()

	Return the X identifier for the visual for this widget.

	
winfo_visualsavailable(includeids=0)

	Return a list of all visuals available for the screen
of this widget.

Each item in the list consists of a visual name (see winfo_visual), a
depth and if INCLUDEIDS=1 is given also the X identifier.

	
winfo_vrootheight()

	Return the height of the virtual root window associated with this
widget in pixels. If there is no virtual root window return the
height of the screen.

	
winfo_vrootwidth()

	Return the width of the virtual root window associated with this
widget in pixel. If there is no virtual root window return the
width of the screen.

	
winfo_vrootx()

	Return the x offset of the virtual root relative to the root
window of the screen of this widget.

	
winfo_vrooty()

	Return the y offset of the virtual root relative to the root
window of the screen of this widget.

	
winfo_width()

	Return the width of this widget.

	
winfo_x()

	Return the x coordinate of the upper left corner of this widget
in the parent.

	
winfo_y()

	Return the y coordinate of the upper left corner of this widget
in the parent.

	
withdraw()

	Withdraw this widget from the screen such that it is unmapped
and forgotten by the window manager. Re-draw it with wm_deiconify.

	
wm_aspect(minNumer=None, minDenom=None, maxNumer=None, maxDenom=None)

	Instruct the window manager to set the aspect ratio (width/height)
of this widget to be between MINNUMER/MINDENOM and MAXNUMER/MAXDENOM. Return a tuple
of the actual values if no argument is given.

	
wm_attributes(*args)

	This subcommand returns or sets platform specific attributes

The first form returns a list of the platform specific flags and
their values. The second form returns the value for the specific
option. The third form sets one or more of the values. The values
are as follows:

On Windows, -disabled gets or sets whether the window is in a
disabled state. -toolwindow gets or sets the style of the window
to toolwindow (as defined in the MSDN). -topmost gets or sets
whether this is a topmost window (displays above all other
windows).

On Macintosh, XXXXX

On Unix, there are currently no special attribute values.

	
wm_client(name=None)

	Store NAME in WM_CLIENT_MACHINE property of this widget. Return
current value.

	
wm_colormapwindows(*wlist)

	Store list of window names (WLIST) into WM_COLORMAPWINDOWS property
of this widget. This list contains windows whose colormaps differ from their
parents. Return current list of widgets if WLIST is empty.

	
wm_command(value=None)

	Store VALUE in WM_COMMAND property. It is the command
which shall be used to invoke the application. Return current
command if VALUE is None.

	
wm_deiconify()

	Deiconify this widget. If it was never mapped it will not be mapped.
On Windows it will raise this widget and give it the focus.

	
wm_focusmodel(model=None)

	Set focus model to MODEL. “active” means that this widget will claim
the focus itself, “passive” means that the window manager shall give
the focus. Return current focus model if MODEL is None.

	
wm_frame()

	Return identifier for decorative frame of this widget if present.

	
wm_geometry(newGeometry=None)

	Set geometry to NEWGEOMETRY of the form =widthxheight+x+y. Return
current value if None is given.

	
wm_grid(baseWidth=None, baseHeight=None, widthInc=None, heightInc=None)

	Instruct the window manager that this widget shall only be
resized on grid boundaries. WIDTHINC and HEIGHTINC are the width and
height of a grid unit in pixels. BASEWIDTH and BASEHEIGHT are the
number of grid units requested in Tk_GeometryRequest.

	
wm_group(pathName=None)

	Set the group leader widgets for related widgets to PATHNAME. Return
the group leader of this widget if None is given.

	
wm_iconbitmap(bitmap=None, default=None)

	Set bitmap for the iconified widget to BITMAP. Return
the bitmap if None is given.

Under Windows, the DEFAULT parameter can be used to set the icon
for the widget and any descendents that don’t have an icon set
explicitly. DEFAULT can be the relative path to a .ico file
(example: root.iconbitmap(default=’myicon.ico’)). See Tk
documentation for more information.

	
wm_iconify()

	Display widget as icon.

	
wm_iconmask(bitmap=None)

	Set mask for the icon bitmap of this widget. Return the
mask if None is given.

	
wm_iconname(newName=None)

	Set the name of the icon for this widget. Return the name if
None is given.

	
wm_iconposition(x=None, y=None)

	Set the position of the icon of this widget to X and Y. Return
a tuple of the current values of X and X if None is given.

	
wm_iconwindow(pathName=None)

	Set widget PATHNAME to be displayed instead of icon. Return the current
value if None is given.

	
wm_maxsize(width=None, height=None)

	Set max WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
wm_minsize(width=None, height=None)

	Set min WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
wm_overrideredirect(boolean=None)

	Instruct the window manager to ignore this widget
if BOOLEAN is given with 1. Return the current value if None
is given.

	
wm_positionfrom(who=None)

	Instruct the window manager that the position of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
wm_protocol(name=None, func=None)

	Bind function FUNC to command NAME for this widget.
Return the function bound to NAME if None is given. NAME could be
e.g. “WM_SAVE_YOURSELF” or “WM_DELETE_WINDOW”.

	
wm_resizable(width=None, height=None)

	Instruct the window manager whether this width can be resized
in WIDTH or HEIGHT. Both values are boolean values.

	
wm_sizefrom(who=None)

	Instruct the window manager that the size of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
wm_state(newstate=None)

	Query or set the state of this widget as one of normal, icon,
iconic (see wm_iconwindow), withdrawn, or zoomed (Windows only).

	
wm_title(string=None)

	Set the title of this widget.

	
wm_transient(master=None)

	Instruct the window manager that this widget is transient
with regard to widget MASTER.

	
wm_withdraw()

	Withdraw this widget from the screen such that it is unmapped
and forgotten by the window manager. Re-draw it with wm_deiconify.

	
class robot.libraries.dialogs_py.InputDialog(message, default='', hidden=False)

	Bases: robot.libraries.dialogs_py._TkDialog

	
after(ms, func=None, *args)

	Call function once after given time.

MS specifies the time in milliseconds. FUNC gives the
function which shall be called. Additional parameters
are given as parameters to the function call. Return
identifier to cancel scheduling with after_cancel.

	
after_cancel(id)

	Cancel scheduling of function identified with ID.

Identifier returned by after or after_idle must be
given as first parameter.

	
after_idle(func, *args)

	Call FUNC once if the Tcl main loop has no event to
process.

Return an identifier to cancel the scheduling with
after_cancel.

	
aspect(minNumer=None, minDenom=None, maxNumer=None, maxDenom=None)

	Instruct the window manager to set the aspect ratio (width/height)
of this widget to be between MINNUMER/MINDENOM and MAXNUMER/MAXDENOM. Return a tuple
of the actual values if no argument is given.

	
attributes(*args)

	This subcommand returns or sets platform specific attributes

The first form returns a list of the platform specific flags and
their values. The second form returns the value for the specific
option. The third form sets one or more of the values. The values
are as follows:

On Windows, -disabled gets or sets whether the window is in a
disabled state. -toolwindow gets or sets the style of the window
to toolwindow (as defined in the MSDN). -topmost gets or sets
whether this is a topmost window (displays above all other
windows).

On Macintosh, XXXXX

On Unix, there are currently no special attribute values.

	
bbox(column=None, row=None, col2=None, row2=None)

	Return a tuple of integer coordinates for the bounding
box of this widget controlled by the geometry manager grid.

If COLUMN, ROW is given the bounding box applies from
the cell with row and column 0 to the specified
cell. If COL2 and ROW2 are given the bounding box
starts at that cell.

The returned integers specify the offset of the upper left
corner in the master widget and the width and height.

	
bell(displayof=0)

	Ring a display’s bell.

	
bind(sequence=None, func=None, add=None)

	Bind to this widget at event SEQUENCE a call to function FUNC.

SEQUENCE is a string of concatenated event
patterns. An event pattern is of the form
<MODIFIER-MODIFIER-TYPE-DETAIL> where MODIFIER is one
of Control, Mod2, M2, Shift, Mod3, M3, Lock, Mod4, M4,
Button1, B1, Mod5, M5 Button2, B2, Meta, M, Button3,
B3, Alt, Button4, B4, Double, Button5, B5 Triple,
Mod1, M1. TYPE is one of Activate, Enter, Map,
ButtonPress, Button, Expose, Motion, ButtonRelease
FocusIn, MouseWheel, Circulate, FocusOut, Property,
Colormap, Gravity Reparent, Configure, KeyPress, Key,
Unmap, Deactivate, KeyRelease Visibility, Destroy,
Leave and DETAIL is the button number for ButtonPress,
ButtonRelease and DETAIL is the Keysym for KeyPress and
KeyRelease. Examples are
<Control-Button-1> for pressing Control and mouse button 1 or
<Alt-A> for pressing A and the Alt key (KeyPress can be omitted).
An event pattern can also be a virtual event of the form
<<AString>> where AString can be arbitrary. This
event can be generated by event_generate.
If events are concatenated they must appear shortly
after each other.

FUNC will be called if the event sequence occurs with an
instance of Event as argument. If the return value of FUNC is
“break” no further bound function is invoked.

An additional boolean parameter ADD specifies whether FUNC will
be called additionally to the other bound function or whether
it will replace the previous function.

Bind will return an identifier to allow deletion of the bound function with
unbind without memory leak.

If FUNC or SEQUENCE is omitted the bound function or list
of bound events are returned.

	
bind_all(sequence=None, func=None, add=None)

	Bind to all widgets at an event SEQUENCE a call to function FUNC.
An additional boolean parameter ADD specifies whether FUNC will
be called additionally to the other bound function or whether
it will replace the previous function. See bind for the return value.

	
bind_class(className, sequence=None, func=None, add=None)

	Bind to widgets with bindtag CLASSNAME at event
SEQUENCE a call of function FUNC. An additional
boolean parameter ADD specifies whether FUNC will be
called additionally to the other bound function or
whether it will replace the previous function. See bind for
the return value.

	
bindtags(tagList=None)

	Set or get the list of bindtags for this widget.

With no argument return the list of all bindtags associated with
this widget. With a list of strings as argument the bindtags are
set to this list. The bindtags determine in which order events are
processed (see bind).

	
cget(key)

	Return the resource value for a KEY given as string.

	
client(name=None)

	Store NAME in WM_CLIENT_MACHINE property of this widget. Return
current value.

	
clipboard_append(string, **kw)

	Append STRING to the Tk clipboard.

A widget specified at the optional displayof keyword
argument specifies the target display. The clipboard
can be retrieved with selection_get.

	
clipboard_clear(**kw)

	Clear the data in the Tk clipboard.

A widget specified for the optional displayof keyword
argument specifies the target display.

	
clipboard_get(**kw)

	Retrieve data from the clipboard on window’s display.

The window keyword defaults to the root window of the Tkinter
application.

The type keyword specifies the form in which the data is
to be returned and should be an atom name such as STRING
or FILE_NAME. Type defaults to STRING, except on X11, where the default
is to try UTF8_STRING and fall back to STRING.

This command is equivalent to:

selection_get(CLIPBOARD)

	
colormapwindows(*wlist)

	Store list of window names (WLIST) into WM_COLORMAPWINDOWS property
of this widget. This list contains windows whose colormaps differ from their
parents. Return current list of widgets if WLIST is empty.

	
colormodel(value=None)

	Useless. Not implemented in Tk.

	
columnconfigure(index, cnf={}, **kw)

	Configure column INDEX of a grid.

Valid resources are minsize (minimum size of the column),
weight (how much does additional space propagate to this column)
and pad (how much space to let additionally).

	
command(value=None)

	Store VALUE in WM_COMMAND property. It is the command
which shall be used to invoke the application. Return current
command if VALUE is None.

	
config(cnf=None, **kw)

	Configure resources of a widget.

The values for resources are specified as keyword
arguments. To get an overview about
the allowed keyword arguments call the method keys.

	
configure(cnf=None, **kw)

	Configure resources of a widget.

The values for resources are specified as keyword
arguments. To get an overview about
the allowed keyword arguments call the method keys.

	
deiconify()

	Deiconify this widget. If it was never mapped it will not be mapped.
On Windows it will raise this widget and give it the focus.

	
deletecommand(name)

	Internal function.

Delete the Tcl command provided in NAME.

	
destroy()

	Destroy this and all descendants widgets.

	
event_add(virtual, *sequences)

	Bind a virtual event VIRTUAL (of the form <<Name>>)
to an event SEQUENCE such that the virtual event is triggered
whenever SEQUENCE occurs.

	
event_delete(virtual, *sequences)

	Unbind a virtual event VIRTUAL from SEQUENCE.

	
event_generate(sequence, **kw)

	Generate an event SEQUENCE. Additional
keyword arguments specify parameter of the event
(e.g. x, y, rootx, rooty).

	
event_info(virtual=None)

	Return a list of all virtual events or the information
about the SEQUENCE bound to the virtual event VIRTUAL.

	
focus()

	Direct input focus to this widget.

If the application currently does not have the focus
this widget will get the focus if the application gets
the focus through the window manager.

	
focus_displayof()

	Return the widget which has currently the focus on the
display where this widget is located.

Return None if the application does not have the focus.

	
focus_force()

	Direct input focus to this widget even if the
application does not have the focus. Use with
caution!

	
focus_get()

	Return the widget which has currently the focus in the
application.

Use focus_displayof to allow working with several
displays. Return None if application does not have
the focus.

	
focus_lastfor()

	Return the widget which would have the focus if top level
for this widget gets the focus from the window manager.

	
focus_set()

	Direct input focus to this widget.

If the application currently does not have the focus
this widget will get the focus if the application gets
the focus through the window manager.

	
focusmodel(model=None)

	Set focus model to MODEL. “active” means that this widget will claim
the focus itself, “passive” means that the window manager shall give
the focus. Return current focus model if MODEL is None.

	
frame()

	Return identifier for decorative frame of this widget if present.

	
geometry(newGeometry=None)

	Set geometry to NEWGEOMETRY of the form =widthxheight+x+y. Return
current value if None is given.

	
getboolean(s)

	Return a boolean value for Tcl boolean values true and false given as parameter.

	
getdouble

	alias of __builtin__.float

	
getint

	alias of __builtin__.int

	
getvar(name='PY_VAR')

	Return value of Tcl variable NAME.

	
grab_current()

	Return widget which has currently the grab in this application
or None.

	
grab_release()

	Release grab for this widget if currently set.

	
grab_set(timeout=30)

	

	
grab_set_global()

	Set global grab for this widget.

A global grab directs all events to this and
descendant widgets on the display. Use with caution -
other applications do not get events anymore.

	
grab_status()

	Return None, “local” or “global” if this widget has
no, a local or a global grab.

	
grid(baseWidth=None, baseHeight=None, widthInc=None, heightInc=None)

	Instruct the window manager that this widget shall only be
resized on grid boundaries. WIDTHINC and HEIGHTINC are the width and
height of a grid unit in pixels. BASEWIDTH and BASEHEIGHT are the
number of grid units requested in Tk_GeometryRequest.

	
grid_bbox(column=None, row=None, col2=None, row2=None)

	Return a tuple of integer coordinates for the bounding
box of this widget controlled by the geometry manager grid.

If COLUMN, ROW is given the bounding box applies from
the cell with row and column 0 to the specified
cell. If COL2 and ROW2 are given the bounding box
starts at that cell.

The returned integers specify the offset of the upper left
corner in the master widget and the width and height.

	
grid_columnconfigure(index, cnf={}, **kw)

	Configure column INDEX of a grid.

Valid resources are minsize (minimum size of the column),
weight (how much does additional space propagate to this column)
and pad (how much space to let additionally).

	
grid_location(x, y)

	Return a tuple of column and row which identify the cell
at which the pixel at position X and Y inside the master
widget is located.

	
grid_propagate(flag=['_noarg_'])

	Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information
of the slaves will determine the size of this widget. If no argument
is given, the current setting will be returned.

	
grid_rowconfigure(index, cnf={}, **kw)

	Configure row INDEX of a grid.

Valid resources are minsize (minimum size of the row),
weight (how much does additional space propagate to this row)
and pad (how much space to let additionally).

	
grid_size()

	Return a tuple of the number of column and rows in the grid.

	
grid_slaves(row=None, column=None)

	Return a list of all slaves of this widget
in its packing order.

	
group(pathName=None)

	Set the group leader widgets for related widgets to PATHNAME. Return
the group leader of this widget if None is given.

	
iconbitmap(bitmap=None, default=None)

	Set bitmap for the iconified widget to BITMAP. Return
the bitmap if None is given.

Under Windows, the DEFAULT parameter can be used to set the icon
for the widget and any descendents that don’t have an icon set
explicitly. DEFAULT can be the relative path to a .ico file
(example: root.iconbitmap(default=’myicon.ico’)). See Tk
documentation for more information.

	
iconify()

	Display widget as icon.

	
iconmask(bitmap=None)

	Set mask for the icon bitmap of this widget. Return the
mask if None is given.

	
iconname(newName=None)

	Set the name of the icon for this widget. Return the name if
None is given.

	
iconposition(x=None, y=None)

	Set the position of the icon of this widget to X and Y. Return
a tuple of the current values of X and X if None is given.

	
iconwindow(pathName=None)

	Set widget PATHNAME to be displayed instead of icon. Return the current
value if None is given.

	
image_names()

	Return a list of all existing image names.

	
image_types()

	Return a list of all available image types (e.g. photo bitmap).

	
keys()

	Return a list of all resource names of this widget.

	
lift(aboveThis=None)

	Raise this widget in the stacking order.

	
lower(belowThis=None)

	Lower this widget in the stacking order.

	
mainloop(n=0)

	Call the mainloop of Tk.

	
maxsize(width=None, height=None)

	Set max WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
minsize(width=None, height=None)

	Set min WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
nametowidget(name)

	Return the Tkinter instance of a widget identified by
its Tcl name NAME.

	
option_add(pattern, value, priority=None)

	Set a VALUE (second parameter) for an option
PATTERN (first parameter).

An optional third parameter gives the numeric priority
(defaults to 80).

	
option_clear()

	Clear the option database.

It will be reloaded if option_add is called.

	
option_get(name, className)

	Return the value for an option NAME for this widget
with CLASSNAME.

Values with higher priority override lower values.

	
option_readfile(fileName, priority=None)

	Read file FILENAME into the option database.

An optional second parameter gives the numeric
priority.

	
overrideredirect(boolean=None)

	Instruct the window manager to ignore this widget
if BOOLEAN is given with 1. Return the current value if None
is given.

	
pack_propagate(flag=['_noarg_'])

	Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information
of the slaves will determine the size of this widget. If no argument
is given the current setting will be returned.

	
pack_slaves()

	Return a list of all slaves of this widget
in its packing order.

	
place_slaves()

	Return a list of all slaves of this widget
in its packing order.

	
positionfrom(who=None)

	Instruct the window manager that the position of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
propagate(flag=['_noarg_'])

	Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information
of the slaves will determine the size of this widget. If no argument
is given the current setting will be returned.

	
protocol(name=None, func=None)

	Bind function FUNC to command NAME for this widget.
Return the function bound to NAME if None is given. NAME could be
e.g. “WM_SAVE_YOURSELF” or “WM_DELETE_WINDOW”.

	
quit()

	Quit the Tcl interpreter. All widgets will be destroyed.

	
register(func, subst=None, needcleanup=1)

	Return a newly created Tcl function. If this
function is called, the Python function FUNC will
be executed. An optional function SUBST can
be given which will be executed before FUNC.

	
resizable(width=None, height=None)

	Instruct the window manager whether this width can be resized
in WIDTH or HEIGHT. Both values are boolean values.

	
rowconfigure(index, cnf={}, **kw)

	Configure row INDEX of a grid.

Valid resources are minsize (minimum size of the row),
weight (how much does additional space propagate to this row)
and pad (how much space to let additionally).

	
selection_clear(**kw)

	Clear the current X selection.

	
selection_get(**kw)

	Return the contents of the current X selection.

A keyword parameter selection specifies the name of
the selection and defaults to PRIMARY. A keyword
parameter displayof specifies a widget on the display
to use. A keyword parameter type specifies the form of data to be
fetched, defaulting to STRING except on X11, where UTF8_STRING is tried
before STRING.

	
selection_handle(command, **kw)

	Specify a function COMMAND to call if the X
selection owned by this widget is queried by another
application.

This function must return the contents of the
selection. The function will be called with the
arguments OFFSET and LENGTH which allows the chunking
of very long selections. The following keyword
parameters can be provided:
selection - name of the selection (default PRIMARY),
type - type of the selection (e.g. STRING, FILE_NAME).

	
selection_own(**kw)

	Become owner of X selection.

A keyword parameter selection specifies the name of
the selection (default PRIMARY).

	
selection_own_get(**kw)

	Return owner of X selection.

The following keyword parameter can
be provided:
selection - name of the selection (default PRIMARY),
type - type of the selection (e.g. STRING, FILE_NAME).

	
send(interp, cmd, *args)

	Send Tcl command CMD to different interpreter INTERP to be executed.

	
setvar(name='PY_VAR', value='1')

	Set Tcl variable NAME to VALUE.

	
show()

	

	
size()

	Return a tuple of the number of column and rows in the grid.

	
sizefrom(who=None)

	Instruct the window manager that the size of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
slaves()

	Return a list of all slaves of this widget
in its packing order.

	
state(newstate=None)

	Query or set the state of this widget as one of normal, icon,
iconic (see wm_iconwindow), withdrawn, or zoomed (Windows only).

	
title(string=None)

	Set the title of this widget.

	
tk_bisque()

	Change the color scheme to light brown as used in Tk 3.6 and before.

	
tk_focusFollowsMouse()

	The widget under mouse will get automatically focus. Can not
be disabled easily.

	
tk_focusNext()

	Return the next widget in the focus order which follows
widget which has currently the focus.

The focus order first goes to the next child, then to
the children of the child recursively and then to the
next sibling which is higher in the stacking order. A
widget is omitted if it has the takefocus resource set
to 0.

	
tk_focusPrev()

	Return previous widget in the focus order. See tk_focusNext for details.

	
tk_menuBar(*args)

	Do not use. Needed in Tk 3.6 and earlier.

	
tk_setPalette(*args, **kw)

	Set a new color scheme for all widget elements.

A single color as argument will cause that all colors of Tk
widget elements are derived from this.
Alternatively several keyword parameters and its associated
colors can be given. The following keywords are valid:
activeBackground, foreground, selectColor,
activeForeground, highlightBackground, selectBackground,
background, highlightColor, selectForeground,
disabledForeground, insertBackground, troughColor.

	
tk_strictMotif(boolean=None)

	Set Tcl internal variable, whether the look and feel
should adhere to Motif.

A parameter of 1 means adhere to Motif (e.g. no color
change if mouse passes over slider).
Returns the set value.

	
tkraise(aboveThis=None)

	Raise this widget in the stacking order.

	
transient(master=None)

	Instruct the window manager that this widget is transient
with regard to widget MASTER.

	
unbind(sequence, funcid=None)

	Unbind for this widget for event SEQUENCE the
function identified with FUNCID.

	
unbind_all(sequence)

	Unbind for all widgets for event SEQUENCE all functions.

	
unbind_class(className, sequence)

	Unbind for all widgets with bindtag CLASSNAME for event SEQUENCE
all functions.

	
update()

	Enter event loop until all pending events have been processed by Tcl.

	
update_idletasks()

	Enter event loop until all idle callbacks have been called. This
will update the display of windows but not process events caused by
the user.

	
wait_variable(name='PY_VAR')

	Wait until the variable is modified.

A parameter of type IntVar, StringVar, DoubleVar or
BooleanVar must be given.

	
wait_visibility(window=None)

	Wait until the visibility of a WIDGET changes
(e.g. it appears).

If no parameter is given self is used.

	
wait_window(window=None)

	Wait until a WIDGET is destroyed.

If no parameter is given self is used.

	
waitvar(name='PY_VAR')

	Wait until the variable is modified.

A parameter of type IntVar, StringVar, DoubleVar or
BooleanVar must be given.

	
winfo_atom(name, displayof=0)

	Return integer which represents atom NAME.

	
winfo_atomname(id, displayof=0)

	Return name of atom with identifier ID.

	
winfo_cells()

	Return number of cells in the colormap for this widget.

	
winfo_children()

	Return a list of all widgets which are children of this widget.

	
winfo_class()

	Return window class name of this widget.

	
winfo_colormapfull()

	Return true if at the last color request the colormap was full.

	
winfo_containing(rootX, rootY, displayof=0)

	Return the widget which is at the root coordinates ROOTX, ROOTY.

	
winfo_depth()

	Return the number of bits per pixel.

	
winfo_exists()

	Return true if this widget exists.

	
winfo_fpixels(number)

	Return the number of pixels for the given distance NUMBER
(e.g. “3c”) as float.

	
winfo_geometry()

	Return geometry string for this widget in the form “widthxheight+X+Y”.

	
winfo_height()

	Return height of this widget.

	
winfo_id()

	Return identifier ID for this widget.

	
winfo_interps(displayof=0)

	Return the name of all Tcl interpreters for this display.

	
winfo_ismapped()

	Return true if this widget is mapped.

	
winfo_manager()

	Return the window manager name for this widget.

	
winfo_name()

	Return the name of this widget.

	
winfo_parent()

	Return the name of the parent of this widget.

	
winfo_pathname(id, displayof=0)

	Return the pathname of the widget given by ID.

	
winfo_pixels(number)

	Rounded integer value of winfo_fpixels.

	
winfo_pointerx()

	Return the x coordinate of the pointer on the root window.

	
winfo_pointerxy()

	Return a tuple of x and y coordinates of the pointer on the root window.

	
winfo_pointery()

	Return the y coordinate of the pointer on the root window.

	
winfo_reqheight()

	Return requested height of this widget.

	
winfo_reqwidth()

	Return requested width of this widget.

	
winfo_rgb(color)

	Return tuple of decimal values for red, green, blue for
COLOR in this widget.

	
winfo_rootx()

	Return x coordinate of upper left corner of this widget on the
root window.

	
winfo_rooty()

	Return y coordinate of upper left corner of this widget on the
root window.

	
winfo_screen()

	Return the screen name of this widget.

	
winfo_screencells()

	Return the number of the cells in the colormap of the screen
of this widget.

	
winfo_screendepth()

	Return the number of bits per pixel of the root window of the
screen of this widget.

	
winfo_screenheight()

	Return the number of pixels of the height of the screen of this widget
in pixel.

	
winfo_screenmmheight()

	Return the number of pixels of the height of the screen of
this widget in mm.

	
winfo_screenmmwidth()

	Return the number of pixels of the width of the screen of
this widget in mm.

	
winfo_screenvisual()

	Return one of the strings directcolor, grayscale, pseudocolor,
staticcolor, staticgray, or truecolor for the default
colormodel of this screen.

	
winfo_screenwidth()

	Return the number of pixels of the width of the screen of
this widget in pixel.

	
winfo_server()

	Return information of the X-Server of the screen of this widget in
the form “XmajorRminor vendor vendorVersion”.

	
winfo_toplevel()

	Return the toplevel widget of this widget.

	
winfo_viewable()

	Return true if the widget and all its higher ancestors are mapped.

	
winfo_visual()

	Return one of the strings directcolor, grayscale, pseudocolor,
staticcolor, staticgray, or truecolor for the
colormodel of this widget.

	
winfo_visualid()

	Return the X identifier for the visual for this widget.

	
winfo_visualsavailable(includeids=0)

	Return a list of all visuals available for the screen
of this widget.

Each item in the list consists of a visual name (see winfo_visual), a
depth and if INCLUDEIDS=1 is given also the X identifier.

	
winfo_vrootheight()

	Return the height of the virtual root window associated with this
widget in pixels. If there is no virtual root window return the
height of the screen.

	
winfo_vrootwidth()

	Return the width of the virtual root window associated with this
widget in pixel. If there is no virtual root window return the
width of the screen.

	
winfo_vrootx()

	Return the x offset of the virtual root relative to the root
window of the screen of this widget.

	
winfo_vrooty()

	Return the y offset of the virtual root relative to the root
window of the screen of this widget.

	
winfo_width()

	Return the width of this widget.

	
winfo_x()

	Return the x coordinate of the upper left corner of this widget
in the parent.

	
winfo_y()

	Return the y coordinate of the upper left corner of this widget
in the parent.

	
withdraw()

	Withdraw this widget from the screen such that it is unmapped
and forgotten by the window manager. Re-draw it with wm_deiconify.

	
wm_aspect(minNumer=None, minDenom=None, maxNumer=None, maxDenom=None)

	Instruct the window manager to set the aspect ratio (width/height)
of this widget to be between MINNUMER/MINDENOM and MAXNUMER/MAXDENOM. Return a tuple
of the actual values if no argument is given.

	
wm_attributes(*args)

	This subcommand returns or sets platform specific attributes

The first form returns a list of the platform specific flags and
their values. The second form returns the value for the specific
option. The third form sets one or more of the values. The values
are as follows:

On Windows, -disabled gets or sets whether the window is in a
disabled state. -toolwindow gets or sets the style of the window
to toolwindow (as defined in the MSDN). -topmost gets or sets
whether this is a topmost window (displays above all other
windows).

On Macintosh, XXXXX

On Unix, there are currently no special attribute values.

	
wm_client(name=None)

	Store NAME in WM_CLIENT_MACHINE property of this widget. Return
current value.

	
wm_colormapwindows(*wlist)

	Store list of window names (WLIST) into WM_COLORMAPWINDOWS property
of this widget. This list contains windows whose colormaps differ from their
parents. Return current list of widgets if WLIST is empty.

	
wm_command(value=None)

	Store VALUE in WM_COMMAND property. It is the command
which shall be used to invoke the application. Return current
command if VALUE is None.

	
wm_deiconify()

	Deiconify this widget. If it was never mapped it will not be mapped.
On Windows it will raise this widget and give it the focus.

	
wm_focusmodel(model=None)

	Set focus model to MODEL. “active” means that this widget will claim
the focus itself, “passive” means that the window manager shall give
the focus. Return current focus model if MODEL is None.

	
wm_frame()

	Return identifier for decorative frame of this widget if present.

	
wm_geometry(newGeometry=None)

	Set geometry to NEWGEOMETRY of the form =widthxheight+x+y. Return
current value if None is given.

	
wm_grid(baseWidth=None, baseHeight=None, widthInc=None, heightInc=None)

	Instruct the window manager that this widget shall only be
resized on grid boundaries. WIDTHINC and HEIGHTINC are the width and
height of a grid unit in pixels. BASEWIDTH and BASEHEIGHT are the
number of grid units requested in Tk_GeometryRequest.

	
wm_group(pathName=None)

	Set the group leader widgets for related widgets to PATHNAME. Return
the group leader of this widget if None is given.

	
wm_iconbitmap(bitmap=None, default=None)

	Set bitmap for the iconified widget to BITMAP. Return
the bitmap if None is given.

Under Windows, the DEFAULT parameter can be used to set the icon
for the widget and any descendents that don’t have an icon set
explicitly. DEFAULT can be the relative path to a .ico file
(example: root.iconbitmap(default=’myicon.ico’)). See Tk
documentation for more information.

	
wm_iconify()

	Display widget as icon.

	
wm_iconmask(bitmap=None)

	Set mask for the icon bitmap of this widget. Return the
mask if None is given.

	
wm_iconname(newName=None)

	Set the name of the icon for this widget. Return the name if
None is given.

	
wm_iconposition(x=None, y=None)

	Set the position of the icon of this widget to X and Y. Return
a tuple of the current values of X and X if None is given.

	
wm_iconwindow(pathName=None)

	Set widget PATHNAME to be displayed instead of icon. Return the current
value if None is given.

	
wm_maxsize(width=None, height=None)

	Set max WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
wm_minsize(width=None, height=None)

	Set min WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
wm_overrideredirect(boolean=None)

	Instruct the window manager to ignore this widget
if BOOLEAN is given with 1. Return the current value if None
is given.

	
wm_positionfrom(who=None)

	Instruct the window manager that the position of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
wm_protocol(name=None, func=None)

	Bind function FUNC to command NAME for this widget.
Return the function bound to NAME if None is given. NAME could be
e.g. “WM_SAVE_YOURSELF” or “WM_DELETE_WINDOW”.

	
wm_resizable(width=None, height=None)

	Instruct the window manager whether this width can be resized
in WIDTH or HEIGHT. Both values are boolean values.

	
wm_sizefrom(who=None)

	Instruct the window manager that the size of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
wm_state(newstate=None)

	Query or set the state of this widget as one of normal, icon,
iconic (see wm_iconwindow), withdrawn, or zoomed (Windows only).

	
wm_title(string=None)

	Set the title of this widget.

	
wm_transient(master=None)

	Instruct the window manager that this widget is transient
with regard to widget MASTER.

	
wm_withdraw()

	Withdraw this widget from the screen such that it is unmapped
and forgotten by the window manager. Re-draw it with wm_deiconify.

	
class robot.libraries.dialogs_py.SelectionDialog(message, values)

	Bases: robot.libraries.dialogs_py._TkDialog

	
after(ms, func=None, *args)

	Call function once after given time.

MS specifies the time in milliseconds. FUNC gives the
function which shall be called. Additional parameters
are given as parameters to the function call. Return
identifier to cancel scheduling with after_cancel.

	
after_cancel(id)

	Cancel scheduling of function identified with ID.

Identifier returned by after or after_idle must be
given as first parameter.

	
after_idle(func, *args)

	Call FUNC once if the Tcl main loop has no event to
process.

Return an identifier to cancel the scheduling with
after_cancel.

	
aspect(minNumer=None, minDenom=None, maxNumer=None, maxDenom=None)

	Instruct the window manager to set the aspect ratio (width/height)
of this widget to be between MINNUMER/MINDENOM and MAXNUMER/MAXDENOM. Return a tuple
of the actual values if no argument is given.

	
attributes(*args)

	This subcommand returns or sets platform specific attributes

The first form returns a list of the platform specific flags and
their values. The second form returns the value for the specific
option. The third form sets one or more of the values. The values
are as follows:

On Windows, -disabled gets or sets whether the window is in a
disabled state. -toolwindow gets or sets the style of the window
to toolwindow (as defined in the MSDN). -topmost gets or sets
whether this is a topmost window (displays above all other
windows).

On Macintosh, XXXXX

On Unix, there are currently no special attribute values.

	
bbox(column=None, row=None, col2=None, row2=None)

	Return a tuple of integer coordinates for the bounding
box of this widget controlled by the geometry manager grid.

If COLUMN, ROW is given the bounding box applies from
the cell with row and column 0 to the specified
cell. If COL2 and ROW2 are given the bounding box
starts at that cell.

The returned integers specify the offset of the upper left
corner in the master widget and the width and height.

	
bell(displayof=0)

	Ring a display’s bell.

	
bind(sequence=None, func=None, add=None)

	Bind to this widget at event SEQUENCE a call to function FUNC.

SEQUENCE is a string of concatenated event
patterns. An event pattern is of the form
<MODIFIER-MODIFIER-TYPE-DETAIL> where MODIFIER is one
of Control, Mod2, M2, Shift, Mod3, M3, Lock, Mod4, M4,
Button1, B1, Mod5, M5 Button2, B2, Meta, M, Button3,
B3, Alt, Button4, B4, Double, Button5, B5 Triple,
Mod1, M1. TYPE is one of Activate, Enter, Map,
ButtonPress, Button, Expose, Motion, ButtonRelease
FocusIn, MouseWheel, Circulate, FocusOut, Property,
Colormap, Gravity Reparent, Configure, KeyPress, Key,
Unmap, Deactivate, KeyRelease Visibility, Destroy,
Leave and DETAIL is the button number for ButtonPress,
ButtonRelease and DETAIL is the Keysym for KeyPress and
KeyRelease. Examples are
<Control-Button-1> for pressing Control and mouse button 1 or
<Alt-A> for pressing A and the Alt key (KeyPress can be omitted).
An event pattern can also be a virtual event of the form
<<AString>> where AString can be arbitrary. This
event can be generated by event_generate.
If events are concatenated they must appear shortly
after each other.

FUNC will be called if the event sequence occurs with an
instance of Event as argument. If the return value of FUNC is
“break” no further bound function is invoked.

An additional boolean parameter ADD specifies whether FUNC will
be called additionally to the other bound function or whether
it will replace the previous function.

Bind will return an identifier to allow deletion of the bound function with
unbind without memory leak.

If FUNC or SEQUENCE is omitted the bound function or list
of bound events are returned.

	
bind_all(sequence=None, func=None, add=None)

	Bind to all widgets at an event SEQUENCE a call to function FUNC.
An additional boolean parameter ADD specifies whether FUNC will
be called additionally to the other bound function or whether
it will replace the previous function. See bind for the return value.

	
bind_class(className, sequence=None, func=None, add=None)

	Bind to widgets with bindtag CLASSNAME at event
SEQUENCE a call of function FUNC. An additional
boolean parameter ADD specifies whether FUNC will be
called additionally to the other bound function or
whether it will replace the previous function. See bind for
the return value.

	
bindtags(tagList=None)

	Set or get the list of bindtags for this widget.

With no argument return the list of all bindtags associated with
this widget. With a list of strings as argument the bindtags are
set to this list. The bindtags determine in which order events are
processed (see bind).

	
cget(key)

	Return the resource value for a KEY given as string.

	
client(name=None)

	Store NAME in WM_CLIENT_MACHINE property of this widget. Return
current value.

	
clipboard_append(string, **kw)

	Append STRING to the Tk clipboard.

A widget specified at the optional displayof keyword
argument specifies the target display. The clipboard
can be retrieved with selection_get.

	
clipboard_clear(**kw)

	Clear the data in the Tk clipboard.

A widget specified for the optional displayof keyword
argument specifies the target display.

	
clipboard_get(**kw)

	Retrieve data from the clipboard on window’s display.

The window keyword defaults to the root window of the Tkinter
application.

The type keyword specifies the form in which the data is
to be returned and should be an atom name such as STRING
or FILE_NAME. Type defaults to STRING, except on X11, where the default
is to try UTF8_STRING and fall back to STRING.

This command is equivalent to:

selection_get(CLIPBOARD)

	
colormapwindows(*wlist)

	Store list of window names (WLIST) into WM_COLORMAPWINDOWS property
of this widget. This list contains windows whose colormaps differ from their
parents. Return current list of widgets if WLIST is empty.

	
colormodel(value=None)

	Useless. Not implemented in Tk.

	
columnconfigure(index, cnf={}, **kw)

	Configure column INDEX of a grid.

Valid resources are minsize (minimum size of the column),
weight (how much does additional space propagate to this column)
and pad (how much space to let additionally).

	
command(value=None)

	Store VALUE in WM_COMMAND property. It is the command
which shall be used to invoke the application. Return current
command if VALUE is None.

	
config(cnf=None, **kw)

	Configure resources of a widget.

The values for resources are specified as keyword
arguments. To get an overview about
the allowed keyword arguments call the method keys.

	
configure(cnf=None, **kw)

	Configure resources of a widget.

The values for resources are specified as keyword
arguments. To get an overview about
the allowed keyword arguments call the method keys.

	
deiconify()

	Deiconify this widget. If it was never mapped it will not be mapped.
On Windows it will raise this widget and give it the focus.

	
deletecommand(name)

	Internal function.

Delete the Tcl command provided in NAME.

	
destroy()

	Destroy this and all descendants widgets.

	
event_add(virtual, *sequences)

	Bind a virtual event VIRTUAL (of the form <<Name>>)
to an event SEQUENCE such that the virtual event is triggered
whenever SEQUENCE occurs.

	
event_delete(virtual, *sequences)

	Unbind a virtual event VIRTUAL from SEQUENCE.

	
event_generate(sequence, **kw)

	Generate an event SEQUENCE. Additional
keyword arguments specify parameter of the event
(e.g. x, y, rootx, rooty).

	
event_info(virtual=None)

	Return a list of all virtual events or the information
about the SEQUENCE bound to the virtual event VIRTUAL.

	
focus()

	Direct input focus to this widget.

If the application currently does not have the focus
this widget will get the focus if the application gets
the focus through the window manager.

	
focus_displayof()

	Return the widget which has currently the focus on the
display where this widget is located.

Return None if the application does not have the focus.

	
focus_force()

	Direct input focus to this widget even if the
application does not have the focus. Use with
caution!

	
focus_get()

	Return the widget which has currently the focus in the
application.

Use focus_displayof to allow working with several
displays. Return None if application does not have
the focus.

	
focus_lastfor()

	Return the widget which would have the focus if top level
for this widget gets the focus from the window manager.

	
focus_set()

	Direct input focus to this widget.

If the application currently does not have the focus
this widget will get the focus if the application gets
the focus through the window manager.

	
focusmodel(model=None)

	Set focus model to MODEL. “active” means that this widget will claim
the focus itself, “passive” means that the window manager shall give
the focus. Return current focus model if MODEL is None.

	
frame()

	Return identifier for decorative frame of this widget if present.

	
geometry(newGeometry=None)

	Set geometry to NEWGEOMETRY of the form =widthxheight+x+y. Return
current value if None is given.

	
getboolean(s)

	Return a boolean value for Tcl boolean values true and false given as parameter.

	
getdouble

	alias of __builtin__.float

	
getint

	alias of __builtin__.int

	
getvar(name='PY_VAR')

	Return value of Tcl variable NAME.

	
grab_current()

	Return widget which has currently the grab in this application
or None.

	
grab_release()

	Release grab for this widget if currently set.

	
grab_set(timeout=30)

	

	
grab_set_global()

	Set global grab for this widget.

A global grab directs all events to this and
descendant widgets on the display. Use with caution -
other applications do not get events anymore.

	
grab_status()

	Return None, “local” or “global” if this widget has
no, a local or a global grab.

	
grid(baseWidth=None, baseHeight=None, widthInc=None, heightInc=None)

	Instruct the window manager that this widget shall only be
resized on grid boundaries. WIDTHINC and HEIGHTINC are the width and
height of a grid unit in pixels. BASEWIDTH and BASEHEIGHT are the
number of grid units requested in Tk_GeometryRequest.

	
grid_bbox(column=None, row=None, col2=None, row2=None)

	Return a tuple of integer coordinates for the bounding
box of this widget controlled by the geometry manager grid.

If COLUMN, ROW is given the bounding box applies from
the cell with row and column 0 to the specified
cell. If COL2 and ROW2 are given the bounding box
starts at that cell.

The returned integers specify the offset of the upper left
corner in the master widget and the width and height.

	
grid_columnconfigure(index, cnf={}, **kw)

	Configure column INDEX of a grid.

Valid resources are minsize (minimum size of the column),
weight (how much does additional space propagate to this column)
and pad (how much space to let additionally).

	
grid_location(x, y)

	Return a tuple of column and row which identify the cell
at which the pixel at position X and Y inside the master
widget is located.

	
grid_propagate(flag=['_noarg_'])

	Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information
of the slaves will determine the size of this widget. If no argument
is given, the current setting will be returned.

	
grid_rowconfigure(index, cnf={}, **kw)

	Configure row INDEX of a grid.

Valid resources are minsize (minimum size of the row),
weight (how much does additional space propagate to this row)
and pad (how much space to let additionally).

	
grid_size()

	Return a tuple of the number of column and rows in the grid.

	
grid_slaves(row=None, column=None)

	Return a list of all slaves of this widget
in its packing order.

	
group(pathName=None)

	Set the group leader widgets for related widgets to PATHNAME. Return
the group leader of this widget if None is given.

	
iconbitmap(bitmap=None, default=None)

	Set bitmap for the iconified widget to BITMAP. Return
the bitmap if None is given.

Under Windows, the DEFAULT parameter can be used to set the icon
for the widget and any descendents that don’t have an icon set
explicitly. DEFAULT can be the relative path to a .ico file
(example: root.iconbitmap(default=’myicon.ico’)). See Tk
documentation for more information.

	
iconify()

	Display widget as icon.

	
iconmask(bitmap=None)

	Set mask for the icon bitmap of this widget. Return the
mask if None is given.

	
iconname(newName=None)

	Set the name of the icon for this widget. Return the name if
None is given.

	
iconposition(x=None, y=None)

	Set the position of the icon of this widget to X and Y. Return
a tuple of the current values of X and X if None is given.

	
iconwindow(pathName=None)

	Set widget PATHNAME to be displayed instead of icon. Return the current
value if None is given.

	
image_names()

	Return a list of all existing image names.

	
image_types()

	Return a list of all available image types (e.g. photo bitmap).

	
keys()

	Return a list of all resource names of this widget.

	
lift(aboveThis=None)

	Raise this widget in the stacking order.

	
lower(belowThis=None)

	Lower this widget in the stacking order.

	
mainloop(n=0)

	Call the mainloop of Tk.

	
maxsize(width=None, height=None)

	Set max WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
minsize(width=None, height=None)

	Set min WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
nametowidget(name)

	Return the Tkinter instance of a widget identified by
its Tcl name NAME.

	
option_add(pattern, value, priority=None)

	Set a VALUE (second parameter) for an option
PATTERN (first parameter).

An optional third parameter gives the numeric priority
(defaults to 80).

	
option_clear()

	Clear the option database.

It will be reloaded if option_add is called.

	
option_get(name, className)

	Return the value for an option NAME for this widget
with CLASSNAME.

Values with higher priority override lower values.

	
option_readfile(fileName, priority=None)

	Read file FILENAME into the option database.

An optional second parameter gives the numeric
priority.

	
overrideredirect(boolean=None)

	Instruct the window manager to ignore this widget
if BOOLEAN is given with 1. Return the current value if None
is given.

	
pack_propagate(flag=['_noarg_'])

	Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information
of the slaves will determine the size of this widget. If no argument
is given the current setting will be returned.

	
pack_slaves()

	Return a list of all slaves of this widget
in its packing order.

	
place_slaves()

	Return a list of all slaves of this widget
in its packing order.

	
positionfrom(who=None)

	Instruct the window manager that the position of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
propagate(flag=['_noarg_'])

	Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information
of the slaves will determine the size of this widget. If no argument
is given the current setting will be returned.

	
protocol(name=None, func=None)

	Bind function FUNC to command NAME for this widget.
Return the function bound to NAME if None is given. NAME could be
e.g. “WM_SAVE_YOURSELF” or “WM_DELETE_WINDOW”.

	
quit()

	Quit the Tcl interpreter. All widgets will be destroyed.

	
register(func, subst=None, needcleanup=1)

	Return a newly created Tcl function. If this
function is called, the Python function FUNC will
be executed. An optional function SUBST can
be given which will be executed before FUNC.

	
resizable(width=None, height=None)

	Instruct the window manager whether this width can be resized
in WIDTH or HEIGHT. Both values are boolean values.

	
rowconfigure(index, cnf={}, **kw)

	Configure row INDEX of a grid.

Valid resources are minsize (minimum size of the row),
weight (how much does additional space propagate to this row)
and pad (how much space to let additionally).

	
selection_clear(**kw)

	Clear the current X selection.

	
selection_get(**kw)

	Return the contents of the current X selection.

A keyword parameter selection specifies the name of
the selection and defaults to PRIMARY. A keyword
parameter displayof specifies a widget on the display
to use. A keyword parameter type specifies the form of data to be
fetched, defaulting to STRING except on X11, where UTF8_STRING is tried
before STRING.

	
selection_handle(command, **kw)

	Specify a function COMMAND to call if the X
selection owned by this widget is queried by another
application.

This function must return the contents of the
selection. The function will be called with the
arguments OFFSET and LENGTH which allows the chunking
of very long selections. The following keyword
parameters can be provided:
selection - name of the selection (default PRIMARY),
type - type of the selection (e.g. STRING, FILE_NAME).

	
selection_own(**kw)

	Become owner of X selection.

A keyword parameter selection specifies the name of
the selection (default PRIMARY).

	
selection_own_get(**kw)

	Return owner of X selection.

The following keyword parameter can
be provided:
selection - name of the selection (default PRIMARY),
type - type of the selection (e.g. STRING, FILE_NAME).

	
send(interp, cmd, *args)

	Send Tcl command CMD to different interpreter INTERP to be executed.

	
setvar(name='PY_VAR', value='1')

	Set Tcl variable NAME to VALUE.

	
show()

	

	
size()

	Return a tuple of the number of column and rows in the grid.

	
sizefrom(who=None)

	Instruct the window manager that the size of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
slaves()

	Return a list of all slaves of this widget
in its packing order.

	
state(newstate=None)

	Query or set the state of this widget as one of normal, icon,
iconic (see wm_iconwindow), withdrawn, or zoomed (Windows only).

	
title(string=None)

	Set the title of this widget.

	
tk_bisque()

	Change the color scheme to light brown as used in Tk 3.6 and before.

	
tk_focusFollowsMouse()

	The widget under mouse will get automatically focus. Can not
be disabled easily.

	
tk_focusNext()

	Return the next widget in the focus order which follows
widget which has currently the focus.

The focus order first goes to the next child, then to
the children of the child recursively and then to the
next sibling which is higher in the stacking order. A
widget is omitted if it has the takefocus resource set
to 0.

	
tk_focusPrev()

	Return previous widget in the focus order. See tk_focusNext for details.

	
tk_menuBar(*args)

	Do not use. Needed in Tk 3.6 and earlier.

	
tk_setPalette(*args, **kw)

	Set a new color scheme for all widget elements.

A single color as argument will cause that all colors of Tk
widget elements are derived from this.
Alternatively several keyword parameters and its associated
colors can be given. The following keywords are valid:
activeBackground, foreground, selectColor,
activeForeground, highlightBackground, selectBackground,
background, highlightColor, selectForeground,
disabledForeground, insertBackground, troughColor.

	
tk_strictMotif(boolean=None)

	Set Tcl internal variable, whether the look and feel
should adhere to Motif.

A parameter of 1 means adhere to Motif (e.g. no color
change if mouse passes over slider).
Returns the set value.

	
tkraise(aboveThis=None)

	Raise this widget in the stacking order.

	
transient(master=None)

	Instruct the window manager that this widget is transient
with regard to widget MASTER.

	
unbind(sequence, funcid=None)

	Unbind for this widget for event SEQUENCE the
function identified with FUNCID.

	
unbind_all(sequence)

	Unbind for all widgets for event SEQUENCE all functions.

	
unbind_class(className, sequence)

	Unbind for all widgets with bindtag CLASSNAME for event SEQUENCE
all functions.

	
update()

	Enter event loop until all pending events have been processed by Tcl.

	
update_idletasks()

	Enter event loop until all idle callbacks have been called. This
will update the display of windows but not process events caused by
the user.

	
wait_variable(name='PY_VAR')

	Wait until the variable is modified.

A parameter of type IntVar, StringVar, DoubleVar or
BooleanVar must be given.

	
wait_visibility(window=None)

	Wait until the visibility of a WIDGET changes
(e.g. it appears).

If no parameter is given self is used.

	
wait_window(window=None)

	Wait until a WIDGET is destroyed.

If no parameter is given self is used.

	
waitvar(name='PY_VAR')

	Wait until the variable is modified.

A parameter of type IntVar, StringVar, DoubleVar or
BooleanVar must be given.

	
winfo_atom(name, displayof=0)

	Return integer which represents atom NAME.

	
winfo_atomname(id, displayof=0)

	Return name of atom with identifier ID.

	
winfo_cells()

	Return number of cells in the colormap for this widget.

	
winfo_children()

	Return a list of all widgets which are children of this widget.

	
winfo_class()

	Return window class name of this widget.

	
winfo_colormapfull()

	Return true if at the last color request the colormap was full.

	
winfo_containing(rootX, rootY, displayof=0)

	Return the widget which is at the root coordinates ROOTX, ROOTY.

	
winfo_depth()

	Return the number of bits per pixel.

	
winfo_exists()

	Return true if this widget exists.

	
winfo_fpixels(number)

	Return the number of pixels for the given distance NUMBER
(e.g. “3c”) as float.

	
winfo_geometry()

	Return geometry string for this widget in the form “widthxheight+X+Y”.

	
winfo_height()

	Return height of this widget.

	
winfo_id()

	Return identifier ID for this widget.

	
winfo_interps(displayof=0)

	Return the name of all Tcl interpreters for this display.

	
winfo_ismapped()

	Return true if this widget is mapped.

	
winfo_manager()

	Return the window manager name for this widget.

	
winfo_name()

	Return the name of this widget.

	
winfo_parent()

	Return the name of the parent of this widget.

	
winfo_pathname(id, displayof=0)

	Return the pathname of the widget given by ID.

	
winfo_pixels(number)

	Rounded integer value of winfo_fpixels.

	
winfo_pointerx()

	Return the x coordinate of the pointer on the root window.

	
winfo_pointerxy()

	Return a tuple of x and y coordinates of the pointer on the root window.

	
winfo_pointery()

	Return the y coordinate of the pointer on the root window.

	
winfo_reqheight()

	Return requested height of this widget.

	
winfo_reqwidth()

	Return requested width of this widget.

	
winfo_rgb(color)

	Return tuple of decimal values for red, green, blue for
COLOR in this widget.

	
winfo_rootx()

	Return x coordinate of upper left corner of this widget on the
root window.

	
winfo_rooty()

	Return y coordinate of upper left corner of this widget on the
root window.

	
winfo_screen()

	Return the screen name of this widget.

	
winfo_screencells()

	Return the number of the cells in the colormap of the screen
of this widget.

	
winfo_screendepth()

	Return the number of bits per pixel of the root window of the
screen of this widget.

	
winfo_screenheight()

	Return the number of pixels of the height of the screen of this widget
in pixel.

	
winfo_screenmmheight()

	Return the number of pixels of the height of the screen of
this widget in mm.

	
winfo_screenmmwidth()

	Return the number of pixels of the width of the screen of
this widget in mm.

	
winfo_screenvisual()

	Return one of the strings directcolor, grayscale, pseudocolor,
staticcolor, staticgray, or truecolor for the default
colormodel of this screen.

	
winfo_screenwidth()

	Return the number of pixels of the width of the screen of
this widget in pixel.

	
winfo_server()

	Return information of the X-Server of the screen of this widget in
the form “XmajorRminor vendor vendorVersion”.

	
winfo_toplevel()

	Return the toplevel widget of this widget.

	
winfo_viewable()

	Return true if the widget and all its higher ancestors are mapped.

	
winfo_visual()

	Return one of the strings directcolor, grayscale, pseudocolor,
staticcolor, staticgray, or truecolor for the
colormodel of this widget.

	
winfo_visualid()

	Return the X identifier for the visual for this widget.

	
winfo_visualsavailable(includeids=0)

	Return a list of all visuals available for the screen
of this widget.

Each item in the list consists of a visual name (see winfo_visual), a
depth and if INCLUDEIDS=1 is given also the X identifier.

	
winfo_vrootheight()

	Return the height of the virtual root window associated with this
widget in pixels. If there is no virtual root window return the
height of the screen.

	
winfo_vrootwidth()

	Return the width of the virtual root window associated with this
widget in pixel. If there is no virtual root window return the
width of the screen.

	
winfo_vrootx()

	Return the x offset of the virtual root relative to the root
window of the screen of this widget.

	
winfo_vrooty()

	Return the y offset of the virtual root relative to the root
window of the screen of this widget.

	
winfo_width()

	Return the width of this widget.

	
winfo_x()

	Return the x coordinate of the upper left corner of this widget
in the parent.

	
winfo_y()

	Return the y coordinate of the upper left corner of this widget
in the parent.

	
withdraw()

	Withdraw this widget from the screen such that it is unmapped
and forgotten by the window manager. Re-draw it with wm_deiconify.

	
wm_aspect(minNumer=None, minDenom=None, maxNumer=None, maxDenom=None)

	Instruct the window manager to set the aspect ratio (width/height)
of this widget to be between MINNUMER/MINDENOM and MAXNUMER/MAXDENOM. Return a tuple
of the actual values if no argument is given.

	
wm_attributes(*args)

	This subcommand returns or sets platform specific attributes

The first form returns a list of the platform specific flags and
their values. The second form returns the value for the specific
option. The third form sets one or more of the values. The values
are as follows:

On Windows, -disabled gets or sets whether the window is in a
disabled state. -toolwindow gets or sets the style of the window
to toolwindow (as defined in the MSDN). -topmost gets or sets
whether this is a topmost window (displays above all other
windows).

On Macintosh, XXXXX

On Unix, there are currently no special attribute values.

	
wm_client(name=None)

	Store NAME in WM_CLIENT_MACHINE property of this widget. Return
current value.

	
wm_colormapwindows(*wlist)

	Store list of window names (WLIST) into WM_COLORMAPWINDOWS property
of this widget. This list contains windows whose colormaps differ from their
parents. Return current list of widgets if WLIST is empty.

	
wm_command(value=None)

	Store VALUE in WM_COMMAND property. It is the command
which shall be used to invoke the application. Return current
command if VALUE is None.

	
wm_deiconify()

	Deiconify this widget. If it was never mapped it will not be mapped.
On Windows it will raise this widget and give it the focus.

	
wm_focusmodel(model=None)

	Set focus model to MODEL. “active” means that this widget will claim
the focus itself, “passive” means that the window manager shall give
the focus. Return current focus model if MODEL is None.

	
wm_frame()

	Return identifier for decorative frame of this widget if present.

	
wm_geometry(newGeometry=None)

	Set geometry to NEWGEOMETRY of the form =widthxheight+x+y. Return
current value if None is given.

	
wm_grid(baseWidth=None, baseHeight=None, widthInc=None, heightInc=None)

	Instruct the window manager that this widget shall only be
resized on grid boundaries. WIDTHINC and HEIGHTINC are the width and
height of a grid unit in pixels. BASEWIDTH and BASEHEIGHT are the
number of grid units requested in Tk_GeometryRequest.

	
wm_group(pathName=None)

	Set the group leader widgets for related widgets to PATHNAME. Return
the group leader of this widget if None is given.

	
wm_iconbitmap(bitmap=None, default=None)

	Set bitmap for the iconified widget to BITMAP. Return
the bitmap if None is given.

Under Windows, the DEFAULT parameter can be used to set the icon
for the widget and any descendents that don’t have an icon set
explicitly. DEFAULT can be the relative path to a .ico file
(example: root.iconbitmap(default=’myicon.ico’)). See Tk
documentation for more information.

	
wm_iconify()

	Display widget as icon.

	
wm_iconmask(bitmap=None)

	Set mask for the icon bitmap of this widget. Return the
mask if None is given.

	
wm_iconname(newName=None)

	Set the name of the icon for this widget. Return the name if
None is given.

	
wm_iconposition(x=None, y=None)

	Set the position of the icon of this widget to X and Y. Return
a tuple of the current values of X and X if None is given.

	
wm_iconwindow(pathName=None)

	Set widget PATHNAME to be displayed instead of icon. Return the current
value if None is given.

	
wm_maxsize(width=None, height=None)

	Set max WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
wm_minsize(width=None, height=None)

	Set min WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
wm_overrideredirect(boolean=None)

	Instruct the window manager to ignore this widget
if BOOLEAN is given with 1. Return the current value if None
is given.

	
wm_positionfrom(who=None)

	Instruct the window manager that the position of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
wm_protocol(name=None, func=None)

	Bind function FUNC to command NAME for this widget.
Return the function bound to NAME if None is given. NAME could be
e.g. “WM_SAVE_YOURSELF” or “WM_DELETE_WINDOW”.

	
wm_resizable(width=None, height=None)

	Instruct the window manager whether this width can be resized
in WIDTH or HEIGHT. Both values are boolean values.

	
wm_sizefrom(who=None)

	Instruct the window manager that the size of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
wm_state(newstate=None)

	Query or set the state of this widget as one of normal, icon,
iconic (see wm_iconwindow), withdrawn, or zoomed (Windows only).

	
wm_title(string=None)

	Set the title of this widget.

	
wm_transient(master=None)

	Instruct the window manager that this widget is transient
with regard to widget MASTER.

	
wm_withdraw()

	Withdraw this widget from the screen such that it is unmapped
and forgotten by the window manager. Re-draw it with wm_deiconify.

	
class robot.libraries.dialogs_py.MultipleSelectionDialog(message, values)

	Bases: robot.libraries.dialogs_py._TkDialog

	
after(ms, func=None, *args)

	Call function once after given time.

MS specifies the time in milliseconds. FUNC gives the
function which shall be called. Additional parameters
are given as parameters to the function call. Return
identifier to cancel scheduling with after_cancel.

	
after_cancel(id)

	Cancel scheduling of function identified with ID.

Identifier returned by after or after_idle must be
given as first parameter.

	
after_idle(func, *args)

	Call FUNC once if the Tcl main loop has no event to
process.

Return an identifier to cancel the scheduling with
after_cancel.

	
aspect(minNumer=None, minDenom=None, maxNumer=None, maxDenom=None)

	Instruct the window manager to set the aspect ratio (width/height)
of this widget to be between MINNUMER/MINDENOM and MAXNUMER/MAXDENOM. Return a tuple
of the actual values if no argument is given.

	
attributes(*args)

	This subcommand returns or sets platform specific attributes

The first form returns a list of the platform specific flags and
their values. The second form returns the value for the specific
option. The third form sets one or more of the values. The values
are as follows:

On Windows, -disabled gets or sets whether the window is in a
disabled state. -toolwindow gets or sets the style of the window
to toolwindow (as defined in the MSDN). -topmost gets or sets
whether this is a topmost window (displays above all other
windows).

On Macintosh, XXXXX

On Unix, there are currently no special attribute values.

	
bbox(column=None, row=None, col2=None, row2=None)

	Return a tuple of integer coordinates for the bounding
box of this widget controlled by the geometry manager grid.

If COLUMN, ROW is given the bounding box applies from
the cell with row and column 0 to the specified
cell. If COL2 and ROW2 are given the bounding box
starts at that cell.

The returned integers specify the offset of the upper left
corner in the master widget and the width and height.

	
bell(displayof=0)

	Ring a display’s bell.

	
bind(sequence=None, func=None, add=None)

	Bind to this widget at event SEQUENCE a call to function FUNC.

SEQUENCE is a string of concatenated event
patterns. An event pattern is of the form
<MODIFIER-MODIFIER-TYPE-DETAIL> where MODIFIER is one
of Control, Mod2, M2, Shift, Mod3, M3, Lock, Mod4, M4,
Button1, B1, Mod5, M5 Button2, B2, Meta, M, Button3,
B3, Alt, Button4, B4, Double, Button5, B5 Triple,
Mod1, M1. TYPE is one of Activate, Enter, Map,
ButtonPress, Button, Expose, Motion, ButtonRelease
FocusIn, MouseWheel, Circulate, FocusOut, Property,
Colormap, Gravity Reparent, Configure, KeyPress, Key,
Unmap, Deactivate, KeyRelease Visibility, Destroy,
Leave and DETAIL is the button number for ButtonPress,
ButtonRelease and DETAIL is the Keysym for KeyPress and
KeyRelease. Examples are
<Control-Button-1> for pressing Control and mouse button 1 or
<Alt-A> for pressing A and the Alt key (KeyPress can be omitted).
An event pattern can also be a virtual event of the form
<<AString>> where AString can be arbitrary. This
event can be generated by event_generate.
If events are concatenated they must appear shortly
after each other.

FUNC will be called if the event sequence occurs with an
instance of Event as argument. If the return value of FUNC is
“break” no further bound function is invoked.

An additional boolean parameter ADD specifies whether FUNC will
be called additionally to the other bound function or whether
it will replace the previous function.

Bind will return an identifier to allow deletion of the bound function with
unbind without memory leak.

If FUNC or SEQUENCE is omitted the bound function or list
of bound events are returned.

	
bind_all(sequence=None, func=None, add=None)

	Bind to all widgets at an event SEQUENCE a call to function FUNC.
An additional boolean parameter ADD specifies whether FUNC will
be called additionally to the other bound function or whether
it will replace the previous function. See bind for the return value.

	
bind_class(className, sequence=None, func=None, add=None)

	Bind to widgets with bindtag CLASSNAME at event
SEQUENCE a call of function FUNC. An additional
boolean parameter ADD specifies whether FUNC will be
called additionally to the other bound function or
whether it will replace the previous function. See bind for
the return value.

	
bindtags(tagList=None)

	Set or get the list of bindtags for this widget.

With no argument return the list of all bindtags associated with
this widget. With a list of strings as argument the bindtags are
set to this list. The bindtags determine in which order events are
processed (see bind).

	
cget(key)

	Return the resource value for a KEY given as string.

	
client(name=None)

	Store NAME in WM_CLIENT_MACHINE property of this widget. Return
current value.

	
clipboard_append(string, **kw)

	Append STRING to the Tk clipboard.

A widget specified at the optional displayof keyword
argument specifies the target display. The clipboard
can be retrieved with selection_get.

	
clipboard_clear(**kw)

	Clear the data in the Tk clipboard.

A widget specified for the optional displayof keyword
argument specifies the target display.

	
clipboard_get(**kw)

	Retrieve data from the clipboard on window’s display.

The window keyword defaults to the root window of the Tkinter
application.

The type keyword specifies the form in which the data is
to be returned and should be an atom name such as STRING
or FILE_NAME. Type defaults to STRING, except on X11, where the default
is to try UTF8_STRING and fall back to STRING.

This command is equivalent to:

selection_get(CLIPBOARD)

	
colormapwindows(*wlist)

	Store list of window names (WLIST) into WM_COLORMAPWINDOWS property
of this widget. This list contains windows whose colormaps differ from their
parents. Return current list of widgets if WLIST is empty.

	
colormodel(value=None)

	Useless. Not implemented in Tk.

	
columnconfigure(index, cnf={}, **kw)

	Configure column INDEX of a grid.

Valid resources are minsize (minimum size of the column),
weight (how much does additional space propagate to this column)
and pad (how much space to let additionally).

	
command(value=None)

	Store VALUE in WM_COMMAND property. It is the command
which shall be used to invoke the application. Return current
command if VALUE is None.

	
config(cnf=None, **kw)

	Configure resources of a widget.

The values for resources are specified as keyword
arguments. To get an overview about
the allowed keyword arguments call the method keys.

	
configure(cnf=None, **kw)

	Configure resources of a widget.

The values for resources are specified as keyword
arguments. To get an overview about
the allowed keyword arguments call the method keys.

	
deiconify()

	Deiconify this widget. If it was never mapped it will not be mapped.
On Windows it will raise this widget and give it the focus.

	
deletecommand(name)

	Internal function.

Delete the Tcl command provided in NAME.

	
destroy()

	Destroy this and all descendants widgets.

	
event_add(virtual, *sequences)

	Bind a virtual event VIRTUAL (of the form <<Name>>)
to an event SEQUENCE such that the virtual event is triggered
whenever SEQUENCE occurs.

	
event_delete(virtual, *sequences)

	Unbind a virtual event VIRTUAL from SEQUENCE.

	
event_generate(sequence, **kw)

	Generate an event SEQUENCE. Additional
keyword arguments specify parameter of the event
(e.g. x, y, rootx, rooty).

	
event_info(virtual=None)

	Return a list of all virtual events or the information
about the SEQUENCE bound to the virtual event VIRTUAL.

	
focus()

	Direct input focus to this widget.

If the application currently does not have the focus
this widget will get the focus if the application gets
the focus through the window manager.

	
focus_displayof()

	Return the widget which has currently the focus on the
display where this widget is located.

Return None if the application does not have the focus.

	
focus_force()

	Direct input focus to this widget even if the
application does not have the focus. Use with
caution!

	
focus_get()

	Return the widget which has currently the focus in the
application.

Use focus_displayof to allow working with several
displays. Return None if application does not have
the focus.

	
focus_lastfor()

	Return the widget which would have the focus if top level
for this widget gets the focus from the window manager.

	
focus_set()

	Direct input focus to this widget.

If the application currently does not have the focus
this widget will get the focus if the application gets
the focus through the window manager.

	
focusmodel(model=None)

	Set focus model to MODEL. “active” means that this widget will claim
the focus itself, “passive” means that the window manager shall give
the focus. Return current focus model if MODEL is None.

	
frame()

	Return identifier for decorative frame of this widget if present.

	
geometry(newGeometry=None)

	Set geometry to NEWGEOMETRY of the form =widthxheight+x+y. Return
current value if None is given.

	
getboolean(s)

	Return a boolean value for Tcl boolean values true and false given as parameter.

	
getdouble

	alias of __builtin__.float

	
getint

	alias of __builtin__.int

	
getvar(name='PY_VAR')

	Return value of Tcl variable NAME.

	
grab_current()

	Return widget which has currently the grab in this application
or None.

	
grab_release()

	Release grab for this widget if currently set.

	
grab_set(timeout=30)

	

	
grab_set_global()

	Set global grab for this widget.

A global grab directs all events to this and
descendant widgets on the display. Use with caution -
other applications do not get events anymore.

	
grab_status()

	Return None, “local” or “global” if this widget has
no, a local or a global grab.

	
grid(baseWidth=None, baseHeight=None, widthInc=None, heightInc=None)

	Instruct the window manager that this widget shall only be
resized on grid boundaries. WIDTHINC and HEIGHTINC are the width and
height of a grid unit in pixels. BASEWIDTH and BASEHEIGHT are the
number of grid units requested in Tk_GeometryRequest.

	
grid_bbox(column=None, row=None, col2=None, row2=None)

	Return a tuple of integer coordinates for the bounding
box of this widget controlled by the geometry manager grid.

If COLUMN, ROW is given the bounding box applies from
the cell with row and column 0 to the specified
cell. If COL2 and ROW2 are given the bounding box
starts at that cell.

The returned integers specify the offset of the upper left
corner in the master widget and the width and height.

	
grid_columnconfigure(index, cnf={}, **kw)

	Configure column INDEX of a grid.

Valid resources are minsize (minimum size of the column),
weight (how much does additional space propagate to this column)
and pad (how much space to let additionally).

	
grid_location(x, y)

	Return a tuple of column and row which identify the cell
at which the pixel at position X and Y inside the master
widget is located.

	
grid_propagate(flag=['_noarg_'])

	Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information
of the slaves will determine the size of this widget. If no argument
is given, the current setting will be returned.

	
grid_rowconfigure(index, cnf={}, **kw)

	Configure row INDEX of a grid.

Valid resources are minsize (minimum size of the row),
weight (how much does additional space propagate to this row)
and pad (how much space to let additionally).

	
grid_size()

	Return a tuple of the number of column and rows in the grid.

	
grid_slaves(row=None, column=None)

	Return a list of all slaves of this widget
in its packing order.

	
group(pathName=None)

	Set the group leader widgets for related widgets to PATHNAME. Return
the group leader of this widget if None is given.

	
iconbitmap(bitmap=None, default=None)

	Set bitmap for the iconified widget to BITMAP. Return
the bitmap if None is given.

Under Windows, the DEFAULT parameter can be used to set the icon
for the widget and any descendents that don’t have an icon set
explicitly. DEFAULT can be the relative path to a .ico file
(example: root.iconbitmap(default=’myicon.ico’)). See Tk
documentation for more information.

	
iconify()

	Display widget as icon.

	
iconmask(bitmap=None)

	Set mask for the icon bitmap of this widget. Return the
mask if None is given.

	
iconname(newName=None)

	Set the name of the icon for this widget. Return the name if
None is given.

	
iconposition(x=None, y=None)

	Set the position of the icon of this widget to X and Y. Return
a tuple of the current values of X and X if None is given.

	
iconwindow(pathName=None)

	Set widget PATHNAME to be displayed instead of icon. Return the current
value if None is given.

	
image_names()

	Return a list of all existing image names.

	
image_types()

	Return a list of all available image types (e.g. photo bitmap).

	
keys()

	Return a list of all resource names of this widget.

	
lift(aboveThis=None)

	Raise this widget in the stacking order.

	
lower(belowThis=None)

	Lower this widget in the stacking order.

	
mainloop(n=0)

	Call the mainloop of Tk.

	
maxsize(width=None, height=None)

	Set max WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
minsize(width=None, height=None)

	Set min WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
nametowidget(name)

	Return the Tkinter instance of a widget identified by
its Tcl name NAME.

	
option_add(pattern, value, priority=None)

	Set a VALUE (second parameter) for an option
PATTERN (first parameter).

An optional third parameter gives the numeric priority
(defaults to 80).

	
option_clear()

	Clear the option database.

It will be reloaded if option_add is called.

	
option_get(name, className)

	Return the value for an option NAME for this widget
with CLASSNAME.

Values with higher priority override lower values.

	
option_readfile(fileName, priority=None)

	Read file FILENAME into the option database.

An optional second parameter gives the numeric
priority.

	
overrideredirect(boolean=None)

	Instruct the window manager to ignore this widget
if BOOLEAN is given with 1. Return the current value if None
is given.

	
pack_propagate(flag=['_noarg_'])

	Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information
of the slaves will determine the size of this widget. If no argument
is given the current setting will be returned.

	
pack_slaves()

	Return a list of all slaves of this widget
in its packing order.

	
place_slaves()

	Return a list of all slaves of this widget
in its packing order.

	
positionfrom(who=None)

	Instruct the window manager that the position of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
propagate(flag=['_noarg_'])

	Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information
of the slaves will determine the size of this widget. If no argument
is given the current setting will be returned.

	
protocol(name=None, func=None)

	Bind function FUNC to command NAME for this widget.
Return the function bound to NAME if None is given. NAME could be
e.g. “WM_SAVE_YOURSELF” or “WM_DELETE_WINDOW”.

	
quit()

	Quit the Tcl interpreter. All widgets will be destroyed.

	
register(func, subst=None, needcleanup=1)

	Return a newly created Tcl function. If this
function is called, the Python function FUNC will
be executed. An optional function SUBST can
be given which will be executed before FUNC.

	
resizable(width=None, height=None)

	Instruct the window manager whether this width can be resized
in WIDTH or HEIGHT. Both values are boolean values.

	
rowconfigure(index, cnf={}, **kw)

	Configure row INDEX of a grid.

Valid resources are minsize (minimum size of the row),
weight (how much does additional space propagate to this row)
and pad (how much space to let additionally).

	
selection_clear(**kw)

	Clear the current X selection.

	
selection_get(**kw)

	Return the contents of the current X selection.

A keyword parameter selection specifies the name of
the selection and defaults to PRIMARY. A keyword
parameter displayof specifies a widget on the display
to use. A keyword parameter type specifies the form of data to be
fetched, defaulting to STRING except on X11, where UTF8_STRING is tried
before STRING.

	
selection_handle(command, **kw)

	Specify a function COMMAND to call if the X
selection owned by this widget is queried by another
application.

This function must return the contents of the
selection. The function will be called with the
arguments OFFSET and LENGTH which allows the chunking
of very long selections. The following keyword
parameters can be provided:
selection - name of the selection (default PRIMARY),
type - type of the selection (e.g. STRING, FILE_NAME).

	
selection_own(**kw)

	Become owner of X selection.

A keyword parameter selection specifies the name of
the selection (default PRIMARY).

	
selection_own_get(**kw)

	Return owner of X selection.

The following keyword parameter can
be provided:
selection - name of the selection (default PRIMARY),
type - type of the selection (e.g. STRING, FILE_NAME).

	
send(interp, cmd, *args)

	Send Tcl command CMD to different interpreter INTERP to be executed.

	
setvar(name='PY_VAR', value='1')

	Set Tcl variable NAME to VALUE.

	
show()

	

	
size()

	Return a tuple of the number of column and rows in the grid.

	
sizefrom(who=None)

	Instruct the window manager that the size of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
slaves()

	Return a list of all slaves of this widget
in its packing order.

	
state(newstate=None)

	Query or set the state of this widget as one of normal, icon,
iconic (see wm_iconwindow), withdrawn, or zoomed (Windows only).

	
title(string=None)

	Set the title of this widget.

	
tk_bisque()

	Change the color scheme to light brown as used in Tk 3.6 and before.

	
tk_focusFollowsMouse()

	The widget under mouse will get automatically focus. Can not
be disabled easily.

	
tk_focusNext()

	Return the next widget in the focus order which follows
widget which has currently the focus.

The focus order first goes to the next child, then to
the children of the child recursively and then to the
next sibling which is higher in the stacking order. A
widget is omitted if it has the takefocus resource set
to 0.

	
tk_focusPrev()

	Return previous widget in the focus order. See tk_focusNext for details.

	
tk_menuBar(*args)

	Do not use. Needed in Tk 3.6 and earlier.

	
tk_setPalette(*args, **kw)

	Set a new color scheme for all widget elements.

A single color as argument will cause that all colors of Tk
widget elements are derived from this.
Alternatively several keyword parameters and its associated
colors can be given. The following keywords are valid:
activeBackground, foreground, selectColor,
activeForeground, highlightBackground, selectBackground,
background, highlightColor, selectForeground,
disabledForeground, insertBackground, troughColor.

	
tk_strictMotif(boolean=None)

	Set Tcl internal variable, whether the look and feel
should adhere to Motif.

A parameter of 1 means adhere to Motif (e.g. no color
change if mouse passes over slider).
Returns the set value.

	
tkraise(aboveThis=None)

	Raise this widget in the stacking order.

	
transient(master=None)

	Instruct the window manager that this widget is transient
with regard to widget MASTER.

	
unbind(sequence, funcid=None)

	Unbind for this widget for event SEQUENCE the
function identified with FUNCID.

	
unbind_all(sequence)

	Unbind for all widgets for event SEQUENCE all functions.

	
unbind_class(className, sequence)

	Unbind for all widgets with bindtag CLASSNAME for event SEQUENCE
all functions.

	
update()

	Enter event loop until all pending events have been processed by Tcl.

	
update_idletasks()

	Enter event loop until all idle callbacks have been called. This
will update the display of windows but not process events caused by
the user.

	
wait_variable(name='PY_VAR')

	Wait until the variable is modified.

A parameter of type IntVar, StringVar, DoubleVar or
BooleanVar must be given.

	
wait_visibility(window=None)

	Wait until the visibility of a WIDGET changes
(e.g. it appears).

If no parameter is given self is used.

	
wait_window(window=None)

	Wait until a WIDGET is destroyed.

If no parameter is given self is used.

	
waitvar(name='PY_VAR')

	Wait until the variable is modified.

A parameter of type IntVar, StringVar, DoubleVar or
BooleanVar must be given.

	
winfo_atom(name, displayof=0)

	Return integer which represents atom NAME.

	
winfo_atomname(id, displayof=0)

	Return name of atom with identifier ID.

	
winfo_cells()

	Return number of cells in the colormap for this widget.

	
winfo_children()

	Return a list of all widgets which are children of this widget.

	
winfo_class()

	Return window class name of this widget.

	
winfo_colormapfull()

	Return true if at the last color request the colormap was full.

	
winfo_containing(rootX, rootY, displayof=0)

	Return the widget which is at the root coordinates ROOTX, ROOTY.

	
winfo_depth()

	Return the number of bits per pixel.

	
winfo_exists()

	Return true if this widget exists.

	
winfo_fpixels(number)

	Return the number of pixels for the given distance NUMBER
(e.g. “3c”) as float.

	
winfo_geometry()

	Return geometry string for this widget in the form “widthxheight+X+Y”.

	
winfo_height()

	Return height of this widget.

	
winfo_id()

	Return identifier ID for this widget.

	
winfo_interps(displayof=0)

	Return the name of all Tcl interpreters for this display.

	
winfo_ismapped()

	Return true if this widget is mapped.

	
winfo_manager()

	Return the window manager name for this widget.

	
winfo_name()

	Return the name of this widget.

	
winfo_parent()

	Return the name of the parent of this widget.

	
winfo_pathname(id, displayof=0)

	Return the pathname of the widget given by ID.

	
winfo_pixels(number)

	Rounded integer value of winfo_fpixels.

	
winfo_pointerx()

	Return the x coordinate of the pointer on the root window.

	
winfo_pointerxy()

	Return a tuple of x and y coordinates of the pointer on the root window.

	
winfo_pointery()

	Return the y coordinate of the pointer on the root window.

	
winfo_reqheight()

	Return requested height of this widget.

	
winfo_reqwidth()

	Return requested width of this widget.

	
winfo_rgb(color)

	Return tuple of decimal values for red, green, blue for
COLOR in this widget.

	
winfo_rootx()

	Return x coordinate of upper left corner of this widget on the
root window.

	
winfo_rooty()

	Return y coordinate of upper left corner of this widget on the
root window.

	
winfo_screen()

	Return the screen name of this widget.

	
winfo_screencells()

	Return the number of the cells in the colormap of the screen
of this widget.

	
winfo_screendepth()

	Return the number of bits per pixel of the root window of the
screen of this widget.

	
winfo_screenheight()

	Return the number of pixels of the height of the screen of this widget
in pixel.

	
winfo_screenmmheight()

	Return the number of pixels of the height of the screen of
this widget in mm.

	
winfo_screenmmwidth()

	Return the number of pixels of the width of the screen of
this widget in mm.

	
winfo_screenvisual()

	Return one of the strings directcolor, grayscale, pseudocolor,
staticcolor, staticgray, or truecolor for the default
colormodel of this screen.

	
winfo_screenwidth()

	Return the number of pixels of the width of the screen of
this widget in pixel.

	
winfo_server()

	Return information of the X-Server of the screen of this widget in
the form “XmajorRminor vendor vendorVersion”.

	
winfo_toplevel()

	Return the toplevel widget of this widget.

	
winfo_viewable()

	Return true if the widget and all its higher ancestors are mapped.

	
winfo_visual()

	Return one of the strings directcolor, grayscale, pseudocolor,
staticcolor, staticgray, or truecolor for the
colormodel of this widget.

	
winfo_visualid()

	Return the X identifier for the visual for this widget.

	
winfo_visualsavailable(includeids=0)

	Return a list of all visuals available for the screen
of this widget.

Each item in the list consists of a visual name (see winfo_visual), a
depth and if INCLUDEIDS=1 is given also the X identifier.

	
winfo_vrootheight()

	Return the height of the virtual root window associated with this
widget in pixels. If there is no virtual root window return the
height of the screen.

	
winfo_vrootwidth()

	Return the width of the virtual root window associated with this
widget in pixel. If there is no virtual root window return the
width of the screen.

	
winfo_vrootx()

	Return the x offset of the virtual root relative to the root
window of the screen of this widget.

	
winfo_vrooty()

	Return the y offset of the virtual root relative to the root
window of the screen of this widget.

	
winfo_width()

	Return the width of this widget.

	
winfo_x()

	Return the x coordinate of the upper left corner of this widget
in the parent.

	
winfo_y()

	Return the y coordinate of the upper left corner of this widget
in the parent.

	
withdraw()

	Withdraw this widget from the screen such that it is unmapped
and forgotten by the window manager. Re-draw it with wm_deiconify.

	
wm_aspect(minNumer=None, minDenom=None, maxNumer=None, maxDenom=None)

	Instruct the window manager to set the aspect ratio (width/height)
of this widget to be between MINNUMER/MINDENOM and MAXNUMER/MAXDENOM. Return a tuple
of the actual values if no argument is given.

	
wm_attributes(*args)

	This subcommand returns or sets platform specific attributes

The first form returns a list of the platform specific flags and
their values. The second form returns the value for the specific
option. The third form sets one or more of the values. The values
are as follows:

On Windows, -disabled gets or sets whether the window is in a
disabled state. -toolwindow gets or sets the style of the window
to toolwindow (as defined in the MSDN). -topmost gets or sets
whether this is a topmost window (displays above all other
windows).

On Macintosh, XXXXX

On Unix, there are currently no special attribute values.

	
wm_client(name=None)

	Store NAME in WM_CLIENT_MACHINE property of this widget. Return
current value.

	
wm_colormapwindows(*wlist)

	Store list of window names (WLIST) into WM_COLORMAPWINDOWS property
of this widget. This list contains windows whose colormaps differ from their
parents. Return current list of widgets if WLIST is empty.

	
wm_command(value=None)

	Store VALUE in WM_COMMAND property. It is the command
which shall be used to invoke the application. Return current
command if VALUE is None.

	
wm_deiconify()

	Deiconify this widget. If it was never mapped it will not be mapped.
On Windows it will raise this widget and give it the focus.

	
wm_focusmodel(model=None)

	Set focus model to MODEL. “active” means that this widget will claim
the focus itself, “passive” means that the window manager shall give
the focus. Return current focus model if MODEL is None.

	
wm_frame()

	Return identifier for decorative frame of this widget if present.

	
wm_geometry(newGeometry=None)

	Set geometry to NEWGEOMETRY of the form =widthxheight+x+y. Return
current value if None is given.

	
wm_grid(baseWidth=None, baseHeight=None, widthInc=None, heightInc=None)

	Instruct the window manager that this widget shall only be
resized on grid boundaries. WIDTHINC and HEIGHTINC are the width and
height of a grid unit in pixels. BASEWIDTH and BASEHEIGHT are the
number of grid units requested in Tk_GeometryRequest.

	
wm_group(pathName=None)

	Set the group leader widgets for related widgets to PATHNAME. Return
the group leader of this widget if None is given.

	
wm_iconbitmap(bitmap=None, default=None)

	Set bitmap for the iconified widget to BITMAP. Return
the bitmap if None is given.

Under Windows, the DEFAULT parameter can be used to set the icon
for the widget and any descendents that don’t have an icon set
explicitly. DEFAULT can be the relative path to a .ico file
(example: root.iconbitmap(default=’myicon.ico’)). See Tk
documentation for more information.

	
wm_iconify()

	Display widget as icon.

	
wm_iconmask(bitmap=None)

	Set mask for the icon bitmap of this widget. Return the
mask if None is given.

	
wm_iconname(newName=None)

	Set the name of the icon for this widget. Return the name if
None is given.

	
wm_iconposition(x=None, y=None)

	Set the position of the icon of this widget to X and Y. Return
a tuple of the current values of X and X if None is given.

	
wm_iconwindow(pathName=None)

	Set widget PATHNAME to be displayed instead of icon. Return the current
value if None is given.

	
wm_maxsize(width=None, height=None)

	Set max WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
wm_minsize(width=None, height=None)

	Set min WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
wm_overrideredirect(boolean=None)

	Instruct the window manager to ignore this widget
if BOOLEAN is given with 1. Return the current value if None
is given.

	
wm_positionfrom(who=None)

	Instruct the window manager that the position of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
wm_protocol(name=None, func=None)

	Bind function FUNC to command NAME for this widget.
Return the function bound to NAME if None is given. NAME could be
e.g. “WM_SAVE_YOURSELF” or “WM_DELETE_WINDOW”.

	
wm_resizable(width=None, height=None)

	Instruct the window manager whether this width can be resized
in WIDTH or HEIGHT. Both values are boolean values.

	
wm_sizefrom(who=None)

	Instruct the window manager that the size of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
wm_state(newstate=None)

	Query or set the state of this widget as one of normal, icon,
iconic (see wm_iconwindow), withdrawn, or zoomed (Windows only).

	
wm_title(string=None)

	Set the title of this widget.

	
wm_transient(master=None)

	Instruct the window manager that this widget is transient
with regard to widget MASTER.

	
wm_withdraw()

	Withdraw this widget from the screen such that it is unmapped
and forgotten by the window manager. Re-draw it with wm_deiconify.

	
class robot.libraries.dialogs_py.PassFailDialog(message, value=None, **extra)

	Bases: robot.libraries.dialogs_py._TkDialog

	
after(ms, func=None, *args)

	Call function once after given time.

MS specifies the time in milliseconds. FUNC gives the
function which shall be called. Additional parameters
are given as parameters to the function call. Return
identifier to cancel scheduling with after_cancel.

	
after_cancel(id)

	Cancel scheduling of function identified with ID.

Identifier returned by after or after_idle must be
given as first parameter.

	
after_idle(func, *args)

	Call FUNC once if the Tcl main loop has no event to
process.

Return an identifier to cancel the scheduling with
after_cancel.

	
aspect(minNumer=None, minDenom=None, maxNumer=None, maxDenom=None)

	Instruct the window manager to set the aspect ratio (width/height)
of this widget to be between MINNUMER/MINDENOM and MAXNUMER/MAXDENOM. Return a tuple
of the actual values if no argument is given.

	
attributes(*args)

	This subcommand returns or sets platform specific attributes

The first form returns a list of the platform specific flags and
their values. The second form returns the value for the specific
option. The third form sets one or more of the values. The values
are as follows:

On Windows, -disabled gets or sets whether the window is in a
disabled state. -toolwindow gets or sets the style of the window
to toolwindow (as defined in the MSDN). -topmost gets or sets
whether this is a topmost window (displays above all other
windows).

On Macintosh, XXXXX

On Unix, there are currently no special attribute values.

	
bbox(column=None, row=None, col2=None, row2=None)

	Return a tuple of integer coordinates for the bounding
box of this widget controlled by the geometry manager grid.

If COLUMN, ROW is given the bounding box applies from
the cell with row and column 0 to the specified
cell. If COL2 and ROW2 are given the bounding box
starts at that cell.

The returned integers specify the offset of the upper left
corner in the master widget and the width and height.

	
bell(displayof=0)

	Ring a display’s bell.

	
bind(sequence=None, func=None, add=None)

	Bind to this widget at event SEQUENCE a call to function FUNC.

SEQUENCE is a string of concatenated event
patterns. An event pattern is of the form
<MODIFIER-MODIFIER-TYPE-DETAIL> where MODIFIER is one
of Control, Mod2, M2, Shift, Mod3, M3, Lock, Mod4, M4,
Button1, B1, Mod5, M5 Button2, B2, Meta, M, Button3,
B3, Alt, Button4, B4, Double, Button5, B5 Triple,
Mod1, M1. TYPE is one of Activate, Enter, Map,
ButtonPress, Button, Expose, Motion, ButtonRelease
FocusIn, MouseWheel, Circulate, FocusOut, Property,
Colormap, Gravity Reparent, Configure, KeyPress, Key,
Unmap, Deactivate, KeyRelease Visibility, Destroy,
Leave and DETAIL is the button number for ButtonPress,
ButtonRelease and DETAIL is the Keysym for KeyPress and
KeyRelease. Examples are
<Control-Button-1> for pressing Control and mouse button 1 or
<Alt-A> for pressing A and the Alt key (KeyPress can be omitted).
An event pattern can also be a virtual event of the form
<<AString>> where AString can be arbitrary. This
event can be generated by event_generate.
If events are concatenated they must appear shortly
after each other.

FUNC will be called if the event sequence occurs with an
instance of Event as argument. If the return value of FUNC is
“break” no further bound function is invoked.

An additional boolean parameter ADD specifies whether FUNC will
be called additionally to the other bound function or whether
it will replace the previous function.

Bind will return an identifier to allow deletion of the bound function with
unbind without memory leak.

If FUNC or SEQUENCE is omitted the bound function or list
of bound events are returned.

	
bind_all(sequence=None, func=None, add=None)

	Bind to all widgets at an event SEQUENCE a call to function FUNC.
An additional boolean parameter ADD specifies whether FUNC will
be called additionally to the other bound function or whether
it will replace the previous function. See bind for the return value.

	
bind_class(className, sequence=None, func=None, add=None)

	Bind to widgets with bindtag CLASSNAME at event
SEQUENCE a call of function FUNC. An additional
boolean parameter ADD specifies whether FUNC will be
called additionally to the other bound function or
whether it will replace the previous function. See bind for
the return value.

	
bindtags(tagList=None)

	Set or get the list of bindtags for this widget.

With no argument return the list of all bindtags associated with
this widget. With a list of strings as argument the bindtags are
set to this list. The bindtags determine in which order events are
processed (see bind).

	
cget(key)

	Return the resource value for a KEY given as string.

	
client(name=None)

	Store NAME in WM_CLIENT_MACHINE property of this widget. Return
current value.

	
clipboard_append(string, **kw)

	Append STRING to the Tk clipboard.

A widget specified at the optional displayof keyword
argument specifies the target display. The clipboard
can be retrieved with selection_get.

	
clipboard_clear(**kw)

	Clear the data in the Tk clipboard.

A widget specified for the optional displayof keyword
argument specifies the target display.

	
clipboard_get(**kw)

	Retrieve data from the clipboard on window’s display.

The window keyword defaults to the root window of the Tkinter
application.

The type keyword specifies the form in which the data is
to be returned and should be an atom name such as STRING
or FILE_NAME. Type defaults to STRING, except on X11, where the default
is to try UTF8_STRING and fall back to STRING.

This command is equivalent to:

selection_get(CLIPBOARD)

	
colormapwindows(*wlist)

	Store list of window names (WLIST) into WM_COLORMAPWINDOWS property
of this widget. This list contains windows whose colormaps differ from their
parents. Return current list of widgets if WLIST is empty.

	
colormodel(value=None)

	Useless. Not implemented in Tk.

	
columnconfigure(index, cnf={}, **kw)

	Configure column INDEX of a grid.

Valid resources are minsize (minimum size of the column),
weight (how much does additional space propagate to this column)
and pad (how much space to let additionally).

	
command(value=None)

	Store VALUE in WM_COMMAND property. It is the command
which shall be used to invoke the application. Return current
command if VALUE is None.

	
config(cnf=None, **kw)

	Configure resources of a widget.

The values for resources are specified as keyword
arguments. To get an overview about
the allowed keyword arguments call the method keys.

	
configure(cnf=None, **kw)

	Configure resources of a widget.

The values for resources are specified as keyword
arguments. To get an overview about
the allowed keyword arguments call the method keys.

	
deiconify()

	Deiconify this widget. If it was never mapped it will not be mapped.
On Windows it will raise this widget and give it the focus.

	
deletecommand(name)

	Internal function.

Delete the Tcl command provided in NAME.

	
destroy()

	Destroy this and all descendants widgets.

	
event_add(virtual, *sequences)

	Bind a virtual event VIRTUAL (of the form <<Name>>)
to an event SEQUENCE such that the virtual event is triggered
whenever SEQUENCE occurs.

	
event_delete(virtual, *sequences)

	Unbind a virtual event VIRTUAL from SEQUENCE.

	
event_generate(sequence, **kw)

	Generate an event SEQUENCE. Additional
keyword arguments specify parameter of the event
(e.g. x, y, rootx, rooty).

	
event_info(virtual=None)

	Return a list of all virtual events or the information
about the SEQUENCE bound to the virtual event VIRTUAL.

	
focus()

	Direct input focus to this widget.

If the application currently does not have the focus
this widget will get the focus if the application gets
the focus through the window manager.

	
focus_displayof()

	Return the widget which has currently the focus on the
display where this widget is located.

Return None if the application does not have the focus.

	
focus_force()

	Direct input focus to this widget even if the
application does not have the focus. Use with
caution!

	
focus_get()

	Return the widget which has currently the focus in the
application.

Use focus_displayof to allow working with several
displays. Return None if application does not have
the focus.

	
focus_lastfor()

	Return the widget which would have the focus if top level
for this widget gets the focus from the window manager.

	
focus_set()

	Direct input focus to this widget.

If the application currently does not have the focus
this widget will get the focus if the application gets
the focus through the window manager.

	
focusmodel(model=None)

	Set focus model to MODEL. “active” means that this widget will claim
the focus itself, “passive” means that the window manager shall give
the focus. Return current focus model if MODEL is None.

	
frame()

	Return identifier for decorative frame of this widget if present.

	
geometry(newGeometry=None)

	Set geometry to NEWGEOMETRY of the form =widthxheight+x+y. Return
current value if None is given.

	
getboolean(s)

	Return a boolean value for Tcl boolean values true and false given as parameter.

	
getdouble

	alias of __builtin__.float

	
getint

	alias of __builtin__.int

	
getvar(name='PY_VAR')

	Return value of Tcl variable NAME.

	
grab_current()

	Return widget which has currently the grab in this application
or None.

	
grab_release()

	Release grab for this widget if currently set.

	
grab_set(timeout=30)

	

	
grab_set_global()

	Set global grab for this widget.

A global grab directs all events to this and
descendant widgets on the display. Use with caution -
other applications do not get events anymore.

	
grab_status()

	Return None, “local” or “global” if this widget has
no, a local or a global grab.

	
grid(baseWidth=None, baseHeight=None, widthInc=None, heightInc=None)

	Instruct the window manager that this widget shall only be
resized on grid boundaries. WIDTHINC and HEIGHTINC are the width and
height of a grid unit in pixels. BASEWIDTH and BASEHEIGHT are the
number of grid units requested in Tk_GeometryRequest.

	
grid_bbox(column=None, row=None, col2=None, row2=None)

	Return a tuple of integer coordinates for the bounding
box of this widget controlled by the geometry manager grid.

If COLUMN, ROW is given the bounding box applies from
the cell with row and column 0 to the specified
cell. If COL2 and ROW2 are given the bounding box
starts at that cell.

The returned integers specify the offset of the upper left
corner in the master widget and the width and height.

	
grid_columnconfigure(index, cnf={}, **kw)

	Configure column INDEX of a grid.

Valid resources are minsize (minimum size of the column),
weight (how much does additional space propagate to this column)
and pad (how much space to let additionally).

	
grid_location(x, y)

	Return a tuple of column and row which identify the cell
at which the pixel at position X and Y inside the master
widget is located.

	
grid_propagate(flag=['_noarg_'])

	Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information
of the slaves will determine the size of this widget. If no argument
is given, the current setting will be returned.

	
grid_rowconfigure(index, cnf={}, **kw)

	Configure row INDEX of a grid.

Valid resources are minsize (minimum size of the row),
weight (how much does additional space propagate to this row)
and pad (how much space to let additionally).

	
grid_size()

	Return a tuple of the number of column and rows in the grid.

	
grid_slaves(row=None, column=None)

	Return a list of all slaves of this widget
in its packing order.

	
group(pathName=None)

	Set the group leader widgets for related widgets to PATHNAME. Return
the group leader of this widget if None is given.

	
iconbitmap(bitmap=None, default=None)

	Set bitmap for the iconified widget to BITMAP. Return
the bitmap if None is given.

Under Windows, the DEFAULT parameter can be used to set the icon
for the widget and any descendents that don’t have an icon set
explicitly. DEFAULT can be the relative path to a .ico file
(example: root.iconbitmap(default=’myicon.ico’)). See Tk
documentation for more information.

	
iconify()

	Display widget as icon.

	
iconmask(bitmap=None)

	Set mask for the icon bitmap of this widget. Return the
mask if None is given.

	
iconname(newName=None)

	Set the name of the icon for this widget. Return the name if
None is given.

	
iconposition(x=None, y=None)

	Set the position of the icon of this widget to X and Y. Return
a tuple of the current values of X and X if None is given.

	
iconwindow(pathName=None)

	Set widget PATHNAME to be displayed instead of icon. Return the current
value if None is given.

	
image_names()

	Return a list of all existing image names.

	
image_types()

	Return a list of all available image types (e.g. photo bitmap).

	
keys()

	Return a list of all resource names of this widget.

	
lift(aboveThis=None)

	Raise this widget in the stacking order.

	
lower(belowThis=None)

	Lower this widget in the stacking order.

	
mainloop(n=0)

	Call the mainloop of Tk.

	
maxsize(width=None, height=None)

	Set max WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
minsize(width=None, height=None)

	Set min WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
nametowidget(name)

	Return the Tkinter instance of a widget identified by
its Tcl name NAME.

	
option_add(pattern, value, priority=None)

	Set a VALUE (second parameter) for an option
PATTERN (first parameter).

An optional third parameter gives the numeric priority
(defaults to 80).

	
option_clear()

	Clear the option database.

It will be reloaded if option_add is called.

	
option_get(name, className)

	Return the value for an option NAME for this widget
with CLASSNAME.

Values with higher priority override lower values.

	
option_readfile(fileName, priority=None)

	Read file FILENAME into the option database.

An optional second parameter gives the numeric
priority.

	
overrideredirect(boolean=None)

	Instruct the window manager to ignore this widget
if BOOLEAN is given with 1. Return the current value if None
is given.

	
pack_propagate(flag=['_noarg_'])

	Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information
of the slaves will determine the size of this widget. If no argument
is given the current setting will be returned.

	
pack_slaves()

	Return a list of all slaves of this widget
in its packing order.

	
place_slaves()

	Return a list of all slaves of this widget
in its packing order.

	
positionfrom(who=None)

	Instruct the window manager that the position of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
propagate(flag=['_noarg_'])

	Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information
of the slaves will determine the size of this widget. If no argument
is given the current setting will be returned.

	
protocol(name=None, func=None)

	Bind function FUNC to command NAME for this widget.
Return the function bound to NAME if None is given. NAME could be
e.g. “WM_SAVE_YOURSELF” or “WM_DELETE_WINDOW”.

	
quit()

	Quit the Tcl interpreter. All widgets will be destroyed.

	
register(func, subst=None, needcleanup=1)

	Return a newly created Tcl function. If this
function is called, the Python function FUNC will
be executed. An optional function SUBST can
be given which will be executed before FUNC.

	
resizable(width=None, height=None)

	Instruct the window manager whether this width can be resized
in WIDTH or HEIGHT. Both values are boolean values.

	
rowconfigure(index, cnf={}, **kw)

	Configure row INDEX of a grid.

Valid resources are minsize (minimum size of the row),
weight (how much does additional space propagate to this row)
and pad (how much space to let additionally).

	
selection_clear(**kw)

	Clear the current X selection.

	
selection_get(**kw)

	Return the contents of the current X selection.

A keyword parameter selection specifies the name of
the selection and defaults to PRIMARY. A keyword
parameter displayof specifies a widget on the display
to use. A keyword parameter type specifies the form of data to be
fetched, defaulting to STRING except on X11, where UTF8_STRING is tried
before STRING.

	
selection_handle(command, **kw)

	Specify a function COMMAND to call if the X
selection owned by this widget is queried by another
application.

This function must return the contents of the
selection. The function will be called with the
arguments OFFSET and LENGTH which allows the chunking
of very long selections. The following keyword
parameters can be provided:
selection - name of the selection (default PRIMARY),
type - type of the selection (e.g. STRING, FILE_NAME).

	
selection_own(**kw)

	Become owner of X selection.

A keyword parameter selection specifies the name of
the selection (default PRIMARY).

	
selection_own_get(**kw)

	Return owner of X selection.

The following keyword parameter can
be provided:
selection - name of the selection (default PRIMARY),
type - type of the selection (e.g. STRING, FILE_NAME).

	
send(interp, cmd, *args)

	Send Tcl command CMD to different interpreter INTERP to be executed.

	
setvar(name='PY_VAR', value='1')

	Set Tcl variable NAME to VALUE.

	
show()

	

	
size()

	Return a tuple of the number of column and rows in the grid.

	
sizefrom(who=None)

	Instruct the window manager that the size of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
slaves()

	Return a list of all slaves of this widget
in its packing order.

	
state(newstate=None)

	Query or set the state of this widget as one of normal, icon,
iconic (see wm_iconwindow), withdrawn, or zoomed (Windows only).

	
title(string=None)

	Set the title of this widget.

	
tk_bisque()

	Change the color scheme to light brown as used in Tk 3.6 and before.

	
tk_focusFollowsMouse()

	The widget under mouse will get automatically focus. Can not
be disabled easily.

	
tk_focusNext()

	Return the next widget in the focus order which follows
widget which has currently the focus.

The focus order first goes to the next child, then to
the children of the child recursively and then to the
next sibling which is higher in the stacking order. A
widget is omitted if it has the takefocus resource set
to 0.

	
tk_focusPrev()

	Return previous widget in the focus order. See tk_focusNext for details.

	
tk_menuBar(*args)

	Do not use. Needed in Tk 3.6 and earlier.

	
tk_setPalette(*args, **kw)

	Set a new color scheme for all widget elements.

A single color as argument will cause that all colors of Tk
widget elements are derived from this.
Alternatively several keyword parameters and its associated
colors can be given. The following keywords are valid:
activeBackground, foreground, selectColor,
activeForeground, highlightBackground, selectBackground,
background, highlightColor, selectForeground,
disabledForeground, insertBackground, troughColor.

	
tk_strictMotif(boolean=None)

	Set Tcl internal variable, whether the look and feel
should adhere to Motif.

A parameter of 1 means adhere to Motif (e.g. no color
change if mouse passes over slider).
Returns the set value.

	
tkraise(aboveThis=None)

	Raise this widget in the stacking order.

	
transient(master=None)

	Instruct the window manager that this widget is transient
with regard to widget MASTER.

	
unbind(sequence, funcid=None)

	Unbind for this widget for event SEQUENCE the
function identified with FUNCID.

	
unbind_all(sequence)

	Unbind for all widgets for event SEQUENCE all functions.

	
unbind_class(className, sequence)

	Unbind for all widgets with bindtag CLASSNAME for event SEQUENCE
all functions.

	
update()

	Enter event loop until all pending events have been processed by Tcl.

	
update_idletasks()

	Enter event loop until all idle callbacks have been called. This
will update the display of windows but not process events caused by
the user.

	
wait_variable(name='PY_VAR')

	Wait until the variable is modified.

A parameter of type IntVar, StringVar, DoubleVar or
BooleanVar must be given.

	
wait_visibility(window=None)

	Wait until the visibility of a WIDGET changes
(e.g. it appears).

If no parameter is given self is used.

	
wait_window(window=None)

	Wait until a WIDGET is destroyed.

If no parameter is given self is used.

	
waitvar(name='PY_VAR')

	Wait until the variable is modified.

A parameter of type IntVar, StringVar, DoubleVar or
BooleanVar must be given.

	
winfo_atom(name, displayof=0)

	Return integer which represents atom NAME.

	
winfo_atomname(id, displayof=0)

	Return name of atom with identifier ID.

	
winfo_cells()

	Return number of cells in the colormap for this widget.

	
winfo_children()

	Return a list of all widgets which are children of this widget.

	
winfo_class()

	Return window class name of this widget.

	
winfo_colormapfull()

	Return true if at the last color request the colormap was full.

	
winfo_containing(rootX, rootY, displayof=0)

	Return the widget which is at the root coordinates ROOTX, ROOTY.

	
winfo_depth()

	Return the number of bits per pixel.

	
winfo_exists()

	Return true if this widget exists.

	
winfo_fpixels(number)

	Return the number of pixels for the given distance NUMBER
(e.g. “3c”) as float.

	
winfo_geometry()

	Return geometry string for this widget in the form “widthxheight+X+Y”.

	
winfo_height()

	Return height of this widget.

	
winfo_id()

	Return identifier ID for this widget.

	
winfo_interps(displayof=0)

	Return the name of all Tcl interpreters for this display.

	
winfo_ismapped()

	Return true if this widget is mapped.

	
winfo_manager()

	Return the window manager name for this widget.

	
winfo_name()

	Return the name of this widget.

	
winfo_parent()

	Return the name of the parent of this widget.

	
winfo_pathname(id, displayof=0)

	Return the pathname of the widget given by ID.

	
winfo_pixels(number)

	Rounded integer value of winfo_fpixels.

	
winfo_pointerx()

	Return the x coordinate of the pointer on the root window.

	
winfo_pointerxy()

	Return a tuple of x and y coordinates of the pointer on the root window.

	
winfo_pointery()

	Return the y coordinate of the pointer on the root window.

	
winfo_reqheight()

	Return requested height of this widget.

	
winfo_reqwidth()

	Return requested width of this widget.

	
winfo_rgb(color)

	Return tuple of decimal values for red, green, blue for
COLOR in this widget.

	
winfo_rootx()

	Return x coordinate of upper left corner of this widget on the
root window.

	
winfo_rooty()

	Return y coordinate of upper left corner of this widget on the
root window.

	
winfo_screen()

	Return the screen name of this widget.

	
winfo_screencells()

	Return the number of the cells in the colormap of the screen
of this widget.

	
winfo_screendepth()

	Return the number of bits per pixel of the root window of the
screen of this widget.

	
winfo_screenheight()

	Return the number of pixels of the height of the screen of this widget
in pixel.

	
winfo_screenmmheight()

	Return the number of pixels of the height of the screen of
this widget in mm.

	
winfo_screenmmwidth()

	Return the number of pixels of the width of the screen of
this widget in mm.

	
winfo_screenvisual()

	Return one of the strings directcolor, grayscale, pseudocolor,
staticcolor, staticgray, or truecolor for the default
colormodel of this screen.

	
winfo_screenwidth()

	Return the number of pixels of the width of the screen of
this widget in pixel.

	
winfo_server()

	Return information of the X-Server of the screen of this widget in
the form “XmajorRminor vendor vendorVersion”.

	
winfo_toplevel()

	Return the toplevel widget of this widget.

	
winfo_viewable()

	Return true if the widget and all its higher ancestors are mapped.

	
winfo_visual()

	Return one of the strings directcolor, grayscale, pseudocolor,
staticcolor, staticgray, or truecolor for the
colormodel of this widget.

	
winfo_visualid()

	Return the X identifier for the visual for this widget.

	
winfo_visualsavailable(includeids=0)

	Return a list of all visuals available for the screen
of this widget.

Each item in the list consists of a visual name (see winfo_visual), a
depth and if INCLUDEIDS=1 is given also the X identifier.

	
winfo_vrootheight()

	Return the height of the virtual root window associated with this
widget in pixels. If there is no virtual root window return the
height of the screen.

	
winfo_vrootwidth()

	Return the width of the virtual root window associated with this
widget in pixel. If there is no virtual root window return the
width of the screen.

	
winfo_vrootx()

	Return the x offset of the virtual root relative to the root
window of the screen of this widget.

	
winfo_vrooty()

	Return the y offset of the virtual root relative to the root
window of the screen of this widget.

	
winfo_width()

	Return the width of this widget.

	
winfo_x()

	Return the x coordinate of the upper left corner of this widget
in the parent.

	
winfo_y()

	Return the y coordinate of the upper left corner of this widget
in the parent.

	
withdraw()

	Withdraw this widget from the screen such that it is unmapped
and forgotten by the window manager. Re-draw it with wm_deiconify.

	
wm_aspect(minNumer=None, minDenom=None, maxNumer=None, maxDenom=None)

	Instruct the window manager to set the aspect ratio (width/height)
of this widget to be between MINNUMER/MINDENOM and MAXNUMER/MAXDENOM. Return a tuple
of the actual values if no argument is given.

	
wm_attributes(*args)

	This subcommand returns or sets platform specific attributes

The first form returns a list of the platform specific flags and
their values. The second form returns the value for the specific
option. The third form sets one or more of the values. The values
are as follows:

On Windows, -disabled gets or sets whether the window is in a
disabled state. -toolwindow gets or sets the style of the window
to toolwindow (as defined in the MSDN). -topmost gets or sets
whether this is a topmost window (displays above all other
windows).

On Macintosh, XXXXX

On Unix, there are currently no special attribute values.

	
wm_client(name=None)

	Store NAME in WM_CLIENT_MACHINE property of this widget. Return
current value.

	
wm_colormapwindows(*wlist)

	Store list of window names (WLIST) into WM_COLORMAPWINDOWS property
of this widget. This list contains windows whose colormaps differ from their
parents. Return current list of widgets if WLIST is empty.

	
wm_command(value=None)

	Store VALUE in WM_COMMAND property. It is the command
which shall be used to invoke the application. Return current
command if VALUE is None.

	
wm_deiconify()

	Deiconify this widget. If it was never mapped it will not be mapped.
On Windows it will raise this widget and give it the focus.

	
wm_focusmodel(model=None)

	Set focus model to MODEL. “active” means that this widget will claim
the focus itself, “passive” means that the window manager shall give
the focus. Return current focus model if MODEL is None.

	
wm_frame()

	Return identifier for decorative frame of this widget if present.

	
wm_geometry(newGeometry=None)

	Set geometry to NEWGEOMETRY of the form =widthxheight+x+y. Return
current value if None is given.

	
wm_grid(baseWidth=None, baseHeight=None, widthInc=None, heightInc=None)

	Instruct the window manager that this widget shall only be
resized on grid boundaries. WIDTHINC and HEIGHTINC are the width and
height of a grid unit in pixels. BASEWIDTH and BASEHEIGHT are the
number of grid units requested in Tk_GeometryRequest.

	
wm_group(pathName=None)

	Set the group leader widgets for related widgets to PATHNAME. Return
the group leader of this widget if None is given.

	
wm_iconbitmap(bitmap=None, default=None)

	Set bitmap for the iconified widget to BITMAP. Return
the bitmap if None is given.

Under Windows, the DEFAULT parameter can be used to set the icon
for the widget and any descendents that don’t have an icon set
explicitly. DEFAULT can be the relative path to a .ico file
(example: root.iconbitmap(default=’myicon.ico’)). See Tk
documentation for more information.

	
wm_iconify()

	Display widget as icon.

	
wm_iconmask(bitmap=None)

	Set mask for the icon bitmap of this widget. Return the
mask if None is given.

	
wm_iconname(newName=None)

	Set the name of the icon for this widget. Return the name if
None is given.

	
wm_iconposition(x=None, y=None)

	Set the position of the icon of this widget to X and Y. Return
a tuple of the current values of X and X if None is given.

	
wm_iconwindow(pathName=None)

	Set widget PATHNAME to be displayed instead of icon. Return the current
value if None is given.

	
wm_maxsize(width=None, height=None)

	Set max WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
wm_minsize(width=None, height=None)

	Set min WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
wm_overrideredirect(boolean=None)

	Instruct the window manager to ignore this widget
if BOOLEAN is given with 1. Return the current value if None
is given.

	
wm_positionfrom(who=None)

	Instruct the window manager that the position of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
wm_protocol(name=None, func=None)

	Bind function FUNC to command NAME for this widget.
Return the function bound to NAME if None is given. NAME could be
e.g. “WM_SAVE_YOURSELF” or “WM_DELETE_WINDOW”.

	
wm_resizable(width=None, height=None)

	Instruct the window manager whether this width can be resized
in WIDTH or HEIGHT. Both values are boolean values.

	
wm_sizefrom(who=None)

	Instruct the window manager that the size of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
wm_state(newstate=None)

	Query or set the state of this widget as one of normal, icon,
iconic (see wm_iconwindow), withdrawn, or zoomed (Windows only).

	
wm_title(string=None)

	Set the title of this widget.

	
wm_transient(master=None)

	Instruct the window manager that this widget is transient
with regard to widget MASTER.

	
wm_withdraw()

	Withdraw this widget from the screen such that it is unmapped
and forgotten by the window manager. Re-draw it with wm_deiconify.

robot.model package

Package with generic, reusable and extensible model classes.

This package contains, for example, TestSuite,
TestCase, Keyword
and SuiteVisitor base classes.
These classes are extended both by execution
and result related model objects and used also
elsewhere.

This package is considered stable.

Submodules

robot.model.configurer module

	
class robot.model.configurer.SuiteConfigurer(name=None, doc=None, metadata=None, set_tags=None, include_tags=None, exclude_tags=None, include_suites=None, include_tests=None, empty_suite_ok=False)

	Bases: robot.model.visitor.SuiteVisitor

	
add_tags

	

	
remove_tags

	

	
visit_suite(suite)

	Implements traversing through the suite and its direct children.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_keyword(kw)

	Implements traversing through the keyword and its child keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
visit_message(msg)

	Implements visiting the message.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_test(test)

	Implements traversing through the test and its keywords.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

robot.model.criticality module

	
class robot.model.criticality.Criticality(critical_tags=None, non_critical_tags=None)

	Bases: object

	
tag_is_critical(tag)

	

	
tag_is_non_critical(tag)

	

	
test_is_critical(test)

	

robot.model.filter module

	
class robot.model.filter.EmptySuiteRemover(preserve_direct_children=False)

	Bases: robot.model.visitor.SuiteVisitor

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
visit_test(test)

	Implements traversing through the test and its keywords.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
visit_keyword(kw)

	Implements traversing through the keyword and its child keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_message(msg)

	Implements visiting the message.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through the suite and its direct children.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
class robot.model.filter.Filter(include_suites=None, include_tests=None, include_tags=None, exclude_tags=None)

	Bases: robot.model.filter.EmptySuiteRemover

	
include_suites

	

	
include_tests

	

	
include_tags

	

	
exclude_tags

	

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_keyword(kw)

	Implements traversing through the keyword and its child keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
visit_message(msg)

	Implements visiting the message.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through the suite and its direct children.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
visit_test(test)

	Implements traversing through the test and its keywords.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

robot.model.itemlist module

	
class robot.model.itemlist.ItemList(item_class, common_attrs=None, items=None)

	Bases: object

	
create(*args, **kwargs)

	

	
append(item)

	

	
extend(items)

	

	
insert(index, item)

	

	
pop(*index)

	

	
remove(item)

	

	
index(item, *start_and_end)

	

	
clear()

	

	
visit(visitor)

	

	
count(item)

	

	
sort()

	

	
reverse()

	

robot.model.keyword module

	
class robot.model.keyword.Keyword(name='', doc='', args=(), assign=(), tags=(), timeout=None, type='kw')

	Bases: robot.model.modelobject.ModelObject

Base model for a single keyword.

Extended by robot.running.model.Keyword and
robot.result.model.Keyword.

	
KEYWORD_TYPE = 'kw'

	Normal keyword type.

	
SETUP_TYPE = 'setup'

	Setup type.

	
TEARDOWN_TYPE = 'teardown'

	Teardown type.

	
FOR_LOOP_TYPE = 'for'

	For loop type.

	
FOR_ITEM_TYPE = 'foritem'

	Single for loop iteration type.

	
keyword_class = None

	Internal usage only.

	
message_class

	alias of robot.model.message.Message

	
doc

	

	
args

	Keyword arguments as a list of strings.

	
assign

	Assigned variables as a list of strings.

	
timeout

	

	
type

	Keyword type as a string. The value is either KEYWORD_TYPE,
SETUP_TYPE, TEARDOWN_TYPE, FOR_LOOP_TYPE or
FOR_ITEM_TYPE constant defined on the class level.

	
name

	

	
parent

	Parent test suite, test case or keyword.

	
tags

	Keyword tags as a Tags object.

	
keywords

	Child keywords as a Keywords object.

	
messages

	Messages as a Messages object.

	
children

	Child keywords and messages in creation order.

	
id

	Keyword id in format like s1-t3-k1.

See TestSuite.id for
more information.

	
source

	

	
visit(visitor)

	Visitor interface entry-point.

	
copy(**attributes)

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

New in Robot Framework 3.0.1.

	
deepcopy(**attributes)

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

New in Robot Framework 3.0.1.

	
class robot.model.keyword.Keywords(keyword_class=<class 'robot.model.keyword.Keyword'>, parent=None, keywords=None)

	Bases: robot.model.itemlist.ItemList

A list-like object representing keywords in a suite, a test or a keyword.

Possible setup and teardown keywords are directly available as
setup and teardown attributes.

	
setup

	Keyword used as the setup or None if no setup.

Can be set to a new setup keyword or None since RF 3.0.1.

	
append(item)

	

	
clear()

	

	
count(item)

	

	
create(*args, **kwargs)

	

	
create_setup(*args, **kwargs)

	

	
extend(items)

	

	
index(item, *start_and_end)

	

	
insert(index, item)

	

	
pop(*index)

	

	
remove(item)

	

	
reverse()

	

	
sort()

	

	
visit(visitor)

	

	
teardown

	Keyword used as the teardown or None if no teardown.

Can be set to a new teardown keyword or None since RF 3.0.1.

	
create_teardown(*args, **kwargs)

	

	
all

	Iterates over all keywords, including setup and teardown.

	
normal

	Iterates over normal keywords, omitting setup and teardown.

robot.model.message module

	
class robot.model.message.Message(message='', level='INFO', html=False, timestamp=None, parent=None)

	Bases: robot.model.modelobject.ModelObject

A message created during the test execution.

Can be a log message triggered by a keyword, or a warning or an error
that occurred during parsing or test execution.

	
message

	The message content as a string.

	
level

	Severity of the message. Either TRACE, DEBUG, INFO,
WARN, ERROR, or FAIL. The latest one is only used with
keyword failure messages.

	
html

	True if the content is in HTML, False otherwise.

	
timestamp

	Timestamp in format %Y%m%d %H:%M:%S.%f.

	
parent

	The object this message was triggered by.

	
html_message

	Returns the message content as HTML.

	
visit(visitor)

	Visitor interface entry-point.

	
copy(**attributes)

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

New in Robot Framework 3.0.1.

	
deepcopy(**attributes)

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

New in Robot Framework 3.0.1.

	
class robot.model.message.Messages(message_class=<class 'robot.model.message.Message'>, parent=None, messages=None)

	Bases: robot.model.itemlist.ItemList

	
append(item)

	

	
clear()

	

	
count(item)

	

	
create(*args, **kwargs)

	

	
extend(items)

	

	
index(item, *start_and_end)

	

	
insert(index, item)

	

	
pop(*index)

	

	
remove(item)

	

	
reverse()

	

	
sort()

	

	
visit(visitor)

	

robot.model.metadata module

	
class robot.model.metadata.Metadata(initial=None)

	Bases: robot.utils.normalizing.NormalizedDict

	
clear() → None. Remove all items from D.

	

	
copy()

	

	
get(k[, d]) → D[k] if k in D, else d. d defaults to None.

	

	
items() → list of D's (key, value) pairs, as 2-tuples

	

	
iteritems() → an iterator over the (key, value) items of D

	

	
iterkeys() → an iterator over the keys of D

	

	
itervalues() → an iterator over the values of D

	

	
keys() → list of D's keys

	

	
pop(k[, d]) → v, remove specified key and return the corresponding value.

	If key is not found, d is returned if given, otherwise KeyError is raised.

	
popitem() → (k, v), remove and return some (key, value) pair

	as a 2-tuple; but raise KeyError if D is empty.

	
setdefault(k[, d]) → D.get(k,d), also set D[k]=d if k not in D

	

	
update([E,]**F) → None. Update D from mapping/iterable E and F.

	If E present and has a .keys() method, does: for k in E: D[k] = E[k]
If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v
In either case, this is followed by: for k, v in F.items(): D[k] = v

	
values() → list of D's values

	

robot.model.modelobject module

	
class robot.model.modelobject.ModelObject

	Bases: object

	
copy(**attributes)

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

New in Robot Framework 3.0.1.

	
deepcopy(**attributes)

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

New in Robot Framework 3.0.1.

robot.model.modifier module

	
class robot.model.modifier.ModelModifier(visitors, empty_suite_ok, logger)

	Bases: robot.model.visitor.SuiteVisitor

	
visit_suite(suite)

	Implements traversing through the suite and its direct children.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_keyword(kw)

	Implements traversing through the keyword and its child keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
visit_message(msg)

	Implements visiting the message.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_test(test)

	Implements traversing through the test and its keywords.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

robot.model.namepatterns module

	
class robot.model.namepatterns.SuiteNamePatterns(patterns=None)

	Bases: robot.model.namepatterns._NamePatterns

	
match(name, longname=None)

	

	
class robot.model.namepatterns.TestNamePatterns(patterns=None)

	Bases: robot.model.namepatterns._NamePatterns

	
match(name, longname=None)

	

robot.model.statistics module

	
class robot.model.statistics.Statistics(suite, suite_stat_level=-1, tag_stat_include=None, tag_stat_exclude=None, tag_stat_combine=None, tag_doc=None, tag_stat_link=None, rpa=False)

	Bases: object

Container for total, suite and tag statistics.

Accepted parameters have the same semantics as the matching command line
options.

	
total = None

	Instance of TotalStatistics.

	
suite = None

	Instance of SuiteStatistics.

	
tags = None

	Instance of TagStatistics.

	
visit(visitor)

	

	
class robot.model.statistics.StatisticsBuilder(total_builder, suite_builder, tag_builder)

	Bases: robot.model.visitor.SuiteVisitor

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
visit_test(test)

	Implements traversing through the test and its keywords.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
visit_keyword(kw)

	Implements traversing through the keyword and its child keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_message(msg)

	Implements visiting the message.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through the suite and its direct children.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

robot.model.stats module

	
class robot.model.stats.Stat(name)

	Bases: robot.utils.sortable.Sortable

Generic statistic object used for storing all the statistic values.

	
name = None

	Human readable identifier of the object these statistics
belong to. Either All Tests or Critical Tests for
TotalStatistics,
long name of the suite for
SuiteStatistics
or name of the tag for
TagStatistics

	
passed = None

	Number of passed tests.

	
failed = None

	Number of failed tests.

	
elapsed = None

	Number of milliseconds it took to execute.

	
get_attributes(include_label=False, include_elapsed=False, exclude_empty=True, values_as_strings=False, html_escape=False)

	

	
total

	

	
add_test(test)

	

	
visit(visitor)

	

	
class robot.model.stats.TotalStat(name)

	Bases: robot.model.stats.Stat

Stores statistic values for a test run.

	
type = 'total'

	

	
add_test(test)

	

	
get_attributes(include_label=False, include_elapsed=False, exclude_empty=True, values_as_strings=False, html_escape=False)

	

	
total

	

	
visit(visitor)

	

	
class robot.model.stats.SuiteStat(suite)

	Bases: robot.model.stats.Stat

Stores statistics values for a single suite.

	
type = 'suite'

	

	
id = None

	Identifier of the suite, e.g. s1-s2.

	
elapsed = None

	Number of milliseconds it took to execute this suite,
including sub-suites.

	
add_stat(other)

	

	
add_test(test)

	

	
get_attributes(include_label=False, include_elapsed=False, exclude_empty=True, values_as_strings=False, html_escape=False)

	

	
total

	

	
visit(visitor)

	

	
class robot.model.stats.TagStat(name, doc='', links=None, critical=False, non_critical=False, combined=None)

	Bases: robot.model.stats.Stat

Stores statistic values for a single tag.

	
type = 'tag'

	

	
doc = None

	Documentation of tag as a string.

	
links = None

	List of tuples in which the first value is the link URL and
the second is the link title. An empty list by default.

	
critical = None

	True if tag is considered critical, False otherwise.

	
non_critical = None

	True if tag is considered non-critical, False otherwise.

	
combined = None

	Pattern as a string if the tag is combined, None otherwise.

	
info

	Returns additional information of the tag statistics
are about. Either critical, non-critical, combined or an
empty string.

	
add_test(test)

	

	
get_attributes(include_label=False, include_elapsed=False, exclude_empty=True, values_as_strings=False, html_escape=False)

	

	
total

	

	
visit(visitor)

	

	
class robot.model.stats.CombinedTagStat(pattern, name=None, doc='', links=None)

	Bases: robot.model.stats.TagStat

	
match(tags)

	

	
add_test(test)

	

	
get_attributes(include_label=False, include_elapsed=False, exclude_empty=True, values_as_strings=False, html_escape=False)

	

	
info

	Returns additional information of the tag statistics
are about. Either critical, non-critical, combined or an
empty string.

	
total

	

	
type = 'tag'

	

	
visit(visitor)

	

	
class robot.model.stats.CriticalTagStat(tag_pattern, name=None, critical=True, doc='', links=None)

	Bases: robot.model.stats.TagStat

	
match(tags)

	

	
add_test(test)

	

	
get_attributes(include_label=False, include_elapsed=False, exclude_empty=True, values_as_strings=False, html_escape=False)

	

	
info

	Returns additional information of the tag statistics
are about. Either critical, non-critical, combined or an
empty string.

	
total

	

	
type = 'tag'

	

	
visit(visitor)

	

robot.model.suitestatistics module

	
class robot.model.suitestatistics.SuiteStatistics(suite)

	Bases: object

Container for suite statistics.

	
stat = None

	Instance of SuiteStat.

	
suites = None

	List of TestSuite objects.

	
visit(visitor)

	

	
class robot.model.suitestatistics.SuiteStatisticsBuilder(suite_stat_level)

	Bases: object

	
current

	

	
start_suite(suite)

	

	
add_test(test)

	

	
end_suite()

	

robot.model.tags module

	
class robot.model.tags.Tags(tags=None)

	Bases: object

	
add(tags)

	

	
remove(tags)

	

	
match(tags)

	

	
class robot.model.tags.TagPatterns(patterns)

	Bases: object

	
match(tags)

	

	
robot.model.tags.TagPattern(pattern)

	

	
class robot.model.tags.SingleTagPattern(pattern)

	Bases: object

	
match(tags)

	

	
class robot.model.tags.AndTagPattern(patterns)

	Bases: object

	
match(tags)

	

	
class robot.model.tags.OrTagPattern(patterns)

	Bases: object

	
match(tags)

	

	
class robot.model.tags.NotTagPattern(must_match, *must_not_match)

	Bases: object

	
match(tags)

	

robot.model.tagsetter module

	
class robot.model.tagsetter.TagSetter(add=None, remove=None)

	Bases: robot.model.visitor.SuiteVisitor

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_test(test)

	Implements traversing through the test and its keywords.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
visit_keyword(keyword)

	Implements traversing through the keyword and its child keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_message(msg)

	Implements visiting the message.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through the suite and its direct children.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

robot.model.tagstatistics module

	
class robot.model.tagstatistics.TagStatistics(critical_stats, non_critical_stats, combined_stats)

	Bases: object

Container for tag statistics.

	
tags = None

	Dictionary, where key is the name of the tag as a string and value
is an instance of TagStat.

	
critical = None

	List of CriticalTagStat objects.

	
non_critical = None

	List of CriticalTagStat objects.

	
combined = None

	List of CombinedTagStat objects.

	
visit(visitor)

	

	
class robot.model.tagstatistics.TagStatisticsBuilder(criticality=None, included=None, excluded=None, combined=None, docs=None, links=None)

	Bases: object

	
add_test(test)

	

	
class robot.model.tagstatistics.TagStatInfo(docs=None, links=None)

	Bases: object

	
get_stat(tag)

	

	
get_critical_stats(criticality, critical=True)

	

	
get_combined_stats(combined=None)

	

	
get_doc(tag)

	

	
get_links(tag)

	

	
class robot.model.tagstatistics.TagStatDoc(pattern, doc)

	Bases: object

	
match(tag)

	

	
class robot.model.tagstatistics.TagStatLink(pattern, link, title)

	Bases: object

	
match(tag)

	

	
get_link(tag)

	

robot.model.testcase module

	
class robot.model.testcase.TestCase(name='', doc='', tags=None, timeout=None)

	Bases: robot.model.modelobject.ModelObject

Base model for a single test case.

Extended by robot.running.model.TestCase and
robot.result.model.TestCase.

	
keyword_class

	alias of robot.model.keyword.Keyword

	
parent

	Parent suite.

	
name

	Test case name.

	
doc

	Test case documentation.

	
timeout

	Test case timeout.

	
tags

	Test tags as a Tags object.

	
keywords

	Keywords as a Keywords object.

Contains also possible setup and teardown keywords.

	
id

	Test case id in format like s1-t3.

See TestSuite.id for
more information.

	
longname

	Test name prefixed with the long name of the parent suite.

	
source

	

	
visit(visitor)

	Visitor interface entry-point.

	
copy(**attributes)

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

New in Robot Framework 3.0.1.

	
deepcopy(**attributes)

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

New in Robot Framework 3.0.1.

	
class robot.model.testcase.TestCases(test_class=<class 'robot.model.testcase.TestCase'>, parent=None, tests=None)

	Bases: robot.model.itemlist.ItemList

	
append(item)

	

	
clear()

	

	
count(item)

	

	
create(*args, **kwargs)

	

	
extend(items)

	

	
index(item, *start_and_end)

	

	
insert(index, item)

	

	
pop(*index)

	

	
remove(item)

	

	
reverse()

	

	
sort()

	

	
visit(visitor)

	

robot.model.testsuite module

	
class robot.model.testsuite.TestSuite(name='', doc='', metadata=None, source=None, rpa=False)

	Bases: robot.model.modelobject.ModelObject

Base model for single suite.

Extended by robot.running.model.TestSuite and
robot.result.model.TestSuite.

	
test_class

	alias of robot.model.testcase.TestCase

	
keyword_class

	alias of robot.model.keyword.Keyword

	
parent

	Parent suite. None with the root suite.

	
doc

	Test suite documentation.

	
source

	Path to the source file or directory.

	
rpa

	

	
name

	Test suite name. If not set, constructed from child suite names.

	
longname

	Suite name prefixed with the long name of the parent suite.

	
metadata

	Free test suite metadata as a dictionary.

	
suites

	Child suites as a TestSuites object.

	
tests

	Tests as a TestCases object.

	
keywords

	Suite setup and teardown as a Keywords object.

	
id

	An automatically generated unique id.

The root suite has id s1, its child suites have ids s1-s1,
s1-s2, …, their child suites get ids s1-s1-s1, s1-s1-s2,
…, s1-s2-s1, …, and so on.

The first test in a suite has an id like s1-t1, the second has an
id s1-t2, and so on. Similarly keywords in suites (setup/teardown)
and in tests get ids like s1-k1, s1-t1-k1, and s1-s4-t2-k5.

	
test_count

	Number of the tests in this suite, recursively.

	
has_tests

	

	
set_tags(add=None, remove=None, persist=False)

	Add and/or remove specified tags to the tests in this suite.

	Parameters

	
	add – Tags to add as a list or, if adding only one,
as a single string.

	remove – Tags to remove as a list or as a single string.
Can be given as patterns where * and ? work as wildcards.

	persist – Add/remove specified tags also to new tests added
to this suite in the future.

	
filter(included_suites=None, included_tests=None, included_tags=None, excluded_tags=None)

	Select test cases and remove others from this suite.

Parameters have the same semantics as --suite, --test,
--include, and --exclude command line options. All of them
can be given as a list of strings, or when selecting only one, as
a single string.

Child suites that contain no tests after filtering are automatically
removed.

Example:

suite.filter(included_tests=['Test 1', '* Example'],
 included_tags='priority-1')

	
configure(**options)

	A shortcut to configure a suite using one method call.

Can only be used with the root test suite.

	Parameters

	options – Passed to
SuiteConfigurer that will then
set suite attributes, call filter(), etc. as needed.

	
copy(**attributes)

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

New in Robot Framework 3.0.1.

	
deepcopy(**attributes)

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

New in Robot Framework 3.0.1.

	
remove_empty_suites(preserve_direct_children=False)

	Removes all child suites not containing any tests, recursively.

	
visit(visitor)

	Visitor interface entry-point.

	
class robot.model.testsuite.TestSuites(suite_class=<class 'robot.model.testsuite.TestSuite'>, parent=None, suites=None)

	Bases: robot.model.itemlist.ItemList

	
append(item)

	

	
clear()

	

	
count(item)

	

	
create(*args, **kwargs)

	

	
extend(items)

	

	
index(item, *start_and_end)

	

	
insert(index, item)

	

	
pop(*index)

	

	
remove(item)

	

	
reverse()

	

	
sort()

	

	
visit(visitor)

	

robot.model.totalstatistics module

	
class robot.model.totalstatistics.TotalStatistics(rpa=False)

	Bases: object

Container for total statistics.

	
all = None

	Instance of TotalStat for all the tests.

	
visit(visitor)

	

	
message

	String representation of the statistics.

For example:

2 critical tests, 1 passed, 1 failed
2 tests total, 1 passed, 1 failed

	
class robot.model.totalstatistics.TotalStatisticsBuilder(suite=None, rpa=False)

	Bases: robot.model.visitor.SuiteVisitor

	
add_test(test)

	

	
visit_test(test)

	Implements traversing through the test and its keywords.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
visit_keyword(kw)

	Implements traversing through the keyword and its child keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_message(msg)

	Implements visiting the message.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through the suite and its direct children.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

robot.model.visitor module

Interface to ease traversing through a test suite structure.

Visitors make it easy to modify test suite structures or to collect information
from them. They work both with the executable model
and the result model, but the objects passed to
the visitor methods are slightly different depending on the model they are
used with. The main differences are that on the execution side keywords do
not have child keywords nor messages, and that only the result objects have
status related attributes like status and starttime.

This module contains SuiteVisitor that implements the core logic to
visit a test suite structure, and the result package contains
ResultVisitor that supports visiting the whole
test execution result structure. Both of these visitors should be imported
via the robot.api package when used by external code.

Visitor algorithm

All suite, test, keyword and message objects have a visit() method that
accepts a visitor instance. These methods will then call the correct visitor
method visit_suite(), visit_test(),
visit_keyword() or visit_message(),
depending on the instance where the visit() method exists.

The recommended and definitely easiest way to implement a visitor is extending
the SuiteVisitor base class. The default implementation of its
visit_x() methods take care of traversing child elements of the object
x recursively. A visit_x() method first calls a corresponding
start_x() method (e.g. visit_suite() calls start_suite()),
then calls visit() for all child objects of the x object, and
finally calls the corresponding end_x() method. The default
implementations of start_x() and end_x() do nothing.

Visitors extending the SuiteVisitor can stop visiting at a certain
level either by overriding suitable visit_x() method or by returning
an explicit False from any start_x() method.

Examples

The following example visitor modifies the test suite structure it visits.
It could be used, for example, with Robot Framework’s --prerunmodifier
option to modify test data before execution.

"""Pre-run modifier that selects only every Xth test for execution.

Starts from the first test by default. Tests are selected per suite.
"""

from robot.api import SuiteVisitor

class SelectEveryXthTest(SuiteVisitor):

 def __init__(self, x, start=0):
 self.x = int(x)
 self.start = int(start)

 def start_suite(self, suite):
 """Modify suite's tests to contain only every Xth."""
 suite.tests = suite.tests[self.start::self.x]

 def end_suite(self, suite):
 """Remove suites that are empty after removing tests."""
 suite.suites = [s for s in suite.suites if s.test_count > 0]

 def visit_test(self, test):
 """Avoid visiting tests and their keywords to save a little time."""
 pass

For more examples it is possible to look at the source code of visitors used
internally by Robot Framework itself. Some good examples are
TagSetter and
keyword removers.

	
class robot.model.visitor.SuiteVisitor

	Bases: object

Abstract class to ease traversing through the test suite structure.

See the module level documentation for more
information and an example.

	
visit_suite(suite)

	Implements traversing through the suite and its direct children.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
visit_test(test)

	Implements traversing through the test and its keywords.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
visit_keyword(kw)

	Implements traversing through the keyword and its child keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
visit_message(msg)

	Implements visiting the message.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

robot.output package

Package for internal logging and other output.

Not part of the public API, and also subject to change in the future when
test execution is refactored.

Subpackages

	robot.output.console package
	Submodules

	robot.output.console.dotted module

	robot.output.console.highlighting module

	robot.output.console.quiet module

	robot.output.console.verbose module

Submodules

robot.output.debugfile module

	
robot.output.debugfile.DebugFile(path)

	

robot.output.filelogger module

	
class robot.output.filelogger.FileLogger(path, level)

	Bases: robot.output.loggerhelper.AbstractLogger

	
message(msg)

	

	
start_suite(suite)

	

	
end_suite(suite)

	

	
start_test(test)

	

	
end_test(test)

	

	
start_keyword(kw)

	

	
end_keyword(kw)

	

	
output_file(name, path)

	

	
close()

	

	
debug(msg)

	

	
error(msg)

	

	
fail(msg)

	

	
info(msg)

	

	
set_level(level)

	

	
trace(msg)

	

	
warn(msg)

	

	
write(message, level, html=False)

	

robot.output.librarylogger module

Implementation of the public test library logging API.

This is exposed via robot.api.logger. Implementation must reside
here to avoid cyclic imports.

	
robot.output.librarylogger.write(msg, level, html=False)

	

	
robot.output.librarylogger.trace(msg, html=False)

	

	
robot.output.librarylogger.debug(msg, html=False)

	

	
robot.output.librarylogger.info(msg, html=False, also_console=False)

	

	
robot.output.librarylogger.warn(msg, html=False)

	

	
robot.output.librarylogger.error(msg, html=False)

	

	
robot.output.librarylogger.console(msg, newline=True, stream='stdout')

	

robot.output.listenerarguments module

	
class robot.output.listenerarguments.ListenerArguments(arguments)

	Bases: object

	
get_arguments(version)

	

	
classmethod by_method_name(name, arguments)

	

	
class robot.output.listenerarguments.MessageArguments(arguments)

	Bases: robot.output.listenerarguments.ListenerArguments

	
classmethod by_method_name(name, arguments)

	

	
get_arguments(version)

	

	
class robot.output.listenerarguments.StartSuiteArguments(arguments)

	Bases: robot.output.listenerarguments._ListenerArgumentsFromItem

	
classmethod by_method_name(name, arguments)

	

	
get_arguments(version)

	

	
class robot.output.listenerarguments.EndSuiteArguments(arguments)

	Bases: robot.output.listenerarguments.StartSuiteArguments

	
classmethod by_method_name(name, arguments)

	

	
get_arguments(version)

	

	
class robot.output.listenerarguments.StartTestArguments(arguments)

	Bases: robot.output.listenerarguments._ListenerArgumentsFromItem

	
classmethod by_method_name(name, arguments)

	

	
get_arguments(version)

	

	
class robot.output.listenerarguments.EndTestArguments(arguments)

	Bases: robot.output.listenerarguments.StartTestArguments

	
classmethod by_method_name(name, arguments)

	

	
get_arguments(version)

	

	
class robot.output.listenerarguments.StartKeywordArguments(arguments)

	Bases: robot.output.listenerarguments._ListenerArgumentsFromItem

	
classmethod by_method_name(name, arguments)

	

	
get_arguments(version)

	

	
class robot.output.listenerarguments.EndKeywordArguments(arguments)

	Bases: robot.output.listenerarguments.StartKeywordArguments

	
classmethod by_method_name(name, arguments)

	

	
get_arguments(version)

	

robot.output.listenermethods module

	
class robot.output.listenermethods.ListenerMethods(method_name, listeners)

	Bases: object

	
class robot.output.listenermethods.LibraryListenerMethods(method_name)

	Bases: object

	
new_suite_scope()

	

	
discard_suite_scope()

	

	
register(listeners, library)

	

	
unregister(library)

	

	
class robot.output.listenermethods.ListenerMethod(method, listener, library=None)

	Bases: object

	
called = False

	

robot.output.listeners module

	
class robot.output.listeners.Listeners(listeners, log_level='INFO')

	Bases: object

	
set_log_level(level)

	

	
log_message(msg)

	

	
imported(import_type, name, attrs)

	

	
output_file(file_type, path)

	

	
class robot.output.listeners.LibraryListeners(log_level='INFO')

	Bases: object

	
register(listeners, library)

	

	
unregister(library, close=False)

	

	
new_suite_scope()

	

	
discard_suite_scope()

	

	
set_log_level(level)

	

	
log_message(msg)

	

	
imported(import_type, name, attrs)

	

	
output_file(file_type, path)

	

	
class robot.output.listeners.ListenerProxy(listener, method_names, prefix=None)

	Bases: robot.output.loggerhelper.AbstractLoggerProxy

	
classmethod import_listeners(listeners, method_names, prefix=None, raise_on_error=False)

	

robot.output.logger module

	
class robot.output.logger.Logger(register_console_logger=True)

	Bases: robot.output.loggerhelper.AbstractLogger

A global logger proxy to delegating messages to registered loggers.

Whenever something is written to LOGGER in code, all registered loggers are
notified. Messages are also cached and cached messages written to new
loggers when they are registered.

NOTE: This API is likely to change in future versions.

	
start_loggers

	

	
end_loggers

	

	
register_console_logger(type='verbose', width=78, colors='AUTO', markers='AUTO', stdout=None, stderr=None)

	

	
unregister_console_logger()

	

	
register_syslog(path=None, level='INFO')

	

	
register_xml_logger(logger)

	

	
unregister_xml_logger()

	

	
register_listeners(listeners, library_listeners)

	

	
register_logger(*loggers)

	

	
unregister_logger(*loggers)

	

	
disable_message_cache()

	

	
register_error_listener(listener)

	

	
message(msg)

	Messages about what the framework is doing, warnings, errors, …

	
cache_only

	

	
delayed_logging

	

	
log_message(msg)

	Messages about what the framework is doing, warnings, errors, …

	
log_output(output)

	

	
enable_library_import_logging()

	

	
disable_library_import_logging()

	

	
start_suite(suite)

	

	
end_suite(suite)

	

	
start_test(test)

	

	
end_test(test)

	

	
start_keyword(keyword)

	

	
end_keyword(keyword)

	

	
imported(import_type, name, **attrs)

	

	
output_file(file_type, path)

	Finished output, report, log, debug, or xunit file

	
close()

	

	
debug(msg)

	

	
error(msg)

	

	
fail(msg)

	

	
info(msg)

	

	
set_level(level)

	

	
trace(msg)

	

	
warn(msg)

	

	
write(message, level, html=False)

	

	
class robot.output.logger.LoggerProxy(logger, method_names=None, prefix=None)

	Bases: robot.output.loggerhelper.AbstractLoggerProxy

robot.output.loggerhelper module

	
class robot.output.loggerhelper.AbstractLogger(level='TRACE')

	Bases: object

	
set_level(level)

	

	
trace(msg)

	

	
debug(msg)

	

	
info(msg)

	

	
warn(msg)

	

	
fail(msg)

	

	
error(msg)

	

	
write(message, level, html=False)

	

	
message(msg)

	

	
class robot.output.loggerhelper.Message(message, level='INFO', html=False, timestamp=None)

	Bases: robot.model.message.Message

	
message

	

	
resolve_delayed_message()

	

	
copy(**attributes)

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

New in Robot Framework 3.0.1.

	
deepcopy(**attributes)

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

New in Robot Framework 3.0.1.

	
html

	

	
html_message

	Returns the message content as HTML.

	
level

	

	
parent

	

	
timestamp

	

	
visit(visitor)

	Visitor interface entry-point.

	
class robot.output.loggerhelper.IsLogged(level)

	Bases: object

	
set_level(level)

	

	
class robot.output.loggerhelper.AbstractLoggerProxy(logger, method_names=None, prefix=None)

	Bases: object

robot.output.output module

	
class robot.output.output.Output(settings)

	Bases: robot.output.loggerhelper.AbstractLogger

	
register_error_listener(listener)

	

	
close(result)

	

	
start_suite(suite)

	

	
end_suite(suite)

	

	
start_test(test)

	

	
end_test(test)

	

	
start_keyword(kw)

	

	
end_keyword(kw)

	

	
message(msg)

	

	
set_log_level(level)

	

	
debug(msg)

	

	
error(msg)

	

	
fail(msg)

	

	
info(msg)

	

	
set_level(level)

	

	
trace(msg)

	

	
warn(msg)

	

	
write(message, level, html=False)

	

robot.output.pyloggingconf module

	
robot.output.pyloggingconf.robot_handler_enabled(*args, **kwds)

	

	
robot.output.pyloggingconf.set_level(level)

	

	
class robot.output.pyloggingconf.RobotHandler(level=0)

	Bases: logging.Handler

Initializes the instance - basically setting the formatter to None
and the filter list to empty.

	
emit(record)

	Do whatever it takes to actually log the specified logging record.

This version is intended to be implemented by subclasses and so
raises a NotImplementedError.

	
acquire()

	Acquire the I/O thread lock.

	
addFilter(filter)

	Add the specified filter to this handler.

	
close()

	Tidy up any resources used by the handler.

This version removes the handler from an internal map of handlers,
_handlers, which is used for handler lookup by name. Subclasses
should ensure that this gets called from overridden close()
methods.

	
createLock()

	Acquire a thread lock for serializing access to the underlying I/O.

	
filter(record)

	Determine if a record is loggable by consulting all the filters.

The default is to allow the record to be logged; any filter can veto
this and the record is then dropped. Returns a zero value if a record
is to be dropped, else non-zero.

	
flush()

	Ensure all logging output has been flushed.

This version does nothing and is intended to be implemented by
subclasses.

	
format(record)

	Format the specified record.

If a formatter is set, use it. Otherwise, use the default formatter
for the module.

	
get_name()

	

	
handle(record)

	Conditionally emit the specified logging record.

Emission depends on filters which may have been added to the handler.
Wrap the actual emission of the record with acquisition/release of
the I/O thread lock. Returns whether the filter passed the record for
emission.

	
handleError(record)

	Handle errors which occur during an emit() call.

This method should be called from handlers when an exception is
encountered during an emit() call. If raiseExceptions is false,
exceptions get silently ignored. This is what is mostly wanted
for a logging system - most users will not care about errors in
the logging system, they are more interested in application errors.
You could, however, replace this with a custom handler if you wish.
The record which was being processed is passed in to this method.

	
name

	

	
release()

	Release the I/O thread lock.

	
removeFilter(filter)

	Remove the specified filter from this handler.

	
setFormatter(fmt)

	Set the formatter for this handler.

	
setLevel(level)

	Set the logging level of this handler.

	
set_name(name)

	

robot.output.stdoutlogsplitter module

	
class robot.output.stdoutlogsplitter.StdoutLogSplitter(output)

	Bases: object

Splits messages logged through stdout (or stderr) into Message objects

robot.output.xmllogger module

	
class robot.output.xmllogger.XmlLogger(path, log_level='TRACE', rpa=False, generator='Robot')

	Bases: robot.result.visitor.ResultVisitor

	
close()

	

	
set_log_level(level)

	

	
message(msg)

	

	
log_message(msg)

	

	
start_keyword(kw)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_keyword(kw)

	Called when keyword ends. Default implementation does nothing.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
start_statistics(stats)

	

	
end_statistics(stats)

	

	
start_total_statistics(total_stats)

	

	
end_total_statistics(total_stats)

	

	
start_tag_statistics(tag_stats)

	

	
end_tag_statistics(tag_stats)

	

	
start_suite_statistics(tag_stats)

	

	
end_suite_statistics(tag_stats)

	

	
visit_stat(stat)

	

	
start_errors(errors=None)

	

	
end_errors(errors=None)

	

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_result(result)

	

	
end_stat(stat)

	

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_result(result)

	

	
start_stat(stat)

	

	
visit_errors(errors)

	

	
visit_keyword(kw)

	Implements traversing through the keyword and its child keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
visit_message(msg)

	Implements visiting the message.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_result(result)

	

	
visit_statistics(stats)

	

	
visit_suite(suite)

	Implements traversing through the suite and its direct children.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
visit_suite_statistics(stats)

	

	
visit_tag_statistics(stats)

	

	
visit_test(test)

	Implements traversing through the test and its keywords.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
visit_total_statistics(stats)

	

robot.output.console package

	
robot.output.console.ConsoleOutput(type='verbose', width=78, colors='AUTO', markers='AUTO', stdout=None, stderr=None)

	

Submodules

robot.output.console.dotted module

	
class robot.output.console.dotted.DottedOutput(width=78, colors='AUTO', stdout=None, stderr=None)

	Bases: object

	
start_suite(suite)

	

	
end_test(test)

	

	
end_suite(suite)

	

	
message(msg)

	

	
output_file(name, path)

	

	
class robot.output.console.dotted.StatusReporter(stream, width)

	Bases: robot.model.visitor.SuiteVisitor

	
report(suite)

	

	
visit_test(test)

	Implements traversing through the test and its keywords.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_keyword(kw)

	Implements traversing through the keyword and its child keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
visit_message(msg)

	Implements visiting the message.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through the suite and its direct children.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

robot.output.console.highlighting module

	
class robot.output.console.highlighting.HighlightingStream(stream, colors='AUTO')

	Bases: object

	
write(text, flush=True)

	

	
flush()

	

	
highlight(text, status=None, flush=True)

	

	
error(message, level)

	

	
robot.output.console.highlighting.Highlighter(stream)

	

	
class robot.output.console.highlighting.AnsiHighlighter(stream)

	Bases: object

	
green()

	

	
red()

	

	
yellow()

	

	
reset()

	

	
class robot.output.console.highlighting.NoHighlighting(stream)

	Bases: robot.output.console.highlighting.AnsiHighlighter

	
green()

	

	
red()

	

	
reset()

	

	
yellow()

	

	
class robot.output.console.highlighting.DosHighlighter(stream)

	Bases: object

	
green()

	

	
red()

	

	
yellow()

	

	
reset()

	

robot.output.console.quiet module

	
class robot.output.console.quiet.QuietOutput(colors='AUTO', stderr=None)

	Bases: object

	
message(msg)

	

	
class robot.output.console.quiet.NoOutput

	Bases: object

robot.output.console.verbose module

	
class robot.output.console.verbose.VerboseOutput(width=78, colors='AUTO', markers='AUTO', stdout=None, stderr=None)

	Bases: object

	
start_suite(suite)

	

	
end_suite(suite)

	

	
start_test(test)

	

	
end_test(test)

	

	
start_keyword(kw)

	

	
end_keyword(kw)

	

	
message(msg)

	

	
output_file(name, path)

	

	
class robot.output.console.verbose.VerboseWriter(width=78, colors='AUTO', markers='AUTO', stdout=None, stderr=None)

	Bases: object

	
info(name, doc, start_suite=False)

	

	
suite_separator()

	

	
test_separator()

	

	
status(status, clear=False)

	

	
message(message)

	

	
keyword_marker(status)

	

	
error(message, level, clear=False)

	

	
output(name, path)

	

	
class robot.output.console.verbose.KeywordMarker(highlighter, markers)

	Bases: object

	
mark(status)

	

	
reset_count()

	

robot.parsing package

Module implementing test data parsing.

Exposed API

The publicly exposed parsing entry points are the following:

	get_tokens(),
get_resource_tokens(), and
get_init_tokens() functions for tokenizing data.

	Token class that contains all token types as
class attributes.

	get_model(),
get_resource_model(), and
get_init_model() functions for getting a higher
level model represented as an abstract syntax tree (AST).

Tip

Like with rest of the public API, these functions and classes are
exposed also via the robot.api package. When they are used
by external code, it is recommended they are imported like
from robot.api import get_tokens.

Note

The robot.parsing package has been totally rewritten in
Robot Framework 3.2 and all code using it needs to be updated.
Depending on the use case, it may be possible to instead use the
higher level TestSuiteBuilder()
that has only seen minor configuration changes.

Parsing data to tokens

Data can be parsed to tokens by using
get_tokens(),
get_resource_tokens() or
get_init_tokens() functions depending on does the data
represent a test case (or task) file, a resource file, or a suite
initialization file. In practice the difference between these functions is
what settings and sections are valid.

Typically the data is easier to inspect and modify by using the higher level
model discussed in the next section, but in some cases the token stream can
be enough. Tokens returned by the aforementioned functions are
Token instances and they have the token type, value,
and position easily available as their attributes. Tokens also have useful
string representation used by the example below:

from robot.api import get_tokens

path = 'example.robot'

for token in get_tokens(path):
 print(repr(token))

If the example.robot used by the above example would contain

*** Test Cases ***
Example
 Keyword argument

Second example
 Keyword xxx

*** Keywords ***
Keyword
 [Arguments] ${arg}
 Log ${arg}

then the beginning of the output got when running the earlier code would
look like this:

Token(TESTCASE_HEADER, '*** Test Cases ***', 1, 0)
Token(EOL, '\n', 1, 18)
Token(EOS, '', 1, 19)
Token(TESTCASE_NAME, 'Example', 2, 0)
Token(EOL, '\n', 2, 7)
Token(EOS, '', 2, 8)
Token(SEPARATOR, ' ', 3, 0)
Token(KEYWORD, 'Keyword', 3, 4)
Token(SEPARATOR, ' ', 3, 11)
Token(ARGUMENT, 'argument', 3, 15)
Token(EOL, '\n', 3, 23)
Token(EOS, '', 3, 24)
Token(EOL, '\n', 4, 0)
Token(EOS, '', 4, 1)

The output shows token type, value, line number and column offset. The
EOL tokens denote end of a line and they include the new line character
and possible trailing spaces. The EOS tokens denote end of a logical
statement. Typically a single line forms a statement, but when the ...
syntax is used for continuation, a statement spans multiple lines. In
special cases a single line can also contain multiple statements.

See the documentation of get_tokens() for details
about different ways how to specify the data to be parsed, how to control
should all tokens or only data tokens be returned, and should variables in
keyword arguments and elsewhere be tokenized or not.

Parsing data to model

Data can be parsed to a higher level model by using
get_model(),
get_resource_model(), or
get_init_model() functions depending on the data
type same way as when parsing data to tokens.

The model is represented as an abstract syntax tree (AST) implemented on top
of Python’s standard ast.AST [https://docs.python.org/library/ast.html#ast.AST] class. The ast [https://docs.python.org/library/ast.html] module can also be used
for inspecting and modifying the module. Most importantly, ast.NodeVisitor [https://docs.python.org/library/ast.html#ast.NodeVisitor]
and ast.NodeTransformer [https://docs.python.org/library/ast.html#ast.NodeTransformer] ease traversing the model as explained in the
sections below. The ast.dump() [https://docs.python.org/library/ast.html#ast.dump] function, or the third-party astpretty [https://pypi.org/project/astpretty]
module, can be used for debugging:

import ast
import astpretty # third-party module
from robot.api import get_model

model = get_model('example.robot')
print(ast.dump(model))
print('-' * 72)
astpretty.pprint(model)

Running this code with the example.robot file from the previous
section would produce so much output that it is not included here. If
you are going to work with Robot Framework’s AST, you are recommended to
try this on your own.

The model is build from blocks like
File (the root of the model),
TestCaseSection, and
TestCase
implemented in the blocks module and from statements like
TestCaseSectionHeader,
Documentation, and
KeywordCall
implemented in the statements module.
Both blocks and statements are AST nodes based on ast.AST [https://docs.python.org/library/ast.html#ast.AST].
Blocks can contain other blocks and statements as child nodes whereas
statements have only tokens. These tokens contain the actual data
represented as Token instances.

Inspecting model

The easiest way to inspect what data a model contains is implementing
a visitor based on ast.NodeVisitor [https://docs.python.org/library/ast.html#ast.NodeVisitor] and implementing visit_NodeName
methods as needed. The following example illustrates how to find what tests
a certain test case file contains:

import ast
from robot.api import get_model

class TestNamePrinter(ast.NodeVisitor):

 def visit_File(self, node):
 print(f"File '{node.source}' has following tests:")
 # Must call `generic_visit` to visit also child nodes.
 self.generic_visit(node)

 def visit_TestCaseName(self, node):
 print(f"- {node.name} (on line {node.lineno})")

model = get_model('example.robot')
printer = TestNamePrinter()
printer.visit(model)

When the above code is run using the earlier example.robot, the
output is this:

File 'example.robot' has following tests:
- Example (on line 2)
- Second example (on line 5)

Modifying token values

The model can be modified simply by modifying token values. If changes need
to be saved, that is as easy as calling the save()
method of the root model object. When just modifying token values, it is
possible to still extend ast.NodeVisitor [https://docs.python.org/library/ast.html#ast.NodeVisitor]. The next section discusses
adding or removing nodes and then ast.NodeTransformer [https://docs.python.org/library/ast.html#ast.NodeTransformer] should be used
instead.

Modifications to tokens obviously require finding the tokens to be modified.
The first step is finding statements containing the tokens by implementing
needed visit_StatementName methods. Then the exact token or tokens
can be found using node’s
get_token() or
get_tokens() methods.
If only token values are needed,
get_value() or
get_values() can be used as a shortcut.
First finding statements and then the right tokens is illustrated by
this example that renames keywords:

import ast
from robot.api import get_model, Token

class KeywordRenamer(ast.NodeVisitor):

 def __init__(self, old_name, new_name):
 self.old_name = self.normalize(old_name)
 self.new_name = new_name

 def normalize(self, name):
 return name.lower().replace(' ', '').replace('_', '')

 def visit_KeywordName(self, node):
 # Rename keyword definitions.
 if self.normalize(node.name) == self.old_name:
 token = node.get_token(Token.KEYWORD_NAME)
 token.value = self.new_name

 def visit_KeywordCall(self, node):
 # Rename keyword usages.
 if self.normalize(node.keyword) == self.old_name:
 token = node.get_token(Token.KEYWORD)
 token.value = self.new_name

model = get_model('example.robot')
renamer = KeywordRenamer('Keyword', 'New Name')
renamer.visit(model)
model.save()

If you run the above example using the earlier example.robot, you
can see that the Keyword keyword has been renamed to New Name. Notice
that a real keyword renamer needed to take into account also keywords used
with setups, teardowns and templates.

When token values are changed, column offset of the other tokens on same
line are likely to be wrong. This does not affect saving the model or other
typical usages, but if it is a problem then the caller needs to updated
offsets separately.

Adding and removing nodes

Bigger changes to model are somewhat more complicated than just modifying
existing token values. When doing this kind of changes, ast.NodeTransformer [https://docs.python.org/library/ast.html#ast.NodeTransformer]
needs to be used instead of ast.NodeVisitor [https://docs.python.org/library/ast.html#ast.NodeVisitor] that was used in earlier
examples.

Removing nodes is relative easy and is accomplished by returning None
from visit_NodeName methods. Remember to return the original node,
or possibly a replacement node, from all of these methods when you do not
want a node to be removed.

Adding nodes is unfortunately not supported by the public robot.api
interface and the needed block and statement nodes need to be imported
via the robot.parsing.model package. That package is considered
private and may change in the future. A stable public API can be added,
and functionality related to adding nodes improved in general, if there
are concrete needs for this kind of advanced usage.

The following example demonstrates both removing and adding nodes.
If you run it against the earlier example.robot, you see that
the first test gets a new keyword, the second test is removed, and
settings section with documentation is added.

import ast
from robot.api import get_model, Token
from robot.parsing.model import SettingSection, Statement

class TestModifier(ast.NodeTransformer):

 def visit_TestCase(self, node):
 # The matched `TestCase` node is a block with `header` and `body`
 # attributes. `header` is a statement with familiar `get_token` and
 # `get_value` methods for getting certain tokens or their value.
 name = node.header.get_value(Token.TESTCASE_NAME)
 # Returning `None` drops the node altogether i.e. removes this test.
 if name == 'Second example':
 return None
 # Construct new keyword call statement from tokens.
 new_keyword = Statement.from_tokens([
 Token(Token.SEPARATOR, ' '),
 Token(Token.KEYWORD, 'New Keyword'),
 Token(Token.SEPARATOR, ' '),
 Token(Token.ARGUMENT, 'xxx'),
 Token(Token.EOL, '\n')
])
 # Add the keyword call to test as the second item. `body` is a list.
 node.body.insert(1, new_keyword)
 # No need to call `generic_visit` because we are not modifying child
 # nodes. The node itself must to be returned to avoid dropping it.
 return node

 def visit_File(self, node):
 # Create settings section with documentation.
 setting_header = Statement.from_tokens([
 Token(Token.SETTING_HEADER, '*** Settings ***'),
 Token(Token.EOL, '\n')
])
 documentation = Statement.from_tokens([
 Token(Token.DOCUMENTATION, 'Documentation'),
 Token(Token.SEPARATOR, ' '),
 Token(Token.ARGUMENT, 'This is getting pretty advanced'),
 Token(Token.EOL, '\n'),
 Token(Token.CONTINUATION, '...'),
 Token(Token.SEPARATOR, ' '),
 Token(Token.ARGUMENT, 'and this API definitely could be better.'),
 Token(Token.EOL, '\n')
])
 empty_line = Statement.from_tokens([
 Token(Token.EOL, '\n')
])
 body = [documentation, empty_line]
 settings = SettingSection(setting_header, body)
 # Add settings to the beginning of the file.
 node.sections.insert(0, settings)
 # Must call `generic_visit` to visit also child nodes.
 return self.generic_visit(node)

model = get_model('example.robot')
modifier = TestModifier()
modifier.visit(model)
model.save()

Executing model

It is possible to convert a parsed and possibly modified model into an
executable TestSuite structure by using its
from_model() class method. In this case
the get_model() function should be given the curdir
argument to get possible ${CURDIR} variable resolved correctly.

from robot.api import get_model, TestSuite

model = get_model('example.robot', curdir='/home/robot/example')
modify model as needed
suite = TestSuite.from_model(model)
suite.run()

For more details about executing the created
TestSuite object, see the documentation
of its run() method. Notice also
that if you do not need to modify the parsed model, it is easier to
get the executable suite by using the
from_file_system() class method.

Subpackages

	robot.parsing.lexer package
	Submodules

	robot.parsing.lexer.blocklexers module

	robot.parsing.lexer.context module

	robot.parsing.lexer.lexer module

	robot.parsing.lexer.sections module

	robot.parsing.lexer.settings module

	robot.parsing.lexer.statementlexers module

	robot.parsing.lexer.tokenizer module

	robot.parsing.lexer.tokens module

	robot.parsing.model package
	Submodules

	robot.parsing.model.blocks module

	robot.parsing.model.statements module

	robot.parsing.model.visitor module

	robot.parsing.parser package
	Submodules

	robot.parsing.parser.blockparsers module

	robot.parsing.parser.fileparser module

	robot.parsing.parser.parser module

Submodules

robot.parsing.suitestructure module

	
class robot.parsing.suitestructure.SuiteStructure(source=None, init_file=None, children=None)

	Bases: object

	
is_directory

	

	
visit(visitor)

	

	
class robot.parsing.suitestructure.SuiteStructureBuilder(included_extensions=('robot',), included_suites=None)

	Bases: object

	
ignored_prefixes = ('_', '.')

	

	
ignored_dirs = ('CVS',)

	

	
build(paths)

	

	
class robot.parsing.suitestructure.SuiteStructureVisitor

	Bases: object

	
visit_file(structure)

	

	
visit_directory(structure)

	

	
start_directory(structure)

	

	
end_directory(structure)

	

robot.parsing.lexer package

Submodules

robot.parsing.lexer.blocklexers module

	
class robot.parsing.lexer.blocklexers.BlockLexer(ctx)

	Bases: robot.parsing.lexer.statementlexers.Lexer

	
accepts_more(statement)

	

	
input(statement)

	

	
lexer_for(statement)

	

	
lexer_classes()

	

	
lex()

	

	
handles(statement)

	

	
class robot.parsing.lexer.blocklexers.FileLexer(ctx)

	Bases: robot.parsing.lexer.blocklexers.BlockLexer

	
lex()

	

	
lexer_classes()

	

	
accepts_more(statement)

	

	
handles(statement)

	

	
input(statement)

	

	
lexer_for(statement)

	

	
class robot.parsing.lexer.blocklexers.SectionLexer(ctx)

	Bases: robot.parsing.lexer.blocklexers.BlockLexer

	
accepts_more(statement)

	

	
handles(statement)

	

	
input(statement)

	

	
lex()

	

	
lexer_classes()

	

	
lexer_for(statement)

	

	
class robot.parsing.lexer.blocklexers.SettingSectionLexer(ctx)

	Bases: robot.parsing.lexer.blocklexers.SectionLexer

	
handles(statement)

	

	
lexer_classes()

	

	
accepts_more(statement)

	

	
input(statement)

	

	
lex()

	

	
lexer_for(statement)

	

	
class robot.parsing.lexer.blocklexers.VariableSectionLexer(ctx)

	Bases: robot.parsing.lexer.blocklexers.SectionLexer

	
handles(statement)

	

	
lexer_classes()

	

	
accepts_more(statement)

	

	
input(statement)

	

	
lex()

	

	
lexer_for(statement)

	

	
class robot.parsing.lexer.blocklexers.TestCaseSectionLexer(ctx)

	Bases: robot.parsing.lexer.blocklexers.SectionLexer

	
handles(statement)

	

	
lexer_classes()

	

	
accepts_more(statement)

	

	
input(statement)

	

	
lex()

	

	
lexer_for(statement)

	

	
class robot.parsing.lexer.blocklexers.KeywordSectionLexer(ctx)

	Bases: robot.parsing.lexer.blocklexers.SettingSectionLexer

	
handles(statement)

	

	
lexer_classes()

	

	
accepts_more(statement)

	

	
input(statement)

	

	
lex()

	

	
lexer_for(statement)

	

	
class robot.parsing.lexer.blocklexers.CommentSectionLexer(ctx)

	Bases: robot.parsing.lexer.blocklexers.SectionLexer

	
handles(statement)

	

	
lexer_classes()

	

	
accepts_more(statement)

	

	
input(statement)

	

	
lex()

	

	
lexer_for(statement)

	

	
class robot.parsing.lexer.blocklexers.ImplicitCommentSectionLexer(ctx)

	Bases: robot.parsing.lexer.blocklexers.SectionLexer

	
handles(statement)

	

	
lexer_classes()

	

	
accepts_more(statement)

	

	
input(statement)

	

	
lex()

	

	
lexer_for(statement)

	

	
class robot.parsing.lexer.blocklexers.ErrorSectionLexer(ctx)

	Bases: robot.parsing.lexer.blocklexers.SectionLexer

	
handles(statement)

	

	
lexer_classes()

	

	
accepts_more(statement)

	

	
input(statement)

	

	
lex()

	

	
lexer_for(statement)

	

	
class robot.parsing.lexer.blocklexers.TestOrKeywordLexer(ctx)

	Bases: robot.parsing.lexer.blocklexers.BlockLexer

	
name_type = NotImplemented

	

	
accepts_more(statement)

	

	
input(statement)

	

	
lexer_classes()

	

	
handles(statement)

	

	
lex()

	

	
lexer_for(statement)

	

	
class robot.parsing.lexer.blocklexers.TestCaseLexer(ctx)

	Bases: robot.parsing.lexer.blocklexers.TestOrKeywordLexer

	
name_type = 'TESTCASE_NAME'

	

	
lex()

	

	
accepts_more(statement)

	

	
handles(statement)

	

	
input(statement)

	

	
lexer_classes()

	

	
lexer_for(statement)

	

	
class robot.parsing.lexer.blocklexers.KeywordLexer(ctx)

	Bases: robot.parsing.lexer.blocklexers.TestOrKeywordLexer

	
name_type = 'KEYWORD_NAME'

	

	
accepts_more(statement)

	

	
handles(statement)

	

	
input(statement)

	

	
lex()

	

	
lexer_classes()

	

	
lexer_for(statement)

	

	
class robot.parsing.lexer.blocklexers.ForLoopLexer(ctx)

	Bases: robot.parsing.lexer.blocklexers.BlockLexer

	
handles(statement)

	

	
accepts_more(statement)

	

	
input(statement)

	

	
lexer_classes()

	

	
lex()

	

	
lexer_for(statement)

	

robot.parsing.lexer.context module

	
class robot.parsing.lexer.context.LexingContext(settings=None)

	Bases: object

	
settings_class = None

	

	
lex_setting(statement)

	

	
class robot.parsing.lexer.context.FileContext(settings=None)

	Bases: robot.parsing.lexer.context.LexingContext

	
sections_class = None

	

	
setting_section(statement)

	

	
variable_section(statement)

	

	
test_case_section(statement)

	

	
keyword_section(statement)

	

	
comment_section(statement)

	

	
keyword_context()

	

	
lex_invalid_section(statement)

	

	
lex_setting(statement)

	

	
settings_class = None

	

	
class robot.parsing.lexer.context.TestCaseFileContext(settings=None)

	Bases: robot.parsing.lexer.context.FileContext

	
sections_class

	alias of robot.parsing.lexer.sections.TestCaseFileSections

	
settings_class

	alias of robot.parsing.lexer.settings.TestCaseFileSettings

	
test_case_context()

	

	
comment_section(statement)

	

	
keyword_context()

	

	
keyword_section(statement)

	

	
lex_invalid_section(statement)

	

	
lex_setting(statement)

	

	
setting_section(statement)

	

	
test_case_section(statement)

	

	
variable_section(statement)

	

	
class robot.parsing.lexer.context.ResourceFileContext(settings=None)

	Bases: robot.parsing.lexer.context.FileContext

	
sections_class

	alias of robot.parsing.lexer.sections.ResourceFileSections

	
settings_class

	alias of robot.parsing.lexer.settings.ResourceFileSettings

	
comment_section(statement)

	

	
keyword_context()

	

	
keyword_section(statement)

	

	
lex_invalid_section(statement)

	

	
lex_setting(statement)

	

	
setting_section(statement)

	

	
test_case_section(statement)

	

	
variable_section(statement)

	

	
class robot.parsing.lexer.context.InitFileContext(settings=None)

	Bases: robot.parsing.lexer.context.FileContext

	
sections_class

	alias of robot.parsing.lexer.sections.InitFileSections

	
settings_class

	alias of robot.parsing.lexer.settings.InitFileSettings

	
comment_section(statement)

	

	
keyword_context()

	

	
keyword_section(statement)

	

	
lex_invalid_section(statement)

	

	
lex_setting(statement)

	

	
setting_section(statement)

	

	
test_case_section(statement)

	

	
variable_section(statement)

	

	
class robot.parsing.lexer.context.TestCaseContext(settings=None)

	Bases: robot.parsing.lexer.context.LexingContext

	
template_set

	

	
lex_setting(statement)

	

	
settings_class = None

	

	
class robot.parsing.lexer.context.KeywordContext(settings=None)

	Bases: robot.parsing.lexer.context.LexingContext

	
template_set

	

	
lex_setting(statement)

	

	
settings_class = None

	

robot.parsing.lexer.lexer module

	
robot.parsing.lexer.lexer.get_tokens(source, data_only=False, tokenize_variables=False)

	Parses the given source to tokens.

	Parameters

	
	source – The source where to read the data. Can be a path to
a source file as a string or as pathlib.Path object, an already
opened file object, or Unicode text containing the date directly.
Source files must be UTF-8 encoded.

	data_only – When False (default), returns all tokens. When set
to True, omits separators, comments, continuation markers, and
other non-data tokens.

	tokenize_variables – When True, possible variables in keyword
arguments and elsewhere are tokenized. See the
tokenize_variables()
method for details.

Returns a generator that yields Token
instances.

	
robot.parsing.lexer.lexer.get_resource_tokens(source, data_only=False, tokenize_variables=False)

	Parses the given source to resource file tokens.

Otherwise same as get_tokens() but the source is considered to be
a resource file. This affects, for example, what settings are valid.

	
robot.parsing.lexer.lexer.get_init_tokens(source, data_only=False, tokenize_variables=False)

	Parses the given source to init file tokens.

Otherwise same as get_tokens() but the source is considered to be
a suite initialization file. This affects, for example, what settings are
valid.

	
class robot.parsing.lexer.lexer.Lexer(ctx, data_only=False, tokenize_variables=False)

	Bases: object

	
input(source)

	

	
get_tokens()

	

robot.parsing.lexer.sections module

	
class robot.parsing.lexer.sections.Sections

	Bases: object

	
setting_markers = ('Settings', 'Setting')

	

	
variable_markers = ('Variables', 'Variable')

	

	
test_case_markers = ('Test Cases', 'Test Case', 'Tasks', 'Task')

	

	
keyword_markers = ('Keywords', 'Keyword')

	

	
comment_markers = ('Comments', 'Comment')

	

	
setting(statement)

	

	
variable(statement)

	

	
test_case(statement)

	

	
keyword(statement)

	

	
comment(statement)

	

	
lex_invalid(statement)

	

	
class robot.parsing.lexer.sections.TestCaseFileSections

	Bases: robot.parsing.lexer.sections.Sections

	
test_case(statement)

	

	
comment(statement)

	

	
comment_markers = ('Comments', 'Comment')

	

	
keyword(statement)

	

	
keyword_markers = ('Keywords', 'Keyword')

	

	
lex_invalid(statement)

	

	
setting(statement)

	

	
setting_markers = ('Settings', 'Setting')

	

	
test_case_markers = ('Test Cases', 'Test Case', 'Tasks', 'Task')

	

	
variable(statement)

	

	
variable_markers = ('Variables', 'Variable')

	

	
class robot.parsing.lexer.sections.ResourceFileSections

	Bases: robot.parsing.lexer.sections.Sections

	
comment(statement)

	

	
comment_markers = ('Comments', 'Comment')

	

	
keyword(statement)

	

	
keyword_markers = ('Keywords', 'Keyword')

	

	
lex_invalid(statement)

	

	
setting(statement)

	

	
setting_markers = ('Settings', 'Setting')

	

	
test_case(statement)

	

	
test_case_markers = ('Test Cases', 'Test Case', 'Tasks', 'Task')

	

	
variable(statement)

	

	
variable_markers = ('Variables', 'Variable')

	

	
class robot.parsing.lexer.sections.InitFileSections

	Bases: robot.parsing.lexer.sections.Sections

	
comment(statement)

	

	
comment_markers = ('Comments', 'Comment')

	

	
keyword(statement)

	

	
keyword_markers = ('Keywords', 'Keyword')

	

	
lex_invalid(statement)

	

	
setting(statement)

	

	
setting_markers = ('Settings', 'Setting')

	

	
test_case(statement)

	

	
test_case_markers = ('Test Cases', 'Test Case', 'Tasks', 'Task')

	

	
variable(statement)

	

	
variable_markers = ('Variables', 'Variable')

	

robot.parsing.lexer.settings module

	
class robot.parsing.lexer.settings.Settings

	Bases: object

	
names = ()

	

	
aliases = {}

	

	
multi_use = ('Metadata', 'Library', 'Resource', 'Variables')

	

	
single_value = ('Resource', 'Test Timeout', 'Test Template', 'Timeout', 'Template')

	

	
name_and_arguments = ('Metadata', 'Suite Setup', 'Suite Teardown', 'Test Setup', 'Test Teardown', 'Test Template', 'Setup', 'Teardown', 'Template', 'Resource', 'Variables')

	

	
name_arguments_and_with_name = ('Library',)

	

	
lex(statement)

	

	
class robot.parsing.lexer.settings.TestCaseFileSettings

	Bases: robot.parsing.lexer.settings.Settings

	
names = ('Documentation', 'Metadata', 'Suite Setup', 'Suite Teardown', 'Test Setup', 'Test Teardown', 'Test Template', 'Test Timeout', 'Force Tags', 'Default Tags', 'Library', 'Resource', 'Variables')

	

	
aliases = {'Task Setup': 'Test Setup', 'Task Teardown': 'Test Teardown', 'Task Template': 'Test Template', 'Task Timeout': 'Test Timeout'}

	

	
lex(statement)

	

	
multi_use = ('Metadata', 'Library', 'Resource', 'Variables')

	

	
name_and_arguments = ('Metadata', 'Suite Setup', 'Suite Teardown', 'Test Setup', 'Test Teardown', 'Test Template', 'Setup', 'Teardown', 'Template', 'Resource', 'Variables')

	

	
name_arguments_and_with_name = ('Library',)

	

	
single_value = ('Resource', 'Test Timeout', 'Test Template', 'Timeout', 'Template')

	

	
class robot.parsing.lexer.settings.InitFileSettings

	Bases: robot.parsing.lexer.settings.Settings

	
names = ('Documentation', 'Metadata', 'Suite Setup', 'Suite Teardown', 'Test Setup', 'Test Teardown', 'Test Timeout', 'Force Tags', 'Library', 'Resource', 'Variables')

	

	
aliases = {}

	

	
lex(statement)

	

	
multi_use = ('Metadata', 'Library', 'Resource', 'Variables')

	

	
name_and_arguments = ('Metadata', 'Suite Setup', 'Suite Teardown', 'Test Setup', 'Test Teardown', 'Test Template', 'Setup', 'Teardown', 'Template', 'Resource', 'Variables')

	

	
name_arguments_and_with_name = ('Library',)

	

	
single_value = ('Resource', 'Test Timeout', 'Test Template', 'Timeout', 'Template')

	

	
class robot.parsing.lexer.settings.ResourceFileSettings

	Bases: robot.parsing.lexer.settings.Settings

	
names = ('Documentation', 'Library', 'Resource', 'Variables')

	

	
aliases = {}

	

	
lex(statement)

	

	
multi_use = ('Metadata', 'Library', 'Resource', 'Variables')

	

	
name_and_arguments = ('Metadata', 'Suite Setup', 'Suite Teardown', 'Test Setup', 'Test Teardown', 'Test Template', 'Setup', 'Teardown', 'Template', 'Resource', 'Variables')

	

	
name_arguments_and_with_name = ('Library',)

	

	
single_value = ('Resource', 'Test Timeout', 'Test Template', 'Timeout', 'Template')

	

	
class robot.parsing.lexer.settings.TestCaseSettings(parent)

	Bases: robot.parsing.lexer.settings.Settings

	
names = ('Documentation', 'Tags', 'Setup', 'Teardown', 'Template', 'Timeout')

	

	
template_set

	

	
aliases = {}

	

	
lex(statement)

	

	
multi_use = ('Metadata', 'Library', 'Resource', 'Variables')

	

	
name_and_arguments = ('Metadata', 'Suite Setup', 'Suite Teardown', 'Test Setup', 'Test Teardown', 'Test Template', 'Setup', 'Teardown', 'Template', 'Resource', 'Variables')

	

	
name_arguments_and_with_name = ('Library',)

	

	
single_value = ('Resource', 'Test Timeout', 'Test Template', 'Timeout', 'Template')

	

	
class robot.parsing.lexer.settings.KeywordSettings

	Bases: robot.parsing.lexer.settings.Settings

	
names = ('Documentation', 'Arguments', 'Teardown', 'Timeout', 'Tags', 'Return')

	

	
aliases = {}

	

	
lex(statement)

	

	
multi_use = ('Metadata', 'Library', 'Resource', 'Variables')

	

	
name_and_arguments = ('Metadata', 'Suite Setup', 'Suite Teardown', 'Test Setup', 'Test Teardown', 'Test Template', 'Setup', 'Teardown', 'Template', 'Resource', 'Variables')

	

	
name_arguments_and_with_name = ('Library',)

	

	
single_value = ('Resource', 'Test Timeout', 'Test Template', 'Timeout', 'Template')

	

robot.parsing.lexer.statementlexers module

	
class robot.parsing.lexer.statementlexers.Lexer(ctx)

	Bases: object

Base class for lexers.

	
handles(statement)

	

	
accepts_more(statement)

	

	
input(statement)

	

	
lex()

	

	
class robot.parsing.lexer.statementlexers.StatementLexer(ctx)

	Bases: robot.parsing.lexer.statementlexers.Lexer

	
token_type = None

	

	
accepts_more(statement)

	

	
input(statement)

	

	
lex()

	

	
handles(statement)

	

	
class robot.parsing.lexer.statementlexers.SectionHeaderLexer(ctx)

	Bases: robot.parsing.lexer.statementlexers.StatementLexer

	
handles(statement)

	

	
accepts_more(statement)

	

	
input(statement)

	

	
lex()

	

	
token_type = None

	

	
class robot.parsing.lexer.statementlexers.SettingSectionHeaderLexer(ctx)

	Bases: robot.parsing.lexer.statementlexers.SectionHeaderLexer

	
token_type = 'SETTING_HEADER'

	

	
accepts_more(statement)

	

	
handles(statement)

	

	
input(statement)

	

	
lex()

	

	
class robot.parsing.lexer.statementlexers.VariableSectionHeaderLexer(ctx)

	Bases: robot.parsing.lexer.statementlexers.SectionHeaderLexer

	
token_type = 'VARIABLE_HEADER'

	

	
accepts_more(statement)

	

	
handles(statement)

	

	
input(statement)

	

	
lex()

	

	
class robot.parsing.lexer.statementlexers.TestCaseSectionHeaderLexer(ctx)

	Bases: robot.parsing.lexer.statementlexers.SectionHeaderLexer

	
token_type = 'TESTCASE_HEADER'

	

	
accepts_more(statement)

	

	
handles(statement)

	

	
input(statement)

	

	
lex()

	

	
class robot.parsing.lexer.statementlexers.KeywordSectionHeaderLexer(ctx)

	Bases: robot.parsing.lexer.statementlexers.SectionHeaderLexer

	
token_type = 'KEYWORD_HEADER'

	

	
accepts_more(statement)

	

	
handles(statement)

	

	
input(statement)

	

	
lex()

	

	
class robot.parsing.lexer.statementlexers.CommentSectionHeaderLexer(ctx)

	Bases: robot.parsing.lexer.statementlexers.SectionHeaderLexer

	
token_type = 'COMMENT_HEADER'

	

	
accepts_more(statement)

	

	
handles(statement)

	

	
input(statement)

	

	
lex()

	

	
class robot.parsing.lexer.statementlexers.ErrorSectionHeaderLexer(ctx)

	Bases: robot.parsing.lexer.statementlexers.SectionHeaderLexer

	
lex()

	

	
accepts_more(statement)

	

	
handles(statement)

	

	
input(statement)

	

	
token_type = None

	

	
class robot.parsing.lexer.statementlexers.CommentLexer(ctx)

	Bases: robot.parsing.lexer.statementlexers.StatementLexer

	
token_type = 'COMMENT'

	

	
accepts_more(statement)

	

	
handles(statement)

	

	
input(statement)

	

	
lex()

	

	
class robot.parsing.lexer.statementlexers.SettingLexer(ctx)

	Bases: robot.parsing.lexer.statementlexers.StatementLexer

	
lex()

	

	
accepts_more(statement)

	

	
handles(statement)

	

	
input(statement)

	

	
token_type = None

	

	
class robot.parsing.lexer.statementlexers.TestOrKeywordSettingLexer(ctx)

	Bases: robot.parsing.lexer.statementlexers.SettingLexer

	
handles(statement)

	

	
accepts_more(statement)

	

	
input(statement)

	

	
lex()

	

	
token_type = None

	

	
class robot.parsing.lexer.statementlexers.VariableLexer(ctx)

	Bases: robot.parsing.lexer.statementlexers.StatementLexer

	
lex()

	

	
accepts_more(statement)

	

	
handles(statement)

	

	
input(statement)

	

	
token_type = None

	

	
class robot.parsing.lexer.statementlexers.KeywordCallLexer(ctx)

	Bases: robot.parsing.lexer.statementlexers.StatementLexer

	
lex()

	

	
accepts_more(statement)

	

	
handles(statement)

	

	
input(statement)

	

	
token_type = None

	

	
class robot.parsing.lexer.statementlexers.ForLoopHeaderLexer(ctx)

	Bases: robot.parsing.lexer.statementlexers.StatementLexer

	
separators = ('IN', 'IN RANGE', 'IN ENUMERATE', 'IN ZIP')

	

	
handles(statement)

	

	
lex()

	

	
accepts_more(statement)

	

	
input(statement)

	

	
token_type = None

	

	
class robot.parsing.lexer.statementlexers.EndLexer(ctx)

	Bases: robot.parsing.lexer.statementlexers.StatementLexer

	
handles(statement)

	

	
lex()

	

	
accepts_more(statement)

	

	
input(statement)

	

	
token_type = None

	

robot.parsing.lexer.tokenizer module

	
class robot.parsing.lexer.tokenizer.Tokenizer

	Bases: object

	
tokenize(data, data_only=False)

	

robot.parsing.lexer.tokens module

	
class robot.parsing.lexer.tokens.Token(type=None, value='', lineno=-1, col_offset=-1, error=None)

	Bases: object

Token representing piece of Robot Framework data.

Each token has type, value, line number, column offset and end column
offset in type, value, lineno, col_offset
and end_col_offset attributes, respectively. Tokens representing
error also have their error message in error attribute.

Token types are declared as class attributes.

	
SETTING_HEADER = 'SETTING_HEADER'

	

	
VARIABLE_HEADER = 'VARIABLE_HEADER'

	

	
TESTCASE_HEADER = 'TESTCASE_HEADER'

	

	
KEYWORD_HEADER = 'KEYWORD_HEADER'

	

	
COMMENT_HEADER = 'COMMENT_HEADER'

	

	
TESTCASE_NAME = 'TESTCASE_NAME'

	

	
KEYWORD_NAME = 'KEYWORD_NAME'

	

	
DOCUMENTATION = 'DOCUMENTATION'

	

	
SUITE_SETUP = 'SUITE_SETUP'

	

	
SUITE_TEARDOWN = 'SUITE_TEARDOWN'

	

	
METADATA = 'METADATA'

	

	
TEST_SETUP = 'TEST_SETUP'

	

	
TEST_TEARDOWN = 'TEST_TEARDOWN'

	

	
TEST_TEMPLATE = 'TEST_TEMPLATE'

	

	
TEST_TIMEOUT = 'TEST_TIMEOUT'

	

	
FORCE_TAGS = 'FORCE_TAGS'

	

	
DEFAULT_TAGS = 'DEFAULT_TAGS'

	

	
LIBRARY = 'LIBRARY'

	

	
RESOURCE = 'RESOURCE'

	

	
VARIABLES = 'VARIABLES'

	

	
SETUP = 'SETUP'

	

	
TEARDOWN = 'TEARDOWN'

	

	
TEMPLATE = 'TEMPLATE'

	

	
TIMEOUT = 'TIMEOUT'

	

	
TAGS = 'TAGS'

	

	
ARGUMENTS = 'ARGUMENTS'

	

	
RETURN = 'RETURN'

	

	
NAME = 'NAME'

	

	
VARIABLE = 'VARIABLE'

	

	
ARGUMENT = 'ARGUMENT'

	

	
ASSIGN = 'ASSIGN'

	

	
KEYWORD = 'KEYWORD'

	

	
WITH_NAME = 'WITH_NAME'

	

	
FOR = 'FOR'

	

	
FOR_SEPARATOR = 'FOR_SEPARATOR'

	

	
OLD_FOR_INDENT = 'OLD_FOR_INDENT'

	

	
END = 'END'

	

	
SEPARATOR = 'SEPARATOR'

	

	
COMMENT = 'COMMENT'

	

	
CONTINUATION = 'CONTINUATION'

	

	
EOL = 'EOL'

	

	
EOS = 'EOS'

	

	
ERROR = 'ERROR'

	

	
FATAL_ERROR = 'FATAL_ERROR'

	

	
NON_DATA_TOKENS = ('SEPARATOR', 'COMMENT', 'CONTINUATION', 'EOL', 'EOS')

	

	
SETTING_TOKENS = ('DOCUMENTATION', 'SUITE_SETUP', 'SUITE_TEARDOWN', 'METADATA', 'TEST_SETUP', 'TEST_TEARDOWN', 'TEST_TEMPLATE', 'TEST_TIMEOUT', 'FORCE_TAGS', 'DEFAULT_TAGS', 'LIBRARY', 'RESOURCE', 'VARIABLES', 'SETUP', 'TEARDOWN', 'TEMPLATE', 'TIMEOUT', 'TAGS', 'ARGUMENTS', 'RETURN')

	

	
HEADER_TOKENS = ('SETTING_HEADER', 'VARIABLE_HEADER', 'TESTCASE_HEADER', 'KEYWORD_HEADER', 'COMMENT_HEADER')

	

	
ALLOW_VARIABLES = ('NAME', 'ARGUMENT', 'TESTCASE_NAME', 'KEYWORD_NAME')

	

	
type

	

	
value

	

	
lineno

	

	
col_offset

	

	
error

	

	
end_col_offset

	

	
set_error(error, fatal=False)

	

	
tokenize_variables()

	Tokenizes possible variables in token value.

Yields the token itself if the token does not allow variables (see
Token.ALLOW_VARIABLES) or its value does not contain
variables. Otherwise yields variable tokens as well as tokens
before, after, or between variables so that they have the same
type as the original token.

	
class robot.parsing.lexer.tokens.EOS(lineno=-1, col_offset=-1)

	Bases: robot.parsing.lexer.tokens.Token

Token representing end of statement.

	
classmethod from_token(token)

	

	
ALLOW_VARIABLES = ('NAME', 'ARGUMENT', 'TESTCASE_NAME', 'KEYWORD_NAME')

	

	
ARGUMENT = 'ARGUMENT'

	

	
ARGUMENTS = 'ARGUMENTS'

	

	
ASSIGN = 'ASSIGN'

	

	
COMMENT = 'COMMENT'

	

	
COMMENT_HEADER = 'COMMENT_HEADER'

	

	
CONTINUATION = 'CONTINUATION'

	

	
DEFAULT_TAGS = 'DEFAULT_TAGS'

	

	
DOCUMENTATION = 'DOCUMENTATION'

	

	
END = 'END'

	

	
EOL = 'EOL'

	

	
EOS = 'EOS'

	

	
ERROR = 'ERROR'

	

	
FATAL_ERROR = 'FATAL_ERROR'

	

	
FOR = 'FOR'

	

	
FORCE_TAGS = 'FORCE_TAGS'

	

	
FOR_SEPARATOR = 'FOR_SEPARATOR'

	

	
HEADER_TOKENS = ('SETTING_HEADER', 'VARIABLE_HEADER', 'TESTCASE_HEADER', 'KEYWORD_HEADER', 'COMMENT_HEADER')

	

	
KEYWORD = 'KEYWORD'

	

	
KEYWORD_HEADER = 'KEYWORD_HEADER'

	

	
KEYWORD_NAME = 'KEYWORD_NAME'

	

	
LIBRARY = 'LIBRARY'

	

	
METADATA = 'METADATA'

	

	
NAME = 'NAME'

	

	
NON_DATA_TOKENS = ('SEPARATOR', 'COMMENT', 'CONTINUATION', 'EOL', 'EOS')

	

	
OLD_FOR_INDENT = 'OLD_FOR_INDENT'

	

	
RESOURCE = 'RESOURCE'

	

	
RETURN = 'RETURN'

	

	
SEPARATOR = 'SEPARATOR'

	

	
SETTING_HEADER = 'SETTING_HEADER'

	

	
SETTING_TOKENS = ('DOCUMENTATION', 'SUITE_SETUP', 'SUITE_TEARDOWN', 'METADATA', 'TEST_SETUP', 'TEST_TEARDOWN', 'TEST_TEMPLATE', 'TEST_TIMEOUT', 'FORCE_TAGS', 'DEFAULT_TAGS', 'LIBRARY', 'RESOURCE', 'VARIABLES', 'SETUP', 'TEARDOWN', 'TEMPLATE', 'TIMEOUT', 'TAGS', 'ARGUMENTS', 'RETURN')

	

	
SETUP = 'SETUP'

	

	
SUITE_SETUP = 'SUITE_SETUP'

	

	
SUITE_TEARDOWN = 'SUITE_TEARDOWN'

	

	
TAGS = 'TAGS'

	

	
TEARDOWN = 'TEARDOWN'

	

	
TEMPLATE = 'TEMPLATE'

	

	
TESTCASE_HEADER = 'TESTCASE_HEADER'

	

	
TESTCASE_NAME = 'TESTCASE_NAME'

	

	
TEST_SETUP = 'TEST_SETUP'

	

	
TEST_TEARDOWN = 'TEST_TEARDOWN'

	

	
TEST_TEMPLATE = 'TEST_TEMPLATE'

	

	
TEST_TIMEOUT = 'TEST_TIMEOUT'

	

	
TIMEOUT = 'TIMEOUT'

	

	
VARIABLE = 'VARIABLE'

	

	
VARIABLES = 'VARIABLES'

	

	
VARIABLE_HEADER = 'VARIABLE_HEADER'

	

	
WITH_NAME = 'WITH_NAME'

	

	
col_offset

	

	
end_col_offset

	

	
error

	

	
lineno

	

	
set_error(error, fatal=False)

	

	
tokenize_variables()

	Tokenizes possible variables in token value.

Yields the token itself if the token does not allow variables (see
Token.ALLOW_VARIABLES) or its value does not contain
variables. Otherwise yields variable tokens as well as tokens
before, after, or between variables so that they have the same
type as the original token.

	
type

	

	
value

	

robot.parsing.model package

Submodules

robot.parsing.model.blocks module

	
class robot.parsing.model.blocks.Block

	Bases: _ast.AST

	
lineno

	

	
col_offset

	

	
end_lineno

	

	
end_col_offset

	

	
class robot.parsing.model.blocks.File(sections=None, source=None)

	Bases: robot.parsing.model.blocks.Block

	
save(output=None)

	Save model to the given output or to the original source file.

The output can be a path to a file or an already opened file
object. If output is not given, the original source file will
be overwritten.

	
col_offset

	

	
end_col_offset

	

	
end_lineno

	

	
lineno

	

	
class robot.parsing.model.blocks.Section(header=None, body=None)

	Bases: robot.parsing.model.blocks.Block

	
col_offset

	

	
end_col_offset

	

	
end_lineno

	

	
lineno

	

	
class robot.parsing.model.blocks.SettingSection(header=None, body=None)

	Bases: robot.parsing.model.blocks.Section

	
col_offset

	

	
end_col_offset

	

	
end_lineno

	

	
lineno

	

	
class robot.parsing.model.blocks.VariableSection(header=None, body=None)

	Bases: robot.parsing.model.blocks.Section

	
col_offset

	

	
end_col_offset

	

	
end_lineno

	

	
lineno

	

	
class robot.parsing.model.blocks.TestCaseSection(header=None, body=None)

	Bases: robot.parsing.model.blocks.Section

	
tasks

	

	
col_offset

	

	
end_col_offset

	

	
end_lineno

	

	
lineno

	

	
class robot.parsing.model.blocks.KeywordSection(header=None, body=None)

	Bases: robot.parsing.model.blocks.Section

	
col_offset

	

	
end_col_offset

	

	
end_lineno

	

	
lineno

	

	
class robot.parsing.model.blocks.CommentSection(header=None, body=None)

	Bases: robot.parsing.model.blocks.Section

	
col_offset

	

	
end_col_offset

	

	
end_lineno

	

	
lineno

	

	
class robot.parsing.model.blocks.TestCase(header, body=None)

	Bases: robot.parsing.model.blocks.Block

	
name

	

	
col_offset

	

	
end_col_offset

	

	
end_lineno

	

	
lineno

	

	
class robot.parsing.model.blocks.Keyword(header, body=None)

	Bases: robot.parsing.model.blocks.Block

	
name

	

	
col_offset

	

	
end_col_offset

	

	
end_lineno

	

	
lineno

	

	
class robot.parsing.model.blocks.ForLoop(header, body=None, end=None)

	Bases: robot.parsing.model.blocks.Block

	
variables

	

	
values

	

	
flavor

	

	
col_offset

	

	
end_col_offset

	

	
end_lineno

	

	
lineno

	

	
class robot.parsing.model.blocks.ModelWriter(output)

	Bases: robot.parsing.model.visitor.ModelVisitor

	
write(model)

	

	
visit_Statement(statement)

	

	
generic_visit(node)

	Called if no explicit visitor function exists for a node.

	
visit(node)

	Visit a node.

	
class robot.parsing.model.blocks.FirstStatementFinder

	Bases: robot.parsing.model.visitor.ModelVisitor

	
classmethod find_from(model)

	

	
visit_Statement(statement)

	

	
generic_visit(node)

	Called if no explicit visitor function exists for a node.

	
visit(node)

	Visit a node.

	
class robot.parsing.model.blocks.LastStatementFinder

	Bases: robot.parsing.model.visitor.ModelVisitor

	
classmethod find_from(model)

	

	
generic_visit(node)

	Called if no explicit visitor function exists for a node.

	
visit(node)

	Visit a node.

	
visit_Statement(statement)

	

robot.parsing.model.statements module

	
class robot.parsing.model.statements.Statement(tokens)

	Bases: _ast.AST

	
type = None

	

	
lineno

	

	
col_offset

	

	
end_lineno

	

	
end_col_offset

	

	
classmethod register(subcls)

	

	
classmethod from_tokens(tokens)

	

	
data_tokens

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lines

	

	
error

	

	
class robot.parsing.model.statements.DocumentationOrMetadata(tokens)

	Bases: robot.parsing.model.statements.Statement

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
type = None

	

	
class robot.parsing.model.statements.SingleValue(tokens)

	Bases: robot.parsing.model.statements.Statement

	
value

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
type = None

	

	
class robot.parsing.model.statements.MultiValue(tokens)

	Bases: robot.parsing.model.statements.Statement

	
values

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
type = None

	

	
class robot.parsing.model.statements.Fixture(tokens)

	Bases: robot.parsing.model.statements.Statement

	
name

	

	
args

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
type = None

	

	
class robot.parsing.model.statements.SectionHeader(tokens)

	Bases: robot.parsing.model.statements.Statement

	
name

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
type = None

	

	
class robot.parsing.model.statements.SettingSectionHeader(tokens)

	Bases: robot.parsing.model.statements.SectionHeader

	
type = 'SETTING_HEADER'

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
name

	

	
classmethod register(subcls)

	

	
class robot.parsing.model.statements.VariableSectionHeader(tokens)

	Bases: robot.parsing.model.statements.SectionHeader

	
type = 'VARIABLE_HEADER'

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
name

	

	
classmethod register(subcls)

	

	
class robot.parsing.model.statements.TestCaseSectionHeader(tokens)

	Bases: robot.parsing.model.statements.SectionHeader

	
type = 'TESTCASE_HEADER'

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
name

	

	
classmethod register(subcls)

	

	
class robot.parsing.model.statements.KeywordSectionHeader(tokens)

	Bases: robot.parsing.model.statements.SectionHeader

	
type = 'KEYWORD_HEADER'

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
name

	

	
classmethod register(subcls)

	

	
class robot.parsing.model.statements.CommentSectionHeader(tokens)

	Bases: robot.parsing.model.statements.SectionHeader

	
type = 'COMMENT_HEADER'

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
name

	

	
classmethod register(subcls)

	

	
class robot.parsing.model.statements.LibraryImport(tokens)

	Bases: robot.parsing.model.statements.Statement

	
type = 'LIBRARY'

	

	
name

	

	
args

	

	
alias

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
class robot.parsing.model.statements.ResourceImport(tokens)

	Bases: robot.parsing.model.statements.Statement

	
type = 'RESOURCE'

	

	
name

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
class robot.parsing.model.statements.VariablesImport(tokens)

	Bases: robot.parsing.model.statements.Statement

	
type = 'VARIABLES'

	

	
name

	

	
args

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
class robot.parsing.model.statements.Documentation(tokens)

	Bases: robot.parsing.model.statements.DocumentationOrMetadata

	
type = 'DOCUMENTATION'

	

	
value

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
class robot.parsing.model.statements.Metadata(tokens)

	Bases: robot.parsing.model.statements.DocumentationOrMetadata

	
type = 'METADATA'

	

	
name

	

	
value

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
class robot.parsing.model.statements.ForceTags(tokens)

	Bases: robot.parsing.model.statements.MultiValue

	
type = 'FORCE_TAGS'

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
values

	

	
class robot.parsing.model.statements.DefaultTags(tokens)

	Bases: robot.parsing.model.statements.MultiValue

	
type = 'DEFAULT_TAGS'

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
values

	

	
class robot.parsing.model.statements.SuiteSetup(tokens)

	Bases: robot.parsing.model.statements.Fixture

	
type = 'SUITE_SETUP'

	

	
args

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
name

	

	
classmethod register(subcls)

	

	
class robot.parsing.model.statements.SuiteTeardown(tokens)

	Bases: robot.parsing.model.statements.Fixture

	
type = 'SUITE_TEARDOWN'

	

	
args

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
name

	

	
classmethod register(subcls)

	

	
class robot.parsing.model.statements.TestSetup(tokens)

	Bases: robot.parsing.model.statements.Fixture

	
type = 'TEST_SETUP'

	

	
args

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
name

	

	
classmethod register(subcls)

	

	
class robot.parsing.model.statements.TestTeardown(tokens)

	Bases: robot.parsing.model.statements.Fixture

	
type = 'TEST_TEARDOWN'

	

	
args

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
name

	

	
classmethod register(subcls)

	

	
class robot.parsing.model.statements.TestTemplate(tokens)

	Bases: robot.parsing.model.statements.SingleValue

	
type = 'TEST_TEMPLATE'

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
value

	

	
class robot.parsing.model.statements.TestTimeout(tokens)

	Bases: robot.parsing.model.statements.SingleValue

	
type = 'TEST_TIMEOUT'

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
value

	

	
class robot.parsing.model.statements.Variable(tokens)

	Bases: robot.parsing.model.statements.Statement

	
type = 'VARIABLE'

	

	
name

	

	
value

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
class robot.parsing.model.statements.TestCaseName(tokens)

	Bases: robot.parsing.model.statements.Statement

	
type = 'TESTCASE_NAME'

	

	
name

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
class robot.parsing.model.statements.KeywordName(tokens)

	Bases: robot.parsing.model.statements.Statement

	
type = 'KEYWORD_NAME'

	

	
name

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
class robot.parsing.model.statements.Setup(tokens)

	Bases: robot.parsing.model.statements.Fixture

	
type = 'SETUP'

	

	
args

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
name

	

	
classmethod register(subcls)

	

	
class robot.parsing.model.statements.Teardown(tokens)

	Bases: robot.parsing.model.statements.Fixture

	
type = 'TEARDOWN'

	

	
args

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
name

	

	
classmethod register(subcls)

	

	
class robot.parsing.model.statements.Tags(tokens)

	Bases: robot.parsing.model.statements.MultiValue

	
type = 'TAGS'

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
values

	

	
class robot.parsing.model.statements.Template(tokens)

	Bases: robot.parsing.model.statements.SingleValue

	
type = 'TEMPLATE'

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
value

	

	
class robot.parsing.model.statements.Timeout(tokens)

	Bases: robot.parsing.model.statements.SingleValue

	
type = 'TIMEOUT'

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
value

	

	
class robot.parsing.model.statements.Arguments(tokens)

	Bases: robot.parsing.model.statements.MultiValue

	
type = 'ARGUMENTS'

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
values

	

	
class robot.parsing.model.statements.Return(tokens)

	Bases: robot.parsing.model.statements.MultiValue

	
type = 'RETURN'

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
values

	

	
class robot.parsing.model.statements.KeywordCall(tokens)

	Bases: robot.parsing.model.statements.Statement

	
type = 'KEYWORD'

	

	
keyword

	

	
args

	

	
assign

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
class robot.parsing.model.statements.TemplateArguments(tokens)

	Bases: robot.parsing.model.statements.Statement

	
type = 'ARGUMENT'

	

	
args

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
class robot.parsing.model.statements.ForLoopHeader(tokens)

	Bases: robot.parsing.model.statements.Statement

	
type = 'FOR'

	

	
variables

	

	
values

	

	
flavor

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
class robot.parsing.model.statements.End(tokens)

	Bases: robot.parsing.model.statements.Statement

	
type = 'END'

	

	
value

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
class robot.parsing.model.statements.Comment(tokens)

	Bases: robot.parsing.model.statements.Statement

	
type = 'COMMENT'

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
class robot.parsing.model.statements.Error(tokens)

	Bases: robot.parsing.model.statements.Statement

	
type = 'ERROR'

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
class robot.parsing.model.statements.EmptyLine(tokens)

	Bases: robot.parsing.model.statements.Statement

	
type = 'EOL'

	

	
classmethod from_value(value)

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

robot.parsing.model.visitor module

	
class robot.parsing.model.visitor.VisitorFinder

	Bases: object

	
class robot.parsing.model.visitor.ModelVisitor

	Bases: ast.NodeVisitor, robot.parsing.model.visitor.VisitorFinder

NodeVisitor that supports matching nodes based on their base classes.

Otherwise identical to the standard ast.NodeVisitor [https://docs.python.org/library/ast.html#ast.NodeVisitor],
but allows creating visit_ClassName methods so that the ClassName
is one of the base classes of the node. For example, this visitor method
matches all section headers:

def visit_SectionHeader(self, node):
 # ...

If all visitor methods match node classes directly, it is better to use
the standard ast.NodeVisitor instead.

	
visit(node)

	Visit a node.

	
generic_visit(node)

	Called if no explicit visitor function exists for a node.

	
class robot.parsing.model.visitor.ModelTransformer

	Bases: ast.NodeTransformer, robot.parsing.model.visitor.VisitorFinder

NodeTransformer that supports matching nodes based on their base classes.

See ModelVisitor for explanation how this is different compared
to the standard ast.NodeTransformer [https://docs.python.org/library/ast.html#ast.NodeTransformer].

	
visit(node)

	Visit a node.

	
generic_visit(node)

	Called if no explicit visitor function exists for a node.

robot.parsing.parser package

Submodules

robot.parsing.parser.blockparsers module

	
class robot.parsing.parser.blockparsers.Parser(model)

	Bases: object

Base class for parsers.

	
handles(statement)

	

	
parse(statement)

	

	
class robot.parsing.parser.blockparsers.TestCaseParser(header)

	Bases: robot.parsing.parser.blockparsers.Parser

	
handles(statement)

	

	
parse(statement)

	

	
class robot.parsing.parser.blockparsers.KeywordParser(header)

	Bases: robot.parsing.parser.blockparsers.Parser

	
handles(statement)

	

	
parse(statement)

	

	
class robot.parsing.parser.blockparsers.ForLoopParser(header)

	Bases: robot.parsing.parser.blockparsers.Parser

	
handles(statement)

	

	
parse(statement)

	

robot.parsing.parser.fileparser module

	
class robot.parsing.parser.fileparser.FileParser(source=None)

	Bases: robot.parsing.parser.blockparsers.Parser

	
handles(statement)

	

	
parse(statement)

	

	
class robot.parsing.parser.fileparser.SectionParser(model)

	Bases: robot.parsing.parser.blockparsers.Parser

	
handles(statement)

	

	
parse(statement)

	

	
class robot.parsing.parser.fileparser.SettingSectionParser(header)

	Bases: robot.parsing.parser.fileparser.SectionParser

	
handles(statement)

	

	
parse(statement)

	

	
class robot.parsing.parser.fileparser.VariableSectionParser(header)

	Bases: robot.parsing.parser.fileparser.SectionParser

	
handles(statement)

	

	
parse(statement)

	

	
class robot.parsing.parser.fileparser.CommentSectionParser(header)

	Bases: robot.parsing.parser.fileparser.SectionParser

	
handles(statement)

	

	
parse(statement)

	

	
class robot.parsing.parser.fileparser.ImplicitCommentSectionParser(statement)

	Bases: robot.parsing.parser.fileparser.SectionParser

	
handles(statement)

	

	
parse(statement)

	

	
class robot.parsing.parser.fileparser.TestCaseSectionParser(header)

	Bases: robot.parsing.parser.fileparser.SectionParser

	
parse(statement)

	

	
handles(statement)

	

	
class robot.parsing.parser.fileparser.KeywordSectionParser(header)

	Bases: robot.parsing.parser.fileparser.SectionParser

	
parse(statement)

	

	
handles(statement)

	

robot.parsing.parser.parser module

	
robot.parsing.parser.parser.get_model(source, data_only=False, curdir=None)

	Parses the given source to a model represented as an AST.

How to use the model is explained more thoroughly in the general
documentation of the robot.parsing module.

	Parameters

	
	source – The source where to read the data. Can be a path to
a source file as a string or as pathlib.Path object, an already
opened file object, or Unicode text containing the date directly.
Source files must be UTF-8 encoded.

	data_only – When False (default), returns all tokens. When set
to True, omits separators, comments, continuation markers, and
other non-data tokens. Model like this cannot be saved back to
file system.

	curdir – Directory where the source file exists. This path is used
to set the value of the built-in ${CURDIR} variable during parsing.
When not given, the variable is left as-is. Should only be given
only if the model will be executed afterwards. If the model is saved
back to disk, resolving ${CURDIR} is typically not a good idea.

Use get_resource_model() or get_init_model() when parsing
resource or suite initialization files, respectively.

	
robot.parsing.parser.parser.get_resource_model(source, data_only=False, curdir=None)

	Parses the given source to a resource file model.

Otherwise same as get_model() but the source is considered to be
a resource file. This affects, for example, what settings are valid.

	
robot.parsing.parser.parser.get_init_model(source, data_only=False, curdir=None)

	Parses the given source to a init file model.

Otherwise same as get_model() but the source is considered to be
a suite initialization file. This affects, for example, what settings are
valid.

robot.reporting package

Implements report, log, output XML, and xUnit file generation.

The public API of this package is the ResultWriter class. It
can write result files based on XML output files on the file system,
as well as based on the result objects returned by
the ExecutionResult() factory method or
an executed TestSuite.

It is highly recommended to use the public API via the robot.api package.

This package is considered stable.

Submodules

robot.reporting.expandkeywordmatcher module

	
class robot.reporting.expandkeywordmatcher.ExpandKeywordMatcher(expand_keywords)

	Bases: object

	
match(kw)

	

robot.reporting.jsbuildingcontext module

	
class robot.reporting.jsbuildingcontext.JsBuildingContext(log_path=None, split_log=False, expand_keywords=None, prune_input=False)

	Bases: object

	
string(string, escape=True, attr=False)

	

	
html(string)

	

	
relative_source(source)

	

	
timestamp(time)

	

	
message_level(level)

	

	
create_link_target(msg)

	

	
check_expansion(kw)

	

	
expand_keywords

	

	
link(msg)

	

	
strings

	

	
start_splitting_if_needed(split=False)

	

	
end_splitting(model)

	

	
prune_input(**kwds)

	

robot.reporting.jsexecutionresult module

	
class robot.reporting.jsexecutionresult.JsExecutionResult(suite, statistics, errors, strings, basemillis=None, split_results=None, min_level=None, expand_keywords=None)

	Bases: object

	
remove_data_not_needed_in_report()

	

robot.reporting.jsmodelbuilders module

	
class robot.reporting.jsmodelbuilders.JsModelBuilder(log_path=None, split_log=False, expand_keywords=None, prune_input_to_save_memory=False)

	Bases: object

	
build_from(result_from_xml)

	

	
class robot.reporting.jsmodelbuilders.SuiteBuilder(context)

	Bases: robot.reporting.jsmodelbuilders._Builder

	
build(suite)

	

	
class robot.reporting.jsmodelbuilders.TestBuilder(context)

	Bases: robot.reporting.jsmodelbuilders._Builder

	
build(test)

	

	
class robot.reporting.jsmodelbuilders.KeywordBuilder(context)

	Bases: robot.reporting.jsmodelbuilders._Builder

	
build(kw, split=False)

	

	
class robot.reporting.jsmodelbuilders.MessageBuilder(context)

	Bases: robot.reporting.jsmodelbuilders._Builder

	
build(msg)

	

	
class robot.reporting.jsmodelbuilders.StatisticsBuilder

	Bases: object

	
build(statistics)

	

	
class robot.reporting.jsmodelbuilders.ErrorsBuilder(context)

	Bases: robot.reporting.jsmodelbuilders._Builder

	
build(errors)

	

	
class robot.reporting.jsmodelbuilders.ErrorMessageBuilder(context)

	Bases: robot.reporting.jsmodelbuilders.MessageBuilder

	
build(msg)

	

robot.reporting.jswriter module

	
class robot.reporting.jswriter.JsResultWriter(output, start_block='<script type="text/javascript">n', end_block='</script>n', split_threshold=9500)

	Bases: object

	
write(result, settings)

	

	
class robot.reporting.jswriter.SuiteWriter(write_json, split_threshold)

	Bases: object

	
write(suite, variable)

	

	
class robot.reporting.jswriter.SplitLogWriter(output)

	Bases: object

	
write(keywords, strings, index, notify)

	

robot.reporting.logreportwriters module

	
class robot.reporting.logreportwriters.LogWriter(js_model)

	Bases: robot.reporting.logreportwriters._LogReportWriter

	
usage = 'log'

	

	
write(path, config)

	

	
class robot.reporting.logreportwriters.ReportWriter(js_model)

	Bases: robot.reporting.logreportwriters._LogReportWriter

	
usage = 'report'

	

	
write(path, config)

	

	
class robot.reporting.logreportwriters.RobotModelWriter(output, model, config)

	Bases: robot.htmldata.htmlfilewriter.ModelWriter

	
write(line)

	

	
handles(line)

	

robot.reporting.outputwriter module

	
class robot.reporting.outputwriter.OutputWriter(output, rpa=False)

	Bases: robot.output.xmllogger.XmlLogger

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_keyword(kw)

	Implements traversing through the keyword and its child keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
close()

	

	
end_result(result)

	

	
end_errors(errors=None)

	

	
end_keyword(kw)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_stat(stat)

	

	
end_statistics(stats)

	

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_suite_statistics(tag_stats)

	

	
end_tag_statistics(tag_stats)

	

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
end_total_statistics(total_stats)

	

	
log_message(msg)

	

	
message(msg)

	

	
set_log_level(level)

	

	
start_errors(errors=None)

	

	
start_keyword(kw)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_result(result)

	

	
start_stat(stat)

	

	
start_statistics(stats)

	

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_suite_statistics(tag_stats)

	

	
start_tag_statistics(tag_stats)

	

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_total_statistics(total_stats)

	

	
visit_errors(errors)

	

	
visit_message(msg)

	Implements visiting the message.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_result(result)

	

	
visit_stat(stat)

	

	
visit_statistics(stats)

	

	
visit_suite(suite)

	Implements traversing through the suite and its direct children.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
visit_suite_statistics(stats)

	

	
visit_tag_statistics(stats)

	

	
visit_test(test)

	Implements traversing through the test and its keywords.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
visit_total_statistics(stats)

	

robot.reporting.resultwriter module

	
class robot.reporting.resultwriter.ResultWriter(*sources)

	Bases: object

A class to create log, report, output XML and xUnit files.

	Parameters

	sources – Either one Result
object, or one or more paths to existing output XML files.

By default writes report.html and log.html, but no output XML
or xUnit files. Custom file names can be given and results disabled
or enabled using settings or options passed to the
write_results() method. The latter is typically more convenient:

writer = ResultWriter(result)
writer.write_results(report='custom.html', log=None, xunit='xunit.xml')

	
write_results(settings=None, **options)

	Writes results based on the given settings or options.

	Parameters

	
	settings – RebotSettings object
to configure result writing.

	options – Used to construct new
RebotSettings object if settings
are not given.

	
class robot.reporting.resultwriter.Results(settings, *sources)

	Bases: object

	
result

	

	
js_result

	

robot.reporting.stringcache module

	
class robot.reporting.stringcache.StringIndex

	Bases: int

	
bit_length() → int

	Number of bits necessary to represent self in binary.
>>> bin(37)
‘0b100101’
>>> (37).bit_length()
6

	
conjugate()

	Returns self, the complex conjugate of any int.

	
denominator

	the denominator of a rational number in lowest terms

	
imag

	the imaginary part of a complex number

	
numerator

	the numerator of a rational number in lowest terms

	
real

	the real part of a complex number

	
class robot.reporting.stringcache.StringCache

	Bases: object

	
add(text)

	

	
dump()

	

robot.reporting.xunitwriter module

	
class robot.reporting.xunitwriter.XUnitWriter(execution_result, skip_noncritical)

	Bases: object

	
write(output)

	

	
class robot.reporting.xunitwriter.XUnitFileWriter(xml_writer, skip_noncritical=False)

	Bases: robot.result.visitor.ResultVisitor

Provides an xUnit-compatible result file.

Attempts to adhere to the de facto schema guessed by Peter Reilly, see:
http://marc.info/?l=ant-dev&m=123551933508682

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
visit_test(test)

	Implements traversing through the test and its keywords.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
visit_keyword(kw)

	Implements traversing through the keyword and its child keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
visit_statistics(stats)

	

	
visit_errors(errors)

	

	
end_result(result)

	

	
end_errors(errors)

	

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_stat(stat)

	

	
end_statistics(stats)

	

	
end_suite_statistics(suite_stats)

	

	
end_tag_statistics(stats)

	

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
end_total_statistics(stats)

	

	
start_errors(errors)

	

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_result(result)

	

	
start_stat(stat)

	

	
start_statistics(stats)

	

	
start_suite_statistics(stats)

	

	
start_tag_statistics(stats)

	

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_total_statistics(stats)

	

	
visit_message(msg)

	Implements visiting the message.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_result(result)

	

	
visit_stat(stat)

	

	
visit_suite(suite)

	Implements traversing through the suite and its direct children.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
visit_suite_statistics(stats)

	

	
visit_tag_statistics(stats)

	

	
visit_total_statistics(stats)

	

robot.result package

Implements parsing execution results from XML output files.

The main public API of this package consists of the ExecutionResult()
factory method, that returns Result objects, and of the
ResultVisitor abstract class, that eases further processing
the results.

The model objects in the model module can also be considered to be
part of the public API, because they can be found inside the Result
object. They can also be inspected and modified as part of the normal test
execution by pre-Rebot modifiers [http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#programmatic-modification-of-results] and listeners [http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#listener-interface].

It is highly recommended to import the public entry-points via the
robot.api package like in the example below. In those rare cases
where the aforementioned model objects are needed directly, they can be
imported from this package.

This package is considered stable.

Example

#!/usr/bin/env python

"""Usage: check_test_times.py seconds inpath [outpath]

Reads test execution result from an output XML file and checks that no test
took longer than given amount of seconds to execute.

Optional `outpath` specifies where to write processed results. If not given,
results are written over the original file.
"""

import sys
from robot.api import ExecutionResult, ResultVisitor

class ExecutionTimeChecker(ResultVisitor):

 def __init__(self, max_seconds):
 self.max_milliseconds = max_seconds * 1000

 def visit_test(self, test):
 if test.status == 'PASS' and test.elapsedtime > self.max_milliseconds:
 test.status = 'FAIL'
 test.message = 'Test execution took too long.'

def check_tests(seconds, inpath, outpath=None):
 result = ExecutionResult(inpath)
 result.visit(ExecutionTimeChecker(float(seconds)))
 result.save(outpath)

if __name__ == '__main__':
 try:
 check_tests(*sys.argv[1:])
 except TypeError:
 print(__doc__)

Submodules

robot.result.configurer module

	
class robot.result.configurer.SuiteConfigurer(remove_keywords=None, log_level=None, start_time=None, end_time=None, critical_tags=None, non_critical_tags=None, **base_config)

	Bases: robot.model.configurer.SuiteConfigurer

Result suite configured.

Calls suite’s
remove_keywords(),
filter_messages() and
set_criticality() methods
and sets its start and end time based on the given named parameters.

base_config is forwarded to
robot.model.SuiteConfigurer
that will do further configuration based on them.

	
visit_suite(suite)

	Implements traversing through the suite and its direct children.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
add_tags

	

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
remove_tags

	

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_keyword(kw)

	Implements traversing through the keyword and its child keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
visit_message(msg)

	Implements visiting the message.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_test(test)

	Implements traversing through the test and its keywords.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

robot.result.executionerrors module

	
class robot.result.executionerrors.ExecutionErrors(messages=None)

	Bases: object

Represents errors occurred during the execution of tests.

An error might be, for example, that importing a library has failed.

	
message_class

	alias of robot.result.model.Message

	
messages

	A list-like object of
Message instances.

	
add(other)

	

	
visit(visitor)

	

robot.result.executionresult module

	
class robot.result.executionresult.Result(source=None, root_suite=None, errors=None, rpa=None)

	Bases: object

Test execution results.

Can be created based on XML output files using the
ExecutionResult()
factory method. Also returned by the
robot.running.TestSuite.run
method.

	
source = None

	Path to the XML file where results are read from.

	
suite = None

	Hierarchical execution results as a
TestSuite object.

	
errors = None

	Execution errors as an
ExecutionErrors object.

	
statistics

	Test execution statistics.

Statistics are an instance of
Statistics that is created based
on the contained suite and possible
configuration.

Statistics are created every time this property is accessed. Saving
them to a variable is thus often a good idea to avoid re-creating
them unnecessarily:

from robot.api import ExecutionResult

result = ExecutionResult('output.xml')
result.configure(stat_config={'suite_stat_level': 2,
 'tag_stat_combine': 'tagANDanother'})
stats = result.statistics
print stats.total.critical.failed
print stats.total.critical.passed
print stats.tags.combined[0].total

	
return_code

	Return code (integer) of test execution.

By default returns the number of failed critical tests (max 250),
but can be configured to always return 0.

	
configure(status_rc=True, suite_config=None, stat_config=None)

	Configures the result object and objects it contains.

	Parameters

	
	status_rc – If set to False, return_code always
returns 0.

	suite_config – A dictionary of configuration options passed
to configure() method of
the contained suite.

	stat_config – A dictionary of configuration options used when
creating statistics.

	
save(path=None)

	Save results as a new output XML file.

	Parameters

	path – Path to save results to. If omitted, overwrites the
original file.

	
visit(visitor)

	An entry point to visit the whole result object.

	Parameters

	visitor – An instance of ResultVisitor.

Visitors can gather information, modify results, etc. See
result package for a simple usage example.

Notice that it is also possible to call result.suite.visit if there is no need to
visit the contained statistics or errors.

	
handle_suite_teardown_failures()

	Internal usage only.

	
set_execution_mode(other)

	Set execution mode based on other result. Internal usage only.

	
class robot.result.executionresult.CombinedResult(results=None)

	Bases: robot.result.executionresult.Result

Combined results of multiple test executions.

	
add_result(other)

	

	
configure(status_rc=True, suite_config=None, stat_config=None)

	Configures the result object and objects it contains.

	Parameters

	
	status_rc – If set to False, return_code always
returns 0.

	suite_config – A dictionary of configuration options passed
to configure() method of
the contained suite.

	stat_config – A dictionary of configuration options used when
creating statistics.

	
handle_suite_teardown_failures()

	Internal usage only.

	
return_code

	Return code (integer) of test execution.

By default returns the number of failed critical tests (max 250),
but can be configured to always return 0.

	
save(path=None)

	Save results as a new output XML file.

	Parameters

	path – Path to save results to. If omitted, overwrites the
original file.

	
set_execution_mode(other)

	Set execution mode based on other result. Internal usage only.

	
statistics

	Test execution statistics.

Statistics are an instance of
Statistics that is created based
on the contained suite and possible
configuration.

Statistics are created every time this property is accessed. Saving
them to a variable is thus often a good idea to avoid re-creating
them unnecessarily:

from robot.api import ExecutionResult

result = ExecutionResult('output.xml')
result.configure(stat_config={'suite_stat_level': 2,
 'tag_stat_combine': 'tagANDanother'})
stats = result.statistics
print stats.total.critical.failed
print stats.total.critical.passed
print stats.tags.combined[0].total

	
visit(visitor)

	An entry point to visit the whole result object.

	Parameters

	visitor – An instance of ResultVisitor.

Visitors can gather information, modify results, etc. See
result package for a simple usage example.

Notice that it is also possible to call result.suite.visit if there is no need to
visit the contained statistics or errors.

robot.result.flattenkeywordmatcher module

	
robot.result.flattenkeywordmatcher.validate_flatten_keyword(options)

	

	
class robot.result.flattenkeywordmatcher.FlattenByTypeMatcher(flatten)

	Bases: object

	
match(kwtype)

	

	
class robot.result.flattenkeywordmatcher.FlattenByNameMatcher(flatten)

	Bases: object

	
match(kwname, libname=None)

	

	
class robot.result.flattenkeywordmatcher.FlattenByTagMatcher(flatten)

	Bases: object

	
match(kwtags)

	

robot.result.keywordremover module

	
robot.result.keywordremover.KeywordRemover(how)

	

	
class robot.result.keywordremover.AllKeywordsRemover

	Bases: robot.result.keywordremover._KeywordRemover

	
visit_keyword(keyword)

	Implements traversing through the keyword and its child keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_message(msg)

	Implements visiting the message.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through the suite and its direct children.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
visit_test(test)

	Implements traversing through the test and its keywords.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
class robot.result.keywordremover.PassedKeywordRemover

	Bases: robot.result.keywordremover._KeywordRemover

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_test(test)

	Implements traversing through the test and its keywords.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
visit_keyword(keyword)

	Implements traversing through the keyword and its child keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_message(msg)

	Implements visiting the message.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through the suite and its direct children.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
class robot.result.keywordremover.ByNameKeywordRemover(pattern)

	Bases: robot.result.keywordremover._KeywordRemover

	
start_keyword(kw)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_keyword(kw)

	Implements traversing through the keyword and its child keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
visit_message(msg)

	Implements visiting the message.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through the suite and its direct children.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
visit_test(test)

	Implements traversing through the test and its keywords.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
class robot.result.keywordremover.ByTagKeywordRemover(pattern)

	Bases: robot.result.keywordremover._KeywordRemover

	
start_keyword(kw)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_keyword(kw)

	Implements traversing through the keyword and its child keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
visit_message(msg)

	Implements visiting the message.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through the suite and its direct children.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
visit_test(test)

	Implements traversing through the test and its keywords.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
class robot.result.keywordremover.ForLoopItemsRemover

	Bases: robot.result.keywordremover._KeywordRemover

	
start_keyword(kw)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_keyword(kw)

	Implements traversing through the keyword and its child keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
visit_message(msg)

	Implements visiting the message.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through the suite and its direct children.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
visit_test(test)

	Implements traversing through the test and its keywords.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
class robot.result.keywordremover.WaitUntilKeywordSucceedsRemover

	Bases: robot.result.keywordremover._KeywordRemover

	
start_keyword(kw)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_keyword(kw)

	Implements traversing through the keyword and its child keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
visit_message(msg)

	Implements visiting the message.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through the suite and its direct children.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
visit_test(test)

	Implements traversing through the test and its keywords.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
class robot.result.keywordremover.WarningAndErrorFinder

	Bases: robot.model.visitor.SuiteVisitor

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_message(msg)

	Implements visiting the message.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_keyword(kw)

	Implements traversing through the keyword and its child keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
visit_suite(suite)

	Implements traversing through the suite and its direct children.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
visit_test(test)

	Implements traversing through the test and its keywords.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
class robot.result.keywordremover.RemovalMessage(message)

	Bases: object

	
set_if_removed(kw, len_before)

	

	
set(kw, message=None)

	

robot.result.merger module

	
class robot.result.merger.Merger(result, rpa=False)

	Bases: robot.model.visitor.SuiteVisitor

	
merge(merged)

	

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
visit_test(test)

	Implements traversing through the test and its keywords.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_keyword(kw)

	Implements traversing through the keyword and its child keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
visit_message(msg)

	Implements visiting the message.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through the suite and its direct children.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

robot.result.messagefilter module

	
class robot.result.messagefilter.MessageFilter(loglevel)

	Bases: robot.model.visitor.SuiteVisitor

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_keyword(kw)

	Implements traversing through the keyword and its child keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
visit_message(msg)

	Implements visiting the message.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through the suite and its direct children.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
visit_test(test)

	Implements traversing through the test and its keywords.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

robot.result.model module

Module implementing result related model objects.

During test execution these objects are created internally by various runners.
At that time they can inspected and modified by listeners [http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#listener-interface].

When results are parsed from XML output files after execution to be able to
create logs and reports, these objects are created by the
ExecutionResult() factory method.
At that point they can be inspected and modified by pre-Rebot modifiers [http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#programmatic-modification-of-results].

The ExecutionResult() factory method can also be used
by custom scripts and tools. In such usage it is often easiest to inspect and
modify these objects using the visitor interface.

	
class robot.result.model.Message(message='', level='INFO', html=False, timestamp=None, parent=None)

	Bases: robot.model.message.Message

Represents a single log message.

See the base class for documentation of attributes not documented here.

	
copy(**attributes)

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

New in Robot Framework 3.0.1.

	
deepcopy(**attributes)

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

New in Robot Framework 3.0.1.

	
html

	

	
html_message

	Returns the message content as HTML.

	
level

	

	
message

	

	
parent

	

	
timestamp

	

	
visit(visitor)

	Visitor interface entry-point.

	
class robot.result.model.Keyword(kwname='', libname='', doc='', args=(), assign=(), tags=(), timeout=None, type='kw', status='FAIL', starttime=None, endtime=None)

	Bases: robot.model.keyword.Keyword

Represents results of a single keyword.

See the base class for documentation of attributes not documented here.

	
message_class

	alias of Message

	
kwname

	Name of the keyword without library or resource name.

	
libname

	Name of the library or resource containing this keyword.

	
status

	Execution status as a string. Typically PASS or FAIL, but
library keywords have status NOT_RUN in the dry-ryn mode.
See also passed.

	
starttime

	Keyword execution start time in format %Y%m%d %H:%M:%S.%f.

	
endtime

	Keyword execution end time in format %Y%m%d %H:%M:%S.%f.

	
message

	Keyword status message. Used only if suite teardowns fails.

	
elapsedtime

	Total execution time in milliseconds.

	
name

	Keyword name in format libname.kwname.

Just kwname if libname is empty. In practice that is the
case only with user keywords in the same file as the executed test case
or test suite.

Cannot be set directly. Set libname and kwname
separately instead.

	
passed

	True or False depending on the status.

	
FOR_ITEM_TYPE = 'foritem'

	

	
FOR_LOOP_TYPE = 'for'

	

	
KEYWORD_TYPE = 'kw'

	

	
SETUP_TYPE = 'setup'

	

	
TEARDOWN_TYPE = 'teardown'

	

	
args

	

	
assign

	

	
children

	Child keywords and messages in creation order.

	
copy(**attributes)

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

New in Robot Framework 3.0.1.

	
deepcopy(**attributes)

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

New in Robot Framework 3.0.1.

	
doc

	

	
id

	Keyword id in format like s1-t3-k1.

See TestSuite.id for
more information.

	
keyword_class = None

	

	
keywords

	Child keywords as a Keywords object.

	
messages

	Messages as a Messages object.

	
parent

	Parent test suite, test case or keyword.

	
source

	

	
tags

	Keyword tags as a Tags object.

	
timeout

	

	
type

	

	
visit(visitor)

	Visitor interface entry-point.

	
class robot.result.model.TestCase(name='', doc='', tags=None, timeout=None, status='FAIL', message='', starttime=None, endtime=None)

	Bases: robot.model.testcase.TestCase

Represents results of a single test case.

See the base class for documentation of attributes not documented here.

	
keyword_class

	alias of Keyword

	
status

	Status as a string PASS or FAIL. See also passed.

	
message

	Test message. Typically a failure message but can be set also when
test passes.

	
starttime

	Test case execution start time in format %Y%m%d %H:%M:%S.%f.

	
endtime

	Test case execution end time in format %Y%m%d %H:%M:%S.%f.

	
elapsedtime

	Total execution time in milliseconds.

	
passed

	True/False depending on the status.

	
critical

	True/False depending on is the test considered critical.

Criticality is determined based on test’s tags and
criticality of the parent suite.

	
copy(**attributes)

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

New in Robot Framework 3.0.1.

	
deepcopy(**attributes)

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

New in Robot Framework 3.0.1.

	
doc

	

	
id

	Test case id in format like s1-t3.

See TestSuite.id for
more information.

	
keywords

	Keywords as a Keywords object.

Contains also possible setup and teardown keywords.

	
longname

	Test name prefixed with the long name of the parent suite.

	
name

	

	
parent

	

	
source

	

	
tags

	Test tags as a Tags object.

	
timeout

	

	
visit(visitor)

	Visitor interface entry-point.

	
class robot.result.model.TestSuite(name='', doc='', metadata=None, source=None, message='', starttime=None, endtime=None, rpa=False)

	Bases: robot.model.testsuite.TestSuite

Represents results of a single test suite.

See the base class for documentation of attributes not documented here.

	
test_class

	alias of TestCase

	
keyword_class

	alias of Keyword

	
message

	Possible suite setup or teardown error message.

	
starttime

	Suite execution start time in format %Y%m%d %H:%M:%S.%f.

	
endtime

	Suite execution end time in format %Y%m%d %H:%M:%S.%f.

	
passed

	True if no critical test has failed, False otherwise.

	
status

	'PASS' if no critical test has failed, 'FAIL' otherwise.

	
statistics

	Suite statistics as a TotalStatistics object.

Recreated every time this property is accessed, so saving the results
to a variable and inspecting it is often a good idea:

stats = suite.statistics
print(stats.critical.failed)
print(stats.all.total)
print(stats.message)

	
full_message

	Combination of message and stat_message.

	
stat_message

	String representation of the statistics.

	
elapsedtime

	Total execution time in milliseconds.

	
criticality

	Used by tests to determine are they considered critical or not.

Normally configured using --critical and --noncritical
command line options. Can be set programmatically using
set_criticality() of the root test suite.

	
set_criticality(critical_tags=None, non_critical_tags=None)

	Sets which tags are considered critical and which non-critical.

	Parameters

	
	critical_tags – Tags or patterns considered critical. See
the documentation of the --critical option for more details.

	non_critical_tags – Tags or patterns considered non-critical. See
the documentation of the --noncritical option for more details.

Tags can be given as lists of strings or, when giving only one,
as single strings. This information is used by tests to determine
are they considered critical or not.

Criticality can be set only to the root test suite.

	
remove_keywords(how)

	Remove keywords based on the given condition.

	Parameters

	how – What approach to use when removing keywords. Either
ALL, PASSED, FOR, WUKS, or NAME:<pattern>.

For more information about the possible values see the documentation
of the --removekeywords command line option.

	
filter_messages(log_level='TRACE')

	Remove log messages below the specified log_level.

	
configure(**options)

	A shortcut to configure a suite using one method call.

Can only be used with the root test suite.

	Parameters

	options – Passed to
SuiteConfigurer that will then
set suite attributes, call filter(), etc. as needed.

Example:

suite.configure(remove_keywords='PASSED',
 critical_tags='smoke',
 doc='Smoke test results.')

	
copy(**attributes)

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

New in Robot Framework 3.0.1.

	
deepcopy(**attributes)

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

New in Robot Framework 3.0.1.

	
doc

	

	
filter(included_suites=None, included_tests=None, included_tags=None, excluded_tags=None)

	Select test cases and remove others from this suite.

Parameters have the same semantics as --suite, --test,
--include, and --exclude command line options. All of them
can be given as a list of strings, or when selecting only one, as
a single string.

Child suites that contain no tests after filtering are automatically
removed.

Example:

suite.filter(included_tests=['Test 1', '* Example'],
 included_tags='priority-1')

	
handle_suite_teardown_failures()

	Internal usage only.

	
has_tests

	

	
id

	An automatically generated unique id.

The root suite has id s1, its child suites have ids s1-s1,
s1-s2, …, their child suites get ids s1-s1-s1, s1-s1-s2,
…, s1-s2-s1, …, and so on.

The first test in a suite has an id like s1-t1, the second has an
id s1-t2, and so on. Similarly keywords in suites (setup/teardown)
and in tests get ids like s1-k1, s1-t1-k1, and s1-s4-t2-k5.

	
keywords

	Suite setup and teardown as a Keywords object.

	
longname

	Suite name prefixed with the long name of the parent suite.

	
metadata

	Free test suite metadata as a dictionary.

	
name

	Test suite name. If not set, constructed from child suite names.

	
parent

	

	
remove_empty_suites(preserve_direct_children=False)

	Removes all child suites not containing any tests, recursively.

	
rpa

	

	
set_tags(add=None, remove=None, persist=False)

	Add and/or remove specified tags to the tests in this suite.

	Parameters

	
	add – Tags to add as a list or, if adding only one,
as a single string.

	remove – Tags to remove as a list or as a single string.
Can be given as patterns where * and ? work as wildcards.

	persist – Add/remove specified tags also to new tests added
to this suite in the future.

	
source

	

	
suites

	Child suites as a TestSuites object.

	
test_count

	Number of the tests in this suite, recursively.

	
tests

	Tests as a TestCases object.

	
visit(visitor)

	Visitor interface entry-point.

	
suite_teardown_failed(message)

	Internal usage only.

robot.result.resultbuilder module

	
robot.result.resultbuilder.ExecutionResult(*sources, **options)

	Factory method to constructs Result objects.

	Parameters

	
	sources – XML source(s) containing execution results.
Can be specified as paths, opened file objects, or strings/bytes
containing XML directly. Support for bytes is new in RF 3.2.

	options – Configuration options.
Using merge=True causes multiple results to be combined so that
tests in the latter results replace the ones in the original.
Setting rpa either to True (RPA mode) or False (test
automation) sets execution mode explicitly. By default it is got
from processed output files and conflicting modes cause an error.
Other options are passed directly to the
ExecutionResultBuilder object used internally.

	Returns

	Result instance.

Should be imported by external code via the robot.api package.
See the robot.result package for a usage example.

	
class robot.result.resultbuilder.ExecutionResultBuilder(source, include_keywords=True, flattened_keywords=None)

	Bases: object

Builds Result objects based on output files.

Instead of using this builder directly, it is recommended to use the
ExecutionResult() factory method.

	Parameters

	
	source – Path to the XML output file to build
Result objects from.

	include_keywords – Boolean controlling whether to include
keyword information in the result or not. Keywords are
not needed when generating only report.

	flatten_keywords – List of patterns controlling what keywords to
flatten. See the documentation of --flattenkeywords option for
more details.

	
build(result)

	

	
class robot.result.resultbuilder.RemoveKeywords

	Bases: robot.model.visitor.SuiteVisitor

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_test(test)

	Implements traversing through the test and its keywords.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_keyword(kw)

	Implements traversing through the keyword and its child keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
visit_message(msg)

	Implements visiting the message.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through the suite and its direct children.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

robot.result.suiteteardownfailed module

	
class robot.result.suiteteardownfailed.SuiteTeardownFailureHandler

	Bases: robot.model.visitor.SuiteVisitor

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
visit_test(test)

	Implements traversing through the test and its keywords.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
visit_keyword(keyword)

	Implements traversing through the keyword and its child keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_message(msg)

	Implements visiting the message.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through the suite and its direct children.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
class robot.result.suiteteardownfailed.SuiteTeardownFailed(error)

	Bases: robot.model.visitor.SuiteVisitor

	
visit_test(test)

	Implements traversing through the test and its keywords.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
visit_keyword(keyword)

	Implements traversing through the keyword and its child keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_message(msg)

	Implements visiting the message.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through the suite and its direct children.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

robot.result.visitor module

Visitors can be used to easily traverse result structures.

This module contains ResultVisitor for traversing the whole
Result object. It extends
SuiteVisitor that contains visiting logic
for the test suite structure.

	
class robot.result.visitor.ResultVisitor

	Bases: robot.model.visitor.SuiteVisitor

Abstract class to conveniently travel Result objects.

A visitor implementation can be given to the visit() method of a
result object. This will cause the result object to be traversed and the
visitor’s visit_x(), start_x(), and end_x() methods to
be called for each suite, test, keyword and message, as well as for errors,
statistics, and other information in the result object. See methods below
for a full list of available visitor methods.

See the result package level documentation for
more information about handling results and a concrete visitor example.
For more information about the visitor algorithm see documentation in
robot.model.visitor module.

	
visit_result(result)

	

	
start_result(result)

	

	
end_result(result)

	

	
visit_statistics(stats)

	

	
start_statistics(stats)

	

	
end_statistics(stats)

	

	
visit_total_statistics(stats)

	

	
start_total_statistics(stats)

	

	
end_total_statistics(stats)

	

	
visit_tag_statistics(stats)

	

	
start_tag_statistics(stats)

	

	
end_tag_statistics(stats)

	

	
visit_suite_statistics(stats)

	

	
start_suite_statistics(stats)

	

	
end_suite_statistics(suite_stats)

	

	
visit_stat(stat)

	

	
start_stat(stat)

	

	
end_stat(stat)

	

	
visit_errors(errors)

	

	
start_errors(errors)

	

	
end_errors(errors)

	

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_keyword(kw)

	Implements traversing through the keyword and its child keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
visit_message(msg)

	Implements visiting the message.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through the suite and its direct children.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
visit_test(test)

	Implements traversing through the test and its keywords.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

robot.result.xmlelementhandlers module

	
class robot.result.xmlelementhandlers.XmlElementHandler(execution_result, root_handler=None)

	Bases: object

	
start(elem)

	

	
end(elem)

	

	
class robot.result.xmlelementhandlers.RootHandler

	Bases: robot.result.xmlelementhandlers._Handler

	
end(elem, result)

	

	
get_child_handler(elem)

	

	
start(elem, result)

	

	
class robot.result.xmlelementhandlers.RobotHandler

	Bases: robot.result.xmlelementhandlers._Handler

	
tag = 'robot'

	

	
start(elem, result)

	

	
end(elem, result)

	

	
get_child_handler(elem)

	

	
class robot.result.xmlelementhandlers.SuiteHandler

	Bases: robot.result.xmlelementhandlers._Handler

	
tag = 'suite'

	

	
start(elem, result)

	

	
end(elem, result)

	

	
get_child_handler(elem)

	

	
class robot.result.xmlelementhandlers.RootSuiteHandler

	Bases: robot.result.xmlelementhandlers.SuiteHandler

	
start(elem, result)

	

	
end(elem, result)

	

	
get_child_handler(elem)

	

	
tag = 'suite'

	

	
class robot.result.xmlelementhandlers.TestCaseHandler

	Bases: robot.result.xmlelementhandlers._Handler

	
tag = 'test'

	

	
start(elem, result)

	

	
end(elem, result)

	

	
get_child_handler(elem)

	

	
class robot.result.xmlelementhandlers.KeywordHandler

	Bases: robot.result.xmlelementhandlers._Handler

	
tag = 'kw'

	

	
start(elem, result)

	

	
end(elem, result)

	

	
get_child_handler(elem)

	

	
class robot.result.xmlelementhandlers.MessageHandler

	Bases: robot.result.xmlelementhandlers._Handler

	
tag = 'msg'

	

	
end(elem, result)

	

	
get_child_handler(elem)

	

	
start(elem, result)

	

	
class robot.result.xmlelementhandlers.KeywordStatusHandler

	Bases: robot.result.xmlelementhandlers._StatusHandler

	
end(elem, result)

	

	
get_child_handler(elem)

	

	
start(elem, result)

	

	
tag = 'status'

	

	
class robot.result.xmlelementhandlers.SuiteStatusHandler

	Bases: robot.result.xmlelementhandlers._StatusHandler

	
end(elem, result)

	

	
get_child_handler(elem)

	

	
start(elem, result)

	

	
tag = 'status'

	

	
class robot.result.xmlelementhandlers.TestStatusHandler

	Bases: robot.result.xmlelementhandlers._StatusHandler

	
end(elem, result)

	

	
get_child_handler(elem)

	

	
start(elem, result)

	

	
tag = 'status'

	

	
class robot.result.xmlelementhandlers.DocHandler

	Bases: robot.result.xmlelementhandlers._Handler

	
tag = 'doc'

	

	
end(elem, result)

	

	
get_child_handler(elem)

	

	
start(elem, result)

	

	
class robot.result.xmlelementhandlers.MetadataHandler

	Bases: robot.result.xmlelementhandlers._Handler

	
tag = 'metadata'

	

	
end(elem, result)

	

	
get_child_handler(elem)

	

	
start(elem, result)

	

	
class robot.result.xmlelementhandlers.MetadataItemHandler

	Bases: robot.result.xmlelementhandlers._Handler

	
tag = 'item'

	

	
end(elem, result)

	

	
get_child_handler(elem)

	

	
start(elem, result)

	

	
class robot.result.xmlelementhandlers.TagsHandler

	Bases: robot.result.xmlelementhandlers._Handler

	
tag = 'tags'

	

	
end(elem, result)

	

	
get_child_handler(elem)

	

	
start(elem, result)

	

	
class robot.result.xmlelementhandlers.TagHandler

	Bases: robot.result.xmlelementhandlers._Handler

	
tag = 'tag'

	

	
end(elem, result)

	

	
get_child_handler(elem)

	

	
start(elem, result)

	

	
class robot.result.xmlelementhandlers.TimeoutHandler

	Bases: robot.result.xmlelementhandlers._Handler

	
tag = 'timeout'

	

	
end(elem, result)

	

	
get_child_handler(elem)

	

	
start(elem, result)

	

	
class robot.result.xmlelementhandlers.AssignHandler

	Bases: robot.result.xmlelementhandlers._Handler

	
tag = 'assign'

	

	
end(elem, result)

	

	
get_child_handler(elem)

	

	
start(elem, result)

	

	
class robot.result.xmlelementhandlers.AssignVarHandler

	Bases: robot.result.xmlelementhandlers._Handler

	
tag = 'var'

	

	
end(elem, result)

	

	
get_child_handler(elem)

	

	
start(elem, result)

	

	
class robot.result.xmlelementhandlers.ArgumentsHandler

	Bases: robot.result.xmlelementhandlers._Handler

	
tag = 'arguments'

	

	
end(elem, result)

	

	
get_child_handler(elem)

	

	
start(elem, result)

	

	
class robot.result.xmlelementhandlers.ArgumentHandler

	Bases: robot.result.xmlelementhandlers._Handler

	
tag = 'arg'

	

	
end(elem, result)

	

	
get_child_handler(elem)

	

	
start(elem, result)

	

	
class robot.result.xmlelementhandlers.ErrorsHandler

	Bases: robot.result.xmlelementhandlers._Handler

	
tag = 'errors'

	

	
start(elem, result)

	

	
end(elem, result)

	

	
get_child_handler(elem)

	

	
class robot.result.xmlelementhandlers.StatisticsHandler

	Bases: robot.result.xmlelementhandlers._Handler

	
tag = 'statistics'

	

	
get_child_handler(elem)

	

	
end(elem, result)

	

	
start(elem, result)

	

robot.running package

Implements the core test execution logic.

The main public entry points of this package are of the following two classes:

	TestSuiteBuilder for creating
executable test suites based on existing test case files and directories.

	TestSuite for creating an executable
test suite structure programmatically.

It is recommended to import both of these classes via the robot.api
package like in the examples below. Also TestCase
and Keyword classes used internally by the
TestSuite class are part of the public API.
In those rare cases where these classes are needed directly, they can be
imported from this package.

Examples

First, let’s assume we have the following test suite in file
activate_skynet.robot:

*** Settings ***
Library OperatingSystem

*** Test Cases ***
Should Activate Skynet
 [Tags] smoke
 [Setup] Set Environment Variable SKYNET activated
 Environment Variable Should Be Set SKYNET

We can easily parse and create an executable test suite based on the above file
using the TestSuiteBuilder class as follows:

from robot.api import TestSuiteBuilder

suite = TestSuiteBuilder().build('path/to/activate_skynet.robot')

That was easy. Let’s next generate the same test suite from scratch
using the TestSuite class:

from robot.api import TestSuite

suite = TestSuite('Activate Skynet')
suite.resource.imports.library('OperatingSystem')
test = suite.tests.create('Should Activate Skynet', tags=['smoke'])
test.keywords.create('Set Environment Variable', args=['SKYNET', 'activated'], type='setup')
test.keywords.create('Environment Variable Should Be Set', args=['SKYNET'])

Not that complicated either, especially considering the flexibility. Notice
that the suite created based on the file could also be edited further using
the same API.

Now that we have a test suite ready, let’s execute it and verify that the returned
Result object contains correct
information:

result = suite.run(critical='smoke', output='skynet.xml')

assert result.return_code == 0
assert result.suite.name == 'Activate Skynet'
test = result.suite.tests[0]
assert test.name == 'Should Activate Skynet'
assert test.passed and test.critical
stats = result.suite.statistics
assert stats.critical.total == 1 and stats.critical.failed == 0

Running the suite generates a normal output XML file, unless it is disabled
by using output=None. Generating log, report, and xUnit files based on
the results is possible using the
ResultWriter class:

from robot.api import ResultWriter

Report and xUnit files can be generated based on the result object.
ResultWriter(result).write_results(report='skynet.html', log=None)
Generating log files requires processing the earlier generated output XML.
ResultWriter('skynet.xml').write_results()

Subpackages

	robot.running.arguments package
	Submodules

	robot.running.arguments.argumentconverter module

	robot.running.arguments.argumentmapper module

	robot.running.arguments.argumentparser module

	robot.running.arguments.argumentresolver module

	robot.running.arguments.argumentspec module

	robot.running.arguments.argumentvalidator module

	robot.running.arguments.embedded module

	robot.running.arguments.javaargumentcoercer module

	robot.running.arguments.typeconverters module

	robot.running.arguments.typevalidator module

	robot.running.builder package
	Submodules

	robot.running.builder.builders module

	robot.running.builder.parsers module

	robot.running.builder.testsettings module

	robot.running.builder.transformers module

	robot.running.timeouts package
	Submodules

	robot.running.timeouts.ironpython module

	robot.running.timeouts.jython module

	robot.running.timeouts.posix module

	robot.running.timeouts.windows module

Submodules

robot.running.context module

	
class robot.running.context.ExecutionContexts

	Bases: object

	
current

	

	
top

	

	
namespaces

	

	
start_suite(suite, namespace, output, dry_run=False)

	

	
end_suite()

	

robot.running.dynamicmethods module

	
robot.running.dynamicmethods.no_dynamic_method(*args)

	

	
class robot.running.dynamicmethods.GetKeywordNames(lib)

	Bases: robot.running.dynamicmethods._DynamicMethod

	
name

	

	
class robot.running.dynamicmethods.RunKeyword(lib)

	Bases: robot.running.dynamicmethods._DynamicMethod

	
supports_kwargs

	

	
name

	

	
class robot.running.dynamicmethods.GetKeywordDocumentation(lib)

	Bases: robot.running.dynamicmethods._DynamicMethod

	
name

	

	
class robot.running.dynamicmethods.GetKeywordArguments(lib)

	Bases: robot.running.dynamicmethods._DynamicMethod

	
name

	

	
class robot.running.dynamicmethods.GetKeywordTypes(lib)

	Bases: robot.running.dynamicmethods._DynamicMethod

	
name

	

	
class robot.running.dynamicmethods.GetKeywordTags(lib)

	Bases: robot.running.dynamicmethods._DynamicMethod

	
name

	

	
class robot.running.dynamicmethods.GetKeywordSource(lib)

	Bases: robot.running.dynamicmethods._DynamicMethod

	
name

	

robot.running.handlers module

	
robot.running.handlers.Handler(library, name, method)

	

	
robot.running.handlers.DynamicHandler(library, name, method, doc, argspec, tags=None)

	

	
robot.running.handlers.InitHandler(library, method=None, docgetter=None)

	

	
class robot.running.handlers.EmbeddedArgumentsHandler(name_regexp, orig_handler)

	Bases: object

	
library

	

	
matches(name)

	

	
create_runner(name)

	

robot.running.handlerstore module

	
class robot.running.handlerstore.HandlerStore(source, source_type)

	Bases: object

	
TEST_LIBRARY_TYPE = 'Test library'

	

	
TEST_CASE_FILE_TYPE = 'Test case file'

	

	
RESOURCE_FILE_TYPE = 'Resource file'

	

	
add(handler, embedded=False)

	

	
create_runner(name)

	

robot.running.importer module

	
class robot.running.importer.Importer

	Bases: object

	
reset()

	

	
close_global_library_listeners()

	

	
import_library(name, args, alias, variables)

	

	
import_resource(path)

	

	
class robot.running.importer.ImportCache

	Bases: object

Keeps track on and optionally caches imported items.

Handles paths in keys case-insensitively on case-insensitive OSes.
Unlike dicts, this storage accepts mutable values in keys.

	
add(key, item=None)

	

	
values()

	

robot.running.librarykeywordrunner module

	
class robot.running.librarykeywordrunner.LibraryKeywordRunner(handler, name=None)

	Bases: object

	
library

	

	
libname

	

	
longname

	

	
run(kw, context)

	

	
dry_run(kw, context)

	

	
class robot.running.librarykeywordrunner.EmbeddedArgumentsRunner(handler, name)

	Bases: robot.running.librarykeywordrunner.LibraryKeywordRunner

	
dry_run(kw, context)

	

	
libname

	

	
library

	

	
longname

	

	
run(kw, context)

	

	
class robot.running.librarykeywordrunner.RunKeywordRunner(handler, default_dry_run_keywords=False)

	Bases: robot.running.librarykeywordrunner.LibraryKeywordRunner

	
dry_run(kw, context)

	

	
libname

	

	
library

	

	
longname

	

	
run(kw, context)

	

robot.running.libraryscopes module

	
robot.running.libraryscopes.LibraryScope(libcode, library)

	

	
class robot.running.libraryscopes.GlobalScope(library)

	Bases: object

	
is_global = True

	

	
start_suite()

	

	
end_suite()

	

	
start_test()

	

	
end_test()

	

	
class robot.running.libraryscopes.TestSuiteScope(library)

	Bases: robot.running.libraryscopes.GlobalScope

	
is_global = False

	

	
start_suite()

	

	
end_suite()

	

	
end_test()

	

	
start_test()

	

	
class robot.running.libraryscopes.TestCaseScope(library)

	Bases: robot.running.libraryscopes.TestSuiteScope

	
start_test()

	

	
end_test()

	

	
end_suite()

	

	
is_global = False

	

	
start_suite()

	

robot.running.model module

Module implementing test execution related model objects.

When tests are executed normally, these objects are created based on the test
data on the file system by TestSuiteBuilder, but external
tools can also create an executable test suite model structure directly.
Regardless the approach to create it, the model is executed by calling
run() method of the root test suite. See the
robot.running package level documentation for more information and
examples.

The most important classes defined in this module are TestSuite,
TestCase and Keyword. When tests are executed, these objects
can be inspected and modified by pre-run modifiers [http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#programmatic-modification-of-results] and listeners [http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#listener-interface].
The aforementioned objects are considered stable, but other objects in this
module may still be changed in the future major releases.

	
class robot.running.model.Keyword(name='', doc='', args=(), assign=(), tags=(), timeout=None, type='kw', lineno=None)

	Bases: robot.model.keyword.Keyword

Represents a single executable keyword.

These keywords never have child keywords or messages. The actual keyword
that is executed depends on the context where this model is executed.

See the base class for documentation of attributes not documented here.

	
message_class = None

	Internal usage only.

	
lineno

	

	
run(context)

	Execute the keyword.

Typically called internally by TestSuite.run().

	
FOR_ITEM_TYPE = 'foritem'

	

	
FOR_LOOP_TYPE = 'for'

	

	
KEYWORD_TYPE = 'kw'

	

	
SETUP_TYPE = 'setup'

	

	
TEARDOWN_TYPE = 'teardown'

	

	
args

	

	
assign

	

	
children

	Child keywords and messages in creation order.

	
copy(**attributes)

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

New in Robot Framework 3.0.1.

	
deepcopy(**attributes)

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

New in Robot Framework 3.0.1.

	
doc

	

	
id

	Keyword id in format like s1-t3-k1.

See TestSuite.id for
more information.

	
keyword_class = None

	

	
keywords

	Child keywords as a Keywords object.

	
messages

	Messages as a Messages object.

	
name

	

	
parent

	Parent test suite, test case or keyword.

	
source

	

	
tags

	Keyword tags as a Tags object.

	
timeout

	

	
type

	

	
visit(visitor)

	Visitor interface entry-point.

	
class robot.running.model.ForLoop(variables, values, flavor, lineno=None, _header='FOR', _end='END')

	Bases: robot.running.model.Keyword

Represents a for loop in test data.

Contains keywords in the loop body as child keywords.

	
keyword_class

	Internal usage only.

alias of Keyword

	
flavor

	

	
lineno

	

	
variables

	

	
values

	

	
FOR_ITEM_TYPE = 'foritem'

	

	
FOR_LOOP_TYPE = 'for'

	

	
KEYWORD_TYPE = 'kw'

	

	
SETUP_TYPE = 'setup'

	

	
TEARDOWN_TYPE = 'teardown'

	

	
args

	

	
assign

	

	
children

	Child keywords and messages in creation order.

	
copy(**attributes)

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

New in Robot Framework 3.0.1.

	
deepcopy(**attributes)

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

New in Robot Framework 3.0.1.

	
doc

	

	
id

	Keyword id in format like s1-t3-k1.

See TestSuite.id for
more information.

	
keywords

	Child keywords as a Keywords object.

	
message_class = None

	

	
messages

	Messages as a Messages object.

	
name

	

	
parent

	Parent test suite, test case or keyword.

	
run(context)

	Execute the keyword.

Typically called internally by TestSuite.run().

	
source

	

	
tags

	Keyword tags as a Tags object.

	
timeout

	

	
type

	

	
visit(visitor)

	Visitor interface entry-point.

	
class robot.running.model.TestCase(name='', doc='', tags=None, timeout=None, template=None, lineno=None)

	Bases: robot.model.testcase.TestCase

Represents a single executable test case.

See the base class for documentation of attributes not documented here.

	
keyword_class

	Internal usage only.

alias of Keyword

	
template

	Name of the keyword that has been used as template
when building the test. None if no is template used.

	
lineno

	

	
copy(**attributes)

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

New in Robot Framework 3.0.1.

	
deepcopy(**attributes)

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

New in Robot Framework 3.0.1.

	
doc

	

	
id

	Test case id in format like s1-t3.

See TestSuite.id for
more information.

	
keywords

	Keywords as a Keywords object.

Contains also possible setup and teardown keywords.

	
longname

	Test name prefixed with the long name of the parent suite.

	
name

	

	
parent

	

	
source

	

	
tags

	Test tags as a Tags object.

	
timeout

	

	
visit(visitor)

	Visitor interface entry-point.

	
class robot.running.model.TestSuite(name='', doc='', metadata=None, source=None, rpa=None)

	Bases: robot.model.testsuite.TestSuite

Represents a single executable test suite.

See the base class for documentation of attributes not documented here.

	
test_class

	Internal usage only.

alias of TestCase

	
keyword_class

	Internal usage only.

alias of Keyword

	
resource

	ResourceFile instance containing imports, variables and
keywords the suite owns. When data is parsed from the file system,
this data comes from the same test case file that creates the suite.

	
classmethod from_file_system(*paths, **config)

	Create a TestSuite object based on the given paths.

paths are file or directory paths where to read the data from.

Internally utilizes the TestSuiteBuilder class
and config can be used to configure how it is initialized.

New in Robot Framework 3.2.

	
classmethod from_model(model, name=None)

	Create a TestSuite object based on the given model.

The model can be created by using the
get_model() function and possibly
modified by other tooling in the robot.parsing module.

New in Robot Framework 3.2.

	
configure(randomize_suites=False, randomize_tests=False, randomize_seed=None, **options)

	A shortcut to configure a suite using one method call.

Can only be used with the root test suite.

	Parameters

	
	randomize_xxx – Passed to randomize().

	options – Passed to
SuiteConfigurer that will then
set suite attributes, call filter(), etc. as needed.

Example:

suite.configure(included_tags=['smoke'],
 doc='Smoke test results.')

	
randomize(suites=True, tests=True, seed=None)

	Randomizes the order of suites and/or tests, recursively.

	Parameters

	
	suites – Boolean controlling should suites be randomized.

	tests – Boolean controlling should tests be randomized.

	seed – Random seed. Can be given if previous random order needs
to be re-created. Seed value is always shown in logs and reports.

	
run(settings=None, **options)

	Executes the suite based based the given settings or options.

	Parameters

	
	settings – RobotSettings object
to configure test execution.

	options – Used to construct new
RobotSettings object if settings
are not given.

	Returns

	Result object with
information about executed suites and tests.

If options are used, their names are the same as long command line
options except without hyphens. Some options are ignored (see below),
but otherwise they have the same semantics as on the command line.
Options that can be given on the command line multiple times can be
passed as lists like variable=['VAR1:value1', 'VAR2:value2'].
If such an option is used only once, it can be given also as a single
string like variable='VAR:value'.

Additionally listener option allows passing object directly instead of
listener name, e.g. run('tests.robot', listener=Listener()).

To capture stdout and/or stderr streams, pass open file objects in as
special keyword arguments stdout and stderr, respectively.

Only options related to the actual test execution have an effect.
For example, options related to selecting or modifying test cases or
suites (e.g. --include, --name, --prerunmodifier) or
creating logs and reports are silently ignored. The output XML
generated as part of the execution can be configured, though. This
includes disabling it with output=None.

Example:

stdout = StringIO()
result = suite.run(variable='EXAMPLE:value',
 critical='regression',
 output='example.xml',
 exitonfailure=True,
 stdout=stdout)
print(result.return_code)

To save memory, the returned
Result object does not
have any information about the executed keywords. If that information
is needed, the created output XML file needs to be read using the
ExecutionResult factory method.

See the package level documentation for
more examples, including how to construct executable test suites and
how to create logs and reports based on the execution results.

See the robot.run function for a higher-level
API for executing tests in files or directories.

	
copy(**attributes)

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

New in Robot Framework 3.0.1.

	
deepcopy(**attributes)

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

New in Robot Framework 3.0.1.

	
doc

	

	
filter(included_suites=None, included_tests=None, included_tags=None, excluded_tags=None)

	Select test cases and remove others from this suite.

Parameters have the same semantics as --suite, --test,
--include, and --exclude command line options. All of them
can be given as a list of strings, or when selecting only one, as
a single string.

Child suites that contain no tests after filtering are automatically
removed.

Example:

suite.filter(included_tests=['Test 1', '* Example'],
 included_tags='priority-1')

	
has_tests

	

	
id

	An automatically generated unique id.

The root suite has id s1, its child suites have ids s1-s1,
s1-s2, …, their child suites get ids s1-s1-s1, s1-s1-s2,
…, s1-s2-s1, …, and so on.

The first test in a suite has an id like s1-t1, the second has an
id s1-t2, and so on. Similarly keywords in suites (setup/teardown)
and in tests get ids like s1-k1, s1-t1-k1, and s1-s4-t2-k5.

	
keywords

	Suite setup and teardown as a Keywords object.

	
longname

	Suite name prefixed with the long name of the parent suite.

	
metadata

	Free test suite metadata as a dictionary.

	
name

	Test suite name. If not set, constructed from child suite names.

	
parent

	

	
remove_empty_suites(preserve_direct_children=False)

	Removes all child suites not containing any tests, recursively.

	
rpa

	

	
set_tags(add=None, remove=None, persist=False)

	Add and/or remove specified tags to the tests in this suite.

	Parameters

	
	add – Tags to add as a list or, if adding only one,
as a single string.

	remove – Tags to remove as a list or as a single string.
Can be given as patterns where * and ? work as wildcards.

	persist – Add/remove specified tags also to new tests added
to this suite in the future.

	
source

	

	
suites

	Child suites as a TestSuites object.

	
test_count

	Number of the tests in this suite, recursively.

	
tests

	Tests as a TestCases object.

	
visit(visitor)

	Visitor interface entry-point.

	
class robot.running.model.Variable(name, value, source=None, lineno=None, error=None)

	Bases: object

	
report_invalid_syntax(message, level='ERROR')

	

	
class robot.running.model.ResourceFile(doc='', source=None)

	Bases: object

	
imports

	

	
keywords

	

	
variables

	

	
class robot.running.model.UserKeyword(name, args=(), doc='', tags=(), return_=None, timeout=None, lineno=None, parent=None)

	Bases: object

	
keywords

	

	
tags

	

	
source

	

	
class robot.running.model.Import(type, name, args=(), alias=None, source=None, lineno=None)

	Bases: object

	
ALLOWED_TYPES = ('Library', 'Resource', 'Variables')

	

	
directory

	

	
report_invalid_syntax(message, level='ERROR')

	

	
class robot.running.model.Imports(source, imports=None)

	Bases: robot.model.itemlist.ItemList

	
append(item)

	

	
clear()

	

	
count(item)

	

	
create(*args, **kwargs)

	

	
extend(items)

	

	
index(item, *start_and_end)

	

	
insert(index, item)

	

	
pop(*index)

	

	
remove(item)

	

	
reverse()

	

	
sort()

	

	
visit(visitor)

	

	
library(name, args=(), alias=None, lineno=None)

	

	
resource(path, lineno=None)

	

	
variables(path, args=(), lineno=None)

	

robot.running.namespace module

	
class robot.running.namespace.Namespace(variables, suite, resource)

	Bases: object

	
libraries

	

	
handle_imports()

	

	
import_resource(name, overwrite=True)

	

	
import_variables(name, args, overwrite=False)

	

	
import_library(name, args=(), alias=None, notify=True)

	

	
set_search_order(new_order)

	

	
start_test()

	

	
end_test()

	

	
start_suite()

	

	
end_suite(suite)

	

	
start_user_keyword()

	

	
end_user_keyword()

	

	
get_library_instance(libname)

	

	
get_library_instances()

	

	
reload_library(libname_or_instance)

	

	
get_runner(name)

	

	
class robot.running.namespace.KeywordStore(resource)

	Bases: object

	
get_library(name_or_instance)

	

	
get_runner(name)

	

	
class robot.running.namespace.KeywordRecommendationFinder(user_keywords, libraries, resources)

	Bases: object

	
recommend_similar_keywords(name)

	Return keyword names similar to name.

	
static format_recommendations(message, recommendations)

	

robot.running.outputcapture module

	
class robot.running.outputcapture.OutputCapturer(library_import=False)

	Bases: object

	
class robot.running.outputcapture.PythonCapturer(stdout=True)

	Bases: object

	
release()

	

	
class robot.running.outputcapture.JavaCapturer(stdout=True)

	Bases: object

	
release()

	

robot.running.randomizer module

	
class robot.running.randomizer.Randomizer(randomize_suites=True, randomize_tests=True, seed=None)

	Bases: robot.model.visitor.SuiteVisitor

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_test(test)

	Implements traversing through the test and its keywords.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
visit_keyword(kw)

	Implements traversing through the keyword and its child keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_message(msg)

	Implements visiting the message.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through the suite and its direct children.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

robot.running.runkwregister module

robot.running.runner module

	
class robot.running.runner.Runner(output, settings)

	Bases: robot.model.visitor.SuiteVisitor

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
visit_test(test)

	Implements traversing through the test and its keywords.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_keyword(kw)

	Implements traversing through the keyword and its child keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
visit_message(msg)

	Implements visiting the message.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through the suite and its direct children.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
class robot.running.runner.ModelCombiner(data, result, **priority)

	Bases: object

robot.running.signalhandler module

robot.running.status module

	
class robot.running.status.Failure

	Bases: object

	
class robot.running.status.Exit(failure_mode=False, error_mode=False, skip_teardown_mode=False)

	Bases: object

	
failure_occurred(failure=None, critical=False)

	

	
error_occurred()

	

	
teardown_allowed

	

	
class robot.running.status.SuiteStatus(parent=None, exit_on_failure_mode=False, exit_on_error_mode=False, skip_teardown_on_exit_mode=False)

	Bases: robot.running.status._ExecutionStatus

	
critical_failure_occurred()

	

	
error_occurred()

	

	
failures

	

	
message

	

	
setup_executed(failure=None)

	

	
status

	

	
teardown_allowed

	

	
teardown_executed(failure=None)

	

	
class robot.running.status.TestStatus(parent, test)

	Bases: robot.running.status._ExecutionStatus

	
test_failed(failure)

	

	
critical_failure_occurred()

	

	
error_occurred()

	

	
failures

	

	
message

	

	
setup_executed(failure=None)

	

	
status

	

	
teardown_allowed

	

	
teardown_executed(failure=None)

	

	
class robot.running.status.TestMessage(status)

	Bases: robot.running.status._Message

	
setup_message = 'Setup failed:\n%s'

	

	
teardown_message = 'Teardown failed:\n%s'

	

	
also_teardown_message = '%s\n\nAlso teardown failed:\n%s'

	

	
exit_on_fatal_message = 'Test execution stopped due to a fatal error.'

	

	
exit_on_failure_message = 'Critical failure occurred and exit-on-failure mode is in use.'

	

	
exit_on_error_message = 'Error occurred and exit-on-error mode is in use.'

	

	
message

	

	
class robot.running.status.SuiteMessage(status)

	Bases: robot.running.status._Message

	
setup_message = 'Suite setup failed:\n%s'

	

	
teardown_message = 'Suite teardown failed:\n%s'

	

	
also_teardown_message = '%s\n\nAlso suite teardown failed:\n%s'

	

	
message

	

	
class robot.running.status.ParentMessage(status)

	Bases: robot.running.status.SuiteMessage

	
setup_message = 'Parent suite setup failed:\n%s'

	

	
teardown_message = 'Parent suite teardown failed:\n%s'

	

	
also_teardown_message = '%s\n\nAlso parent suite teardown failed:\n%s'

	

	
message

	

robot.running.statusreporter module

	
class robot.running.statusreporter.StatusReporter(context, result, dry_run_lib_kw=False)

	Bases: object

robot.running.steprunner module

	
class robot.running.steprunner.StepRunner(context, templated=False)

	Bases: object

	
run_steps(steps)

	

	
run_step(step, name=None)

	

	
robot.running.steprunner.ForRunner(context, templated=False, flavor='IN')

	

	
class robot.running.steprunner.ForInRunner(context, templated=False)

	Bases: object

	
flavor = 'IN'

	

	
run(data, name=None)

	

	
class robot.running.steprunner.ForInRangeRunner(context, templated=False)

	Bases: robot.running.steprunner.ForInRunner

	
flavor = 'IN RANGE'

	

	
run(data, name=None)

	

	
class robot.running.steprunner.ForInZipRunner(context, templated=False)

	Bases: robot.running.steprunner.ForInRunner

	
flavor = 'IN ZIP'

	

	
run(data, name=None)

	

	
class robot.running.steprunner.ForInEnumerateRunner(context, templated=False)

	Bases: robot.running.steprunner.ForInRunner

	
flavor = 'IN ENUMERATE'

	

	
run(data, name=None)

	

robot.running.testlibraries module

	
robot.running.testlibraries.TestLibrary(name, args=None, variables=None, create_handlers=True, logger=<robot.output.logger.Logger object>)

	

robot.running.usererrorhandler module

	
class robot.running.usererrorhandler.UserErrorHandler(error, name, libname=None)

	Bases: object

Created if creating handlers fail – running raises DataError.

The idea is not to raise DataError at processing time and prevent all
tests in affected test case file from executing. Instead UserErrorHandler
is created and if it is ever run DataError is raised then.

	Parameters

	
	error (robot.errors.DataError) – Occurred error.

	name (str) – Name of the affected keyword.

	libname (str) – Name of the affected library or resource.

	
longname

	

	
doc

	

	
shortdoc

	

	
create_runner(name)

	

	
run(kw, context)

	

	
dry_run(kw, context)

	

robot.running.userkeyword module

	
class robot.running.userkeyword.UserLibrary(resource, source_type='Resource file')

	Bases: object

	
TEST_CASE_FILE_TYPE = 'Test case file'

	

	
RESOURCE_FILE_TYPE = 'Resource file'

	

	
class robot.running.userkeyword.UserKeywordHandler(keyword, libname)

	Bases: object

	
longname

	

	
shortdoc

	

	
create_runner(name)

	

	
class robot.running.userkeyword.EmbeddedArgumentsHandler(keyword, libname, embedded)

	Bases: robot.running.userkeyword.UserKeywordHandler

	
matches(name)

	

	
create_runner(name)

	

	
longname

	

	
shortdoc

	

robot.running.userkeywordrunner module

	
class robot.running.userkeywordrunner.UserKeywordRunner(handler, name=None)

	Bases: object

	
longname

	

	
libname

	

	
arguments

	

	
run(kw, context)

	

	
dry_run(kw, context)

	

	
class robot.running.userkeywordrunner.EmbeddedArgumentsRunner(handler, name)

	Bases: robot.running.userkeywordrunner.UserKeywordRunner

	
arguments

	

	
dry_run(kw, context)

	

	
libname

	

	
longname

	

	
run(kw, context)

	

robot.running.arguments package

Submodules

robot.running.arguments.argumentconverter module

	
class robot.running.arguments.argumentconverter.ArgumentConverter(argspec, dry_run=False)

	Bases: object

	
convert(positional, named)

	

robot.running.arguments.argumentmapper module

	
class robot.running.arguments.argumentmapper.ArgumentMapper(argspec)

	Bases: object

	
map(positional, named, replace_defaults=True)

	

	
class robot.running.arguments.argumentmapper.KeywordCallTemplate(argspec)

	Bases: object

	
fill_positional(positional)

	

	
fill_named(named)

	

	
replace_defaults()

	

	
class robot.running.arguments.argumentmapper.DefaultValue(value)

	Bases: object

	
resolve(variables)

	

robot.running.arguments.argumentparser module

	
robot.running.arguments.argumentparser.getfullargspec(func)

	

	
class robot.running.arguments.argumentparser.PythonArgumentParser(type='Keyword')

	Bases: robot.running.arguments.argumentparser._ArgumentParser

	
parse(handler, name=None)

	

	
class robot.running.arguments.argumentparser.JavaArgumentParser(type='Keyword')

	Bases: robot.running.arguments.argumentparser._ArgumentParser

	
parse(signatures, name=None)

	

	
class robot.running.arguments.argumentparser.DynamicArgumentParser(type='Keyword')

	Bases: robot.running.arguments.argumentparser._ArgumentSpecParser

	
parse(argspec, name=None)

	

	
class robot.running.arguments.argumentparser.UserKeywordArgumentParser(type='Keyword')

	Bases: robot.running.arguments.argumentparser._ArgumentSpecParser

	
parse(argspec, name=None)

	

robot.running.arguments.argumentresolver module

	
class robot.running.arguments.argumentresolver.ArgumentResolver(argspec, resolve_named=True, resolve_variables_until=None, dict_to_kwargs=False)

	Bases: object

	
resolve(arguments, variables=None)

	

	
class robot.running.arguments.argumentresolver.NamedArgumentResolver(argspec)

	Bases: object

	
resolve(arguments, variables=None)

	

	
class robot.running.arguments.argumentresolver.NullNamedArgumentResolver

	Bases: object

	
resolve(arguments, variables=None)

	

	
class robot.running.arguments.argumentresolver.DictToKwargs(argspec, enabled=False)

	Bases: object

	
handle(positional, named)

	

	
class robot.running.arguments.argumentresolver.VariableReplacer(resolve_until=None)

	Bases: object

	
replace(positional, named, variables=None)

	

robot.running.arguments.argumentspec module

	
class robot.running.arguments.argumentspec.ArgumentSpec(name=None, type='Keyword', positional=None, varargs=None, kwonlyargs=None, kwargs=None, defaults=None, types=None, supports_named=True)

	Bases: object

	
types

	

	
minargs

	

	
maxargs

	

	
argument_names

	

	
resolve(arguments, variables=None, resolve_named=True, resolve_variables_until=None, dict_to_kwargs=False)

	

	
map(positional, named, replace_defaults=True)

	

robot.running.arguments.argumentvalidator module

	
class robot.running.arguments.argumentvalidator.ArgumentValidator(argspec)

	Bases: object

	
validate(positional, named, dryrun=False)

	

robot.running.arguments.embedded module

	
class robot.running.arguments.embedded.EmbeddedArguments(name)

	Bases: object

	
class robot.running.arguments.embedded.EmbeddedArgumentParser

	Bases: object

	
parse(string)

	

robot.running.arguments.javaargumentcoercer module

robot.running.arguments.typeconverters module

	
class robot.running.arguments.typeconverters.Enum

	Bases: object

	
class robot.running.arguments.typeconverters.TypeConverter

	Bases: object

	
type = None

	

	
abc = None

	

	
aliases = ()

	

	
convert_none = True

	

	
type_name

	

	
classmethod register(converter_class)

	

	
classmethod converter_for(type_)

	

	
handles(type_)

	

	
get_converter(type_)

	

	
convert(name, value, explicit_type=True)

	

	
class robot.running.arguments.typeconverters.BooleanConverter

	Bases: robot.running.arguments.typeconverters.TypeConverter

	
type

	alias of __builtin__.bool

	
type_name = 'boolean'

	

	
aliases = ('bool',)

	

	
abc = None

	

	
convert(name, value, explicit_type=True)

	

	
convert_none = True

	

	
classmethod converter_for(type_)

	

	
get_converter(type_)

	

	
handles(type_)

	

	
classmethod register(converter_class)

	

	
class robot.running.arguments.typeconverters.IntegerConverter

	Bases: robot.running.arguments.typeconverters.TypeConverter

	
type

	alias of __builtin__.int

	
abc

	alias of numbers.Integral

	
type_name = 'integer'

	

	
aliases = ('int', 'long')

	

	
convert(name, value, explicit_type=True)

	

	
convert_none = True

	

	
classmethod converter_for(type_)

	

	
get_converter(type_)

	

	
handles(type_)

	

	
classmethod register(converter_class)

	

	
class robot.running.arguments.typeconverters.FloatConverter

	Bases: robot.running.arguments.typeconverters.TypeConverter

	
type

	alias of __builtin__.float

	
abc

	alias of numbers.Real

	
aliases = ('double',)

	

	
convert(name, value, explicit_type=True)

	

	
convert_none = True

	

	
classmethod converter_for(type_)

	

	
get_converter(type_)

	

	
handles(type_)

	

	
classmethod register(converter_class)

	

	
type_name

	

	
class robot.running.arguments.typeconverters.DecimalConverter

	Bases: robot.running.arguments.typeconverters.TypeConverter

	
type

	alias of decimal.Decimal

	
abc = None

	

	
aliases = ()

	

	
convert(name, value, explicit_type=True)

	

	
convert_none = True

	

	
classmethod converter_for(type_)

	

	
get_converter(type_)

	

	
handles(type_)

	

	
classmethod register(converter_class)

	

	
type_name

	

	
class robot.running.arguments.typeconverters.BytesConverter

	Bases: robot.running.arguments.typeconverters.TypeConverter

	
type

	alias of __builtin__.str

	
abc = None

	

	
type_name = 'bytes'

	

	
convert_none = False

	

	
aliases = ()

	

	
convert(name, value, explicit_type=True)

	

	
classmethod converter_for(type_)

	

	
get_converter(type_)

	

	
handles(type_)

	

	
classmethod register(converter_class)

	

	
class robot.running.arguments.typeconverters.ByteArrayConverter

	Bases: robot.running.arguments.typeconverters.TypeConverter

	
type

	alias of __builtin__.bytearray

	
convert_none = False

	

	
abc = None

	

	
aliases = ()

	

	
convert(name, value, explicit_type=True)

	

	
classmethod converter_for(type_)

	

	
get_converter(type_)

	

	
handles(type_)

	

	
classmethod register(converter_class)

	

	
type_name

	

	
class robot.running.arguments.typeconverters.DateTimeConverter

	Bases: robot.running.arguments.typeconverters.TypeConverter

	
type

	alias of datetime.datetime

	
abc = None

	

	
aliases = ()

	

	
convert(name, value, explicit_type=True)

	

	
convert_none = True

	

	
classmethod converter_for(type_)

	

	
get_converter(type_)

	

	
handles(type_)

	

	
classmethod register(converter_class)

	

	
type_name

	

	
class robot.running.arguments.typeconverters.DateConverter

	Bases: robot.running.arguments.typeconverters.TypeConverter

	
type

	alias of datetime.date

	
abc = None

	

	
aliases = ()

	

	
convert(name, value, explicit_type=True)

	

	
convert_none = True

	

	
classmethod converter_for(type_)

	

	
get_converter(type_)

	

	
handles(type_)

	

	
classmethod register(converter_class)

	

	
type_name

	

	
class robot.running.arguments.typeconverters.TimeDeltaConverter

	Bases: robot.running.arguments.typeconverters.TypeConverter

	
type

	alias of datetime.timedelta

	
abc = None

	

	
aliases = ()

	

	
convert(name, value, explicit_type=True)

	

	
convert_none = True

	

	
classmethod converter_for(type_)

	

	
get_converter(type_)

	

	
handles(type_)

	

	
classmethod register(converter_class)

	

	
type_name

	

	
class robot.running.arguments.typeconverters.EnumConverter(enum=None)

	Bases: robot.running.arguments.typeconverters.TypeConverter

	
type

	alias of Enum

	
type_name

	

	
get_converter(type_)

	

	
abc = None

	

	
aliases = ()

	

	
convert(name, value, explicit_type=True)

	

	
convert_none = True

	

	
classmethod converter_for(type_)

	

	
handles(type_)

	

	
classmethod register(converter_class)

	

	
class robot.running.arguments.typeconverters.NoneConverter

	Bases: robot.running.arguments.typeconverters.TypeConverter

	
type

	alias of __builtin__.NoneType

	
abc = None

	

	
aliases = ()

	

	
convert(name, value, explicit_type=True)

	

	
convert_none = True

	

	
classmethod converter_for(type_)

	

	
get_converter(type_)

	

	
handles(type_)

	

	
classmethod register(converter_class)

	

	
type_name

	

	
class robot.running.arguments.typeconverters.ListConverter

	Bases: robot.running.arguments.typeconverters.TypeConverter

	
type

	alias of __builtin__.list

	
abc

	alias of _abcoll.Sequence

	
aliases = ()

	

	
convert(name, value, explicit_type=True)

	

	
convert_none = True

	

	
classmethod converter_for(type_)

	

	
get_converter(type_)

	

	
handles(type_)

	

	
classmethod register(converter_class)

	

	
type_name

	

	
class robot.running.arguments.typeconverters.TupleConverter

	Bases: robot.running.arguments.typeconverters.TypeConverter

	
type

	alias of __builtin__.tuple

	
abc = None

	

	
aliases = ()

	

	
convert(name, value, explicit_type=True)

	

	
convert_none = True

	

	
classmethod converter_for(type_)

	

	
get_converter(type_)

	

	
handles(type_)

	

	
classmethod register(converter_class)

	

	
type_name

	

	
class robot.running.arguments.typeconverters.DictionaryConverter

	Bases: robot.running.arguments.typeconverters.TypeConverter

	
type

	alias of __builtin__.dict

	
abc

	alias of _abcoll.Mapping

	
type_name = 'dictionary'

	

	
aliases = ('dict', 'map')

	

	
convert(name, value, explicit_type=True)

	

	
convert_none = True

	

	
classmethod converter_for(type_)

	

	
get_converter(type_)

	

	
handles(type_)

	

	
classmethod register(converter_class)

	

	
class robot.running.arguments.typeconverters.SetConverter

	Bases: robot.running.arguments.typeconverters.TypeConverter

	
type

	alias of __builtin__.set

	
abc

	alias of _abcoll.Set

	
aliases = ()

	

	
convert(name, value, explicit_type=True)

	

	
convert_none = True

	

	
classmethod converter_for(type_)

	

	
get_converter(type_)

	

	
handles(type_)

	

	
classmethod register(converter_class)

	

	
type_name

	

	
class robot.running.arguments.typeconverters.FrozenSetConverter

	Bases: robot.running.arguments.typeconverters.TypeConverter

	
type

	alias of __builtin__.frozenset

	
abc = None

	

	
aliases = ()

	

	
convert(name, value, explicit_type=True)

	

	
convert_none = True

	

	
classmethod converter_for(type_)

	

	
get_converter(type_)

	

	
handles(type_)

	

	
classmethod register(converter_class)

	

	
type_name

	

robot.running.arguments.typevalidator module

	
class robot.running.arguments.typevalidator.TypeValidator(argspec)

	Bases: object

	
validate(types)

	

	
validate_type_dict(types)

	

	
convert_type_list_to_dict(types)

	

robot.running.builder package

Submodules

robot.running.builder.builders module

	
class robot.running.builder.builders.TestSuiteBuilder(included_suites=None, included_extensions=('robot',), rpa=None, allow_empty_suite=False, process_curdir=True)

	Bases: object

Builder to construct TestSuite objects based on data on the disk.

The build() method constructs executable
TestSuite objects based on test data files
or directories. There are two main use cases for this API:

	Execute the created suite by using its
run() method. The suite can be
can be modified before execution if needed.

	Inspect the suite to see, for example, what tests it has or what tags
tests have. This can be more convenient than using the lower level
parsing APIs but does not allow saving modified data
back to the disk.

Both modifying the suite and inspecting what data it contains are easiest
done by using the visitor interface.

This class is part of the public API and should be imported via the
robot.api package.

	Parameters

	
	include_suites – List of suite names to include. If None or an empty list,
all suites are included. Same as using --suite on
the command line.

	included_extensions – List of extensions of files to parse. Same as --extension.
This parameter was named extension before RF 3.2.

	rpa – Explicit test execution mode. True for RPA and
False for test automation. By default mode is got from test
data headers and possible conflicting headers cause an error.
Same as --rpa or --norpa.

	allow_empty_suite – Specify is it an error if the built suite contains no tests.
Same as --runemptysuite. New in RF 3.2.

	process_curdir – Control processing the special ${CURDIR} variable. It is
resolved already at parsing time by default, but that can be
changed by giving this argument False value. New in RF 3.2.

	
build(*paths)

	
	Parameters

	paths – Paths to test data files or directories.

	Returns

	TestSuite instance.

	
class robot.running.builder.builders.SuiteStructureParser(included_extensions, rpa=None, process_curdir=True)

	Bases: robot.parsing.suitestructure.SuiteStructureVisitor

	
parse(structure)

	

	
visit_file(structure)

	

	
start_directory(structure)

	

	
end_directory(structure)

	

	
visit_directory(structure)

	

	
class robot.running.builder.builders.ResourceFileBuilder(process_curdir=True)

	Bases: object

	
build(source)

	

robot.running.builder.parsers module

	
class robot.running.builder.parsers.BaseParser

	Bases: object

	
parse_init_file(source, defaults=None)

	

	
parse_suite_file(source, defaults=None)

	

	
parse_resource_file(source)

	

	
class robot.running.builder.parsers.RobotParser(process_curdir=True)

	Bases: robot.running.builder.parsers.BaseParser

	
parse_init_file(source, defaults=None)

	

	
parse_suite_file(source, defaults=None)

	

	
build_suite(model, name=None, defaults=None)

	

	
parse_resource_file(source)

	

	
class robot.running.builder.parsers.RestParser(process_curdir=True)

	Bases: robot.running.builder.parsers.RobotParser

	
build_suite(model, name=None, defaults=None)

	

	
parse_init_file(source, defaults=None)

	

	
parse_resource_file(source)

	

	
parse_suite_file(source, defaults=None)

	

	
class robot.running.builder.parsers.NoInitFileDirectoryParser

	Bases: robot.running.builder.parsers.BaseParser

	
parse_init_file(source, defaults=None)

	

	
parse_resource_file(source)

	

	
parse_suite_file(source, defaults=None)

	

	
robot.running.builder.parsers.format_name(source)

	

	
class robot.running.builder.parsers.ErrorReporter(source)

	Bases: ast.NodeVisitor

	
visit_Error(node)

	

	
generic_visit(node)

	Called if no explicit visitor function exists for a node.

	
visit(node)

	Visit a node.

robot.running.builder.testsettings module

	
class robot.running.builder.testsettings.TestDefaults(parent=None)

	Bases: object

	
setup

	

	
teardown

	

	
force_tags

	

	
timeout

	

	
class robot.running.builder.testsettings.TestSettings(defaults)

	Bases: object

	
setup

	

	
teardown

	

	
timeout

	

	
template

	

	
tags

	

robot.running.builder.transformers module

	
robot.running.builder.transformers.fixture(node, fixture_type)

	

	
class robot.running.builder.transformers.SettingsBuilder(suite, test_defaults)

	Bases: ast.NodeVisitor

	
visit_Documentation(node)

	

	
visit_Metadata(node)

	

	
visit_SuiteSetup(node)

	

	
visit_SuiteTeardown(node)

	

	
visit_TestSetup(node)

	

	
visit_TestTeardown(node)

	

	
visit_TestTimeout(node)

	

	
visit_DefaultTags(node)

	

	
visit_ForceTags(node)

	

	
visit_TestTemplate(node)

	

	
visit_ResourceImport(node)

	

	
visit_LibraryImport(node)

	

	
visit_VariablesImport(node)

	

	
visit_VariableSection(node)

	

	
visit_TestCaseSection(node)

	

	
visit_KeywordSection(node)

	

	
generic_visit(node)

	Called if no explicit visitor function exists for a node.

	
visit(node)

	Visit a node.

	
class robot.running.builder.transformers.SuiteBuilder(suite, test_defaults)

	Bases: ast.NodeVisitor

	
visit_SettingSection(node)

	

	
visit_Variable(node)

	

	
visit_TestCase(node)

	

	
visit_Keyword(node)

	

	
generic_visit(node)

	Called if no explicit visitor function exists for a node.

	
visit(node)

	Visit a node.

	
class robot.running.builder.transformers.ResourceBuilder(resource)

	Bases: ast.NodeVisitor

	
visit_Documentation(node)

	

	
visit_LibraryImport(node)

	

	
visit_ResourceImport(node)

	

	
visit_VariablesImport(node)

	

	
visit_Variable(node)

	

	
visit_Keyword(node)

	

	
generic_visit(node)

	Called if no explicit visitor function exists for a node.

	
visit(node)

	Visit a node.

	
class robot.running.builder.transformers.TestCaseBuilder(suite, defaults)

	Bases: ast.NodeVisitor

	
visit_TestCase(node)

	

	
visit_ForLoop(node)

	

	
visit_TemplateArguments(node)

	

	
visit_Documentation(node)

	

	
visit_Setup(node)

	

	
visit_Teardown(node)

	

	
visit_Timeout(node)

	

	
visit_Tags(node)

	

	
visit_Template(node)

	

	
visit_KeywordCall(node)

	

	
generic_visit(node)

	Called if no explicit visitor function exists for a node.

	
visit(node)

	Visit a node.

	
class robot.running.builder.transformers.KeywordBuilder(resource)

	Bases: ast.NodeVisitor

	
visit_Keyword(node)

	

	
visit_Documentation(node)

	

	
visit_Arguments(node)

	

	
visit_Tags(node)

	

	
visit_Return(node)

	

	
visit_Timeout(node)

	

	
visit_Teardown(node)

	

	
visit_KeywordCall(node)

	

	
visit_ForLoop(node)

	

	
generic_visit(node)

	Called if no explicit visitor function exists for a node.

	
visit(node)

	Visit a node.

	
class robot.running.builder.transformers.ForLoopBuilder(loop)

	Bases: ast.NodeVisitor

	
visit_KeywordCall(node)

	

	
visit_TemplateArguments(node)

	

	
generic_visit(node)

	Called if no explicit visitor function exists for a node.

	
visit(node)

	Visit a node.

robot.running.timeouts package

	
class robot.running.timeouts.TestTimeout(timeout=None, variables=None, rpa=False)

	Bases: robot.running.timeouts._Timeout

	
type = 'Test'

	

	
set_keyword_timeout(timeout_occurred)

	

	
any_timeout_occurred()

	

	
active

	

	
get_message()

	

	
replace_variables(variables)

	

	
run(runnable, args=None, kwargs=None)

	

	
start()

	

	
time_left()

	

	
timed_out()

	

	
class robot.running.timeouts.KeywordTimeout(timeout=None, variables=None)

	Bases: robot.running.timeouts._Timeout

	
active

	

	
get_message()

	

	
replace_variables(variables)

	

	
run(runnable, args=None, kwargs=None)

	

	
start()

	

	
time_left()

	

	
timed_out()

	

	
type = 'Keyword'

	

Submodules

robot.running.timeouts.ironpython module

robot.running.timeouts.jython module

robot.running.timeouts.posix module

	
class robot.running.timeouts.posix.Timeout(timeout, error)

	Bases: object

	
execute(runnable)

	

robot.running.timeouts.windows module

	
class robot.running.timeouts.windows.Timeout(timeout, error)

	Bases: object

	
execute(runnable)

	

robot.tidypkg package

Submodules

robot.tidypkg.transformers module

	
class robot.tidypkg.transformers.Cleaner

	Bases: robot.parsing.model.visitor.ModelTransformer

Clean up and normalize data.

Following transformations are made:
1) section headers are normalized to format *** Section Name ***
2) setting names are normalize in setting table and in test cases and

user keywords to format Setting Name or [Setting Name]

	settings without values are removed

	Empty lines after section headers and within items are removed

	For loop declaration and end tokens are normalized to FOR and END

	Old style for loop indent (i.e. a cell with only a ``) are removed

	
visit_CommentSection(section)

	

	
visit_Section(section)

	

	
visit_Statement(statement)

	

	
visit_ForLoop(loop)

	

	
generic_visit(node)

	Called if no explicit visitor function exists for a node.

	
visit(node)

	Visit a node.

	
class robot.tidypkg.transformers.NewlineNormalizer(newline, short_test_name_length)

	Bases: robot.parsing.model.visitor.ModelTransformer

Normalize new lines in test data

After this transformation, there is exactly one empty line between each
section and between each test or user keyword.

	
visit_File(node)

	

	
visit_Section(node)

	

	
visit_CommentSection(node)

	

	
visit_TestCaseSection(node)

	

	
visit_TestCase(node)

	

	
visit_KeywordSection(node)

	

	
visit_Keyword(node)

	

	
visit_Statement(statement)

	

	
generic_visit(node)

	Called if no explicit visitor function exists for a node.

	
visit(node)

	Visit a node.

	
class robot.tidypkg.transformers.SeparatorNormalizer(use_pipes, space_count)

	Bases: robot.parsing.model.visitor.ModelTransformer

Make separators and indentation consistent.

	
visit_TestCase(node)

	

	
visit_Keyword(node)

	

	
visit_ForLoop(node)

	

	
visit_Statement(statement)

	

	
generic_visit(node)

	Called if no explicit visitor function exists for a node.

	
visit(node)

	Visit a node.

	
class robot.tidypkg.transformers.ColumnAligner(short_test_name_length, widths)

	Bases: robot.parsing.model.visitor.ModelTransformer

	
visit_TestCase(node)

	

	
visit_ForLoop(node)

	

	
visit_Statement(statement)

	

	
align_header(statement)

	

	
align_statement(statement)

	

	
widths_for_line(line)

	

	
should_write_content_after_name(line_pos)

	

	
generic_visit(node)

	Called if no explicit visitor function exists for a node.

	
visit(node)

	Visit a node.

	
class robot.tidypkg.transformers.ColumnWidthCounter

	Bases: robot.parsing.model.visitor.ModelTransformer

	
visit_Statement(statement)

	

	
generic_visit(node)

	Called if no explicit visitor function exists for a node.

	
visit(node)

	Visit a node.

	
class robot.tidypkg.transformers.Aligner(short_test_name_length, setting_and_variable_name_length, pipes_mode)

	Bases: robot.parsing.model.visitor.ModelTransformer

	
visit_TestCaseSection(section)

	

	
visit_KeywordSection(section)

	

	
visit_Statement(statement)

	

	
generic_visit(node)

	Called if no explicit visitor function exists for a node.

	
visit(node)

	Visit a node.

robot.utils package

Various generic utility functions and classes.

Utilities are mainly for internal usage, but external libraries and tools
may find some of them useful. Utilities are generally stable, but absolute
backwards compatibility between major versions is not guaranteed.

All utilities are exposed via the robot.utils package, and should be
used either like:

from robot import utils

assert utils.Matcher('H?llo').match('Hillo')

or:

from robot.utils import Matcher

assert Matcher('H?llo').match('Hillo')

	
robot.utils.read_rest_data(rstfile)

	

Submodules

robot.utils.application module

	
class robot.utils.application.Application(usage, name=None, version=None, arg_limits=None, env_options=None, logger=None, **auto_options)

	Bases: object

	
main(arguments, **options)

	

	
validate(options, arguments)

	

	
execute_cli(cli_arguments, exit=True)

	

	
console(msg)

	

	
parse_arguments(cli_args)

	Public interface for parsing command line arguments.

	Parameters

	cli_args – Command line arguments as a list

	Returns

	options (dict), arguments (list)

	Raises

	Information when –help or –version used

	Raises

	DataError when parsing fails

	
execute(*arguments, **options)

	

	
class robot.utils.application.DefaultLogger

	Bases: object

	
info(message)

	

	
error(message)

	

	
close()

	

robot.utils.argumentparser module

	
robot.utils.argumentparser.cmdline2list(args, escaping=False)

	

	
class robot.utils.argumentparser.ArgumentParser(usage, name=None, version=None, arg_limits=None, validator=None, env_options=None, auto_help=True, auto_version=True, auto_pythonpath=True, auto_argumentfile=True)

	Bases: object

Available options and tool name are read from the usage.

Tool name is got from the first row of the usage. It is either the
whole row or anything before first ‘ – ‘.

	
parse_args(args)

	Parse given arguments and return options and positional arguments.

Arguments must be given as a list and are typically sys.argv[1:].

Options are returned as a dictionary where long options are keys. Value
is a string for those options that can be given only one time (if they
are given multiple times the last value is used) or None if the option
is not used at all. Value for options that can be given multiple times
(denoted with ‘*’ in the usage) is a list which contains all the given
values and is empty if options are not used. Options not taken
arguments have value False when they are not set and True otherwise.

Positional arguments are returned as a list in the order they are given.

If ‘check_args’ is True, this method will automatically check that
correct number of arguments, as parsed from the usage line, are given.
If the last argument in the usage line ends with the character ‘s’,
the maximum number of arguments is infinite.

Possible errors in processing arguments are reported using DataError.

Some options have a special meaning and are handled automatically
if defined in the usage and given from the command line:

–argumentfile can be used to automatically read arguments from
a specified file. When –argumentfile is used, the parser always
allows using it multiple times. Adding ‘*’ to denote that is thus
recommend. A special value ‘stdin’ can be used to read arguments from
stdin instead of a file.

–pythonpath can be used to add extra path(s) to sys.path.

–help and –version automatically generate help and version messages.
Version is generated based on the tool name and version – see __init__
for information how to set them. Help contains the whole usage given to
__init__. Possible <VERSION> text in the usage is replaced with the
given version. Both help and version are wrapped to Information
exception.

	
class robot.utils.argumentparser.ArgLimitValidator(arg_limits)

	Bases: object

	
class robot.utils.argumentparser.ArgFileParser(options)

	Bases: object

	
process(args)

	

robot.utils.asserts module

Convenience functions for testing both in unit and higher levels.

	Benefits:

	
	Integrates 100% with unittest (see example below)

	Can be easily used without unittest (using unittest.TestCase when you
only need convenient asserts is not so nice)

	Saved typing and shorter lines because no need to have ‘self.’ before
asserts. These are static functions after all so that is OK.

	All ‘equals’ methods (by default) report given values even if optional
message given. This behavior can be controlled with the optional values
argument.

	Drawbacks:

	
	unittest is not able to filter as much non-interesting traceback away
as with its own methods because AssertionErrors occur outside.

Most of the functions are copied more or less directly from unittest.TestCase
which comes with the following license. Further information about unittest in
general can be found from http://pyunit.sourceforge.net/. This module can be
used freely in same terms as unittest.

unittest license:

Copyright (c) 1999-2003 Steve Purcell
This module is free software, and you may redistribute it and/or modify
it under the same terms as Python itself, so long as this copyright message
and disclaimer are retained in their original form.

IN NO EVENT SHALL THE AUTHOR BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF
THIS CODE, EVEN IF THE AUTHOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

THE AUTHOR SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE CODE PROVIDED HEREUNDER IS ON AN "AS IS" BASIS,
AND THERE IS NO OBLIGATION WHATSOEVER TO PROVIDE MAINTENANCE,
SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Examples:

import unittest
from robot.utils.asserts import assert_equal

class MyTests(unittest.TestCase):

 def test_old_style(self):
 self.assertEqual(1, 2, 'my msg')

 def test_new_style(self):
 assert_equal(1, 2, 'my msg')

Example output:

FF
==
FAIL: test_old_style (example.MyTests)
--
Traceback (most recent call last):
 File "example.py", line 7, in test_old_style
 self.assertEqual(1, 2, 'my msg')
AssertionError: my msg

==
FAIL: test_new_style (example.MyTests)
--
Traceback (most recent call last):
 File "example.py", line 10, in test_new_style
 assert_equal(1, 2, 'my msg')
 File "/path/to/robot/utils/asserts.py", line 181, in assert_equal
 _report_inequality_failure(first, second, msg, values, '!=')
 File "/path/to/robot/utils/asserts.py", line 229, in _report_inequality_failure
 raise AssertionError(msg)
AssertionError: my msg: 1 != 2

--
Ran 2 tests in 0.000s

FAILED (failures=2)

	
robot.utils.asserts.fail(msg=None)

	Fail test immediately with the given message.

	
robot.utils.asserts.assert_false(expr, msg=None)

	Fail the test if the expression is True.

	
robot.utils.asserts.assert_true(expr, msg=None)

	Fail the test unless the expression is True.

	
robot.utils.asserts.assert_not_none(obj, msg=None, values=True)

	Fail the test if given object is None.

	
robot.utils.asserts.assert_none(obj, msg=None, values=True)

	Fail the test if given object is not None.

	
robot.utils.asserts.assert_raises(exc_class, callable_obj, *args, **kwargs)

	Fail unless an exception of class exc_class is thrown by callable_obj.

callable_obj is invoked with arguments args and keyword arguments
kwargs. If a different type of exception is thrown, it will not be
caught, and the test case will be deemed to have suffered an
error, exactly as for an unexpected exception.

If a correct exception is raised, the exception instance is returned
by this method.

	
robot.utils.asserts.assert_raises_with_msg(exc_class, expected_msg, callable_obj, *args, **kwargs)

	Similar to fail_unless_raises but also checks the exception message.

	
robot.utils.asserts.assert_equal(first, second, msg=None, values=True, formatter=None)

	Fail if given objects are unequal as determined by the ‘==’ operator.

	
robot.utils.asserts.assert_not_equal(first, second, msg=None, values=True, formatter=None)

	Fail if given objects are equal as determined by the ‘==’ operator.

	
robot.utils.asserts.assert_almost_equal(first, second, places=7, msg=None, values=True)

	Fail if the two objects are unequal after rounded to given places.

inequality is determined by object’s difference rounded to the
given number of decimal places (default 7) and comparing to zero.
Note that decimal places (from zero) are usually not the same as
significant digits (measured from the most significant digit).

	
robot.utils.asserts.assert_not_almost_equal(first, second, places=7, msg=None, values=True)

	Fail if the two objects are unequal after rounded to given places.

Equality is determined by object’s difference rounded to to the
given number of decimal places (default 7) and comparing to zero.
Note that decimal places (from zero) are usually not the same as
significant digits (measured from the most significant digit).

robot.utils.charwidth module

A module to handle different character widths on the console.

Some East Asian characters have width of two on console, and combining
characters themselves take no extra space.

See issue 604 [1] for more details about East Asian characters. The issue also
contains generate_wild_chars.py script that was originally used to create
_EAST_ASIAN_WILD_CHARS mapping. An updated version of the script is attached
to issue 1096. Big thanks for xieyanbo for the script and the original patch.

Note that Python’s unicodedata module is not used here because importing
it takes several seconds on Jython.

[1] https://github.com/robotframework/robotframework/issues/604
[2] https://github.com/robotframework/robotframework/issues/1096

	
robot.utils.charwidth.get_char_width(char)

	

robot.utils.compat module

	
robot.utils.compat.unwrap(func)

	

	
robot.utils.compat.py2to3(cls)

	

	
robot.utils.compat.with_metaclass(meta, *bases)

	Create a base class with a metaclass.

	
robot.utils.compat.isatty(stream)

	

robot.utils.compress module

	
robot.utils.compress.compress_text(text)

	

robot.utils.connectioncache module

	
class robot.utils.connectioncache.ConnectionCache(no_current_msg='No open connection.')

	Bases: object

Cache for test libs to use with concurrent connections, processes, etc.

The cache stores the registered connections (or other objects) and allows
switching between them using generated indices or user given aliases.
This is useful with any test library where there’s need for multiple
concurrent connections, processes, etc.

This class can, and is, used also outside the core framework by SSHLibrary,
Selenium(2)Library, etc. Backwards compatibility is thus important when
doing changes.

	
current = None

	Current active connection.

	
current_index

	

	
register(connection, alias=None)

	Registers given connection with optional alias and returns its index.

Given connection is set to be the current connection.

If alias is given, it must be a string. Aliases are case and space
insensitive.

The index of the first connection after initialization, and after
close_all() or empty_cache(), is 1, second is 2, etc.

	
switch(alias_or_index)

	Switches to the connection specified by the given alias or index.

Updates current and also returns its new value.

Alias is whatever was given to register() method and indices
are returned by it. Index can be given either as an integer or
as a string that can be converted to an integer. Raises an error
if no connection with the given index or alias found.

	
get_connection(alias_or_index=None)

	Get the connection specified by the given alias or index..

If alias_or_index is None, returns the current connection
if it is active, or raises an error if it is not.

Alias is whatever was given to register() method and indices
are returned by it. Index can be given either as an integer or
as a string that can be converted to an integer. Raises an error
if no connection with the given index or alias found.

	
close_all(closer_method='close')

	Closes connections using given closer method and empties cache.

If simply calling the closer method is not adequate for closing
connections, clients should close connections themselves and use
empty_cache() afterwards.

	
empty_cache()

	Empties the connection cache.

Indexes of the new connections starts from 1 after this.

	
resolve_alias_or_index(alias_or_index)

	

	
class robot.utils.connectioncache.NoConnection(message)

	Bases: object

	
raise_error()

	

robot.utils.dotdict module

	
class robot.utils.dotdict.DotDict(*args, **kwds)

	Bases: collections.OrderedDict

	
clear() → None. Remove all items from od.

	

	
copy() → a shallow copy of od

	

	
classmethod fromkeys(S[, v]) → New ordered dictionary with keys from S.

	If not specified, the value defaults to None.

	
get(k[, d]) → D[k] if k in D, else d. d defaults to None.

	

	
has_key(k) → True if D has a key k, else False

	

	
items() → list of (key, value) pairs in od

	

	
iteritems()

	od.iteritems -> an iterator over the (key, value) pairs in od

	
iterkeys() → an iterator over the keys in od

	

	
itervalues()

	od.itervalues -> an iterator over the values in od

	
keys() → list of keys in od

	

	
pop(k[, d]) → v, remove specified key and return the corresponding

	value. If key is not found, d is returned if given, otherwise KeyError
is raised.

	
popitem() → (k, v), return and remove a (key, value) pair.

	Pairs are returned in LIFO order if last is true or FIFO order if false.

	
setdefault(k[, d]) → od.get(k,d), also set od[k]=d if k not in od

	

	
update([E,]**F) → None. Update D from mapping/iterable E and F.

	If E present and has a .keys() method, does: for k in E: D[k] = E[k]
If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v
In either case, this is followed by: for k, v in F.items(): D[k] = v

	
values() → list of values in od

	

	
viewitems() → a set-like object providing a view on od's items

	

	
viewkeys() → a set-like object providing a view on od's keys

	

	
viewvalues() → an object providing a view on od's values

	

robot.utils.encoding module

	
robot.utils.encoding.console_decode(string, encoding='UTF-8', force=False)

	Decodes bytes from console encoding to Unicode.

By default uses the system console encoding, but that can be configured
using the encoding argument. In addition to the normal encodings,
it is possible to use case-insensitive values CONSOLE and SYSTEM to
use the system console and system encoding, respectively.

By default returns Unicode strings as-is. The force argument can be used
on IronPython where all strings are unicode and caller knows decoding
is needed.

	
robot.utils.encoding.console_encode(string, errors='replace', stream=<open file '<stdout>', mode 'w'>)

	Encodes Unicode to bytes in console or system encoding.

Determines the encoding to use based on the given stream and system
configuration. On Python 3 and IronPython returns Unicode, otherwise
returns bytes.

	
robot.utils.encoding.system_decode(string)

	Decodes bytes from system (e.g. cli args or env vars) to Unicode.

Depending on the usage, at least cli args may already be Unicode.

	
robot.utils.encoding.system_encode(string, errors='replace')

	Encodes Unicode to system encoding (e.g. cli args and env vars).

Non-Unicode values are first converted to Unicode.

robot.utils.encodingsniffer module

	
robot.utils.encodingsniffer.get_system_encoding()

	

	
robot.utils.encodingsniffer.get_console_encoding()

	

robot.utils.error module

	
robot.utils.error.get_error_message()

	Returns error message of the last occurred exception.

This method handles also exceptions containing unicode messages. Thus it
MUST be used to get messages from all exceptions originating outside the
framework.

	
robot.utils.error.get_error_details(exclude_robot_traces=True)

	Returns error message and details of the last occurred exception.

	
robot.utils.error.ErrorDetails(exc_info=None, exclude_robot_traces=True)

	This factory returns an object that wraps the last occurred exception

It has attributes message, traceback and error, where message
contains type and message of the original error, traceback contains the
traceback/stack trace and error contains the original error instance.

	
class robot.utils.error.PythonErrorDetails(exc_type, exc_value, exc_traceback, exclude_robot_traces=True)

	Bases: robot.utils.error._ErrorDetails

	
message

	

	
traceback

	

	
class robot.utils.error.JavaErrorDetails(exc_type, exc_value, exc_traceback, exclude_robot_traces=True)

	Bases: robot.utils.error._ErrorDetails

	
message

	

	
traceback

	

robot.utils.escaping module

	
robot.utils.escaping.escape(item)

	

	
robot.utils.escaping.glob_escape(item)

	

	
class robot.utils.escaping.Unescaper

	Bases: object

	
unescape(item)

	

	
robot.utils.escaping.split_from_equals(string)

	

robot.utils.etreewrapper module

	
class robot.utils.etreewrapper.ETSource(source)

	Bases: object

robot.utils.filereader module

	
class robot.utils.filereader.FileReader(source, accept_text=False)

	Bases: object

Utility to ease reading different kind of files.

Supports different sources where to read the data:

	The source can be a path to a file, either as a string or as a
pathlib.Path instance in Python 3. The file itself must be
UTF-8 encoded.

	Alternatively the source can be an already opened file object,
including a StringIO or BytesIO object. The file can contain either
Unicode text or UTF-8 encoded bytes.

	The third options is giving the source as Unicode text directly.
This requires setting accept_text=True when creating the reader.

In all cases bytes are automatically decoded to Unicode and possible
BOM removed.

	
read()

	

	
readlines()

	

robot.utils.frange module

	
robot.utils.frange.frange(*args)

	Like range() but accepts float arguments.

robot.utils.htmlformatters module

	
class robot.utils.htmlformatters.LinkFormatter

	Bases: object

	
format_url(text)

	

	
format_link(text)

	

	
class robot.utils.htmlformatters.LineFormatter

	Bases: object

	
handles(line)

	

	
newline = '\n'

	

	
format(line)

	

	
class robot.utils.htmlformatters.HtmlFormatter

	Bases: object

	
format(text)

	

	
class robot.utils.htmlformatters.RulerFormatter

	Bases: robot.utils.htmlformatters._SingleLineFormatter

	
match()

	match(string[, pos[, endpos]]) –> match object or None.
Matches zero or more characters at the beginning of the string

	
format_line(line)

	

	
add(line)

	

	
end()

	

	
format(lines)

	

	
handles(line)

	

	
class robot.utils.htmlformatters.HeaderFormatter

	Bases: robot.utils.htmlformatters._SingleLineFormatter

	
match()

	match(string[, pos[, endpos]]) –> match object or None.
Matches zero or more characters at the beginning of the string

	
format_line(line)

	

	
add(line)

	

	
end()

	

	
format(lines)

	

	
handles(line)

	

	
class robot.utils.htmlformatters.ParagraphFormatter(other_formatters)

	Bases: robot.utils.htmlformatters._Formatter

	
format(lines)

	

	
add(line)

	

	
end()

	

	
handles(line)

	

	
class robot.utils.htmlformatters.TableFormatter

	Bases: robot.utils.htmlformatters._Formatter

	
format(lines)

	

	
add(line)

	

	
end()

	

	
handles(line)

	

	
class robot.utils.htmlformatters.PreformattedFormatter

	Bases: robot.utils.htmlformatters._Formatter

	
format(lines)

	

	
add(line)

	

	
end()

	

	
handles(line)

	

	
class robot.utils.htmlformatters.ListFormatter

	Bases: robot.utils.htmlformatters._Formatter

	
format(lines)

	

	
add(line)

	

	
end()

	

	
handles(line)

	

robot.utils.importer module

	
robot.utils.importer.invalidate_import_caches()

	

	
class robot.utils.importer.Importer(type=None, logger=None)

	Bases: object

	
import_class_or_module(name, instantiate_with_args=None, return_source=False)

	Imports Python class/module or Java class with given name.

Class can either live in a module/package or be standalone Java class.
In the former case the name is something like ‘MyClass’ and in the
latter it could be ‘your.package.YourLibrary’. Python classes always
live in a module, but if the module name is exactly same as the class
name then simple ‘MyLibrary’ will import a class.

Python modules can be imported both using format ‘MyModule’ and
‘mymodule.submodule’.

name can also be a path to the imported file/directory. In that case
importing is done using import_class_or_module_by_path method.

If instantiate_with_args is not None, imported classes are
instantiated with the specified arguments automatically.

	
import_class_or_module_by_path(path, instantiate_with_args=None)

	Import a Python module or Java class using a file system path.

When importing a Python file, the path must end with ‘.py’ and the
actual file must also exist. When importing Java classes, the path
must end with ‘.java’ or ‘.class’. The class file must exist in both
cases and in the former case also the source file must exist.

If instantiate_with_args is not None, imported classes are
instantiated with the specified arguments automatically.

	
class robot.utils.importer.ByPathImporter(logger)

	Bases: robot.utils.importer._Importer

	
handles(path)

	

	
import_(path)

	

	
class robot.utils.importer.NonDottedImporter(logger)

	Bases: robot.utils.importer._Importer

	
handles(name)

	

	
import_(name)

	

	
class robot.utils.importer.DottedImporter(logger)

	Bases: robot.utils.importer._Importer

	
handles(name)

	

	
import_(name)

	

robot.utils.markuputils module

	
robot.utils.markuputils.html_escape(text, linkify=True)

	

	
robot.utils.markuputils.xml_escape(text)

	

	
robot.utils.markuputils.html_format(text)

	

	
robot.utils.markuputils.attribute_escape(attr)

	

robot.utils.markupwriters module

	
class robot.utils.markupwriters.HtmlWriter(output, write_empty=True, usage=None)

	Bases: robot.utils.markupwriters._MarkupWriter

	Parameters

	
	output – Either an opened, file like object, or a path to the
desired output file. In the latter case, the file is created
and clients should use close() method to close it.

	write_empty – Whether to write empty elements and attributes.

	
close()

	Closes the underlying output file.

	
content(content=None, escape=True, newline=False)

	

	
element(name, content=None, attrs=None, escape=True, newline=True, replace_newlines=False)

	

	
end(name, newline=True)

	

	
start(name, attrs=None, newline=True)

	

	
class robot.utils.markupwriters.XmlWriter(output, write_empty=True, usage=None)

	Bases: robot.utils.markupwriters._MarkupWriter

	Parameters

	
	output – Either an opened, file like object, or a path to the
desired output file. In the latter case, the file is created
and clients should use close() method to close it.

	write_empty – Whether to write empty elements and attributes.

	
close()

	Closes the underlying output file.

	
content(content=None, escape=True, newline=False)

	

	
element(name, content=None, attrs=None, escape=True, newline=True, replace_newlines=False)

	

	
end(name, newline=True)

	

	
start(name, attrs=None, newline=True)

	

	
class robot.utils.markupwriters.NullMarkupWriter(**kwargs)

	Bases: object

Null implementation of the _MarkupWriter interface.

	
start(**kwargs)

	

	
content(**kwargs)

	

	
element(**kwargs)

	

	
end(**kwargs)

	

	
close(**kwargs)

	

robot.utils.match module

	
robot.utils.match.eq(str1, str2, ignore=(), caseless=True, spaceless=True)

	

	
class robot.utils.match.Matcher(pattern, ignore=(), caseless=True, spaceless=True, regexp=False)

	Bases: object

	
match(string)

	

	
match_any(strings)

	

	
class robot.utils.match.MultiMatcher(patterns=None, ignore=(), caseless=True, spaceless=True, match_if_no_patterns=False, regexp=False)

	Bases: object

	
match(string)

	

	
match_any(strings)

	

robot.utils.misc module

	
robot.utils.misc.roundup(number, ndigits=0, return_type=None)

	Rounds number to the given number of digits.

Numbers equally close to a certain precision are always rounded away from
zero. By default return value is float when ndigits is positive and
int otherwise, but that can be controlled with return_type.

With the built-in round() rounding equally close numbers as well as
the return type depends on the Python version.

	
robot.utils.misc.printable_name(string, code_style=False)

	Generates and returns printable name from the given string.

Examples:
‘simple’ -> ‘Simple’
‘name with spaces’ -> ‘Name With Spaces’
‘more spaces’ -> ‘More Spaces’
‘Cases AND spaces’ -> ‘Cases AND Spaces’
‘’ -> ‘’

If ‘code_style’ is True:

‘mixedCAPSCamel’ -> ‘Mixed CAPS Camel’
‘camelCaseName’ -> ‘Camel Case Name’
‘under_score_name’ -> ‘Under Score Name’
‘under_and space’ -> ‘Under And Space’
‘miXed_CAPS_nAMe’ -> ‘MiXed CAPS NAMe’
‘’ -> ‘’

	
robot.utils.misc.plural_or_not(item)

	

	
robot.utils.misc.seq2str(sequence, quote="'", sep=', ', lastsep=' and ')

	Returns sequence in format ‘item 1’, ‘item 2’ and ‘item 3’.

	
robot.utils.misc.seq2str2(sequence)

	Returns sequence in format [item 1 | item 2 | …].

robot.utils.normalizing module

	
robot.utils.normalizing.normalize(string, ignore=(), caseless=True, spaceless=True)

	Normalizes given string according to given spec.

By default string is turned to lower case and all whitespace is removed.
Additional characters can be removed by giving them in ignore list.

	
robot.utils.normalizing.normalize_whitespace(string)

	

	
robot.utils.normalizing.lower(string)

	

	
class robot.utils.normalizing.NormalizedDict(initial=None, ignore=(), caseless=True, spaceless=True)

	Bases: _abcoll.MutableMapping

Custom dictionary implementation automatically normalizing keys.

Initialized with possible initial value and normalizing spec.

Initial values can be either a dictionary or an iterable of name/value
pairs. In the latter case items are added in the given order.

Normalizing spec has exact same semantics as with the normalize()
function.

	
copy()

	

	
clear() → None. Remove all items from D.

	

	
get(k[, d]) → D[k] if k in D, else d. d defaults to None.

	

	
items() → list of D's (key, value) pairs, as 2-tuples

	

	
iteritems() → an iterator over the (key, value) items of D

	

	
iterkeys() → an iterator over the keys of D

	

	
itervalues() → an iterator over the values of D

	

	
keys() → list of D's keys

	

	
pop(k[, d]) → v, remove specified key and return the corresponding value.

	If key is not found, d is returned if given, otherwise KeyError is raised.

	
popitem() → (k, v), remove and return some (key, value) pair

	as a 2-tuple; but raise KeyError if D is empty.

	
setdefault(k[, d]) → D.get(k,d), also set D[k]=d if k not in D

	

	
update([E,]**F) → None. Update D from mapping/iterable E and F.

	If E present and has a .keys() method, does: for k in E: D[k] = E[k]
If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v
In either case, this is followed by: for k, v in F.items(): D[k] = v

	
values() → list of D's values

	

robot.utils.platform module

robot.utils.recommendations module

	
class robot.utils.recommendations.RecommendationFinder(normalizer=None)

	Bases: object

	
find_and_format(name, candidates, message, max_matches=10)

	

	
find(name, candidates, max_matches=10)

	Return a list of close matches to name from candidates.

	
format(message, recommendations=None)

	Add recommendations to the given message.

The recommendation string looks like:

<message> Did you mean:
 <recommendations[0]>
 <recommendations[1]>
 <recommendations[2]>

robot.utils.restreader module

	
class robot.utils.restreader.CaptureRobotData(name, arguments, options, content, lineno, content_offset, block_text, state, state_machine)

	Bases: docutils.parsers.rst.directives.body.CodeBlock

	
run()

	

	
add_name(node)

	Append self.options[‘name’] to node[‘names’] if it exists.

Also normalize the name string and register it as explicit target.

	
assert_has_content()

	Throw an ERROR-level DirectiveError if the directive doesn’t
have contents.

	
debug(message)

	

	
directive_error(level, message)

	Return a DirectiveError suitable for being thrown as an exception.

Call “raise self.directive_error(level, message)” from within
a directive implementation to return one single system message
at level level, which automatically gets the directive block
and the line number added.

Preferably use the debug, info, warning, error, or severe
wrapper methods, e.g. self.error(message) to generate an
ERROR-level directive error.

	
error(message)

	

	
final_argument_whitespace = False

	

	
has_content = True

	

	
info(message)

	

	
option_spec = {'class': <function class_option>, 'name': <function unchanged>, 'number-lines': <function unchanged>}

	

	
optional_arguments = 1

	

	
required_arguments = 0

	

	
severe(message)

	

	
warning(message)

	

	
class robot.utils.restreader.RobotDataStorage(doctree)

	Bases: object

	
add_data(rows)

	

	
get_data()

	

	
has_data()

	

	
robot.utils.restreader.read_rest_data(rstfile)

	

robot.utils.robotenv module

	
robot.utils.robotenv.get_env_var(name, default=None)

	

	
robot.utils.robotenv.set_env_var(name, value)

	

	
robot.utils.robotenv.del_env_var(name)

	

	
robot.utils.robotenv.get_env_vars(upper=False)

	

robot.utils.robotinspect module

	
robot.utils.robotinspect.is_java_init(init)

	

	
robot.utils.robotinspect.is_java_method(method)

	

robot.utils.robotio module

	
robot.utils.robotio.file_writer(path=None, encoding='UTF-8', newline=None, usage=None)

	

	
robot.utils.robotio.binary_file_writer(path=None)

	

	
robot.utils.robotio.create_destination_directory(path, usage=None)

	

robot.utils.robotpath module

	
robot.utils.robotpath.path_to_url(path)

	

	
robot.utils.robotpath.normpath(path, case_normalize=False)

	Replacement for os.path.normpath with some enhancements.

	Convert non-Unicode paths to Unicode using the file system encoding.

	NFC normalize Unicode paths (affects mainly OSX).

	Optionally lower-case paths on case-insensitive file systems.
That includes Windows and also OSX in default configuration.

	Turn c: into c:\ on Windows instead of keeping it as c:.

	
robot.utils.robotpath.abspath(path, case_normalize=False)

	Replacement for os.path.abspath with some enhancements and bug fixes.

	Non-Unicode paths are converted to Unicode using file system encoding.

	Optionally lower-case paths on case-insensitive file systems.
That includes Windows and also OSX in default configuration.

	Turn c: into c:\ on Windows instead of c:\current\path.

	
robot.utils.robotpath.get_link_path(target, base)

	Returns a relative path to target from base.

If base is an existing file, then its parent directory is considered to
be the base. Otherwise base is assumed to be a directory.

The returned path is URL encoded. On Windows returns an absolute path with
file: prefix if the target is on a different drive.

	
robot.utils.robotpath.find_file(path, basedir='.', file_type=None)

	

robot.utils.robottime module

	
robot.utils.robottime.timestr_to_secs(timestr, round_to=3)

	Parses time like ‘1h 10s’, ‘01:00:10’ or ‘42’ and returns seconds.

	
robot.utils.robottime.secs_to_timestr(secs, compact=False)

	Converts time in seconds to a string representation.

Returned string is in format like
‘1 day 2 hours 3 minutes 4 seconds 5 milliseconds’ with following rules:

	Time parts having zero value are not included (e.g. ‘3 minutes 4 seconds’
instead of ‘0 days 0 hours 3 minutes 4 seconds’)

	Hour part has a maximun of 23 and minutes and seconds both have 59
(e.g. ‘1 minute 40 seconds’ instead of ‘100 seconds’)

If compact has value ‘True’, short suffixes are used.
(e.g. 1d 2h 3min 4s 5ms)

	
robot.utils.robottime.format_time(timetuple_or_epochsecs, daysep='', daytimesep=' ', timesep=':', millissep=None)

	Returns a timestamp formatted from given time using separators.

Time can be given either as a timetuple or seconds after epoch.

Timetuple is (year, month, day, hour, min, sec[, millis]), where parts must
be integers and millis is required only when millissep is not None.
Notice that this is not 100% compatible with standard Python timetuples
which do not have millis.

Seconds after epoch can be either an integer or a float.

	
robot.utils.robottime.get_time(format='timestamp', time_=None)

	Return the given or current time in requested format.

If time is not given, current time is used. How time is returned is
is deternined based on the given ‘format’ string as follows. Note that all
checks are case insensitive.

	If ‘format’ contains word ‘epoch’ the time is returned in seconds after
the unix epoch.

	If ‘format’ contains any of the words ‘year’, ‘month’, ‘day’, ‘hour’,
‘min’ or ‘sec’ only selected parts are returned. The order of the returned
parts is always the one in previous sentence and order of words in
‘format’ is not significant. Parts are returned as zero padded strings
(e.g. May -> ‘05’).

	Otherwise (and by default) the time is returned as a timestamp string in
format ‘2006-02-24 15:08:31’

	
robot.utils.robottime.parse_time(timestr)

	Parses the time string and returns its value as seconds since epoch.

Time can be given in five different formats:

	Numbers are interpreted as time since epoch directly. It is possible to
use also ints and floats, not only strings containing numbers.

	Valid timestamp (‘YYYY-MM-DD hh:mm:ss’ and ‘YYYYMMDD hhmmss’).

	‘NOW’ (case-insensitive) is the current local time.

	‘UTC’ (case-insensitive) is the current time in UTC.

	Format ‘NOW - 1 day’ or ‘UTC + 1 hour 30 min’ is the current local/UTC
time plus/minus the time specified with the time string.

Seconds are rounded down to avoid getting times in the future.

	
robot.utils.robottime.get_timestamp(daysep='', daytimesep=' ', timesep=':', millissep='.')

	

	
robot.utils.robottime.timestamp_to_secs(timestamp, seps=None)

	

	
robot.utils.robottime.secs_to_timestamp(secs, seps=None, millis=False)

	

	
robot.utils.robottime.get_elapsed_time(start_time, end_time)

	Returns the time between given timestamps in milliseconds.

	
robot.utils.robottime.elapsed_time_to_string(elapsed, include_millis=True)

	Converts elapsed time in milliseconds to format ‘hh:mm:ss.mil’.

If include_millis is True, ‘.mil’ part is omitted.

	
class robot.utils.robottime.TimestampCache

	Bases: object

	
get_timestamp(daysep='', daytimesep=' ', timesep=':', millissep='.')

	

robot.utils.robottypes module

	
robot.utils.robottypes.is_truthy(item)

	Returns True or False depending is the item considered true or not.

Validation rules:

	If the value is a string, it is considered false if it is ‘FALSE’,
‘NO’, ‘OFF’, ‘0’, ‘NONE’ or ‘’, case-insensitively.
Considering ‘NONE’ false is new in RF 3.0.3 and considering ‘OFF’
and ‘0’ false is new in RF 3.1.

	Other strings are considered true.

	Other values are handled by using the standard bool() function.

Designed to be used also by external test libraries that want to handle
Boolean values similarly as Robot Framework itself. See also
is_falsy().

	
robot.utils.robottypes.is_falsy(item)

	Opposite of is_truthy().

robot.utils.robottypes2 module

	
robot.utils.robottypes2.is_integer(item)

	

	
robot.utils.robottypes2.is_number(item)

	

	
robot.utils.robottypes2.is_bytes(item)

	

	
robot.utils.robottypes2.is_string(item)

	

	
robot.utils.robottypes2.is_unicode(item)

	

	
robot.utils.robottypes2.is_pathlike(item)

	

	
robot.utils.robottypes2.is_list_like(item)

	

	
robot.utils.robottypes2.is_dict_like(item)

	

	
robot.utils.robottypes2.type_name(item, capitalize=False)

	

robot.utils.robottypes3 module

robot.utils.setter module

	
class robot.utils.setter.setter(method)

	Bases: object

	
class robot.utils.setter.SetterAwareType

	Bases: type

	
mro() → list

	return a type’s method resolution order

robot.utils.sortable module

	
class robot.utils.sortable.Sortable

	Bases: object

Base class for sorting based self._sort_key

robot.utils.text module

	
robot.utils.text.cut_long_message(msg)

	

	
robot.utils.text.format_assign_message(variable, value, cut_long=True)

	

	
robot.utils.text.get_console_length(text)

	

	
robot.utils.text.pad_console_length(text, width)

	

	
robot.utils.text.split_args_from_name_or_path(name)

	

	
robot.utils.text.split_tags_from_doc(doc)

	

	
robot.utils.text.getdoc(item)

	

	
robot.utils.text.getshortdoc(doc_or_item, linesep='\n')

	

	
robot.utils.text.rstrip(string)

	

robot.utils.unic module

	
robot.utils.unic.unic(item)

	

	
robot.utils.unic.prepr(item, width=80)

	

	
class robot.utils.unic.PrettyRepr(indent=1, width=80, depth=None, stream=None)

	Bases: pprint.PrettyPrinter

Handle pretty printing operations onto a stream using a set of
configured parameters.

	indent

	Number of spaces to indent for each level of nesting.

	width

	Attempted maximum number of columns in the output.

	depth

	The maximum depth to print out nested structures.

	stream

	The desired output stream. If omitted (or false), the standard
output stream available at construction will be used.

	
format(object, context, maxlevels, level)

	

	
isreadable(object)

	

	
isrecursive(object)

	

	
pformat(object)

	

	
pprint(object)

	

robot.variables package

Implements storing and resolving variables.

This package is mainly for internal usage, but utilities for finding
variables can be used externally as well.

	
robot.variables.is_var(string, identifiers='$@&')

	Deprecated since RF 3.2. Use is_variable instead.

	
robot.variables.is_scalar_var(string)

	Deprecated since RF 3.2. Use is_scalar_variable instead.

	
robot.variables.is_list_var(string)

	Deprecated since RF 3.2. Use is_list_variable instead.

	
robot.variables.is_dict_var(string)

	Deprecated since RF 3.2. Use is_dict_variable instead.

	
robot.variables.contains_var(string, identifiers='$@&')

	Deprecated since RF 3.2. Use contains_variable instead.

Submodules

robot.variables.assigner module

	
class robot.variables.assigner.VariableAssignment(assignment)

	Bases: object

	
validate_assignment()

	

	
assigner(context)

	

	
class robot.variables.assigner.AssignmentValidator

	Bases: object

	
validate(variable)

	

	
class robot.variables.assigner.VariableAssigner(assignment, context)

	Bases: object

	
assign(return_value)

	

	
robot.variables.assigner.ReturnValueResolver(assignment)

	

	
class robot.variables.assigner.NoReturnValueResolver

	Bases: object

	
resolve(return_value)

	

	
class robot.variables.assigner.OneReturnValueResolver(variable)

	Bases: object

	
resolve(return_value)

	

	
class robot.variables.assigner.ScalarsOnlyReturnValueResolver(variables)

	Bases: robot.variables.assigner._MultiReturnValueResolver

	
resolve(return_value)

	

	
class robot.variables.assigner.ScalarsAndListReturnValueResolver(variables)

	Bases: robot.variables.assigner._MultiReturnValueResolver

	
resolve(return_value)

	

robot.variables.evaluation module

	
robot.variables.evaluation.evaluate_expression(expression, variable_store, modules=None, namespace=None)

	

	
class robot.variables.evaluation.EvaluationNamespace(variable_store, namespace=None)

	Bases: _abcoll.MutableMapping

	
clear() → None. Remove all items from D.

	

	
get(k[, d]) → D[k] if k in D, else d. d defaults to None.

	

	
items() → list of D's (key, value) pairs, as 2-tuples

	

	
iteritems() → an iterator over the (key, value) items of D

	

	
iterkeys() → an iterator over the keys of D

	

	
itervalues() → an iterator over the values of D

	

	
keys() → list of D's keys

	

	
pop(k[, d]) → v, remove specified key and return the corresponding value.

	If key is not found, d is returned if given, otherwise KeyError is raised.

	
popitem() → (k, v), remove and return some (key, value) pair

	as a 2-tuple; but raise KeyError if D is empty.

	
setdefault(k[, d]) → D.get(k,d), also set D[k]=d if k not in D

	

	
update([E,]**F) → None. Update D from mapping/iterable E and F.

	If E present and has a .keys() method, does: for k in E: D[k] = E[k]
If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v
In either case, this is followed by: for k, v in F.items(): D[k] = v

	
values() → list of D's values

	

robot.variables.filesetter module

	
class robot.variables.filesetter.VariableFileSetter(store)

	Bases: object

	
set(path_or_variables, args=None, overwrite=False)

	

	
class robot.variables.filesetter.YamlImporter

	Bases: object

	
import_variables(path, args=None)

	

	
class robot.variables.filesetter.PythonImporter

	Bases: object

	
import_variables(path, args=None)

	

robot.variables.finders module

	
robot.variables.finders.get_java_property(name)

	

	
robot.variables.finders.get_java_properties()

	

	
class robot.variables.finders.VariableFinder(variable_store)

	Bases: object

	
find(variable)

	

	
class robot.variables.finders.StoredFinder(store)

	Bases: object

	
identifiers = '$@&'

	

	
find(name)

	

	
class robot.variables.finders.NumberFinder

	Bases: object

	
identifiers = '$'

	

	
find(name)

	

	
class robot.variables.finders.EmptyFinder

	Bases: object

	
identifiers = '$@&'

	

	
classmethod find(key)

	

	
class robot.variables.finders.InlinePythonFinder(variables)

	Bases: object

	
identifiers = '$@&'

	

	
find(name)

	

	
class robot.variables.finders.ExtendedFinder(finder)

	Bases: object

	
identifiers = '$@&'

	

	
find(name)

	

	
class robot.variables.finders.EnvironmentFinder

	Bases: object

	
identifiers = '%'

	

	
find(name)

	

robot.variables.notfound module

	
robot.variables.notfound.variable_not_found(name, candidates, message=None, deco_braces=True)

	Raise DataError for missing variable name.

Return recommendations for similar variable names if any are found.

robot.variables.replacer module

	
class robot.variables.replacer.VariableReplacer(variables)

	Bases: object

	
replace_list(items, replace_until=None, ignore_errors=False)

	Replaces variables from a list of items.

If an item in a list is a @{list} variable its value is returned.
Possible variables from other items are replaced using ‘replace_scalar’.
Result is always a list.

‘replace_until’ can be used to limit replacing arguments to certain
index from the beginning. Used with Run Keyword variants that only
want to resolve some of the arguments in the beginning and pass others
to called keywords unmodified.

	
replace_scalar(item, ignore_errors=False)

	Replaces variables from a scalar item.

If the item is not a string it is returned as is. If it is a variable,
its value is returned. Otherwise possible variables are replaced with
‘replace_string’. Result may be any object.

	
replace_string(item, custom_unescaper=None, ignore_errors=False)

	Replaces variables from a string. Result is always a string.

Input can also be an already found VariableMatch.

robot.variables.scopes module

	
class robot.variables.scopes.VariableScopes(settings)

	Bases: object

	
current

	

	
start_suite()

	

	
end_suite()

	

	
start_test()

	

	
end_test()

	

	
start_keyword()

	

	
end_keyword()

	

	
replace_list(items, replace_until=None, ignore_errors=False)

	

	
replace_scalar(items, ignore_errors=False)

	

	
replace_string(string, custom_unescaper=None, ignore_errors=False)

	

	
set_from_file(path, args, overwrite=False)

	

	
set_from_variable_table(variables, overwrite=False)

	

	
resolve_delayed()

	

	
set_global(name, value)

	

	
set_suite(name, value, top=False, children=False)

	

	
set_test(name, value)

	

	
set_keyword(name, value)

	

	
set_local_variable(name, value)

	

	
as_dict(decoration=True)

	

	
class robot.variables.scopes.GlobalVariables(settings)

	Bases: robot.variables.variables.Variables

	
as_dict(decoration=True)

	

	
clear()

	

	
copy()

	

	
replace_list(items, replace_until=None, ignore_errors=False)

	

	
replace_scalar(item, ignore_errors=False)

	

	
replace_string(item, custom_unescaper=None, ignore_errors=False)

	

	
resolve_delayed()

	

	
set_from_file(path_or_variables, args=None, overwrite=False)

	

	
set_from_variable_table(variables, overwrite=False)

	

	
update(variables)

	

	
class robot.variables.scopes.SetVariables

	Bases: object

	
start_suite()

	

	
end_suite()

	

	
start_test()

	

	
end_test()

	

	
start_keyword()

	

	
end_keyword()

	

	
set_global(name, value)

	

	
set_suite(name, value)

	

	
set_test(name, value)

	

	
set_keyword(name, value)

	

	
update(variables)

	

robot.variables.search module

	
robot.variables.search.search_variable(string, identifiers='$@&%*', ignore_errors=False)

	

	
robot.variables.search.contains_variable(string, identifiers='$@&')

	

	
robot.variables.search.is_variable(string, identifiers='$@&')

	

	
robot.variables.search.is_scalar_variable(string)

	

	
robot.variables.search.is_list_variable(string)

	

	
robot.variables.search.is_dict_variable(string)

	

	
robot.variables.search.is_assign(string, identifiers='$@&', allow_assign_mark=False)

	

	
robot.variables.search.is_scalar_assign(string, allow_assign_mark=False)

	

	
robot.variables.search.is_list_assign(string, allow_assign_mark=False)

	

	
robot.variables.search.is_dict_assign(string, allow_assign_mark=False)

	

	
class robot.variables.search.VariableMatch(string, identifier=None, base=None, items=(), start=-1, end=-1)

	Bases: object

	
resolve_base(variables, ignore_errors=False)

	

	
name

	

	
before

	

	
match

	

	
after

	

	
is_variable()

	

	
is_scalar_variable()

	

	
is_list_variable()

	

	
is_dict_variable()

	

	
is_assign(allow_assign_mark=False)

	

	
is_scalar_assign(allow_assign_mark=False)

	

	
is_list_assign(allow_assign_mark=False)

	

	
is_dict_assign(allow_assign_mark=False)

	

	
class robot.variables.search.VariableSearcher(identifiers, ignore_errors=False)

	Bases: object

	
search(string)

	

	
variable_state(char)

	

	
waiting_item_state(char)

	

	
item_state(char)

	

	
robot.variables.search.unescape_variable_syntax(item)

	

	
class robot.variables.search.VariableIterator(string, identifiers='$@&%', ignore_errors=False)

	Bases: object

robot.variables.store module

	
class robot.variables.store.VariableStore(variables)

	Bases: object

	
resolve_delayed(item=None)

	

	
update(store)

	

	
clear()

	

	
add(name, value, overwrite=True, decorated=True)

	

	
remove(name)

	

	
as_dict(decoration=True)

	

robot.variables.tablesetter module

	
class robot.variables.tablesetter.VariableTableSetter(store)

	Bases: object

	
set(variables, overwrite=False)

	

	
robot.variables.tablesetter.VariableTableValue(value, name, error_reporter=None)

	

	
class robot.variables.tablesetter.VariableTableValueBase(values, error_reporter=None)

	Bases: object

	
resolve(variables)

	

	
report_error(error)

	

	
class robot.variables.tablesetter.ScalarVariableTableValue(values, error_reporter=None)

	Bases: robot.variables.tablesetter.VariableTableValueBase

	
report_error(error)

	

	
resolve(variables)

	

	
class robot.variables.tablesetter.ListVariableTableValue(values, error_reporter=None)

	Bases: robot.variables.tablesetter.VariableTableValueBase

	
report_error(error)

	

	
resolve(variables)

	

	
class robot.variables.tablesetter.DictVariableTableValue(values, error_reporter=None)

	Bases: robot.variables.tablesetter.VariableTableValueBase

	
report_error(error)

	

	
resolve(variables)

	

robot.variables.variables module

	
class robot.variables.variables.Variables

	Bases: object

Represents a set of variables.

Contains methods for replacing variables from list, scalars, and strings.
On top of ${scalar}, @{list} and &{dict} variables, these methods handle
also %{environment} variables.

	
resolve_delayed()

	

	
replace_list(items, replace_until=None, ignore_errors=False)

	

	
replace_scalar(item, ignore_errors=False)

	

	
replace_string(item, custom_unescaper=None, ignore_errors=False)

	

	
set_from_file(path_or_variables, args=None, overwrite=False)

	

	
set_from_variable_table(variables, overwrite=False)

	

	
clear()

	

	
copy()

	

	
update(variables)

	

	
as_dict(decoration=True)

	

robot.api package

robot.api package exposes the public APIs of Robot Framework.

Unless stated otherwise, the APIs exposed in this package are considered
stable, and thus safe to use when building external tools on top of
Robot Framework. Notice that all parsing APIs were rewritten in Robot
Framework 3.2.

Currently exposed APIs are:

	logger module for test libraries’ logging purposes.

	deco module with decorators test libraries can utilize.

	Various functions and classes for parsing test data to tokens
or to a higher level model represented as an abstract syntax tree (AST).
See the parsing module documentation for a list of exposed
functions and classes as well as for more documentation and examples.

	TestSuite class for creating executable
test suites programmatically and
TestSuiteBuilder class
for creating such suites based on existing test data on the file system.

	SuiteVisitor abstract class for processing testdata
before execution. This can be used as a base for implementing a pre-run
modifier that is taken into use with --prerunmodifier commandline option.

	ExecutionResult() factory method
for reading execution results from XML output files and
ResultVisitor abstract class to ease
further processing the results.
ResultVisitor can also be used as a base
for pre-Rebot modifier that is taken into use with --prerebotmodifier
commandline option.

	ResultWriter class for writing
reports, logs, XML outputs, and XUnit files. Can write results based on
XML outputs on the file system, as well as based on the result objects
returned by the ExecutionResult() or
an executed TestSuite.

All of the above names can be imported like:

from robot.api import ApiName

See documentations of the individual APIs for more details.

Tip

APIs related to the command line entry points are exposed directly
via the robot root package.

Submodules

robot.api.deco module

	
robot.api.deco.not_keyword(func)

	Decorator to disable exposing functions or methods as keywords.

Examples:

@not_keyword
def not_exposed_as_keyword():
 # ...

def exposed_as_keyword():
 # ...

Alternatively the automatic keyword discovery can be disabled with
the library() decorator or by setting the ROBOT_AUTO_KEYWORDS
attribute to a false value.

New in Robot Framework 3.2.

	
robot.api.deco.keyword(name=None, tags=(), types=())

	Decorator to set custom name, tags and argument types to keywords.

This decorator creates robot_name, robot_tags and robot_types
attributes on the decorated keyword function or method based on the
provided arguments. Robot Framework checks them to determine the keyword’s
name, tags, and argument types, respectively.

Name must be given as a string, tags as a list of strings, and types
either as a dictionary mapping argument names to types or as a list
of types mapped to arguments based on position. It is OK to specify types
only to some arguments, and setting types to None disables type
conversion altogether.

If the automatic keyword discovery has been disabled with the
library() decorator or by setting the ROBOT_AUTO_KEYWORDS
attribute to a false value, this decorator is needed to mark functions
or methods keywords.

Examples:

@keyword
def example():
 # ...

@keyword('Login as user "${user}" with password "${password}"',
 tags=['custom name', 'embedded arguments', 'tags'])
def login(user, password):
 # ...

@keyword(types={'length': int, 'case_insensitive': bool})
def types_as_dict(length, case_insensitive):
 # ...

@keyword(types=[int, bool])
def types_as_list(length, case_insensitive):
 # ...

@keyword(types=None])
def no_conversion(length, case_insensitive=False):
 # ...

	
robot.api.deco.library(scope=None, version=None, doc_format=None, listener=None, auto_keywords=False)

	Class decorator to control keyword discovery and other library settings.

By default disables automatic keyword detection by setting class attribute
ROBOT_AUTO_KEYWORDS = False to the decorated library. In that mode
only methods decorated explicitly with the keyword() decorator become
keywords. If that is not desired, automatic keyword discovery can be
enabled by using auto_keywords=True.

Arguments scope, version, doc_format and listener set the
library scope, version, documentation format and listener by using class
attributes ROBOT_LIBRARY_SCOPE, ROBOT_LIBRARY_VERSION,
ROBOT_LIBRARY_DOC_FORMAT and ROBOT_LIBRARY_LISTENER, respectively.
These attributes are only set if the related arguments are given and they
override possible existing attributes in the decorated class.

Examples:

@library
class KeywordDiscovery:

 @keyword
 def do_something(self):
 # ...

 def not_keyword(self):
 # ...

@library(scope='GLOBAL', version='3.2')
class LibraryConfiguration:
 # ...

The @library decorator is new in Robot Framework 3.2.

robot.api.logger module

Public logging API for test libraries.

This module provides a public API for writing messages to the log file
and the console. Test libraries can use this API like:

logger.info('My message')

instead of logging through the standard output like:

print '*INFO* My message'

In addition to a programmatic interface being cleaner to use, this API
has a benefit that the log messages have accurate timestamps.

If the logging methods are used when Robot Framework is not running,
the messages are redirected to the standard Python logging module
using logger named RobotFramework.

Log levels

It is possible to log messages using levels TRACE, DEBUG, INFO,
WARN and ERROR either using the write() function or, more
commonly, with the log level specific trace(), debug(),
info(), warn(), error() functions. The support for the
error level and function is new in RF 2.9.

By default the trace and debug messages are not logged but that can be
changed with the --loglevel command line option. Warnings and errors are
automatically written also to the console and to the Test Execution Errors
section in the log file.

Logging HTML

All methods that are used for writing messages to the log file have an
optional html argument. If a message to be logged is supposed to be
shown as HTML, this argument should be set to True. Alternatively,
write() accepts a pseudo log level HTML.

Example

from robot.api import logger

def my_keyword(arg):
 logger.debug('Got argument %s.' % arg)
 do_something()
 logger.info('<i>This</i> is a boring example.', html=True)

	
robot.api.logger.write(msg, level='INFO', html=False)

	Writes the message to the log file using the given level.

Valid log levels are TRACE, DEBUG, INFO (default since RF
2.9.1), WARN, and ERROR (new in RF 2.9). Additionally it is
possible to use HTML pseudo log level that logs the message as HTML
using the INFO level.

Instead of using this method, it is generally better to use the level
specific methods such as info and debug that have separate
html argument to control the message format.

	
robot.api.logger.trace(msg, html=False)

	Writes the message to the log file using the TRACE level.

	
robot.api.logger.debug(msg, html=False)

	Writes the message to the log file using the DEBUG level.

	
robot.api.logger.info(msg, html=False, also_console=False)

	Writes the message to the log file using the INFO level.

If also_console argument is set to True, the message is
written both to the log file and to the console.

	
robot.api.logger.warn(msg, html=False)

	Writes the message to the log file using the WARN level.

	
robot.api.logger.error(msg, html=False)

	Writes the message to the log file using the ERROR level.

New in Robot Framework 2.9.

	
robot.api.logger.console(msg, newline=True, stream='stdout')

	Writes the message to the console.

If the newline argument is True, a newline character is
automatically added to the message.

By default the message is written to the standard output stream.
Using the standard error stream is possibly by giving the stream
argument value 'stderr'.

robot.conf package

Implements settings for both test execution and output processing.

This package implements RobotSettings and
RebotSettings classes used internally by
the framework. There should be no need to use these classes externally.

This package can be considered relatively stable. Aforementioned classes
are likely to be rewritten at some point to be more convenient to use.
Instantiating them is not likely to change, though.

Submodules

robot.conf.gatherfailed module

	
class robot.conf.gatherfailed.GatherFailedTests

	Bases: robot.model.visitor.SuiteVisitor

	
visit_test(test)

	Implements traversing through the test and its keywords.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
visit_keyword(kw)

	Implements traversing through the keyword and its child keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_message(msg)

	Implements visiting the message.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through the suite and its direct children.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
class robot.conf.gatherfailed.GatherFailedSuites

	Bases: robot.model.visitor.SuiteVisitor

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_test(test)

	Implements traversing through the test and its keywords.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
visit_keyword(kw)

	Implements traversing through the keyword and its child keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_message(msg)

	Implements visiting the message.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through the suite and its direct children.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
robot.conf.gatherfailed.gather_failed_tests(output)

	

	
robot.conf.gatherfailed.gather_failed_suites(output)

	

robot.conf.settings module

	
class robot.conf.settings.RobotSettings(options=None, **extra_options)

	Bases: robot.conf.settings._BaseSettings

	
get_rebot_settings()

	

	
listeners

	

	
debug_file

	

	
suite_config

	

	
randomize_seed

	

	
randomize_suites

	

	
randomize_tests

	

	
dry_run

	

	
exit_on_failure

	

	
exit_on_error

	

	
skip_teardown_on_exit

	

	
console_output_config

	

	
console_type

	

	
console_width

	

	
console_markers

	

	
max_error_lines

	

	
pre_run_modifiers

	

	
run_empty_suite

	

	
variables

	

	
variable_files

	

	
extension

	

	
console_colors

	

	
critical_tags

	

	
flatten_keywords

	

	
log

	

	
log_level

	

	
non_critical_tags

	

	
output

	

	
output_directory

	

	
pre_rebot_modifiers

	

	
remove_keywords

	

	
report

	

	
rpa

	

	
split_log

	

	
statistics_config

	

	
status_rc

	

	
xunit

	

	
xunit_skip_noncritical

	

	
class robot.conf.settings.RebotSettings(options=None, **extra_options)

	Bases: robot.conf.settings._BaseSettings

	
suite_config

	

	
log_config

	

	
report_config

	

	
merge

	

	
console_output_config

	

	
console_colors

	

	
critical_tags

	

	
flatten_keywords

	

	
log

	

	
log_level

	

	
non_critical_tags

	

	
output

	

	
output_directory

	

	
pre_rebot_modifiers

	

	
process_empty_suite

	

	
remove_keywords

	

	
report

	

	
rpa

	

	
split_log

	

	
statistics_config

	

	
status_rc

	

	
xunit

	

	
xunit_skip_noncritical

	

	
expand_keywords

	

robot.htmldata package

Package for writing output files in HTML format.

This package is considered stable but it is not part of the public API.

Submodules

robot.htmldata.htmlfilewriter module

	
class robot.htmldata.htmlfilewriter.HtmlFileWriter(output, model_writer)

	Bases: object

	
write(template)

	

	
class robot.htmldata.htmlfilewriter.ModelWriter

	Bases: robot.htmldata.htmlfilewriter._Writer

	
handles(line)

	

	
write(line)

	

	
class robot.htmldata.htmlfilewriter.LineWriter(output)

	Bases: robot.htmldata.htmlfilewriter._Writer

	
handles(line)

	

	
write(line)

	

	
class robot.htmldata.htmlfilewriter.GeneratorWriter(html_writer)

	Bases: robot.htmldata.htmlfilewriter._Writer

	
write(line)

	

	
handles(line)

	

	
class robot.htmldata.htmlfilewriter.JsFileWriter(html_writer, base_dir)

	Bases: robot.htmldata.htmlfilewriter._InliningWriter

	
write(line)

	

	
handles(line)

	

	
class robot.htmldata.htmlfilewriter.CssFileWriter(html_writer, base_dir)

	Bases: robot.htmldata.htmlfilewriter._InliningWriter

	
write(line)

	

	
handles(line)

	

robot.htmldata.jartemplate module

robot.htmldata.jsonwriter module

	
class robot.htmldata.jsonwriter.JsonWriter(output, separator='')

	Bases: object

	
write_json(prefix, data, postfix=';\n', mapping=None, separator=True)

	

	
write(string, postfix=';\n', separator=True)

	

	
class robot.htmldata.jsonwriter.JsonDumper(output)

	Bases: object

	
dump(data, mapping=None)

	

	
write(data)

	

	
class robot.htmldata.jsonwriter.StringDumper(jsondumper)

	Bases: robot.htmldata.jsonwriter._Dumper

	
dump(data, mapping)

	

	
handles(data, mapping)

	

	
class robot.htmldata.jsonwriter.IntegerDumper(jsondumper)

	Bases: robot.htmldata.jsonwriter._Dumper

	
dump(data, mapping)

	

	
handles(data, mapping)

	

	
class robot.htmldata.jsonwriter.DictDumper(jsondumper)

	Bases: robot.htmldata.jsonwriter._Dumper

	
dump(data, mapping)

	

	
handles(data, mapping)

	

	
class robot.htmldata.jsonwriter.TupleListDumper(jsondumper)

	Bases: robot.htmldata.jsonwriter._Dumper

	
dump(data, mapping)

	

	
handles(data, mapping)

	

	
class robot.htmldata.jsonwriter.MappingDumper(jsondumper)

	Bases: robot.htmldata.jsonwriter._Dumper

	
handles(data, mapping)

	

	
dump(data, mapping)

	

	
class robot.htmldata.jsonwriter.NoneDumper(jsondumper)

	Bases: robot.htmldata.jsonwriter._Dumper

	
handles(data, mapping)

	

	
dump(data, mapping)

	

robot.htmldata.normaltemplate module

	
class robot.htmldata.normaltemplate.HtmlTemplate(filename)

	Bases: object

robot.htmldata.template module

robot.libdocpkg package

Implements the Libdoc tool.

The command line entry point and programmatic interface for Libdoc
are provided by the separate robot.libdoc module.

This package is considered stable but it is not part of the public API.

Submodules

robot.libdocpkg.builder module

	
robot.libdocpkg.builder.JavaDocBuilder()

	

	
robot.libdocpkg.builder.LibraryDocumentation(library_or_resource, name=None, version=None, doc_format=None)

	

	
robot.libdocpkg.builder.DocumentationBuilder(library_or_resource)

	

robot.libdocpkg.consoleviewer module

	
class robot.libdocpkg.consoleviewer.ConsoleViewer(libdoc)

	Bases: object

	
classmethod handles(command)

	

	
classmethod validate_command(command, args)

	

	
view(command, *args)

	

	
list(*patterns)

	

	
show(*names)

	

	
version()

	

	
class robot.libdocpkg.consoleviewer.KeywordMatcher(libdoc)

	Bases: object

	
search(patterns)

	

robot.libdocpkg.htmlwriter module

	
class robot.libdocpkg.htmlwriter.LibdocHtmlWriter

	Bases: object

	
write(libdoc, output)

	

	
class robot.libdocpkg.htmlwriter.LibdocModelWriter(output, libdoc)

	Bases: robot.htmldata.htmlfilewriter.ModelWriter

	
write(line)

	

	
write_data()

	

	
handles(line)

	

	
class robot.libdocpkg.htmlwriter.JsonConverter(doc_formatter)

	Bases: object

	
convert(libdoc)

	

	
class robot.libdocpkg.htmlwriter.DocFormatter(keywords, introduction, doc_format='ROBOT')

	Bases: object

	
html(doc, intro=False)

	

	
class robot.libdocpkg.htmlwriter.DocToHtml(doc_format)

	Bases: object

robot.libdocpkg.java9builder module

robot.libdocpkg.javabuilder module

	
class robot.libdocpkg.javabuilder.JavaDocBuilder

	Bases: object

	
build(path)

	

	
robot.libdocpkg.javabuilder.ClassDoc(path)

	Process the given Java source file and return ClassDoc instance.

Processing is done using com.sun.tools.javadoc APIs. Returned object
implements com.sun.javadoc.ClassDoc interface:
http://docs.oracle.com/javase/7/docs/jdk/api/javadoc/doclet/

robot.libdocpkg.model module

	
class robot.libdocpkg.model.LibraryDoc(name='', doc='', version='', type='LIBRARY', scope='TEST', named_args=True, doc_format='ROBOT', source=None, lineno=-1)

	Bases: object

	
doc

	

	
doc_format

	

	
keywords

	

	
all_tags

	

	
save(output=None, format='HTML')

	

	
class robot.libdocpkg.model.KeywordDoc(name='', args=(), doc='', tags=(), source=None, lineno=-1)

	Bases: robot.utils.sortable.Sortable

	
shortdoc

	

	
deprecated

	

robot.libdocpkg.output module

	
class robot.libdocpkg.output.LibdocOutput(output_path, format)

	Bases: object

robot.libdocpkg.robotbuilder module

	
class robot.libdocpkg.robotbuilder.Enum

	Bases: object

	
class robot.libdocpkg.robotbuilder.LibraryDocBuilder

	Bases: object

	
build(library)

	

	
class robot.libdocpkg.robotbuilder.ResourceDocBuilder

	Bases: object

	
build(path)

	

	
class robot.libdocpkg.robotbuilder.KeywordDocBuilder(resource=False)

	Bases: object

	
build_keywords(lib)

	

	
build_keyword(kw)

	

robot.libdocpkg.specbuilder module

	
class robot.libdocpkg.specbuilder.SpecDocBuilder

	Bases: object

	
build(path)

	

robot.libdocpkg.writer module

	
robot.libdocpkg.writer.LibdocWriter(format=None)

	

robot.libdocpkg.xmlwriter module

	
class robot.libdocpkg.xmlwriter.LibdocXmlWriter(force_html_doc=False)

	Bases: object

	
write(libdoc, outfile)

	

	
class robot.libdocpkg.xmlwriter.DocFormatter(doc_format, force_html=False)

	Bases: object

robot.libraries package

Package hosting Robot Framework standard test libraries.

Libraries are mainly used externally in the test data, but they can be
also used by custom test libraries if there is a need. Especially
the BuiltIn library is often useful
when there is a need to interact with the framework.

Because libraries are documented using Robot Framework’s own documentation
syntax, the generated API docs are not that well formed. It is thus better
to find the generated library documentations, for example, via
the http://robotframework.org web site.

Submodules

robot.libraries.BuiltIn module

	
robot.libraries.BuiltIn.run_keyword_variant(resolve)

	

	
class robot.libraries.BuiltIn.BuiltIn

	Bases: robot.libraries.BuiltIn._Verify, robot.libraries.BuiltIn._Converter, robot.libraries.BuiltIn._Variables, robot.libraries.BuiltIn._RunKeyword, robot.libraries.BuiltIn._Control, robot.libraries.BuiltIn._Misc

An always available standard library with often needed keywords.

BuiltIn is Robot Framework’s standard library that provides a set
of generic keywords needed often. It is imported automatically and
thus always available. The provided keywords can be used, for example,
for verifications (e.g. Should Be Equal, Should Contain),
conversions (e.g. Convert To Integer) and for various other purposes
(e.g. Log, Sleep, Run Keyword If, Set Global Variable).

== Table of contents ==

%TOC%

= HTML error messages =

Many of the keywords accept an optional error message to use if the keyword
fails, and it is possible to use HTML in these messages by prefixing them
with *HTML*. See Fail keyword for a usage example. Notice that using
HTML in messages is not limited to BuiltIn library but works with any
error message.

= Evaluating expressions =

Many keywords, such as Evaluate, Run Keyword If and Should Be True,
accept an expression that is evaluated in Python.

== Evaluation namespace ==

Expressions are evaluated using Python’s
[http://docs.python.org/library/functions.html#eval|eval] function so
that all Python built-ins like len() and int() are available.
In addition to that, all unrecognized variables are considered to be
modules that are automatically imported. It is possible to use all
available Python modules, including the standard modules and the installed
third party modules.

Evaluate also allows configuring the execution namespace with a custom
namespace and with custom modules to be imported. The latter functionality
is useful when using nested modules like rootmod.submod that are
implemented so that the root module does not automatically import sub
modules. Otherwise the automatic module import mechanism described earlier
is enough to get the needed modules imported.

NOTE: Automatic module import is a new feature in Robot Framework 3.2.
Earlier modules needed to be explicitly taken into use when using the
Evaluate keyword and other keywords only had access to sys and
os modules.

== Using variables ==

When a variable is used in the expressing using the normal ${variable}
syntax, its value is replaced before the expression is evaluated. This
means that the value used in the expression will be the string
representation of the variable value, not the variable value itself.
This is not a problem with numbers and other objects that have a string
representation that can be evaluated directly, but with other objects
the behavior depends on the string representation. Most importantly,
strings must always be quoted, and if they can contain newlines, they must
be triple quoted.

Actual variables values are also available in the evaluation namespace.
They can be accessed using special variable syntax without the curly
braces like $variable. These variables should never be quoted.

Using the $variable syntax slows down expression evaluation a little.
This should not typically matter, but should be taken into account if
complex expressions are evaluated often and there are strict time
constrains.

Notice that instead of creating complicated expressions, it is often better
to move the logic into a test library. That eases maintenance and can also
enhance execution speed.

= Boolean arguments =

Some keywords accept arguments that are handled as Boolean values true or
false. If such an argument is given as a string, it is considered false if
it is an empty string or equal to FALSE, NONE, NO, OFF or
0, case-insensitively. Keywords verifying something that allow dropping
actual and expected values from the possible error message also consider
string no values to be false. Other strings are considered true unless
the keyword documentation explicitly states otherwise, and other argument
types are tested using the same
[http://docs.python.org/library/stdtypes.html#truth|rules as in Python].

True examples:

False examples:

Considering string NONE false is new in Robot Framework 3.0.3 and
considering also OFF and 0 false is new in Robot Framework 3.1.

= Pattern matching =

Many keywords accepts arguments as either glob or regular expression
patterns.

== Glob patterns ==

Some keywords, for example Should Match, support so called
[http://en.wikipedia.org/wiki/Glob_(programming)|glob patterns] where:

Unlike with glob patterns normally, path separator characters / and
\ and the newline character \n are matches by the above
wildcards.

Support for brackets like [abc] and [!a-z] is new in
Robot Framework 3.1.

== Regular expressions ==

Some keywords, for example Should Match Regexp, support
[http://en.wikipedia.org/wiki/Regular_expression|regular expressions]
that are more powerful but also more complicated that glob patterns.
The regular expression support is implemented using Python’s
[http://docs.python.org/library/re.html|re module] and its documentation
should be consulted for more information about the syntax.

Because the backslash character (\) is an escape character in
Robot Framework test data, possible backslash characters in regular
expressions need to be escaped with another backslash like \\d\\w+.
Strings that may contain special characters but should be handled
as literal strings, can be escaped with the Regexp Escape keyword.

= Multiline string comparison =

Should Be Equal and Should Be Equal As Strings report the failures using
[http://en.wikipedia.org/wiki/Diff_utility#Unified_format|unified diff
format] if both strings have more than two lines.

Results in the following error message:

= String representations =

Several keywords log values explicitly (e.g. Log) or implicitly (e.g.
Should Be Equal when there are failures). By default keywords log values
using “human readable” string representation, which means that strings
like Hello and numbers like 42 are logged as-is. Most of the time
this is the desired behavior, but there are some problems as well:

	It is not possible to see difference between different objects that
have same string representation like string 42 and integer 42.
Should Be Equal and some other keywords add the type information to
the error message in these cases, though.

	Non-printable characters such as the null byte are not visible.

	Trailing whitespace is not visible.

	Different newlines (\r\n on Windows, \n elsewhere) cannot
be separated from each others.

	There are several Unicode characters that are different but look the
same. One example is the Latin a (\u0061) and the Cyrillic
а (\u0430). Error messages like a != а are
not very helpful.

	Some Unicode characters can be represented using
[https://en.wikipedia.org/wiki/Unicode_equivalence|different forms].
For example, ä can be represented either as a single code point
\u00e4 or using two code points \u0061 and \u0308 combined
together. Such forms are considered canonically equivalent, but strings
containing them are not considered equal when compared in Python. Error
messages like ä != ä are not that helpful either.

	Containers such as lists and dictionaries are formatted into a single
line making it hard to see individual items they contain.

To overcome the above problems, some keywords such as Log and
Should Be Equal have an optional formatter argument that can be
used to configure the string representation. The supported values are
str (default), repr, and ascii that work similarly as
[https://docs.python.org/library/functions.html|Python built-in functions]
with same names. More detailed semantics are explained below.

The formatter argument is new in Robot Framework 3.1.2.

== str ==

Use the “human readable” string representation. Equivalent to using
str() in Python 3 and unicode() in Python 2. This is the default.

== repr ==

Use the “machine readable” string representation. Similar to using
repr() in Python, which means that strings like Hello are logged
like 'Hello', newlines and non-printable characters are escaped like
\n and \x00, and so on. Non-ASCII characters are shown as-is
like ä in Python 3 and in escaped format like \xe4 in Python 2.
Use ascii to always get the escaped format.

There are also some enhancements compared to the standard repr():
- Bigger lists, dictionaries and other containers are pretty-printed so

that there is one item per row.

	On Python 2 the u prefix is omitted with Unicode strings and
the b prefix is added to byte strings.

== ascii ==

Same as using ascii() in Python 3 or repr() in Python 2 where
ascii() does not exist. Similar to using repr explained above
but with the following differences:

	On Python 3 non-ASCII characters are escaped like \xe4 instead of
showing them as-is like ä. This makes it easier to see differences
between Unicode characters that look the same but are not equal. This
is how repr() works in Python 2.

	On Python 2 just uses the standard repr() meaning that Unicode
strings get the u prefix and no b prefix is added to byte
strings.

	Containers are not pretty-printed.

	
ROBOT_LIBRARY_SCOPE = 'GLOBAL'

	

	
ROBOT_LIBRARY_VERSION = '3.2.2'

	

	
call_method(object, method_name, *args, **kwargs)

	Calls the named method of the given object with the provided arguments.

The possible return value from the method is returned and can be
assigned to a variable. Keyword fails both if the object does not have
a method with the given name or if executing the method raises an
exception.

Possible equal signs in arguments must be escaped with a backslash
like \=.

	
catenate(*items)

	Catenates the given items together and returns the resulted string.

By default, items are catenated with spaces, but if the first item
contains the string SEPARATOR=<sep>, the separator <sep> is
used instead. Items are converted into strings when necessary.

	
comment(*messages)

	Displays the given messages in the log file as keyword arguments.

This keyword does nothing with the arguments it receives, but as they
are visible in the log, this keyword can be used to display simple
messages. Given arguments are ignored so thoroughly that they can even
contain non-existing variables. If you are interested about variable
values, you can use the Log or Log Many keywords.

	
continue_for_loop()

	Skips the current for loop iteration and continues from the next.

Skips the remaining keywords in the current for loop iteration and
continues from the next one. Can be used directly in a for loop or
in a keyword that the loop uses.

See Continue For Loop If to conditionally continue a for loop without
using Run Keyword If or other wrapper keywords.

	
continue_for_loop_if(condition)

	Skips the current for loop iteration if the condition is true.

A wrapper for Continue For Loop to continue a for loop based on
the given condition. The condition is evaluated using the same
semantics as with Should Be True keyword.

	
convert_to_binary(item, base=None, prefix=None, length=None)

	Converts the given item to a binary string.

The item, with an optional base, is first converted to an
integer using Convert To Integer internally. After that it
is converted to a binary number (base 2) represented as a
string such as 1011.

The returned value can contain an optional prefix and can be
required to be of minimum length (excluding the prefix and a
possible minus sign). If the value is initially shorter than
the required length, it is padded with zeros.

See also Convert To Integer, Convert To Octal and Convert To Hex.

	
convert_to_boolean(item)

	Converts the given item to Boolean true or false.

Handles strings True and False (case-insensitive) as expected,
otherwise returns item’s
[http://docs.python.org/library/stdtypes.html#truth|truth value]
using Python’s bool() method.

	
convert_to_bytes(input, input_type='text')

	Converts the given input to bytes according to the input_type.

Valid input types are listed below:

	text: Converts text to bytes character by character. All
characters with ordinal below 256 can be used and are converted to
bytes with same values. Many characters are easiest to represent
using escapes like \x00 or \xff. Supports both Unicode
strings and bytes.

	int: Converts integers separated by spaces to bytes. Similarly as
with Convert To Integer, it is possible to use binary, octal, or
hex values by prefixing the values with 0b, 0o, or 0x,
respectively.

	hex: Converts hexadecimal values to bytes. Single byte is always
two characters long (e.g. 01 or FF). Spaces are ignored and
can be used freely as a visual separator.

	bin: Converts binary values to bytes. Single byte is always eight
characters long (e.g. 00001010). Spaces are ignored and can be
used freely as a visual separator.

In addition to giving the input as a string, it is possible to use
lists or other iterables containing individual characters or numbers.
In that case numbers do not need to be padded to certain length and
they cannot contain extra spaces.

Use Encode String To Bytes in String library if you need to
convert text to bytes using a certain encoding.

	
convert_to_hex(item, base=None, prefix=None, length=None, lowercase=False)

	Converts the given item to a hexadecimal string.

The item, with an optional base, is first converted to an
integer using Convert To Integer internally. After that it
is converted to a hexadecimal number (base 16) represented as
a string such as FF0A.

The returned value can contain an optional prefix and can be
required to be of minimum length (excluding the prefix and a
possible minus sign). If the value is initially shorter than
the required length, it is padded with zeros.

By default the value is returned as an upper case string, but the
lowercase argument a true value (see Boolean arguments) turns
the value (but not the given prefix) to lower case.

See also Convert To Integer, Convert To Binary and Convert To Octal.

	
convert_to_integer(item, base=None)

	Converts the given item to an integer number.

If the given item is a string, it is by default expected to be an
integer in base 10. There are two ways to convert from other bases:

	Give base explicitly to the keyword as base argument.

	Prefix the given string with the base so that 0b means binary
(base 2), 0o means octal (base 8), and 0x means hex (base 16).
The prefix is considered only when base argument is not given and
may itself be prefixed with a plus or minus sign.

The syntax is case-insensitive and possible spaces are ignored.

See also Convert To Number, Convert To Binary, Convert To Octal,
Convert To Hex, and Convert To Bytes.

	
convert_to_number(item, precision=None)

	Converts the given item to a floating point number.

If the optional precision is positive or zero, the returned number
is rounded to that number of decimal digits. Negative precision means
that the number is rounded to the closest multiple of 10 to the power
of the absolute precision. If a number is equally close to a certain
precision, it is always rounded away from zero.

Notice that machines generally cannot store floating point numbers
accurately. This may cause surprises with these numbers in general
and also when they are rounded. For more information see, for example,
these resources:

	http://docs.python.org/tutorial/floatingpoint.html

	http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition

If you want to avoid possible problems with floating point numbers,
you can implement custom keywords using Python’s
[http://docs.python.org/library/decimal.html|decimal] or
[http://docs.python.org/library/fractions.html|fractions] modules.

If you need an integer number, use Convert To Integer instead.

	
convert_to_octal(item, base=None, prefix=None, length=None)

	Converts the given item to an octal string.

The item, with an optional base, is first converted to an
integer using Convert To Integer internally. After that it
is converted to an octal number (base 8) represented as a
string such as 775.

The returned value can contain an optional prefix and can be
required to be of minimum length (excluding the prefix and a
possible minus sign). If the value is initially shorter than
the required length, it is padded with zeros.

See also Convert To Integer, Convert To Binary and Convert To Hex.

	
convert_to_string(item)

	Converts the given item to a Unicode string.

Strings are also [http://www.macchiato.com/unicode/nfc-faq|
NFC normalized].

Use Encode String To Bytes and Decode Bytes To String keywords
in String library if you need to convert between Unicode and byte
strings using different encodings. Use Convert To Bytes if you just
want to create byte strings.

	
create_dictionary(*items)

	Creates and returns a dictionary based on the given items.

Items are typically given using the key=value syntax same way as
&{dictionary} variables are created in the Variable table. Both
keys and values can contain variables, and possible equal sign in key
can be escaped with a backslash like escaped\=key=value. It is
also possible to get items from existing dictionaries by simply using
them like &{dict}.

Alternatively items can be specified so that keys and values are given
separately. This and the key=value syntax can even be combined,
but separately given items must be first. If same key is used multiple
times, the last value has precedence.

The returned dictionary is ordered, and values with strings as keys
can also be accessed using a convenient dot-access syntax like
${dict.key}. Technically the returned dictionary is Robot
Framework’s own DotDict instance. If there is a need, it can be
converted into a regular Python dict instance by using the
Convert To Dictionary keyword from the Collections library.

	
create_list(*items)

	Returns a list containing given items.

The returned list can be assigned both to ${scalar} and @{list}
variables.

	
evaluate(expression, modules=None, namespace=None)

	Evaluates the given expression in Python and returns the result.

expression is evaluated in Python as explained in the
Evaluating expressions section.

modules argument can be used to specify a comma separated
list of Python modules to be imported and added to the evaluation
namespace.

namespace argument can be used to pass a custom evaluation
namespace as a dictionary. Possible modules are added to this
namespace.

Starting from Robot Framework 3.2, modules used in the expression are
imported automatically. modules argument is still needed with
nested modules like rootmod.submod that are implemented so that
the root module does not automatically import sub modules. This is
illustrated by the selenium.webdriver example below.

Variables used like ${variable} are replaced in the expression
before evaluation. Variables are also available in the evaluation
namespace and can be accessed using the special $variable syntax
as explained in the Evaluating expressions section.

NOTE: Prior to Robot Framework 3.2 using modules=rootmod.submod
was not enough to make the root module itself available in the
evaluation namespace. It needed to be taken into use explicitly like
modules=rootmod, rootmod.submod.

	
exit_for_loop()

	Stops executing the enclosing for loop.

Exits the enclosing for loop and continues execution after it.
Can be used directly in a for loop or in a keyword that the loop uses.

See Exit For Loop If to conditionally exit a for loop without
using Run Keyword If or other wrapper keywords.

	
exit_for_loop_if(condition)

	Stops executing the enclosing for loop if the condition is true.

A wrapper for Exit For Loop to exit a for loop based on
the given condition. The condition is evaluated using the same
semantics as with Should Be True keyword.

	
fail(msg=None, *tags)

	Fails the test with the given message and optionally alters its tags.

The error message is specified using the msg argument.
It is possible to use HTML in the given error message, similarly
as with any other keyword accepting an error message, by prefixing
the error with *HTML*.

It is possible to modify tags of the current test case by passing tags
after the message. Tags starting with a hyphen (e.g. -regression)
are removed and others added. Tags are modified using Set Tags and
Remove Tags internally, and the semantics setting and removing them
are the same as with these keywords.

See Fatal Error if you need to stop the whole test execution.

	
fatal_error(msg=None)

	Stops the whole test execution.

The test or suite where this keyword is used fails with the provided
message, and subsequent tests fail with a canned message.
Possible teardowns will nevertheless be executed.

See Fail if you only want to stop one test case unconditionally.

	
get_count(container, item)

	Returns and logs how many times item is found from container.

This keyword works with Python strings and lists and all objects
that either have count method or can be converted to Python lists.

	
get_length(item)

	Returns and logs the length of the given item as an integer.

The item can be anything that has a length, for example, a string,
a list, or a mapping. The keyword first tries to get the length with
the Python function len, which calls the item’s __len__ method
internally. If that fails, the keyword tries to call the item’s
possible length and size methods directly. The final attempt is
trying to get the value of the item’s length attribute. If all
these attempts are unsuccessful, the keyword fails.

See also Length Should Be, Should Be Empty and Should Not Be
Empty.

	
get_library_instance(name=None, all=False)

	Returns the currently active instance of the specified test library.

This keyword makes it easy for test libraries to interact with
other test libraries that have state. This is illustrated by
the Python example below:

It is also possible to use this keyword in the test data and
pass the returned library instance to another keyword. If a
library is imported with a custom name, the name used to get
the instance must be that name and not the original library name.

If the optional argument all is given a true value, then a
dictionary mapping all library names to instances will be returned.

	
get_time(format='timestamp', time_='NOW')

	Returns the given time in the requested format.

NOTE: DateTime library contains much more flexible keywords for
getting the current date and time and for date and time handling in
general.

How time is returned is determined based on the given format
string as follows. Note that all checks are case-insensitive.

	If format contains the word epoch, the time is returned
in seconds after the UNIX epoch (1970-01-01 00:00:00 UTC).
The return value is always an integer.

	If format contains any of the words year, month,
day, hour, min, or sec, only the selected parts are
returned. The order of the returned parts is always the one
in the previous sentence and the order of words in format
is not significant. The parts are returned as zero-padded
strings (e.g. May -> 05).

	Otherwise (and by default) the time is returned as a
timestamp string in the format 2006-02-24 15:08:31.

By default this keyword returns the current local time, but
that can be altered using time argument as explained below.
Note that all checks involving strings are case-insensitive.

	If time is a number, or a string that can be converted to
a number, it is interpreted as seconds since the UNIX epoch.
This documentation was originally written about 1177654467
seconds after the epoch.

	If time is a timestamp, that time will be used. Valid
timestamp formats are YYYY-MM-DD hh:mm:ss and
YYYYMMDD hhmmss.

	If time is equal to NOW (default), the current local
time is used.

	If time is equal to UTC, the current time in
[http://en.wikipedia.org/wiki/Coordinated_Universal_Time|UTC]
is used.

	If time is in the format like NOW - 1 day or UTC + 1 hour
30 min, the current local/UTC time plus/minus the time
specified with the time string is used. The time string format
is described in an appendix of Robot Framework User Guide.

UTC time is 2006-03-29 12:06:21):

	
get_variable_value(name, default=None)

	Returns variable value or default if the variable does not exist.

The name of the variable can be given either as a normal variable name
(e.g. ${NAME}) or in escaped format (e.g. \${NAME}). Notice
that the former has some limitations explained in Set Suite Variable.

See Set Variable If for another keyword to set variables dynamically.

	
get_variables(no_decoration=False)

	Returns a dictionary containing all variables in the current scope.

Variables are returned as a special dictionary that allows accessing
variables in space, case, and underscore insensitive manner similarly
as accessing variables in the test data. This dictionary supports all
same operations as normal Python dictionaries and, for example,
Collections library can be used to access or modify it. Modifying the
returned dictionary has no effect on the variables available in the
current scope.

By default variables are returned with ${}, @{} or &{}
decoration based on variable types. Giving a true value (see Boolean
arguments) to the optional argument no_decoration will return
the variables without the decoration.

	
import_library(name, *args)

	Imports a library with the given name and optional arguments.

This functionality allows dynamic importing of libraries while tests
are running. That may be necessary, if the library itself is dynamic
and not yet available when test data is processed. In a normal case,
libraries should be imported using the Library setting in the Setting
table.

This keyword supports importing libraries both using library
names and physical paths. When paths are used, they must be
given in absolute format or found from
[http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pythonpath-jythonpath-and-ironpythonpath|
search path]. Forward slashes can be used as path separators in all
operating systems.

It is possible to pass arguments to the imported library and also
named argument syntax works if the library supports it. WITH NAME
syntax can be used to give a custom name to the imported library.

	
import_resource(path)

	Imports a resource file with the given path.

Resources imported with this keyword are set into the test suite scope
similarly when importing them in the Setting table using the Resource
setting.

The given path must be absolute or found from
[http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pythonpath-jythonpath-and-ironpythonpath|
search path]. Forward slashes can be used as path separator regardless
the operating system.

	
import_variables(path, *args)

	Imports a variable file with the given path and optional arguments.

Variables imported with this keyword are set into the test suite scope
similarly when importing them in the Setting table using the Variables
setting. These variables override possible existing variables with
the same names. This functionality can thus be used to import new
variables, for example, for each test in a test suite.

The given path must be absolute or found from
[http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#pythonpath-jythonpath-and-ironpythonpath|
search path]. Forward slashes can be used as path separator regardless
the operating system.

	
keyword_should_exist(name, msg=None)

	Fails unless the given keyword exists in the current scope.

Fails also if there are more than one keywords with the same name.
Works both with the short name (e.g. Log) and the full name
(e.g. BuiltIn.Log).

The default error message can be overridden with the msg argument.

See also Variable Should Exist.

	
length_should_be(item, length, msg=None)

	Verifies that the length of the given item is correct.

The length of the item is got using the Get Length keyword. The
default error message can be overridden with the msg argument.

	
log(message, level='INFO', html=False, console=False, repr=False, formatter='str')

	Logs the given message with the given level.

Valid levels are TRACE, DEBUG, INFO (default), HTML, WARN, and ERROR.
Messages below the current active log level are ignored. See
Set Log Level keyword and --loglevel command line option
for more details about setting the level.

Messages logged with the WARN or ERROR levels will be automatically
visible also in the console and in the Test Execution Errors section
in the log file.

If the html argument is given a true value (see Boolean
arguments), the message will be considered HTML and special characters
such as < are not escaped. For example, logging
 creates an image when html is true, but
otherwise the message is that exact string. An alternative to using
the html argument is using the HTML pseudo log level. It logs
the message as HTML using the INFO level.

If the console argument is true, the message will be written to
the console where test execution was started from in addition to
the log file. This keyword always uses the standard output stream
and adds a newline after the written message. Use Log To Console
instead if either of these is undesirable,

The formatter argument controls how to format the string
representation of the message. Possible values are str (default),
repr and ascii, and they work similarly to Python built-in
functions with same names. When using repr, bigger lists,
dictionaries and other containers are also pretty-printed so that
there is one item per row. For more details see String
representations. This is a new feature in Robot Framework 3.1.2.

The old way to control string representation was using the repr
argument, and repr=True is still equivalent to using
formatter=repr. The repr argument will be deprecated in the
future, though, and using formatter is thus recommended.

See Log Many if you want to log multiple messages in one go, and
Log To Console if you only want to write to the console.

	
log_many(*messages)

	Logs the given messages as separate entries using the INFO level.

Supports also logging list and dictionary variable items individually.

See Log and Log To Console keywords if you want to use alternative
log levels, use HTML, or log to the console.

	
log_to_console(message, stream='STDOUT', no_newline=False)

	Logs the given message to the console.

By default uses the standard output stream. Using the standard error
stream is possibly by giving the stream argument value STDERR
(case-insensitive).

By default appends a newline to the logged message. This can be
disabled by giving the no_newline argument a true value (see
Boolean arguments).

This keyword does not log the message to the normal log file. Use
Log keyword, possibly with argument console, if that is desired.

	
log_variables(level='INFO')

	Logs all variables in the current scope with given log level.

	
no_operation()

	Does absolutely nothing.

	
pass_execution(message, *tags)

	Skips rest of the current test, setup, or teardown with PASS status.

This keyword can be used anywhere in the test data, but the place where
used affects the behavior:

	When used in any setup or teardown (suite, test or keyword), passes
that setup or teardown. Possible keyword teardowns of the started
keywords are executed. Does not affect execution or statuses
otherwise.

	When used in a test outside setup or teardown, passes that particular
test case. Possible test and keyword teardowns are executed.

Possible continuable failures before this keyword is used, as well as
failures in executed teardowns, will fail the execution.

It is mandatory to give a message explaining why execution was passed.
By default the message is considered plain text, but starting it with
HTML allows using HTML formatting.

It is also possible to modify test tags passing tags after the message
similarly as with Fail keyword. Tags starting with a hyphen
(e.g. -regression) are removed and others added. Tags are modified
using Set Tags and Remove Tags internally, and the semantics
setting and removing them are the same as with these keywords.

This keyword is typically wrapped to some other keyword, such as
Run Keyword If, to pass based on a condition. The most common case
can be handled also with Pass Execution If:

Passing execution in the middle of a test, setup or teardown should be
used with care. In the worst case it leads to tests that skip all the
parts that could actually uncover problems in the tested application.
In cases where execution cannot continue do to external factors,
it is often safer to fail the test case and make it non-critical.

	
pass_execution_if(condition, message, *tags)

	Conditionally skips rest of the current test, setup, or teardown with PASS status.

A wrapper for Pass Execution to skip rest of the current test,
setup or teardown based the given condition. The condition is
evaluated similarly as with Should Be True keyword, and message
and *tags have same semantics as with Pass Execution.

	
regexp_escape(*patterns)

	Returns each argument string escaped for use as a regular expression.

This keyword can be used to escape strings to be used with
Should Match Regexp and Should Not Match Regexp keywords.

Escaping is done with Python’s re.escape() function.

	
reload_library(name_or_instance)

	Rechecks what keywords the specified library provides.

Can be called explicitly in the test data or by a library itself
when keywords it provides have changed.

The library can be specified by its name or as the active instance of
the library. The latter is especially useful if the library itself
calls this keyword as a method.

	
remove_tags(*tags)

	Removes given tags from the current test or all tests in a suite.

Tags can be given exactly or using a pattern with *, ? and
[chars] acting as wildcards. See the Glob patterns section
for more information.

This keyword can affect either one test case or all test cases in a
test suite similarly as Set Tags keyword.

The current tags are available as a built-in variable @{TEST TAGS}.

See Set Tags if you want to add certain tags and Fail if you want
to fail the test case after setting and/or removing tags.

	
repeat_keyword(repeat, name, *args)

	Executes the specified keyword multiple times.

name and args define the keyword that is executed similarly as
with Run Keyword. repeat specifies how many times (as a count) or
how long time (as a timeout) the keyword should be executed.

If repeat is given as count, it specifies how many times the
keyword should be executed. repeat can be given as an integer or
as a string that can be converted to an integer. If it is a string,
it can have postfix times or x (case and space insensitive)
to make the expression more explicit.

If repeat is given as timeout, it must be in Robot Framework’s
time format (e.g. 1 minute, 2 min 3 s). Using a number alone
(e.g. 1 or 1.5) does not work in this context.

If repeat is zero or negative, the keyword is not executed at
all. This keyword fails immediately if any of the execution
rounds fails.

Specifying repeat as a timeout is new in Robot Framework 3.0.

	
replace_variables(text)

	Replaces variables in the given text with their current values.

If the text contains undefined variables, this keyword fails.
If the given text contains only a single variable, its value is
returned as-is and it can be any object. Otherwise this keyword
always returns a string.

The file template.txt contains Hello ${NAME}! and variable
${NAME} has the value Robot.

	
return_from_keyword(*return_values)

	Returns from the enclosing user keyword.

This keyword can be used to return from a user keyword with PASS status
without executing it fully. It is also possible to return values
similarly as with the [Return] setting. For more detailed information
about working with the return values, see the User Guide.

This keyword is typically wrapped to some other keyword, such as
Run Keyword If or Run Keyword If Test Passed, to return based
on a condition:

It is possible to use this keyword to return from a keyword also inside
a for loop. That, as well as returning values, is demonstrated by the
Find Index keyword in the following somewhat advanced example.
Notice that it is often a good idea to move this kind of complicated
logic into a test library.

The most common use case, returning based on an expression, can be
accomplished directly with Return From Keyword If. See also
Run Keyword And Return and Run Keyword And Return If.

	
return_from_keyword_if(condition, *return_values)

	Returns from the enclosing user keyword if condition is true.

A wrapper for Return From Keyword to return based on the given
condition. The condition is evaluated using the same semantics as
with Should Be True keyword.

Given the same example as in Return From Keyword, we can rewrite the
Find Index keyword as follows:

See also Run Keyword And Return and Run Keyword And Return If.

	
run_keyword(name, *args)

	Executes the given keyword with the given arguments.

Because the name of the keyword to execute is given as an argument, it
can be a variable and thus set dynamically, e.g. from a return value of
another keyword or from the command line.

	
run_keyword_and_continue_on_failure(name, *args)

	Runs the keyword and continues execution even if a failure occurs.

The keyword name and arguments work as with Run Keyword.

The execution is not continued if the failure is caused by invalid syntax,
timeout, or fatal exception.

	
run_keyword_and_expect_error(expected_error, name, *args)

	Runs the keyword and checks that the expected error occurred.

The keyword to execute and its arguments are specified using name
and *args exactly like with Run Keyword.

The expected error must be given in the same format as in Robot
Framework reports. By default it is interpreted as a glob pattern
with *, ? and [chars] as wildcards, but starting from
Robot Framework 3.1 that can be changed by using various prefixes
explained in the table below. Prefixes are case-sensitive and they
must be separated from the actual message with a colon and an
optional space like PREFIX: Message or PREFIX:Message.

See the Pattern matching section for more information about glob
patterns and regular expressions.

If the expected error occurs, the error message is returned and it can
be further processed or tested if needed. If there is no error, or the
error does not match the expected error, this keyword fails.

Errors caused by invalid syntax, timeouts, or fatal exceptions are not
caught by this keyword.

	
run_keyword_and_ignore_error(name, *args)

	Runs the given keyword with the given arguments and ignores possible error.

This keyword returns two values, so that the first is either string
PASS or FAIL, depending on the status of the executed keyword.
The second value is either the return value of the keyword or the
received error message. See Run Keyword And Return Status If you are
only interested in the execution status.

The keyword name and arguments work as in Run Keyword. See
Run Keyword If for a usage example.

Errors caused by invalid syntax, timeouts, or fatal exceptions are not
caught by this keyword. Otherwise this keyword itself never fails.

	
run_keyword_and_return(name, *args)

	Runs the specified keyword and returns from the enclosing user keyword.

The keyword to execute is defined with name and *args exactly
like with Run Keyword. After running the keyword, returns from the
enclosing user keyword and passes possible return value from the
executed keyword further. Returning from a keyword has exactly same
semantics as with Return From Keyword.

Use Run Keyword And Return If if you want to run keyword and return
based on a condition.

	
run_keyword_and_return_if(condition, name, *args)

	Runs the specified keyword and returns from the enclosing user keyword.

A wrapper for Run Keyword And Return to run and return based on
the given condition. The condition is evaluated using the same
semantics as with Should Be True keyword.

Use Return From Keyword If if you want to return a certain value
based on a condition.

	
run_keyword_and_return_status(name, *args)

	Runs the given keyword with given arguments and returns the status as a Boolean value.

This keyword returns Boolean True if the keyword that is executed
succeeds and False if it fails. This is useful, for example, in
combination with Run Keyword If. If you are interested in the error
message or return value, use Run Keyword And Ignore Error instead.

The keyword name and arguments work as in Run Keyword.

Errors caused by invalid syntax, timeouts, or fatal exceptions are not
caught by this keyword. Otherwise this keyword itself never fails.

	
run_keyword_if(condition, name, *args)

	Runs the given keyword with the given arguments, if condition is true.

The given condition is evaluated in Python as explained in
Evaluating expressions, and name and *args have same
semantics as with Run Keyword.

In this example, only either Some Action or Another Action is
executed, based on the status of My Keyword. Instead of Run Keyword
And Ignore Error you can also use Run Keyword And Return Status.

Variables used like ${variable}, as in the examples above, are
replaced in the expression before evaluation. Variables are also
available in the evaluation namespace and can be accessed using special
syntax $variable as explained in the Evaluating expressions
section.

This keyword supports also optional ELSE and ELSE IF branches. Both
of them are defined in *args and must use exactly format ELSE
or ELSE IF, respectively. ELSE branches must contain first the
name of the keyword to execute and then its possible arguments. ELSE
IF branches must first contain a condition, like the first argument
to this keyword, and then the keyword to execute and its possible
arguments. It is possible to have ELSE branch after ELSE IF and to
have multiple ELSE IF branches. Nested Run Keyword If usage is not
supported when using ELSE and/or ELSE IF branches.

Given previous example, if/else construct can also be created like this:

The return value of this keyword is the return value of the actually
executed keyword or Python None if no keyword was executed (i.e.
if condition was false). Hence, it is recommended to use ELSE
and/or ELSE IF branches to conditionally assign return values from
keyword to variables (see Set Variable If if you need to set fixed
values conditionally). This is illustrated by the example below:

In this example, ${var2} will be set to None if ${condition} is
false.

Notice that ELSE and ELSE IF control words must be used
explicitly and thus cannot come from variables. If you need to use
literal ELSE and ELSE IF strings as arguments, you can escape
them with a backslash like \ELSE and \ELSE IF.

Python’s [http://docs.python.org/library/os.html|os] and
[http://docs.python.org/library/sys.html|sys] modules are
automatically imported when evaluating the condition.
Attributes they contain can thus be used in the condition:

	
run_keyword_if_all_critical_tests_passed(name, *args)

	Runs the given keyword with the given arguments, if all critical tests passed.

This keyword can only be used in suite teardown. Trying to use it in
any other place will result in an error.

Otherwise, this keyword works exactly like Run Keyword, see its
documentation for more details.

	
run_keyword_if_all_tests_passed(name, *args)

	Runs the given keyword with the given arguments, if all tests passed.

This keyword can only be used in a suite teardown. Trying to use it
anywhere else results in an error.

Otherwise, this keyword works exactly like Run Keyword, see its
documentation for more details.

	
run_keyword_if_any_critical_tests_failed(name, *args)

	Runs the given keyword with the given arguments, if any critical tests failed.

This keyword can only be used in a suite teardown. Trying to use it
anywhere else results in an error.

Otherwise, this keyword works exactly like Run Keyword, see its
documentation for more details.

	
run_keyword_if_any_tests_failed(name, *args)

	Runs the given keyword with the given arguments, if one or more tests failed.

This keyword can only be used in a suite teardown. Trying to use it
anywhere else results in an error.

Otherwise, this keyword works exactly like Run Keyword, see its
documentation for more details.

	
run_keyword_if_test_failed(name, *args)

	Runs the given keyword with the given arguments, if the test failed.

This keyword can only be used in a test teardown. Trying to use it
anywhere else results in an error.

Otherwise, this keyword works exactly like Run Keyword, see its
documentation for more details.

	
run_keyword_if_test_passed(name, *args)

	Runs the given keyword with the given arguments, if the test passed.

This keyword can only be used in a test teardown. Trying to use it
anywhere else results in an error.

Otherwise, this keyword works exactly like Run Keyword, see its
documentation for more details.

	
run_keyword_if_timeout_occurred(name, *args)

	Runs the given keyword if either a test or a keyword timeout has occurred.

This keyword can only be used in a test teardown. Trying to use it
anywhere else results in an error.

Otherwise, this keyword works exactly like Run Keyword, see its
documentation for more details.

	
run_keyword_unless(condition, name, *args)

	Runs the given keyword with the given arguments if condition is false.

See Run Keyword If for more information and an example. Notice that
this keyword does not support ELSE or ELSE IF branches like
Run Keyword If does, though.

	
run_keywords(*keywords)

	Executes all the given keywords in a sequence.

This keyword is mainly useful in setups and teardowns when they need
to take care of multiple actions and creating a new higher level user
keyword would be an overkill.

By default all arguments are expected to be keywords to be executed.

Keywords can also be run with arguments using upper case AND as
a separator between keywords. The keywords are executed so that the
first argument is the first keyword and proceeding arguments until
the first AND are arguments to it. First argument after the first
AND is the second keyword and proceeding arguments until the next
AND are its arguments. And so on.

Notice that the AND control argument must be used explicitly and
cannot itself come from a variable. If you need to use literal AND
string as argument, you can either use variables or escape it with
a backslash like \AND.

	
set_global_variable(name, *values)

	Makes a variable available globally in all tests and suites.

Variables set with this keyword are globally available in all
subsequent test suites, test cases and user keywords. Also variables
in variable tables are overridden. Variables assigned locally based
on keyword return values or by using Set Test Variable and
Set Suite Variable override these variables in that scope, but
the global value is not changed in those cases.

In practice setting variables with this keyword has the same effect
as using command line options --variable and --variablefile.
Because this keyword can change variables everywhere, it should be
used with care.

See Set Suite Variable for more information and examples.

	
set_library_search_order(*search_order)

	Sets the resolution order to use when a name matches multiple keywords.

The library search order is used to resolve conflicts when a keyword
name in the test data matches multiple keywords. The first library
(or resource, see below) containing the keyword is selected and that
keyword implementation used. If the keyword is not found from any library
(or resource), test executing fails the same way as when the search
order is not set.

When this keyword is used, there is no need to use the long
LibraryName.Keyword Name notation. For example, instead of
having

you can have

This keyword can be used also to set the order of keywords in different
resource files. In this case resource names must be given without paths
or extensions like:

NOTE:
- The search order is valid only in the suite where this keywords is used.
- Keywords in resources always have higher priority than

keywords in libraries regardless the search order.

	The old order is returned and can be used to reset the search order later.

	Library and resource names in the search order are both case and space
insensitive.

	
set_local_variable(name, *values)

	Makes a variable available everywhere within the local scope.

Variables set with this keyword are available within the
local scope of the currently executed test case or in the local scope
of the keyword in which they are defined. For example, if you set a
variable in a user keyword, it is available only in that keyword. Other
test cases or keywords will not see variables set with this keyword.

This keyword is equivalent to a normal variable assignment based on a
keyword return value.

is equivalent with

This keyword will provide the option of setting local variables inside keywords
like Run Keyword If, Run Keyword And Return If, Run Keyword Unless
which until now was not possible by using Set Variable.

It will also be possible to use this keyword from external libraries
that want to set local variables.

New in Robot Framework 3.2.

	
set_log_level(level)

	Sets the log threshold to the specified level and returns the old level.

Messages below the level will not logged. The default logging level is
INFO, but it can be overridden with the command line option
--loglevel.

The available levels: TRACE, DEBUG, INFO (default), WARN, ERROR and NONE (no
logging).

	
set_suite_documentation(doc, append=False, top=False)

	Sets documentation for the current test suite.

By default the possible existing documentation is overwritten, but
this can be changed using the optional append argument similarly
as with Set Test Message keyword.

This keyword sets the documentation of the current suite by default.
If the optional top argument is given a true value (see Boolean
arguments), the documentation of the top level suite is altered
instead.

The documentation of the current suite is available as a built-in
variable ${SUITE DOCUMENTATION}.

	
set_suite_metadata(name, value, append=False, top=False)

	Sets metadata for the current test suite.

By default possible existing metadata values are overwritten, but
this can be changed using the optional append argument similarly
as with Set Test Message keyword.

This keyword sets the metadata of the current suite by default.
If the optional top argument is given a true value (see Boolean
arguments), the metadata of the top level suite is altered instead.

The metadata of the current suite is available as a built-in variable
${SUITE METADATA} in a Python dictionary. Notice that modifying this
variable directly has no effect on the actual metadata the suite has.

	
set_suite_variable(name, *values)

	Makes a variable available everywhere within the scope of the current suite.

Variables set with this keyword are available everywhere within the
scope of the currently executed test suite. Setting variables with this
keyword thus has the same effect as creating them using the Variable
table in the test data file or importing them from variable files.

Possible child test suites do not see variables set with this keyword
by default, but that can be controlled by using children=<option>
as the last argument. If the specified <option> given a true value
(see Boolean arguments), the variable is set also to the child
suites. Parent and sibling suites will never see variables set with
this keyword.

The name of the variable can be given either as a normal variable name
(e.g. ${NAME}) or in escaped format as \${NAME} or $NAME.
Variable value can be given using the same syntax as when variables
are created in the Variable table.

If a variable already exists within the new scope, its value will be
overwritten. Otherwise a new variable is created. If a variable already
exists within the current scope, the value can be left empty and the
variable within the new scope gets the value within the current scope.

To override an existing value with an empty value, use built-in
variables ${EMPTY}, @{EMPTY} or &{EMPTY}:

NOTE: If the variable has value which itself is a variable (escaped
or not), you must always use the escaped format to set the variable:

This limitation applies also to Set Test Variable, Set Global
Variable, Variable Should Exist, Variable Should Not Exist and
Get Variable Value keywords.

	
set_tags(*tags)

	Adds given tags for the current test or all tests in a suite.

When this keyword is used inside a test case, that test gets
the specified tags and other tests are not affected.

If this keyword is used in a suite setup, all test cases in
that suite, recursively, gets the given tags. It is a failure
to use this keyword in a suite teardown.

The current tags are available as a built-in variable @{TEST TAGS}.

See Remove Tags if you want to remove certain tags and Fail if
you want to fail the test case after setting and/or removing tags.

	
set_task_variable(name, *values)

	Makes a variable available everywhere within the scope of the current task.

This is an alias for Set Test Variable that is more applicable when
creating tasks, not tests. New in RF 3.1.

	
set_test_documentation(doc, append=False)

	Sets documentation for the current test case.

By default the possible existing documentation is overwritten, but
this can be changed using the optional append argument similarly
as with Set Test Message keyword.

The current test documentation is available as a built-in variable
${TEST DOCUMENTATION}. This keyword can not be used in suite
setup or suite teardown.

	
set_test_message(message, append=False)

	Sets message for the current test case.

If the optional append argument is given a true value (see Boolean
arguments), the given message is added after the possible earlier
message by joining the messages with a space.

In test teardown this keyword can alter the possible failure message,
but otherwise failures override messages set by this keyword. Notice
that in teardown the message is available as a built-in variable
${TEST MESSAGE}.

It is possible to use HTML format in the message by starting the message
with *HTML*.

This keyword can not be used in suite setup or suite teardown.

	
set_test_variable(name, *values)

	Makes a variable available everywhere within the scope of the current test.

Variables set with this keyword are available everywhere within the
scope of the currently executed test case. For example, if you set a
variable in a user keyword, it is available both in the test case level
and also in all other user keywords used in the current test. Other
test cases will not see variables set with this keyword.

See Set Suite Variable for more information and examples.

	
set_variable(*values)

	Returns the given values which can then be assigned to a variables.

This keyword is mainly used for setting scalar variables.
Additionally it can be used for converting a scalar variable
containing a list to a list variable or to multiple scalar variables.
It is recommended to use Create List when creating new lists.

Variables created with this keyword are available only in the
scope where they are created. See Set Global Variable,
Set Test Variable and Set Suite Variable for information on how to
set variables so that they are available also in a larger scope.

	
set_variable_if(condition, *values)

	Sets variable based on the given condition.

The basic usage is giving a condition and two values. The
given condition is first evaluated the same way as with the
Should Be True keyword. If the condition is true, then the
first value is returned, and otherwise the second value is
returned. The second value can also be omitted, in which case
it has a default value None. This usage is illustrated in the
examples below, where ${rc} is assumed to be zero.

It is also possible to have ‘else if’ support by replacing the
second value with another condition, and having two new values
after it. If the first condition is not true, the second is
evaluated and one of the values after it is returned based on
its truth value. This can be continued by adding more
conditions without a limit.

Use Get Variable Value if you need to set variables
dynamically based on whether a variable exist or not.

	
should_be_empty(item, msg=None)

	Verifies that the given item is empty.

The length of the item is got using the Get Length keyword. The
default error message can be overridden with the msg argument.

	
should_be_equal(first, second, msg=None, values=True, ignore_case=False, formatter='str')

	Fails if the given objects are unequal.

Optional msg, values and formatter arguments specify how
to construct the error message if this keyword fails:

	If msg is not given, the error message is <first> != <second>.

	If msg is given and values gets a true value (default),
the error message is <msg>: <first> != <second>.

	If msg is given and values gets a false value (see
Boolean arguments), the error message is simply <msg>.

	formatter controls how to format the values. Possible values are
str (default), repr and ascii, and they work similarly
as Python built-in functions with same names. See String
representations for more details.

If ignore_case is given a true value (see Boolean arguments) and
both arguments are strings, comparison is done case-insensitively.
If both arguments are multiline strings, this keyword uses
multiline string comparison.

ignore_case and formatter are new features in Robot Framework
3.0.1 and 3.1.2, respectively.

	
should_be_equal_as_integers(first, second, msg=None, values=True, base=None)

	Fails if objects are unequal after converting them to integers.

See Convert To Integer for information how to convert integers from
other bases than 10 using base argument or 0b/0o/0x prefixes.

See Should Be Equal for an explanation on how to override the default
error message with msg and values.

	
should_be_equal_as_numbers(first, second, msg=None, values=True, precision=6)

	Fails if objects are unequal after converting them to real numbers.

The conversion is done with Convert To Number keyword using the
given precision.

As discussed in the documentation of Convert To Number, machines
generally cannot store floating point numbers accurately. Because of
this limitation, comparing floats for equality is problematic and
a correct approach to use depends on the context. This keyword uses
a very naive approach of rounding the numbers before comparing them,
which is both prone to rounding errors and does not work very well if
numbers are really big or small. For more information about comparing
floats, and ideas on how to implement your own context specific
comparison algorithm, see
http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/.

If you want to avoid possible problems with floating point numbers,
you can implement custom keywords using Python’s
[http://docs.python.org/library/decimal.html|decimal] or
[http://docs.python.org/library/fractions.html|fractions] modules.

See Should Not Be Equal As Numbers for a negative version of this
keyword and Should Be Equal for an explanation on how to override
the default error message with msg and values.

	
should_be_equal_as_strings(first, second, msg=None, values=True, ignore_case=False, formatter='str')

	Fails if objects are unequal after converting them to strings.

See Should Be Equal for an explanation on how to override the default
error message with msg, values and formatter.

If ignore_case is given a true value (see Boolean arguments),
comparison is done case-insensitively. If both arguments are
multiline strings, this keyword uses multiline string comparison.

Strings are always [http://www.macchiato.com/unicode/nfc-faq|
NFC normalized].

ignore_case and formatter are new features in Robot Framework
3.0.1 and 3.1.2, respectively.

	
should_be_true(condition, msg=None)

	Fails if the given condition is not true.

If condition is a string (e.g. ${rc} < 10), it is evaluated as
a Python expression as explained in Evaluating expressions and the
keyword status is decided based on the result. If a non-string item is
given, the status is got directly from its
[http://docs.python.org/library/stdtypes.html#truth|truth value].

The default error message (<condition> should be true) is not very
informative, but it can be overridden with the msg argument.

Variables used like ${variable}, as in the examples above, are
replaced in the expression before evaluation. Variables are also
available in the evaluation namespace, and can be accessed using
special $variable syntax as explained in the Evaluating
expressions section.

Should Be True automatically imports Python’s
[http://docs.python.org/library/os.html|os] and
[http://docs.python.org/library/sys.html|sys] modules that contain
several useful attributes:

	
should_contain(container, item, msg=None, values=True, ignore_case=False)

	Fails if container does not contain item one or more times.

Works with strings, lists, and anything that supports Python’s in
operator.

See Should Be Equal for an explanation on how to override the default
error message with arguments msg and values.

If ignore_case is given a true value (see Boolean arguments) and
compared items are strings, it indicates that comparison should be
case-insensitive. If the container is a list-like object, string
items in it are compared case-insensitively. New option in Robot
Framework 3.0.1.

	
should_contain_any(container, *items, **configuration)

	Fails if container does not contain any of the *items.

Works with strings, lists, and anything that supports Python’s in
operator.

Supports additional configuration parameters msg, values
and ignore_case, which have exactly the same semantics as arguments
with same names have with Should Contain. These arguments must
always be given using name=value syntax after all items.

Note that possible equal signs in items must be escaped with
a backslash (e.g. foo\=bar) to avoid them to be passed in
as **configuration.

New in Robot Framework 3.0.1.

	
should_contain_x_times(container, item, count, msg=None, ignore_case=False)

	Fails if container does not contain item count times.

Works with strings, lists and all objects that Get Count works
with. The default error message can be overridden with msg and
the actual count is always logged.

If ignore_case is given a true value (see Boolean arguments) and
compared items are strings, it indicates that comparison should be
case-insensitive. If the container is a list-like object, string
items in it are compared case-insensitively. New option in Robot
Framework 3.0.1.

	
should_end_with(str1, str2, msg=None, values=True, ignore_case=False)

	Fails if the string str1 does not end with the string str2.

See Should Be Equal for an explanation on how to override the default
error message with msg and values, as well as for semantics
of the ignore_case option.

	
should_match(string, pattern, msg=None, values=True, ignore_case=False)

	Fails if the given string does not match the given pattern.

Pattern matching is similar as matching files in a shell with
*, ? and [chars] acting as wildcards. See the
Glob patterns section for more information.

See Should Be Equal for an explanation on how to override the default
error message with msg and values, as well as for semantics
of the ignore_case option.

	
should_match_regexp(string, pattern, msg=None, values=True)

	Fails if string does not match pattern as a regular expression.

See the Regular expressions section for more information about
regular expressions and how to use then in Robot Framework test data.

Notice that the given pattern does not need to match the whole string.
For example, the pattern ello matches the string Hello world!.
If a full match is needed, the ^ and $ characters can be used
to denote the beginning and end of the string, respectively.
For example, ^ello$ only matches the exact string ello.

Possible flags altering how the expression is parsed (e.g.
re.IGNORECASE, re.MULTILINE) must be embedded to the
pattern like (?im)pattern. The most useful flags are i
(case-insensitive), m (multiline mode), s (dotall mode)
and x (verbose).

If this keyword passes, it returns the portion of the string that
matched the pattern. Additionally, the possible captured groups are
returned.

See the Should Be Equal keyword for an explanation on how to override
the default error message with the msg and values arguments.

	
should_not_be_empty(item, msg=None)

	Verifies that the given item is not empty.

The length of the item is got using the Get Length keyword. The
default error message can be overridden with the msg argument.

	
should_not_be_equal(first, second, msg=None, values=True, ignore_case=False)

	Fails if the given objects are equal.

See Should Be Equal for an explanation on how to override the default
error message with msg and values.

If ignore_case is given a true value (see Boolean arguments) and
both arguments are strings, comparison is done case-insensitively.
New option in Robot Framework 3.0.1.

	
should_not_be_equal_as_integers(first, second, msg=None, values=True, base=None)

	Fails if objects are equal after converting them to integers.

See Convert To Integer for information how to convert integers from
other bases than 10 using base argument or 0b/0o/0x prefixes.

See Should Be Equal for an explanation on how to override the default
error message with msg and values.

See Should Be Equal As Integers for some usage examples.

	
should_not_be_equal_as_numbers(first, second, msg=None, values=True, precision=6)

	Fails if objects are equal after converting them to real numbers.

The conversion is done with Convert To Number keyword using the
given precision.

See Should Be Equal As Numbers for examples on how to use
precision and why it does not always work as expected. See also
Should Be Equal for an explanation on how to override the default
error message with msg and values.

	
should_not_be_equal_as_strings(first, second, msg=None, values=True, ignore_case=False)

	Fails if objects are equal after converting them to strings.

See Should Be Equal for an explanation on how to override the default
error message with msg and values.

If ignore_case is given a true value (see Boolean arguments),
comparison is done case-insensitively.

Strings are always [http://www.macchiato.com/unicode/nfc-faq|
NFC normalized].

ignore_case is a new feature in Robot Framework 3.0.1.

	
should_not_be_true(condition, msg=None)

	Fails if the given condition is true.

See Should Be True for details about how condition is evaluated
and how msg can be used to override the default error message.

	
should_not_contain(container, item, msg=None, values=True, ignore_case=False)

	Fails if container contains item one or more times.

Works with strings, lists, and anything that supports Python’s in
operator.

See Should Be Equal for an explanation on how to override the default
error message with arguments msg and values. ignore_case
has exactly the same semantics as with Should Contain.

	
should_not_contain_any(container, *items, **configuration)

	Fails if container contains one or more of the *items.

Works with strings, lists, and anything that supports Python’s in
operator.

Supports additional configuration parameters msg, values
and ignore_case, which have exactly the same semantics as arguments
with same names have with Should Contain. These arguments must
always be given using name=value syntax after all items.

Note that possible equal signs in items must be escaped with
a backslash (e.g. foo\=bar) to avoid them to be passed in
as **configuration.

New in Robot Framework 3.0.1.

	
should_not_end_with(str1, str2, msg=None, values=True, ignore_case=False)

	Fails if the string str1 ends with the string str2.

See Should Be Equal for an explanation on how to override the default
error message with msg and values, as well as for semantics
of the ignore_case option.

	
should_not_match(string, pattern, msg=None, values=True, ignore_case=False)

	Fails if the given string matches the given pattern.

Pattern matching is similar as matching files in a shell with
*, ? and [chars] acting as wildcards. See the
Glob patterns section for more information.

See Should Be Equal for an explanation on how to override the default
error message with msg and values, as well as for semantics
of the ignore_case option.

	
should_not_match_regexp(string, pattern, msg=None, values=True)

	Fails if string matches pattern as a regular expression.

See Should Match Regexp for more information about arguments.

	
should_not_start_with(str1, str2, msg=None, values=True, ignore_case=False)

	Fails if the string str1 starts with the string str2.

See Should Be Equal for an explanation on how to override the default
error message with msg and values, as well as for semantics
of the ignore_case option.

	
should_start_with(str1, str2, msg=None, values=True, ignore_case=False)

	Fails if the string str1 does not start with the string str2.

See Should Be Equal for an explanation on how to override the default
error message with msg and values, as well as for semantics
of the ignore_case option.

	
sleep(time_, reason=None)

	Pauses the test executed for the given time.

time may be either a number or a time string. Time strings are in
a format such as 1 day 2 hours 3 minutes 4 seconds 5milliseconds or
1d 2h 3m 4s 5ms, and they are fully explained in an appendix of
Robot Framework User Guide. Optional reason can be used to explain why
sleeping is necessary. Both the time slept and the reason are logged.

	
variable_should_exist(name, msg=None)

	Fails unless the given variable exists within the current scope.

The name of the variable can be given either as a normal variable name
(e.g. ${NAME}) or in escaped format (e.g. \${NAME}). Notice
that the former has some limitations explained in Set Suite Variable.

The default error message can be overridden with the msg argument.

See also Variable Should Not Exist and Keyword Should Exist.

	
variable_should_not_exist(name, msg=None)

	Fails if the given variable exists within the current scope.

The name of the variable can be given either as a normal variable name
(e.g. ${NAME}) or in escaped format (e.g. \${NAME}). Notice
that the former has some limitations explained in Set Suite Variable.

The default error message can be overridden with the msg argument.

See also Variable Should Exist and Keyword Should Exist.

	
wait_until_keyword_succeeds(retry, retry_interval, name, *args)

	Runs the specified keyword and retries if it fails.

name and args define the keyword that is executed similarly
as with Run Keyword. How long to retry running the keyword is
defined using retry argument either as timeout or count.
retry_interval is the time to wait before trying to run the
keyword again after the previous run has failed.

If retry is given as timeout, it must be in Robot Framework’s
time format (e.g. 1 minute, 2 min 3 s, 4.5) that is
explained in an appendix of Robot Framework User Guide. If it is
given as count, it must have times or x postfix (e.g.
5 times, 10 x). retry_interval must always be given in
Robot Framework’s time format.

If the keyword does not succeed regardless of retries, this keyword
fails. If the executed keyword passes, its return value is returned.

All normal failures are caught by this keyword. Errors caused by
invalid syntax, test or keyword timeouts, or fatal exceptions (caused
e.g. by Fatal Error) are not caught.

Running the same keyword multiple times inside this keyword can create
lots of output and considerably increase the size of the generated
output files. It is possible to remove unnecessary keywords from
the outputs using --RemoveKeywords WUKS command line option.

	
exception robot.libraries.BuiltIn.RobotNotRunningError

	Bases: exceptions.AttributeError

Used when something cannot be done because Robot is not running.

Based on AttributeError to be backwards compatible with RF < 2.8.5.
May later be based directly on Exception, so new code should except
this exception explicitly.

	
args

	

	
message

	

	
robot.libraries.BuiltIn.register_run_keyword(library, keyword, args_to_process=None, deprecation_warning=True)

	Registers ‘run keyword’ so that its arguments can be handled correctly.

NOTE: This API will change in RF 3.1. For more information see
https://github.com/robotframework/robotframework/issues/2190. Use with
deprecation_warning=False to avoid related deprecation warnings.

	Why is this method needed

Keywords running other keywords internally (normally using Run Keyword
or some variants of it in BuiltIn) must have the arguments meant to the
internally executed keyword handled specially to prevent processing them
twice. This is done ONLY for keywords registered using this method.

If the register keyword has same name as any keyword from Robot Framework
standard libraries, it can be used without getting warnings. Normally
there is a warning in such cases unless the keyword is used in long
format (e.g. MyLib.Keyword).

Keywords executed by registered run keywords can be tested in dry-run mode
if they have ‘name’ argument which takes the name of the executed keyword.

	How to use this method

library is the name of the library where the registered keyword is
implemented.

keyword can be either a function or method implementing the
keyword, or name of the implemented keyword as a string.

args_to_process is needed when keyword is given as a string, and it
defines how many of the arguments to the registered keyword must be
processed normally. When keyword is a method or function, this
information is got directly from it so that varargs (those specified with
syntax ‘*args’) are not processed but others are.

	Examples

from robot.libraries.BuiltIn import BuiltIn, register_run_keyword

	def my_run_keyword(name, *args):

	# do something
return BuiltIn().run_keyword(name, *args)

Either one of these works
register_run_keyword(__name__, my_run_keyword)
register_run_keyword(__name__, ‘My Run Keyword’, 1)

from robot.libraries.BuiltIn import BuiltIn, register_run_keyword

	class MyLibrary:

	
	def my_run_keyword_if(self, expression, name, *args):

	# do something
return BuiltIn().run_keyword_if(expression, name, *args)

Either one of these works
register_run_keyword(‘MyLibrary’, MyLibrary.my_run_keyword_if)
register_run_keyword(‘MyLibrary’, ‘my_run_keyword_if’, 2)

robot.libraries.Collections module

	
class robot.libraries.Collections.NotSet

	Bases: object

	
class robot.libraries.Collections.Collections

	Bases: robot.libraries.Collections._List, robot.libraries.Collections._Dictionary

A test library providing keywords for handling lists and dictionaries.

Collections is Robot Framework’s standard library that provides a
set of keywords for handling Python lists and dictionaries. This
library has keywords, for example, for modifying and getting
values from lists and dictionaries (e.g. Append To List, Get
From Dictionary) and for verifying their contents (e.g. Lists
Should Be Equal, Dictionary Should Contain Value).

== Table of contents ==

%TOC%

= Related keywords in BuiltIn =

Following keywords in the BuiltIn library can also be used with
lists and dictionaries:

= Using with list-like and dictionary-like objects =

List keywords that do not alter the given list can also be used
with tuples, and to some extend also with other iterables.
Convert To List can be used to convert tuples and other iterables
to Python list objects.

Similarly dictionary keywords can, for most parts, be used with other
mappings. Convert To Dictionary can be used if real Python dict
objects are needed.

= Boolean arguments =

Some keywords accept arguments that are handled as Boolean values true or
false. If such an argument is given as a string, it is considered false if
it is an empty string or equal to FALSE, NONE, NO, OFF or
0, case-insensitively. Keywords verifying something that allow dropping
actual and expected values from the possible error message also consider
string no values to be false. Other strings are considered true
regardless their value, and other argument types are tested using the same
[http://docs.python.org/library/stdtypes.html#truth|rules as in Python].

True examples:

False examples:

Considering string NONE false is new in Robot Framework 3.0.3 and
considering also OFF and 0 false is new in Robot Framework 3.1.

= Data in examples =

List related keywords use variables in format ${Lx} in their examples.
They mean lists with as many alphabetic characters as specified by x.
For example, ${L1} means ['a'] and ${L3} means
['a', 'b', 'c'].

Dictionary keywords use similar ${Dx} variables. For example, ${D1}
means {'a': 1} and ${D3} means {'a': 1, 'b': 2, 'c': 3}.

	
ROBOT_LIBRARY_SCOPE = 'GLOBAL'

	

	
ROBOT_LIBRARY_VERSION = '3.2.2'

	

	
should_contain_match(list, pattern, msg=None, case_insensitive=False, whitespace_insensitive=False)

	Fails if pattern is not found in list.

By default, pattern matching is similar to matching files in a shell
and is case-sensitive and whitespace-sensitive. In the pattern syntax,
* matches to anything and ? matches to any single character. You
can also prepend glob= to your pattern to explicitly use this pattern
matching behavior.

If you prepend regexp= to your pattern, your pattern will be used
according to the Python
[http://docs.python.org/library/re.html|re module] regular expression
syntax. Important note: Backslashes are an escape character, and must
be escaped with another backslash (e.g. regexp=\\d{6} to search for
\d{6}). See BuiltIn.Should Match Regexp for more details.

If case_insensitive is given a true value (see Boolean arguments),
the pattern matching will ignore case.

If whitespace_insensitive is given a true value (see Boolean
arguments), the pattern matching will ignore whitespace.

Non-string values in lists are ignored when matching patterns.

Use the msg argument to override the default error message.

See also Should Not Contain Match.

	
should_not_contain_match(list, pattern, msg=None, case_insensitive=False, whitespace_insensitive=False)

	Fails if pattern is found in list.

Exact opposite of Should Contain Match keyword. See that keyword
for information about arguments and usage in general.

	
get_matches(list, pattern, case_insensitive=False, whitespace_insensitive=False)

	Returns a list of matches to pattern in list.

For more information on pattern, case_insensitive, and
whitespace_insensitive, see Should Contain Match.

	
get_match_count(list, pattern, case_insensitive=False, whitespace_insensitive=False)

	Returns the count of matches to pattern in list.

For more information on pattern, case_insensitive, and
whitespace_insensitive, see Should Contain Match.

	
append_to_list(list_, *values)

	Adds values to the end of list.

	
combine_lists(*lists)

	Combines the given lists together and returns the result.

The given lists are not altered by this keyword.

	
convert_to_dictionary(item)

	Converts the given item to a Python dict type.

Mainly useful for converting other mappings to normal dictionaries.
This includes converting Robot Framework’s own DotDict instances
that it uses if variables are created using the &{var} syntax.

Use Create Dictionary from the BuiltIn library for constructing new
dictionaries.

New in Robot Framework 2.9.

	
convert_to_list(item)

	Converts the given item to a Python list type.

Mainly useful for converting tuples and other iterable to lists.
Use Create List from the BuiltIn library for constructing new lists.

	
copy_dictionary(dictionary, deepcopy=False)

	Returns a copy of the given dictionary.

The deepcopy argument controls should the returned dictionary be
a [https://docs.python.org/library/copy.html|shallow or deep copy].
By default returns a shallow copy, but that can be changed by giving
deepcopy a true value (see Boolean arguments). This is a new
option in Robot Framework 3.1.2. Earlier versions always returned
shallow copies.

The given dictionary is never altered by this keyword.

	
copy_list(list_, deepcopy=False)

	Returns a copy of the given list.

If the optional deepcopy is given a true value, the returned
list is a deep copy. New option in Robot Framework 3.1.2.

The given list is never altered by this keyword.

	
count_values_in_list(list_, value, start=0, end=None)

	Returns the number of occurrences of the given value in list.

The search can be narrowed to the selected sublist by the start and
end indexes having the same semantics as with Get Slice From List
keyword. The given list is never altered by this keyword.

	
dictionaries_should_be_equal(dict1, dict2, msg=None, values=True)

	Fails if the given dictionaries are not equal.

First the equality of dictionaries’ keys is checked and after that all
the key value pairs. If there are differences between the values, those
are listed in the error message. The types of the dictionaries do not
need to be same.

See Lists Should Be Equal for more information about configuring
the error message with msg and values arguments.

	
dictionary_should_contain_item(dictionary, key, value, msg=None)

	An item of key / value must be found in a dictionary.

Value is converted to unicode for comparison.

Use the msg argument to override the default error message.

	
dictionary_should_contain_key(dictionary, key, msg=None)

	Fails if key is not found from dictionary.

Use the msg argument to override the default error message.

	
dictionary_should_contain_sub_dictionary(dict1, dict2, msg=None, values=True)

	Fails unless all items in dict2 are found from dict1.

See Lists Should Be Equal for more information about configuring
the error message with msg and values arguments.

	
dictionary_should_contain_value(dictionary, value, msg=None)

	Fails if value is not found from dictionary.

Use the msg argument to override the default error message.

	
dictionary_should_not_contain_key(dictionary, key, msg=None)

	Fails if key is found from dictionary.

Use the msg argument to override the default error message.

	
dictionary_should_not_contain_value(dictionary, value, msg=None)

	Fails if value is found from dictionary.

Use the msg argument to override the default error message.

	
get_dictionary_items(dictionary, sort_keys=True)

	Returns items of the given dictionary as a list.

Uses Get Dictionary Keys to get keys and then returns corresponding
items. By default keys are sorted and items returned in that order,
but this can be changed by giving sort_keys a false value (see
Boolean arguments). Notice that with Python 3.5 and earlier
dictionary order is undefined unless using ordered dictionaries.

Items are returned as a flat list so that first item is a key,
second item is a corresponding value, third item is the second key,
and so on.

The given dictionary is never altered by this keyword.

sort_keys is a new option in Robot Framework 3.1.2. Earlier items
were always sorted based on keys.

	
get_dictionary_keys(dictionary, sort_keys=True)

	Returns keys of the given dictionary as a list.

By default keys are returned in sorted order (assuming they are
sortable), but they can be returned in the original order by giving
sort_keys a false value (see Boolean arguments). Notice that
with Python 3.5 and earlier dictionary order is undefined unless using
ordered dictionaries.

The given dictionary is never altered by this keyword.

sort_keys is a new option in Robot Framework 3.1.2. Earlier keys
were always sorted.

	
get_dictionary_values(dictionary, sort_keys=True)

	Returns values of the given dictionary as a list.

Uses Get Dictionary Keys to get keys and then returns corresponding
values. By default keys are sorted and values returned in that order,
but this can be changed by giving sort_keys a false value (see
Boolean arguments). Notice that with Python 3.5 and earlier
dictionary order is undefined unless using ordered dictionaries.

The given dictionary is never altered by this keyword.

sort_keys is a new option in Robot Framework 3.1.2. Earlier values
were always sorted based on keys.

	
get_from_dictionary(dictionary, key)

	Returns a value from the given dictionary based on the given key.

If the given key cannot be found from the dictionary, this
keyword fails.

The given dictionary is never altered by this keyword.

	
get_from_list(list_, index)

	Returns the value specified with an index from list.

The given list is never altered by this keyword.

Index 0 means the first position, 1 the second, and so on.
Similarly, -1 is the last position, -2 the second last, and so on.
Using an index that does not exist on the list causes an error.
The index can be either an integer or a string that can be converted
to an integer.

	
get_index_from_list(list_, value, start=0, end=None)

	Returns the index of the first occurrence of the value on the list.

The search can be narrowed to the selected sublist by the start and
end indexes having the same semantics as with Get Slice From List
keyword. In case the value is not found, -1 is returned. The given list
is never altered by this keyword.

	
get_slice_from_list(list_, start=0, end=None)

	Returns a slice of the given list between start and end indexes.

The given list is never altered by this keyword.

If both start and end are given, a sublist containing values
from start to end is returned. This is the same as
list[start:end] in Python. To get all items from the beginning,
use 0 as the start value, and to get all items until and including
the end, use None (default) as the end value.

Using start or end not found on the list is the same as using
the largest (or smallest) available index.

	
insert_into_list(list_, index, value)

	Inserts value into list to the position specified with index.

Index 0 adds the value into the first position, 1 to the second,
and so on. Inserting from right works with negative indices so that
-1 is the second last position, -2 third last, and so on. Use
Append To List to add items to the end of the list.

If the absolute value of the index is greater than
the length of the list, the value is added at the end
(positive index) or the beginning (negative index). An index
can be given either as an integer or a string that can be
converted to an integer.

	
keep_in_dictionary(dictionary, *keys)

	Keeps the given keys in the dictionary and removes all other.

If the given key cannot be found from the dictionary, it
is ignored.

	
list_should_contain_sub_list(list1, list2, msg=None, values=True)

	Fails if not all of the elements in list2 are found in list1.

The order of values and the number of values are not taken into
account.

See Lists Should Be Equal for more information about configuring
the error message with msg and values arguments.

	
list_should_contain_value(list_, value, msg=None)

	Fails if the value is not found from list.

Use the msg argument to override the default error message.

	
list_should_not_contain_duplicates(list_, msg=None)

	Fails if any element in the list is found from it more than once.

The default error message lists all the elements that were found
from the list multiple times, but it can be overridden by giving
a custom msg. All multiple times found items and their counts are
also logged.

This keyword works with all iterables that can be converted to a list.
The original iterable is never altered.

	
list_should_not_contain_value(list_, value, msg=None)

	Fails if the value is found from list.

Use the msg argument to override the default error message.

	
lists_should_be_equal(list1, list2, msg=None, values=True, names=None, ignore_order=False)

	Fails if given lists are unequal.

The keyword first verifies that the lists have equal lengths, and then
it checks are all their values equal. Possible differences between the
values are listed in the default error message like Index 4: ABC !=
Abc. The types of the lists do not need to be the same. For example,
Python tuple and list with same content are considered equal.

The error message can be configured using msg and values
arguments:
- If msg is not given, the default error message is used.
- If msg is given and values gets a value considered true

(see Boolean arguments), the error message starts with the given
msg followed by a newline and the default message.

	If msg is given and values is not given a true value,
the error message is just the given msg.

The optional names argument can be used for naming the indices
shown in the default error message. It can either be a list of names
matching the indices in the lists or a dictionary where keys are
indices that need to be named. It is not necessary to name all of
the indices. When using a dictionary, keys can be either integers
or strings that can be converted to integers.

If the items in index 2 would differ in the above examples, the error
message would contain a row like Index 2 (email): name@foo.com !=
name@bar.com.

The optional ignore_order argument can be used to ignore the order
of the elements in the lists. Using it requires items to be sortable.
This is new in Robot Framework 3.2.

	
log_dictionary(dictionary, level='INFO')

	Logs the size and contents of the dictionary using given level.

Valid levels are TRACE, DEBUG, INFO (default), and WARN.

If you only want to log the size, use keyword Get Length from
the BuiltIn library.

	
log_list(list_, level='INFO')

	Logs the length and contents of the list using given level.

Valid levels are TRACE, DEBUG, INFO (default), and WARN.

If you only want to the length, use keyword Get Length from
the BuiltIn library.

	
pop_from_dictionary(dictionary, key, default=)

	Pops the given key from the dictionary and returns its value.

By default the keyword fails if the given key cannot be found from
the dictionary. If optional default value is given, it will be
returned instead of failing.

New in Robot Framework 2.9.2.

	
remove_duplicates(list_)

	Returns a list without duplicates based on the given list.

Creates and returns a new list that contains all items in the given
list so that one item can appear only once. Order of the items in
the new list is the same as in the original except for missing
duplicates. Number of the removed duplicates is logged.

	
remove_from_dictionary(dictionary, *keys)

	Removes the given keys from the dictionary.

If the given key cannot be found from the dictionary, it
is ignored.

	
remove_from_list(list_, index)

	Removes and returns the value specified with an index from list.

Index 0 means the first position, 1 the second and so on.
Similarly, -1 is the last position, -2 the second last, and so on.
Using an index that does not exist on the list causes an error.
The index can be either an integer or a string that can be converted
to an integer.

	
remove_values_from_list(list_, *values)

	Removes all occurrences of given values from list.

It is not an error if a value does not exist in the list at all.

	
reverse_list(list_)

	Reverses the given list in place.

Note that the given list is changed and nothing is returned. Use
Copy List first, if you need to keep also the original order.

	
set_list_value(list_, index, value)

	Sets the value of list specified by index to the given value.

Index 0 means the first position, 1 the second and so on.
Similarly, -1 is the last position, -2 second last, and so on.
Using an index that does not exist on the list causes an error.
The index can be either an integer or a string that can be converted to
an integer.

	
set_to_dictionary(dictionary, *key_value_pairs, **items)

	Adds the given key_value_pairs and items to the dictionary.

Giving items as key_value_pairs means giving keys and values
as separate arguments:

The latter syntax is typically more convenient to use, but it has
a limitation that keys must be strings.

If given keys already exist in the dictionary, their values are updated.

	
sort_list(list_)

	Sorts the given list in place.

Sorting fails if items in the list are not comparable with each others.
On Python 2 most objects are comparable, but on Python 3 comparing,
for example, strings with numbers is not possible.

Note that the given list is changed and nothing is returned. Use
Copy List first, if you need to keep also the original order.

robot.libraries.DateTime module

A test library for handling date and time values.

DateTime is a Robot Framework standard library that supports creating and
converting date and time values (e.g. Get Current Date, Convert Time),
as well as doing simple calculations with them (e.g. Subtract Time From Date,
Add Time To Time). It supports dates and times in various formats, and can
also be used by other libraries programmatically.

== Table of contents ==

%TOC%

= Terminology =

In the context of this library, date and time generally have following
meanings:

	
	date: An entity with both date and time components but without any

	timezone information. For example, 2014-06-11 10:07:42.

	time: A time interval. For example, 1 hour 20 minutes or 01:20:00.

This terminology differs from what Python’s standard
[http://docs.python.org/library/datetime.html|datetime] module uses.
Basically its
[http://docs.python.org/library/datetime.html#datetime-objects|datetime] and
[http://docs.python.org/library/datetime.html#timedelta-objects|timedelta]
objects match date and time as defined by this library.

= Date formats =

Dates can given to and received from keywords in timestamp, custom
timestamp, Python datetime and epoch time formats. These formats are
discussed thoroughly in subsequent sections.

Input format is determined automatically based on the given date except when
using custom timestamps, in which case it needs to be given using
date_format argument. Default result format is timestamp, but it can
be overridden using result_format argument.

== Timestamp ==

If a date is given as a string, it is always considered to be a timestamp.
If no custom formatting is given using date_format argument, the timestamp
is expected to be in [http://en.wikipedia.org/wiki/ISO_8601|ISO 8601] like
format YYYY-MM-DD hh:mm:ss.mil, where any non-digit character can be used
as a separator or separators can be omitted altogether. Additionally,
only the date part is mandatory, all possibly missing time components are
considered to be zeros.

Dates can also be returned in the same YYYY-MM-DD hh:mm:ss.mil format by
using timestamp value with result_format argument. This is also the
default format that keywords returning dates use. Milliseconds can be excluded
using exclude_millis as explained in Millisecond handling section.

== Custom timestamp ==

It is possible to use custom timestamps in both input and output.
The custom format is same as accepted by Python’s
[http://docs.python.org/library/datetime.html#strftime-strptime-behavior|
datatime.strptime] function. For example, the default timestamp discussed
in the previous section would match %Y-%m-%d %H:%M:%S.%f.

When using a custom timestamp in input, it must be specified using
date_format argument. The actual input value must be a string that matches
the specified format exactly. When using a custom timestamp in output, it must
be given using result_format argument.

Notice that locale aware directives like %b do not work correctly with
Jython on non-English locales: http://bugs.jython.org/issue2285

== Python datetime ==

Python’s standard
[http://docs.python.org/library/datetime.html#datetime-objects|datetime]
objects can be used both in input and output. In input they are recognized
automatically, and in output it is possible to get them by giving datetime
value to result_format argument.

One nice benefit with datetime objects is that they have different time
components available as attributes that can be easily accessed using the
extended variable syntax.

== Epoch time ==

Epoch time is the time in seconds since the
[http://en.wikipedia.org/wiki/Unix_time|UNIX epoch] i.e. 00:00:00.000 (UTC)
1 January 1970. To give a date in epoch time, it must be given as a number
(integer or float), not as a string. To return a date in epoch time,
it is possible to use epoch value with result_format argument.
Epoch time is returned as a floating point number.

Notice that epoch time itself is independent on timezones and thus same
around the world at a certain time. What local time a certain epoch time
matches obviously then depends on the timezone. For example, examples below
were tested in Finland but verifications would fail on other timezones.

== Earliest supported date ==

The earliest date that is supported depends on the date format and to some
extend on the platform:

	Timestamps support year 1900 and above.

	Python datetime objects support year 1 and above.

	Epoch time supports 1970 and above on Windows with Python and IronPython.

	On other platforms epoch time supports 1900 and above or even earlier.

Prior to Robot Framework 2.9.2, all formats had same limitation as epoch time
has nowadays.

= Time formats =

Similarly as dates, times can be given to and received from keywords in
various different formats. Supported formats are number, time string
(verbose and compact), timer string and Python timedelta.

Input format for time is always determined automatically based on the input.
Result format is number by default, but it can be customised using
result_format argument.

== Number ==

Time given as a number is interpreted to be seconds. It can be given
either as an integer or a float, or it can be a string that can be converted
to a number.

To return a time as a number, result_format argument must have value
number, which is also the default. Returned number is always a float.

== Time string ==

Time strings are strings in format like 1 minute 42 seconds or 1min 42s.
The basic idea of this format is having first a number and then a text
specifying what time that number represents. Numbers can be either
integers or floating point numbers, the whole format is case and space
insensitive, and it is possible to add a minus prefix to specify negative
times. The available time specifiers are:

	days, day, d

	hours, hour, h

	minutes, minute, mins, min, m

	seconds, second, secs, sec, s

	milliseconds, millisecond, millis, ms

When returning a time string, it is possible to select between verbose
and compact representations using result_format argument. The verbose
format uses long specifiers day, hour, minute, second and
millisecond, and adds s at the end when needed. The compact format uses
shorter specifiers d, h, min, s and ms, and even drops
the space between the number and the specifier.

== Timer string ==

Timer string is a string given in timer like format hh:mm:ss.mil. In this
format both hour and millisecond parts are optional, leading and trailing
zeros can be left out when they are not meaningful, and negative times can
be represented by adding a minus prefix.

To return a time as timer string, result_format argument must be given
value timer. Timer strings are by default returned in full hh:mm:ss.mil
format, but milliseconds can be excluded using exclude_millis as explained
in Millisecond handling section.

== Python timedelta ==

Python’s standard
[http://docs.python.org/library/datetime.html#datetime.timedelta|timedelta]
objects are also supported both in input and in output. In input they are
recognized automatically, and in output it is possible to receive them by
giving timedelta value to result_format argument.

= Millisecond handling =

This library handles dates and times internally using the precision of the
given input. With timestamp, time string, and timer string result
formats seconds are, however, rounded to millisecond accuracy. Milliseconds
may also be included even if there would be none.

All keywords returning dates or times have an option to leave milliseconds out
by giving a true value to exclude_millis argument. If the argument is given
as a string, it is considered true unless it is empty or case-insensitively
equal to false, none or no. Other argument types are tested using
same [http://docs.python.org/library/stdtypes.html#truth|rules as in
Python]. Notice that prior to Robot Framework 2.9, all strings except
the empty string were considered true, and that considering none false is
new in Robot Framework 3.0.3.

When milliseconds are excluded, seconds in returned dates and times are
rounded to the nearest full second. With timestamp and timer string
result formats, milliseconds will also be removed from the returned string
altogether.

= Programmatic usage =

In addition to be used as normal library, this library is intended to
provide a stable API for other libraries to use if they want to support
same date and time formats as this library. All the provided keywords
are available as functions that can be easily imported:

Additionally helper classes Date and Time can be used directly:

	
robot.libraries.DateTime.get_current_date(time_zone='local', increment=0, result_format='timestamp', exclude_millis=False)

	Returns current local or UTC time with an optional increment.

Arguments:
- time_zone: Get the current time on this time zone. Currently only

local (default) and UTC are supported.

	
	increment: Optional time increment to add to the returned date in

	one of the supported time formats. Can be negative.

	result_format: Format of the returned date (see date formats).

	
	exclude_millis: When set to any true value, rounds and drops

	milliseconds as explained in millisecond handling.

	
robot.libraries.DateTime.convert_date(date, result_format='timestamp', exclude_millis=False, date_format=None)

	Converts between supported date formats.

Arguments:
- date: Date in one of the supported date formats.
- result_format: Format of the returned date.
- exclude_millis: When set to any true value, rounds and drops

milliseconds as explained in millisecond handling.

	date_format: Specifies possible custom timestamp format.

	
robot.libraries.DateTime.convert_time(time, result_format='number', exclude_millis=False)

	Converts between supported time formats.

Arguments:
- time: Time in one of the supported time formats.
- result_format: Format of the returned time.
- exclude_millis: When set to any true value, rounds and drops

milliseconds as explained in millisecond handling.

	
robot.libraries.DateTime.subtract_date_from_date(date1, date2, result_format='number', exclude_millis=False, date1_format=None, date2_format=None)

	Subtracts date from another date and returns time between.

Arguments:
- date1: Date to subtract another date from in one of the

supported date formats.

	
	date2: Date that is subtracted in one of the supported

	date formats.

	result_format: Format of the returned time (see time formats).

	
	exclude_millis: When set to any true value, rounds and drops

	milliseconds as explained in millisecond handling.

	date1_format: Possible custom timestamp format of date1.

	date2_format: Possible custom timestamp format of date2.

Examples:

	
robot.libraries.DateTime.add_time_to_date(date, time, result_format='timestamp', exclude_millis=False, date_format=None)

	Adds time to date and returns the resulting date.

Arguments:
- date: Date to add time to in one of the supported

date formats.

	
	time: Time that is added in one of the supported

	time formats.

	result_format: Format of the returned date.

	
	exclude_millis: When set to any true value, rounds and drops

	milliseconds as explained in millisecond handling.

	date_format: Possible custom timestamp format of date.

	
robot.libraries.DateTime.subtract_time_from_date(date, time, result_format='timestamp', exclude_millis=False, date_format=None)

	Subtracts time from date and returns the resulting date.

Arguments:
- date: Date to subtract time from in one of the supported

date formats.

	
	time: Time that is subtracted in one of the supported

	time formats.

	result_format: Format of the returned date.

	
	exclude_millis: When set to any true value, rounds and drops

	milliseconds as explained in millisecond handling.

	date_format: Possible custom timestamp format of date.

	
robot.libraries.DateTime.add_time_to_time(time1, time2, result_format='number', exclude_millis=False)

	Adds time to another time and returns the resulting time.

Arguments:
- time1: First time in one of the supported time formats.
- time2: Second time in one of the supported time formats.
- result_format: Format of the returned time.
- exclude_millis: When set to any true value, rounds and drops

milliseconds as explained in millisecond handling.

	
robot.libraries.DateTime.subtract_time_from_time(time1, time2, result_format='number', exclude_millis=False)

	Subtracts time from another time and returns the resulting time.

Arguments:
- time1: Time to subtract another time from in one of

the supported time formats.

	time2: Time to subtract in one of the supported time formats.

	result_format: Format of the returned time.

	
	exclude_millis: When set to any true value, rounds and drops

	milliseconds as explained in millisecond handling.

robot.libraries.Dialogs module

A test library providing dialogs for interacting with users.

Dialogs is Robot Framework’s standard library that provides means
for pausing the test execution and getting input from users. The
dialogs are slightly different depending on whether tests are run on
Python, IronPython or Jython but they provide the same functionality.

Long lines in the provided messages are wrapped automatically. If you want
to wrap lines manually, you can add newlines using the \n character
sequence.

The library has a known limitation that it cannot be used with timeouts
on Python. Support for IronPython was added in Robot Framework 2.9.2.

	
robot.libraries.Dialogs.pause_execution(message='Test execution paused. Press OK to continue.')

	Pauses test execution until user clicks Ok button.

message is the message shown in the dialog.

	
robot.libraries.Dialogs.execute_manual_step(message, default_error='')

	Pauses test execution until user sets the keyword status.

User can press either PASS or FAIL button. In the latter case execution
fails and an additional dialog is opened for defining the error message.

message is the instruction shown in the initial dialog and
default_error is the default value shown in the possible error message
dialog.

	
robot.libraries.Dialogs.get_value_from_user(message, default_value='', hidden=False)

	Pauses test execution and asks user to input a value.

Value typed by the user, or the possible default value, is returned.
Returning an empty value is fine, but pressing Cancel fails the keyword.

message is the instruction shown in the dialog and default_value is
the possible default value shown in the input field.

If hidden is given a true value, the value typed by the user is hidden.
hidden is considered true if it is a non-empty string not equal to
false, none or no, case-insensitively. If it is not a string,
its truth value is got directly using same
[http://docs.python.org/library/stdtypes.html#truth|rules as in Python].

Considering strings false and no to be false is new in RF 2.9
and considering string none false is new in RF 3.0.3.

	
robot.libraries.Dialogs.get_selection_from_user(message, *values)

	Pauses test execution and asks user to select a value.

The selected value is returned. Pressing Cancel fails the keyword.

message is the instruction shown in the dialog and values are
the options given to the user.

	
robot.libraries.Dialogs.get_selections_from_user(message, *values)

	Pauses test execution and asks user to select multiple values.

The selected values are returned as a list. Selecting no values is OK
and in that case the returned list is empty. Pressing Cancel fails
the keyword.

message is the instruction shown in the dialog and values are
the options given to the user.

New in Robot Framework 3.1.

robot.libraries.Easter module

	
robot.libraries.Easter.none_shall_pass(who)

	

robot.libraries.OperatingSystem module

	
class robot.libraries.OperatingSystem.OperatingSystem

	Bases: object

A test library providing keywords for OS related tasks.

OperatingSystem is Robot Framework’s standard library that
enables various operating system related tasks to be performed in
the system where Robot Framework is running. It can, among other
things, execute commands (e.g. Run), create and remove files and
directories (e.g. Create File, Remove Directory), check
whether files or directories exists or contain something
(e.g. File Should Exist, Directory Should Be Empty) and
manipulate environment variables (e.g. Set Environment Variable).

== Table of contents ==

%TOC%

= Path separators =

Because Robot Framework uses the backslash (\) as an escape character
in the test data, using a literal backslash requires duplicating it like
in c:\\path\\file.txt. That can be inconvenient especially with
longer Windows paths, and thus all keywords expecting paths as arguments
convert forward slashes to backslashes automatically on Windows. This also
means that paths like ${CURDIR}/path/file.txt are operating system
independent.

Notice that the automatic path separator conversion does not work if
the path is only a part of an argument like with Run and Start Process
keywords. In these cases the built-in variable ${/} that contains
\ or /, depending on the operating system, can be used instead.

= Pattern matching =

Some keywords allow their arguments to be specified as
[http://en.wikipedia.org/wiki/Glob_(programming)|glob patterns] where:

Unless otherwise noted, matching is case-insensitive on
case-insensitive operating systems such as Windows.

Starting from Robot Framework 2.9.1, globbing is not done if the given path
matches an existing file even if it would contain a glob pattern.

= Tilde expansion =

Paths beginning with ~ or ~username are expanded to the current or
specified user’s home directory, respectively. The resulting path is
operating system dependent, but typically e.g. ~/robot is expanded to
C:\Users\<user>\robot on Windows and /home/<user>/robot on
Unixes.

The ~username form does not work on Jython.

= Boolean arguments =

Some keywords accept arguments that are handled as Boolean values true or
false. If such an argument is given as a string, it is considered false if
it is an empty string or equal to FALSE, NONE, NO, OFF or
0, case-insensitively. Other strings are considered true regardless
their value, and other argument types are tested using the same
[http://docs.python.org/library/stdtypes.html#truth|rules as in Python].

True examples:

False examples:

Considering string NONE false is new in Robot Framework 3.0.3 and
considering also OFF and 0 false is new in Robot Framework 3.1.

= Example =

	
ROBOT_LIBRARY_SCOPE = 'GLOBAL'

	

	
ROBOT_LIBRARY_VERSION = '3.2.2'

	

	
run(command)

	Runs the given command in the system and returns the output.

The execution status of the command is not checked by this
keyword, and it must be done separately based on the returned
output. If the execution return code is needed, either Run
And Return RC or Run And Return RC And Output can be used.

The standard error stream is automatically redirected to the standard
output stream by adding 2>&1 after the executed command. This
automatic redirection is done only when the executed command does not
contain additional output redirections. You can thus freely forward
the standard error somewhere else, for example, like
my_command 2>stderr.txt.

The returned output contains everything written into the standard
output or error streams by the command (unless either of them
is redirected explicitly). Many commands add an extra newline
(\n) after the output to make it easier to read in the
console. To ease processing the returned output, this possible
trailing newline is stripped by this keyword.

TIP: Run Process keyword provided by the
[http://robotframework.org/robotframework/latest/libraries/Process.html|
Process library] supports better process configuration and is generally
recommended as a replacement for this keyword.

	
run_and_return_rc(command)

	Runs the given command in the system and returns the return code.

The return code (RC) is returned as a positive integer in
range from 0 to 255 as returned by the executed command. On
some operating systems (notable Windows) original return codes
can be something else, but this keyword always maps them to
the 0-255 range. Since the RC is an integer, it must be
checked e.g. with the keyword Should Be Equal As Integers
instead of Should Be Equal (both are built-in keywords).

See Run and Run And Return RC And Output if you need to get the
output of the executed command.

TIP: Run Process keyword provided by the
[http://robotframework.org/robotframework/latest/libraries/Process.html|
Process library] supports better process configuration and is generally
recommended as a replacement for this keyword.

	
run_and_return_rc_and_output(command)

	Runs the given command in the system and returns the RC and output.

The return code (RC) is returned similarly as with Run And Return RC
and the output similarly as with Run.

TIP: Run Process keyword provided by the
[http://robotframework.org/robotframework/latest/libraries/Process.html|
Process library] supports better process configuration and is generally
recommended as a replacement for this keyword.

	
get_file(path, encoding='UTF-8', encoding_errors='strict')

	Returns the contents of a specified file.

This keyword reads the specified file and returns the contents.
Line breaks in content are converted to platform independent form.
See also Get Binary File.

encoding defines the encoding of the file. The default value is
UTF-8, which means that UTF-8 and ASCII encoded files are read
correctly. In addition to the encodings supported by the underlying
Python implementation, the following special encoding values can be
used:

	SYSTEM: Use the default system encoding.

	CONSOLE: Use the console encoding. Outside Windows this is same
as the system encoding.

encoding_errors argument controls what to do if decoding some bytes
fails. All values accepted by decode method in Python are valid, but
in practice the following values are most useful:

	strict: Fail if characters cannot be decoded (default).

	ignore: Ignore characters that cannot be decoded.

	replace: Replace characters that cannot be decoded with
a replacement character.

Support for SYSTEM and CONSOLE encodings in Robot Framework 3.0.

	
get_binary_file(path)

	Returns the contents of a specified file.

This keyword reads the specified file and returns the contents as is.
See also Get File.

	
grep_file(path, pattern, encoding='UTF-8', encoding_errors='strict')

	Returns the lines of the specified file that match the pattern.

This keyword reads a file from the file system using the defined
path, encoding and encoding_errors similarly as Get File.
A difference is that only the lines that match the given pattern are
returned. Lines are returned as a single string catenated back together
with newlines and the number of matched lines is automatically logged.
Possible trailing newline is never returned.

A line matches if it contains the pattern anywhere in it and
it does not need to match the pattern fully. The pattern
matching syntax is explained in introduction, and in this
case matching is case-sensitive.

If more complex pattern matching is needed, it is possible to use
Get File in combination with String library keywords like Get
Lines Matching Regexp.

	
log_file(path, encoding='UTF-8', encoding_errors='strict')

	Wrapper for Get File that also logs the returned file.

The file is logged with the INFO level. If you want something else,
just use Get File and the built-in keyword Log with the desired
level.

See Get File for more information about encoding and
encoding_errors arguments.

	
should_exist(path, msg=None)

	Fails unless the given path (file or directory) exists.

The path can be given as an exact path or as a glob pattern.
The pattern matching syntax is explained in introduction.
The default error message can be overridden with the msg argument.

	
should_not_exist(path, msg=None)

	Fails if the given path (file or directory) exists.

The path can be given as an exact path or as a glob pattern.
The pattern matching syntax is explained in introduction.
The default error message can be overridden with the msg argument.

	
file_should_exist(path, msg=None)

	Fails unless the given path points to an existing file.

The path can be given as an exact path or as a glob pattern.
The pattern matching syntax is explained in introduction.
The default error message can be overridden with the msg argument.

	
file_should_not_exist(path, msg=None)

	Fails if the given path points to an existing file.

The path can be given as an exact path or as a glob pattern.
The pattern matching syntax is explained in introduction.
The default error message can be overridden with the msg argument.

	
directory_should_exist(path, msg=None)

	Fails unless the given path points to an existing directory.

The path can be given as an exact path or as a glob pattern.
The pattern matching syntax is explained in introduction.
The default error message can be overridden with the msg argument.

	
directory_should_not_exist(path, msg=None)

	Fails if the given path points to an existing file.

The path can be given as an exact path or as a glob pattern.
The pattern matching syntax is explained in introduction.
The default error message can be overridden with the msg argument.

	
wait_until_removed(path, timeout='1 minute')

	Waits until the given file or directory is removed.

The path can be given as an exact path or as a glob pattern.
The pattern matching syntax is explained in introduction.
If the path is a pattern, the keyword waits until all matching
items are removed.

The optional timeout can be used to control the maximum time of
waiting. The timeout is given as a timeout string, e.g. in a format
15 seconds, 1min 10s or just 10. The time string format is
described in an appendix of Robot Framework User Guide.

If the timeout is negative, the keyword is never timed-out. The keyword
returns immediately, if the path does not exist in the first place.

	
wait_until_created(path, timeout='1 minute')

	Waits until the given file or directory is created.

The path can be given as an exact path or as a glob pattern.
The pattern matching syntax is explained in introduction.
If the path is a pattern, the keyword returns when an item matching
it is created.

The optional timeout can be used to control the maximum time of
waiting. The timeout is given as a timeout string, e.g. in a format
15 seconds, 1min 10s or just 10. The time string format is
described in an appendix of Robot Framework User Guide.

If the timeout is negative, the keyword is never timed-out. The keyword
returns immediately, if the path already exists.

	
directory_should_be_empty(path, msg=None)

	Fails unless the specified directory is empty.

The default error message can be overridden with the msg argument.

	
directory_should_not_be_empty(path, msg=None)

	Fails if the specified directory is empty.

The default error message can be overridden with the msg argument.

	
file_should_be_empty(path, msg=None)

	Fails unless the specified file is empty.

The default error message can be overridden with the msg argument.

	
file_should_not_be_empty(path, msg=None)

	Fails if the specified directory is empty.

The default error message can be overridden with the msg argument.

	
create_file(path, content='', encoding='UTF-8')

	Creates a file with the given content and encoding.

If the directory where the file is created does not exist, it is
automatically created along with possible missing intermediate
directories. Possible existing file is overwritten.

On Windows newline characters (\n) in content are automatically
converted to Windows native newline sequence (\r\n).

See Get File for more information about possible encoding values,
including special values SYSTEM and CONSOLE.

Use Append To File if you want to append to an existing file
and Create Binary File if you need to write bytes without encoding.
File Should Not Exist can be used to avoid overwriting existing
files.

The support for SYSTEM and CONSOLE encodings is new in Robot
Framework 3.0. Automatically converting \n to \r\n on
Windows is new in Robot Framework 3.1.

	
create_binary_file(path, content)

	Creates a binary file with the given content.

If content is given as a Unicode string, it is first converted to bytes
character by character. All characters with ordinal below 256 can be
used and are converted to bytes with same values. Using characters
with higher ordinal is an error.

Byte strings, and possible other types, are written to the file as is.

If the directory for the file does not exist, it is created, along
with missing intermediate directories.

Use Create File if you want to create a text file using a certain
encoding. File Should Not Exist can be used to avoid overwriting
existing files.

	
append_to_file(path, content, encoding='UTF-8')

	Appends the given content to the specified file.

If the file exists, the given text is written to its end. If the file
does not exist, it is created.

Other than not overwriting possible existing files, this keyword works
exactly like Create File. See its documentation for more details
about the usage.

Note that special encodings SYSTEM and CONSOLE only work
with this keyword starting from Robot Framework 3.1.2.

	
remove_file(path)

	Removes a file with the given path.

Passes if the file does not exist, but fails if the path does
not point to a regular file (e.g. it points to a directory).

The path can be given as an exact path or as a glob pattern.
The pattern matching syntax is explained in introduction.
If the path is a pattern, all files matching it are removed.

	
remove_files(*paths)

	Uses Remove File to remove multiple files one-by-one.

	
empty_directory(path)

	Deletes all the content from the given directory.

Deletes both files and sub-directories, but the specified directory
itself if not removed. Use Remove Directory if you want to remove
the whole directory.

	
create_directory(path)

	Creates the specified directory.

Also possible intermediate directories are created. Passes if the
directory already exists, but fails if the path exists and is not
a directory.

	
remove_directory(path, recursive=False)

	Removes the directory pointed to by the given path.

If the second argument recursive is given a true value (see
Boolean arguments), the directory is removed recursively. Otherwise
removing fails if the directory is not empty.

If the directory pointed to by the path does not exist, the keyword
passes, but it fails, if the path points to a file.

	
copy_file(source, destination)

	Copies the source file into the destination.

Source must be a path to an existing file or a glob pattern (see
Pattern matching) that matches exactly one file. How the
destination is interpreted is explained below.

1) If the destination is an existing file, the source file is copied
over it.

2) If the destination is an existing directory, the source file is
copied into it. A possible file with the same name as the source is
overwritten.

3) If the destination does not exist and it ends with a path
separator (/ or \), it is considered a directory. That
directory is created and a source file copied into it.
Possible missing intermediate directories are also created.

4) If the destination does not exist and it does not end with a path
separator, it is considered a file. If the path to the file does not
exist, it is created.

The resulting destination path is returned since Robot Framework 2.9.2.

See also Copy Files, Move File, and Move Files.

	
move_file(source, destination)

	Moves the source file into the destination.

Arguments have exactly same semantics as with Copy File keyword.
Destination file path is returned since Robot Framework 2.9.2.

If the source and destination are on the same filesystem, rename
operation is used. Otherwise file is copied to the destination
filesystem and then removed from the original filesystem.

See also Move Files, Copy File, and Copy Files.

	
copy_files(*sources_and_destination)

	Copies specified files to the target directory.

Source files can be given as exact paths and as glob patterns (see
Pattern matching). At least one source must be given, but it is
not an error if it is a pattern that does not match anything.

Last argument must be the destination directory. If the destination
does not exist, it will be created.

See also Copy File, Move File, and Move Files.

	
move_files(*sources_and_destination)

	Moves specified files to the target directory.

Arguments have exactly same semantics as with Copy Files keyword.

See also Move File, Copy File, and Copy Files.

	
copy_directory(source, destination)

	Copies the source directory into the destination.

If the destination exists, the source is copied under it. Otherwise
the destination directory and the possible missing intermediate
directories are created.

	
move_directory(source, destination)

	Moves the source directory into a destination.

Uses Copy Directory keyword internally, and source and
destination arguments have exactly same semantics as with
that keyword.

	
get_environment_variable(name, default=None)

	Returns the value of an environment variable with the given name.

If no such environment variable is set, returns the default value, if
given. Otherwise fails the test case.

Returned variables are automatically decoded to Unicode using
the system encoding.

Note that you can also access environment variables directly using
the variable syntax %{ENV_VAR_NAME}.

	
set_environment_variable(name, value)

	Sets an environment variable to a specified value.

Values are converted to strings automatically. Set variables are
automatically encoded using the system encoding.

	
append_to_environment_variable(name, *values, **config)

	Appends given values to environment variable name.

If the environment variable already exists, values are added after it,
and otherwise a new environment variable is created.

Values are, by default, joined together using the operating system
path separator (; on Windows, : elsewhere). This can be changed
by giving a separator after the values like separator=value. No
other configuration parameters are accepted.

	
remove_environment_variable(*names)

	Deletes the specified environment variable.

Does nothing if the environment variable is not set.

It is possible to remove multiple variables by passing them to this
keyword as separate arguments.

	
environment_variable_should_be_set(name, msg=None)

	Fails if the specified environment variable is not set.

The default error message can be overridden with the msg argument.

	
environment_variable_should_not_be_set(name, msg=None)

	Fails if the specified environment variable is set.

The default error message can be overridden with the msg argument.

	
get_environment_variables()

	Returns currently available environment variables as a dictionary.

Both keys and values are decoded to Unicode using the system encoding.
Altering the returned dictionary has no effect on the actual environment
variables.

	
log_environment_variables(level='INFO')

	Logs all environment variables using the given log level.

Environment variables are also returned the same way as with
Get Environment Variables keyword.

	
join_path(base, *parts)

	Joins the given path part(s) to the given base path.

The path separator (/ or \) is inserted when needed and
the possible absolute paths handled as expected. The resulted
path is also normalized.

	${path} = ‘my/path’

	${p2} = ‘my/path’

	${p3} = ‘my/path/my/file.txt’

	${p4} = ‘/path’

	${p5} = ‘/my/path2’

	
join_paths(base, *paths)

	Joins given paths with base and returns resulted paths.

See Join Path for more information.

	@{p1} = [‘base/example’, ‘base/other’]

	@{p2} = [‘/example’, ‘/my/base/other’]

	@{p3} = [‘my/base/example/path’, ‘my/base/other’, ‘my/base/one/more’]

	
normalize_path(path, case_normalize=False)

	Normalizes the given path.

	Collapses redundant separators and up-level references.

	Converts / to \ on Windows.

	Replaces initial ~ or ~user by that user’s home directory.
The latter is not supported on Jython.

	If case_normalize is given a true value (see Boolean arguments)
on Windows, converts the path to all lowercase. New in Robot
Framework 3.1.

	${path1} = ‘abc’

	${path2} = ‘def’

	${path3} = ‘abc/def/ghi’

	${path4} = ‘/home/robot/stuff’

On Windows result would use \ instead of / and home directory
would be different.

	
split_path(path)

	Splits the given path from the last path separator (/ or \).

The given path is first normalized (e.g. a possible trailing
path separator is removed, special directories .. and .
removed). The parts that are split are returned as separate
components.

	${path1} = ‘abc’ & ${dir} = ‘def’

	${path2} = ‘abc/def’ & ${file} = ‘ghi.txt’

	${path3} = ‘def’ & ${d2} = ‘ghi’

	
split_extension(path)

	Splits the extension from the given path.

The given path is first normalized (e.g. possible trailing
path separators removed, special directories .. and .
removed). The base path and extension are returned as separate
components so that the dot used as an extension separator is
removed. If the path contains no extension, an empty string is
returned for it. Possible leading and trailing dots in the file
name are never considered to be extension separators.

	${path} = ‘file’ & ${ext} = ‘extension’

	${p2} = ‘path/file’ & ${e2} = ‘ext’

	${p3} = ‘path/file’ & ${e3} = ‘’

	${p4} = ‘p2/file’ & ${e4} = ‘ext’

	${p5} = ‘path/.file’ & ${e5} = ‘ext’

	${p6} = ‘path/.file’ & ${e6} = ‘’

	
get_modified_time(path, format='timestamp')

	Returns the last modification time of a file or directory.

How time is returned is determined based on the given format
string as follows. Note that all checks are case-insensitive.
Returned time is also automatically logged.

	If format contains the word epoch, the time is returned
in seconds after the UNIX epoch. The return value is always
an integer.

	If format contains any of the words year, month,
day, hour, min or sec, only the selected parts are
returned. The order of the returned parts is always the one
in the previous sentence and the order of the words in
format is not significant. The parts are returned as
zero-padded strings (e.g. May -> 05).

	Otherwise, and by default, the time is returned as a
timestamp string in the format 2006-02-24 15:08:31.

2006-03-29 15:06:21):
- ${time} = ‘2006-03-29 15:06:21’
- ${secs} = 1143637581
- ${year} = ‘2006’
- ${y} = ‘2006’ & ${d} = ‘29’
- @{time} = [‘2006’, ‘03’, ‘29’, ‘15’, ‘06’, ‘21’]

	
set_modified_time(path, mtime)

	Sets the file modification and access times.

Changes the modification and access times of the given file to
the value determined by mtime. The time can be given in
different formats described below. Note that all checks
involving strings are case-insensitive. Modified time can only
be set to regular files.

	If mtime is a number, or a string that can be converted
to a number, it is interpreted as seconds since the UNIX
epoch (1970-01-01 00:00:00 UTC). This documentation was
originally written about 1177654467 seconds after the epoch.

	If mtime is a timestamp, that time will be used. Valid
timestamp formats are YYYY-MM-DD hh:mm:ss and
YYYYMMDD hhmmss.

	If mtime is equal to NOW, the current local time is used.

	If mtime is equal to UTC, the current time in
[http://en.wikipedia.org/wiki/Coordinated_Universal_Time|UTC]
is used.

	If mtime is in the format like NOW - 1 day or UTC + 1
hour 30 min, the current local/UTC time plus/minus the time
specified with the time string is used. The time string format
is described in an appendix of Robot Framework User Guide.

	
get_file_size(path)

	Returns and logs file size as an integer in bytes.

	
list_directory(path, pattern=None, absolute=False)

	Returns and logs items in a directory, optionally filtered with pattern.

File and directory names are returned in case-sensitive alphabetical
order, e.g. ['A Name', 'Second', 'a lower case name', 'one more'].
Implicit directories . and .. are not returned. The returned
items are automatically logged.

File and directory names are returned relative to the given path
(e.g. 'file.txt') by default. If you want them be returned in
absolute format (e.g. '/home/robot/file.txt'), give the absolute
argument a true value (see Boolean arguments).

If pattern is given, only items matching it are returned. The pattern
matching syntax is explained in introduction, and in this case
matching is case-sensitive.

	
list_files_in_directory(path, pattern=None, absolute=False)

	Wrapper for List Directory that returns only files.

	
list_directories_in_directory(path, pattern=None, absolute=False)

	Wrapper for List Directory that returns only directories.

	
count_items_in_directory(path, pattern=None)

	Returns and logs the number of all items in the given directory.

The argument pattern has the same semantics as with List Directory
keyword. The count is returned as an integer, so it must be checked e.g.
with the built-in keyword Should Be Equal As Integers.

	
count_files_in_directory(path, pattern=None)

	Wrapper for Count Items In Directory returning only file count.

	
count_directories_in_directory(path, pattern=None)

	Wrapper for Count Items In Directory returning only directory count.

	
touch(path)

	Emulates the UNIX touch command.

Creates a file, if it does not exist. Otherwise changes its access and
modification times to the current time.

Fails if used with the directories or the parent directory of the given
file does not exist.

robot.libraries.Process module

	
class robot.libraries.Process.Process

	Bases: object

Robot Framework test library for running processes.

This library utilizes Python’s
[http://docs.python.org/library/subprocess.html|subprocess]
module and its
[http://docs.python.org/library/subprocess.html#popen-constructor|Popen]
class.

The library has following main usages:

	Running processes in system and waiting for their completion using
Run Process keyword.

	Starting processes on background using Start Process.

	Waiting started process to complete using Wait For Process or
stopping them with Terminate Process or Terminate All Processes.

== Table of contents ==

%TOC%

= Specifying command and arguments =

Both Run Process and Start Process accept the command to execute and
all arguments passed to the command as separate arguments. This makes usage
convenient and also allows these keywords to automatically escape possible
spaces and other special characters in commands and arguments. Notice that
if a command accepts options that themselves accept values, these options
and their values must be given as separate arguments.

When running processes in shell, it is also possible to give the whole
command to execute as a single string. The command can then contain
multiple commands to be run together. When using this approach, the caller
is responsible on escaping.

Possible non-string arguments are converted to strings automatically.

= Process configuration =

Run Process and Start Process keywords can be configured using
optional **configuration keyword arguments. Configuration arguments
must be given after other arguments passed to these keywords and must
use syntax like name=value. Available configuration arguments are
listed below and discussed further in sections afterwards.

Note that because **configuration is passed using name=value syntax,
possible equal signs in other arguments passed to Run Process and
Start Process must be escaped with a backslash like name\=value.
See Run Process for an example.

== Running processes in shell ==

The shell argument specifies whether to run the process in a shell or
not. By default shell is not used, which means that shell specific commands,
like copy and dir on Windows, are not available. You can, however,
run shell scripts and batch files without using a shell.

Giving the shell argument any non-false value, such as shell=True,
changes the program to be executed in a shell. It allows using the shell
capabilities, but can also make the process invocation operating system
dependent. Having a shell between the actually started process and this
library can also interfere communication with the process such as stopping
it and reading its outputs. Because of these problems, it is recommended
to use the shell only when absolutely necessary.

When using a shell it is possible to give the whole command to execute
as a single string. See Specifying command and arguments section for
examples and more details in general.

== Current working directory ==

By default the child process will be executed in the same directory
as the parent process, the process running tests, is executed. This
can be changed by giving an alternative location using the cwd argument.
Forward slashes in the given path are automatically converted to
backslashes on Windows.

Standard output and error streams, when redirected to files,
are also relative to the current working directory possibly set using
the cwd argument.

== Environment variables ==

By default the child process will get a copy of the parent process’s
environment variables. The env argument can be used to give the
child a custom environment as a Python dictionary. If there is a need
to specify only certain environment variable, it is possible to use the
env:<name>=<value> format to set or override only that named variables.
It is also possible to use these two approaches together.

== Standard output and error streams ==

By default processes are run so that their standard output and standard
error streams are kept in the memory. This works fine normally,
but if there is a lot of output, the output buffers may get full and
the program can hang. Additionally on Jython, everything written to
these in-memory buffers can be lost if the process is terminated.

To avoid the above mentioned problems, it is possible to use stdout
and stderr arguments to specify files on the file system where to
redirect the outputs. This can also be useful if other processes or
other keywords need to read or manipulate the outputs somehow.

Given stdout and stderr paths are relative to the current working
directory. Forward slashes in the given paths are automatically converted
to backslashes on Windows.

As a special feature, it is possible to redirect the standard error to
the standard output by using stderr=STDOUT.

Regardless are outputs redirected to files or not, they are accessible
through the result object returned when the process ends. Commands are
expected to write outputs using the console encoding, but output encoding
can be configured using the output_encoding argument if needed.

If you are not interested in outputs at all, you can explicitly ignore them
by using a special value DEVNULL both with stdout and stderr. For
example, stdout=DEVNULL is the same as redirecting output on console
with > /dev/null on UNIX-like operating systems or > NUL on Windows.
This way the process will not hang even if there would be a lot of output,
but naturally output is not available after execution either.

Support for the special value DEVNULL is new in Robot Framework 3.2.

Note that the created output files are not automatically removed after
the test run. The user is responsible to remove them if needed.

== Output encoding ==

Executed commands are, by default, expected to write outputs to the
standard output and error streams using the encoding used by the
system console. If the command uses some other encoding, that can be
configured using the output_encoding argument. This is especially
useful on Windows where the console uses a different encoding than rest
of the system, and many commands use the general system encoding instead
of the console encoding.

The value used with the output_encoding argument must be a valid
encoding and must match the encoding actually used by the command. As a
convenience, it is possible to use strings CONSOLE and SYSTEM
to specify that the console or system encoding is used, respectively.
If produced outputs use different encoding then configured, values got
through the result object will be invalid.

The support to set output encoding is new in Robot Framework 3.0.

== Alias ==

A custom name given to the process that can be used when selecting the
active process.

= Active process =

The test library keeps record which of the started processes is currently
active. By default it is latest process started with Start Process,
but Switch Process can be used to select a different one. Using
Run Process does not affect the active process.

The keywords that operate on started processes will use the active process
by default, but it is possible to explicitly select a different process
using the handle argument. The handle can be the identifier returned by
Start Process or an alias explicitly given to Start Process or
Run Process.

= Result object =

Run Process, Wait For Process and Terminate Process keywords return a
result object that contains information about the process execution as its
attributes. The same result object, or some of its attributes, can also
be get using Get Process Result keyword. Attributes available in the
object are documented in the table below.

= Boolean arguments =

Some keywords accept arguments that are handled as Boolean values true or
false. If such an argument is given as a string, it is considered false if
it is an empty string or equal to FALSE, NONE, NO, OFF or
0, case-insensitively. Other strings are considered true regardless
their value, and other argument types are tested using the same
[http://docs.python.org/library/stdtypes.html#truth|rules as in Python].

True examples:

False examples:

Considering string NONE false is new in Robot Framework 3.0.3 and
considering also OFF and 0 false is new in Robot Framework 3.1.

= Example =

	
ROBOT_LIBRARY_SCOPE = 'GLOBAL'

	

	
ROBOT_LIBRARY_VERSION = '3.2.2'

	

	
TERMINATE_TIMEOUT = 30

	

	
KILL_TIMEOUT = 10

	

	
run_process(command, *arguments, **configuration)

	Runs a process and waits for it to complete.

command and *arguments specify the command to execute and
arguments passed to it. See Specifying command and arguments for
more details.

**configuration contains additional configuration related to
starting processes and waiting for them to finish. See Process
configuration for more details about configuration related to starting
processes. Configuration related to waiting for processes consists of
timeout and on_timeout arguments that have same semantics as
with Wait For Process keyword. By default there is no timeout, and
if timeout is defined the default action on timeout is terminate.

Returns a result object containing information about the execution.

Note that possible equal signs in *arguments must be escaped
with a backslash (e.g. name\=value) to avoid them to be passed in
as **configuration.

This keyword does not change the active process.

	
start_process(command, *arguments, **configuration)

	Starts a new process on background.

See Specifying command and arguments and Process configuration
for more information about the arguments, and Run Process keyword
for related examples.

Makes the started process new active process. Returns an identifier
that can be used as a handle to activate the started process if needed.

Processes are started so that they create a new process group. This
allows sending signals to and terminating also possible child
processes. This is not supported on Jython.

	
is_process_running(handle=None)

	Checks is the process running or not.

If handle is not given, uses the current active process.

Returns True if the process is still running and False otherwise.

	
process_should_be_running(handle=None, error_message='Process is not running.')

	Verifies that the process is running.

If handle is not given, uses the current active process.

Fails if the process has stopped.

	
process_should_be_stopped(handle=None, error_message='Process is running.')

	Verifies that the process is not running.

If handle is not given, uses the current active process.

Fails if the process is still running.

	
wait_for_process(handle=None, timeout=None, on_timeout='continue')

	Waits for the process to complete or to reach the given timeout.

The process to wait for must have been started earlier with
Start Process. If handle is not given, uses the current
active process.

timeout defines the maximum time to wait for the process. It can be
given in
[http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#time-format|
various time formats] supported by Robot Framework, for example, 42,
42 s, or 1 minute 30 seconds. The timeout is ignored if it is
Python None (default), string NONE (case-insensitively), zero,
or negative.

on_timeout defines what to do if the timeout occurs. Possible values
and corresponding actions are explained in the table below. Notice
that reaching the timeout never fails the test.

See Terminate Process keyword for more details how processes are
terminated and killed.

If the process ends before the timeout or it is terminated or killed,
this keyword returns a result object containing information about
the execution. If the process is left running, Python None is
returned instead.

Ignoring timeout if it is string NONE, zero, or negative is new
in Robot Framework 3.2.

	
terminate_process(handle=None, kill=False)

	Stops the process gracefully or forcefully.

If handle is not given, uses the current active process.

By default first tries to stop the process gracefully. If the process
does not stop in 30 seconds, or kill argument is given a true value,
(see Boolean arguments) kills the process forcefully. Stops also all
the child processes of the originally started process.

Waits for the process to stop after terminating it. Returns a result
object containing information about the execution similarly as Wait
For Process.

On Unix-like machines graceful termination is done using TERM (15)
signal and killing using KILL (9). Use Send Signal To Process
instead if you just want to send either of these signals without
waiting for the process to stop.

On Windows graceful termination is done using CTRL_BREAK_EVENT
event and killing using Win32 API function TerminateProcess().

Limitations:
- Graceful termination is not supported on Windows when using Jython.

Process is killed instead.

	Stopping the whole process group is not supported when using Jython.

	On Windows forceful kill only stops the main process, not possible
child processes.

	
terminate_all_processes(kill=False)

	Terminates all still running processes started by this library.

This keyword can be used in suite teardown or elsewhere to make
sure that all processes are stopped,

By default tries to terminate processes gracefully, but can be
configured to forcefully kill them immediately. See Terminate Process
that this keyword uses internally for more details.

	
send_signal_to_process(signal, handle=None, group=False)

	Sends the given signal to the specified process.

If handle is not given, uses the current active process.

Signal can be specified either as an integer as a signal name. In the
latter case it is possible to give the name both with or without SIG
prefix, but names are case-sensitive. For example, all the examples
below send signal INT (2):

This keyword is only supported on Unix-like machines, not on Windows.
What signals are supported depends on the system. For a list of
existing signals on your system, see the Unix man pages related to
signal handling (typically man signal or man 7 signal).

By default sends the signal only to the parent process, not to possible
child processes started by it. Notice that when running processes in
shell, the shell is the parent process and it depends on the system
does the shell propagate the signal to the actual started process.

To send the signal to the whole process group, group argument can
be set to any true value (see Boolean arguments). This is not
supported by Jython, however.

	
get_process_id(handle=None)

	Returns the process ID (pid) of the process as an integer.

If handle is not given, uses the current active process.

Notice that the pid is not the same as the handle returned by
Start Process that is used internally by this library.

	
get_process_object(handle=None)

	Return the underlying subprocess.Popen object.

If handle is not given, uses the current active process.

	
get_process_result(handle=None, rc=False, stdout=False, stderr=False, stdout_path=False, stderr_path=False)

	Returns the specified result object or some of its attributes.

The given handle specifies the process whose results should be
returned. If no handle is given, results of the current active
process are returned. In either case, the process must have been
finishes before this keyword can be used. In practice this means
that processes started with Start Process must be finished either
with Wait For Process or Terminate Process before using this
keyword.

If no other arguments than the optional handle are given, a whole
result object is returned. If one or more of the other arguments
are given any true value, only the specified attributes of the
result object are returned. These attributes are always returned
in the same order as arguments are specified in the keyword signature.
See Boolean arguments section for more details about true and false
values.

Although getting results of a previously executed process can be handy
in general, the main use case for this keyword is returning results
over the remote library interface. The remote interface does not
support returning the whole result object, but individual attributes
can be returned without problems.

	
switch_process(handle)

	Makes the specified process the current active process.

The handle can be an identifier returned by Start Process or
the alias given to it explicitly.

	
split_command_line(args, escaping=False)

	Splits command line string into a list of arguments.

String is split from spaces, but argument surrounded in quotes may
contain spaces in them. If escaping is given a true value, then
backslash is treated as an escape character. It can escape unquoted
spaces, quotes inside quotes, and so on, but it also requires using
double backslashes when using Windows paths.

New in Robot Framework 2.9.2.

	
join_command_line(*args)

	Joins arguments into one command line string.

In resulting command line string arguments are delimited with a space,
arguments containing spaces are surrounded with quotes, and possible
quotes are escaped with a backslash.

If this keyword is given only one argument and that is a list like
object, then the values of that list are joined instead.

New in Robot Framework 2.9.2.

	
class robot.libraries.Process.ExecutionResult(process, stdout, stderr, rc=None, output_encoding=None)

	Bases: object

	
stdout

	

	
stderr

	

	
close_streams()

	

	
class robot.libraries.Process.ProcessConfiguration(cwd=None, shell=False, stdout=None, stderr=None, output_encoding='CONSOLE', alias=None, env=None, **rest)

	Bases: object

	
get_command(command, arguments)

	

	
popen_config

	

	
result_config

	

robot.libraries.Remote module

	
class robot.libraries.Remote.Remote(uri='http://127.0.0.1:8270', timeout=None)

	Bases: object

Connects to a remote server at uri.

Optional timeout can be used to specify a timeout to wait when
initially connecting to the server and if a connection accidentally
closes. Timeout can be given as seconds (e.g. 60) or using
Robot Framework time format (e.g. 60s, 2 minutes 10 seconds).

The default timeout is typically several minutes, but it depends on
the operating system and its configuration. Notice that setting
a timeout that is shorter than keyword execution time will interrupt
the keyword.

Timeouts do not work with IronPython.

	
ROBOT_LIBRARY_SCOPE = 'TEST SUITE'

	

	
get_keyword_names(attempts=2)

	

	
get_keyword_arguments(name)

	

	
get_keyword_types(name)

	

	
get_keyword_tags(name)

	

	
get_keyword_documentation(name)

	

	
run_keyword(name, args, kwargs)

	

	
class robot.libraries.Remote.ArgumentCoercer

	Bases: object

	
binary = <_sre.SRE_Pattern object>

	

	
non_ascii = <_sre.SRE_Pattern object>

	

	
coerce(argument)

	

	
class robot.libraries.Remote.RemoteResult(result)

	Bases: object

	
class robot.libraries.Remote.XmlRpcRemoteClient(uri, timeout=None)

	Bases: object

	
get_keyword_names()

	

	
get_keyword_arguments(name)

	

	
get_keyword_types(name)

	

	
get_keyword_tags(name)

	

	
get_keyword_documentation(name)

	

	
run_keyword(name, args, kwargs)

	

	
class robot.libraries.Remote.TimeoutHTTPTransport(use_datetime=0, timeout=None)

	Bases: xmlrpclib.Transport

	
make_connection(host)

	

	
accept_gzip_encoding = True

	

	
close()

	

	
encode_threshold = None

	

	
get_host_info(host)

	

	
getparser()

	

	
parse_response(response)

	

	
request(host, handler, request_body, verbose=0)

	

	
send_content(connection, request_body)

	

	
send_host(connection, host)

	

	
send_request(connection, handler, request_body)

	

	
send_user_agent(connection)

	

	
single_request(host, handler, request_body, verbose=0)

	

	
user_agent = 'xmlrpclib.py/1.0.1 (by www.pythonware.com)'

	

	
class robot.libraries.Remote.TimeoutHTTPSTransport(use_datetime=0, timeout=None)

	Bases: robot.libraries.Remote.TimeoutHTTPTransport

	
accept_gzip_encoding = True

	

	
close()

	

	
encode_threshold = None

	

	
get_host_info(host)

	

	
getparser()

	

	
make_connection(host)

	

	
parse_response(response)

	

	
request(host, handler, request_body, verbose=0)

	

	
send_content(connection, request_body)

	

	
send_host(connection, host)

	

	
send_request(connection, handler, request_body)

	

	
send_user_agent(connection)

	

	
single_request(host, handler, request_body, verbose=0)

	

	
user_agent = 'xmlrpclib.py/1.0.1 (by www.pythonware.com)'

	

robot.libraries.Reserved module

	
class robot.libraries.Reserved.Reserved

	Bases: object

	
ROBOT_LIBRARY_SCOPE = 'GLOBAL'

	

	
get_keyword_names()

	

	
run_keyword(name, args)

	

robot.libraries.Screenshot module

	
class robot.libraries.Screenshot.Screenshot(screenshot_directory=None, screenshot_module=None)

	Bases: object

Test library for taking screenshots on the machine where tests are run.

Notice that successfully taking screenshots requires tests to be run with
a physical or virtual display.

== Table of contents ==

%TOC%

= Using with Python =

How screenshots are taken when using Python depends on the operating
system. On OSX screenshots are taken using the built-in screencapture
utility. On other operating systems you need to have one of the following
tools or Python modules installed. You can specify the tool/module to use
when importing the library. If no tool or module is specified, the first
one found will be used.

	wxPython :: http://wxpython.org :: Required also by RIDE so many Robot
Framework users already have this module installed.

	PyGTK :: http://pygtk.org :: This module is available by default on most
Linux distributions.

	Pillow :: http://python-pillow.github.io ::
Only works on Windows. Also the original PIL package is supported.

	Scrot :: http://en.wikipedia.org/wiki/Scrot :: Not used on Windows.
Install with apt-get install scrot or similar.

Using screencapture on OSX and specifying explicit screenshot module
are new in Robot Framework 2.9.2. The support for using scrot is new
in Robot Framework 3.0.

= Using with Jython and IronPython =

With Jython and IronPython this library uses APIs provided by JVM and .NET
platforms, respectively. These APIs are always available and thus no
external modules are needed.

= Where screenshots are saved =

By default screenshots are saved into the same directory where the Robot
Framework log file is written. If no log is created, screenshots are saved
into the directory where the XML output file is written.

It is possible to specify a custom location for screenshots using
screenshot_directory argument when importing the library and
using Set Screenshot Directory keyword during execution. It is also
possible to save screenshots using an absolute path.

= ScreenCapLibrary =

[https://github.com/mihaiparvu/ScreenCapLibrary|ScreenCapLibrary] is an
external Robot Framework library that can be used as an alternative,
which additionally provides support for multiple formats, adjusting the
quality, using GIFs and video capturing.

Configure where screenshots are saved.

If screenshot_directory is not given, screenshots are saved into
same directory as the log file. The directory can also be set using
Set Screenshot Directory keyword.

screenshot_module specifies the module or tool to use when using
this library on Python outside OSX. Possible values are wxPython,
PyGTK, PIL and scrot, case-insensitively. If no value is
given, the first module/tool found is used in that order. See Using
with Python for more information.

Specifying explicit screenshot module is new in Robot Framework 2.9.2.

	
ROBOT_LIBRARY_SCOPE = 'TEST SUITE'

	

	
ROBOT_LIBRARY_VERSION = '3.2.2'

	

	
set_screenshot_directory(path)

	Sets the directory where screenshots are saved.

It is possible to use / as a path separator in all operating
systems. Path to the old directory is returned.

The directory can also be set in importing.

	
take_screenshot(name='screenshot', width='800px')

	Takes a screenshot in JPEG format and embeds it into the log file.

Name of the file where the screenshot is stored is derived from the
given name. If the name ends with extension .jpg or
.jpeg, the screenshot will be stored with that exact name.
Otherwise a unique name is created by adding an underscore, a running
index and an extension to the name.

The name will be interpreted to be relative to the directory where
the log file is written. It is also possible to use absolute paths.
Using / as a path separator works in all operating systems.

width specifies the size of the screenshot in the log file.

The path where the screenshot is saved is returned.

	
take_screenshot_without_embedding(name='screenshot')

	Takes a screenshot and links it from the log file.

This keyword is otherwise identical to Take Screenshot but the saved
screenshot is not embedded into the log file. The screenshot is linked
so it is nevertheless easily available.

	
class robot.libraries.Screenshot.ScreenshotTaker(module_name=None)

	Bases: object

	
test(path=None)

	

robot.libraries.String module

	
class robot.libraries.String.String

	Bases: object

A test library for string manipulation and verification.

String is Robot Framework’s standard library for manipulating
strings (e.g. Replace String Using Regexp, Split To Lines) and
verifying their contents (e.g. Should Be String).

Following keywords from BuiltIn library can also be used with strings:

	Catenate

	Get Length

	Length Should Be

	Should (Not) Be Empty

	Should (Not) Be Equal (As Strings/Integers/Numbers)

	Should (Not) Match (Regexp)

	Should (Not) Contain

	Should (Not) Start With

	Should (Not) End With

	Convert To String

	Convert To Bytes

	
ROBOT_LIBRARY_SCOPE = 'GLOBAL'

	

	
ROBOT_LIBRARY_VERSION = '3.2.2'

	

	
convert_to_lower_case(string)

	Converts string to lower case.

Uses Python’s standard
[https://docs.python.org/library/stdtypes.html#str.lower|lower()]
method.

	
convert_to_upper_case(string)

	Converts string to upper case.

Uses Python’s standard
[https://docs.python.org/library/stdtypes.html#str.upper|upper()]
method.

	
convert_to_title_case(string, exclude=None)

	Converts string to title case.

Uses the following algorithm:

	Split the string to words from whitespace characters (spaces,
newlines, etc.).

	Exclude words that are not all lower case. This preserves,
for example, “OK” and “iPhone”.

	Exclude also words listed in the optional exclude argument.

	Title case the first alphabetical character of each word that has
not been excluded.

	Join all words together so that original whitespace is preserved.

Explicitly excluded words can be given as a list or as a string with
words separated by a comma and an optional space. Excluded words are
actually considered to be regular expression patterns, so it is
possible to use something like “example[.!?]?” to match the word
“example” on it own and also if followed by “.”, “!” or “?”.
See BuiltIn.Should Match Regexp for more information about Python
regular expression syntax in general and how to use it in Robot
Framework test data in particular.

The reason this keyword does not use Python’s standard
[https://docs.python.org/library/stdtypes.html#str.title|title()]
method is that it can yield undesired results, for example, if
strings contain upper case letters or special characters like
apostrophes. It would, for example, convert “it’s an OK iPhone”
to “It’S An Ok Iphone”.

New in Robot Framework 3.2.

	
encode_string_to_bytes(string, encoding, errors='strict')

	Encodes the given Unicode string to bytes using the given encoding.

errors argument controls what to do if encoding some characters fails.
All values accepted by encode method in Python are valid, but in
practice the following values are most useful:

	strict: fail if characters cannot be encoded (default)

	ignore: ignore characters that cannot be encoded

	replace: replace characters that cannot be encoded with
a replacement character

Use Convert To Bytes in BuiltIn if you want to create bytes based
on character or integer sequences. Use Decode Bytes To String if you
need to convert byte strings to Unicode strings and Convert To String
in BuiltIn if you need to convert arbitrary objects to Unicode.

	
decode_bytes_to_string(bytes, encoding, errors='strict')

	Decodes the given bytes to a Unicode string using the given encoding.

errors argument controls what to do if decoding some bytes fails.
All values accepted by decode method in Python are valid, but in
practice the following values are most useful:

	strict: fail if characters cannot be decoded (default)

	ignore: ignore characters that cannot be decoded

	replace: replace characters that cannot be decoded with
a replacement character

Use Encode String To Bytes if you need to convert Unicode strings to
byte strings, and Convert To String in BuiltIn if you need to
convert arbitrary objects to Unicode strings.

	
format_string(template, *positional, **named)

	Formats a template using the given positional and named arguments.

The template can be either be a string or an absolute path to
an existing file. In the latter case the file is read and its contents
are used as the template. If the template file contains non-ASCII
characters, it must be encoded using UTF-8.

The template is formatted using Python’s
[https://docs.python.org/library/string.html#format-string-syntax|format
string syntax]. Placeholders are marked using {} with possible
field name and format specification inside. Literal curly braces
can be inserted by doubling them like {{ and }}.

New in Robot Framework 3.1.

	
get_line_count(string)

	Returns and logs the number of lines in the given string.

	
split_to_lines(string, start=0, end=None)

	Splits the given string to lines.

It is possible to get only a selection of lines from start
to end so that start index is inclusive and end is
exclusive. Line numbering starts from 0, and it is possible to
use negative indices to refer to lines from the end.

Lines are returned without the newlines. The number of
returned lines is automatically logged.

Use Get Line if you only need to get a single line.

	
get_line(string, line_number)

	Returns the specified line from the given string.

Line numbering starts from 0 and it is possible to use
negative indices to refer to lines from the end. The line is
returned without the newline character.

Use Split To Lines if all lines are needed.

	
get_lines_containing_string(string, pattern, case_insensitive=False)

	Returns lines of the given string that contain the pattern.

The pattern is always considered to be a normal string, not a glob
or regexp pattern. A line matches if the pattern is found anywhere
on it.

The match is case-sensitive by default, but giving case_insensitive
a true value makes it case-insensitive. The value is considered true
if it is a non-empty string that is not equal to false, none or
no. If the value is not a string, its truth value is got directly
in Python. Considering none false is new in RF 3.0.3.

Lines are returned as one string catenated back together with
newlines. Possible trailing newline is never returned. The
number of matching lines is automatically logged.

See Get Lines Matching Pattern and Get Lines Matching Regexp
if you need more complex pattern matching.

	
get_lines_matching_pattern(string, pattern, case_insensitive=False)

	Returns lines of the given string that match the pattern.

The pattern is a _glob pattern_ where:

A line matches only if it matches the pattern fully.

The match is case-sensitive by default, but giving case_insensitive
a true value makes it case-insensitive. The value is considered true
if it is a non-empty string that is not equal to false, none or
no. If the value is not a string, its truth value is got directly
in Python. Considering none false is new in RF 3.0.3.

Lines are returned as one string catenated back together with
newlines. Possible trailing newline is never returned. The
number of matching lines is automatically logged.

See Get Lines Matching Regexp if you need more complex
patterns and Get Lines Containing String if searching
literal strings is enough.

	
get_lines_matching_regexp(string, pattern, partial_match=False)

	Returns lines of the given string that match the regexp pattern.

See BuiltIn.Should Match Regexp for more information about
Python regular expression syntax in general and how to use it
in Robot Framework test data in particular.

By default lines match only if they match the pattern fully, but
partial matching can be enabled by giving the partial_match
argument a true value. The value is considered true
if it is a non-empty string that is not equal to false, none or
no. If the value is not a string, its truth value is got directly
in Python. Considering none false is new in RF 3.0.3.

If the pattern is empty, it matches only empty lines by default.
When partial matching is enabled, empty pattern matches all lines.

Notice that to make the match case-insensitive, you need to prefix
the pattern with case-insensitive flag (?i).

Lines are returned as one string concatenated back together with
newlines. Possible trailing newline is never returned. The
number of matching lines is automatically logged.

See Get Lines Matching Pattern and Get Lines Containing
String if you do not need full regular expression powers (and
complexity).

	partial_match argument is new in Robot Framework 2.9. In earlier

	versions exact match was always required.

	
get_regexp_matches(string, pattern, *groups)

	Returns a list of all non-overlapping matches in the given string.

string is the string to find matches from and pattern is the
regular expression. See BuiltIn.Should Match Regexp for more
information about Python regular expression syntax in general and how
to use it in Robot Framework test data in particular.

If no groups are used, the returned list contains full matches. If one
group is used, the list contains only contents of that group. If
multiple groups are used, the list contains tuples that contain
individual group contents. All groups can be given as indexes (starting
from 1) and named groups also as names.

New in Robot Framework 2.9.

	
replace_string(string, search_for, replace_with, count=-1)

	Replaces search_for in the given string with replace_with.

search_for is used as a literal string. See Replace String
Using Regexp if more powerful pattern matching is needed.
If you need to just remove a string see Remove String.

If the optional argument count is given, only that many
occurrences from left are replaced. Negative count means
that all occurrences are replaced (default behaviour) and zero
means that nothing is done.

A modified version of the string is returned and the original
string is not altered.

	
replace_string_using_regexp(string, pattern, replace_with, count=-1)

	Replaces pattern in the given string with replace_with.

This keyword is otherwise identical to Replace String, but
the pattern to search for is considered to be a regular
expression. See BuiltIn.Should Match Regexp for more
information about Python regular expression syntax in general
and how to use it in Robot Framework test data in particular.

If you need to just remove a string see Remove String Using Regexp.

	
remove_string(string, *removables)

	Removes all removables from the given string.

removables are used as literal strings. Each removable will be
matched to a temporary string from which preceding removables have
been already removed. See second example below.

Use Remove String Using Regexp if more powerful pattern matching is
needed. If only a certain number of matches should be removed,
Replace String or Replace String Using Regexp can be used.

A modified version of the string is returned and the original
string is not altered.

	
remove_string_using_regexp(string, *patterns)

	Removes patterns from the given string.

This keyword is otherwise identical to Remove String, but
the patterns to search for are considered to be a regular
expression. See Replace String Using Regexp for more information
about the regular expression syntax. That keyword can also be
used if there is a need to remove only a certain number of
occurrences.

	
split_string(string, separator=None, max_split=-1)

	Splits the string using separator as a delimiter string.

If a separator is not given, any whitespace string is a
separator. In that case also possible consecutive whitespace
as well as leading and trailing whitespace is ignored.

Split words are returned as a list. If the optional
max_split is given, at most max_split splits are done, and
the returned list will have maximum max_split + 1 elements.

See Split String From Right if you want to start splitting
from right, and Fetch From Left and Fetch From Right if
you only want to get first/last part of the string.

	
split_string_from_right(string, separator=None, max_split=-1)

	Splits the string using separator starting from right.

Same as Split String, but splitting is started from right. This has
an effect only when max_split is given.

	
split_string_to_characters(string)

	Splits the given string to characters.

	
fetch_from_left(string, marker)

	Returns contents of the string before the first occurrence of marker.

If the marker is not found, whole string is returned.

See also Fetch From Right, Split String and Split String
From Right.

	
fetch_from_right(string, marker)

	Returns contents of the string after the last occurrence of marker.

If the marker is not found, whole string is returned.

See also Fetch From Left, Split String and Split String
From Right.

	
generate_random_string(length=8, chars='[LETTERS][NUMBERS]')

	Generates a string with a desired length from the given chars.

The population sequence chars contains the characters to use
when generating the random string. It can contain any
characters, and it is possible to use special markers
explained in the table below:

	
get_substring(string, start, end=None)

	Returns a substring from start index to end index.

The start index is inclusive and end is exclusive.
Indexing starts from 0, and it is possible to use
negative indices to refer to characters from the end.

	
strip_string(string, mode='both', characters=None)

	Remove leading and/or trailing whitespaces from the given string.

mode is either left to remove leading characters, right to
remove trailing characters, both (default) to remove the
characters from both sides of the string or none to return the
unmodified string.

If the optional characters is given, it must be a string and the
characters in the string will be stripped in the string. Please note,
that this is not a substring to be removed but a list of characters,
see the example below.

New in Robot Framework 3.0.

	
should_be_string(item, msg=None)

	Fails if the given item is not a string.

With Python 2, except with IronPython, this keyword passes regardless
is the item a Unicode string or a byte string. Use Should Be
Unicode String or Should Be Byte String if you want to restrict
the string type. Notice that with Python 2, except with IronPython,
'string' creates a byte string and u'unicode' must be used to
create a Unicode string.

With Python 3 and IronPython, this keyword passes if the string is
a Unicode string but fails if it is bytes. Notice that with both
Python 3 and IronPython, 'string' creates a Unicode string, and
b'bytes' must be used to create a byte string.

The default error message can be overridden with the optional
msg argument.

	
should_not_be_string(item, msg=None)

	Fails if the given item is a string.

See Should Be String for more details about Unicode strings and byte
strings.

The default error message can be overridden with the optional
msg argument.

	
should_be_unicode_string(item, msg=None)

	Fails if the given item is not a Unicode string.

Use Should Be Byte String if you want to verify the item is a
byte string, or Should Be String if both Unicode and byte strings
are fine. See Should Be String for more details about Unicode
strings and byte strings.

The default error message can be overridden with the optional
msg argument.

	
should_be_byte_string(item, msg=None)

	Fails if the given item is not a byte string.

Use Should Be Unicode String if you want to verify the item is a
Unicode string, or Should Be String if both Unicode and byte strings
are fine. See Should Be String for more details about Unicode strings
and byte strings.

The default error message can be overridden with the optional
msg argument.

	
should_be_lowercase(string, msg=None)

	Fails if the given string is not in lowercase.

For example, 'string' and 'with specials!' would pass, and
'String', '' and ' ' would fail.

The default error message can be overridden with the optional
msg argument.

See also Should Be Uppercase and Should Be Titlecase.

	
should_be_uppercase(string, msg=None)

	Fails if the given string is not in uppercase.

For example, 'STRING' and 'WITH SPECIALS!' would pass, and
'String', '' and ' ' would fail.

The default error message can be overridden with the optional
msg argument.

See also Should Be Titlecase and Should Be Lowercase.

	
should_be_titlecase(string, msg=None)

	Fails if given string is not title.

string is a titlecased string if there is at least one
character in it, uppercase characters only follow uncased
characters and lowercase characters only cased ones.

For example, 'This Is Title' would pass, and 'Word In UPPER',
'Word In lower', '' and ' ' would fail.

The default error message can be overridden with the optional
msg argument.

See also Should Be Uppercase and Should Be Lowercase.

robot.libraries.Telnet module

	
class robot.libraries.Telnet.Telnet(timeout='3 seconds', newline='CRLF', prompt=None, prompt_is_regexp=False, encoding='UTF-8', encoding_errors='ignore', default_log_level='INFO', window_size=None, environ_user=None, terminal_emulation=False, terminal_type=None, telnetlib_log_level='TRACE', connection_timeout=None)

	Bases: object

A test library providing communication over Telnet connections.

Telnet is Robot Framework’s standard library that makes it possible to
connect to Telnet servers and execute commands on the opened connections.

== Table of contents ==

%TOC%

= Connections =

The first step of using Telnet is opening a connection with Open
Connection keyword. Typically the next step is logging in with Login
keyword, and in the end the opened connection can be closed with Close
Connection.

It is possible to open multiple connections and switch the active one
using Switch Connection. Close All Connections can be used to close
all the connections, which is especially useful in suite teardowns to
guarantee that all connections are always closed.

= Writing and reading =

After opening a connection and possibly logging in, commands can be
executed or text written to the connection for other reasons using Write
and Write Bare keywords. The main difference between these two is that
the former adds a [#Configuration|configurable newline] after the text
automatically.

After writing something to the connection, the resulting output can be
read using Read, Read Until, Read Until Regexp, and Read Until
Prompt keywords. Which one to use depends on the context, but the latest
one is often the most convenient.

As a convenience when running a command, it is possible to use Execute
Command that simply uses Write and Read Until Prompt internally.
Write Until Expected Output is useful if you need to wait until writing
something produces a desired output.

Written and read text is automatically encoded/decoded using a
[#Configuration|configured encoding].

The ANSI escape codes, like cursor movement and color codes, are
normally returned as part of the read operation. If an escape code occurs
in middle of a search pattern it may also prevent finding the searched
string. Terminal emulation can be used to process these
escape codes as they would be if a real terminal would be in use.

= Configuration =

Many aspects related the connections can be easily configured either
globally or per connection basis. Global configuration is done when
[#Importing|library is imported], and these values can be overridden per
connection by Open Connection or with setting specific keywords
Set Timeout, Set Newline, Set Prompt, Set Encoding,
Set Default Log Level and Set Telnetlib Log Level.

Values of environ_user, window_size, terminal_emulation, and
terminal_type can not be changed after opening the connection.

== Timeout ==

Timeout defines how long is the maximum time to wait when reading
output. It is used internally by Read Until, Read Until Regexp,
Read Until Prompt, and Login keywords. The default value is 3 seconds.

== Connection Timeout ==

Connection Timeout defines how long is the maximum time to wait when
opening the telnet connection. It is used internally by Open Connection.
The default value is the system global default timeout.

New in Robot Framework 2.9.2.

== Newline ==

Newline defines which line separator Write keyword should use. The
default value is CRLF that is typically used by Telnet connections.

Newline can be given either in escaped format using \n and \r or
with special LF and CR syntax.

== Prompt ==

Often the easiest way to read the output of a command is reading all
the output until the next prompt with Read Until Prompt. It also makes
it easier, and faster, to verify did Login succeed.

Prompt can be specified either as a normal string or a regular expression.
The latter is especially useful if the prompt changes as a result of
the executed commands. Prompt can be set to be a regular expression
by giving prompt_is_regexp argument a true value (see Boolean
arguments).

== Encoding ==

To ease handling text containing non-ASCII characters, all written text is
encoded and read text decoded by default. The default encoding is UTF-8
that works also with ASCII. Encoding can be disabled by using a special
encoding value NONE. This is mainly useful if you need to get the bytes
received from the connection as-is.

Notice that when writing to the connection, only Unicode strings are
encoded using the defined encoding. Byte strings are expected to be already
encoded correctly. Notice also that normal text in test data is passed to
the library as Unicode and you need to use variables to use bytes.

It is also possible to configure the error handler to use if encoding or
decoding characters fails. Accepted values are the same that encode/decode
functions in Python strings accept. In practice the following values are
the most useful:

	ignore: ignore characters that cannot be encoded (default)

	strict: fail if characters cannot be encoded

	replace: replace characters that cannot be encoded with a replacement
character

== Default log level ==

Default log level specifies the log level keywords use for logging unless
they are given an explicit log level. The default value is INFO, and
changing it, for example, to DEBUG can be a good idea if there is lot
of unnecessary output that makes log files big.

== Terminal type ==

By default the Telnet library does not negotiate any specific terminal type
with the server. If a specific terminal type, for example vt100, is
desired, the terminal type can be configured in importing and with
Open Connection.

== Window size ==

Window size for negotiation with the server can be configured when
importing the library and with Open Connection.

== USER environment variable ==

Telnet protocol allows the USER environment variable to be sent when
connecting to the server. On some servers it may happen that there is no
login prompt, and on those cases this configuration option will allow still
to define the desired username. The option environ_user can be used in
importing and with Open Connection.

= Terminal emulation =

Telnet library supports terminal
emulation with [http://pyte.readthedocs.io|Pyte]. Terminal emulation
will process the output in a virtual screen. This means that ANSI escape
codes, like cursor movements, and also control characters, like
carriage returns and backspaces, have the same effect on the result as they
would have on a normal terminal screen. For example the sequence
acdc\x1b[3Dbba will result in output abba.

Terminal emulation is taken into use by giving terminal_emulation
argument a true value (see Boolean arguments) either in the library
initialization or with Open Connection.

As Pyte approximates vt-style terminal, you may also want to set the
terminal type as vt100. We also recommend that you increase the window
size, as the terminal emulation will break all lines that are longer than
the window row length.

When terminal emulation is used, the newline and encoding can not be
changed anymore after opening the connection.

As a prerequisite for using terminal emulation, you need to have Pyte
installed. Due to backwards incompatible changes in Pyte, different
Robot Framework versions support different Pyte versions:

	Pyte 0.6 and newer are supported by Robot Framework 3.0.3.
Latest Pyte version can be installed (or upgraded) with
pip install --upgrade pyte.

	Pyte 0.5.2 and older are supported by Robot Framework 3.0.2 and earlier.
Pyte 0.5.2 can be installed with pip install pyte==0.5.2.

= Logging =

All keywords that read something log the output. These keywords take the
log level to use as an optional argument, and if no log level is specified
they use the [#Configuration|configured] default value.

The valid log levels to use are TRACE, DEBUG, INFO (default),
and WARN. Levels below INFO are not shown in log files by default
whereas warnings are shown more prominently.

The [http://docs.python.org/library/telnetlib.html|telnetlib module]
used by this library has a custom logging system for logging content it
sends and receives. By default these messages are written using TRACE
level, but the level is configurable with the telnetlib_log_level
option either in the library initialization, to the Open Connection
or by using the Set Telnetlib Log Level keyword to the active
connection. Special level NONE con be used to disable the logging
altogether.

= Time string format =

Timeouts and other times used must be given as a time string using format
like 15 seconds or 1min 10s. If the timeout is given as just
a number, for example, 10 or 1.5, it is considered to be seconds.
The time string format is described in more detail in an appendix of
[http://robotframework.org/robotframework/#user-guide|Robot Framework User Guide].

= Boolean arguments =

Some keywords accept arguments that are handled as Boolean values true or
false. If such an argument is given as a string, it is considered false if
it is an empty string or equal to FALSE, NONE, NO, OFF or
0, case-insensitively. Other strings are considered true regardless
their value, and other argument types are tested using the same
[http://docs.python.org/library/stdtypes.html#truth|rules as in Python].

True examples:

False examples:

Considering string NONE false is new in Robot Framework 3.0.3 and
considering also OFF and 0 false is new in Robot Framework 3.1.

Telnet library can be imported with optional configuration parameters.

Configuration parameters are used as default values when new
connections are opened with Open Connection keyword. They can also be
overridden after opening the connection using the Set … keywords.
See these keywords as well as Configuration, Terminal emulation and
Logging sections above for more information about these parameters
and their possible values.

See Time string format and Boolean arguments sections for
information about using arguments accepting times and Boolean values,
respectively.

	
ROBOT_LIBRARY_SCOPE = 'TEST_SUITE'

	

	
ROBOT_LIBRARY_VERSION = '3.2.2'

	

	
get_keyword_names()

	

	
open_connection(host, alias=None, port=23, timeout=None, newline=None, prompt=None, prompt_is_regexp=False, encoding=None, encoding_errors=None, default_log_level=None, window_size=None, environ_user=None, terminal_emulation=None, terminal_type=None, telnetlib_log_level=None, connection_timeout=None)

	Opens a new Telnet connection to the given host and port.

The timeout, newline, prompt, prompt_is_regexp,
encoding, default_log_level, window_size, environ_user,
terminal_emulation, terminal_type and telnetlib_log_level
arguments get default values when the library is [#Importing|imported].
Setting them here overrides those values for the opened connection.
See Configuration, Terminal emulation and Logging sections for
more information about these parameters and their possible values.

Possible already opened connections are cached and it is possible to
switch back to them using Switch Connection keyword. It is possible to
switch either using explicitly given alias or using index returned
by this keyword. Indexing starts from 1 and is reset back to it by
Close All Connections keyword.

	
switch_connection(index_or_alias)

	Switches between active connections using an index or an alias.

Aliases can be given to Open Connection keyword which also always
returns the connection index.

This keyword returns the index of previous active connection.

The example above expects that there were no other open
connections when opening the first one, because it used index
1 when switching to the connection later. If you are not
sure about that, you can store the index into a variable as
shown below.

	
close_all_connections()

	Closes all open connections and empties the connection cache.

If multiple connections are opened, this keyword should be used in
a test or suite teardown to make sure that all connections are closed.
It is not an error is some of the connections have already been closed
by Close Connection.

After this keyword, new indexes returned by Open Connection
keyword are reset to 1.

	
class robot.libraries.Telnet.TelnetConnection(host=None, port=23, timeout=3.0, newline='CRLF', prompt=None, prompt_is_regexp=False, encoding='UTF-8', encoding_errors='ignore', default_log_level='INFO', window_size=None, environ_user=None, terminal_emulation=False, terminal_type=None, telnetlib_log_level='TRACE', connection_timeout=None)

	Bases: telnetlib.Telnet

	
NEW_ENVIRON_IS = '\x00'

	

	
NEW_ENVIRON_VAR = '\x00'

	

	
NEW_ENVIRON_VALUE = '\x01'

	

	
INTERNAL_UPDATE_FREQUENCY = 0.03

	

	
set_timeout(timeout)

	Sets the timeout used for waiting output in the current connection.

Read operations that expect some output to appear (Read Until, Read
Until Regexp, Read Until Prompt, Login) use this timeout and fail
if the expected output does not appear before this timeout expires.

The timeout must be given in time string format. The old timeout
is returned and can be used to restore the timeout later.

See Configuration section for more information about global and
connection specific configuration.

	
set_newline(newline)

	Sets the newline used by Write keyword in the current connection.

The old newline is returned and can be used to restore the newline later.
See Set Timeout for a similar example.

If terminal emulation is used, the newline can not be changed on an open
connection.

See Configuration section for more information about global and
connection specific configuration.

	
set_prompt(prompt, prompt_is_regexp=False)

	Sets the prompt used by Read Until Prompt and Login in the current connection.

If prompt_is_regexp is given a true value (see Boolean arguments),
the given prompt is considered to be a regular expression.

The old prompt is returned and can be used to restore the prompt later.

See the documentation of
[http://docs.python.org/library/re.html|Python re module]
for more information about the supported regular expression syntax.
Notice that possible backslashes need to be escaped in Robot Framework
test data.

See Configuration section for more information about global and
connection specific configuration.

	
set_encoding(encoding=None, errors=None)

	Sets the encoding to use for writing and reading in the current connection.

The given encoding specifies the encoding to use when written/read
text is encoded/decoded, and errors specifies the error handler to
use if encoding/decoding fails. Either of these can be omitted and in
that case the old value is not affected. Use string NONE to disable
encoding altogether.

See Configuration section for more information about encoding and
error handlers, as well as global and connection specific configuration
in general.

The old values are returned and can be used to restore the encoding
and the error handler later. See Set Prompt for a similar example.

If terminal emulation is used, the encoding can not be changed on an open
connection.

	
set_telnetlib_log_level(level)

	Sets the log level used for logging in the underlying telnetlib.

Note that telnetlib can be very noisy thus using the level NONE
can shutdown the messages generated by this library.

	
set_default_log_level(level)

	Sets the default log level used for logging in the current connection.

The old default log level is returned and can be used to restore the
log level later.

See Configuration section for more information about global and
connection specific configuration.

	
close_connection(loglevel=None)

	Closes the current Telnet connection.

Remaining output in the connection is read, logged, and returned.
It is not an error to close an already closed connection.

Use Close All Connections if you want to make sure all opened
connections are closed.

See Logging section for more information about log levels.

	
login(username, password, login_prompt='login: ', password_prompt='Password: ', login_timeout='1 second', login_incorrect='Login incorrect')

	Logs in to the Telnet server with the given user information.

This keyword reads from the connection until the login_prompt is
encountered and then types the given username. Then it reads until
the password_prompt and types the given password. In both cases
a newline is appended automatically and the connection specific
timeout used when waiting for outputs.

How logging status is verified depends on whether a prompt is set for
this connection or not:

1) If the prompt is set, this keyword reads the output until the prompt
is found using the normal timeout. If no prompt is found, login is
considered failed and also this keyword fails. Note that in this case
both login_timeout and login_incorrect arguments are ignored.

2) If the prompt is not set, this keywords sleeps until login_timeout
and then reads all the output available on the connection. If the
output contains login_incorrect text, login is considered failed
and also this keyword fails.

See Configuration section for more information about setting
newline, timeout, and prompt.

	
write(text, loglevel=None)

	Writes the given text plus a newline into the connection.

The newline character sequence to use can be [#Configuration|configured]
both globally and per connection basis. The default value is CRLF.

This keyword consumes the written text, until the added newline, from
the output and logs and returns it. The given text itself must not
contain newlines. Use Write Bare instead if either of these features
causes a problem.

Note: This keyword does not return the possible output of the executed
command. To get the output, one of the Read … keywords must be
used. See Writing and reading section for more details.

See Logging section for more information about log levels.

	
write_bare(text)

	Writes the given text, and nothing else, into the connection.

This keyword does not append a newline nor consume the written text.
Use Write if these features are needed.

	
write_until_expected_output(text, expected, timeout, retry_interval, loglevel=None)

	Writes the given text repeatedly, until expected appears in the output.

text is written without appending a newline and it is consumed from
the output before trying to find expected. If expected does not
appear in the output within timeout, this keyword fails.

retry_interval defines the time to wait expected to appear before
writing the text again. Consuming the written text is subject to
the normal [#Configuration|configured timeout].

Both timeout and retry_interval must be given in time string
format. See Logging section for more information about log levels.

The above example writes command ps -ef | grep myprocess\r\n until
myprocess appears in the output. The command is written every 0.5
seconds and the keyword fails if myprocess does not appear in
the output in 5 seconds.

	
write_control_character(character)

	Writes the given control character into the connection.

The control character is prepended with an IAC (interpret as command)
character.

The following control character names are supported: BRK, IP, AO, AYT,
EC, EL, NOP. Additionally, you can use arbitrary numbers to send any
control character.

	
read(loglevel=None)

	Reads everything that is currently available in the output.

Read output is both returned and logged. See Logging section for more
information about log levels.

	
read_until(expected, loglevel=None)

	Reads output until expected text is encountered.

Text up to and including the match is returned and logged. If no match
is found, this keyword fails. How much to wait for the output depends
on the [#Configuration|configured timeout].

See Logging section for more information about log levels. Use
Read Until Regexp if more complex matching is needed.

	
read_until_regexp(*expected)

	Reads output until any of the expected regular expressions match.

This keyword accepts any number of regular expressions patterns or
compiled Python regular expression objects as arguments. Text up to
and including the first match to any of the regular expressions is
returned and logged. If no match is found, this keyword fails. How much
to wait for the output depends on the [#Configuration|configured timeout].

If the last given argument is a [#Logging|valid log level], it is used
as loglevel similarly as with Read Until keyword.

See the documentation of
[http://docs.python.org/library/re.html|Python re module]
for more information about the supported regular expression syntax.
Notice that possible backslashes need to be escaped in Robot Framework
test data.

	
read_until_prompt(loglevel=None, strip_prompt=False)

	Reads output until the prompt is encountered.

This keyword requires the prompt to be [#Configuration|configured]
either in importing or with Open Connection or Set Prompt keyword.

By default, text up to and including the prompt is returned and logged.
If no prompt is found, this keyword fails. How much to wait for the
output depends on the [#Configuration|configured timeout].

If you want to exclude the prompt from the returned output, set
strip_prompt to a true value (see Boolean arguments). If your
prompt is a regular expression, make sure that the expression spans the
whole prompt, because only the part of the output that matches the
regular expression is stripped away.

See Logging section for more information about log levels.

	
execute_command(command, loglevel=None, strip_prompt=False)

	Executes the given command and reads, logs, and returns everything until the prompt.

This keyword requires the prompt to be [#Configuration|configured]
either in importing or with Open Connection or Set Prompt keyword.

This is a convenience keyword that uses Write and Read Until Prompt
internally. Following two examples are thus functionally identical:

See Logging section for more information about log levels and Read
Until Prompt for more information about the strip_prompt parameter.

	
msg(msg, *args)

	

	
close()

	Close the connection.

	
expect(list, timeout=None)

	Read until one from a list of a regular expressions matches.

The first argument is a list of regular expressions, either
compiled (re.RegexObject instances) or uncompiled (strings).
The optional second argument is a timeout, in seconds; default
is no timeout.

Return a tuple of three items: the index in the list of the
first regular expression that matches; the match object
returned; and the text read up till and including the match.

If EOF is read and no text was read, raise EOFError.
Otherwise, when nothing matches, return (-1, None, text) where
text is the text received so far (may be the empty string if a
timeout happened).

If a regular expression ends with a greedy match (e.g. ‘.*’)
or if more than one expression can match the same input, the
results are undeterministic, and may depend on the I/O timing.

	
fileno()

	Return the fileno() of the socket object used internally.

	
fill_rawq()

	Fill raw queue from exactly one recv() system call.

Block if no data is immediately available. Set self.eof when
connection is closed.

	
get_socket()

	Return the socket object used internally.

	
interact()

	Interaction function, emulates a very dumb telnet client.

	
listener()

	Helper for mt_interact() – this executes in the other thread.

	
mt_interact()

	Multithreaded version of interact().

	
open(host, port=0, timeout=<object object>)

	Connect to a host.

The optional second argument is the port number, which
defaults to the standard telnet port (23).

Don’t try to reopen an already connected instance.

	
process_rawq()

	Transfer from raw queue to cooked queue.

Set self.eof when connection is closed. Don’t block unless in
the midst of an IAC sequence.

	
rawq_getchar()

	Get next char from raw queue.

Block if no data is immediately available. Raise EOFError
when connection is closed.

	
read_all()

	Read all data until EOF; block until connection closed.

	
read_eager()

	Read readily available data.

Raise EOFError if connection closed and no cooked data
available. Return ‘’ if no cooked data available otherwise.
Don’t block unless in the midst of an IAC sequence.

	
read_lazy()

	Process and return data that’s already in the queues (lazy).

Raise EOFError if connection closed and no data available.
Return ‘’ if no cooked data available otherwise. Don’t block
unless in the midst of an IAC sequence.

	
read_sb_data()

	Return any data available in the SB … SE queue.

Return ‘’ if no SB … SE available. Should only be called
after seeing a SB or SE command. When a new SB command is
found, old unread SB data will be discarded. Don’t block.

	
read_some()

	Read at least one byte of cooked data unless EOF is hit.

Return ‘’ if EOF is hit. Block if no data is immediately
available.

	
read_very_eager()

	Read everything that’s possible without blocking in I/O (eager).

Raise EOFError if connection closed and no cooked data
available. Return ‘’ if no cooked data available otherwise.
Don’t block unless in the midst of an IAC sequence.

	
read_very_lazy()

	Return any data available in the cooked queue (very lazy).

Raise EOFError if connection closed and no data available.
Return ‘’ if no cooked data available otherwise. Don’t block.

	
set_debuglevel(debuglevel)

	Set the debug level.

The higher it is, the more debug output you get (on sys.stdout).

	
set_option_negotiation_callback(callback)

	Provide a callback function called after each receipt of a telnet option.

	
sock_avail()

	Test whether data is available on the socket.

	
class robot.libraries.Telnet.TerminalEmulator(window_size=None, newline='rn')

	Bases: object

	
current_output

	

	
feed(text)

	

	
read()

	

	
read_until(expected)

	

	
read_until_regexp(regexp_list)

	

	
exception robot.libraries.Telnet.NoMatchError(expected, timeout, output=None)

	Bases: exceptions.AssertionError

	
ROBOT_SUPPRESS_NAME = True

	

	
args

	

	
message

	

robot.libraries.XML module

	
class robot.libraries.XML.XML(use_lxml=False)

	Bases: object

Robot Framework test library for verifying and modifying XML documents.

As the name implies, _XML_ is a test library for verifying contents of XML
files. In practice it is a pretty thin wrapper on top of Python’s
[http://docs.python.org/library/xml.etree.elementtree.html|ElementTree XML API].

The library has the following main usages:

	Parsing an XML file, or a string containing XML, into an XML element
structure and finding certain elements from it for for further analysis
(e.g. Parse XML and Get Element keywords).

	Getting text or attributes of elements
(e.g. Get Element Text and Get Element Attribute).

	Directly verifying text, attributes, or whole elements
(e.g Element Text Should Be and Elements Should Be Equal).

	Modifying XML and saving it (e.g. Set Element Text, Add Element
and Save XML).

== Table of contents ==

%TOC%

= Parsing XML =

XML can be parsed into an element structure using Parse XML keyword.
The XML to be parsed can be specified using a path to an XML file or as
a string or bytes that contain XML directly. The keyword returns the root
element of the structure, which then contains other elements as its
children and their children. Possible comments and processing instructions
in the source XML are removed.

XML is not validated during parsing even if has a schema defined. How
possible doctype elements are handled otherwise depends on the used XML
module and on the platform. The standard ElementTree strips doctypes
altogether but when using lxml they are preserved when XML is saved.

The element structure returned by Parse XML, as well as elements
returned by keywords such as Get Element, can be used as the source
argument with other keywords. In addition to an already parsed XML
structure, other keywords also accept paths to XML files and strings
containing XML similarly as Parse XML. Notice that keywords that modify
XML do not write those changes back to disk even if the source would be
given as a path to a file. Changes must always saved explicitly using
Save XML keyword.

When the source is given as a path to a file, the forward slash character
(/) can be used as the path separator regardless the operating system.
On Windows also the backslash works, but it the test data it needs to be
escaped by doubling it (\\). Using the built-in variable ${/}
naturally works too.

Note: Support for XML as bytes is new in Robot Framework 3.2.

= Using lxml =

By default this library uses Python’s standard
[http://docs.python.org/library/xml.etree.elementtree.html|ElementTree]
module for parsing XML, but it can be configured to use
[http://lxml.de|lxml] module instead when importing the library.
The resulting element structure has same API regardless which module
is used for parsing.

The main benefits of using lxml is that it supports richer xpath syntax
than the standard ElementTree and enables using Evaluate Xpath keyword.
It also preserves the doctype and possible namespace prefixes saving XML.

= Example =

The following simple example demonstrates parsing XML and verifying its
contents both using keywords in this library and in _BuiltIn_ and
Collections libraries. How to use xpath expressions to find elements
and what attributes the returned elements contain are discussed, with
more examples, in Finding elements with xpath and Element attributes
sections.

In this example, as well as in many other examples in this documentation,
${XML} refers to the following example XML document. In practice
${XML} could either be a path to an XML file or it could contain the XML
itself.

Notice that in the example three last lines are equivalent. Which one to
use in practice depends on which other elements you need to get or verify.
If you only need to do one verification, using the last line alone would
suffice. If more verifications are needed, parsing the XML with Parse XML
only once would be more efficient.

= Finding elements with xpath =

ElementTree, and thus also this library, supports finding elements using
xpath expressions. ElementTree does not, however, support the full xpath
standard. The supported xpath syntax is explained below and
[https://docs.python.org/library/xml.etree.elementtree.html#xpath-support|
ElementTree documentation] provides more details. In the examples
${XML} refers to the same XML structure as in the earlier example.

If lxml support is enabled when importing the library, the whole
[http://www.w3.org/TR/xpath/|xpath 1.0 standard] is supported.
That includes everything listed below but also lot of other useful
constructs.

== Tag names ==

When just a single tag name is used, xpath matches all direct child
elements that have that tag name.

== Paths ==

Paths are created by combining tag names with a forward slash (/). For
example, parent/child matches all child elements under parent
element. Notice that if there are multiple parent elements that all
have child elements, parent/child xpath will match all these
child elements.

== Wildcards ==

An asterisk (*) can be used in paths instead of a tag name to denote
any element.

== Current element ==

The current element is denoted with a dot (.). Normally the current
element is implicit and does not need to be included in the xpath.

== Parent element ==

The parent element of another element is denoted with two dots (..).
Notice that it is not possible to refer to the parent of the current
element.

== Search all sub elements ==

Two forward slashes (//) mean that all sub elements, not only the
direct children, are searched. If the search is started from the current
element, an explicit dot is required.

== Predicates ==

Predicates allow selecting elements using also other criteria than tag
names, for example, attributes or position. They are specified after the
normal tag name or path using syntax path[predicate]. The path can have
wildcards and other special syntax explained earlier. What predicates
the standard ElementTree supports is explained in the table below.

Predicates can also be stacked like path[predicate1][predicate2].
A limitation is that possible position predicate must always be first.

= Element attributes =

All keywords returning elements, such as Parse XML, and Get Element,
return ElementTree’s
[http://docs.python.org/library/xml.etree.elementtree.html#element-objects|Element objects].
These elements can be used as inputs for other keywords, but they also
contain several useful attributes that can be accessed directly using
the extended variable syntax.

The attributes that are both useful and convenient to use in the test
data are explained below. Also other attributes, including methods, can
be accessed, but that is typically better to do in custom libraries than
directly in the test data.

The examples use the same ${XML} structure as the earlier examples.

== tag ==

The tag of the element.

== text ==

The text that the element contains or Python None if the element has no
text. Notice that the text _does not_ contain texts of possible child
elements nor text after or between children. Notice also that in XML
whitespace is significant, so the text contains also possible indentation
and newlines. To get also text of the possible children, optionally
whitespace normalized, use Get Element Text keyword.

== tail ==

The text after the element before the next opening or closing tag. Python
None if the element has no tail. Similarly as with text, also
tail contains possible indentation and newlines.

== attrib ==

A Python dictionary containing attributes of the element.

= Handling XML namespaces =

ElementTree and lxml handle possible namespaces in XML documents by adding
the namespace URI to tag names in so called Clark Notation. That is
inconvenient especially with xpaths, and by default this library strips
those namespaces away and moves them to xmlns attribute instead. That
can be avoided by passing keep_clark_notation argument to Parse XML
keyword. Alternatively Parse XML supports stripping namespace information
altogether by using strip_namespaces argument. The pros and cons of
different approaches are discussed in more detail below.

== How ElementTree handles namespaces ==

If an XML document has namespaces, ElementTree adds namespace information
to tag names in [http://www.jclark.com/xml/xmlns.htm|Clark Notation]
(e.g. {http://ns.uri}tag) and removes original xmlns attributes.
This is done both with default namespaces and with namespaces with a prefix.
How it works in practice is illustrated by the following example, where
${NS} variable contains this XML document:

As you can see, including the namespace URI in tag names makes xpaths
really long and complex.

If you save the XML, ElementTree moves namespace information back to
xmlns attributes. Unfortunately it does not restore the original
prefixes:

The resulting output is semantically same as the original, but mangling
prefixes like this may still not be desirable. Notice also that the actual
output depends slightly on ElementTree version.

== Default namespace handling ==

Because the way ElementTree handles namespaces makes xpaths so complicated,
this library, by default, strips namespaces from tag names and moves that
information back to xmlns attributes. How this works in practice is
shown by the example below, where ${NS} variable contains the same XML
document as in the previous example.

Now that tags do not contain namespace information, xpaths are simple again.

A minor limitation of this approach is that namespace prefixes are lost.
As a result the saved output is not exactly same as the original one in
this case either:

Also this output is semantically same as the original. If the original XML
had only default namespaces, the output would also look identical.

== Namespaces when using lxml ==

This library handles namespaces same way both when using lxml and when
not using it. There are, however, differences how lxml internally handles
namespaces compared to the standard ElementTree. The main difference is
that lxml stores information about namespace prefixes and they are thus
preserved if XML is saved. Another visible difference is that lxml includes
namespace information in child elements got with Get Element if the
parent element has namespaces.

== Stripping namespaces altogether ==

Because namespaces often add unnecessary complexity, Parse XML supports
stripping them altogether by using strip_namespaces=True. When this
option is enabled, namespaces are not shown anywhere nor are they included
if XML is saved.

== Attribute namespaces ==

Attributes in XML documents are, by default, in the same namespaces as
the element they belong to. It is possible to use different namespaces
by using prefixes, but this is pretty rare.

If an attribute has a namespace prefix, ElementTree will replace it with
Clark Notation the same way it handles elements. Because stripping
namespaces from attributes could cause attribute conflicts, this library
does not handle attribute namespaces at all. Thus the following example
works the same way regardless how namespaces are handled.

= Boolean arguments =

Some keywords accept arguments that are handled as Boolean values true or
false. If such an argument is given as a string, it is considered false if
it is an empty string or equal to FALSE, NONE, NO, OFF or
0, case-insensitively. Other strings are considered true regardless
their value, and other argument types are tested using the same
[http://docs.python.org/library/stdtypes.html#truth|rules as in Python].

True examples:

False examples:

Considering string NONE false is new in Robot Framework 3.0.3 and
considering also OFF and 0 false is new in Robot Framework 3.1.

== Pattern matching ==

Some keywords, for example Elements Should Match, support so called
[http://en.wikipedia.org/wiki/Glob_(programming)|glob patterns] where:

Unlike with glob patterns normally, path separator characters / and
\ and the newline character \n are matches by the above
wildcards.

Support for brackets like [abc] and [!a-z] is new in
Robot Framework 3.1

Import library with optionally lxml mode enabled.

By default this library uses Python’s standard
[http://docs.python.org/library/xml.etree.elementtree.html|ElementTree]
module for parsing XML. If use_lxml argument is given a true value
(see Boolean arguments), the library will use [http://lxml.de|lxml]
module instead. See Using lxml section for benefits provided by lxml.

Using lxml requires that the lxml module is installed on the system.
If lxml mode is enabled but the module is not installed, this library
will emit a warning and revert back to using the standard ElementTree.

	
ROBOT_LIBRARY_SCOPE = 'GLOBAL'

	

	
ROBOT_LIBRARY_VERSION = '3.2.2'

	

	
parse_xml(source, keep_clark_notation=False, strip_namespaces=False)

	Parses the given XML file or string into an element structure.

The source can either be a path to an XML file or a string
containing XML. In both cases the XML is parsed into ElementTree
[http://docs.python.org/library/xml.etree.elementtree.html#element-objects|element structure]
and the root element is returned. Possible comments and processing
instructions in the source XML are removed.

As discussed in Handling XML namespaces section, this keyword, by
default, removes namespace information ElementTree has added to tag
names and moves it into xmlns attributes. This typically eases
handling XML documents with namespaces considerably. If you do not
want that to happen, or want to avoid the small overhead of going
through the element structure when your XML does not have namespaces,
you can disable this feature by giving keep_clark_notation argument
a true value (see Boolean arguments).

If you want to strip namespace information altogether so that it is
not included even if XML is saved, you can give a true value to
strip_namespaces argument. This functionality is new in Robot
Framework 3.0.2.

Use Get Element keyword if you want to get a certain element and not
the whole structure. See Parsing XML section for more details and
examples.

	
get_element(source, xpath='.')

	Returns an element in the source matching the xpath.

The source can be a path to an XML file, a string containing XML, or
an already parsed XML element. The xpath specifies which element to
find. See the introduction for more details about both the possible
sources and the supported xpath syntax.

The keyword fails if more, or less, than one element matches the
xpath. Use Get Elements if you want all matching elements to be
returned.

Parse XML is recommended for parsing XML when the whole structure
is needed. It must be used if there is a need to configure how XML
namespaces are handled.

Many other keywords use this keyword internally, and keywords modifying
XML are typically documented to both to modify the given source and
to return it. Modifying the source does not apply if the source is
given as a string. The XML structure parsed based on the string and
then modified is nevertheless returned.

	
get_elements(source, xpath)

	Returns a list of elements in the source matching the xpath.

The source can be a path to an XML file, a string containing XML, or
an already parsed XML element. The xpath specifies which element to
find. See the introduction for more details.

Elements matching the xpath are returned as a list. If no elements
match, an empty list is returned. Use Get Element if you want to get
exactly one match.

	
get_child_elements(source, xpath='.')

	Returns the child elements of the specified element as a list.

The element whose children to return is specified using source and
xpath. They have exactly the same semantics as with Get Element
keyword.

All the direct child elements of the specified element are returned.
If the element has no children, an empty list is returned.

	
get_element_count(source, xpath='.')

	Returns and logs how many elements the given xpath matches.

Arguments source and xpath have exactly the same semantics as
with Get Elements keyword that this keyword uses internally.

See also Element Should Exist and Element Should Not Exist.

	
element_should_exist(source, xpath='.', message=None)

	Verifies that one or more element match the given xpath.

Arguments source and xpath have exactly the same semantics as
with Get Elements keyword. Keyword passes if the xpath matches
one or more elements in the source. The default error message can
be overridden with the message argument.

See also Element Should Not Exist as well as Get Element Count
that this keyword uses internally.

	
element_should_not_exist(source, xpath='.', message=None)

	Verifies that no element match the given xpath.

Arguments source and xpath have exactly the same semantics as
with Get Elements keyword. Keyword fails if the xpath matches any
element in the source. The default error message can be overridden
with the message argument.

See also Element Should Exist as well as Get Element Count
that this keyword uses internally.

	
get_element_text(source, xpath='.', normalize_whitespace=False)

	Returns all text of the element, possibly whitespace normalized.

The element whose text to return is specified using source and
xpath. They have exactly the same semantics as with Get Element
keyword.

This keyword returns all the text of the specified element, including
all the text its children and grandchildren contain. If the element
has no text, an empty string is returned. The returned text is thus not
always the same as the text attribute of the element.

By default all whitespace, including newlines and indentation, inside
the element is returned as-is. If normalize_whitespace is given
a true value (see Boolean arguments), then leading and trailing
whitespace is stripped, newlines and tabs converted to spaces, and
multiple spaces collapsed into one. This is especially useful when
dealing with HTML data.

See also Get Elements Texts, Element Text Should Be and
Element Text Should Match.

	
get_elements_texts(source, xpath, normalize_whitespace=False)

	Returns text of all elements matching xpath as a list.

The elements whose text to return is specified using source and
xpath. They have exactly the same semantics as with Get Elements
keyword.

The text of the matched elements is returned using the same logic
as with Get Element Text. This includes optional whitespace
normalization using the normalize_whitespace option.

	
element_text_should_be(source, expected, xpath='.', normalize_whitespace=False, message=None)

	Verifies that the text of the specified element is expected.

The element whose text is verified is specified using source and
xpath. They have exactly the same semantics as with Get Element
keyword.

The text to verify is got from the specified element using the same
logic as with Get Element Text. This includes optional whitespace
normalization using the normalize_whitespace option.

The keyword passes if the text of the element is equal to the
expected value, and otherwise it fails. The default error message
can be overridden with the message argument. Use Element Text
Should Match to verify the text against a pattern instead of an exact
value.

	
element_text_should_match(source, pattern, xpath='.', normalize_whitespace=False, message=None)

	Verifies that the text of the specified element matches expected.

This keyword works exactly like Element Text Should Be except that
the expected value can be given as a pattern that the text of the
element must match.

Pattern matching is similar as matching files in a shell with
*, ? and [chars] acting as wildcards. See the
Pattern matching section for more information.

	
get_element_attribute(source, name, xpath='.', default=None)

	Returns the named attribute of the specified element.

The element whose attribute to return is specified using source and
xpath. They have exactly the same semantics as with Get Element
keyword.

The value of the attribute name of the specified element is returned.
If the element does not have such element, the default value is
returned instead.

See also Get Element Attributes, Element Attribute Should Be,
Element Attribute Should Match and Element Should Not Have Attribute.

	
get_element_attributes(source, xpath='.')

	Returns all attributes of the specified element.

The element whose attributes to return is specified using source and
xpath. They have exactly the same semantics as with Get Element
keyword.

Attributes are returned as a Python dictionary. It is a copy of the
original attributes so modifying it has no effect on the XML structure.

Use Get Element Attribute to get the value of a single attribute.

	
element_attribute_should_be(source, name, expected, xpath='.', message=None)

	Verifies that the specified attribute is expected.

The element whose attribute is verified is specified using source
and xpath. They have exactly the same semantics as with
Get Element keyword.

The keyword passes if the attribute name of the element is equal to
the expected value, and otherwise it fails. The default error
message can be overridden with the message argument.

To test that the element does not have a certain attribute, Python
None (i.e. variable ${NONE}) can be used as the expected value.
A cleaner alternative is using Element Should Not Have Attribute.

See also Element Attribute Should Match and Get Element Attribute.

	
element_attribute_should_match(source, name, pattern, xpath='.', message=None)

	Verifies that the specified attribute matches expected.

This keyword works exactly like Element Attribute Should Be except
that the expected value can be given as a pattern that the attribute of
the element must match.

Pattern matching is similar as matching files in a shell with
*, ? and [chars] acting as wildcards. See the
Pattern matching section for more information.

	
element_should_not_have_attribute(source, name, xpath='.', message=None)

	Verifies that the specified element does not have attribute name.

The element whose attribute is verified is specified using source
and xpath. They have exactly the same semantics as with
Get Element keyword.

The keyword fails if the specified element has attribute name. The
default error message can be overridden with the message argument.

See also Get Element Attribute, Get Element Attributes,
Element Text Should Be and Element Text Should Match.

	
elements_should_be_equal(source, expected, exclude_children=False, normalize_whitespace=False)

	Verifies that the given source element is equal to expected.

Both source and expected can be given as a path to an XML file,
as a string containing XML, or as an already parsed XML element
structure. See introduction for more information about parsing XML in
general.

The keyword passes if the source element and expected element
are equal. This includes testing the tag names, texts, and attributes
of the elements. By default also child elements are verified the same
way, but this can be disabled by setting exclude_children to a
true value (see Boolean arguments).

All texts inside the given elements are verified, but possible text
outside them is not. By default texts must match exactly, but setting
normalize_whitespace to a true value makes text verification
independent on newlines, tabs, and the amount of spaces. For more
details about handling text see Get Element Text keyword and
discussion about elements’ text and tail attributes in the
introduction.

The last example may look a bit strange because the <p> element
only has text Text with. The reason is that rest of the text
inside <p> actually belongs to the child elements. This includes
the . at the end that is the tail text of the <i> element.

See also Elements Should Match.

	
elements_should_match(source, expected, exclude_children=False, normalize_whitespace=False)

	Verifies that the given source element matches expected.

This keyword works exactly like Elements Should Be Equal except that
texts and attribute values in the expected value can be given as
patterns.

Pattern matching is similar as matching files in a shell with
*, ? and [chars] acting as wildcards. See the
Pattern matching section for more information.

See Elements Should Be Equal for more examples.

	
set_element_tag(source, tag, xpath='.')

	Sets the tag of the specified element.

The element whose tag to set is specified using source and
xpath. They have exactly the same semantics as with Get Element
keyword. The resulting XML structure is returned, and if the source
is an already parsed XML structure, it is also modified in place.

Can only set the tag of a single element. Use Set Elements Tag to set
the tag of multiple elements in one call.

	
set_elements_tag(source, tag, xpath='.')

	Sets the tag of the specified elements.

Like Set Element Tag but sets the tag of all elements matching
the given xpath.

	
set_element_text(source, text=None, tail=None, xpath='.')

	Sets text and/or tail text of the specified element.

The element whose text to set is specified using source and
xpath. They have exactly the same semantics as with Get Element
keyword. The resulting XML structure is returned, and if the source
is an already parsed XML structure, it is also modified in place.

Element’s text and tail text are changed only if new text and/or
tail values are given. See Element attributes section for more
information about text and tail in general.

Can only set the text/tail of a single element. Use Set Elements Text
to set the text/tail of multiple elements in one call.

	
set_elements_text(source, text=None, tail=None, xpath='.')

	Sets text and/or tail text of the specified elements.

Like Set Element Text but sets the text or tail of all elements
matching the given xpath.

	
set_element_attribute(source, name, value, xpath='.')

	Sets attribute name of the specified element to value.

The element whose attribute to set is specified using source and
xpath. They have exactly the same semantics as with Get Element
keyword. The resulting XML structure is returned, and if the source
is an already parsed XML structure, it is also modified in place.

It is possible to both set new attributes and to overwrite existing.
Use Remove Element Attribute or Remove Element Attributes for
removing them.

Can only set an attribute of a single element. Use Set Elements
Attribute to set an attribute of multiple elements in one call.

	
set_elements_attribute(source, name, value, xpath='.')

	Sets attribute name of the specified elements to value.

Like Set Element Attribute but sets the attribute of all elements
matching the given xpath.

	
remove_element_attribute(source, name, xpath='.')

	Removes attribute name from the specified element.

The element whose attribute to remove is specified using source and
xpath. They have exactly the same semantics as with Get Element
keyword. The resulting XML structure is returned, and if the source
is an already parsed XML structure, it is also modified in place.

It is not a failure to remove a non-existing attribute. Use Remove
Element Attributes to remove all attributes and Set Element Attribute
to set them.

Can only remove an attribute from a single element. Use Remove Elements
Attribute to remove an attribute of multiple elements in one call.

	
remove_elements_attribute(source, name, xpath='.')

	Removes attribute name from the specified elements.

Like Remove Element Attribute but removes the attribute of all
elements matching the given xpath.

	
remove_element_attributes(source, xpath='.')

	Removes all attributes from the specified element.

The element whose attributes to remove is specified using source and
xpath. They have exactly the same semantics as with Get Element
keyword. The resulting XML structure is returned, and if the source
is an already parsed XML structure, it is also modified in place.

Use Remove Element Attribute to remove a single attribute and
Set Element Attribute to set them.

Can only remove attributes from a single element. Use Remove Elements
Attributes to remove all attributes of multiple elements in one call.

	
remove_elements_attributes(source, xpath='.')

	Removes all attributes from the specified elements.

Like Remove Element Attributes but removes all attributes of all
elements matching the given xpath.

	
add_element(source, element, index=None, xpath='.')

	Adds a child element to the specified element.

The element to whom to add the new element is specified using source
and xpath. They have exactly the same semantics as with Get Element
keyword. The resulting XML structure is returned, and if the source
is an already parsed XML structure, it is also modified in place.

The element to add can be specified as a path to an XML file or
as a string containing XML, or it can be an already parsed XML element.
The element is copied before adding so modifying either the original
or the added element has no effect on the other
.
The element is added as the last child by default, but a custom index
can be used to alter the position. Indices start from zero (0 = first
position, 1 = second position, etc.), and negative numbers refer to
positions at the end (-1 = second last position, -2 = third last, etc.).

Use Remove Element or Remove Elements to remove elements.

	
remove_element(source, xpath='', remove_tail=False)

	Removes the element matching xpath from the source structure.

The element to remove from the source is specified with xpath
using the same semantics as with Get Element keyword. The resulting
XML structure is returned, and if the source is an already parsed
XML structure, it is also modified in place.

The keyword fails if xpath does not match exactly one element.
Use Remove Elements to remove all matched elements.

Element’s tail text is not removed by default, but that can be changed
by giving remove_tail a true value (see Boolean arguments). See
Element attributes section for more information about tail in
general.

	
remove_elements(source, xpath='', remove_tail=False)

	Removes all elements matching xpath from the source structure.

The elements to remove from the source are specified with xpath
using the same semantics as with Get Elements keyword. The resulting
XML structure is returned, and if the source is an already parsed
XML structure, it is also modified in place.

It is not a failure if xpath matches no elements. Use Remove
Element to remove exactly one element.

Element’s tail text is not removed by default, but that can be changed
by using remove_tail argument similarly as with Remove Element.

	
clear_element(source, xpath='.', clear_tail=False)

	Clears the contents of the specified element.

The element to clear is specified using source and xpath. They
have exactly the same semantics as with Get Element keyword.
The resulting XML structure is returned, and if the source is
an already parsed XML structure, it is also modified in place.

Clearing the element means removing its text, attributes, and children.
Element’s tail text is not removed by default, but that can be changed
by giving clear_tail a true value (see Boolean arguments). See
Element attributes section for more information about tail in
general.

Use Remove Element to remove the whole element.

	
copy_element(source, xpath='.')

	Returns a copy of the specified element.

The element to copy is specified using source and xpath. They
have exactly the same semantics as with Get Element keyword.

If the copy or the original element is modified afterwards, the changes
have no effect on the other.

	
element_to_string(source, xpath='.', encoding=None)

	Returns the string representation of the specified element.

The element to convert to a string is specified using source and
xpath. They have exactly the same semantics as with Get Element
keyword.

By default the string is returned as Unicode. If encoding argument
is given any value, the string is returned as bytes in the specified
encoding. The resulting string never contains the XML declaration.

See also Log Element and Save XML.

	
log_element(source, level='INFO', xpath='.')

	Logs the string representation of the specified element.

The element specified with source and xpath is first converted
into a string using Element To String keyword internally. The
resulting string is then logged using the given level.

The logged string is also returned.

	
save_xml(source, path, encoding='UTF-8')

	Saves the given element to the specified file.

The element to save is specified with source using the same
semantics as with Get Element keyword.

The file where the element is saved is denoted with path and the
encoding to use with encoding. The resulting file always contains
the XML declaration.

The resulting XML file may not be exactly the same as the original:
- Comments and processing instructions are always stripped.
- Possible doctype and namespace prefixes are only preserved when

using lxml.

	Other small differences are possible depending on the ElementTree
or lxml version.

Use Element To String if you just need a string representation of
the element.

	
evaluate_xpath(source, expression, context='.')

	Evaluates the given xpath expression and returns results.

The element in which context the expression is executed is specified
using source and context arguments. They have exactly the same
semantics as source and xpath arguments have with Get Element
keyword.

The xpath expression to evaluate is given as expression argument.
The result of the evaluation is returned as-is.

This keyword works only if lxml mode is taken into use when importing
the library.

	
class robot.libraries.XML.NameSpaceStripper(etree, lxml_etree=False)

	Bases: object

	
strip(elem, preserve=True, current_ns=None, top=True)

	

	
unstrip(elem, current_ns=None, copied=False)

	

	
class robot.libraries.XML.ElementFinder(etree, modern=True, lxml=False)

	Bases: object

	
find_all(elem, xpath)

	

	
class robot.libraries.XML.ElementComparator(comparator, normalizer=None, exclude_children=False)

	Bases: object

	
compare(actual, expected, location=None)

	

	
class robot.libraries.XML.Location(path, is_root=True)

	Bases: object

	
child(tag)

	

robot.libraries.dialogs_ipy module

robot.libraries.dialogs_jy module

robot.libraries.dialogs_py module

	
class robot.libraries.dialogs_py.MessageDialog(message, value=None, **extra)

	Bases: robot.libraries.dialogs_py._TkDialog

	
after(ms, func=None, *args)

	Call function once after given time.

MS specifies the time in milliseconds. FUNC gives the
function which shall be called. Additional parameters
are given as parameters to the function call. Return
identifier to cancel scheduling with after_cancel.

	
after_cancel(id)

	Cancel scheduling of function identified with ID.

Identifier returned by after or after_idle must be
given as first parameter.

	
after_idle(func, *args)

	Call FUNC once if the Tcl main loop has no event to
process.

Return an identifier to cancel the scheduling with
after_cancel.

	
aspect(minNumer=None, minDenom=None, maxNumer=None, maxDenom=None)

	Instruct the window manager to set the aspect ratio (width/height)
of this widget to be between MINNUMER/MINDENOM and MAXNUMER/MAXDENOM. Return a tuple
of the actual values if no argument is given.

	
attributes(*args)

	This subcommand returns or sets platform specific attributes

The first form returns a list of the platform specific flags and
their values. The second form returns the value for the specific
option. The third form sets one or more of the values. The values
are as follows:

On Windows, -disabled gets or sets whether the window is in a
disabled state. -toolwindow gets or sets the style of the window
to toolwindow (as defined in the MSDN). -topmost gets or sets
whether this is a topmost window (displays above all other
windows).

On Macintosh, XXXXX

On Unix, there are currently no special attribute values.

	
bbox(column=None, row=None, col2=None, row2=None)

	Return a tuple of integer coordinates for the bounding
box of this widget controlled by the geometry manager grid.

If COLUMN, ROW is given the bounding box applies from
the cell with row and column 0 to the specified
cell. If COL2 and ROW2 are given the bounding box
starts at that cell.

The returned integers specify the offset of the upper left
corner in the master widget and the width and height.

	
bell(displayof=0)

	Ring a display’s bell.

	
bind(sequence=None, func=None, add=None)

	Bind to this widget at event SEQUENCE a call to function FUNC.

SEQUENCE is a string of concatenated event
patterns. An event pattern is of the form
<MODIFIER-MODIFIER-TYPE-DETAIL> where MODIFIER is one
of Control, Mod2, M2, Shift, Mod3, M3, Lock, Mod4, M4,
Button1, B1, Mod5, M5 Button2, B2, Meta, M, Button3,
B3, Alt, Button4, B4, Double, Button5, B5 Triple,
Mod1, M1. TYPE is one of Activate, Enter, Map,
ButtonPress, Button, Expose, Motion, ButtonRelease
FocusIn, MouseWheel, Circulate, FocusOut, Property,
Colormap, Gravity Reparent, Configure, KeyPress, Key,
Unmap, Deactivate, KeyRelease Visibility, Destroy,
Leave and DETAIL is the button number for ButtonPress,
ButtonRelease and DETAIL is the Keysym for KeyPress and
KeyRelease. Examples are
<Control-Button-1> for pressing Control and mouse button 1 or
<Alt-A> for pressing A and the Alt key (KeyPress can be omitted).
An event pattern can also be a virtual event of the form
<<AString>> where AString can be arbitrary. This
event can be generated by event_generate.
If events are concatenated they must appear shortly
after each other.

FUNC will be called if the event sequence occurs with an
instance of Event as argument. If the return value of FUNC is
“break” no further bound function is invoked.

An additional boolean parameter ADD specifies whether FUNC will
be called additionally to the other bound function or whether
it will replace the previous function.

Bind will return an identifier to allow deletion of the bound function with
unbind without memory leak.

If FUNC or SEQUENCE is omitted the bound function or list
of bound events are returned.

	
bind_all(sequence=None, func=None, add=None)

	Bind to all widgets at an event SEQUENCE a call to function FUNC.
An additional boolean parameter ADD specifies whether FUNC will
be called additionally to the other bound function or whether
it will replace the previous function. See bind for the return value.

	
bind_class(className, sequence=None, func=None, add=None)

	Bind to widgets with bindtag CLASSNAME at event
SEQUENCE a call of function FUNC. An additional
boolean parameter ADD specifies whether FUNC will be
called additionally to the other bound function or
whether it will replace the previous function. See bind for
the return value.

	
bindtags(tagList=None)

	Set or get the list of bindtags for this widget.

With no argument return the list of all bindtags associated with
this widget. With a list of strings as argument the bindtags are
set to this list. The bindtags determine in which order events are
processed (see bind).

	
cget(key)

	Return the resource value for a KEY given as string.

	
client(name=None)

	Store NAME in WM_CLIENT_MACHINE property of this widget. Return
current value.

	
clipboard_append(string, **kw)

	Append STRING to the Tk clipboard.

A widget specified at the optional displayof keyword
argument specifies the target display. The clipboard
can be retrieved with selection_get.

	
clipboard_clear(**kw)

	Clear the data in the Tk clipboard.

A widget specified for the optional displayof keyword
argument specifies the target display.

	
clipboard_get(**kw)

	Retrieve data from the clipboard on window’s display.

The window keyword defaults to the root window of the Tkinter
application.

The type keyword specifies the form in which the data is
to be returned and should be an atom name such as STRING
or FILE_NAME. Type defaults to STRING, except on X11, where the default
is to try UTF8_STRING and fall back to STRING.

This command is equivalent to:

selection_get(CLIPBOARD)

	
colormapwindows(*wlist)

	Store list of window names (WLIST) into WM_COLORMAPWINDOWS property
of this widget. This list contains windows whose colormaps differ from their
parents. Return current list of widgets if WLIST is empty.

	
colormodel(value=None)

	Useless. Not implemented in Tk.

	
columnconfigure(index, cnf={}, **kw)

	Configure column INDEX of a grid.

Valid resources are minsize (minimum size of the column),
weight (how much does additional space propagate to this column)
and pad (how much space to let additionally).

	
command(value=None)

	Store VALUE in WM_COMMAND property. It is the command
which shall be used to invoke the application. Return current
command if VALUE is None.

	
config(cnf=None, **kw)

	Configure resources of a widget.

The values for resources are specified as keyword
arguments. To get an overview about
the allowed keyword arguments call the method keys.

	
configure(cnf=None, **kw)

	Configure resources of a widget.

The values for resources are specified as keyword
arguments. To get an overview about
the allowed keyword arguments call the method keys.

	
deiconify()

	Deiconify this widget. If it was never mapped it will not be mapped.
On Windows it will raise this widget and give it the focus.

	
deletecommand(name)

	Internal function.

Delete the Tcl command provided in NAME.

	
destroy()

	Destroy this and all descendants widgets.

	
event_add(virtual, *sequences)

	Bind a virtual event VIRTUAL (of the form <<Name>>)
to an event SEQUENCE such that the virtual event is triggered
whenever SEQUENCE occurs.

	
event_delete(virtual, *sequences)

	Unbind a virtual event VIRTUAL from SEQUENCE.

	
event_generate(sequence, **kw)

	Generate an event SEQUENCE. Additional
keyword arguments specify parameter of the event
(e.g. x, y, rootx, rooty).

	
event_info(virtual=None)

	Return a list of all virtual events or the information
about the SEQUENCE bound to the virtual event VIRTUAL.

	
focus()

	Direct input focus to this widget.

If the application currently does not have the focus
this widget will get the focus if the application gets
the focus through the window manager.

	
focus_displayof()

	Return the widget which has currently the focus on the
display where this widget is located.

Return None if the application does not have the focus.

	
focus_force()

	Direct input focus to this widget even if the
application does not have the focus. Use with
caution!

	
focus_get()

	Return the widget which has currently the focus in the
application.

Use focus_displayof to allow working with several
displays. Return None if application does not have
the focus.

	
focus_lastfor()

	Return the widget which would have the focus if top level
for this widget gets the focus from the window manager.

	
focus_set()

	Direct input focus to this widget.

If the application currently does not have the focus
this widget will get the focus if the application gets
the focus through the window manager.

	
focusmodel(model=None)

	Set focus model to MODEL. “active” means that this widget will claim
the focus itself, “passive” means that the window manager shall give
the focus. Return current focus model if MODEL is None.

	
frame()

	Return identifier for decorative frame of this widget if present.

	
geometry(newGeometry=None)

	Set geometry to NEWGEOMETRY of the form =widthxheight+x+y. Return
current value if None is given.

	
getboolean(s)

	Return a boolean value for Tcl boolean values true and false given as parameter.

	
getdouble

	alias of __builtin__.float

	
getint

	alias of __builtin__.int

	
getvar(name='PY_VAR')

	Return value of Tcl variable NAME.

	
grab_current()

	Return widget which has currently the grab in this application
or None.

	
grab_release()

	Release grab for this widget if currently set.

	
grab_set(timeout=30)

	

	
grab_set_global()

	Set global grab for this widget.

A global grab directs all events to this and
descendant widgets on the display. Use with caution -
other applications do not get events anymore.

	
grab_status()

	Return None, “local” or “global” if this widget has
no, a local or a global grab.

	
grid(baseWidth=None, baseHeight=None, widthInc=None, heightInc=None)

	Instruct the window manager that this widget shall only be
resized on grid boundaries. WIDTHINC and HEIGHTINC are the width and
height of a grid unit in pixels. BASEWIDTH and BASEHEIGHT are the
number of grid units requested in Tk_GeometryRequest.

	
grid_bbox(column=None, row=None, col2=None, row2=None)

	Return a tuple of integer coordinates for the bounding
box of this widget controlled by the geometry manager grid.

If COLUMN, ROW is given the bounding box applies from
the cell with row and column 0 to the specified
cell. If COL2 and ROW2 are given the bounding box
starts at that cell.

The returned integers specify the offset of the upper left
corner in the master widget and the width and height.

	
grid_columnconfigure(index, cnf={}, **kw)

	Configure column INDEX of a grid.

Valid resources are minsize (minimum size of the column),
weight (how much does additional space propagate to this column)
and pad (how much space to let additionally).

	
grid_location(x, y)

	Return a tuple of column and row which identify the cell
at which the pixel at position X and Y inside the master
widget is located.

	
grid_propagate(flag=['_noarg_'])

	Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information
of the slaves will determine the size of this widget. If no argument
is given, the current setting will be returned.

	
grid_rowconfigure(index, cnf={}, **kw)

	Configure row INDEX of a grid.

Valid resources are minsize (minimum size of the row),
weight (how much does additional space propagate to this row)
and pad (how much space to let additionally).

	
grid_size()

	Return a tuple of the number of column and rows in the grid.

	
grid_slaves(row=None, column=None)

	Return a list of all slaves of this widget
in its packing order.

	
group(pathName=None)

	Set the group leader widgets for related widgets to PATHNAME. Return
the group leader of this widget if None is given.

	
iconbitmap(bitmap=None, default=None)

	Set bitmap for the iconified widget to BITMAP. Return
the bitmap if None is given.

Under Windows, the DEFAULT parameter can be used to set the icon
for the widget and any descendents that don’t have an icon set
explicitly. DEFAULT can be the relative path to a .ico file
(example: root.iconbitmap(default=’myicon.ico’)). See Tk
documentation for more information.

	
iconify()

	Display widget as icon.

	
iconmask(bitmap=None)

	Set mask for the icon bitmap of this widget. Return the
mask if None is given.

	
iconname(newName=None)

	Set the name of the icon for this widget. Return the name if
None is given.

	
iconposition(x=None, y=None)

	Set the position of the icon of this widget to X and Y. Return
a tuple of the current values of X and X if None is given.

	
iconwindow(pathName=None)

	Set widget PATHNAME to be displayed instead of icon. Return the current
value if None is given.

	
image_names()

	Return a list of all existing image names.

	
image_types()

	Return a list of all available image types (e.g. photo bitmap).

	
keys()

	Return a list of all resource names of this widget.

	
lift(aboveThis=None)

	Raise this widget in the stacking order.

	
lower(belowThis=None)

	Lower this widget in the stacking order.

	
mainloop(n=0)

	Call the mainloop of Tk.

	
maxsize(width=None, height=None)

	Set max WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
minsize(width=None, height=None)

	Set min WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
nametowidget(name)

	Return the Tkinter instance of a widget identified by
its Tcl name NAME.

	
option_add(pattern, value, priority=None)

	Set a VALUE (second parameter) for an option
PATTERN (first parameter).

An optional third parameter gives the numeric priority
(defaults to 80).

	
option_clear()

	Clear the option database.

It will be reloaded if option_add is called.

	
option_get(name, className)

	Return the value for an option NAME for this widget
with CLASSNAME.

Values with higher priority override lower values.

	
option_readfile(fileName, priority=None)

	Read file FILENAME into the option database.

An optional second parameter gives the numeric
priority.

	
overrideredirect(boolean=None)

	Instruct the window manager to ignore this widget
if BOOLEAN is given with 1. Return the current value if None
is given.

	
pack_propagate(flag=['_noarg_'])

	Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information
of the slaves will determine the size of this widget. If no argument
is given the current setting will be returned.

	
pack_slaves()

	Return a list of all slaves of this widget
in its packing order.

	
place_slaves()

	Return a list of all slaves of this widget
in its packing order.

	
positionfrom(who=None)

	Instruct the window manager that the position of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
propagate(flag=['_noarg_'])

	Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information
of the slaves will determine the size of this widget. If no argument
is given the current setting will be returned.

	
protocol(name=None, func=None)

	Bind function FUNC to command NAME for this widget.
Return the function bound to NAME if None is given. NAME could be
e.g. “WM_SAVE_YOURSELF” or “WM_DELETE_WINDOW”.

	
quit()

	Quit the Tcl interpreter. All widgets will be destroyed.

	
register(func, subst=None, needcleanup=1)

	Return a newly created Tcl function. If this
function is called, the Python function FUNC will
be executed. An optional function SUBST can
be given which will be executed before FUNC.

	
resizable(width=None, height=None)

	Instruct the window manager whether this width can be resized
in WIDTH or HEIGHT. Both values are boolean values.

	
rowconfigure(index, cnf={}, **kw)

	Configure row INDEX of a grid.

Valid resources are minsize (minimum size of the row),
weight (how much does additional space propagate to this row)
and pad (how much space to let additionally).

	
selection_clear(**kw)

	Clear the current X selection.

	
selection_get(**kw)

	Return the contents of the current X selection.

A keyword parameter selection specifies the name of
the selection and defaults to PRIMARY. A keyword
parameter displayof specifies a widget on the display
to use. A keyword parameter type specifies the form of data to be
fetched, defaulting to STRING except on X11, where UTF8_STRING is tried
before STRING.

	
selection_handle(command, **kw)

	Specify a function COMMAND to call if the X
selection owned by this widget is queried by another
application.

This function must return the contents of the
selection. The function will be called with the
arguments OFFSET and LENGTH which allows the chunking
of very long selections. The following keyword
parameters can be provided:
selection - name of the selection (default PRIMARY),
type - type of the selection (e.g. STRING, FILE_NAME).

	
selection_own(**kw)

	Become owner of X selection.

A keyword parameter selection specifies the name of
the selection (default PRIMARY).

	
selection_own_get(**kw)

	Return owner of X selection.

The following keyword parameter can
be provided:
selection - name of the selection (default PRIMARY),
type - type of the selection (e.g. STRING, FILE_NAME).

	
send(interp, cmd, *args)

	Send Tcl command CMD to different interpreter INTERP to be executed.

	
setvar(name='PY_VAR', value='1')

	Set Tcl variable NAME to VALUE.

	
show()

	

	
size()

	Return a tuple of the number of column and rows in the grid.

	
sizefrom(who=None)

	Instruct the window manager that the size of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
slaves()

	Return a list of all slaves of this widget
in its packing order.

	
state(newstate=None)

	Query or set the state of this widget as one of normal, icon,
iconic (see wm_iconwindow), withdrawn, or zoomed (Windows only).

	
title(string=None)

	Set the title of this widget.

	
tk_bisque()

	Change the color scheme to light brown as used in Tk 3.6 and before.

	
tk_focusFollowsMouse()

	The widget under mouse will get automatically focus. Can not
be disabled easily.

	
tk_focusNext()

	Return the next widget in the focus order which follows
widget which has currently the focus.

The focus order first goes to the next child, then to
the children of the child recursively and then to the
next sibling which is higher in the stacking order. A
widget is omitted if it has the takefocus resource set
to 0.

	
tk_focusPrev()

	Return previous widget in the focus order. See tk_focusNext for details.

	
tk_menuBar(*args)

	Do not use. Needed in Tk 3.6 and earlier.

	
tk_setPalette(*args, **kw)

	Set a new color scheme for all widget elements.

A single color as argument will cause that all colors of Tk
widget elements are derived from this.
Alternatively several keyword parameters and its associated
colors can be given. The following keywords are valid:
activeBackground, foreground, selectColor,
activeForeground, highlightBackground, selectBackground,
background, highlightColor, selectForeground,
disabledForeground, insertBackground, troughColor.

	
tk_strictMotif(boolean=None)

	Set Tcl internal variable, whether the look and feel
should adhere to Motif.

A parameter of 1 means adhere to Motif (e.g. no color
change if mouse passes over slider).
Returns the set value.

	
tkraise(aboveThis=None)

	Raise this widget in the stacking order.

	
transient(master=None)

	Instruct the window manager that this widget is transient
with regard to widget MASTER.

	
unbind(sequence, funcid=None)

	Unbind for this widget for event SEQUENCE the
function identified with FUNCID.

	
unbind_all(sequence)

	Unbind for all widgets for event SEQUENCE all functions.

	
unbind_class(className, sequence)

	Unbind for all widgets with bindtag CLASSNAME for event SEQUENCE
all functions.

	
update()

	Enter event loop until all pending events have been processed by Tcl.

	
update_idletasks()

	Enter event loop until all idle callbacks have been called. This
will update the display of windows but not process events caused by
the user.

	
wait_variable(name='PY_VAR')

	Wait until the variable is modified.

A parameter of type IntVar, StringVar, DoubleVar or
BooleanVar must be given.

	
wait_visibility(window=None)

	Wait until the visibility of a WIDGET changes
(e.g. it appears).

If no parameter is given self is used.

	
wait_window(window=None)

	Wait until a WIDGET is destroyed.

If no parameter is given self is used.

	
waitvar(name='PY_VAR')

	Wait until the variable is modified.

A parameter of type IntVar, StringVar, DoubleVar or
BooleanVar must be given.

	
winfo_atom(name, displayof=0)

	Return integer which represents atom NAME.

	
winfo_atomname(id, displayof=0)

	Return name of atom with identifier ID.

	
winfo_cells()

	Return number of cells in the colormap for this widget.

	
winfo_children()

	Return a list of all widgets which are children of this widget.

	
winfo_class()

	Return window class name of this widget.

	
winfo_colormapfull()

	Return true if at the last color request the colormap was full.

	
winfo_containing(rootX, rootY, displayof=0)

	Return the widget which is at the root coordinates ROOTX, ROOTY.

	
winfo_depth()

	Return the number of bits per pixel.

	
winfo_exists()

	Return true if this widget exists.

	
winfo_fpixels(number)

	Return the number of pixels for the given distance NUMBER
(e.g. “3c”) as float.

	
winfo_geometry()

	Return geometry string for this widget in the form “widthxheight+X+Y”.

	
winfo_height()

	Return height of this widget.

	
winfo_id()

	Return identifier ID for this widget.

	
winfo_interps(displayof=0)

	Return the name of all Tcl interpreters for this display.

	
winfo_ismapped()

	Return true if this widget is mapped.

	
winfo_manager()

	Return the window manager name for this widget.

	
winfo_name()

	Return the name of this widget.

	
winfo_parent()

	Return the name of the parent of this widget.

	
winfo_pathname(id, displayof=0)

	Return the pathname of the widget given by ID.

	
winfo_pixels(number)

	Rounded integer value of winfo_fpixels.

	
winfo_pointerx()

	Return the x coordinate of the pointer on the root window.

	
winfo_pointerxy()

	Return a tuple of x and y coordinates of the pointer on the root window.

	
winfo_pointery()

	Return the y coordinate of the pointer on the root window.

	
winfo_reqheight()

	Return requested height of this widget.

	
winfo_reqwidth()

	Return requested width of this widget.

	
winfo_rgb(color)

	Return tuple of decimal values for red, green, blue for
COLOR in this widget.

	
winfo_rootx()

	Return x coordinate of upper left corner of this widget on the
root window.

	
winfo_rooty()

	Return y coordinate of upper left corner of this widget on the
root window.

	
winfo_screen()

	Return the screen name of this widget.

	
winfo_screencells()

	Return the number of the cells in the colormap of the screen
of this widget.

	
winfo_screendepth()

	Return the number of bits per pixel of the root window of the
screen of this widget.

	
winfo_screenheight()

	Return the number of pixels of the height of the screen of this widget
in pixel.

	
winfo_screenmmheight()

	Return the number of pixels of the height of the screen of
this widget in mm.

	
winfo_screenmmwidth()

	Return the number of pixels of the width of the screen of
this widget in mm.

	
winfo_screenvisual()

	Return one of the strings directcolor, grayscale, pseudocolor,
staticcolor, staticgray, or truecolor for the default
colormodel of this screen.

	
winfo_screenwidth()

	Return the number of pixels of the width of the screen of
this widget in pixel.

	
winfo_server()

	Return information of the X-Server of the screen of this widget in
the form “XmajorRminor vendor vendorVersion”.

	
winfo_toplevel()

	Return the toplevel widget of this widget.

	
winfo_viewable()

	Return true if the widget and all its higher ancestors are mapped.

	
winfo_visual()

	Return one of the strings directcolor, grayscale, pseudocolor,
staticcolor, staticgray, or truecolor for the
colormodel of this widget.

	
winfo_visualid()

	Return the X identifier for the visual for this widget.

	
winfo_visualsavailable(includeids=0)

	Return a list of all visuals available for the screen
of this widget.

Each item in the list consists of a visual name (see winfo_visual), a
depth and if INCLUDEIDS=1 is given also the X identifier.

	
winfo_vrootheight()

	Return the height of the virtual root window associated with this
widget in pixels. If there is no virtual root window return the
height of the screen.

	
winfo_vrootwidth()

	Return the width of the virtual root window associated with this
widget in pixel. If there is no virtual root window return the
width of the screen.

	
winfo_vrootx()

	Return the x offset of the virtual root relative to the root
window of the screen of this widget.

	
winfo_vrooty()

	Return the y offset of the virtual root relative to the root
window of the screen of this widget.

	
winfo_width()

	Return the width of this widget.

	
winfo_x()

	Return the x coordinate of the upper left corner of this widget
in the parent.

	
winfo_y()

	Return the y coordinate of the upper left corner of this widget
in the parent.

	
withdraw()

	Withdraw this widget from the screen such that it is unmapped
and forgotten by the window manager. Re-draw it with wm_deiconify.

	
wm_aspect(minNumer=None, minDenom=None, maxNumer=None, maxDenom=None)

	Instruct the window manager to set the aspect ratio (width/height)
of this widget to be between MINNUMER/MINDENOM and MAXNUMER/MAXDENOM. Return a tuple
of the actual values if no argument is given.

	
wm_attributes(*args)

	This subcommand returns or sets platform specific attributes

The first form returns a list of the platform specific flags and
their values. The second form returns the value for the specific
option. The third form sets one or more of the values. The values
are as follows:

On Windows, -disabled gets or sets whether the window is in a
disabled state. -toolwindow gets or sets the style of the window
to toolwindow (as defined in the MSDN). -topmost gets or sets
whether this is a topmost window (displays above all other
windows).

On Macintosh, XXXXX

On Unix, there are currently no special attribute values.

	
wm_client(name=None)

	Store NAME in WM_CLIENT_MACHINE property of this widget. Return
current value.

	
wm_colormapwindows(*wlist)

	Store list of window names (WLIST) into WM_COLORMAPWINDOWS property
of this widget. This list contains windows whose colormaps differ from their
parents. Return current list of widgets if WLIST is empty.

	
wm_command(value=None)

	Store VALUE in WM_COMMAND property. It is the command
which shall be used to invoke the application. Return current
command if VALUE is None.

	
wm_deiconify()

	Deiconify this widget. If it was never mapped it will not be mapped.
On Windows it will raise this widget and give it the focus.

	
wm_focusmodel(model=None)

	Set focus model to MODEL. “active” means that this widget will claim
the focus itself, “passive” means that the window manager shall give
the focus. Return current focus model if MODEL is None.

	
wm_frame()

	Return identifier for decorative frame of this widget if present.

	
wm_geometry(newGeometry=None)

	Set geometry to NEWGEOMETRY of the form =widthxheight+x+y. Return
current value if None is given.

	
wm_grid(baseWidth=None, baseHeight=None, widthInc=None, heightInc=None)

	Instruct the window manager that this widget shall only be
resized on grid boundaries. WIDTHINC and HEIGHTINC are the width and
height of a grid unit in pixels. BASEWIDTH and BASEHEIGHT are the
number of grid units requested in Tk_GeometryRequest.

	
wm_group(pathName=None)

	Set the group leader widgets for related widgets to PATHNAME. Return
the group leader of this widget if None is given.

	
wm_iconbitmap(bitmap=None, default=None)

	Set bitmap for the iconified widget to BITMAP. Return
the bitmap if None is given.

Under Windows, the DEFAULT parameter can be used to set the icon
for the widget and any descendents that don’t have an icon set
explicitly. DEFAULT can be the relative path to a .ico file
(example: root.iconbitmap(default=’myicon.ico’)). See Tk
documentation for more information.

	
wm_iconify()

	Display widget as icon.

	
wm_iconmask(bitmap=None)

	Set mask for the icon bitmap of this widget. Return the
mask if None is given.

	
wm_iconname(newName=None)

	Set the name of the icon for this widget. Return the name if
None is given.

	
wm_iconposition(x=None, y=None)

	Set the position of the icon of this widget to X and Y. Return
a tuple of the current values of X and X if None is given.

	
wm_iconwindow(pathName=None)

	Set widget PATHNAME to be displayed instead of icon. Return the current
value if None is given.

	
wm_maxsize(width=None, height=None)

	Set max WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
wm_minsize(width=None, height=None)

	Set min WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
wm_overrideredirect(boolean=None)

	Instruct the window manager to ignore this widget
if BOOLEAN is given with 1. Return the current value if None
is given.

	
wm_positionfrom(who=None)

	Instruct the window manager that the position of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
wm_protocol(name=None, func=None)

	Bind function FUNC to command NAME for this widget.
Return the function bound to NAME if None is given. NAME could be
e.g. “WM_SAVE_YOURSELF” or “WM_DELETE_WINDOW”.

	
wm_resizable(width=None, height=None)

	Instruct the window manager whether this width can be resized
in WIDTH or HEIGHT. Both values are boolean values.

	
wm_sizefrom(who=None)

	Instruct the window manager that the size of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
wm_state(newstate=None)

	Query or set the state of this widget as one of normal, icon,
iconic (see wm_iconwindow), withdrawn, or zoomed (Windows only).

	
wm_title(string=None)

	Set the title of this widget.

	
wm_transient(master=None)

	Instruct the window manager that this widget is transient
with regard to widget MASTER.

	
wm_withdraw()

	Withdraw this widget from the screen such that it is unmapped
and forgotten by the window manager. Re-draw it with wm_deiconify.

	
class robot.libraries.dialogs_py.InputDialog(message, default='', hidden=False)

	Bases: robot.libraries.dialogs_py._TkDialog

	
after(ms, func=None, *args)

	Call function once after given time.

MS specifies the time in milliseconds. FUNC gives the
function which shall be called. Additional parameters
are given as parameters to the function call. Return
identifier to cancel scheduling with after_cancel.

	
after_cancel(id)

	Cancel scheduling of function identified with ID.

Identifier returned by after or after_idle must be
given as first parameter.

	
after_idle(func, *args)

	Call FUNC once if the Tcl main loop has no event to
process.

Return an identifier to cancel the scheduling with
after_cancel.

	
aspect(minNumer=None, minDenom=None, maxNumer=None, maxDenom=None)

	Instruct the window manager to set the aspect ratio (width/height)
of this widget to be between MINNUMER/MINDENOM and MAXNUMER/MAXDENOM. Return a tuple
of the actual values if no argument is given.

	
attributes(*args)

	This subcommand returns or sets platform specific attributes

The first form returns a list of the platform specific flags and
their values. The second form returns the value for the specific
option. The third form sets one or more of the values. The values
are as follows:

On Windows, -disabled gets or sets whether the window is in a
disabled state. -toolwindow gets or sets the style of the window
to toolwindow (as defined in the MSDN). -topmost gets or sets
whether this is a topmost window (displays above all other
windows).

On Macintosh, XXXXX

On Unix, there are currently no special attribute values.

	
bbox(column=None, row=None, col2=None, row2=None)

	Return a tuple of integer coordinates for the bounding
box of this widget controlled by the geometry manager grid.

If COLUMN, ROW is given the bounding box applies from
the cell with row and column 0 to the specified
cell. If COL2 and ROW2 are given the bounding box
starts at that cell.

The returned integers specify the offset of the upper left
corner in the master widget and the width and height.

	
bell(displayof=0)

	Ring a display’s bell.

	
bind(sequence=None, func=None, add=None)

	Bind to this widget at event SEQUENCE a call to function FUNC.

SEQUENCE is a string of concatenated event
patterns. An event pattern is of the form
<MODIFIER-MODIFIER-TYPE-DETAIL> where MODIFIER is one
of Control, Mod2, M2, Shift, Mod3, M3, Lock, Mod4, M4,
Button1, B1, Mod5, M5 Button2, B2, Meta, M, Button3,
B3, Alt, Button4, B4, Double, Button5, B5 Triple,
Mod1, M1. TYPE is one of Activate, Enter, Map,
ButtonPress, Button, Expose, Motion, ButtonRelease
FocusIn, MouseWheel, Circulate, FocusOut, Property,
Colormap, Gravity Reparent, Configure, KeyPress, Key,
Unmap, Deactivate, KeyRelease Visibility, Destroy,
Leave and DETAIL is the button number for ButtonPress,
ButtonRelease and DETAIL is the Keysym for KeyPress and
KeyRelease. Examples are
<Control-Button-1> for pressing Control and mouse button 1 or
<Alt-A> for pressing A and the Alt key (KeyPress can be omitted).
An event pattern can also be a virtual event of the form
<<AString>> where AString can be arbitrary. This
event can be generated by event_generate.
If events are concatenated they must appear shortly
after each other.

FUNC will be called if the event sequence occurs with an
instance of Event as argument. If the return value of FUNC is
“break” no further bound function is invoked.

An additional boolean parameter ADD specifies whether FUNC will
be called additionally to the other bound function or whether
it will replace the previous function.

Bind will return an identifier to allow deletion of the bound function with
unbind without memory leak.

If FUNC or SEQUENCE is omitted the bound function or list
of bound events are returned.

	
bind_all(sequence=None, func=None, add=None)

	Bind to all widgets at an event SEQUENCE a call to function FUNC.
An additional boolean parameter ADD specifies whether FUNC will
be called additionally to the other bound function or whether
it will replace the previous function. See bind for the return value.

	
bind_class(className, sequence=None, func=None, add=None)

	Bind to widgets with bindtag CLASSNAME at event
SEQUENCE a call of function FUNC. An additional
boolean parameter ADD specifies whether FUNC will be
called additionally to the other bound function or
whether it will replace the previous function. See bind for
the return value.

	
bindtags(tagList=None)

	Set or get the list of bindtags for this widget.

With no argument return the list of all bindtags associated with
this widget. With a list of strings as argument the bindtags are
set to this list. The bindtags determine in which order events are
processed (see bind).

	
cget(key)

	Return the resource value for a KEY given as string.

	
client(name=None)

	Store NAME in WM_CLIENT_MACHINE property of this widget. Return
current value.

	
clipboard_append(string, **kw)

	Append STRING to the Tk clipboard.

A widget specified at the optional displayof keyword
argument specifies the target display. The clipboard
can be retrieved with selection_get.

	
clipboard_clear(**kw)

	Clear the data in the Tk clipboard.

A widget specified for the optional displayof keyword
argument specifies the target display.

	
clipboard_get(**kw)

	Retrieve data from the clipboard on window’s display.

The window keyword defaults to the root window of the Tkinter
application.

The type keyword specifies the form in which the data is
to be returned and should be an atom name such as STRING
or FILE_NAME. Type defaults to STRING, except on X11, where the default
is to try UTF8_STRING and fall back to STRING.

This command is equivalent to:

selection_get(CLIPBOARD)

	
colormapwindows(*wlist)

	Store list of window names (WLIST) into WM_COLORMAPWINDOWS property
of this widget. This list contains windows whose colormaps differ from their
parents. Return current list of widgets if WLIST is empty.

	
colormodel(value=None)

	Useless. Not implemented in Tk.

	
columnconfigure(index, cnf={}, **kw)

	Configure column INDEX of a grid.

Valid resources are minsize (minimum size of the column),
weight (how much does additional space propagate to this column)
and pad (how much space to let additionally).

	
command(value=None)

	Store VALUE in WM_COMMAND property. It is the command
which shall be used to invoke the application. Return current
command if VALUE is None.

	
config(cnf=None, **kw)

	Configure resources of a widget.

The values for resources are specified as keyword
arguments. To get an overview about
the allowed keyword arguments call the method keys.

	
configure(cnf=None, **kw)

	Configure resources of a widget.

The values for resources are specified as keyword
arguments. To get an overview about
the allowed keyword arguments call the method keys.

	
deiconify()

	Deiconify this widget. If it was never mapped it will not be mapped.
On Windows it will raise this widget and give it the focus.

	
deletecommand(name)

	Internal function.

Delete the Tcl command provided in NAME.

	
destroy()

	Destroy this and all descendants widgets.

	
event_add(virtual, *sequences)

	Bind a virtual event VIRTUAL (of the form <<Name>>)
to an event SEQUENCE such that the virtual event is triggered
whenever SEQUENCE occurs.

	
event_delete(virtual, *sequences)

	Unbind a virtual event VIRTUAL from SEQUENCE.

	
event_generate(sequence, **kw)

	Generate an event SEQUENCE. Additional
keyword arguments specify parameter of the event
(e.g. x, y, rootx, rooty).

	
event_info(virtual=None)

	Return a list of all virtual events or the information
about the SEQUENCE bound to the virtual event VIRTUAL.

	
focus()

	Direct input focus to this widget.

If the application currently does not have the focus
this widget will get the focus if the application gets
the focus through the window manager.

	
focus_displayof()

	Return the widget which has currently the focus on the
display where this widget is located.

Return None if the application does not have the focus.

	
focus_force()

	Direct input focus to this widget even if the
application does not have the focus. Use with
caution!

	
focus_get()

	Return the widget which has currently the focus in the
application.

Use focus_displayof to allow working with several
displays. Return None if application does not have
the focus.

	
focus_lastfor()

	Return the widget which would have the focus if top level
for this widget gets the focus from the window manager.

	
focus_set()

	Direct input focus to this widget.

If the application currently does not have the focus
this widget will get the focus if the application gets
the focus through the window manager.

	
focusmodel(model=None)

	Set focus model to MODEL. “active” means that this widget will claim
the focus itself, “passive” means that the window manager shall give
the focus. Return current focus model if MODEL is None.

	
frame()

	Return identifier for decorative frame of this widget if present.

	
geometry(newGeometry=None)

	Set geometry to NEWGEOMETRY of the form =widthxheight+x+y. Return
current value if None is given.

	
getboolean(s)

	Return a boolean value for Tcl boolean values true and false given as parameter.

	
getdouble

	alias of __builtin__.float

	
getint

	alias of __builtin__.int

	
getvar(name='PY_VAR')

	Return value of Tcl variable NAME.

	
grab_current()

	Return widget which has currently the grab in this application
or None.

	
grab_release()

	Release grab for this widget if currently set.

	
grab_set(timeout=30)

	

	
grab_set_global()

	Set global grab for this widget.

A global grab directs all events to this and
descendant widgets on the display. Use with caution -
other applications do not get events anymore.

	
grab_status()

	Return None, “local” or “global” if this widget has
no, a local or a global grab.

	
grid(baseWidth=None, baseHeight=None, widthInc=None, heightInc=None)

	Instruct the window manager that this widget shall only be
resized on grid boundaries. WIDTHINC and HEIGHTINC are the width and
height of a grid unit in pixels. BASEWIDTH and BASEHEIGHT are the
number of grid units requested in Tk_GeometryRequest.

	
grid_bbox(column=None, row=None, col2=None, row2=None)

	Return a tuple of integer coordinates for the bounding
box of this widget controlled by the geometry manager grid.

If COLUMN, ROW is given the bounding box applies from
the cell with row and column 0 to the specified
cell. If COL2 and ROW2 are given the bounding box
starts at that cell.

The returned integers specify the offset of the upper left
corner in the master widget and the width and height.

	
grid_columnconfigure(index, cnf={}, **kw)

	Configure column INDEX of a grid.

Valid resources are minsize (minimum size of the column),
weight (how much does additional space propagate to this column)
and pad (how much space to let additionally).

	
grid_location(x, y)

	Return a tuple of column and row which identify the cell
at which the pixel at position X and Y inside the master
widget is located.

	
grid_propagate(flag=['_noarg_'])

	Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information
of the slaves will determine the size of this widget. If no argument
is given, the current setting will be returned.

	
grid_rowconfigure(index, cnf={}, **kw)

	Configure row INDEX of a grid.

Valid resources are minsize (minimum size of the row),
weight (how much does additional space propagate to this row)
and pad (how much space to let additionally).

	
grid_size()

	Return a tuple of the number of column and rows in the grid.

	
grid_slaves(row=None, column=None)

	Return a list of all slaves of this widget
in its packing order.

	
group(pathName=None)

	Set the group leader widgets for related widgets to PATHNAME. Return
the group leader of this widget if None is given.

	
iconbitmap(bitmap=None, default=None)

	Set bitmap for the iconified widget to BITMAP. Return
the bitmap if None is given.

Under Windows, the DEFAULT parameter can be used to set the icon
for the widget and any descendents that don’t have an icon set
explicitly. DEFAULT can be the relative path to a .ico file
(example: root.iconbitmap(default=’myicon.ico’)). See Tk
documentation for more information.

	
iconify()

	Display widget as icon.

	
iconmask(bitmap=None)

	Set mask for the icon bitmap of this widget. Return the
mask if None is given.

	
iconname(newName=None)

	Set the name of the icon for this widget. Return the name if
None is given.

	
iconposition(x=None, y=None)

	Set the position of the icon of this widget to X and Y. Return
a tuple of the current values of X and X if None is given.

	
iconwindow(pathName=None)

	Set widget PATHNAME to be displayed instead of icon. Return the current
value if None is given.

	
image_names()

	Return a list of all existing image names.

	
image_types()

	Return a list of all available image types (e.g. photo bitmap).

	
keys()

	Return a list of all resource names of this widget.

	
lift(aboveThis=None)

	Raise this widget in the stacking order.

	
lower(belowThis=None)

	Lower this widget in the stacking order.

	
mainloop(n=0)

	Call the mainloop of Tk.

	
maxsize(width=None, height=None)

	Set max WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
minsize(width=None, height=None)

	Set min WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
nametowidget(name)

	Return the Tkinter instance of a widget identified by
its Tcl name NAME.

	
option_add(pattern, value, priority=None)

	Set a VALUE (second parameter) for an option
PATTERN (first parameter).

An optional third parameter gives the numeric priority
(defaults to 80).

	
option_clear()

	Clear the option database.

It will be reloaded if option_add is called.

	
option_get(name, className)

	Return the value for an option NAME for this widget
with CLASSNAME.

Values with higher priority override lower values.

	
option_readfile(fileName, priority=None)

	Read file FILENAME into the option database.

An optional second parameter gives the numeric
priority.

	
overrideredirect(boolean=None)

	Instruct the window manager to ignore this widget
if BOOLEAN is given with 1. Return the current value if None
is given.

	
pack_propagate(flag=['_noarg_'])

	Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information
of the slaves will determine the size of this widget. If no argument
is given the current setting will be returned.

	
pack_slaves()

	Return a list of all slaves of this widget
in its packing order.

	
place_slaves()

	Return a list of all slaves of this widget
in its packing order.

	
positionfrom(who=None)

	Instruct the window manager that the position of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
propagate(flag=['_noarg_'])

	Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information
of the slaves will determine the size of this widget. If no argument
is given the current setting will be returned.

	
protocol(name=None, func=None)

	Bind function FUNC to command NAME for this widget.
Return the function bound to NAME if None is given. NAME could be
e.g. “WM_SAVE_YOURSELF” or “WM_DELETE_WINDOW”.

	
quit()

	Quit the Tcl interpreter. All widgets will be destroyed.

	
register(func, subst=None, needcleanup=1)

	Return a newly created Tcl function. If this
function is called, the Python function FUNC will
be executed. An optional function SUBST can
be given which will be executed before FUNC.

	
resizable(width=None, height=None)

	Instruct the window manager whether this width can be resized
in WIDTH or HEIGHT. Both values are boolean values.

	
rowconfigure(index, cnf={}, **kw)

	Configure row INDEX of a grid.

Valid resources are minsize (minimum size of the row),
weight (how much does additional space propagate to this row)
and pad (how much space to let additionally).

	
selection_clear(**kw)

	Clear the current X selection.

	
selection_get(**kw)

	Return the contents of the current X selection.

A keyword parameter selection specifies the name of
the selection and defaults to PRIMARY. A keyword
parameter displayof specifies a widget on the display
to use. A keyword parameter type specifies the form of data to be
fetched, defaulting to STRING except on X11, where UTF8_STRING is tried
before STRING.

	
selection_handle(command, **kw)

	Specify a function COMMAND to call if the X
selection owned by this widget is queried by another
application.

This function must return the contents of the
selection. The function will be called with the
arguments OFFSET and LENGTH which allows the chunking
of very long selections. The following keyword
parameters can be provided:
selection - name of the selection (default PRIMARY),
type - type of the selection (e.g. STRING, FILE_NAME).

	
selection_own(**kw)

	Become owner of X selection.

A keyword parameter selection specifies the name of
the selection (default PRIMARY).

	
selection_own_get(**kw)

	Return owner of X selection.

The following keyword parameter can
be provided:
selection - name of the selection (default PRIMARY),
type - type of the selection (e.g. STRING, FILE_NAME).

	
send(interp, cmd, *args)

	Send Tcl command CMD to different interpreter INTERP to be executed.

	
setvar(name='PY_VAR', value='1')

	Set Tcl variable NAME to VALUE.

	
show()

	

	
size()

	Return a tuple of the number of column and rows in the grid.

	
sizefrom(who=None)

	Instruct the window manager that the size of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
slaves()

	Return a list of all slaves of this widget
in its packing order.

	
state(newstate=None)

	Query or set the state of this widget as one of normal, icon,
iconic (see wm_iconwindow), withdrawn, or zoomed (Windows only).

	
title(string=None)

	Set the title of this widget.

	
tk_bisque()

	Change the color scheme to light brown as used in Tk 3.6 and before.

	
tk_focusFollowsMouse()

	The widget under mouse will get automatically focus. Can not
be disabled easily.

	
tk_focusNext()

	Return the next widget in the focus order which follows
widget which has currently the focus.

The focus order first goes to the next child, then to
the children of the child recursively and then to the
next sibling which is higher in the stacking order. A
widget is omitted if it has the takefocus resource set
to 0.

	
tk_focusPrev()

	Return previous widget in the focus order. See tk_focusNext for details.

	
tk_menuBar(*args)

	Do not use. Needed in Tk 3.6 and earlier.

	
tk_setPalette(*args, **kw)

	Set a new color scheme for all widget elements.

A single color as argument will cause that all colors of Tk
widget elements are derived from this.
Alternatively several keyword parameters and its associated
colors can be given. The following keywords are valid:
activeBackground, foreground, selectColor,
activeForeground, highlightBackground, selectBackground,
background, highlightColor, selectForeground,
disabledForeground, insertBackground, troughColor.

	
tk_strictMotif(boolean=None)

	Set Tcl internal variable, whether the look and feel
should adhere to Motif.

A parameter of 1 means adhere to Motif (e.g. no color
change if mouse passes over slider).
Returns the set value.

	
tkraise(aboveThis=None)

	Raise this widget in the stacking order.

	
transient(master=None)

	Instruct the window manager that this widget is transient
with regard to widget MASTER.

	
unbind(sequence, funcid=None)

	Unbind for this widget for event SEQUENCE the
function identified with FUNCID.

	
unbind_all(sequence)

	Unbind for all widgets for event SEQUENCE all functions.

	
unbind_class(className, sequence)

	Unbind for all widgets with bindtag CLASSNAME for event SEQUENCE
all functions.

	
update()

	Enter event loop until all pending events have been processed by Tcl.

	
update_idletasks()

	Enter event loop until all idle callbacks have been called. This
will update the display of windows but not process events caused by
the user.

	
wait_variable(name='PY_VAR')

	Wait until the variable is modified.

A parameter of type IntVar, StringVar, DoubleVar or
BooleanVar must be given.

	
wait_visibility(window=None)

	Wait until the visibility of a WIDGET changes
(e.g. it appears).

If no parameter is given self is used.

	
wait_window(window=None)

	Wait until a WIDGET is destroyed.

If no parameter is given self is used.

	
waitvar(name='PY_VAR')

	Wait until the variable is modified.

A parameter of type IntVar, StringVar, DoubleVar or
BooleanVar must be given.

	
winfo_atom(name, displayof=0)

	Return integer which represents atom NAME.

	
winfo_atomname(id, displayof=0)

	Return name of atom with identifier ID.

	
winfo_cells()

	Return number of cells in the colormap for this widget.

	
winfo_children()

	Return a list of all widgets which are children of this widget.

	
winfo_class()

	Return window class name of this widget.

	
winfo_colormapfull()

	Return true if at the last color request the colormap was full.

	
winfo_containing(rootX, rootY, displayof=0)

	Return the widget which is at the root coordinates ROOTX, ROOTY.

	
winfo_depth()

	Return the number of bits per pixel.

	
winfo_exists()

	Return true if this widget exists.

	
winfo_fpixels(number)

	Return the number of pixels for the given distance NUMBER
(e.g. “3c”) as float.

	
winfo_geometry()

	Return geometry string for this widget in the form “widthxheight+X+Y”.

	
winfo_height()

	Return height of this widget.

	
winfo_id()

	Return identifier ID for this widget.

	
winfo_interps(displayof=0)

	Return the name of all Tcl interpreters for this display.

	
winfo_ismapped()

	Return true if this widget is mapped.

	
winfo_manager()

	Return the window manager name for this widget.

	
winfo_name()

	Return the name of this widget.

	
winfo_parent()

	Return the name of the parent of this widget.

	
winfo_pathname(id, displayof=0)

	Return the pathname of the widget given by ID.

	
winfo_pixels(number)

	Rounded integer value of winfo_fpixels.

	
winfo_pointerx()

	Return the x coordinate of the pointer on the root window.

	
winfo_pointerxy()

	Return a tuple of x and y coordinates of the pointer on the root window.

	
winfo_pointery()

	Return the y coordinate of the pointer on the root window.

	
winfo_reqheight()

	Return requested height of this widget.

	
winfo_reqwidth()

	Return requested width of this widget.

	
winfo_rgb(color)

	Return tuple of decimal values for red, green, blue for
COLOR in this widget.

	
winfo_rootx()

	Return x coordinate of upper left corner of this widget on the
root window.

	
winfo_rooty()

	Return y coordinate of upper left corner of this widget on the
root window.

	
winfo_screen()

	Return the screen name of this widget.

	
winfo_screencells()

	Return the number of the cells in the colormap of the screen
of this widget.

	
winfo_screendepth()

	Return the number of bits per pixel of the root window of the
screen of this widget.

	
winfo_screenheight()

	Return the number of pixels of the height of the screen of this widget
in pixel.

	
winfo_screenmmheight()

	Return the number of pixels of the height of the screen of
this widget in mm.

	
winfo_screenmmwidth()

	Return the number of pixels of the width of the screen of
this widget in mm.

	
winfo_screenvisual()

	Return one of the strings directcolor, grayscale, pseudocolor,
staticcolor, staticgray, or truecolor for the default
colormodel of this screen.

	
winfo_screenwidth()

	Return the number of pixels of the width of the screen of
this widget in pixel.

	
winfo_server()

	Return information of the X-Server of the screen of this widget in
the form “XmajorRminor vendor vendorVersion”.

	
winfo_toplevel()

	Return the toplevel widget of this widget.

	
winfo_viewable()

	Return true if the widget and all its higher ancestors are mapped.

	
winfo_visual()

	Return one of the strings directcolor, grayscale, pseudocolor,
staticcolor, staticgray, or truecolor for the
colormodel of this widget.

	
winfo_visualid()

	Return the X identifier for the visual for this widget.

	
winfo_visualsavailable(includeids=0)

	Return a list of all visuals available for the screen
of this widget.

Each item in the list consists of a visual name (see winfo_visual), a
depth and if INCLUDEIDS=1 is given also the X identifier.

	
winfo_vrootheight()

	Return the height of the virtual root window associated with this
widget in pixels. If there is no virtual root window return the
height of the screen.

	
winfo_vrootwidth()

	Return the width of the virtual root window associated with this
widget in pixel. If there is no virtual root window return the
width of the screen.

	
winfo_vrootx()

	Return the x offset of the virtual root relative to the root
window of the screen of this widget.

	
winfo_vrooty()

	Return the y offset of the virtual root relative to the root
window of the screen of this widget.

	
winfo_width()

	Return the width of this widget.

	
winfo_x()

	Return the x coordinate of the upper left corner of this widget
in the parent.

	
winfo_y()

	Return the y coordinate of the upper left corner of this widget
in the parent.

	
withdraw()

	Withdraw this widget from the screen such that it is unmapped
and forgotten by the window manager. Re-draw it with wm_deiconify.

	
wm_aspect(minNumer=None, minDenom=None, maxNumer=None, maxDenom=None)

	Instruct the window manager to set the aspect ratio (width/height)
of this widget to be between MINNUMER/MINDENOM and MAXNUMER/MAXDENOM. Return a tuple
of the actual values if no argument is given.

	
wm_attributes(*args)

	This subcommand returns or sets platform specific attributes

The first form returns a list of the platform specific flags and
their values. The second form returns the value for the specific
option. The third form sets one or more of the values. The values
are as follows:

On Windows, -disabled gets or sets whether the window is in a
disabled state. -toolwindow gets or sets the style of the window
to toolwindow (as defined in the MSDN). -topmost gets or sets
whether this is a topmost window (displays above all other
windows).

On Macintosh, XXXXX

On Unix, there are currently no special attribute values.

	
wm_client(name=None)

	Store NAME in WM_CLIENT_MACHINE property of this widget. Return
current value.

	
wm_colormapwindows(*wlist)

	Store list of window names (WLIST) into WM_COLORMAPWINDOWS property
of this widget. This list contains windows whose colormaps differ from their
parents. Return current list of widgets if WLIST is empty.

	
wm_command(value=None)

	Store VALUE in WM_COMMAND property. It is the command
which shall be used to invoke the application. Return current
command if VALUE is None.

	
wm_deiconify()

	Deiconify this widget. If it was never mapped it will not be mapped.
On Windows it will raise this widget and give it the focus.

	
wm_focusmodel(model=None)

	Set focus model to MODEL. “active” means that this widget will claim
the focus itself, “passive” means that the window manager shall give
the focus. Return current focus model if MODEL is None.

	
wm_frame()

	Return identifier for decorative frame of this widget if present.

	
wm_geometry(newGeometry=None)

	Set geometry to NEWGEOMETRY of the form =widthxheight+x+y. Return
current value if None is given.

	
wm_grid(baseWidth=None, baseHeight=None, widthInc=None, heightInc=None)

	Instruct the window manager that this widget shall only be
resized on grid boundaries. WIDTHINC and HEIGHTINC are the width and
height of a grid unit in pixels. BASEWIDTH and BASEHEIGHT are the
number of grid units requested in Tk_GeometryRequest.

	
wm_group(pathName=None)

	Set the group leader widgets for related widgets to PATHNAME. Return
the group leader of this widget if None is given.

	
wm_iconbitmap(bitmap=None, default=None)

	Set bitmap for the iconified widget to BITMAP. Return
the bitmap if None is given.

Under Windows, the DEFAULT parameter can be used to set the icon
for the widget and any descendents that don’t have an icon set
explicitly. DEFAULT can be the relative path to a .ico file
(example: root.iconbitmap(default=’myicon.ico’)). See Tk
documentation for more information.

	
wm_iconify()

	Display widget as icon.

	
wm_iconmask(bitmap=None)

	Set mask for the icon bitmap of this widget. Return the
mask if None is given.

	
wm_iconname(newName=None)

	Set the name of the icon for this widget. Return the name if
None is given.

	
wm_iconposition(x=None, y=None)

	Set the position of the icon of this widget to X and Y. Return
a tuple of the current values of X and X if None is given.

	
wm_iconwindow(pathName=None)

	Set widget PATHNAME to be displayed instead of icon. Return the current
value if None is given.

	
wm_maxsize(width=None, height=None)

	Set max WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
wm_minsize(width=None, height=None)

	Set min WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
wm_overrideredirect(boolean=None)

	Instruct the window manager to ignore this widget
if BOOLEAN is given with 1. Return the current value if None
is given.

	
wm_positionfrom(who=None)

	Instruct the window manager that the position of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
wm_protocol(name=None, func=None)

	Bind function FUNC to command NAME for this widget.
Return the function bound to NAME if None is given. NAME could be
e.g. “WM_SAVE_YOURSELF” or “WM_DELETE_WINDOW”.

	
wm_resizable(width=None, height=None)

	Instruct the window manager whether this width can be resized
in WIDTH or HEIGHT. Both values are boolean values.

	
wm_sizefrom(who=None)

	Instruct the window manager that the size of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
wm_state(newstate=None)

	Query or set the state of this widget as one of normal, icon,
iconic (see wm_iconwindow), withdrawn, or zoomed (Windows only).

	
wm_title(string=None)

	Set the title of this widget.

	
wm_transient(master=None)

	Instruct the window manager that this widget is transient
with regard to widget MASTER.

	
wm_withdraw()

	Withdraw this widget from the screen such that it is unmapped
and forgotten by the window manager. Re-draw it with wm_deiconify.

	
class robot.libraries.dialogs_py.SelectionDialog(message, values)

	Bases: robot.libraries.dialogs_py._TkDialog

	
after(ms, func=None, *args)

	Call function once after given time.

MS specifies the time in milliseconds. FUNC gives the
function which shall be called. Additional parameters
are given as parameters to the function call. Return
identifier to cancel scheduling with after_cancel.

	
after_cancel(id)

	Cancel scheduling of function identified with ID.

Identifier returned by after or after_idle must be
given as first parameter.

	
after_idle(func, *args)

	Call FUNC once if the Tcl main loop has no event to
process.

Return an identifier to cancel the scheduling with
after_cancel.

	
aspect(minNumer=None, minDenom=None, maxNumer=None, maxDenom=None)

	Instruct the window manager to set the aspect ratio (width/height)
of this widget to be between MINNUMER/MINDENOM and MAXNUMER/MAXDENOM. Return a tuple
of the actual values if no argument is given.

	
attributes(*args)

	This subcommand returns or sets platform specific attributes

The first form returns a list of the platform specific flags and
their values. The second form returns the value for the specific
option. The third form sets one or more of the values. The values
are as follows:

On Windows, -disabled gets or sets whether the window is in a
disabled state. -toolwindow gets or sets the style of the window
to toolwindow (as defined in the MSDN). -topmost gets or sets
whether this is a topmost window (displays above all other
windows).

On Macintosh, XXXXX

On Unix, there are currently no special attribute values.

	
bbox(column=None, row=None, col2=None, row2=None)

	Return a tuple of integer coordinates for the bounding
box of this widget controlled by the geometry manager grid.

If COLUMN, ROW is given the bounding box applies from
the cell with row and column 0 to the specified
cell. If COL2 and ROW2 are given the bounding box
starts at that cell.

The returned integers specify the offset of the upper left
corner in the master widget and the width and height.

	
bell(displayof=0)

	Ring a display’s bell.

	
bind(sequence=None, func=None, add=None)

	Bind to this widget at event SEQUENCE a call to function FUNC.

SEQUENCE is a string of concatenated event
patterns. An event pattern is of the form
<MODIFIER-MODIFIER-TYPE-DETAIL> where MODIFIER is one
of Control, Mod2, M2, Shift, Mod3, M3, Lock, Mod4, M4,
Button1, B1, Mod5, M5 Button2, B2, Meta, M, Button3,
B3, Alt, Button4, B4, Double, Button5, B5 Triple,
Mod1, M1. TYPE is one of Activate, Enter, Map,
ButtonPress, Button, Expose, Motion, ButtonRelease
FocusIn, MouseWheel, Circulate, FocusOut, Property,
Colormap, Gravity Reparent, Configure, KeyPress, Key,
Unmap, Deactivate, KeyRelease Visibility, Destroy,
Leave and DETAIL is the button number for ButtonPress,
ButtonRelease and DETAIL is the Keysym for KeyPress and
KeyRelease. Examples are
<Control-Button-1> for pressing Control and mouse button 1 or
<Alt-A> for pressing A and the Alt key (KeyPress can be omitted).
An event pattern can also be a virtual event of the form
<<AString>> where AString can be arbitrary. This
event can be generated by event_generate.
If events are concatenated they must appear shortly
after each other.

FUNC will be called if the event sequence occurs with an
instance of Event as argument. If the return value of FUNC is
“break” no further bound function is invoked.

An additional boolean parameter ADD specifies whether FUNC will
be called additionally to the other bound function or whether
it will replace the previous function.

Bind will return an identifier to allow deletion of the bound function with
unbind without memory leak.

If FUNC or SEQUENCE is omitted the bound function or list
of bound events are returned.

	
bind_all(sequence=None, func=None, add=None)

	Bind to all widgets at an event SEQUENCE a call to function FUNC.
An additional boolean parameter ADD specifies whether FUNC will
be called additionally to the other bound function or whether
it will replace the previous function. See bind for the return value.

	
bind_class(className, sequence=None, func=None, add=None)

	Bind to widgets with bindtag CLASSNAME at event
SEQUENCE a call of function FUNC. An additional
boolean parameter ADD specifies whether FUNC will be
called additionally to the other bound function or
whether it will replace the previous function. See bind for
the return value.

	
bindtags(tagList=None)

	Set or get the list of bindtags for this widget.

With no argument return the list of all bindtags associated with
this widget. With a list of strings as argument the bindtags are
set to this list. The bindtags determine in which order events are
processed (see bind).

	
cget(key)

	Return the resource value for a KEY given as string.

	
client(name=None)

	Store NAME in WM_CLIENT_MACHINE property of this widget. Return
current value.

	
clipboard_append(string, **kw)

	Append STRING to the Tk clipboard.

A widget specified at the optional displayof keyword
argument specifies the target display. The clipboard
can be retrieved with selection_get.

	
clipboard_clear(**kw)

	Clear the data in the Tk clipboard.

A widget specified for the optional displayof keyword
argument specifies the target display.

	
clipboard_get(**kw)

	Retrieve data from the clipboard on window’s display.

The window keyword defaults to the root window of the Tkinter
application.

The type keyword specifies the form in which the data is
to be returned and should be an atom name such as STRING
or FILE_NAME. Type defaults to STRING, except on X11, where the default
is to try UTF8_STRING and fall back to STRING.

This command is equivalent to:

selection_get(CLIPBOARD)

	
colormapwindows(*wlist)

	Store list of window names (WLIST) into WM_COLORMAPWINDOWS property
of this widget. This list contains windows whose colormaps differ from their
parents. Return current list of widgets if WLIST is empty.

	
colormodel(value=None)

	Useless. Not implemented in Tk.

	
columnconfigure(index, cnf={}, **kw)

	Configure column INDEX of a grid.

Valid resources are minsize (minimum size of the column),
weight (how much does additional space propagate to this column)
and pad (how much space to let additionally).

	
command(value=None)

	Store VALUE in WM_COMMAND property. It is the command
which shall be used to invoke the application. Return current
command if VALUE is None.

	
config(cnf=None, **kw)

	Configure resources of a widget.

The values for resources are specified as keyword
arguments. To get an overview about
the allowed keyword arguments call the method keys.

	
configure(cnf=None, **kw)

	Configure resources of a widget.

The values for resources are specified as keyword
arguments. To get an overview about
the allowed keyword arguments call the method keys.

	
deiconify()

	Deiconify this widget. If it was never mapped it will not be mapped.
On Windows it will raise this widget and give it the focus.

	
deletecommand(name)

	Internal function.

Delete the Tcl command provided in NAME.

	
destroy()

	Destroy this and all descendants widgets.

	
event_add(virtual, *sequences)

	Bind a virtual event VIRTUAL (of the form <<Name>>)
to an event SEQUENCE such that the virtual event is triggered
whenever SEQUENCE occurs.

	
event_delete(virtual, *sequences)

	Unbind a virtual event VIRTUAL from SEQUENCE.

	
event_generate(sequence, **kw)

	Generate an event SEQUENCE. Additional
keyword arguments specify parameter of the event
(e.g. x, y, rootx, rooty).

	
event_info(virtual=None)

	Return a list of all virtual events or the information
about the SEQUENCE bound to the virtual event VIRTUAL.

	
focus()

	Direct input focus to this widget.

If the application currently does not have the focus
this widget will get the focus if the application gets
the focus through the window manager.

	
focus_displayof()

	Return the widget which has currently the focus on the
display where this widget is located.

Return None if the application does not have the focus.

	
focus_force()

	Direct input focus to this widget even if the
application does not have the focus. Use with
caution!

	
focus_get()

	Return the widget which has currently the focus in the
application.

Use focus_displayof to allow working with several
displays. Return None if application does not have
the focus.

	
focus_lastfor()

	Return the widget which would have the focus if top level
for this widget gets the focus from the window manager.

	
focus_set()

	Direct input focus to this widget.

If the application currently does not have the focus
this widget will get the focus if the application gets
the focus through the window manager.

	
focusmodel(model=None)

	Set focus model to MODEL. “active” means that this widget will claim
the focus itself, “passive” means that the window manager shall give
the focus. Return current focus model if MODEL is None.

	
frame()

	Return identifier for decorative frame of this widget if present.

	
geometry(newGeometry=None)

	Set geometry to NEWGEOMETRY of the form =widthxheight+x+y. Return
current value if None is given.

	
getboolean(s)

	Return a boolean value for Tcl boolean values true and false given as parameter.

	
getdouble

	alias of __builtin__.float

	
getint

	alias of __builtin__.int

	
getvar(name='PY_VAR')

	Return value of Tcl variable NAME.

	
grab_current()

	Return widget which has currently the grab in this application
or None.

	
grab_release()

	Release grab for this widget if currently set.

	
grab_set(timeout=30)

	

	
grab_set_global()

	Set global grab for this widget.

A global grab directs all events to this and
descendant widgets on the display. Use with caution -
other applications do not get events anymore.

	
grab_status()

	Return None, “local” or “global” if this widget has
no, a local or a global grab.

	
grid(baseWidth=None, baseHeight=None, widthInc=None, heightInc=None)

	Instruct the window manager that this widget shall only be
resized on grid boundaries. WIDTHINC and HEIGHTINC are the width and
height of a grid unit in pixels. BASEWIDTH and BASEHEIGHT are the
number of grid units requested in Tk_GeometryRequest.

	
grid_bbox(column=None, row=None, col2=None, row2=None)

	Return a tuple of integer coordinates for the bounding
box of this widget controlled by the geometry manager grid.

If COLUMN, ROW is given the bounding box applies from
the cell with row and column 0 to the specified
cell. If COL2 and ROW2 are given the bounding box
starts at that cell.

The returned integers specify the offset of the upper left
corner in the master widget and the width and height.

	
grid_columnconfigure(index, cnf={}, **kw)

	Configure column INDEX of a grid.

Valid resources are minsize (minimum size of the column),
weight (how much does additional space propagate to this column)
and pad (how much space to let additionally).

	
grid_location(x, y)

	Return a tuple of column and row which identify the cell
at which the pixel at position X and Y inside the master
widget is located.

	
grid_propagate(flag=['_noarg_'])

	Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information
of the slaves will determine the size of this widget. If no argument
is given, the current setting will be returned.

	
grid_rowconfigure(index, cnf={}, **kw)

	Configure row INDEX of a grid.

Valid resources are minsize (minimum size of the row),
weight (how much does additional space propagate to this row)
and pad (how much space to let additionally).

	
grid_size()

	Return a tuple of the number of column and rows in the grid.

	
grid_slaves(row=None, column=None)

	Return a list of all slaves of this widget
in its packing order.

	
group(pathName=None)

	Set the group leader widgets for related widgets to PATHNAME. Return
the group leader of this widget if None is given.

	
iconbitmap(bitmap=None, default=None)

	Set bitmap for the iconified widget to BITMAP. Return
the bitmap if None is given.

Under Windows, the DEFAULT parameter can be used to set the icon
for the widget and any descendents that don’t have an icon set
explicitly. DEFAULT can be the relative path to a .ico file
(example: root.iconbitmap(default=’myicon.ico’)). See Tk
documentation for more information.

	
iconify()

	Display widget as icon.

	
iconmask(bitmap=None)

	Set mask for the icon bitmap of this widget. Return the
mask if None is given.

	
iconname(newName=None)

	Set the name of the icon for this widget. Return the name if
None is given.

	
iconposition(x=None, y=None)

	Set the position of the icon of this widget to X and Y. Return
a tuple of the current values of X and X if None is given.

	
iconwindow(pathName=None)

	Set widget PATHNAME to be displayed instead of icon. Return the current
value if None is given.

	
image_names()

	Return a list of all existing image names.

	
image_types()

	Return a list of all available image types (e.g. photo bitmap).

	
keys()

	Return a list of all resource names of this widget.

	
lift(aboveThis=None)

	Raise this widget in the stacking order.

	
lower(belowThis=None)

	Lower this widget in the stacking order.

	
mainloop(n=0)

	Call the mainloop of Tk.

	
maxsize(width=None, height=None)

	Set max WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
minsize(width=None, height=None)

	Set min WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
nametowidget(name)

	Return the Tkinter instance of a widget identified by
its Tcl name NAME.

	
option_add(pattern, value, priority=None)

	Set a VALUE (second parameter) for an option
PATTERN (first parameter).

An optional third parameter gives the numeric priority
(defaults to 80).

	
option_clear()

	Clear the option database.

It will be reloaded if option_add is called.

	
option_get(name, className)

	Return the value for an option NAME for this widget
with CLASSNAME.

Values with higher priority override lower values.

	
option_readfile(fileName, priority=None)

	Read file FILENAME into the option database.

An optional second parameter gives the numeric
priority.

	
overrideredirect(boolean=None)

	Instruct the window manager to ignore this widget
if BOOLEAN is given with 1. Return the current value if None
is given.

	
pack_propagate(flag=['_noarg_'])

	Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information
of the slaves will determine the size of this widget. If no argument
is given the current setting will be returned.

	
pack_slaves()

	Return a list of all slaves of this widget
in its packing order.

	
place_slaves()

	Return a list of all slaves of this widget
in its packing order.

	
positionfrom(who=None)

	Instruct the window manager that the position of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
propagate(flag=['_noarg_'])

	Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information
of the slaves will determine the size of this widget. If no argument
is given the current setting will be returned.

	
protocol(name=None, func=None)

	Bind function FUNC to command NAME for this widget.
Return the function bound to NAME if None is given. NAME could be
e.g. “WM_SAVE_YOURSELF” or “WM_DELETE_WINDOW”.

	
quit()

	Quit the Tcl interpreter. All widgets will be destroyed.

	
register(func, subst=None, needcleanup=1)

	Return a newly created Tcl function. If this
function is called, the Python function FUNC will
be executed. An optional function SUBST can
be given which will be executed before FUNC.

	
resizable(width=None, height=None)

	Instruct the window manager whether this width can be resized
in WIDTH or HEIGHT. Both values are boolean values.

	
rowconfigure(index, cnf={}, **kw)

	Configure row INDEX of a grid.

Valid resources are minsize (minimum size of the row),
weight (how much does additional space propagate to this row)
and pad (how much space to let additionally).

	
selection_clear(**kw)

	Clear the current X selection.

	
selection_get(**kw)

	Return the contents of the current X selection.

A keyword parameter selection specifies the name of
the selection and defaults to PRIMARY. A keyword
parameter displayof specifies a widget on the display
to use. A keyword parameter type specifies the form of data to be
fetched, defaulting to STRING except on X11, where UTF8_STRING is tried
before STRING.

	
selection_handle(command, **kw)

	Specify a function COMMAND to call if the X
selection owned by this widget is queried by another
application.

This function must return the contents of the
selection. The function will be called with the
arguments OFFSET and LENGTH which allows the chunking
of very long selections. The following keyword
parameters can be provided:
selection - name of the selection (default PRIMARY),
type - type of the selection (e.g. STRING, FILE_NAME).

	
selection_own(**kw)

	Become owner of X selection.

A keyword parameter selection specifies the name of
the selection (default PRIMARY).

	
selection_own_get(**kw)

	Return owner of X selection.

The following keyword parameter can
be provided:
selection - name of the selection (default PRIMARY),
type - type of the selection (e.g. STRING, FILE_NAME).

	
send(interp, cmd, *args)

	Send Tcl command CMD to different interpreter INTERP to be executed.

	
setvar(name='PY_VAR', value='1')

	Set Tcl variable NAME to VALUE.

	
show()

	

	
size()

	Return a tuple of the number of column and rows in the grid.

	
sizefrom(who=None)

	Instruct the window manager that the size of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
slaves()

	Return a list of all slaves of this widget
in its packing order.

	
state(newstate=None)

	Query or set the state of this widget as one of normal, icon,
iconic (see wm_iconwindow), withdrawn, or zoomed (Windows only).

	
title(string=None)

	Set the title of this widget.

	
tk_bisque()

	Change the color scheme to light brown as used in Tk 3.6 and before.

	
tk_focusFollowsMouse()

	The widget under mouse will get automatically focus. Can not
be disabled easily.

	
tk_focusNext()

	Return the next widget in the focus order which follows
widget which has currently the focus.

The focus order first goes to the next child, then to
the children of the child recursively and then to the
next sibling which is higher in the stacking order. A
widget is omitted if it has the takefocus resource set
to 0.

	
tk_focusPrev()

	Return previous widget in the focus order. See tk_focusNext for details.

	
tk_menuBar(*args)

	Do not use. Needed in Tk 3.6 and earlier.

	
tk_setPalette(*args, **kw)

	Set a new color scheme for all widget elements.

A single color as argument will cause that all colors of Tk
widget elements are derived from this.
Alternatively several keyword parameters and its associated
colors can be given. The following keywords are valid:
activeBackground, foreground, selectColor,
activeForeground, highlightBackground, selectBackground,
background, highlightColor, selectForeground,
disabledForeground, insertBackground, troughColor.

	
tk_strictMotif(boolean=None)

	Set Tcl internal variable, whether the look and feel
should adhere to Motif.

A parameter of 1 means adhere to Motif (e.g. no color
change if mouse passes over slider).
Returns the set value.

	
tkraise(aboveThis=None)

	Raise this widget in the stacking order.

	
transient(master=None)

	Instruct the window manager that this widget is transient
with regard to widget MASTER.

	
unbind(sequence, funcid=None)

	Unbind for this widget for event SEQUENCE the
function identified with FUNCID.

	
unbind_all(sequence)

	Unbind for all widgets for event SEQUENCE all functions.

	
unbind_class(className, sequence)

	Unbind for all widgets with bindtag CLASSNAME for event SEQUENCE
all functions.

	
update()

	Enter event loop until all pending events have been processed by Tcl.

	
update_idletasks()

	Enter event loop until all idle callbacks have been called. This
will update the display of windows but not process events caused by
the user.

	
wait_variable(name='PY_VAR')

	Wait until the variable is modified.

A parameter of type IntVar, StringVar, DoubleVar or
BooleanVar must be given.

	
wait_visibility(window=None)

	Wait until the visibility of a WIDGET changes
(e.g. it appears).

If no parameter is given self is used.

	
wait_window(window=None)

	Wait until a WIDGET is destroyed.

If no parameter is given self is used.

	
waitvar(name='PY_VAR')

	Wait until the variable is modified.

A parameter of type IntVar, StringVar, DoubleVar or
BooleanVar must be given.

	
winfo_atom(name, displayof=0)

	Return integer which represents atom NAME.

	
winfo_atomname(id, displayof=0)

	Return name of atom with identifier ID.

	
winfo_cells()

	Return number of cells in the colormap for this widget.

	
winfo_children()

	Return a list of all widgets which are children of this widget.

	
winfo_class()

	Return window class name of this widget.

	
winfo_colormapfull()

	Return true if at the last color request the colormap was full.

	
winfo_containing(rootX, rootY, displayof=0)

	Return the widget which is at the root coordinates ROOTX, ROOTY.

	
winfo_depth()

	Return the number of bits per pixel.

	
winfo_exists()

	Return true if this widget exists.

	
winfo_fpixels(number)

	Return the number of pixels for the given distance NUMBER
(e.g. “3c”) as float.

	
winfo_geometry()

	Return geometry string for this widget in the form “widthxheight+X+Y”.

	
winfo_height()

	Return height of this widget.

	
winfo_id()

	Return identifier ID for this widget.

	
winfo_interps(displayof=0)

	Return the name of all Tcl interpreters for this display.

	
winfo_ismapped()

	Return true if this widget is mapped.

	
winfo_manager()

	Return the window manager name for this widget.

	
winfo_name()

	Return the name of this widget.

	
winfo_parent()

	Return the name of the parent of this widget.

	
winfo_pathname(id, displayof=0)

	Return the pathname of the widget given by ID.

	
winfo_pixels(number)

	Rounded integer value of winfo_fpixels.

	
winfo_pointerx()

	Return the x coordinate of the pointer on the root window.

	
winfo_pointerxy()

	Return a tuple of x and y coordinates of the pointer on the root window.

	
winfo_pointery()

	Return the y coordinate of the pointer on the root window.

	
winfo_reqheight()

	Return requested height of this widget.

	
winfo_reqwidth()

	Return requested width of this widget.

	
winfo_rgb(color)

	Return tuple of decimal values for red, green, blue for
COLOR in this widget.

	
winfo_rootx()

	Return x coordinate of upper left corner of this widget on the
root window.

	
winfo_rooty()

	Return y coordinate of upper left corner of this widget on the
root window.

	
winfo_screen()

	Return the screen name of this widget.

	
winfo_screencells()

	Return the number of the cells in the colormap of the screen
of this widget.

	
winfo_screendepth()

	Return the number of bits per pixel of the root window of the
screen of this widget.

	
winfo_screenheight()

	Return the number of pixels of the height of the screen of this widget
in pixel.

	
winfo_screenmmheight()

	Return the number of pixels of the height of the screen of
this widget in mm.

	
winfo_screenmmwidth()

	Return the number of pixels of the width of the screen of
this widget in mm.

	
winfo_screenvisual()

	Return one of the strings directcolor, grayscale, pseudocolor,
staticcolor, staticgray, or truecolor for the default
colormodel of this screen.

	
winfo_screenwidth()

	Return the number of pixels of the width of the screen of
this widget in pixel.

	
winfo_server()

	Return information of the X-Server of the screen of this widget in
the form “XmajorRminor vendor vendorVersion”.

	
winfo_toplevel()

	Return the toplevel widget of this widget.

	
winfo_viewable()

	Return true if the widget and all its higher ancestors are mapped.

	
winfo_visual()

	Return one of the strings directcolor, grayscale, pseudocolor,
staticcolor, staticgray, or truecolor for the
colormodel of this widget.

	
winfo_visualid()

	Return the X identifier for the visual for this widget.

	
winfo_visualsavailable(includeids=0)

	Return a list of all visuals available for the screen
of this widget.

Each item in the list consists of a visual name (see winfo_visual), a
depth and if INCLUDEIDS=1 is given also the X identifier.

	
winfo_vrootheight()

	Return the height of the virtual root window associated with this
widget in pixels. If there is no virtual root window return the
height of the screen.

	
winfo_vrootwidth()

	Return the width of the virtual root window associated with this
widget in pixel. If there is no virtual root window return the
width of the screen.

	
winfo_vrootx()

	Return the x offset of the virtual root relative to the root
window of the screen of this widget.

	
winfo_vrooty()

	Return the y offset of the virtual root relative to the root
window of the screen of this widget.

	
winfo_width()

	Return the width of this widget.

	
winfo_x()

	Return the x coordinate of the upper left corner of this widget
in the parent.

	
winfo_y()

	Return the y coordinate of the upper left corner of this widget
in the parent.

	
withdraw()

	Withdraw this widget from the screen such that it is unmapped
and forgotten by the window manager. Re-draw it with wm_deiconify.

	
wm_aspect(minNumer=None, minDenom=None, maxNumer=None, maxDenom=None)

	Instruct the window manager to set the aspect ratio (width/height)
of this widget to be between MINNUMER/MINDENOM and MAXNUMER/MAXDENOM. Return a tuple
of the actual values if no argument is given.

	
wm_attributes(*args)

	This subcommand returns or sets platform specific attributes

The first form returns a list of the platform specific flags and
their values. The second form returns the value for the specific
option. The third form sets one or more of the values. The values
are as follows:

On Windows, -disabled gets or sets whether the window is in a
disabled state. -toolwindow gets or sets the style of the window
to toolwindow (as defined in the MSDN). -topmost gets or sets
whether this is a topmost window (displays above all other
windows).

On Macintosh, XXXXX

On Unix, there are currently no special attribute values.

	
wm_client(name=None)

	Store NAME in WM_CLIENT_MACHINE property of this widget. Return
current value.

	
wm_colormapwindows(*wlist)

	Store list of window names (WLIST) into WM_COLORMAPWINDOWS property
of this widget. This list contains windows whose colormaps differ from their
parents. Return current list of widgets if WLIST is empty.

	
wm_command(value=None)

	Store VALUE in WM_COMMAND property. It is the command
which shall be used to invoke the application. Return current
command if VALUE is None.

	
wm_deiconify()

	Deiconify this widget. If it was never mapped it will not be mapped.
On Windows it will raise this widget and give it the focus.

	
wm_focusmodel(model=None)

	Set focus model to MODEL. “active” means that this widget will claim
the focus itself, “passive” means that the window manager shall give
the focus. Return current focus model if MODEL is None.

	
wm_frame()

	Return identifier for decorative frame of this widget if present.

	
wm_geometry(newGeometry=None)

	Set geometry to NEWGEOMETRY of the form =widthxheight+x+y. Return
current value if None is given.

	
wm_grid(baseWidth=None, baseHeight=None, widthInc=None, heightInc=None)

	Instruct the window manager that this widget shall only be
resized on grid boundaries. WIDTHINC and HEIGHTINC are the width and
height of a grid unit in pixels. BASEWIDTH and BASEHEIGHT are the
number of grid units requested in Tk_GeometryRequest.

	
wm_group(pathName=None)

	Set the group leader widgets for related widgets to PATHNAME. Return
the group leader of this widget if None is given.

	
wm_iconbitmap(bitmap=None, default=None)

	Set bitmap for the iconified widget to BITMAP. Return
the bitmap if None is given.

Under Windows, the DEFAULT parameter can be used to set the icon
for the widget and any descendents that don’t have an icon set
explicitly. DEFAULT can be the relative path to a .ico file
(example: root.iconbitmap(default=’myicon.ico’)). See Tk
documentation for more information.

	
wm_iconify()

	Display widget as icon.

	
wm_iconmask(bitmap=None)

	Set mask for the icon bitmap of this widget. Return the
mask if None is given.

	
wm_iconname(newName=None)

	Set the name of the icon for this widget. Return the name if
None is given.

	
wm_iconposition(x=None, y=None)

	Set the position of the icon of this widget to X and Y. Return
a tuple of the current values of X and X if None is given.

	
wm_iconwindow(pathName=None)

	Set widget PATHNAME to be displayed instead of icon. Return the current
value if None is given.

	
wm_maxsize(width=None, height=None)

	Set max WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
wm_minsize(width=None, height=None)

	Set min WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
wm_overrideredirect(boolean=None)

	Instruct the window manager to ignore this widget
if BOOLEAN is given with 1. Return the current value if None
is given.

	
wm_positionfrom(who=None)

	Instruct the window manager that the position of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
wm_protocol(name=None, func=None)

	Bind function FUNC to command NAME for this widget.
Return the function bound to NAME if None is given. NAME could be
e.g. “WM_SAVE_YOURSELF” or “WM_DELETE_WINDOW”.

	
wm_resizable(width=None, height=None)

	Instruct the window manager whether this width can be resized
in WIDTH or HEIGHT. Both values are boolean values.

	
wm_sizefrom(who=None)

	Instruct the window manager that the size of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
wm_state(newstate=None)

	Query or set the state of this widget as one of normal, icon,
iconic (see wm_iconwindow), withdrawn, or zoomed (Windows only).

	
wm_title(string=None)

	Set the title of this widget.

	
wm_transient(master=None)

	Instruct the window manager that this widget is transient
with regard to widget MASTER.

	
wm_withdraw()

	Withdraw this widget from the screen such that it is unmapped
and forgotten by the window manager. Re-draw it with wm_deiconify.

	
class robot.libraries.dialogs_py.MultipleSelectionDialog(message, values)

	Bases: robot.libraries.dialogs_py._TkDialog

	
after(ms, func=None, *args)

	Call function once after given time.

MS specifies the time in milliseconds. FUNC gives the
function which shall be called. Additional parameters
are given as parameters to the function call. Return
identifier to cancel scheduling with after_cancel.

	
after_cancel(id)

	Cancel scheduling of function identified with ID.

Identifier returned by after or after_idle must be
given as first parameter.

	
after_idle(func, *args)

	Call FUNC once if the Tcl main loop has no event to
process.

Return an identifier to cancel the scheduling with
after_cancel.

	
aspect(minNumer=None, minDenom=None, maxNumer=None, maxDenom=None)

	Instruct the window manager to set the aspect ratio (width/height)
of this widget to be between MINNUMER/MINDENOM and MAXNUMER/MAXDENOM. Return a tuple
of the actual values if no argument is given.

	
attributes(*args)

	This subcommand returns or sets platform specific attributes

The first form returns a list of the platform specific flags and
their values. The second form returns the value for the specific
option. The third form sets one or more of the values. The values
are as follows:

On Windows, -disabled gets or sets whether the window is in a
disabled state. -toolwindow gets or sets the style of the window
to toolwindow (as defined in the MSDN). -topmost gets or sets
whether this is a topmost window (displays above all other
windows).

On Macintosh, XXXXX

On Unix, there are currently no special attribute values.

	
bbox(column=None, row=None, col2=None, row2=None)

	Return a tuple of integer coordinates for the bounding
box of this widget controlled by the geometry manager grid.

If COLUMN, ROW is given the bounding box applies from
the cell with row and column 0 to the specified
cell. If COL2 and ROW2 are given the bounding box
starts at that cell.

The returned integers specify the offset of the upper left
corner in the master widget and the width and height.

	
bell(displayof=0)

	Ring a display’s bell.

	
bind(sequence=None, func=None, add=None)

	Bind to this widget at event SEQUENCE a call to function FUNC.

SEQUENCE is a string of concatenated event
patterns. An event pattern is of the form
<MODIFIER-MODIFIER-TYPE-DETAIL> where MODIFIER is one
of Control, Mod2, M2, Shift, Mod3, M3, Lock, Mod4, M4,
Button1, B1, Mod5, M5 Button2, B2, Meta, M, Button3,
B3, Alt, Button4, B4, Double, Button5, B5 Triple,
Mod1, M1. TYPE is one of Activate, Enter, Map,
ButtonPress, Button, Expose, Motion, ButtonRelease
FocusIn, MouseWheel, Circulate, FocusOut, Property,
Colormap, Gravity Reparent, Configure, KeyPress, Key,
Unmap, Deactivate, KeyRelease Visibility, Destroy,
Leave and DETAIL is the button number for ButtonPress,
ButtonRelease and DETAIL is the Keysym for KeyPress and
KeyRelease. Examples are
<Control-Button-1> for pressing Control and mouse button 1 or
<Alt-A> for pressing A and the Alt key (KeyPress can be omitted).
An event pattern can also be a virtual event of the form
<<AString>> where AString can be arbitrary. This
event can be generated by event_generate.
If events are concatenated they must appear shortly
after each other.

FUNC will be called if the event sequence occurs with an
instance of Event as argument. If the return value of FUNC is
“break” no further bound function is invoked.

An additional boolean parameter ADD specifies whether FUNC will
be called additionally to the other bound function or whether
it will replace the previous function.

Bind will return an identifier to allow deletion of the bound function with
unbind without memory leak.

If FUNC or SEQUENCE is omitted the bound function or list
of bound events are returned.

	
bind_all(sequence=None, func=None, add=None)

	Bind to all widgets at an event SEQUENCE a call to function FUNC.
An additional boolean parameter ADD specifies whether FUNC will
be called additionally to the other bound function or whether
it will replace the previous function. See bind for the return value.

	
bind_class(className, sequence=None, func=None, add=None)

	Bind to widgets with bindtag CLASSNAME at event
SEQUENCE a call of function FUNC. An additional
boolean parameter ADD specifies whether FUNC will be
called additionally to the other bound function or
whether it will replace the previous function. See bind for
the return value.

	
bindtags(tagList=None)

	Set or get the list of bindtags for this widget.

With no argument return the list of all bindtags associated with
this widget. With a list of strings as argument the bindtags are
set to this list. The bindtags determine in which order events are
processed (see bind).

	
cget(key)

	Return the resource value for a KEY given as string.

	
client(name=None)

	Store NAME in WM_CLIENT_MACHINE property of this widget. Return
current value.

	
clipboard_append(string, **kw)

	Append STRING to the Tk clipboard.

A widget specified at the optional displayof keyword
argument specifies the target display. The clipboard
can be retrieved with selection_get.

	
clipboard_clear(**kw)

	Clear the data in the Tk clipboard.

A widget specified for the optional displayof keyword
argument specifies the target display.

	
clipboard_get(**kw)

	Retrieve data from the clipboard on window’s display.

The window keyword defaults to the root window of the Tkinter
application.

The type keyword specifies the form in which the data is
to be returned and should be an atom name such as STRING
or FILE_NAME. Type defaults to STRING, except on X11, where the default
is to try UTF8_STRING and fall back to STRING.

This command is equivalent to:

selection_get(CLIPBOARD)

	
colormapwindows(*wlist)

	Store list of window names (WLIST) into WM_COLORMAPWINDOWS property
of this widget. This list contains windows whose colormaps differ from their
parents. Return current list of widgets if WLIST is empty.

	
colormodel(value=None)

	Useless. Not implemented in Tk.

	
columnconfigure(index, cnf={}, **kw)

	Configure column INDEX of a grid.

Valid resources are minsize (minimum size of the column),
weight (how much does additional space propagate to this column)
and pad (how much space to let additionally).

	
command(value=None)

	Store VALUE in WM_COMMAND property. It is the command
which shall be used to invoke the application. Return current
command if VALUE is None.

	
config(cnf=None, **kw)

	Configure resources of a widget.

The values for resources are specified as keyword
arguments. To get an overview about
the allowed keyword arguments call the method keys.

	
configure(cnf=None, **kw)

	Configure resources of a widget.

The values for resources are specified as keyword
arguments. To get an overview about
the allowed keyword arguments call the method keys.

	
deiconify()

	Deiconify this widget. If it was never mapped it will not be mapped.
On Windows it will raise this widget and give it the focus.

	
deletecommand(name)

	Internal function.

Delete the Tcl command provided in NAME.

	
destroy()

	Destroy this and all descendants widgets.

	
event_add(virtual, *sequences)

	Bind a virtual event VIRTUAL (of the form <<Name>>)
to an event SEQUENCE such that the virtual event is triggered
whenever SEQUENCE occurs.

	
event_delete(virtual, *sequences)

	Unbind a virtual event VIRTUAL from SEQUENCE.

	
event_generate(sequence, **kw)

	Generate an event SEQUENCE. Additional
keyword arguments specify parameter of the event
(e.g. x, y, rootx, rooty).

	
event_info(virtual=None)

	Return a list of all virtual events or the information
about the SEQUENCE bound to the virtual event VIRTUAL.

	
focus()

	Direct input focus to this widget.

If the application currently does not have the focus
this widget will get the focus if the application gets
the focus through the window manager.

	
focus_displayof()

	Return the widget which has currently the focus on the
display where this widget is located.

Return None if the application does not have the focus.

	
focus_force()

	Direct input focus to this widget even if the
application does not have the focus. Use with
caution!

	
focus_get()

	Return the widget which has currently the focus in the
application.

Use focus_displayof to allow working with several
displays. Return None if application does not have
the focus.

	
focus_lastfor()

	Return the widget which would have the focus if top level
for this widget gets the focus from the window manager.

	
focus_set()

	Direct input focus to this widget.

If the application currently does not have the focus
this widget will get the focus if the application gets
the focus through the window manager.

	
focusmodel(model=None)

	Set focus model to MODEL. “active” means that this widget will claim
the focus itself, “passive” means that the window manager shall give
the focus. Return current focus model if MODEL is None.

	
frame()

	Return identifier for decorative frame of this widget if present.

	
geometry(newGeometry=None)

	Set geometry to NEWGEOMETRY of the form =widthxheight+x+y. Return
current value if None is given.

	
getboolean(s)

	Return a boolean value for Tcl boolean values true and false given as parameter.

	
getdouble

	alias of __builtin__.float

	
getint

	alias of __builtin__.int

	
getvar(name='PY_VAR')

	Return value of Tcl variable NAME.

	
grab_current()

	Return widget which has currently the grab in this application
or None.

	
grab_release()

	Release grab for this widget if currently set.

	
grab_set(timeout=30)

	

	
grab_set_global()

	Set global grab for this widget.

A global grab directs all events to this and
descendant widgets on the display. Use with caution -
other applications do not get events anymore.

	
grab_status()

	Return None, “local” or “global” if this widget has
no, a local or a global grab.

	
grid(baseWidth=None, baseHeight=None, widthInc=None, heightInc=None)

	Instruct the window manager that this widget shall only be
resized on grid boundaries. WIDTHINC and HEIGHTINC are the width and
height of a grid unit in pixels. BASEWIDTH and BASEHEIGHT are the
number of grid units requested in Tk_GeometryRequest.

	
grid_bbox(column=None, row=None, col2=None, row2=None)

	Return a tuple of integer coordinates for the bounding
box of this widget controlled by the geometry manager grid.

If COLUMN, ROW is given the bounding box applies from
the cell with row and column 0 to the specified
cell. If COL2 and ROW2 are given the bounding box
starts at that cell.

The returned integers specify the offset of the upper left
corner in the master widget and the width and height.

	
grid_columnconfigure(index, cnf={}, **kw)

	Configure column INDEX of a grid.

Valid resources are minsize (minimum size of the column),
weight (how much does additional space propagate to this column)
and pad (how much space to let additionally).

	
grid_location(x, y)

	Return a tuple of column and row which identify the cell
at which the pixel at position X and Y inside the master
widget is located.

	
grid_propagate(flag=['_noarg_'])

	Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information
of the slaves will determine the size of this widget. If no argument
is given, the current setting will be returned.

	
grid_rowconfigure(index, cnf={}, **kw)

	Configure row INDEX of a grid.

Valid resources are minsize (minimum size of the row),
weight (how much does additional space propagate to this row)
and pad (how much space to let additionally).

	
grid_size()

	Return a tuple of the number of column and rows in the grid.

	
grid_slaves(row=None, column=None)

	Return a list of all slaves of this widget
in its packing order.

	
group(pathName=None)

	Set the group leader widgets for related widgets to PATHNAME. Return
the group leader of this widget if None is given.

	
iconbitmap(bitmap=None, default=None)

	Set bitmap for the iconified widget to BITMAP. Return
the bitmap if None is given.

Under Windows, the DEFAULT parameter can be used to set the icon
for the widget and any descendents that don’t have an icon set
explicitly. DEFAULT can be the relative path to a .ico file
(example: root.iconbitmap(default=’myicon.ico’)). See Tk
documentation for more information.

	
iconify()

	Display widget as icon.

	
iconmask(bitmap=None)

	Set mask for the icon bitmap of this widget. Return the
mask if None is given.

	
iconname(newName=None)

	Set the name of the icon for this widget. Return the name if
None is given.

	
iconposition(x=None, y=None)

	Set the position of the icon of this widget to X and Y. Return
a tuple of the current values of X and X if None is given.

	
iconwindow(pathName=None)

	Set widget PATHNAME to be displayed instead of icon. Return the current
value if None is given.

	
image_names()

	Return a list of all existing image names.

	
image_types()

	Return a list of all available image types (e.g. photo bitmap).

	
keys()

	Return a list of all resource names of this widget.

	
lift(aboveThis=None)

	Raise this widget in the stacking order.

	
lower(belowThis=None)

	Lower this widget in the stacking order.

	
mainloop(n=0)

	Call the mainloop of Tk.

	
maxsize(width=None, height=None)

	Set max WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
minsize(width=None, height=None)

	Set min WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
nametowidget(name)

	Return the Tkinter instance of a widget identified by
its Tcl name NAME.

	
option_add(pattern, value, priority=None)

	Set a VALUE (second parameter) for an option
PATTERN (first parameter).

An optional third parameter gives the numeric priority
(defaults to 80).

	
option_clear()

	Clear the option database.

It will be reloaded if option_add is called.

	
option_get(name, className)

	Return the value for an option NAME for this widget
with CLASSNAME.

Values with higher priority override lower values.

	
option_readfile(fileName, priority=None)

	Read file FILENAME into the option database.

An optional second parameter gives the numeric
priority.

	
overrideredirect(boolean=None)

	Instruct the window manager to ignore this widget
if BOOLEAN is given with 1. Return the current value if None
is given.

	
pack_propagate(flag=['_noarg_'])

	Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information
of the slaves will determine the size of this widget. If no argument
is given the current setting will be returned.

	
pack_slaves()

	Return a list of all slaves of this widget
in its packing order.

	
place_slaves()

	Return a list of all slaves of this widget
in its packing order.

	
positionfrom(who=None)

	Instruct the window manager that the position of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
propagate(flag=['_noarg_'])

	Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information
of the slaves will determine the size of this widget. If no argument
is given the current setting will be returned.

	
protocol(name=None, func=None)

	Bind function FUNC to command NAME for this widget.
Return the function bound to NAME if None is given. NAME could be
e.g. “WM_SAVE_YOURSELF” or “WM_DELETE_WINDOW”.

	
quit()

	Quit the Tcl interpreter. All widgets will be destroyed.

	
register(func, subst=None, needcleanup=1)

	Return a newly created Tcl function. If this
function is called, the Python function FUNC will
be executed. An optional function SUBST can
be given which will be executed before FUNC.

	
resizable(width=None, height=None)

	Instruct the window manager whether this width can be resized
in WIDTH or HEIGHT. Both values are boolean values.

	
rowconfigure(index, cnf={}, **kw)

	Configure row INDEX of a grid.

Valid resources are minsize (minimum size of the row),
weight (how much does additional space propagate to this row)
and pad (how much space to let additionally).

	
selection_clear(**kw)

	Clear the current X selection.

	
selection_get(**kw)

	Return the contents of the current X selection.

A keyword parameter selection specifies the name of
the selection and defaults to PRIMARY. A keyword
parameter displayof specifies a widget on the display
to use. A keyword parameter type specifies the form of data to be
fetched, defaulting to STRING except on X11, where UTF8_STRING is tried
before STRING.

	
selection_handle(command, **kw)

	Specify a function COMMAND to call if the X
selection owned by this widget is queried by another
application.

This function must return the contents of the
selection. The function will be called with the
arguments OFFSET and LENGTH which allows the chunking
of very long selections. The following keyword
parameters can be provided:
selection - name of the selection (default PRIMARY),
type - type of the selection (e.g. STRING, FILE_NAME).

	
selection_own(**kw)

	Become owner of X selection.

A keyword parameter selection specifies the name of
the selection (default PRIMARY).

	
selection_own_get(**kw)

	Return owner of X selection.

The following keyword parameter can
be provided:
selection - name of the selection (default PRIMARY),
type - type of the selection (e.g. STRING, FILE_NAME).

	
send(interp, cmd, *args)

	Send Tcl command CMD to different interpreter INTERP to be executed.

	
setvar(name='PY_VAR', value='1')

	Set Tcl variable NAME to VALUE.

	
show()

	

	
size()

	Return a tuple of the number of column and rows in the grid.

	
sizefrom(who=None)

	Instruct the window manager that the size of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
slaves()

	Return a list of all slaves of this widget
in its packing order.

	
state(newstate=None)

	Query or set the state of this widget as one of normal, icon,
iconic (see wm_iconwindow), withdrawn, or zoomed (Windows only).

	
title(string=None)

	Set the title of this widget.

	
tk_bisque()

	Change the color scheme to light brown as used in Tk 3.6 and before.

	
tk_focusFollowsMouse()

	The widget under mouse will get automatically focus. Can not
be disabled easily.

	
tk_focusNext()

	Return the next widget in the focus order which follows
widget which has currently the focus.

The focus order first goes to the next child, then to
the children of the child recursively and then to the
next sibling which is higher in the stacking order. A
widget is omitted if it has the takefocus resource set
to 0.

	
tk_focusPrev()

	Return previous widget in the focus order. See tk_focusNext for details.

	
tk_menuBar(*args)

	Do not use. Needed in Tk 3.6 and earlier.

	
tk_setPalette(*args, **kw)

	Set a new color scheme for all widget elements.

A single color as argument will cause that all colors of Tk
widget elements are derived from this.
Alternatively several keyword parameters and its associated
colors can be given. The following keywords are valid:
activeBackground, foreground, selectColor,
activeForeground, highlightBackground, selectBackground,
background, highlightColor, selectForeground,
disabledForeground, insertBackground, troughColor.

	
tk_strictMotif(boolean=None)

	Set Tcl internal variable, whether the look and feel
should adhere to Motif.

A parameter of 1 means adhere to Motif (e.g. no color
change if mouse passes over slider).
Returns the set value.

	
tkraise(aboveThis=None)

	Raise this widget in the stacking order.

	
transient(master=None)

	Instruct the window manager that this widget is transient
with regard to widget MASTER.

	
unbind(sequence, funcid=None)

	Unbind for this widget for event SEQUENCE the
function identified with FUNCID.

	
unbind_all(sequence)

	Unbind for all widgets for event SEQUENCE all functions.

	
unbind_class(className, sequence)

	Unbind for all widgets with bindtag CLASSNAME for event SEQUENCE
all functions.

	
update()

	Enter event loop until all pending events have been processed by Tcl.

	
update_idletasks()

	Enter event loop until all idle callbacks have been called. This
will update the display of windows but not process events caused by
the user.

	
wait_variable(name='PY_VAR')

	Wait until the variable is modified.

A parameter of type IntVar, StringVar, DoubleVar or
BooleanVar must be given.

	
wait_visibility(window=None)

	Wait until the visibility of a WIDGET changes
(e.g. it appears).

If no parameter is given self is used.

	
wait_window(window=None)

	Wait until a WIDGET is destroyed.

If no parameter is given self is used.

	
waitvar(name='PY_VAR')

	Wait until the variable is modified.

A parameter of type IntVar, StringVar, DoubleVar or
BooleanVar must be given.

	
winfo_atom(name, displayof=0)

	Return integer which represents atom NAME.

	
winfo_atomname(id, displayof=0)

	Return name of atom with identifier ID.

	
winfo_cells()

	Return number of cells in the colormap for this widget.

	
winfo_children()

	Return a list of all widgets which are children of this widget.

	
winfo_class()

	Return window class name of this widget.

	
winfo_colormapfull()

	Return true if at the last color request the colormap was full.

	
winfo_containing(rootX, rootY, displayof=0)

	Return the widget which is at the root coordinates ROOTX, ROOTY.

	
winfo_depth()

	Return the number of bits per pixel.

	
winfo_exists()

	Return true if this widget exists.

	
winfo_fpixels(number)

	Return the number of pixels for the given distance NUMBER
(e.g. “3c”) as float.

	
winfo_geometry()

	Return geometry string for this widget in the form “widthxheight+X+Y”.

	
winfo_height()

	Return height of this widget.

	
winfo_id()

	Return identifier ID for this widget.

	
winfo_interps(displayof=0)

	Return the name of all Tcl interpreters for this display.

	
winfo_ismapped()

	Return true if this widget is mapped.

	
winfo_manager()

	Return the window manager name for this widget.

	
winfo_name()

	Return the name of this widget.

	
winfo_parent()

	Return the name of the parent of this widget.

	
winfo_pathname(id, displayof=0)

	Return the pathname of the widget given by ID.

	
winfo_pixels(number)

	Rounded integer value of winfo_fpixels.

	
winfo_pointerx()

	Return the x coordinate of the pointer on the root window.

	
winfo_pointerxy()

	Return a tuple of x and y coordinates of the pointer on the root window.

	
winfo_pointery()

	Return the y coordinate of the pointer on the root window.

	
winfo_reqheight()

	Return requested height of this widget.

	
winfo_reqwidth()

	Return requested width of this widget.

	
winfo_rgb(color)

	Return tuple of decimal values for red, green, blue for
COLOR in this widget.

	
winfo_rootx()

	Return x coordinate of upper left corner of this widget on the
root window.

	
winfo_rooty()

	Return y coordinate of upper left corner of this widget on the
root window.

	
winfo_screen()

	Return the screen name of this widget.

	
winfo_screencells()

	Return the number of the cells in the colormap of the screen
of this widget.

	
winfo_screendepth()

	Return the number of bits per pixel of the root window of the
screen of this widget.

	
winfo_screenheight()

	Return the number of pixels of the height of the screen of this widget
in pixel.

	
winfo_screenmmheight()

	Return the number of pixels of the height of the screen of
this widget in mm.

	
winfo_screenmmwidth()

	Return the number of pixels of the width of the screen of
this widget in mm.

	
winfo_screenvisual()

	Return one of the strings directcolor, grayscale, pseudocolor,
staticcolor, staticgray, or truecolor for the default
colormodel of this screen.

	
winfo_screenwidth()

	Return the number of pixels of the width of the screen of
this widget in pixel.

	
winfo_server()

	Return information of the X-Server of the screen of this widget in
the form “XmajorRminor vendor vendorVersion”.

	
winfo_toplevel()

	Return the toplevel widget of this widget.

	
winfo_viewable()

	Return true if the widget and all its higher ancestors are mapped.

	
winfo_visual()

	Return one of the strings directcolor, grayscale, pseudocolor,
staticcolor, staticgray, or truecolor for the
colormodel of this widget.

	
winfo_visualid()

	Return the X identifier for the visual for this widget.

	
winfo_visualsavailable(includeids=0)

	Return a list of all visuals available for the screen
of this widget.

Each item in the list consists of a visual name (see winfo_visual), a
depth and if INCLUDEIDS=1 is given also the X identifier.

	
winfo_vrootheight()

	Return the height of the virtual root window associated with this
widget in pixels. If there is no virtual root window return the
height of the screen.

	
winfo_vrootwidth()

	Return the width of the virtual root window associated with this
widget in pixel. If there is no virtual root window return the
width of the screen.

	
winfo_vrootx()

	Return the x offset of the virtual root relative to the root
window of the screen of this widget.

	
winfo_vrooty()

	Return the y offset of the virtual root relative to the root
window of the screen of this widget.

	
winfo_width()

	Return the width of this widget.

	
winfo_x()

	Return the x coordinate of the upper left corner of this widget
in the parent.

	
winfo_y()

	Return the y coordinate of the upper left corner of this widget
in the parent.

	
withdraw()

	Withdraw this widget from the screen such that it is unmapped
and forgotten by the window manager. Re-draw it with wm_deiconify.

	
wm_aspect(minNumer=None, minDenom=None, maxNumer=None, maxDenom=None)

	Instruct the window manager to set the aspect ratio (width/height)
of this widget to be between MINNUMER/MINDENOM and MAXNUMER/MAXDENOM. Return a tuple
of the actual values if no argument is given.

	
wm_attributes(*args)

	This subcommand returns or sets platform specific attributes

The first form returns a list of the platform specific flags and
their values. The second form returns the value for the specific
option. The third form sets one or more of the values. The values
are as follows:

On Windows, -disabled gets or sets whether the window is in a
disabled state. -toolwindow gets or sets the style of the window
to toolwindow (as defined in the MSDN). -topmost gets or sets
whether this is a topmost window (displays above all other
windows).

On Macintosh, XXXXX

On Unix, there are currently no special attribute values.

	
wm_client(name=None)

	Store NAME in WM_CLIENT_MACHINE property of this widget. Return
current value.

	
wm_colormapwindows(*wlist)

	Store list of window names (WLIST) into WM_COLORMAPWINDOWS property
of this widget. This list contains windows whose colormaps differ from their
parents. Return current list of widgets if WLIST is empty.

	
wm_command(value=None)

	Store VALUE in WM_COMMAND property. It is the command
which shall be used to invoke the application. Return current
command if VALUE is None.

	
wm_deiconify()

	Deiconify this widget. If it was never mapped it will not be mapped.
On Windows it will raise this widget and give it the focus.

	
wm_focusmodel(model=None)

	Set focus model to MODEL. “active” means that this widget will claim
the focus itself, “passive” means that the window manager shall give
the focus. Return current focus model if MODEL is None.

	
wm_frame()

	Return identifier for decorative frame of this widget if present.

	
wm_geometry(newGeometry=None)

	Set geometry to NEWGEOMETRY of the form =widthxheight+x+y. Return
current value if None is given.

	
wm_grid(baseWidth=None, baseHeight=None, widthInc=None, heightInc=None)

	Instruct the window manager that this widget shall only be
resized on grid boundaries. WIDTHINC and HEIGHTINC are the width and
height of a grid unit in pixels. BASEWIDTH and BASEHEIGHT are the
number of grid units requested in Tk_GeometryRequest.

	
wm_group(pathName=None)

	Set the group leader widgets for related widgets to PATHNAME. Return
the group leader of this widget if None is given.

	
wm_iconbitmap(bitmap=None, default=None)

	Set bitmap for the iconified widget to BITMAP. Return
the bitmap if None is given.

Under Windows, the DEFAULT parameter can be used to set the icon
for the widget and any descendents that don’t have an icon set
explicitly. DEFAULT can be the relative path to a .ico file
(example: root.iconbitmap(default=’myicon.ico’)). See Tk
documentation for more information.

	
wm_iconify()

	Display widget as icon.

	
wm_iconmask(bitmap=None)

	Set mask for the icon bitmap of this widget. Return the
mask if None is given.

	
wm_iconname(newName=None)

	Set the name of the icon for this widget. Return the name if
None is given.

	
wm_iconposition(x=None, y=None)

	Set the position of the icon of this widget to X and Y. Return
a tuple of the current values of X and X if None is given.

	
wm_iconwindow(pathName=None)

	Set widget PATHNAME to be displayed instead of icon. Return the current
value if None is given.

	
wm_maxsize(width=None, height=None)

	Set max WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
wm_minsize(width=None, height=None)

	Set min WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
wm_overrideredirect(boolean=None)

	Instruct the window manager to ignore this widget
if BOOLEAN is given with 1. Return the current value if None
is given.

	
wm_positionfrom(who=None)

	Instruct the window manager that the position of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
wm_protocol(name=None, func=None)

	Bind function FUNC to command NAME for this widget.
Return the function bound to NAME if None is given. NAME could be
e.g. “WM_SAVE_YOURSELF” or “WM_DELETE_WINDOW”.

	
wm_resizable(width=None, height=None)

	Instruct the window manager whether this width can be resized
in WIDTH or HEIGHT. Both values are boolean values.

	
wm_sizefrom(who=None)

	Instruct the window manager that the size of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
wm_state(newstate=None)

	Query or set the state of this widget as one of normal, icon,
iconic (see wm_iconwindow), withdrawn, or zoomed (Windows only).

	
wm_title(string=None)

	Set the title of this widget.

	
wm_transient(master=None)

	Instruct the window manager that this widget is transient
with regard to widget MASTER.

	
wm_withdraw()

	Withdraw this widget from the screen such that it is unmapped
and forgotten by the window manager. Re-draw it with wm_deiconify.

	
class robot.libraries.dialogs_py.PassFailDialog(message, value=None, **extra)

	Bases: robot.libraries.dialogs_py._TkDialog

	
after(ms, func=None, *args)

	Call function once after given time.

MS specifies the time in milliseconds. FUNC gives the
function which shall be called. Additional parameters
are given as parameters to the function call. Return
identifier to cancel scheduling with after_cancel.

	
after_cancel(id)

	Cancel scheduling of function identified with ID.

Identifier returned by after or after_idle must be
given as first parameter.

	
after_idle(func, *args)

	Call FUNC once if the Tcl main loop has no event to
process.

Return an identifier to cancel the scheduling with
after_cancel.

	
aspect(minNumer=None, minDenom=None, maxNumer=None, maxDenom=None)

	Instruct the window manager to set the aspect ratio (width/height)
of this widget to be between MINNUMER/MINDENOM and MAXNUMER/MAXDENOM. Return a tuple
of the actual values if no argument is given.

	
attributes(*args)

	This subcommand returns or sets platform specific attributes

The first form returns a list of the platform specific flags and
their values. The second form returns the value for the specific
option. The third form sets one or more of the values. The values
are as follows:

On Windows, -disabled gets or sets whether the window is in a
disabled state. -toolwindow gets or sets the style of the window
to toolwindow (as defined in the MSDN). -topmost gets or sets
whether this is a topmost window (displays above all other
windows).

On Macintosh, XXXXX

On Unix, there are currently no special attribute values.

	
bbox(column=None, row=None, col2=None, row2=None)

	Return a tuple of integer coordinates for the bounding
box of this widget controlled by the geometry manager grid.

If COLUMN, ROW is given the bounding box applies from
the cell with row and column 0 to the specified
cell. If COL2 and ROW2 are given the bounding box
starts at that cell.

The returned integers specify the offset of the upper left
corner in the master widget and the width and height.

	
bell(displayof=0)

	Ring a display’s bell.

	
bind(sequence=None, func=None, add=None)

	Bind to this widget at event SEQUENCE a call to function FUNC.

SEQUENCE is a string of concatenated event
patterns. An event pattern is of the form
<MODIFIER-MODIFIER-TYPE-DETAIL> where MODIFIER is one
of Control, Mod2, M2, Shift, Mod3, M3, Lock, Mod4, M4,
Button1, B1, Mod5, M5 Button2, B2, Meta, M, Button3,
B3, Alt, Button4, B4, Double, Button5, B5 Triple,
Mod1, M1. TYPE is one of Activate, Enter, Map,
ButtonPress, Button, Expose, Motion, ButtonRelease
FocusIn, MouseWheel, Circulate, FocusOut, Property,
Colormap, Gravity Reparent, Configure, KeyPress, Key,
Unmap, Deactivate, KeyRelease Visibility, Destroy,
Leave and DETAIL is the button number for ButtonPress,
ButtonRelease and DETAIL is the Keysym for KeyPress and
KeyRelease. Examples are
<Control-Button-1> for pressing Control and mouse button 1 or
<Alt-A> for pressing A and the Alt key (KeyPress can be omitted).
An event pattern can also be a virtual event of the form
<<AString>> where AString can be arbitrary. This
event can be generated by event_generate.
If events are concatenated they must appear shortly
after each other.

FUNC will be called if the event sequence occurs with an
instance of Event as argument. If the return value of FUNC is
“break” no further bound function is invoked.

An additional boolean parameter ADD specifies whether FUNC will
be called additionally to the other bound function or whether
it will replace the previous function.

Bind will return an identifier to allow deletion of the bound function with
unbind without memory leak.

If FUNC or SEQUENCE is omitted the bound function or list
of bound events are returned.

	
bind_all(sequence=None, func=None, add=None)

	Bind to all widgets at an event SEQUENCE a call to function FUNC.
An additional boolean parameter ADD specifies whether FUNC will
be called additionally to the other bound function or whether
it will replace the previous function. See bind for the return value.

	
bind_class(className, sequence=None, func=None, add=None)

	Bind to widgets with bindtag CLASSNAME at event
SEQUENCE a call of function FUNC. An additional
boolean parameter ADD specifies whether FUNC will be
called additionally to the other bound function or
whether it will replace the previous function. See bind for
the return value.

	
bindtags(tagList=None)

	Set or get the list of bindtags for this widget.

With no argument return the list of all bindtags associated with
this widget. With a list of strings as argument the bindtags are
set to this list. The bindtags determine in which order events are
processed (see bind).

	
cget(key)

	Return the resource value for a KEY given as string.

	
client(name=None)

	Store NAME in WM_CLIENT_MACHINE property of this widget. Return
current value.

	
clipboard_append(string, **kw)

	Append STRING to the Tk clipboard.

A widget specified at the optional displayof keyword
argument specifies the target display. The clipboard
can be retrieved with selection_get.

	
clipboard_clear(**kw)

	Clear the data in the Tk clipboard.

A widget specified for the optional displayof keyword
argument specifies the target display.

	
clipboard_get(**kw)

	Retrieve data from the clipboard on window’s display.

The window keyword defaults to the root window of the Tkinter
application.

The type keyword specifies the form in which the data is
to be returned and should be an atom name such as STRING
or FILE_NAME. Type defaults to STRING, except on X11, where the default
is to try UTF8_STRING and fall back to STRING.

This command is equivalent to:

selection_get(CLIPBOARD)

	
colormapwindows(*wlist)

	Store list of window names (WLIST) into WM_COLORMAPWINDOWS property
of this widget. This list contains windows whose colormaps differ from their
parents. Return current list of widgets if WLIST is empty.

	
colormodel(value=None)

	Useless. Not implemented in Tk.

	
columnconfigure(index, cnf={}, **kw)

	Configure column INDEX of a grid.

Valid resources are minsize (minimum size of the column),
weight (how much does additional space propagate to this column)
and pad (how much space to let additionally).

	
command(value=None)

	Store VALUE in WM_COMMAND property. It is the command
which shall be used to invoke the application. Return current
command if VALUE is None.

	
config(cnf=None, **kw)

	Configure resources of a widget.

The values for resources are specified as keyword
arguments. To get an overview about
the allowed keyword arguments call the method keys.

	
configure(cnf=None, **kw)

	Configure resources of a widget.

The values for resources are specified as keyword
arguments. To get an overview about
the allowed keyword arguments call the method keys.

	
deiconify()

	Deiconify this widget. If it was never mapped it will not be mapped.
On Windows it will raise this widget and give it the focus.

	
deletecommand(name)

	Internal function.

Delete the Tcl command provided in NAME.

	
destroy()

	Destroy this and all descendants widgets.

	
event_add(virtual, *sequences)

	Bind a virtual event VIRTUAL (of the form <<Name>>)
to an event SEQUENCE such that the virtual event is triggered
whenever SEQUENCE occurs.

	
event_delete(virtual, *sequences)

	Unbind a virtual event VIRTUAL from SEQUENCE.

	
event_generate(sequence, **kw)

	Generate an event SEQUENCE. Additional
keyword arguments specify parameter of the event
(e.g. x, y, rootx, rooty).

	
event_info(virtual=None)

	Return a list of all virtual events or the information
about the SEQUENCE bound to the virtual event VIRTUAL.

	
focus()

	Direct input focus to this widget.

If the application currently does not have the focus
this widget will get the focus if the application gets
the focus through the window manager.

	
focus_displayof()

	Return the widget which has currently the focus on the
display where this widget is located.

Return None if the application does not have the focus.

	
focus_force()

	Direct input focus to this widget even if the
application does not have the focus. Use with
caution!

	
focus_get()

	Return the widget which has currently the focus in the
application.

Use focus_displayof to allow working with several
displays. Return None if application does not have
the focus.

	
focus_lastfor()

	Return the widget which would have the focus if top level
for this widget gets the focus from the window manager.

	
focus_set()

	Direct input focus to this widget.

If the application currently does not have the focus
this widget will get the focus if the application gets
the focus through the window manager.

	
focusmodel(model=None)

	Set focus model to MODEL. “active” means that this widget will claim
the focus itself, “passive” means that the window manager shall give
the focus. Return current focus model if MODEL is None.

	
frame()

	Return identifier for decorative frame of this widget if present.

	
geometry(newGeometry=None)

	Set geometry to NEWGEOMETRY of the form =widthxheight+x+y. Return
current value if None is given.

	
getboolean(s)

	Return a boolean value for Tcl boolean values true and false given as parameter.

	
getdouble

	alias of __builtin__.float

	
getint

	alias of __builtin__.int

	
getvar(name='PY_VAR')

	Return value of Tcl variable NAME.

	
grab_current()

	Return widget which has currently the grab in this application
or None.

	
grab_release()

	Release grab for this widget if currently set.

	
grab_set(timeout=30)

	

	
grab_set_global()

	Set global grab for this widget.

A global grab directs all events to this and
descendant widgets on the display. Use with caution -
other applications do not get events anymore.

	
grab_status()

	Return None, “local” or “global” if this widget has
no, a local or a global grab.

	
grid(baseWidth=None, baseHeight=None, widthInc=None, heightInc=None)

	Instruct the window manager that this widget shall only be
resized on grid boundaries. WIDTHINC and HEIGHTINC are the width and
height of a grid unit in pixels. BASEWIDTH and BASEHEIGHT are the
number of grid units requested in Tk_GeometryRequest.

	
grid_bbox(column=None, row=None, col2=None, row2=None)

	Return a tuple of integer coordinates for the bounding
box of this widget controlled by the geometry manager grid.

If COLUMN, ROW is given the bounding box applies from
the cell with row and column 0 to the specified
cell. If COL2 and ROW2 are given the bounding box
starts at that cell.

The returned integers specify the offset of the upper left
corner in the master widget and the width and height.

	
grid_columnconfigure(index, cnf={}, **kw)

	Configure column INDEX of a grid.

Valid resources are minsize (minimum size of the column),
weight (how much does additional space propagate to this column)
and pad (how much space to let additionally).

	
grid_location(x, y)

	Return a tuple of column and row which identify the cell
at which the pixel at position X and Y inside the master
widget is located.

	
grid_propagate(flag=['_noarg_'])

	Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information
of the slaves will determine the size of this widget. If no argument
is given, the current setting will be returned.

	
grid_rowconfigure(index, cnf={}, **kw)

	Configure row INDEX of a grid.

Valid resources are minsize (minimum size of the row),
weight (how much does additional space propagate to this row)
and pad (how much space to let additionally).

	
grid_size()

	Return a tuple of the number of column and rows in the grid.

	
grid_slaves(row=None, column=None)

	Return a list of all slaves of this widget
in its packing order.

	
group(pathName=None)

	Set the group leader widgets for related widgets to PATHNAME. Return
the group leader of this widget if None is given.

	
iconbitmap(bitmap=None, default=None)

	Set bitmap for the iconified widget to BITMAP. Return
the bitmap if None is given.

Under Windows, the DEFAULT parameter can be used to set the icon
for the widget and any descendents that don’t have an icon set
explicitly. DEFAULT can be the relative path to a .ico file
(example: root.iconbitmap(default=’myicon.ico’)). See Tk
documentation for more information.

	
iconify()

	Display widget as icon.

	
iconmask(bitmap=None)

	Set mask for the icon bitmap of this widget. Return the
mask if None is given.

	
iconname(newName=None)

	Set the name of the icon for this widget. Return the name if
None is given.

	
iconposition(x=None, y=None)

	Set the position of the icon of this widget to X and Y. Return
a tuple of the current values of X and X if None is given.

	
iconwindow(pathName=None)

	Set widget PATHNAME to be displayed instead of icon. Return the current
value if None is given.

	
image_names()

	Return a list of all existing image names.

	
image_types()

	Return a list of all available image types (e.g. photo bitmap).

	
keys()

	Return a list of all resource names of this widget.

	
lift(aboveThis=None)

	Raise this widget in the stacking order.

	
lower(belowThis=None)

	Lower this widget in the stacking order.

	
mainloop(n=0)

	Call the mainloop of Tk.

	
maxsize(width=None, height=None)

	Set max WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
minsize(width=None, height=None)

	Set min WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
nametowidget(name)

	Return the Tkinter instance of a widget identified by
its Tcl name NAME.

	
option_add(pattern, value, priority=None)

	Set a VALUE (second parameter) for an option
PATTERN (first parameter).

An optional third parameter gives the numeric priority
(defaults to 80).

	
option_clear()

	Clear the option database.

It will be reloaded if option_add is called.

	
option_get(name, className)

	Return the value for an option NAME for this widget
with CLASSNAME.

Values with higher priority override lower values.

	
option_readfile(fileName, priority=None)

	Read file FILENAME into the option database.

An optional second parameter gives the numeric
priority.

	
overrideredirect(boolean=None)

	Instruct the window manager to ignore this widget
if BOOLEAN is given with 1. Return the current value if None
is given.

	
pack_propagate(flag=['_noarg_'])

	Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information
of the slaves will determine the size of this widget. If no argument
is given the current setting will be returned.

	
pack_slaves()

	Return a list of all slaves of this widget
in its packing order.

	
place_slaves()

	Return a list of all slaves of this widget
in its packing order.

	
positionfrom(who=None)

	Instruct the window manager that the position of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
propagate(flag=['_noarg_'])

	Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information
of the slaves will determine the size of this widget. If no argument
is given the current setting will be returned.

	
protocol(name=None, func=None)

	Bind function FUNC to command NAME for this widget.
Return the function bound to NAME if None is given. NAME could be
e.g. “WM_SAVE_YOURSELF” or “WM_DELETE_WINDOW”.

	
quit()

	Quit the Tcl interpreter. All widgets will be destroyed.

	
register(func, subst=None, needcleanup=1)

	Return a newly created Tcl function. If this
function is called, the Python function FUNC will
be executed. An optional function SUBST can
be given which will be executed before FUNC.

	
resizable(width=None, height=None)

	Instruct the window manager whether this width can be resized
in WIDTH or HEIGHT. Both values are boolean values.

	
rowconfigure(index, cnf={}, **kw)

	Configure row INDEX of a grid.

Valid resources are minsize (minimum size of the row),
weight (how much does additional space propagate to this row)
and pad (how much space to let additionally).

	
selection_clear(**kw)

	Clear the current X selection.

	
selection_get(**kw)

	Return the contents of the current X selection.

A keyword parameter selection specifies the name of
the selection and defaults to PRIMARY. A keyword
parameter displayof specifies a widget on the display
to use. A keyword parameter type specifies the form of data to be
fetched, defaulting to STRING except on X11, where UTF8_STRING is tried
before STRING.

	
selection_handle(command, **kw)

	Specify a function COMMAND to call if the X
selection owned by this widget is queried by another
application.

This function must return the contents of the
selection. The function will be called with the
arguments OFFSET and LENGTH which allows the chunking
of very long selections. The following keyword
parameters can be provided:
selection - name of the selection (default PRIMARY),
type - type of the selection (e.g. STRING, FILE_NAME).

	
selection_own(**kw)

	Become owner of X selection.

A keyword parameter selection specifies the name of
the selection (default PRIMARY).

	
selection_own_get(**kw)

	Return owner of X selection.

The following keyword parameter can
be provided:
selection - name of the selection (default PRIMARY),
type - type of the selection (e.g. STRING, FILE_NAME).

	
send(interp, cmd, *args)

	Send Tcl command CMD to different interpreter INTERP to be executed.

	
setvar(name='PY_VAR', value='1')

	Set Tcl variable NAME to VALUE.

	
show()

	

	
size()

	Return a tuple of the number of column and rows in the grid.

	
sizefrom(who=None)

	Instruct the window manager that the size of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
slaves()

	Return a list of all slaves of this widget
in its packing order.

	
state(newstate=None)

	Query or set the state of this widget as one of normal, icon,
iconic (see wm_iconwindow), withdrawn, or zoomed (Windows only).

	
title(string=None)

	Set the title of this widget.

	
tk_bisque()

	Change the color scheme to light brown as used in Tk 3.6 and before.

	
tk_focusFollowsMouse()

	The widget under mouse will get automatically focus. Can not
be disabled easily.

	
tk_focusNext()

	Return the next widget in the focus order which follows
widget which has currently the focus.

The focus order first goes to the next child, then to
the children of the child recursively and then to the
next sibling which is higher in the stacking order. A
widget is omitted if it has the takefocus resource set
to 0.

	
tk_focusPrev()

	Return previous widget in the focus order. See tk_focusNext for details.

	
tk_menuBar(*args)

	Do not use. Needed in Tk 3.6 and earlier.

	
tk_setPalette(*args, **kw)

	Set a new color scheme for all widget elements.

A single color as argument will cause that all colors of Tk
widget elements are derived from this.
Alternatively several keyword parameters and its associated
colors can be given. The following keywords are valid:
activeBackground, foreground, selectColor,
activeForeground, highlightBackground, selectBackground,
background, highlightColor, selectForeground,
disabledForeground, insertBackground, troughColor.

	
tk_strictMotif(boolean=None)

	Set Tcl internal variable, whether the look and feel
should adhere to Motif.

A parameter of 1 means adhere to Motif (e.g. no color
change if mouse passes over slider).
Returns the set value.

	
tkraise(aboveThis=None)

	Raise this widget in the stacking order.

	
transient(master=None)

	Instruct the window manager that this widget is transient
with regard to widget MASTER.

	
unbind(sequence, funcid=None)

	Unbind for this widget for event SEQUENCE the
function identified with FUNCID.

	
unbind_all(sequence)

	Unbind for all widgets for event SEQUENCE all functions.

	
unbind_class(className, sequence)

	Unbind for all widgets with bindtag CLASSNAME for event SEQUENCE
all functions.

	
update()

	Enter event loop until all pending events have been processed by Tcl.

	
update_idletasks()

	Enter event loop until all idle callbacks have been called. This
will update the display of windows but not process events caused by
the user.

	
wait_variable(name='PY_VAR')

	Wait until the variable is modified.

A parameter of type IntVar, StringVar, DoubleVar or
BooleanVar must be given.

	
wait_visibility(window=None)

	Wait until the visibility of a WIDGET changes
(e.g. it appears).

If no parameter is given self is used.

	
wait_window(window=None)

	Wait until a WIDGET is destroyed.

If no parameter is given self is used.

	
waitvar(name='PY_VAR')

	Wait until the variable is modified.

A parameter of type IntVar, StringVar, DoubleVar or
BooleanVar must be given.

	
winfo_atom(name, displayof=0)

	Return integer which represents atom NAME.

	
winfo_atomname(id, displayof=0)

	Return name of atom with identifier ID.

	
winfo_cells()

	Return number of cells in the colormap for this widget.

	
winfo_children()

	Return a list of all widgets which are children of this widget.

	
winfo_class()

	Return window class name of this widget.

	
winfo_colormapfull()

	Return true if at the last color request the colormap was full.

	
winfo_containing(rootX, rootY, displayof=0)

	Return the widget which is at the root coordinates ROOTX, ROOTY.

	
winfo_depth()

	Return the number of bits per pixel.

	
winfo_exists()

	Return true if this widget exists.

	
winfo_fpixels(number)

	Return the number of pixels for the given distance NUMBER
(e.g. “3c”) as float.

	
winfo_geometry()

	Return geometry string for this widget in the form “widthxheight+X+Y”.

	
winfo_height()

	Return height of this widget.

	
winfo_id()

	Return identifier ID for this widget.

	
winfo_interps(displayof=0)

	Return the name of all Tcl interpreters for this display.

	
winfo_ismapped()

	Return true if this widget is mapped.

	
winfo_manager()

	Return the window manager name for this widget.

	
winfo_name()

	Return the name of this widget.

	
winfo_parent()

	Return the name of the parent of this widget.

	
winfo_pathname(id, displayof=0)

	Return the pathname of the widget given by ID.

	
winfo_pixels(number)

	Rounded integer value of winfo_fpixels.

	
winfo_pointerx()

	Return the x coordinate of the pointer on the root window.

	
winfo_pointerxy()

	Return a tuple of x and y coordinates of the pointer on the root window.

	
winfo_pointery()

	Return the y coordinate of the pointer on the root window.

	
winfo_reqheight()

	Return requested height of this widget.

	
winfo_reqwidth()

	Return requested width of this widget.

	
winfo_rgb(color)

	Return tuple of decimal values for red, green, blue for
COLOR in this widget.

	
winfo_rootx()

	Return x coordinate of upper left corner of this widget on the
root window.

	
winfo_rooty()

	Return y coordinate of upper left corner of this widget on the
root window.

	
winfo_screen()

	Return the screen name of this widget.

	
winfo_screencells()

	Return the number of the cells in the colormap of the screen
of this widget.

	
winfo_screendepth()

	Return the number of bits per pixel of the root window of the
screen of this widget.

	
winfo_screenheight()

	Return the number of pixels of the height of the screen of this widget
in pixel.

	
winfo_screenmmheight()

	Return the number of pixels of the height of the screen of
this widget in mm.

	
winfo_screenmmwidth()

	Return the number of pixels of the width of the screen of
this widget in mm.

	
winfo_screenvisual()

	Return one of the strings directcolor, grayscale, pseudocolor,
staticcolor, staticgray, or truecolor for the default
colormodel of this screen.

	
winfo_screenwidth()

	Return the number of pixels of the width of the screen of
this widget in pixel.

	
winfo_server()

	Return information of the X-Server of the screen of this widget in
the form “XmajorRminor vendor vendorVersion”.

	
winfo_toplevel()

	Return the toplevel widget of this widget.

	
winfo_viewable()

	Return true if the widget and all its higher ancestors are mapped.

	
winfo_visual()

	Return one of the strings directcolor, grayscale, pseudocolor,
staticcolor, staticgray, or truecolor for the
colormodel of this widget.

	
winfo_visualid()

	Return the X identifier for the visual for this widget.

	
winfo_visualsavailable(includeids=0)

	Return a list of all visuals available for the screen
of this widget.

Each item in the list consists of a visual name (see winfo_visual), a
depth and if INCLUDEIDS=1 is given also the X identifier.

	
winfo_vrootheight()

	Return the height of the virtual root window associated with this
widget in pixels. If there is no virtual root window return the
height of the screen.

	
winfo_vrootwidth()

	Return the width of the virtual root window associated with this
widget in pixel. If there is no virtual root window return the
width of the screen.

	
winfo_vrootx()

	Return the x offset of the virtual root relative to the root
window of the screen of this widget.

	
winfo_vrooty()

	Return the y offset of the virtual root relative to the root
window of the screen of this widget.

	
winfo_width()

	Return the width of this widget.

	
winfo_x()

	Return the x coordinate of the upper left corner of this widget
in the parent.

	
winfo_y()

	Return the y coordinate of the upper left corner of this widget
in the parent.

	
withdraw()

	Withdraw this widget from the screen such that it is unmapped
and forgotten by the window manager. Re-draw it with wm_deiconify.

	
wm_aspect(minNumer=None, minDenom=None, maxNumer=None, maxDenom=None)

	Instruct the window manager to set the aspect ratio (width/height)
of this widget to be between MINNUMER/MINDENOM and MAXNUMER/MAXDENOM. Return a tuple
of the actual values if no argument is given.

	
wm_attributes(*args)

	This subcommand returns or sets platform specific attributes

The first form returns a list of the platform specific flags and
their values. The second form returns the value for the specific
option. The third form sets one or more of the values. The values
are as follows:

On Windows, -disabled gets or sets whether the window is in a
disabled state. -toolwindow gets or sets the style of the window
to toolwindow (as defined in the MSDN). -topmost gets or sets
whether this is a topmost window (displays above all other
windows).

On Macintosh, XXXXX

On Unix, there are currently no special attribute values.

	
wm_client(name=None)

	Store NAME in WM_CLIENT_MACHINE property of this widget. Return
current value.

	
wm_colormapwindows(*wlist)

	Store list of window names (WLIST) into WM_COLORMAPWINDOWS property
of this widget. This list contains windows whose colormaps differ from their
parents. Return current list of widgets if WLIST is empty.

	
wm_command(value=None)

	Store VALUE in WM_COMMAND property. It is the command
which shall be used to invoke the application. Return current
command if VALUE is None.

	
wm_deiconify()

	Deiconify this widget. If it was never mapped it will not be mapped.
On Windows it will raise this widget and give it the focus.

	
wm_focusmodel(model=None)

	Set focus model to MODEL. “active” means that this widget will claim
the focus itself, “passive” means that the window manager shall give
the focus. Return current focus model if MODEL is None.

	
wm_frame()

	Return identifier for decorative frame of this widget if present.

	
wm_geometry(newGeometry=None)

	Set geometry to NEWGEOMETRY of the form =widthxheight+x+y. Return
current value if None is given.

	
wm_grid(baseWidth=None, baseHeight=None, widthInc=None, heightInc=None)

	Instruct the window manager that this widget shall only be
resized on grid boundaries. WIDTHINC and HEIGHTINC are the width and
height of a grid unit in pixels. BASEWIDTH and BASEHEIGHT are the
number of grid units requested in Tk_GeometryRequest.

	
wm_group(pathName=None)

	Set the group leader widgets for related widgets to PATHNAME. Return
the group leader of this widget if None is given.

	
wm_iconbitmap(bitmap=None, default=None)

	Set bitmap for the iconified widget to BITMAP. Return
the bitmap if None is given.

Under Windows, the DEFAULT parameter can be used to set the icon
for the widget and any descendents that don’t have an icon set
explicitly. DEFAULT can be the relative path to a .ico file
(example: root.iconbitmap(default=’myicon.ico’)). See Tk
documentation for more information.

	
wm_iconify()

	Display widget as icon.

	
wm_iconmask(bitmap=None)

	Set mask for the icon bitmap of this widget. Return the
mask if None is given.

	
wm_iconname(newName=None)

	Set the name of the icon for this widget. Return the name if
None is given.

	
wm_iconposition(x=None, y=None)

	Set the position of the icon of this widget to X and Y. Return
a tuple of the current values of X and X if None is given.

	
wm_iconwindow(pathName=None)

	Set widget PATHNAME to be displayed instead of icon. Return the current
value if None is given.

	
wm_maxsize(width=None, height=None)

	Set max WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
wm_minsize(width=None, height=None)

	Set min WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given.

	
wm_overrideredirect(boolean=None)

	Instruct the window manager to ignore this widget
if BOOLEAN is given with 1. Return the current value if None
is given.

	
wm_positionfrom(who=None)

	Instruct the window manager that the position of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
wm_protocol(name=None, func=None)

	Bind function FUNC to command NAME for this widget.
Return the function bound to NAME if None is given. NAME could be
e.g. “WM_SAVE_YOURSELF” or “WM_DELETE_WINDOW”.

	
wm_resizable(width=None, height=None)

	Instruct the window manager whether this width can be resized
in WIDTH or HEIGHT. Both values are boolean values.

	
wm_sizefrom(who=None)

	Instruct the window manager that the size of this widget shall
be defined by the user if WHO is “user”, and by its own policy if WHO is
“program”.

	
wm_state(newstate=None)

	Query or set the state of this widget as one of normal, icon,
iconic (see wm_iconwindow), withdrawn, or zoomed (Windows only).

	
wm_title(string=None)

	Set the title of this widget.

	
wm_transient(master=None)

	Instruct the window manager that this widget is transient
with regard to widget MASTER.

	
wm_withdraw()

	Withdraw this widget from the screen such that it is unmapped
and forgotten by the window manager. Re-draw it with wm_deiconify.

robot.model package

Package with generic, reusable and extensible model classes.

This package contains, for example, TestSuite,
TestCase, Keyword
and SuiteVisitor base classes.
These classes are extended both by execution
and result related model objects and used also
elsewhere.

This package is considered stable.

Submodules

robot.model.configurer module

	
class robot.model.configurer.SuiteConfigurer(name=None, doc=None, metadata=None, set_tags=None, include_tags=None, exclude_tags=None, include_suites=None, include_tests=None, empty_suite_ok=False)

	Bases: robot.model.visitor.SuiteVisitor

	
add_tags

	

	
remove_tags

	

	
visit_suite(suite)

	Implements traversing through the suite and its direct children.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_keyword(kw)

	Implements traversing through the keyword and its child keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
visit_message(msg)

	Implements visiting the message.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_test(test)

	Implements traversing through the test and its keywords.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

robot.model.criticality module

	
class robot.model.criticality.Criticality(critical_tags=None, non_critical_tags=None)

	Bases: object

	
tag_is_critical(tag)

	

	
tag_is_non_critical(tag)

	

	
test_is_critical(test)

	

robot.model.filter module

	
class robot.model.filter.EmptySuiteRemover(preserve_direct_children=False)

	Bases: robot.model.visitor.SuiteVisitor

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
visit_test(test)

	Implements traversing through the test and its keywords.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
visit_keyword(kw)

	Implements traversing through the keyword and its child keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_message(msg)

	Implements visiting the message.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through the suite and its direct children.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
class robot.model.filter.Filter(include_suites=None, include_tests=None, include_tags=None, exclude_tags=None)

	Bases: robot.model.filter.EmptySuiteRemover

	
include_suites

	

	
include_tests

	

	
include_tags

	

	
exclude_tags

	

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_keyword(kw)

	Implements traversing through the keyword and its child keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
visit_message(msg)

	Implements visiting the message.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through the suite and its direct children.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
visit_test(test)

	Implements traversing through the test and its keywords.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

robot.model.itemlist module

	
class robot.model.itemlist.ItemList(item_class, common_attrs=None, items=None)

	Bases: object

	
create(*args, **kwargs)

	

	
append(item)

	

	
extend(items)

	

	
insert(index, item)

	

	
pop(*index)

	

	
remove(item)

	

	
index(item, *start_and_end)

	

	
clear()

	

	
visit(visitor)

	

	
count(item)

	

	
sort()

	

	
reverse()

	

robot.model.keyword module

	
class robot.model.keyword.Keyword(name='', doc='', args=(), assign=(), tags=(), timeout=None, type='kw')

	Bases: robot.model.modelobject.ModelObject

Base model for a single keyword.

Extended by robot.running.model.Keyword and
robot.result.model.Keyword.

	
KEYWORD_TYPE = 'kw'

	Normal keyword type.

	
SETUP_TYPE = 'setup'

	Setup type.

	
TEARDOWN_TYPE = 'teardown'

	Teardown type.

	
FOR_LOOP_TYPE = 'for'

	For loop type.

	
FOR_ITEM_TYPE = 'foritem'

	Single for loop iteration type.

	
keyword_class = None

	Internal usage only.

	
message_class

	alias of robot.model.message.Message

	
doc

	

	
args

	Keyword arguments as a list of strings.

	
assign

	Assigned variables as a list of strings.

	
timeout

	

	
type

	Keyword type as a string. The value is either KEYWORD_TYPE,
SETUP_TYPE, TEARDOWN_TYPE, FOR_LOOP_TYPE or
FOR_ITEM_TYPE constant defined on the class level.

	
name

	

	
parent

	Parent test suite, test case or keyword.

	
tags

	Keyword tags as a Tags object.

	
keywords

	Child keywords as a Keywords object.

	
messages

	Messages as a Messages object.

	
children

	Child keywords and messages in creation order.

	
id

	Keyword id in format like s1-t3-k1.

See TestSuite.id for
more information.

	
source

	

	
visit(visitor)

	Visitor interface entry-point.

	
copy(**attributes)

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

New in Robot Framework 3.0.1.

	
deepcopy(**attributes)

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

New in Robot Framework 3.0.1.

	
class robot.model.keyword.Keywords(keyword_class=<class 'robot.model.keyword.Keyword'>, parent=None, keywords=None)

	Bases: robot.model.itemlist.ItemList

A list-like object representing keywords in a suite, a test or a keyword.

Possible setup and teardown keywords are directly available as
setup and teardown attributes.

	
setup

	Keyword used as the setup or None if no setup.

Can be set to a new setup keyword or None since RF 3.0.1.

	
append(item)

	

	
clear()

	

	
count(item)

	

	
create(*args, **kwargs)

	

	
create_setup(*args, **kwargs)

	

	
extend(items)

	

	
index(item, *start_and_end)

	

	
insert(index, item)

	

	
pop(*index)

	

	
remove(item)

	

	
reverse()

	

	
sort()

	

	
visit(visitor)

	

	
teardown

	Keyword used as the teardown or None if no teardown.

Can be set to a new teardown keyword or None since RF 3.0.1.

	
create_teardown(*args, **kwargs)

	

	
all

	Iterates over all keywords, including setup and teardown.

	
normal

	Iterates over normal keywords, omitting setup and teardown.

robot.model.message module

	
class robot.model.message.Message(message='', level='INFO', html=False, timestamp=None, parent=None)

	Bases: robot.model.modelobject.ModelObject

A message created during the test execution.

Can be a log message triggered by a keyword, or a warning or an error
that occurred during parsing or test execution.

	
message

	The message content as a string.

	
level

	Severity of the message. Either TRACE, DEBUG, INFO,
WARN, ERROR, or FAIL. The latest one is only used with
keyword failure messages.

	
html

	True if the content is in HTML, False otherwise.

	
timestamp

	Timestamp in format %Y%m%d %H:%M:%S.%f.

	
parent

	The object this message was triggered by.

	
html_message

	Returns the message content as HTML.

	
visit(visitor)

	Visitor interface entry-point.

	
copy(**attributes)

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

New in Robot Framework 3.0.1.

	
deepcopy(**attributes)

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

New in Robot Framework 3.0.1.

	
class robot.model.message.Messages(message_class=<class 'robot.model.message.Message'>, parent=None, messages=None)

	Bases: robot.model.itemlist.ItemList

	
append(item)

	

	
clear()

	

	
count(item)

	

	
create(*args, **kwargs)

	

	
extend(items)

	

	
index(item, *start_and_end)

	

	
insert(index, item)

	

	
pop(*index)

	

	
remove(item)

	

	
reverse()

	

	
sort()

	

	
visit(visitor)

	

robot.model.metadata module

	
class robot.model.metadata.Metadata(initial=None)

	Bases: robot.utils.normalizing.NormalizedDict

	
clear() → None. Remove all items from D.

	

	
copy()

	

	
get(k[, d]) → D[k] if k in D, else d. d defaults to None.

	

	
items() → list of D's (key, value) pairs, as 2-tuples

	

	
iteritems() → an iterator over the (key, value) items of D

	

	
iterkeys() → an iterator over the keys of D

	

	
itervalues() → an iterator over the values of D

	

	
keys() → list of D's keys

	

	
pop(k[, d]) → v, remove specified key and return the corresponding value.

	If key is not found, d is returned if given, otherwise KeyError is raised.

	
popitem() → (k, v), remove and return some (key, value) pair

	as a 2-tuple; but raise KeyError if D is empty.

	
setdefault(k[, d]) → D.get(k,d), also set D[k]=d if k not in D

	

	
update([E,]**F) → None. Update D from mapping/iterable E and F.

	If E present and has a .keys() method, does: for k in E: D[k] = E[k]
If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v
In either case, this is followed by: for k, v in F.items(): D[k] = v

	
values() → list of D's values

	

robot.model.modelobject module

	
class robot.model.modelobject.ModelObject

	Bases: object

	
copy(**attributes)

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

New in Robot Framework 3.0.1.

	
deepcopy(**attributes)

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

New in Robot Framework 3.0.1.

robot.model.modifier module

	
class robot.model.modifier.ModelModifier(visitors, empty_suite_ok, logger)

	Bases: robot.model.visitor.SuiteVisitor

	
visit_suite(suite)

	Implements traversing through the suite and its direct children.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_keyword(kw)

	Implements traversing through the keyword and its child keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
visit_message(msg)

	Implements visiting the message.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_test(test)

	Implements traversing through the test and its keywords.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

robot.model.namepatterns module

	
class robot.model.namepatterns.SuiteNamePatterns(patterns=None)

	Bases: robot.model.namepatterns._NamePatterns

	
match(name, longname=None)

	

	
class robot.model.namepatterns.TestNamePatterns(patterns=None)

	Bases: robot.model.namepatterns._NamePatterns

	
match(name, longname=None)

	

robot.model.statistics module

	
class robot.model.statistics.Statistics(suite, suite_stat_level=-1, tag_stat_include=None, tag_stat_exclude=None, tag_stat_combine=None, tag_doc=None, tag_stat_link=None, rpa=False)

	Bases: object

Container for total, suite and tag statistics.

Accepted parameters have the same semantics as the matching command line
options.

	
total = None

	Instance of TotalStatistics.

	
suite = None

	Instance of SuiteStatistics.

	
tags = None

	Instance of TagStatistics.

	
visit(visitor)

	

	
class robot.model.statistics.StatisticsBuilder(total_builder, suite_builder, tag_builder)

	Bases: robot.model.visitor.SuiteVisitor

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
visit_test(test)

	Implements traversing through the test and its keywords.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
visit_keyword(kw)

	Implements traversing through the keyword and its child keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_message(msg)

	Implements visiting the message.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through the suite and its direct children.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

robot.model.stats module

	
class robot.model.stats.Stat(name)

	Bases: robot.utils.sortable.Sortable

Generic statistic object used for storing all the statistic values.

	
name = None

	Human readable identifier of the object these statistics
belong to. Either All Tests or Critical Tests for
TotalStatistics,
long name of the suite for
SuiteStatistics
or name of the tag for
TagStatistics

	
passed = None

	Number of passed tests.

	
failed = None

	Number of failed tests.

	
elapsed = None

	Number of milliseconds it took to execute.

	
get_attributes(include_label=False, include_elapsed=False, exclude_empty=True, values_as_strings=False, html_escape=False)

	

	
total

	

	
add_test(test)

	

	
visit(visitor)

	

	
class robot.model.stats.TotalStat(name)

	Bases: robot.model.stats.Stat

Stores statistic values for a test run.

	
type = 'total'

	

	
add_test(test)

	

	
get_attributes(include_label=False, include_elapsed=False, exclude_empty=True, values_as_strings=False, html_escape=False)

	

	
total

	

	
visit(visitor)

	

	
class robot.model.stats.SuiteStat(suite)

	Bases: robot.model.stats.Stat

Stores statistics values for a single suite.

	
type = 'suite'

	

	
id = None

	Identifier of the suite, e.g. s1-s2.

	
elapsed = None

	Number of milliseconds it took to execute this suite,
including sub-suites.

	
add_stat(other)

	

	
add_test(test)

	

	
get_attributes(include_label=False, include_elapsed=False, exclude_empty=True, values_as_strings=False, html_escape=False)

	

	
total

	

	
visit(visitor)

	

	
class robot.model.stats.TagStat(name, doc='', links=None, critical=False, non_critical=False, combined=None)

	Bases: robot.model.stats.Stat

Stores statistic values for a single tag.

	
type = 'tag'

	

	
doc = None

	Documentation of tag as a string.

	
links = None

	List of tuples in which the first value is the link URL and
the second is the link title. An empty list by default.

	
critical = None

	True if tag is considered critical, False otherwise.

	
non_critical = None

	True if tag is considered non-critical, False otherwise.

	
combined = None

	Pattern as a string if the tag is combined, None otherwise.

	
info

	Returns additional information of the tag statistics
are about. Either critical, non-critical, combined or an
empty string.

	
add_test(test)

	

	
get_attributes(include_label=False, include_elapsed=False, exclude_empty=True, values_as_strings=False, html_escape=False)

	

	
total

	

	
visit(visitor)

	

	
class robot.model.stats.CombinedTagStat(pattern, name=None, doc='', links=None)

	Bases: robot.model.stats.TagStat

	
match(tags)

	

	
add_test(test)

	

	
get_attributes(include_label=False, include_elapsed=False, exclude_empty=True, values_as_strings=False, html_escape=False)

	

	
info

	Returns additional information of the tag statistics
are about. Either critical, non-critical, combined or an
empty string.

	
total

	

	
type = 'tag'

	

	
visit(visitor)

	

	
class robot.model.stats.CriticalTagStat(tag_pattern, name=None, critical=True, doc='', links=None)

	Bases: robot.model.stats.TagStat

	
match(tags)

	

	
add_test(test)

	

	
get_attributes(include_label=False, include_elapsed=False, exclude_empty=True, values_as_strings=False, html_escape=False)

	

	
info

	Returns additional information of the tag statistics
are about. Either critical, non-critical, combined or an
empty string.

	
total

	

	
type = 'tag'

	

	
visit(visitor)

	

robot.model.suitestatistics module

	
class robot.model.suitestatistics.SuiteStatistics(suite)

	Bases: object

Container for suite statistics.

	
stat = None

	Instance of SuiteStat.

	
suites = None

	List of TestSuite objects.

	
visit(visitor)

	

	
class robot.model.suitestatistics.SuiteStatisticsBuilder(suite_stat_level)

	Bases: object

	
current

	

	
start_suite(suite)

	

	
add_test(test)

	

	
end_suite()

	

robot.model.tags module

	
class robot.model.tags.Tags(tags=None)

	Bases: object

	
add(tags)

	

	
remove(tags)

	

	
match(tags)

	

	
class robot.model.tags.TagPatterns(patterns)

	Bases: object

	
match(tags)

	

	
robot.model.tags.TagPattern(pattern)

	

	
class robot.model.tags.SingleTagPattern(pattern)

	Bases: object

	
match(tags)

	

	
class robot.model.tags.AndTagPattern(patterns)

	Bases: object

	
match(tags)

	

	
class robot.model.tags.OrTagPattern(patterns)

	Bases: object

	
match(tags)

	

	
class robot.model.tags.NotTagPattern(must_match, *must_not_match)

	Bases: object

	
match(tags)

	

robot.model.tagsetter module

	
class robot.model.tagsetter.TagSetter(add=None, remove=None)

	Bases: robot.model.visitor.SuiteVisitor

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_test(test)

	Implements traversing through the test and its keywords.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
visit_keyword(keyword)

	Implements traversing through the keyword and its child keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_message(msg)

	Implements visiting the message.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through the suite and its direct children.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

robot.model.tagstatistics module

	
class robot.model.tagstatistics.TagStatistics(critical_stats, non_critical_stats, combined_stats)

	Bases: object

Container for tag statistics.

	
tags = None

	Dictionary, where key is the name of the tag as a string and value
is an instance of TagStat.

	
critical = None

	List of CriticalTagStat objects.

	
non_critical = None

	List of CriticalTagStat objects.

	
combined = None

	List of CombinedTagStat objects.

	
visit(visitor)

	

	
class robot.model.tagstatistics.TagStatisticsBuilder(criticality=None, included=None, excluded=None, combined=None, docs=None, links=None)

	Bases: object

	
add_test(test)

	

	
class robot.model.tagstatistics.TagStatInfo(docs=None, links=None)

	Bases: object

	
get_stat(tag)

	

	
get_critical_stats(criticality, critical=True)

	

	
get_combined_stats(combined=None)

	

	
get_doc(tag)

	

	
get_links(tag)

	

	
class robot.model.tagstatistics.TagStatDoc(pattern, doc)

	Bases: object

	
match(tag)

	

	
class robot.model.tagstatistics.TagStatLink(pattern, link, title)

	Bases: object

	
match(tag)

	

	
get_link(tag)

	

robot.model.testcase module

	
class robot.model.testcase.TestCase(name='', doc='', tags=None, timeout=None)

	Bases: robot.model.modelobject.ModelObject

Base model for a single test case.

Extended by robot.running.model.TestCase and
robot.result.model.TestCase.

	
keyword_class

	alias of robot.model.keyword.Keyword

	
parent

	Parent suite.

	
name

	Test case name.

	
doc

	Test case documentation.

	
timeout

	Test case timeout.

	
tags

	Test tags as a Tags object.

	
keywords

	Keywords as a Keywords object.

Contains also possible setup and teardown keywords.

	
id

	Test case id in format like s1-t3.

See TestSuite.id for
more information.

	
longname

	Test name prefixed with the long name of the parent suite.

	
source

	

	
visit(visitor)

	Visitor interface entry-point.

	
copy(**attributes)

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

New in Robot Framework 3.0.1.

	
deepcopy(**attributes)

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

New in Robot Framework 3.0.1.

	
class robot.model.testcase.TestCases(test_class=<class 'robot.model.testcase.TestCase'>, parent=None, tests=None)

	Bases: robot.model.itemlist.ItemList

	
append(item)

	

	
clear()

	

	
count(item)

	

	
create(*args, **kwargs)

	

	
extend(items)

	

	
index(item, *start_and_end)

	

	
insert(index, item)

	

	
pop(*index)

	

	
remove(item)

	

	
reverse()

	

	
sort()

	

	
visit(visitor)

	

robot.model.testsuite module

	
class robot.model.testsuite.TestSuite(name='', doc='', metadata=None, source=None, rpa=False)

	Bases: robot.model.modelobject.ModelObject

Base model for single suite.

Extended by robot.running.model.TestSuite and
robot.result.model.TestSuite.

	
test_class

	alias of robot.model.testcase.TestCase

	
keyword_class

	alias of robot.model.keyword.Keyword

	
parent

	Parent suite. None with the root suite.

	
doc

	Test suite documentation.

	
source

	Path to the source file or directory.

	
rpa

	

	
name

	Test suite name. If not set, constructed from child suite names.

	
longname

	Suite name prefixed with the long name of the parent suite.

	
metadata

	Free test suite metadata as a dictionary.

	
suites

	Child suites as a TestSuites object.

	
tests

	Tests as a TestCases object.

	
keywords

	Suite setup and teardown as a Keywords object.

	
id

	An automatically generated unique id.

The root suite has id s1, its child suites have ids s1-s1,
s1-s2, …, their child suites get ids s1-s1-s1, s1-s1-s2,
…, s1-s2-s1, …, and so on.

The first test in a suite has an id like s1-t1, the second has an
id s1-t2, and so on. Similarly keywords in suites (setup/teardown)
and in tests get ids like s1-k1, s1-t1-k1, and s1-s4-t2-k5.

	
test_count

	Number of the tests in this suite, recursively.

	
has_tests

	

	
set_tags(add=None, remove=None, persist=False)

	Add and/or remove specified tags to the tests in this suite.

	Parameters

	
	add – Tags to add as a list or, if adding only one,
as a single string.

	remove – Tags to remove as a list or as a single string.
Can be given as patterns where * and ? work as wildcards.

	persist – Add/remove specified tags also to new tests added
to this suite in the future.

	
filter(included_suites=None, included_tests=None, included_tags=None, excluded_tags=None)

	Select test cases and remove others from this suite.

Parameters have the same semantics as --suite, --test,
--include, and --exclude command line options. All of them
can be given as a list of strings, or when selecting only one, as
a single string.

Child suites that contain no tests after filtering are automatically
removed.

Example:

suite.filter(included_tests=['Test 1', '* Example'],
 included_tags='priority-1')

	
configure(**options)

	A shortcut to configure a suite using one method call.

Can only be used with the root test suite.

	Parameters

	options – Passed to
SuiteConfigurer that will then
set suite attributes, call filter(), etc. as needed.

	
copy(**attributes)

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

New in Robot Framework 3.0.1.

	
deepcopy(**attributes)

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

New in Robot Framework 3.0.1.

	
remove_empty_suites(preserve_direct_children=False)

	Removes all child suites not containing any tests, recursively.

	
visit(visitor)

	Visitor interface entry-point.

	
class robot.model.testsuite.TestSuites(suite_class=<class 'robot.model.testsuite.TestSuite'>, parent=None, suites=None)

	Bases: robot.model.itemlist.ItemList

	
append(item)

	

	
clear()

	

	
count(item)

	

	
create(*args, **kwargs)

	

	
extend(items)

	

	
index(item, *start_and_end)

	

	
insert(index, item)

	

	
pop(*index)

	

	
remove(item)

	

	
reverse()

	

	
sort()

	

	
visit(visitor)

	

robot.model.totalstatistics module

	
class robot.model.totalstatistics.TotalStatistics(rpa=False)

	Bases: object

Container for total statistics.

	
all = None

	Instance of TotalStat for all the tests.

	
visit(visitor)

	

	
message

	String representation of the statistics.

For example:

2 critical tests, 1 passed, 1 failed
2 tests total, 1 passed, 1 failed

	
class robot.model.totalstatistics.TotalStatisticsBuilder(suite=None, rpa=False)

	Bases: robot.model.visitor.SuiteVisitor

	
add_test(test)

	

	
visit_test(test)

	Implements traversing through the test and its keywords.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
visit_keyword(kw)

	Implements traversing through the keyword and its child keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_message(msg)

	Implements visiting the message.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through the suite and its direct children.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

robot.model.visitor module

Interface to ease traversing through a test suite structure.

Visitors make it easy to modify test suite structures or to collect information
from them. They work both with the executable model
and the result model, but the objects passed to
the visitor methods are slightly different depending on the model they are
used with. The main differences are that on the execution side keywords do
not have child keywords nor messages, and that only the result objects have
status related attributes like status and starttime.

This module contains SuiteVisitor that implements the core logic to
visit a test suite structure, and the result package contains
ResultVisitor that supports visiting the whole
test execution result structure. Both of these visitors should be imported
via the robot.api package when used by external code.

Visitor algorithm

All suite, test, keyword and message objects have a visit() method that
accepts a visitor instance. These methods will then call the correct visitor
method visit_suite(), visit_test(),
visit_keyword() or visit_message(),
depending on the instance where the visit() method exists.

The recommended and definitely easiest way to implement a visitor is extending
the SuiteVisitor base class. The default implementation of its
visit_x() methods take care of traversing child elements of the object
x recursively. A visit_x() method first calls a corresponding
start_x() method (e.g. visit_suite() calls start_suite()),
then calls visit() for all child objects of the x object, and
finally calls the corresponding end_x() method. The default
implementations of start_x() and end_x() do nothing.

Visitors extending the SuiteVisitor can stop visiting at a certain
level either by overriding suitable visit_x() method or by returning
an explicit False from any start_x() method.

Examples

The following example visitor modifies the test suite structure it visits.
It could be used, for example, with Robot Framework’s --prerunmodifier
option to modify test data before execution.

"""Pre-run modifier that selects only every Xth test for execution.

Starts from the first test by default. Tests are selected per suite.
"""

from robot.api import SuiteVisitor

class SelectEveryXthTest(SuiteVisitor):

 def __init__(self, x, start=0):
 self.x = int(x)
 self.start = int(start)

 def start_suite(self, suite):
 """Modify suite's tests to contain only every Xth."""
 suite.tests = suite.tests[self.start::self.x]

 def end_suite(self, suite):
 """Remove suites that are empty after removing tests."""
 suite.suites = [s for s in suite.suites if s.test_count > 0]

 def visit_test(self, test):
 """Avoid visiting tests and their keywords to save a little time."""
 pass

For more examples it is possible to look at the source code of visitors used
internally by Robot Framework itself. Some good examples are
TagSetter and
keyword removers.

	
class robot.model.visitor.SuiteVisitor

	Bases: object

Abstract class to ease traversing through the test suite structure.

See the module level documentation for more
information and an example.

	
visit_suite(suite)

	Implements traversing through the suite and its direct children.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
visit_test(test)

	Implements traversing through the test and its keywords.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
visit_keyword(kw)

	Implements traversing through the keyword and its child keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
visit_message(msg)

	Implements visiting the message.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

robot.output package

Package for internal logging and other output.

Not part of the public API, and also subject to change in the future when
test execution is refactored.

Subpackages

	robot.output.console package
	Submodules

	robot.output.console.dotted module

	robot.output.console.highlighting module

	robot.output.console.quiet module

	robot.output.console.verbose module

Submodules

robot.output.debugfile module

	
robot.output.debugfile.DebugFile(path)

	

robot.output.filelogger module

	
class robot.output.filelogger.FileLogger(path, level)

	Bases: robot.output.loggerhelper.AbstractLogger

	
message(msg)

	

	
start_suite(suite)

	

	
end_suite(suite)

	

	
start_test(test)

	

	
end_test(test)

	

	
start_keyword(kw)

	

	
end_keyword(kw)

	

	
output_file(name, path)

	

	
close()

	

	
debug(msg)

	

	
error(msg)

	

	
fail(msg)

	

	
info(msg)

	

	
set_level(level)

	

	
trace(msg)

	

	
warn(msg)

	

	
write(message, level, html=False)

	

robot.output.librarylogger module

Implementation of the public test library logging API.

This is exposed via robot.api.logger. Implementation must reside
here to avoid cyclic imports.

	
robot.output.librarylogger.write(msg, level, html=False)

	

	
robot.output.librarylogger.trace(msg, html=False)

	

	
robot.output.librarylogger.debug(msg, html=False)

	

	
robot.output.librarylogger.info(msg, html=False, also_console=False)

	

	
robot.output.librarylogger.warn(msg, html=False)

	

	
robot.output.librarylogger.error(msg, html=False)

	

	
robot.output.librarylogger.console(msg, newline=True, stream='stdout')

	

robot.output.listenerarguments module

	
class robot.output.listenerarguments.ListenerArguments(arguments)

	Bases: object

	
get_arguments(version)

	

	
classmethod by_method_name(name, arguments)

	

	
class robot.output.listenerarguments.MessageArguments(arguments)

	Bases: robot.output.listenerarguments.ListenerArguments

	
classmethod by_method_name(name, arguments)

	

	
get_arguments(version)

	

	
class robot.output.listenerarguments.StartSuiteArguments(arguments)

	Bases: robot.output.listenerarguments._ListenerArgumentsFromItem

	
classmethod by_method_name(name, arguments)

	

	
get_arguments(version)

	

	
class robot.output.listenerarguments.EndSuiteArguments(arguments)

	Bases: robot.output.listenerarguments.StartSuiteArguments

	
classmethod by_method_name(name, arguments)

	

	
get_arguments(version)

	

	
class robot.output.listenerarguments.StartTestArguments(arguments)

	Bases: robot.output.listenerarguments._ListenerArgumentsFromItem

	
classmethod by_method_name(name, arguments)

	

	
get_arguments(version)

	

	
class robot.output.listenerarguments.EndTestArguments(arguments)

	Bases: robot.output.listenerarguments.StartTestArguments

	
classmethod by_method_name(name, arguments)

	

	
get_arguments(version)

	

	
class robot.output.listenerarguments.StartKeywordArguments(arguments)

	Bases: robot.output.listenerarguments._ListenerArgumentsFromItem

	
classmethod by_method_name(name, arguments)

	

	
get_arguments(version)

	

	
class robot.output.listenerarguments.EndKeywordArguments(arguments)

	Bases: robot.output.listenerarguments.StartKeywordArguments

	
classmethod by_method_name(name, arguments)

	

	
get_arguments(version)

	

robot.output.listenermethods module

	
class robot.output.listenermethods.ListenerMethods(method_name, listeners)

	Bases: object

	
class robot.output.listenermethods.LibraryListenerMethods(method_name)

	Bases: object

	
new_suite_scope()

	

	
discard_suite_scope()

	

	
register(listeners, library)

	

	
unregister(library)

	

	
class robot.output.listenermethods.ListenerMethod(method, listener, library=None)

	Bases: object

	
called = False

	

robot.output.listeners module

	
class robot.output.listeners.Listeners(listeners, log_level='INFO')

	Bases: object

	
set_log_level(level)

	

	
log_message(msg)

	

	
imported(import_type, name, attrs)

	

	
output_file(file_type, path)

	

	
class robot.output.listeners.LibraryListeners(log_level='INFO')

	Bases: object

	
register(listeners, library)

	

	
unregister(library, close=False)

	

	
new_suite_scope()

	

	
discard_suite_scope()

	

	
set_log_level(level)

	

	
log_message(msg)

	

	
imported(import_type, name, attrs)

	

	
output_file(file_type, path)

	

	
class robot.output.listeners.ListenerProxy(listener, method_names, prefix=None)

	Bases: robot.output.loggerhelper.AbstractLoggerProxy

	
classmethod import_listeners(listeners, method_names, prefix=None, raise_on_error=False)

	

robot.output.logger module

	
class robot.output.logger.Logger(register_console_logger=True)

	Bases: robot.output.loggerhelper.AbstractLogger

A global logger proxy to delegating messages to registered loggers.

Whenever something is written to LOGGER in code, all registered loggers are
notified. Messages are also cached and cached messages written to new
loggers when they are registered.

NOTE: This API is likely to change in future versions.

	
start_loggers

	

	
end_loggers

	

	
register_console_logger(type='verbose', width=78, colors='AUTO', markers='AUTO', stdout=None, stderr=None)

	

	
unregister_console_logger()

	

	
register_syslog(path=None, level='INFO')

	

	
register_xml_logger(logger)

	

	
unregister_xml_logger()

	

	
register_listeners(listeners, library_listeners)

	

	
register_logger(*loggers)

	

	
unregister_logger(*loggers)

	

	
disable_message_cache()

	

	
register_error_listener(listener)

	

	
message(msg)

	Messages about what the framework is doing, warnings, errors, …

	
cache_only

	

	
delayed_logging

	

	
log_message(msg)

	Messages about what the framework is doing, warnings, errors, …

	
log_output(output)

	

	
enable_library_import_logging()

	

	
disable_library_import_logging()

	

	
start_suite(suite)

	

	
end_suite(suite)

	

	
start_test(test)

	

	
end_test(test)

	

	
start_keyword(keyword)

	

	
end_keyword(keyword)

	

	
imported(import_type, name, **attrs)

	

	
output_file(file_type, path)

	Finished output, report, log, debug, or xunit file

	
close()

	

	
debug(msg)

	

	
error(msg)

	

	
fail(msg)

	

	
info(msg)

	

	
set_level(level)

	

	
trace(msg)

	

	
warn(msg)

	

	
write(message, level, html=False)

	

	
class robot.output.logger.LoggerProxy(logger, method_names=None, prefix=None)

	Bases: robot.output.loggerhelper.AbstractLoggerProxy

robot.output.loggerhelper module

	
class robot.output.loggerhelper.AbstractLogger(level='TRACE')

	Bases: object

	
set_level(level)

	

	
trace(msg)

	

	
debug(msg)

	

	
info(msg)

	

	
warn(msg)

	

	
fail(msg)

	

	
error(msg)

	

	
write(message, level, html=False)

	

	
message(msg)

	

	
class robot.output.loggerhelper.Message(message, level='INFO', html=False, timestamp=None)

	Bases: robot.model.message.Message

	
message

	

	
resolve_delayed_message()

	

	
copy(**attributes)

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

New in Robot Framework 3.0.1.

	
deepcopy(**attributes)

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

New in Robot Framework 3.0.1.

	
html

	

	
html_message

	Returns the message content as HTML.

	
level

	

	
parent

	

	
timestamp

	

	
visit(visitor)

	Visitor interface entry-point.

	
class robot.output.loggerhelper.IsLogged(level)

	Bases: object

	
set_level(level)

	

	
class robot.output.loggerhelper.AbstractLoggerProxy(logger, method_names=None, prefix=None)

	Bases: object

robot.output.output module

	
class robot.output.output.Output(settings)

	Bases: robot.output.loggerhelper.AbstractLogger

	
register_error_listener(listener)

	

	
close(result)

	

	
start_suite(suite)

	

	
end_suite(suite)

	

	
start_test(test)

	

	
end_test(test)

	

	
start_keyword(kw)

	

	
end_keyword(kw)

	

	
message(msg)

	

	
set_log_level(level)

	

	
debug(msg)

	

	
error(msg)

	

	
fail(msg)

	

	
info(msg)

	

	
set_level(level)

	

	
trace(msg)

	

	
warn(msg)

	

	
write(message, level, html=False)

	

robot.output.pyloggingconf module

	
robot.output.pyloggingconf.robot_handler_enabled(*args, **kwds)

	

	
robot.output.pyloggingconf.set_level(level)

	

	
class robot.output.pyloggingconf.RobotHandler(level=0)

	Bases: logging.Handler

Initializes the instance - basically setting the formatter to None
and the filter list to empty.

	
emit(record)

	Do whatever it takes to actually log the specified logging record.

This version is intended to be implemented by subclasses and so
raises a NotImplementedError.

	
acquire()

	Acquire the I/O thread lock.

	
addFilter(filter)

	Add the specified filter to this handler.

	
close()

	Tidy up any resources used by the handler.

This version removes the handler from an internal map of handlers,
_handlers, which is used for handler lookup by name. Subclasses
should ensure that this gets called from overridden close()
methods.

	
createLock()

	Acquire a thread lock for serializing access to the underlying I/O.

	
filter(record)

	Determine if a record is loggable by consulting all the filters.

The default is to allow the record to be logged; any filter can veto
this and the record is then dropped. Returns a zero value if a record
is to be dropped, else non-zero.

	
flush()

	Ensure all logging output has been flushed.

This version does nothing and is intended to be implemented by
subclasses.

	
format(record)

	Format the specified record.

If a formatter is set, use it. Otherwise, use the default formatter
for the module.

	
get_name()

	

	
handle(record)

	Conditionally emit the specified logging record.

Emission depends on filters which may have been added to the handler.
Wrap the actual emission of the record with acquisition/release of
the I/O thread lock. Returns whether the filter passed the record for
emission.

	
handleError(record)

	Handle errors which occur during an emit() call.

This method should be called from handlers when an exception is
encountered during an emit() call. If raiseExceptions is false,
exceptions get silently ignored. This is what is mostly wanted
for a logging system - most users will not care about errors in
the logging system, they are more interested in application errors.
You could, however, replace this with a custom handler if you wish.
The record which was being processed is passed in to this method.

	
name

	

	
release()

	Release the I/O thread lock.

	
removeFilter(filter)

	Remove the specified filter from this handler.

	
setFormatter(fmt)

	Set the formatter for this handler.

	
setLevel(level)

	Set the logging level of this handler.

	
set_name(name)

	

robot.output.stdoutlogsplitter module

	
class robot.output.stdoutlogsplitter.StdoutLogSplitter(output)

	Bases: object

Splits messages logged through stdout (or stderr) into Message objects

robot.output.xmllogger module

	
class robot.output.xmllogger.XmlLogger(path, log_level='TRACE', rpa=False, generator='Robot')

	Bases: robot.result.visitor.ResultVisitor

	
close()

	

	
set_log_level(level)

	

	
message(msg)

	

	
log_message(msg)

	

	
start_keyword(kw)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_keyword(kw)

	Called when keyword ends. Default implementation does nothing.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
start_statistics(stats)

	

	
end_statistics(stats)

	

	
start_total_statistics(total_stats)

	

	
end_total_statistics(total_stats)

	

	
start_tag_statistics(tag_stats)

	

	
end_tag_statistics(tag_stats)

	

	
start_suite_statistics(tag_stats)

	

	
end_suite_statistics(tag_stats)

	

	
visit_stat(stat)

	

	
start_errors(errors=None)

	

	
end_errors(errors=None)

	

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_result(result)

	

	
end_stat(stat)

	

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_result(result)

	

	
start_stat(stat)

	

	
visit_errors(errors)

	

	
visit_keyword(kw)

	Implements traversing through the keyword and its child keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
visit_message(msg)

	Implements visiting the message.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_result(result)

	

	
visit_statistics(stats)

	

	
visit_suite(suite)

	Implements traversing through the suite and its direct children.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
visit_suite_statistics(stats)

	

	
visit_tag_statistics(stats)

	

	
visit_test(test)

	Implements traversing through the test and its keywords.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
visit_total_statistics(stats)

	

robot.output.console package

	
robot.output.console.ConsoleOutput(type='verbose', width=78, colors='AUTO', markers='AUTO', stdout=None, stderr=None)

	

Submodules

robot.output.console.dotted module

	
class robot.output.console.dotted.DottedOutput(width=78, colors='AUTO', stdout=None, stderr=None)

	Bases: object

	
start_suite(suite)

	

	
end_test(test)

	

	
end_suite(suite)

	

	
message(msg)

	

	
output_file(name, path)

	

	
class robot.output.console.dotted.StatusReporter(stream, width)

	Bases: robot.model.visitor.SuiteVisitor

	
report(suite)

	

	
visit_test(test)

	Implements traversing through the test and its keywords.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_keyword(kw)

	Implements traversing through the keyword and its child keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
visit_message(msg)

	Implements visiting the message.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through the suite and its direct children.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

robot.output.console.highlighting module

	
class robot.output.console.highlighting.HighlightingStream(stream, colors='AUTO')

	Bases: object

	
write(text, flush=True)

	

	
flush()

	

	
highlight(text, status=None, flush=True)

	

	
error(message, level)

	

	
robot.output.console.highlighting.Highlighter(stream)

	

	
class robot.output.console.highlighting.AnsiHighlighter(stream)

	Bases: object

	
green()

	

	
red()

	

	
yellow()

	

	
reset()

	

	
class robot.output.console.highlighting.NoHighlighting(stream)

	Bases: robot.output.console.highlighting.AnsiHighlighter

	
green()

	

	
red()

	

	
reset()

	

	
yellow()

	

	
class robot.output.console.highlighting.DosHighlighter(stream)

	Bases: object

	
green()

	

	
red()

	

	
yellow()

	

	
reset()

	

robot.output.console.quiet module

	
class robot.output.console.quiet.QuietOutput(colors='AUTO', stderr=None)

	Bases: object

	
message(msg)

	

	
class robot.output.console.quiet.NoOutput

	Bases: object

robot.output.console.verbose module

	
class robot.output.console.verbose.VerboseOutput(width=78, colors='AUTO', markers='AUTO', stdout=None, stderr=None)

	Bases: object

	
start_suite(suite)

	

	
end_suite(suite)

	

	
start_test(test)

	

	
end_test(test)

	

	
start_keyword(kw)

	

	
end_keyword(kw)

	

	
message(msg)

	

	
output_file(name, path)

	

	
class robot.output.console.verbose.VerboseWriter(width=78, colors='AUTO', markers='AUTO', stdout=None, stderr=None)

	Bases: object

	
info(name, doc, start_suite=False)

	

	
suite_separator()

	

	
test_separator()

	

	
status(status, clear=False)

	

	
message(message)

	

	
keyword_marker(status)

	

	
error(message, level, clear=False)

	

	
output(name, path)

	

	
class robot.output.console.verbose.KeywordMarker(highlighter, markers)

	Bases: object

	
mark(status)

	

	
reset_count()

	

robot.parsing package

Module implementing test data parsing.

Exposed API

The publicly exposed parsing entry points are the following:

	get_tokens(),
get_resource_tokens(), and
get_init_tokens() functions for tokenizing data.

	Token class that contains all token types as
class attributes.

	get_model(),
get_resource_model(), and
get_init_model() functions for getting a higher
level model represented as an abstract syntax tree (AST).

Tip

Like with rest of the public API, these functions and classes are
exposed also via the robot.api package. When they are used
by external code, it is recommended they are imported like
from robot.api import get_tokens.

Note

The robot.parsing package has been totally rewritten in
Robot Framework 3.2 and all code using it needs to be updated.
Depending on the use case, it may be possible to instead use the
higher level TestSuiteBuilder()
that has only seen minor configuration changes.

Parsing data to tokens

Data can be parsed to tokens by using
get_tokens(),
get_resource_tokens() or
get_init_tokens() functions depending on does the data
represent a test case (or task) file, a resource file, or a suite
initialization file. In practice the difference between these functions is
what settings and sections are valid.

Typically the data is easier to inspect and modify by using the higher level
model discussed in the next section, but in some cases the token stream can
be enough. Tokens returned by the aforementioned functions are
Token instances and they have the token type, value,
and position easily available as their attributes. Tokens also have useful
string representation used by the example below:

from robot.api import get_tokens

path = 'example.robot'

for token in get_tokens(path):
 print(repr(token))

If the example.robot used by the above example would contain

*** Test Cases ***
Example
 Keyword argument

Second example
 Keyword xxx

*** Keywords ***
Keyword
 [Arguments] ${arg}
 Log ${arg}

then the beginning of the output got when running the earlier code would
look like this:

Token(TESTCASE_HEADER, '*** Test Cases ***', 1, 0)
Token(EOL, '\n', 1, 18)
Token(EOS, '', 1, 19)
Token(TESTCASE_NAME, 'Example', 2, 0)
Token(EOL, '\n', 2, 7)
Token(EOS, '', 2, 8)
Token(SEPARATOR, ' ', 3, 0)
Token(KEYWORD, 'Keyword', 3, 4)
Token(SEPARATOR, ' ', 3, 11)
Token(ARGUMENT, 'argument', 3, 15)
Token(EOL, '\n', 3, 23)
Token(EOS, '', 3, 24)
Token(EOL, '\n', 4, 0)
Token(EOS, '', 4, 1)

The output shows token type, value, line number and column offset. The
EOL tokens denote end of a line and they include the new line character
and possible trailing spaces. The EOS tokens denote end of a logical
statement. Typically a single line forms a statement, but when the ...
syntax is used for continuation, a statement spans multiple lines. In
special cases a single line can also contain multiple statements.

See the documentation of get_tokens() for details
about different ways how to specify the data to be parsed, how to control
should all tokens or only data tokens be returned, and should variables in
keyword arguments and elsewhere be tokenized or not.

Parsing data to model

Data can be parsed to a higher level model by using
get_model(),
get_resource_model(), or
get_init_model() functions depending on the data
type same way as when parsing data to tokens.

The model is represented as an abstract syntax tree (AST) implemented on top
of Python’s standard ast.AST [https://docs.python.org/library/ast.html#ast.AST] class. The ast [https://docs.python.org/library/ast.html] module can also be used
for inspecting and modifying the module. Most importantly, ast.NodeVisitor [https://docs.python.org/library/ast.html#ast.NodeVisitor]
and ast.NodeTransformer [https://docs.python.org/library/ast.html#ast.NodeTransformer] ease traversing the model as explained in the
sections below. The ast.dump() [https://docs.python.org/library/ast.html#ast.dump] function, or the third-party astpretty [https://pypi.org/project/astpretty]
module, can be used for debugging:

import ast
import astpretty # third-party module
from robot.api import get_model

model = get_model('example.robot')
print(ast.dump(model))
print('-' * 72)
astpretty.pprint(model)

Running this code with the example.robot file from the previous
section would produce so much output that it is not included here. If
you are going to work with Robot Framework’s AST, you are recommended to
try this on your own.

The model is build from blocks like
File (the root of the model),
TestCaseSection, and
TestCase
implemented in the blocks module and from statements like
TestCaseSectionHeader,
Documentation, and
KeywordCall
implemented in the statements module.
Both blocks and statements are AST nodes based on ast.AST [https://docs.python.org/library/ast.html#ast.AST].
Blocks can contain other blocks and statements as child nodes whereas
statements have only tokens. These tokens contain the actual data
represented as Token instances.

Inspecting model

The easiest way to inspect what data a model contains is implementing
a visitor based on ast.NodeVisitor [https://docs.python.org/library/ast.html#ast.NodeVisitor] and implementing visit_NodeName
methods as needed. The following example illustrates how to find what tests
a certain test case file contains:

import ast
from robot.api import get_model

class TestNamePrinter(ast.NodeVisitor):

 def visit_File(self, node):
 print(f"File '{node.source}' has following tests:")
 # Must call `generic_visit` to visit also child nodes.
 self.generic_visit(node)

 def visit_TestCaseName(self, node):
 print(f"- {node.name} (on line {node.lineno})")

model = get_model('example.robot')
printer = TestNamePrinter()
printer.visit(model)

When the above code is run using the earlier example.robot, the
output is this:

File 'example.robot' has following tests:
- Example (on line 2)
- Second example (on line 5)

Modifying token values

The model can be modified simply by modifying token values. If changes need
to be saved, that is as easy as calling the save()
method of the root model object. When just modifying token values, it is
possible to still extend ast.NodeVisitor [https://docs.python.org/library/ast.html#ast.NodeVisitor]. The next section discusses
adding or removing nodes and then ast.NodeTransformer [https://docs.python.org/library/ast.html#ast.NodeTransformer] should be used
instead.

Modifications to tokens obviously require finding the tokens to be modified.
The first step is finding statements containing the tokens by implementing
needed visit_StatementName methods. Then the exact token or tokens
can be found using node’s
get_token() or
get_tokens() methods.
If only token values are needed,
get_value() or
get_values() can be used as a shortcut.
First finding statements and then the right tokens is illustrated by
this example that renames keywords:

import ast
from robot.api import get_model, Token

class KeywordRenamer(ast.NodeVisitor):

 def __init__(self, old_name, new_name):
 self.old_name = self.normalize(old_name)
 self.new_name = new_name

 def normalize(self, name):
 return name.lower().replace(' ', '').replace('_', '')

 def visit_KeywordName(self, node):
 # Rename keyword definitions.
 if self.normalize(node.name) == self.old_name:
 token = node.get_token(Token.KEYWORD_NAME)
 token.value = self.new_name

 def visit_KeywordCall(self, node):
 # Rename keyword usages.
 if self.normalize(node.keyword) == self.old_name:
 token = node.get_token(Token.KEYWORD)
 token.value = self.new_name

model = get_model('example.robot')
renamer = KeywordRenamer('Keyword', 'New Name')
renamer.visit(model)
model.save()

If you run the above example using the earlier example.robot, you
can see that the Keyword keyword has been renamed to New Name. Notice
that a real keyword renamer needed to take into account also keywords used
with setups, teardowns and templates.

When token values are changed, column offset of the other tokens on same
line are likely to be wrong. This does not affect saving the model or other
typical usages, but if it is a problem then the caller needs to updated
offsets separately.

Adding and removing nodes

Bigger changes to model are somewhat more complicated than just modifying
existing token values. When doing this kind of changes, ast.NodeTransformer [https://docs.python.org/library/ast.html#ast.NodeTransformer]
needs to be used instead of ast.NodeVisitor [https://docs.python.org/library/ast.html#ast.NodeVisitor] that was used in earlier
examples.

Removing nodes is relative easy and is accomplished by returning None
from visit_NodeName methods. Remember to return the original node,
or possibly a replacement node, from all of these methods when you do not
want a node to be removed.

Adding nodes is unfortunately not supported by the public robot.api
interface and the needed block and statement nodes need to be imported
via the robot.parsing.model package. That package is considered
private and may change in the future. A stable public API can be added,
and functionality related to adding nodes improved in general, if there
are concrete needs for this kind of advanced usage.

The following example demonstrates both removing and adding nodes.
If you run it against the earlier example.robot, you see that
the first test gets a new keyword, the second test is removed, and
settings section with documentation is added.

import ast
from robot.api import get_model, Token
from robot.parsing.model import SettingSection, Statement

class TestModifier(ast.NodeTransformer):

 def visit_TestCase(self, node):
 # The matched `TestCase` node is a block with `header` and `body`
 # attributes. `header` is a statement with familiar `get_token` and
 # `get_value` methods for getting certain tokens or their value.
 name = node.header.get_value(Token.TESTCASE_NAME)
 # Returning `None` drops the node altogether i.e. removes this test.
 if name == 'Second example':
 return None
 # Construct new keyword call statement from tokens.
 new_keyword = Statement.from_tokens([
 Token(Token.SEPARATOR, ' '),
 Token(Token.KEYWORD, 'New Keyword'),
 Token(Token.SEPARATOR, ' '),
 Token(Token.ARGUMENT, 'xxx'),
 Token(Token.EOL, '\n')
])
 # Add the keyword call to test as the second item. `body` is a list.
 node.body.insert(1, new_keyword)
 # No need to call `generic_visit` because we are not modifying child
 # nodes. The node itself must to be returned to avoid dropping it.
 return node

 def visit_File(self, node):
 # Create settings section with documentation.
 setting_header = Statement.from_tokens([
 Token(Token.SETTING_HEADER, '*** Settings ***'),
 Token(Token.EOL, '\n')
])
 documentation = Statement.from_tokens([
 Token(Token.DOCUMENTATION, 'Documentation'),
 Token(Token.SEPARATOR, ' '),
 Token(Token.ARGUMENT, 'This is getting pretty advanced'),
 Token(Token.EOL, '\n'),
 Token(Token.CONTINUATION, '...'),
 Token(Token.SEPARATOR, ' '),
 Token(Token.ARGUMENT, 'and this API definitely could be better.'),
 Token(Token.EOL, '\n')
])
 empty_line = Statement.from_tokens([
 Token(Token.EOL, '\n')
])
 body = [documentation, empty_line]
 settings = SettingSection(setting_header, body)
 # Add settings to the beginning of the file.
 node.sections.insert(0, settings)
 # Must call `generic_visit` to visit also child nodes.
 return self.generic_visit(node)

model = get_model('example.robot')
modifier = TestModifier()
modifier.visit(model)
model.save()

Executing model

It is possible to convert a parsed and possibly modified model into an
executable TestSuite structure by using its
from_model() class method. In this case
the get_model() function should be given the curdir
argument to get possible ${CURDIR} variable resolved correctly.

from robot.api import get_model, TestSuite

model = get_model('example.robot', curdir='/home/robot/example')
modify model as needed
suite = TestSuite.from_model(model)
suite.run()

For more details about executing the created
TestSuite object, see the documentation
of its run() method. Notice also
that if you do not need to modify the parsed model, it is easier to
get the executable suite by using the
from_file_system() class method.

Subpackages

	robot.parsing.lexer package
	Submodules

	robot.parsing.lexer.blocklexers module

	robot.parsing.lexer.context module

	robot.parsing.lexer.lexer module

	robot.parsing.lexer.sections module

	robot.parsing.lexer.settings module

	robot.parsing.lexer.statementlexers module

	robot.parsing.lexer.tokenizer module

	robot.parsing.lexer.tokens module

	robot.parsing.model package
	Submodules

	robot.parsing.model.blocks module

	robot.parsing.model.statements module

	robot.parsing.model.visitor module

	robot.parsing.parser package
	Submodules

	robot.parsing.parser.blockparsers module

	robot.parsing.parser.fileparser module

	robot.parsing.parser.parser module

Submodules

robot.parsing.suitestructure module

	
class robot.parsing.suitestructure.SuiteStructure(source=None, init_file=None, children=None)

	Bases: object

	
is_directory

	

	
visit(visitor)

	

	
class robot.parsing.suitestructure.SuiteStructureBuilder(included_extensions=('robot',), included_suites=None)

	Bases: object

	
ignored_prefixes = ('_', '.')

	

	
ignored_dirs = ('CVS',)

	

	
build(paths)

	

	
class robot.parsing.suitestructure.SuiteStructureVisitor

	Bases: object

	
visit_file(structure)

	

	
visit_directory(structure)

	

	
start_directory(structure)

	

	
end_directory(structure)

	

robot.parsing.lexer package

Submodules

robot.parsing.lexer.blocklexers module

	
class robot.parsing.lexer.blocklexers.BlockLexer(ctx)

	Bases: robot.parsing.lexer.statementlexers.Lexer

	
accepts_more(statement)

	

	
input(statement)

	

	
lexer_for(statement)

	

	
lexer_classes()

	

	
lex()

	

	
handles(statement)

	

	
class robot.parsing.lexer.blocklexers.FileLexer(ctx)

	Bases: robot.parsing.lexer.blocklexers.BlockLexer

	
lex()

	

	
lexer_classes()

	

	
accepts_more(statement)

	

	
handles(statement)

	

	
input(statement)

	

	
lexer_for(statement)

	

	
class robot.parsing.lexer.blocklexers.SectionLexer(ctx)

	Bases: robot.parsing.lexer.blocklexers.BlockLexer

	
accepts_more(statement)

	

	
handles(statement)

	

	
input(statement)

	

	
lex()

	

	
lexer_classes()

	

	
lexer_for(statement)

	

	
class robot.parsing.lexer.blocklexers.SettingSectionLexer(ctx)

	Bases: robot.parsing.lexer.blocklexers.SectionLexer

	
handles(statement)

	

	
lexer_classes()

	

	
accepts_more(statement)

	

	
input(statement)

	

	
lex()

	

	
lexer_for(statement)

	

	
class robot.parsing.lexer.blocklexers.VariableSectionLexer(ctx)

	Bases: robot.parsing.lexer.blocklexers.SectionLexer

	
handles(statement)

	

	
lexer_classes()

	

	
accepts_more(statement)

	

	
input(statement)

	

	
lex()

	

	
lexer_for(statement)

	

	
class robot.parsing.lexer.blocklexers.TestCaseSectionLexer(ctx)

	Bases: robot.parsing.lexer.blocklexers.SectionLexer

	
handles(statement)

	

	
lexer_classes()

	

	
accepts_more(statement)

	

	
input(statement)

	

	
lex()

	

	
lexer_for(statement)

	

	
class robot.parsing.lexer.blocklexers.KeywordSectionLexer(ctx)

	Bases: robot.parsing.lexer.blocklexers.SettingSectionLexer

	
handles(statement)

	

	
lexer_classes()

	

	
accepts_more(statement)

	

	
input(statement)

	

	
lex()

	

	
lexer_for(statement)

	

	
class robot.parsing.lexer.blocklexers.CommentSectionLexer(ctx)

	Bases: robot.parsing.lexer.blocklexers.SectionLexer

	
handles(statement)

	

	
lexer_classes()

	

	
accepts_more(statement)

	

	
input(statement)

	

	
lex()

	

	
lexer_for(statement)

	

	
class robot.parsing.lexer.blocklexers.ImplicitCommentSectionLexer(ctx)

	Bases: robot.parsing.lexer.blocklexers.SectionLexer

	
handles(statement)

	

	
lexer_classes()

	

	
accepts_more(statement)

	

	
input(statement)

	

	
lex()

	

	
lexer_for(statement)

	

	
class robot.parsing.lexer.blocklexers.ErrorSectionLexer(ctx)

	Bases: robot.parsing.lexer.blocklexers.SectionLexer

	
handles(statement)

	

	
lexer_classes()

	

	
accepts_more(statement)

	

	
input(statement)

	

	
lex()

	

	
lexer_for(statement)

	

	
class robot.parsing.lexer.blocklexers.TestOrKeywordLexer(ctx)

	Bases: robot.parsing.lexer.blocklexers.BlockLexer

	
name_type = NotImplemented

	

	
accepts_more(statement)

	

	
input(statement)

	

	
lexer_classes()

	

	
handles(statement)

	

	
lex()

	

	
lexer_for(statement)

	

	
class robot.parsing.lexer.blocklexers.TestCaseLexer(ctx)

	Bases: robot.parsing.lexer.blocklexers.TestOrKeywordLexer

	
name_type = 'TESTCASE_NAME'

	

	
lex()

	

	
accepts_more(statement)

	

	
handles(statement)

	

	
input(statement)

	

	
lexer_classes()

	

	
lexer_for(statement)

	

	
class robot.parsing.lexer.blocklexers.KeywordLexer(ctx)

	Bases: robot.parsing.lexer.blocklexers.TestOrKeywordLexer

	
name_type = 'KEYWORD_NAME'

	

	
accepts_more(statement)

	

	
handles(statement)

	

	
input(statement)

	

	
lex()

	

	
lexer_classes()

	

	
lexer_for(statement)

	

	
class robot.parsing.lexer.blocklexers.ForLoopLexer(ctx)

	Bases: robot.parsing.lexer.blocklexers.BlockLexer

	
handles(statement)

	

	
accepts_more(statement)

	

	
input(statement)

	

	
lexer_classes()

	

	
lex()

	

	
lexer_for(statement)

	

robot.parsing.lexer.context module

	
class robot.parsing.lexer.context.LexingContext(settings=None)

	Bases: object

	
settings_class = None

	

	
lex_setting(statement)

	

	
class robot.parsing.lexer.context.FileContext(settings=None)

	Bases: robot.parsing.lexer.context.LexingContext

	
sections_class = None

	

	
setting_section(statement)

	

	
variable_section(statement)

	

	
test_case_section(statement)

	

	
keyword_section(statement)

	

	
comment_section(statement)

	

	
keyword_context()

	

	
lex_invalid_section(statement)

	

	
lex_setting(statement)

	

	
settings_class = None

	

	
class robot.parsing.lexer.context.TestCaseFileContext(settings=None)

	Bases: robot.parsing.lexer.context.FileContext

	
sections_class

	alias of robot.parsing.lexer.sections.TestCaseFileSections

	
settings_class

	alias of robot.parsing.lexer.settings.TestCaseFileSettings

	
test_case_context()

	

	
comment_section(statement)

	

	
keyword_context()

	

	
keyword_section(statement)

	

	
lex_invalid_section(statement)

	

	
lex_setting(statement)

	

	
setting_section(statement)

	

	
test_case_section(statement)

	

	
variable_section(statement)

	

	
class robot.parsing.lexer.context.ResourceFileContext(settings=None)

	Bases: robot.parsing.lexer.context.FileContext

	
sections_class

	alias of robot.parsing.lexer.sections.ResourceFileSections

	
settings_class

	alias of robot.parsing.lexer.settings.ResourceFileSettings

	
comment_section(statement)

	

	
keyword_context()

	

	
keyword_section(statement)

	

	
lex_invalid_section(statement)

	

	
lex_setting(statement)

	

	
setting_section(statement)

	

	
test_case_section(statement)

	

	
variable_section(statement)

	

	
class robot.parsing.lexer.context.InitFileContext(settings=None)

	Bases: robot.parsing.lexer.context.FileContext

	
sections_class

	alias of robot.parsing.lexer.sections.InitFileSections

	
settings_class

	alias of robot.parsing.lexer.settings.InitFileSettings

	
comment_section(statement)

	

	
keyword_context()

	

	
keyword_section(statement)

	

	
lex_invalid_section(statement)

	

	
lex_setting(statement)

	

	
setting_section(statement)

	

	
test_case_section(statement)

	

	
variable_section(statement)

	

	
class robot.parsing.lexer.context.TestCaseContext(settings=None)

	Bases: robot.parsing.lexer.context.LexingContext

	
template_set

	

	
lex_setting(statement)

	

	
settings_class = None

	

	
class robot.parsing.lexer.context.KeywordContext(settings=None)

	Bases: robot.parsing.lexer.context.LexingContext

	
template_set

	

	
lex_setting(statement)

	

	
settings_class = None

	

robot.parsing.lexer.lexer module

	
robot.parsing.lexer.lexer.get_tokens(source, data_only=False, tokenize_variables=False)

	Parses the given source to tokens.

	Parameters

	
	source – The source where to read the data. Can be a path to
a source file as a string or as pathlib.Path object, an already
opened file object, or Unicode text containing the date directly.
Source files must be UTF-8 encoded.

	data_only – When False (default), returns all tokens. When set
to True, omits separators, comments, continuation markers, and
other non-data tokens.

	tokenize_variables – When True, possible variables in keyword
arguments and elsewhere are tokenized. See the
tokenize_variables()
method for details.

Returns a generator that yields Token
instances.

	
robot.parsing.lexer.lexer.get_resource_tokens(source, data_only=False, tokenize_variables=False)

	Parses the given source to resource file tokens.

Otherwise same as get_tokens() but the source is considered to be
a resource file. This affects, for example, what settings are valid.

	
robot.parsing.lexer.lexer.get_init_tokens(source, data_only=False, tokenize_variables=False)

	Parses the given source to init file tokens.

Otherwise same as get_tokens() but the source is considered to be
a suite initialization file. This affects, for example, what settings are
valid.

	
class robot.parsing.lexer.lexer.Lexer(ctx, data_only=False, tokenize_variables=False)

	Bases: object

	
input(source)

	

	
get_tokens()

	

robot.parsing.lexer.sections module

	
class robot.parsing.lexer.sections.Sections

	Bases: object

	
setting_markers = ('Settings', 'Setting')

	

	
variable_markers = ('Variables', 'Variable')

	

	
test_case_markers = ('Test Cases', 'Test Case', 'Tasks', 'Task')

	

	
keyword_markers = ('Keywords', 'Keyword')

	

	
comment_markers = ('Comments', 'Comment')

	

	
setting(statement)

	

	
variable(statement)

	

	
test_case(statement)

	

	
keyword(statement)

	

	
comment(statement)

	

	
lex_invalid(statement)

	

	
class robot.parsing.lexer.sections.TestCaseFileSections

	Bases: robot.parsing.lexer.sections.Sections

	
test_case(statement)

	

	
comment(statement)

	

	
comment_markers = ('Comments', 'Comment')

	

	
keyword(statement)

	

	
keyword_markers = ('Keywords', 'Keyword')

	

	
lex_invalid(statement)

	

	
setting(statement)

	

	
setting_markers = ('Settings', 'Setting')

	

	
test_case_markers = ('Test Cases', 'Test Case', 'Tasks', 'Task')

	

	
variable(statement)

	

	
variable_markers = ('Variables', 'Variable')

	

	
class robot.parsing.lexer.sections.ResourceFileSections

	Bases: robot.parsing.lexer.sections.Sections

	
comment(statement)

	

	
comment_markers = ('Comments', 'Comment')

	

	
keyword(statement)

	

	
keyword_markers = ('Keywords', 'Keyword')

	

	
lex_invalid(statement)

	

	
setting(statement)

	

	
setting_markers = ('Settings', 'Setting')

	

	
test_case(statement)

	

	
test_case_markers = ('Test Cases', 'Test Case', 'Tasks', 'Task')

	

	
variable(statement)

	

	
variable_markers = ('Variables', 'Variable')

	

	
class robot.parsing.lexer.sections.InitFileSections

	Bases: robot.parsing.lexer.sections.Sections

	
comment(statement)

	

	
comment_markers = ('Comments', 'Comment')

	

	
keyword(statement)

	

	
keyword_markers = ('Keywords', 'Keyword')

	

	
lex_invalid(statement)

	

	
setting(statement)

	

	
setting_markers = ('Settings', 'Setting')

	

	
test_case(statement)

	

	
test_case_markers = ('Test Cases', 'Test Case', 'Tasks', 'Task')

	

	
variable(statement)

	

	
variable_markers = ('Variables', 'Variable')

	

robot.parsing.lexer.settings module

	
class robot.parsing.lexer.settings.Settings

	Bases: object

	
names = ()

	

	
aliases = {}

	

	
multi_use = ('Metadata', 'Library', 'Resource', 'Variables')

	

	
single_value = ('Resource', 'Test Timeout', 'Test Template', 'Timeout', 'Template')

	

	
name_and_arguments = ('Metadata', 'Suite Setup', 'Suite Teardown', 'Test Setup', 'Test Teardown', 'Test Template', 'Setup', 'Teardown', 'Template', 'Resource', 'Variables')

	

	
name_arguments_and_with_name = ('Library',)

	

	
lex(statement)

	

	
class robot.parsing.lexer.settings.TestCaseFileSettings

	Bases: robot.parsing.lexer.settings.Settings

	
names = ('Documentation', 'Metadata', 'Suite Setup', 'Suite Teardown', 'Test Setup', 'Test Teardown', 'Test Template', 'Test Timeout', 'Force Tags', 'Default Tags', 'Library', 'Resource', 'Variables')

	

	
aliases = {'Task Setup': 'Test Setup', 'Task Teardown': 'Test Teardown', 'Task Template': 'Test Template', 'Task Timeout': 'Test Timeout'}

	

	
lex(statement)

	

	
multi_use = ('Metadata', 'Library', 'Resource', 'Variables')

	

	
name_and_arguments = ('Metadata', 'Suite Setup', 'Suite Teardown', 'Test Setup', 'Test Teardown', 'Test Template', 'Setup', 'Teardown', 'Template', 'Resource', 'Variables')

	

	
name_arguments_and_with_name = ('Library',)

	

	
single_value = ('Resource', 'Test Timeout', 'Test Template', 'Timeout', 'Template')

	

	
class robot.parsing.lexer.settings.InitFileSettings

	Bases: robot.parsing.lexer.settings.Settings

	
names = ('Documentation', 'Metadata', 'Suite Setup', 'Suite Teardown', 'Test Setup', 'Test Teardown', 'Test Timeout', 'Force Tags', 'Library', 'Resource', 'Variables')

	

	
aliases = {}

	

	
lex(statement)

	

	
multi_use = ('Metadata', 'Library', 'Resource', 'Variables')

	

	
name_and_arguments = ('Metadata', 'Suite Setup', 'Suite Teardown', 'Test Setup', 'Test Teardown', 'Test Template', 'Setup', 'Teardown', 'Template', 'Resource', 'Variables')

	

	
name_arguments_and_with_name = ('Library',)

	

	
single_value = ('Resource', 'Test Timeout', 'Test Template', 'Timeout', 'Template')

	

	
class robot.parsing.lexer.settings.ResourceFileSettings

	Bases: robot.parsing.lexer.settings.Settings

	
names = ('Documentation', 'Library', 'Resource', 'Variables')

	

	
aliases = {}

	

	
lex(statement)

	

	
multi_use = ('Metadata', 'Library', 'Resource', 'Variables')

	

	
name_and_arguments = ('Metadata', 'Suite Setup', 'Suite Teardown', 'Test Setup', 'Test Teardown', 'Test Template', 'Setup', 'Teardown', 'Template', 'Resource', 'Variables')

	

	
name_arguments_and_with_name = ('Library',)

	

	
single_value = ('Resource', 'Test Timeout', 'Test Template', 'Timeout', 'Template')

	

	
class robot.parsing.lexer.settings.TestCaseSettings(parent)

	Bases: robot.parsing.lexer.settings.Settings

	
names = ('Documentation', 'Tags', 'Setup', 'Teardown', 'Template', 'Timeout')

	

	
template_set

	

	
aliases = {}

	

	
lex(statement)

	

	
multi_use = ('Metadata', 'Library', 'Resource', 'Variables')

	

	
name_and_arguments = ('Metadata', 'Suite Setup', 'Suite Teardown', 'Test Setup', 'Test Teardown', 'Test Template', 'Setup', 'Teardown', 'Template', 'Resource', 'Variables')

	

	
name_arguments_and_with_name = ('Library',)

	

	
single_value = ('Resource', 'Test Timeout', 'Test Template', 'Timeout', 'Template')

	

	
class robot.parsing.lexer.settings.KeywordSettings

	Bases: robot.parsing.lexer.settings.Settings

	
names = ('Documentation', 'Arguments', 'Teardown', 'Timeout', 'Tags', 'Return')

	

	
aliases = {}

	

	
lex(statement)

	

	
multi_use = ('Metadata', 'Library', 'Resource', 'Variables')

	

	
name_and_arguments = ('Metadata', 'Suite Setup', 'Suite Teardown', 'Test Setup', 'Test Teardown', 'Test Template', 'Setup', 'Teardown', 'Template', 'Resource', 'Variables')

	

	
name_arguments_and_with_name = ('Library',)

	

	
single_value = ('Resource', 'Test Timeout', 'Test Template', 'Timeout', 'Template')

	

robot.parsing.lexer.statementlexers module

	
class robot.parsing.lexer.statementlexers.Lexer(ctx)

	Bases: object

Base class for lexers.

	
handles(statement)

	

	
accepts_more(statement)

	

	
input(statement)

	

	
lex()

	

	
class robot.parsing.lexer.statementlexers.StatementLexer(ctx)

	Bases: robot.parsing.lexer.statementlexers.Lexer

	
token_type = None

	

	
accepts_more(statement)

	

	
input(statement)

	

	
lex()

	

	
handles(statement)

	

	
class robot.parsing.lexer.statementlexers.SectionHeaderLexer(ctx)

	Bases: robot.parsing.lexer.statementlexers.StatementLexer

	
handles(statement)

	

	
accepts_more(statement)

	

	
input(statement)

	

	
lex()

	

	
token_type = None

	

	
class robot.parsing.lexer.statementlexers.SettingSectionHeaderLexer(ctx)

	Bases: robot.parsing.lexer.statementlexers.SectionHeaderLexer

	
token_type = 'SETTING_HEADER'

	

	
accepts_more(statement)

	

	
handles(statement)

	

	
input(statement)

	

	
lex()

	

	
class robot.parsing.lexer.statementlexers.VariableSectionHeaderLexer(ctx)

	Bases: robot.parsing.lexer.statementlexers.SectionHeaderLexer

	
token_type = 'VARIABLE_HEADER'

	

	
accepts_more(statement)

	

	
handles(statement)

	

	
input(statement)

	

	
lex()

	

	
class robot.parsing.lexer.statementlexers.TestCaseSectionHeaderLexer(ctx)

	Bases: robot.parsing.lexer.statementlexers.SectionHeaderLexer

	
token_type = 'TESTCASE_HEADER'

	

	
accepts_more(statement)

	

	
handles(statement)

	

	
input(statement)

	

	
lex()

	

	
class robot.parsing.lexer.statementlexers.KeywordSectionHeaderLexer(ctx)

	Bases: robot.parsing.lexer.statementlexers.SectionHeaderLexer

	
token_type = 'KEYWORD_HEADER'

	

	
accepts_more(statement)

	

	
handles(statement)

	

	
input(statement)

	

	
lex()

	

	
class robot.parsing.lexer.statementlexers.CommentSectionHeaderLexer(ctx)

	Bases: robot.parsing.lexer.statementlexers.SectionHeaderLexer

	
token_type = 'COMMENT_HEADER'

	

	
accepts_more(statement)

	

	
handles(statement)

	

	
input(statement)

	

	
lex()

	

	
class robot.parsing.lexer.statementlexers.ErrorSectionHeaderLexer(ctx)

	Bases: robot.parsing.lexer.statementlexers.SectionHeaderLexer

	
lex()

	

	
accepts_more(statement)

	

	
handles(statement)

	

	
input(statement)

	

	
token_type = None

	

	
class robot.parsing.lexer.statementlexers.CommentLexer(ctx)

	Bases: robot.parsing.lexer.statementlexers.StatementLexer

	
token_type = 'COMMENT'

	

	
accepts_more(statement)

	

	
handles(statement)

	

	
input(statement)

	

	
lex()

	

	
class robot.parsing.lexer.statementlexers.SettingLexer(ctx)

	Bases: robot.parsing.lexer.statementlexers.StatementLexer

	
lex()

	

	
accepts_more(statement)

	

	
handles(statement)

	

	
input(statement)

	

	
token_type = None

	

	
class robot.parsing.lexer.statementlexers.TestOrKeywordSettingLexer(ctx)

	Bases: robot.parsing.lexer.statementlexers.SettingLexer

	
handles(statement)

	

	
accepts_more(statement)

	

	
input(statement)

	

	
lex()

	

	
token_type = None

	

	
class robot.parsing.lexer.statementlexers.VariableLexer(ctx)

	Bases: robot.parsing.lexer.statementlexers.StatementLexer

	
lex()

	

	
accepts_more(statement)

	

	
handles(statement)

	

	
input(statement)

	

	
token_type = None

	

	
class robot.parsing.lexer.statementlexers.KeywordCallLexer(ctx)

	Bases: robot.parsing.lexer.statementlexers.StatementLexer

	
lex()

	

	
accepts_more(statement)

	

	
handles(statement)

	

	
input(statement)

	

	
token_type = None

	

	
class robot.parsing.lexer.statementlexers.ForLoopHeaderLexer(ctx)

	Bases: robot.parsing.lexer.statementlexers.StatementLexer

	
separators = ('IN', 'IN RANGE', 'IN ENUMERATE', 'IN ZIP')

	

	
handles(statement)

	

	
lex()

	

	
accepts_more(statement)

	

	
input(statement)

	

	
token_type = None

	

	
class robot.parsing.lexer.statementlexers.EndLexer(ctx)

	Bases: robot.parsing.lexer.statementlexers.StatementLexer

	
handles(statement)

	

	
lex()

	

	
accepts_more(statement)

	

	
input(statement)

	

	
token_type = None

	

robot.parsing.lexer.tokenizer module

	
class robot.parsing.lexer.tokenizer.Tokenizer

	Bases: object

	
tokenize(data, data_only=False)

	

robot.parsing.lexer.tokens module

	
class robot.parsing.lexer.tokens.Token(type=None, value='', lineno=-1, col_offset=-1, error=None)

	Bases: object

Token representing piece of Robot Framework data.

Each token has type, value, line number, column offset and end column
offset in type, value, lineno, col_offset
and end_col_offset attributes, respectively. Tokens representing
error also have their error message in error attribute.

Token types are declared as class attributes.

	
SETTING_HEADER = 'SETTING_HEADER'

	

	
VARIABLE_HEADER = 'VARIABLE_HEADER'

	

	
TESTCASE_HEADER = 'TESTCASE_HEADER'

	

	
KEYWORD_HEADER = 'KEYWORD_HEADER'

	

	
COMMENT_HEADER = 'COMMENT_HEADER'

	

	
TESTCASE_NAME = 'TESTCASE_NAME'

	

	
KEYWORD_NAME = 'KEYWORD_NAME'

	

	
DOCUMENTATION = 'DOCUMENTATION'

	

	
SUITE_SETUP = 'SUITE_SETUP'

	

	
SUITE_TEARDOWN = 'SUITE_TEARDOWN'

	

	
METADATA = 'METADATA'

	

	
TEST_SETUP = 'TEST_SETUP'

	

	
TEST_TEARDOWN = 'TEST_TEARDOWN'

	

	
TEST_TEMPLATE = 'TEST_TEMPLATE'

	

	
TEST_TIMEOUT = 'TEST_TIMEOUT'

	

	
FORCE_TAGS = 'FORCE_TAGS'

	

	
DEFAULT_TAGS = 'DEFAULT_TAGS'

	

	
LIBRARY = 'LIBRARY'

	

	
RESOURCE = 'RESOURCE'

	

	
VARIABLES = 'VARIABLES'

	

	
SETUP = 'SETUP'

	

	
TEARDOWN = 'TEARDOWN'

	

	
TEMPLATE = 'TEMPLATE'

	

	
TIMEOUT = 'TIMEOUT'

	

	
TAGS = 'TAGS'

	

	
ARGUMENTS = 'ARGUMENTS'

	

	
RETURN = 'RETURN'

	

	
NAME = 'NAME'

	

	
VARIABLE = 'VARIABLE'

	

	
ARGUMENT = 'ARGUMENT'

	

	
ASSIGN = 'ASSIGN'

	

	
KEYWORD = 'KEYWORD'

	

	
WITH_NAME = 'WITH_NAME'

	

	
FOR = 'FOR'

	

	
FOR_SEPARATOR = 'FOR_SEPARATOR'

	

	
OLD_FOR_INDENT = 'OLD_FOR_INDENT'

	

	
END = 'END'

	

	
SEPARATOR = 'SEPARATOR'

	

	
COMMENT = 'COMMENT'

	

	
CONTINUATION = 'CONTINUATION'

	

	
EOL = 'EOL'

	

	
EOS = 'EOS'

	

	
ERROR = 'ERROR'

	

	
FATAL_ERROR = 'FATAL_ERROR'

	

	
NON_DATA_TOKENS = ('SEPARATOR', 'COMMENT', 'CONTINUATION', 'EOL', 'EOS')

	

	
SETTING_TOKENS = ('DOCUMENTATION', 'SUITE_SETUP', 'SUITE_TEARDOWN', 'METADATA', 'TEST_SETUP', 'TEST_TEARDOWN', 'TEST_TEMPLATE', 'TEST_TIMEOUT', 'FORCE_TAGS', 'DEFAULT_TAGS', 'LIBRARY', 'RESOURCE', 'VARIABLES', 'SETUP', 'TEARDOWN', 'TEMPLATE', 'TIMEOUT', 'TAGS', 'ARGUMENTS', 'RETURN')

	

	
HEADER_TOKENS = ('SETTING_HEADER', 'VARIABLE_HEADER', 'TESTCASE_HEADER', 'KEYWORD_HEADER', 'COMMENT_HEADER')

	

	
ALLOW_VARIABLES = ('NAME', 'ARGUMENT', 'TESTCASE_NAME', 'KEYWORD_NAME')

	

	
type

	

	
value

	

	
lineno

	

	
col_offset

	

	
error

	

	
end_col_offset

	

	
set_error(error, fatal=False)

	

	
tokenize_variables()

	Tokenizes possible variables in token value.

Yields the token itself if the token does not allow variables (see
Token.ALLOW_VARIABLES) or its value does not contain
variables. Otherwise yields variable tokens as well as tokens
before, after, or between variables so that they have the same
type as the original token.

	
class robot.parsing.lexer.tokens.EOS(lineno=-1, col_offset=-1)

	Bases: robot.parsing.lexer.tokens.Token

Token representing end of statement.

	
classmethod from_token(token)

	

	
ALLOW_VARIABLES = ('NAME', 'ARGUMENT', 'TESTCASE_NAME', 'KEYWORD_NAME')

	

	
ARGUMENT = 'ARGUMENT'

	

	
ARGUMENTS = 'ARGUMENTS'

	

	
ASSIGN = 'ASSIGN'

	

	
COMMENT = 'COMMENT'

	

	
COMMENT_HEADER = 'COMMENT_HEADER'

	

	
CONTINUATION = 'CONTINUATION'

	

	
DEFAULT_TAGS = 'DEFAULT_TAGS'

	

	
DOCUMENTATION = 'DOCUMENTATION'

	

	
END = 'END'

	

	
EOL = 'EOL'

	

	
EOS = 'EOS'

	

	
ERROR = 'ERROR'

	

	
FATAL_ERROR = 'FATAL_ERROR'

	

	
FOR = 'FOR'

	

	
FORCE_TAGS = 'FORCE_TAGS'

	

	
FOR_SEPARATOR = 'FOR_SEPARATOR'

	

	
HEADER_TOKENS = ('SETTING_HEADER', 'VARIABLE_HEADER', 'TESTCASE_HEADER', 'KEYWORD_HEADER', 'COMMENT_HEADER')

	

	
KEYWORD = 'KEYWORD'

	

	
KEYWORD_HEADER = 'KEYWORD_HEADER'

	

	
KEYWORD_NAME = 'KEYWORD_NAME'

	

	
LIBRARY = 'LIBRARY'

	

	
METADATA = 'METADATA'

	

	
NAME = 'NAME'

	

	
NON_DATA_TOKENS = ('SEPARATOR', 'COMMENT', 'CONTINUATION', 'EOL', 'EOS')

	

	
OLD_FOR_INDENT = 'OLD_FOR_INDENT'

	

	
RESOURCE = 'RESOURCE'

	

	
RETURN = 'RETURN'

	

	
SEPARATOR = 'SEPARATOR'

	

	
SETTING_HEADER = 'SETTING_HEADER'

	

	
SETTING_TOKENS = ('DOCUMENTATION', 'SUITE_SETUP', 'SUITE_TEARDOWN', 'METADATA', 'TEST_SETUP', 'TEST_TEARDOWN', 'TEST_TEMPLATE', 'TEST_TIMEOUT', 'FORCE_TAGS', 'DEFAULT_TAGS', 'LIBRARY', 'RESOURCE', 'VARIABLES', 'SETUP', 'TEARDOWN', 'TEMPLATE', 'TIMEOUT', 'TAGS', 'ARGUMENTS', 'RETURN')

	

	
SETUP = 'SETUP'

	

	
SUITE_SETUP = 'SUITE_SETUP'

	

	
SUITE_TEARDOWN = 'SUITE_TEARDOWN'

	

	
TAGS = 'TAGS'

	

	
TEARDOWN = 'TEARDOWN'

	

	
TEMPLATE = 'TEMPLATE'

	

	
TESTCASE_HEADER = 'TESTCASE_HEADER'

	

	
TESTCASE_NAME = 'TESTCASE_NAME'

	

	
TEST_SETUP = 'TEST_SETUP'

	

	
TEST_TEARDOWN = 'TEST_TEARDOWN'

	

	
TEST_TEMPLATE = 'TEST_TEMPLATE'

	

	
TEST_TIMEOUT = 'TEST_TIMEOUT'

	

	
TIMEOUT = 'TIMEOUT'

	

	
VARIABLE = 'VARIABLE'

	

	
VARIABLES = 'VARIABLES'

	

	
VARIABLE_HEADER = 'VARIABLE_HEADER'

	

	
WITH_NAME = 'WITH_NAME'

	

	
col_offset

	

	
end_col_offset

	

	
error

	

	
lineno

	

	
set_error(error, fatal=False)

	

	
tokenize_variables()

	Tokenizes possible variables in token value.

Yields the token itself if the token does not allow variables (see
Token.ALLOW_VARIABLES) or its value does not contain
variables. Otherwise yields variable tokens as well as tokens
before, after, or between variables so that they have the same
type as the original token.

	
type

	

	
value

	

robot.parsing.model package

Submodules

robot.parsing.model.blocks module

	
class robot.parsing.model.blocks.Block

	Bases: _ast.AST

	
lineno

	

	
col_offset

	

	
end_lineno

	

	
end_col_offset

	

	
class robot.parsing.model.blocks.File(sections=None, source=None)

	Bases: robot.parsing.model.blocks.Block

	
save(output=None)

	Save model to the given output or to the original source file.

The output can be a path to a file or an already opened file
object. If output is not given, the original source file will
be overwritten.

	
col_offset

	

	
end_col_offset

	

	
end_lineno

	

	
lineno

	

	
class robot.parsing.model.blocks.Section(header=None, body=None)

	Bases: robot.parsing.model.blocks.Block

	
col_offset

	

	
end_col_offset

	

	
end_lineno

	

	
lineno

	

	
class robot.parsing.model.blocks.SettingSection(header=None, body=None)

	Bases: robot.parsing.model.blocks.Section

	
col_offset

	

	
end_col_offset

	

	
end_lineno

	

	
lineno

	

	
class robot.parsing.model.blocks.VariableSection(header=None, body=None)

	Bases: robot.parsing.model.blocks.Section

	
col_offset

	

	
end_col_offset

	

	
end_lineno

	

	
lineno

	

	
class robot.parsing.model.blocks.TestCaseSection(header=None, body=None)

	Bases: robot.parsing.model.blocks.Section

	
tasks

	

	
col_offset

	

	
end_col_offset

	

	
end_lineno

	

	
lineno

	

	
class robot.parsing.model.blocks.KeywordSection(header=None, body=None)

	Bases: robot.parsing.model.blocks.Section

	
col_offset

	

	
end_col_offset

	

	
end_lineno

	

	
lineno

	

	
class robot.parsing.model.blocks.CommentSection(header=None, body=None)

	Bases: robot.parsing.model.blocks.Section

	
col_offset

	

	
end_col_offset

	

	
end_lineno

	

	
lineno

	

	
class robot.parsing.model.blocks.TestCase(header, body=None)

	Bases: robot.parsing.model.blocks.Block

	
name

	

	
col_offset

	

	
end_col_offset

	

	
end_lineno

	

	
lineno

	

	
class robot.parsing.model.blocks.Keyword(header, body=None)

	Bases: robot.parsing.model.blocks.Block

	
name

	

	
col_offset

	

	
end_col_offset

	

	
end_lineno

	

	
lineno

	

	
class robot.parsing.model.blocks.ForLoop(header, body=None, end=None)

	Bases: robot.parsing.model.blocks.Block

	
variables

	

	
values

	

	
flavor

	

	
col_offset

	

	
end_col_offset

	

	
end_lineno

	

	
lineno

	

	
class robot.parsing.model.blocks.ModelWriter(output)

	Bases: robot.parsing.model.visitor.ModelVisitor

	
write(model)

	

	
visit_Statement(statement)

	

	
generic_visit(node)

	Called if no explicit visitor function exists for a node.

	
visit(node)

	Visit a node.

	
class robot.parsing.model.blocks.FirstStatementFinder

	Bases: robot.parsing.model.visitor.ModelVisitor

	
classmethod find_from(model)

	

	
visit_Statement(statement)

	

	
generic_visit(node)

	Called if no explicit visitor function exists for a node.

	
visit(node)

	Visit a node.

	
class robot.parsing.model.blocks.LastStatementFinder

	Bases: robot.parsing.model.visitor.ModelVisitor

	
classmethod find_from(model)

	

	
generic_visit(node)

	Called if no explicit visitor function exists for a node.

	
visit(node)

	Visit a node.

	
visit_Statement(statement)

	

robot.parsing.model.statements module

	
class robot.parsing.model.statements.Statement(tokens)

	Bases: _ast.AST

	
type = None

	

	
lineno

	

	
col_offset

	

	
end_lineno

	

	
end_col_offset

	

	
classmethod register(subcls)

	

	
classmethod from_tokens(tokens)

	

	
data_tokens

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lines

	

	
error

	

	
class robot.parsing.model.statements.DocumentationOrMetadata(tokens)

	Bases: robot.parsing.model.statements.Statement

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
type = None

	

	
class robot.parsing.model.statements.SingleValue(tokens)

	Bases: robot.parsing.model.statements.Statement

	
value

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
type = None

	

	
class robot.parsing.model.statements.MultiValue(tokens)

	Bases: robot.parsing.model.statements.Statement

	
values

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
type = None

	

	
class robot.parsing.model.statements.Fixture(tokens)

	Bases: robot.parsing.model.statements.Statement

	
name

	

	
args

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
type = None

	

	
class robot.parsing.model.statements.SectionHeader(tokens)

	Bases: robot.parsing.model.statements.Statement

	
name

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
type = None

	

	
class robot.parsing.model.statements.SettingSectionHeader(tokens)

	Bases: robot.parsing.model.statements.SectionHeader

	
type = 'SETTING_HEADER'

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
name

	

	
classmethod register(subcls)

	

	
class robot.parsing.model.statements.VariableSectionHeader(tokens)

	Bases: robot.parsing.model.statements.SectionHeader

	
type = 'VARIABLE_HEADER'

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
name

	

	
classmethod register(subcls)

	

	
class robot.parsing.model.statements.TestCaseSectionHeader(tokens)

	Bases: robot.parsing.model.statements.SectionHeader

	
type = 'TESTCASE_HEADER'

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
name

	

	
classmethod register(subcls)

	

	
class robot.parsing.model.statements.KeywordSectionHeader(tokens)

	Bases: robot.parsing.model.statements.SectionHeader

	
type = 'KEYWORD_HEADER'

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
name

	

	
classmethod register(subcls)

	

	
class robot.parsing.model.statements.CommentSectionHeader(tokens)

	Bases: robot.parsing.model.statements.SectionHeader

	
type = 'COMMENT_HEADER'

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
name

	

	
classmethod register(subcls)

	

	
class robot.parsing.model.statements.LibraryImport(tokens)

	Bases: robot.parsing.model.statements.Statement

	
type = 'LIBRARY'

	

	
name

	

	
args

	

	
alias

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
class robot.parsing.model.statements.ResourceImport(tokens)

	Bases: robot.parsing.model.statements.Statement

	
type = 'RESOURCE'

	

	
name

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
class robot.parsing.model.statements.VariablesImport(tokens)

	Bases: robot.parsing.model.statements.Statement

	
type = 'VARIABLES'

	

	
name

	

	
args

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
class robot.parsing.model.statements.Documentation(tokens)

	Bases: robot.parsing.model.statements.DocumentationOrMetadata

	
type = 'DOCUMENTATION'

	

	
value

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
class robot.parsing.model.statements.Metadata(tokens)

	Bases: robot.parsing.model.statements.DocumentationOrMetadata

	
type = 'METADATA'

	

	
name

	

	
value

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
class robot.parsing.model.statements.ForceTags(tokens)

	Bases: robot.parsing.model.statements.MultiValue

	
type = 'FORCE_TAGS'

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
values

	

	
class robot.parsing.model.statements.DefaultTags(tokens)

	Bases: robot.parsing.model.statements.MultiValue

	
type = 'DEFAULT_TAGS'

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
values

	

	
class robot.parsing.model.statements.SuiteSetup(tokens)

	Bases: robot.parsing.model.statements.Fixture

	
type = 'SUITE_SETUP'

	

	
args

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
name

	

	
classmethod register(subcls)

	

	
class robot.parsing.model.statements.SuiteTeardown(tokens)

	Bases: robot.parsing.model.statements.Fixture

	
type = 'SUITE_TEARDOWN'

	

	
args

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
name

	

	
classmethod register(subcls)

	

	
class robot.parsing.model.statements.TestSetup(tokens)

	Bases: robot.parsing.model.statements.Fixture

	
type = 'TEST_SETUP'

	

	
args

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
name

	

	
classmethod register(subcls)

	

	
class robot.parsing.model.statements.TestTeardown(tokens)

	Bases: robot.parsing.model.statements.Fixture

	
type = 'TEST_TEARDOWN'

	

	
args

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
name

	

	
classmethod register(subcls)

	

	
class robot.parsing.model.statements.TestTemplate(tokens)

	Bases: robot.parsing.model.statements.SingleValue

	
type = 'TEST_TEMPLATE'

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
value

	

	
class robot.parsing.model.statements.TestTimeout(tokens)

	Bases: robot.parsing.model.statements.SingleValue

	
type = 'TEST_TIMEOUT'

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
value

	

	
class robot.parsing.model.statements.Variable(tokens)

	Bases: robot.parsing.model.statements.Statement

	
type = 'VARIABLE'

	

	
name

	

	
value

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
class robot.parsing.model.statements.TestCaseName(tokens)

	Bases: robot.parsing.model.statements.Statement

	
type = 'TESTCASE_NAME'

	

	
name

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
class robot.parsing.model.statements.KeywordName(tokens)

	Bases: robot.parsing.model.statements.Statement

	
type = 'KEYWORD_NAME'

	

	
name

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
class robot.parsing.model.statements.Setup(tokens)

	Bases: robot.parsing.model.statements.Fixture

	
type = 'SETUP'

	

	
args

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
name

	

	
classmethod register(subcls)

	

	
class robot.parsing.model.statements.Teardown(tokens)

	Bases: robot.parsing.model.statements.Fixture

	
type = 'TEARDOWN'

	

	
args

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
name

	

	
classmethod register(subcls)

	

	
class robot.parsing.model.statements.Tags(tokens)

	Bases: robot.parsing.model.statements.MultiValue

	
type = 'TAGS'

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
values

	

	
class robot.parsing.model.statements.Template(tokens)

	Bases: robot.parsing.model.statements.SingleValue

	
type = 'TEMPLATE'

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
value

	

	
class robot.parsing.model.statements.Timeout(tokens)

	Bases: robot.parsing.model.statements.SingleValue

	
type = 'TIMEOUT'

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
value

	

	
class robot.parsing.model.statements.Arguments(tokens)

	Bases: robot.parsing.model.statements.MultiValue

	
type = 'ARGUMENTS'

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
values

	

	
class robot.parsing.model.statements.Return(tokens)

	Bases: robot.parsing.model.statements.MultiValue

	
type = 'RETURN'

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
values

	

	
class robot.parsing.model.statements.KeywordCall(tokens)

	Bases: robot.parsing.model.statements.Statement

	
type = 'KEYWORD'

	

	
keyword

	

	
args

	

	
assign

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
class robot.parsing.model.statements.TemplateArguments(tokens)

	Bases: robot.parsing.model.statements.Statement

	
type = 'ARGUMENT'

	

	
args

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
class robot.parsing.model.statements.ForLoopHeader(tokens)

	Bases: robot.parsing.model.statements.Statement

	
type = 'FOR'

	

	
variables

	

	
values

	

	
flavor

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
class robot.parsing.model.statements.End(tokens)

	Bases: robot.parsing.model.statements.Statement

	
type = 'END'

	

	
value

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
class robot.parsing.model.statements.Comment(tokens)

	Bases: robot.parsing.model.statements.Statement

	
type = 'COMMENT'

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
class robot.parsing.model.statements.Error(tokens)

	Bases: robot.parsing.model.statements.Statement

	
type = 'ERROR'

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

	
class robot.parsing.model.statements.EmptyLine(tokens)

	Bases: robot.parsing.model.statements.Statement

	
type = 'EOL'

	

	
classmethod from_value(value)

	

	
col_offset

	

	
data_tokens

	

	
end_col_offset

	

	
end_lineno

	

	
error

	

	
classmethod from_tokens(tokens)

	

	
get_token(type)

	Return a token with the given type.

If there are no matches, return None. If there are multiple
matches, return the first match.

	
get_tokens(*types)

	Return tokens having any of the given types.

	
get_value(type, default=None)

	Return value of a token with the given type.

If there are no matches, return default. If there are multiple
matches, return the value of the first match.

	
get_values(*types)

	Return values of tokens having any of the given types.

	
lineno

	

	
lines

	

	
classmethod register(subcls)

	

robot.parsing.model.visitor module

	
class robot.parsing.model.visitor.VisitorFinder

	Bases: object

	
class robot.parsing.model.visitor.ModelVisitor

	Bases: ast.NodeVisitor, robot.parsing.model.visitor.VisitorFinder

NodeVisitor that supports matching nodes based on their base classes.

Otherwise identical to the standard ast.NodeVisitor [https://docs.python.org/library/ast.html#ast.NodeVisitor],
but allows creating visit_ClassName methods so that the ClassName
is one of the base classes of the node. For example, this visitor method
matches all section headers:

def visit_SectionHeader(self, node):
 # ...

If all visitor methods match node classes directly, it is better to use
the standard ast.NodeVisitor instead.

	
visit(node)

	Visit a node.

	
generic_visit(node)

	Called if no explicit visitor function exists for a node.

	
class robot.parsing.model.visitor.ModelTransformer

	Bases: ast.NodeTransformer, robot.parsing.model.visitor.VisitorFinder

NodeTransformer that supports matching nodes based on their base classes.

See ModelVisitor for explanation how this is different compared
to the standard ast.NodeTransformer [https://docs.python.org/library/ast.html#ast.NodeTransformer].

	
visit(node)

	Visit a node.

	
generic_visit(node)

	Called if no explicit visitor function exists for a node.

robot.parsing.parser package

Submodules

robot.parsing.parser.blockparsers module

	
class robot.parsing.parser.blockparsers.Parser(model)

	Bases: object

Base class for parsers.

	
handles(statement)

	

	
parse(statement)

	

	
class robot.parsing.parser.blockparsers.TestCaseParser(header)

	Bases: robot.parsing.parser.blockparsers.Parser

	
handles(statement)

	

	
parse(statement)

	

	
class robot.parsing.parser.blockparsers.KeywordParser(header)

	Bases: robot.parsing.parser.blockparsers.Parser

	
handles(statement)

	

	
parse(statement)

	

	
class robot.parsing.parser.blockparsers.ForLoopParser(header)

	Bases: robot.parsing.parser.blockparsers.Parser

	
handles(statement)

	

	
parse(statement)

	

robot.parsing.parser.fileparser module

	
class robot.parsing.parser.fileparser.FileParser(source=None)

	Bases: robot.parsing.parser.blockparsers.Parser

	
handles(statement)

	

	
parse(statement)

	

	
class robot.parsing.parser.fileparser.SectionParser(model)

	Bases: robot.parsing.parser.blockparsers.Parser

	
handles(statement)

	

	
parse(statement)

	

	
class robot.parsing.parser.fileparser.SettingSectionParser(header)

	Bases: robot.parsing.parser.fileparser.SectionParser

	
handles(statement)

	

	
parse(statement)

	

	
class robot.parsing.parser.fileparser.VariableSectionParser(header)

	Bases: robot.parsing.parser.fileparser.SectionParser

	
handles(statement)

	

	
parse(statement)

	

	
class robot.parsing.parser.fileparser.CommentSectionParser(header)

	Bases: robot.parsing.parser.fileparser.SectionParser

	
handles(statement)

	

	
parse(statement)

	

	
class robot.parsing.parser.fileparser.ImplicitCommentSectionParser(statement)

	Bases: robot.parsing.parser.fileparser.SectionParser

	
handles(statement)

	

	
parse(statement)

	

	
class robot.parsing.parser.fileparser.TestCaseSectionParser(header)

	Bases: robot.parsing.parser.fileparser.SectionParser

	
parse(statement)

	

	
handles(statement)

	

	
class robot.parsing.parser.fileparser.KeywordSectionParser(header)

	Bases: robot.parsing.parser.fileparser.SectionParser

	
parse(statement)

	

	
handles(statement)

	

robot.parsing.parser.parser module

	
robot.parsing.parser.parser.get_model(source, data_only=False, curdir=None)

	Parses the given source to a model represented as an AST.

How to use the model is explained more thoroughly in the general
documentation of the robot.parsing module.

	Parameters

	
	source – The source where to read the data. Can be a path to
a source file as a string or as pathlib.Path object, an already
opened file object, or Unicode text containing the date directly.
Source files must be UTF-8 encoded.

	data_only – When False (default), returns all tokens. When set
to True, omits separators, comments, continuation markers, and
other non-data tokens. Model like this cannot be saved back to
file system.

	curdir – Directory where the source file exists. This path is used
to set the value of the built-in ${CURDIR} variable during parsing.
When not given, the variable is left as-is. Should only be given
only if the model will be executed afterwards. If the model is saved
back to disk, resolving ${CURDIR} is typically not a good idea.

Use get_resource_model() or get_init_model() when parsing
resource or suite initialization files, respectively.

	
robot.parsing.parser.parser.get_resource_model(source, data_only=False, curdir=None)

	Parses the given source to a resource file model.

Otherwise same as get_model() but the source is considered to be
a resource file. This affects, for example, what settings are valid.

	
robot.parsing.parser.parser.get_init_model(source, data_only=False, curdir=None)

	Parses the given source to a init file model.

Otherwise same as get_model() but the source is considered to be
a suite initialization file. This affects, for example, what settings are
valid.

robot.reporting package

Implements report, log, output XML, and xUnit file generation.

The public API of this package is the ResultWriter class. It
can write result files based on XML output files on the file system,
as well as based on the result objects returned by
the ExecutionResult() factory method or
an executed TestSuite.

It is highly recommended to use the public API via the robot.api package.

This package is considered stable.

Submodules

robot.reporting.expandkeywordmatcher module

	
class robot.reporting.expandkeywordmatcher.ExpandKeywordMatcher(expand_keywords)

	Bases: object

	
match(kw)

	

robot.reporting.jsbuildingcontext module

	
class robot.reporting.jsbuildingcontext.JsBuildingContext(log_path=None, split_log=False, expand_keywords=None, prune_input=False)

	Bases: object

	
string(string, escape=True, attr=False)

	

	
html(string)

	

	
relative_source(source)

	

	
timestamp(time)

	

	
message_level(level)

	

	
create_link_target(msg)

	

	
check_expansion(kw)

	

	
expand_keywords

	

	
link(msg)

	

	
strings

	

	
start_splitting_if_needed(split=False)

	

	
end_splitting(model)

	

	
prune_input(**kwds)

	

robot.reporting.jsexecutionresult module

	
class robot.reporting.jsexecutionresult.JsExecutionResult(suite, statistics, errors, strings, basemillis=None, split_results=None, min_level=None, expand_keywords=None)

	Bases: object

	
remove_data_not_needed_in_report()

	

robot.reporting.jsmodelbuilders module

	
class robot.reporting.jsmodelbuilders.JsModelBuilder(log_path=None, split_log=False, expand_keywords=None, prune_input_to_save_memory=False)

	Bases: object

	
build_from(result_from_xml)

	

	
class robot.reporting.jsmodelbuilders.SuiteBuilder(context)

	Bases: robot.reporting.jsmodelbuilders._Builder

	
build(suite)

	

	
class robot.reporting.jsmodelbuilders.TestBuilder(context)

	Bases: robot.reporting.jsmodelbuilders._Builder

	
build(test)

	

	
class robot.reporting.jsmodelbuilders.KeywordBuilder(context)

	Bases: robot.reporting.jsmodelbuilders._Builder

	
build(kw, split=False)

	

	
class robot.reporting.jsmodelbuilders.MessageBuilder(context)

	Bases: robot.reporting.jsmodelbuilders._Builder

	
build(msg)

	

	
class robot.reporting.jsmodelbuilders.StatisticsBuilder

	Bases: object

	
build(statistics)

	

	
class robot.reporting.jsmodelbuilders.ErrorsBuilder(context)

	Bases: robot.reporting.jsmodelbuilders._Builder

	
build(errors)

	

	
class robot.reporting.jsmodelbuilders.ErrorMessageBuilder(context)

	Bases: robot.reporting.jsmodelbuilders.MessageBuilder

	
build(msg)

	

robot.reporting.jswriter module

	
class robot.reporting.jswriter.JsResultWriter(output, start_block='<script type="text/javascript">n', end_block='</script>n', split_threshold=9500)

	Bases: object

	
write(result, settings)

	

	
class robot.reporting.jswriter.SuiteWriter(write_json, split_threshold)

	Bases: object

	
write(suite, variable)

	

	
class robot.reporting.jswriter.SplitLogWriter(output)

	Bases: object

	
write(keywords, strings, index, notify)

	

robot.reporting.logreportwriters module

	
class robot.reporting.logreportwriters.LogWriter(js_model)

	Bases: robot.reporting.logreportwriters._LogReportWriter

	
usage = 'log'

	

	
write(path, config)

	

	
class robot.reporting.logreportwriters.ReportWriter(js_model)

	Bases: robot.reporting.logreportwriters._LogReportWriter

	
usage = 'report'

	

	
write(path, config)

	

	
class robot.reporting.logreportwriters.RobotModelWriter(output, model, config)

	Bases: robot.htmldata.htmlfilewriter.ModelWriter

	
write(line)

	

	
handles(line)

	

robot.reporting.outputwriter module

	
class robot.reporting.outputwriter.OutputWriter(output, rpa=False)

	Bases: robot.output.xmllogger.XmlLogger

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_keyword(kw)

	Implements traversing through the keyword and its child keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
close()

	

	
end_result(result)

	

	
end_errors(errors=None)

	

	
end_keyword(kw)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_stat(stat)

	

	
end_statistics(stats)

	

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_suite_statistics(tag_stats)

	

	
end_tag_statistics(tag_stats)

	

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
end_total_statistics(total_stats)

	

	
log_message(msg)

	

	
message(msg)

	

	
set_log_level(level)

	

	
start_errors(errors=None)

	

	
start_keyword(kw)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_result(result)

	

	
start_stat(stat)

	

	
start_statistics(stats)

	

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_suite_statistics(tag_stats)

	

	
start_tag_statistics(tag_stats)

	

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_total_statistics(total_stats)

	

	
visit_errors(errors)

	

	
visit_message(msg)

	Implements visiting the message.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_result(result)

	

	
visit_stat(stat)

	

	
visit_statistics(stats)

	

	
visit_suite(suite)

	Implements traversing through the suite and its direct children.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
visit_suite_statistics(stats)

	

	
visit_tag_statistics(stats)

	

	
visit_test(test)

	Implements traversing through the test and its keywords.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
visit_total_statistics(stats)

	

robot.reporting.resultwriter module

	
class robot.reporting.resultwriter.ResultWriter(*sources)

	Bases: object

A class to create log, report, output XML and xUnit files.

	Parameters

	sources – Either one Result
object, or one or more paths to existing output XML files.

By default writes report.html and log.html, but no output XML
or xUnit files. Custom file names can be given and results disabled
or enabled using settings or options passed to the
write_results() method. The latter is typically more convenient:

writer = ResultWriter(result)
writer.write_results(report='custom.html', log=None, xunit='xunit.xml')

	
write_results(settings=None, **options)

	Writes results based on the given settings or options.

	Parameters

	
	settings – RebotSettings object
to configure result writing.

	options – Used to construct new
RebotSettings object if settings
are not given.

	
class robot.reporting.resultwriter.Results(settings, *sources)

	Bases: object

	
result

	

	
js_result

	

robot.reporting.stringcache module

	
class robot.reporting.stringcache.StringIndex

	Bases: int

	
bit_length() → int

	Number of bits necessary to represent self in binary.
>>> bin(37)
‘0b100101’
>>> (37).bit_length()
6

	
conjugate()

	Returns self, the complex conjugate of any int.

	
denominator

	the denominator of a rational number in lowest terms

	
imag

	the imaginary part of a complex number

	
numerator

	the numerator of a rational number in lowest terms

	
real

	the real part of a complex number

	
class robot.reporting.stringcache.StringCache

	Bases: object

	
add(text)

	

	
dump()

	

robot.reporting.xunitwriter module

	
class robot.reporting.xunitwriter.XUnitWriter(execution_result, skip_noncritical)

	Bases: object

	
write(output)

	

	
class robot.reporting.xunitwriter.XUnitFileWriter(xml_writer, skip_noncritical=False)

	Bases: robot.result.visitor.ResultVisitor

Provides an xUnit-compatible result file.

Attempts to adhere to the de facto schema guessed by Peter Reilly, see:
http://marc.info/?l=ant-dev&m=123551933508682

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
visit_test(test)

	Implements traversing through the test and its keywords.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
visit_keyword(kw)

	Implements traversing through the keyword and its child keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
visit_statistics(stats)

	

	
visit_errors(errors)

	

	
end_result(result)

	

	
end_errors(errors)

	

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_stat(stat)

	

	
end_statistics(stats)

	

	
end_suite_statistics(suite_stats)

	

	
end_tag_statistics(stats)

	

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
end_total_statistics(stats)

	

	
start_errors(errors)

	

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_result(result)

	

	
start_stat(stat)

	

	
start_statistics(stats)

	

	
start_suite_statistics(stats)

	

	
start_tag_statistics(stats)

	

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_total_statistics(stats)

	

	
visit_message(msg)

	Implements visiting the message.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_result(result)

	

	
visit_stat(stat)

	

	
visit_suite(suite)

	Implements traversing through the suite and its direct children.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
visit_suite_statistics(stats)

	

	
visit_tag_statistics(stats)

	

	
visit_total_statistics(stats)

	

robot.result package

Implements parsing execution results from XML output files.

The main public API of this package consists of the ExecutionResult()
factory method, that returns Result objects, and of the
ResultVisitor abstract class, that eases further processing
the results.

The model objects in the model module can also be considered to be
part of the public API, because they can be found inside the Result
object. They can also be inspected and modified as part of the normal test
execution by pre-Rebot modifiers [http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#programmatic-modification-of-results] and listeners [http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#listener-interface].

It is highly recommended to import the public entry-points via the
robot.api package like in the example below. In those rare cases
where the aforementioned model objects are needed directly, they can be
imported from this package.

This package is considered stable.

Example

#!/usr/bin/env python

"""Usage: check_test_times.py seconds inpath [outpath]

Reads test execution result from an output XML file and checks that no test
took longer than given amount of seconds to execute.

Optional `outpath` specifies where to write processed results. If not given,
results are written over the original file.
"""

import sys
from robot.api import ExecutionResult, ResultVisitor

class ExecutionTimeChecker(ResultVisitor):

 def __init__(self, max_seconds):
 self.max_milliseconds = max_seconds * 1000

 def visit_test(self, test):
 if test.status == 'PASS' and test.elapsedtime > self.max_milliseconds:
 test.status = 'FAIL'
 test.message = 'Test execution took too long.'

def check_tests(seconds, inpath, outpath=None):
 result = ExecutionResult(inpath)
 result.visit(ExecutionTimeChecker(float(seconds)))
 result.save(outpath)

if __name__ == '__main__':
 try:
 check_tests(*sys.argv[1:])
 except TypeError:
 print(__doc__)

Submodules

robot.result.configurer module

	
class robot.result.configurer.SuiteConfigurer(remove_keywords=None, log_level=None, start_time=None, end_time=None, critical_tags=None, non_critical_tags=None, **base_config)

	Bases: robot.model.configurer.SuiteConfigurer

Result suite configured.

Calls suite’s
remove_keywords(),
filter_messages() and
set_criticality() methods
and sets its start and end time based on the given named parameters.

base_config is forwarded to
robot.model.SuiteConfigurer
that will do further configuration based on them.

	
visit_suite(suite)

	Implements traversing through the suite and its direct children.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
add_tags

	

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
remove_tags

	

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_keyword(kw)

	Implements traversing through the keyword and its child keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
visit_message(msg)

	Implements visiting the message.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_test(test)

	Implements traversing through the test and its keywords.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

robot.result.executionerrors module

	
class robot.result.executionerrors.ExecutionErrors(messages=None)

	Bases: object

Represents errors occurred during the execution of tests.

An error might be, for example, that importing a library has failed.

	
message_class

	alias of robot.result.model.Message

	
messages

	A list-like object of
Message instances.

	
add(other)

	

	
visit(visitor)

	

robot.result.executionresult module

	
class robot.result.executionresult.Result(source=None, root_suite=None, errors=None, rpa=None)

	Bases: object

Test execution results.

Can be created based on XML output files using the
ExecutionResult()
factory method. Also returned by the
robot.running.TestSuite.run
method.

	
source = None

	Path to the XML file where results are read from.

	
suite = None

	Hierarchical execution results as a
TestSuite object.

	
errors = None

	Execution errors as an
ExecutionErrors object.

	
statistics

	Test execution statistics.

Statistics are an instance of
Statistics that is created based
on the contained suite and possible
configuration.

Statistics are created every time this property is accessed. Saving
them to a variable is thus often a good idea to avoid re-creating
them unnecessarily:

from robot.api import ExecutionResult

result = ExecutionResult('output.xml')
result.configure(stat_config={'suite_stat_level': 2,
 'tag_stat_combine': 'tagANDanother'})
stats = result.statistics
print stats.total.critical.failed
print stats.total.critical.passed
print stats.tags.combined[0].total

	
return_code

	Return code (integer) of test execution.

By default returns the number of failed critical tests (max 250),
but can be configured to always return 0.

	
configure(status_rc=True, suite_config=None, stat_config=None)

	Configures the result object and objects it contains.

	Parameters

	
	status_rc – If set to False, return_code always
returns 0.

	suite_config – A dictionary of configuration options passed
to configure() method of
the contained suite.

	stat_config – A dictionary of configuration options used when
creating statistics.

	
save(path=None)

	Save results as a new output XML file.

	Parameters

	path – Path to save results to. If omitted, overwrites the
original file.

	
visit(visitor)

	An entry point to visit the whole result object.

	Parameters

	visitor – An instance of ResultVisitor.

Visitors can gather information, modify results, etc. See
result package for a simple usage example.

Notice that it is also possible to call result.suite.visit if there is no need to
visit the contained statistics or errors.

	
handle_suite_teardown_failures()

	Internal usage only.

	
set_execution_mode(other)

	Set execution mode based on other result. Internal usage only.

	
class robot.result.executionresult.CombinedResult(results=None)

	Bases: robot.result.executionresult.Result

Combined results of multiple test executions.

	
add_result(other)

	

	
configure(status_rc=True, suite_config=None, stat_config=None)

	Configures the result object and objects it contains.

	Parameters

	
	status_rc – If set to False, return_code always
returns 0.

	suite_config – A dictionary of configuration options passed
to configure() method of
the contained suite.

	stat_config – A dictionary of configuration options used when
creating statistics.

	
handle_suite_teardown_failures()

	Internal usage only.

	
return_code

	Return code (integer) of test execution.

By default returns the number of failed critical tests (max 250),
but can be configured to always return 0.

	
save(path=None)

	Save results as a new output XML file.

	Parameters

	path – Path to save results to. If omitted, overwrites the
original file.

	
set_execution_mode(other)

	Set execution mode based on other result. Internal usage only.

	
statistics

	Test execution statistics.

Statistics are an instance of
Statistics that is created based
on the contained suite and possible
configuration.

Statistics are created every time this property is accessed. Saving
them to a variable is thus often a good idea to avoid re-creating
them unnecessarily:

from robot.api import ExecutionResult

result = ExecutionResult('output.xml')
result.configure(stat_config={'suite_stat_level': 2,
 'tag_stat_combine': 'tagANDanother'})
stats = result.statistics
print stats.total.critical.failed
print stats.total.critical.passed
print stats.tags.combined[0].total

	
visit(visitor)

	An entry point to visit the whole result object.

	Parameters

	visitor – An instance of ResultVisitor.

Visitors can gather information, modify results, etc. See
result package for a simple usage example.

Notice that it is also possible to call result.suite.visit if there is no need to
visit the contained statistics or errors.

robot.result.flattenkeywordmatcher module

	
robot.result.flattenkeywordmatcher.validate_flatten_keyword(options)

	

	
class robot.result.flattenkeywordmatcher.FlattenByTypeMatcher(flatten)

	Bases: object

	
match(kwtype)

	

	
class robot.result.flattenkeywordmatcher.FlattenByNameMatcher(flatten)

	Bases: object

	
match(kwname, libname=None)

	

	
class robot.result.flattenkeywordmatcher.FlattenByTagMatcher(flatten)

	Bases: object

	
match(kwtags)

	

robot.result.keywordremover module

	
robot.result.keywordremover.KeywordRemover(how)

	

	
class robot.result.keywordremover.AllKeywordsRemover

	Bases: robot.result.keywordremover._KeywordRemover

	
visit_keyword(keyword)

	Implements traversing through the keyword and its child keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_message(msg)

	Implements visiting the message.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through the suite and its direct children.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
visit_test(test)

	Implements traversing through the test and its keywords.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
class robot.result.keywordremover.PassedKeywordRemover

	Bases: robot.result.keywordremover._KeywordRemover

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_test(test)

	Implements traversing through the test and its keywords.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
visit_keyword(keyword)

	Implements traversing through the keyword and its child keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_message(msg)

	Implements visiting the message.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through the suite and its direct children.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
class robot.result.keywordremover.ByNameKeywordRemover(pattern)

	Bases: robot.result.keywordremover._KeywordRemover

	
start_keyword(kw)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_keyword(kw)

	Implements traversing through the keyword and its child keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
visit_message(msg)

	Implements visiting the message.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through the suite and its direct children.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
visit_test(test)

	Implements traversing through the test and its keywords.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
class robot.result.keywordremover.ByTagKeywordRemover(pattern)

	Bases: robot.result.keywordremover._KeywordRemover

	
start_keyword(kw)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_keyword(kw)

	Implements traversing through the keyword and its child keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
visit_message(msg)

	Implements visiting the message.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through the suite and its direct children.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
visit_test(test)

	Implements traversing through the test and its keywords.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
class robot.result.keywordremover.ForLoopItemsRemover

	Bases: robot.result.keywordremover._KeywordRemover

	
start_keyword(kw)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_keyword(kw)

	Implements traversing through the keyword and its child keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
visit_message(msg)

	Implements visiting the message.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through the suite and its direct children.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
visit_test(test)

	Implements traversing through the test and its keywords.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
class robot.result.keywordremover.WaitUntilKeywordSucceedsRemover

	Bases: robot.result.keywordremover._KeywordRemover

	
start_keyword(kw)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_keyword(kw)

	Implements traversing through the keyword and its child keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
visit_message(msg)

	Implements visiting the message.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through the suite and its direct children.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
visit_test(test)

	Implements traversing through the test and its keywords.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
class robot.result.keywordremover.WarningAndErrorFinder

	Bases: robot.model.visitor.SuiteVisitor

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_message(msg)

	Implements visiting the message.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_keyword(kw)

	Implements traversing through the keyword and its child keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
visit_suite(suite)

	Implements traversing through the suite and its direct children.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
visit_test(test)

	Implements traversing through the test and its keywords.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
class robot.result.keywordremover.RemovalMessage(message)

	Bases: object

	
set_if_removed(kw, len_before)

	

	
set(kw, message=None)

	

robot.result.merger module

	
class robot.result.merger.Merger(result, rpa=False)

	Bases: robot.model.visitor.SuiteVisitor

	
merge(merged)

	

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
visit_test(test)

	Implements traversing through the test and its keywords.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_keyword(kw)

	Implements traversing through the keyword and its child keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
visit_message(msg)

	Implements visiting the message.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through the suite and its direct children.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

robot.result.messagefilter module

	
class robot.result.messagefilter.MessageFilter(loglevel)

	Bases: robot.model.visitor.SuiteVisitor

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_keyword(kw)

	Implements traversing through the keyword and its child keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
visit_message(msg)

	Implements visiting the message.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through the suite and its direct children.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
visit_test(test)

	Implements traversing through the test and its keywords.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

robot.result.model module

Module implementing result related model objects.

During test execution these objects are created internally by various runners.
At that time they can inspected and modified by listeners [http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#listener-interface].

When results are parsed from XML output files after execution to be able to
create logs and reports, these objects are created by the
ExecutionResult() factory method.
At that point they can be inspected and modified by pre-Rebot modifiers [http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#programmatic-modification-of-results].

The ExecutionResult() factory method can also be used
by custom scripts and tools. In such usage it is often easiest to inspect and
modify these objects using the visitor interface.

	
class robot.result.model.Message(message='', level='INFO', html=False, timestamp=None, parent=None)

	Bases: robot.model.message.Message

Represents a single log message.

See the base class for documentation of attributes not documented here.

	
copy(**attributes)

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

New in Robot Framework 3.0.1.

	
deepcopy(**attributes)

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

New in Robot Framework 3.0.1.

	
html

	

	
html_message

	Returns the message content as HTML.

	
level

	

	
message

	

	
parent

	

	
timestamp

	

	
visit(visitor)

	Visitor interface entry-point.

	
class robot.result.model.Keyword(kwname='', libname='', doc='', args=(), assign=(), tags=(), timeout=None, type='kw', status='FAIL', starttime=None, endtime=None)

	Bases: robot.model.keyword.Keyword

Represents results of a single keyword.

See the base class for documentation of attributes not documented here.

	
message_class

	alias of Message

	
kwname

	Name of the keyword without library or resource name.

	
libname

	Name of the library or resource containing this keyword.

	
status

	Execution status as a string. Typically PASS or FAIL, but
library keywords have status NOT_RUN in the dry-ryn mode.
See also passed.

	
starttime

	Keyword execution start time in format %Y%m%d %H:%M:%S.%f.

	
endtime

	Keyword execution end time in format %Y%m%d %H:%M:%S.%f.

	
message

	Keyword status message. Used only if suite teardowns fails.

	
elapsedtime

	Total execution time in milliseconds.

	
name

	Keyword name in format libname.kwname.

Just kwname if libname is empty. In practice that is the
case only with user keywords in the same file as the executed test case
or test suite.

Cannot be set directly. Set libname and kwname
separately instead.

	
passed

	True or False depending on the status.

	
FOR_ITEM_TYPE = 'foritem'

	

	
FOR_LOOP_TYPE = 'for'

	

	
KEYWORD_TYPE = 'kw'

	

	
SETUP_TYPE = 'setup'

	

	
TEARDOWN_TYPE = 'teardown'

	

	
args

	

	
assign

	

	
children

	Child keywords and messages in creation order.

	
copy(**attributes)

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

New in Robot Framework 3.0.1.

	
deepcopy(**attributes)

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

New in Robot Framework 3.0.1.

	
doc

	

	
id

	Keyword id in format like s1-t3-k1.

See TestSuite.id for
more information.

	
keyword_class = None

	

	
keywords

	Child keywords as a Keywords object.

	
messages

	Messages as a Messages object.

	
parent

	Parent test suite, test case or keyword.

	
source

	

	
tags

	Keyword tags as a Tags object.

	
timeout

	

	
type

	

	
visit(visitor)

	Visitor interface entry-point.

	
class robot.result.model.TestCase(name='', doc='', tags=None, timeout=None, status='FAIL', message='', starttime=None, endtime=None)

	Bases: robot.model.testcase.TestCase

Represents results of a single test case.

See the base class for documentation of attributes not documented here.

	
keyword_class

	alias of Keyword

	
status

	Status as a string PASS or FAIL. See also passed.

	
message

	Test message. Typically a failure message but can be set also when
test passes.

	
starttime

	Test case execution start time in format %Y%m%d %H:%M:%S.%f.

	
endtime

	Test case execution end time in format %Y%m%d %H:%M:%S.%f.

	
elapsedtime

	Total execution time in milliseconds.

	
passed

	True/False depending on the status.

	
critical

	True/False depending on is the test considered critical.

Criticality is determined based on test’s tags and
criticality of the parent suite.

	
copy(**attributes)

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

New in Robot Framework 3.0.1.

	
deepcopy(**attributes)

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

New in Robot Framework 3.0.1.

	
doc

	

	
id

	Test case id in format like s1-t3.

See TestSuite.id for
more information.

	
keywords

	Keywords as a Keywords object.

Contains also possible setup and teardown keywords.

	
longname

	Test name prefixed with the long name of the parent suite.

	
name

	

	
parent

	

	
source

	

	
tags

	Test tags as a Tags object.

	
timeout

	

	
visit(visitor)

	Visitor interface entry-point.

	
class robot.result.model.TestSuite(name='', doc='', metadata=None, source=None, message='', starttime=None, endtime=None, rpa=False)

	Bases: robot.model.testsuite.TestSuite

Represents results of a single test suite.

See the base class for documentation of attributes not documented here.

	
test_class

	alias of TestCase

	
keyword_class

	alias of Keyword

	
message

	Possible suite setup or teardown error message.

	
starttime

	Suite execution start time in format %Y%m%d %H:%M:%S.%f.

	
endtime

	Suite execution end time in format %Y%m%d %H:%M:%S.%f.

	
passed

	True if no critical test has failed, False otherwise.

	
status

	'PASS' if no critical test has failed, 'FAIL' otherwise.

	
statistics

	Suite statistics as a TotalStatistics object.

Recreated every time this property is accessed, so saving the results
to a variable and inspecting it is often a good idea:

stats = suite.statistics
print(stats.critical.failed)
print(stats.all.total)
print(stats.message)

	
full_message

	Combination of message and stat_message.

	
stat_message

	String representation of the statistics.

	
elapsedtime

	Total execution time in milliseconds.

	
criticality

	Used by tests to determine are they considered critical or not.

Normally configured using --critical and --noncritical
command line options. Can be set programmatically using
set_criticality() of the root test suite.

	
set_criticality(critical_tags=None, non_critical_tags=None)

	Sets which tags are considered critical and which non-critical.

	Parameters

	
	critical_tags – Tags or patterns considered critical. See
the documentation of the --critical option for more details.

	non_critical_tags – Tags or patterns considered non-critical. See
the documentation of the --noncritical option for more details.

Tags can be given as lists of strings or, when giving only one,
as single strings. This information is used by tests to determine
are they considered critical or not.

Criticality can be set only to the root test suite.

	
remove_keywords(how)

	Remove keywords based on the given condition.

	Parameters

	how – What approach to use when removing keywords. Either
ALL, PASSED, FOR, WUKS, or NAME:<pattern>.

For more information about the possible values see the documentation
of the --removekeywords command line option.

	
filter_messages(log_level='TRACE')

	Remove log messages below the specified log_level.

	
configure(**options)

	A shortcut to configure a suite using one method call.

Can only be used with the root test suite.

	Parameters

	options – Passed to
SuiteConfigurer that will then
set suite attributes, call filter(), etc. as needed.

Example:

suite.configure(remove_keywords='PASSED',
 critical_tags='smoke',
 doc='Smoke test results.')

	
copy(**attributes)

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

New in Robot Framework 3.0.1.

	
deepcopy(**attributes)

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

New in Robot Framework 3.0.1.

	
doc

	

	
filter(included_suites=None, included_tests=None, included_tags=None, excluded_tags=None)

	Select test cases and remove others from this suite.

Parameters have the same semantics as --suite, --test,
--include, and --exclude command line options. All of them
can be given as a list of strings, or when selecting only one, as
a single string.

Child suites that contain no tests after filtering are automatically
removed.

Example:

suite.filter(included_tests=['Test 1', '* Example'],
 included_tags='priority-1')

	
handle_suite_teardown_failures()

	Internal usage only.

	
has_tests

	

	
id

	An automatically generated unique id.

The root suite has id s1, its child suites have ids s1-s1,
s1-s2, …, their child suites get ids s1-s1-s1, s1-s1-s2,
…, s1-s2-s1, …, and so on.

The first test in a suite has an id like s1-t1, the second has an
id s1-t2, and so on. Similarly keywords in suites (setup/teardown)
and in tests get ids like s1-k1, s1-t1-k1, and s1-s4-t2-k5.

	
keywords

	Suite setup and teardown as a Keywords object.

	
longname

	Suite name prefixed with the long name of the parent suite.

	
metadata

	Free test suite metadata as a dictionary.

	
name

	Test suite name. If not set, constructed from child suite names.

	
parent

	

	
remove_empty_suites(preserve_direct_children=False)

	Removes all child suites not containing any tests, recursively.

	
rpa

	

	
set_tags(add=None, remove=None, persist=False)

	Add and/or remove specified tags to the tests in this suite.

	Parameters

	
	add – Tags to add as a list or, if adding only one,
as a single string.

	remove – Tags to remove as a list or as a single string.
Can be given as patterns where * and ? work as wildcards.

	persist – Add/remove specified tags also to new tests added
to this suite in the future.

	
source

	

	
suites

	Child suites as a TestSuites object.

	
test_count

	Number of the tests in this suite, recursively.

	
tests

	Tests as a TestCases object.

	
visit(visitor)

	Visitor interface entry-point.

	
suite_teardown_failed(message)

	Internal usage only.

robot.result.resultbuilder module

	
robot.result.resultbuilder.ExecutionResult(*sources, **options)

	Factory method to constructs Result objects.

	Parameters

	
	sources – XML source(s) containing execution results.
Can be specified as paths, opened file objects, or strings/bytes
containing XML directly. Support for bytes is new in RF 3.2.

	options – Configuration options.
Using merge=True causes multiple results to be combined so that
tests in the latter results replace the ones in the original.
Setting rpa either to True (RPA mode) or False (test
automation) sets execution mode explicitly. By default it is got
from processed output files and conflicting modes cause an error.
Other options are passed directly to the
ExecutionResultBuilder object used internally.

	Returns

	Result instance.

Should be imported by external code via the robot.api package.
See the robot.result package for a usage example.

	
class robot.result.resultbuilder.ExecutionResultBuilder(source, include_keywords=True, flattened_keywords=None)

	Bases: object

Builds Result objects based on output files.

Instead of using this builder directly, it is recommended to use the
ExecutionResult() factory method.

	Parameters

	
	source – Path to the XML output file to build
Result objects from.

	include_keywords – Boolean controlling whether to include
keyword information in the result or not. Keywords are
not needed when generating only report.

	flatten_keywords – List of patterns controlling what keywords to
flatten. See the documentation of --flattenkeywords option for
more details.

	
build(result)

	

	
class robot.result.resultbuilder.RemoveKeywords

	Bases: robot.model.visitor.SuiteVisitor

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_test(test)

	Implements traversing through the test and its keywords.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_keyword(kw)

	Implements traversing through the keyword and its child keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
visit_message(msg)

	Implements visiting the message.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through the suite and its direct children.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

robot.result.suiteteardownfailed module

	
class robot.result.suiteteardownfailed.SuiteTeardownFailureHandler

	Bases: robot.model.visitor.SuiteVisitor

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
visit_test(test)

	Implements traversing through the test and its keywords.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
visit_keyword(keyword)

	Implements traversing through the keyword and its child keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_message(msg)

	Implements visiting the message.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through the suite and its direct children.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
class robot.result.suiteteardownfailed.SuiteTeardownFailed(error)

	Bases: robot.model.visitor.SuiteVisitor

	
visit_test(test)

	Implements traversing through the test and its keywords.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
visit_keyword(keyword)

	Implements traversing through the keyword and its child keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_message(msg)

	Implements visiting the message.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through the suite and its direct children.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

robot.result.visitor module

Visitors can be used to easily traverse result structures.

This module contains ResultVisitor for traversing the whole
Result object. It extends
SuiteVisitor that contains visiting logic
for the test suite structure.

	
class robot.result.visitor.ResultVisitor

	Bases: robot.model.visitor.SuiteVisitor

Abstract class to conveniently travel Result objects.

A visitor implementation can be given to the visit() method of a
result object. This will cause the result object to be traversed and the
visitor’s visit_x(), start_x(), and end_x() methods to
be called for each suite, test, keyword and message, as well as for errors,
statistics, and other information in the result object. See methods below
for a full list of available visitor methods.

See the result package level documentation for
more information about handling results and a concrete visitor example.
For more information about the visitor algorithm see documentation in
robot.model.visitor module.

	
visit_result(result)

	

	
start_result(result)

	

	
end_result(result)

	

	
visit_statistics(stats)

	

	
start_statistics(stats)

	

	
end_statistics(stats)

	

	
visit_total_statistics(stats)

	

	
start_total_statistics(stats)

	

	
end_total_statistics(stats)

	

	
visit_tag_statistics(stats)

	

	
start_tag_statistics(stats)

	

	
end_tag_statistics(stats)

	

	
visit_suite_statistics(stats)

	

	
start_suite_statistics(stats)

	

	
end_suite_statistics(suite_stats)

	

	
visit_stat(stat)

	

	
start_stat(stat)

	

	
end_stat(stat)

	

	
visit_errors(errors)

	

	
start_errors(errors)

	

	
end_errors(errors)

	

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_keyword(kw)

	Implements traversing through the keyword and its child keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
visit_message(msg)

	Implements visiting the message.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through the suite and its direct children.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
visit_test(test)

	Implements traversing through the test and its keywords.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

robot.result.xmlelementhandlers module

	
class robot.result.xmlelementhandlers.XmlElementHandler(execution_result, root_handler=None)

	Bases: object

	
start(elem)

	

	
end(elem)

	

	
class robot.result.xmlelementhandlers.RootHandler

	Bases: robot.result.xmlelementhandlers._Handler

	
end(elem, result)

	

	
get_child_handler(elem)

	

	
start(elem, result)

	

	
class robot.result.xmlelementhandlers.RobotHandler

	Bases: robot.result.xmlelementhandlers._Handler

	
tag = 'robot'

	

	
start(elem, result)

	

	
end(elem, result)

	

	
get_child_handler(elem)

	

	
class robot.result.xmlelementhandlers.SuiteHandler

	Bases: robot.result.xmlelementhandlers._Handler

	
tag = 'suite'

	

	
start(elem, result)

	

	
end(elem, result)

	

	
get_child_handler(elem)

	

	
class robot.result.xmlelementhandlers.RootSuiteHandler

	Bases: robot.result.xmlelementhandlers.SuiteHandler

	
start(elem, result)

	

	
end(elem, result)

	

	
get_child_handler(elem)

	

	
tag = 'suite'

	

	
class robot.result.xmlelementhandlers.TestCaseHandler

	Bases: robot.result.xmlelementhandlers._Handler

	
tag = 'test'

	

	
start(elem, result)

	

	
end(elem, result)

	

	
get_child_handler(elem)

	

	
class robot.result.xmlelementhandlers.KeywordHandler

	Bases: robot.result.xmlelementhandlers._Handler

	
tag = 'kw'

	

	
start(elem, result)

	

	
end(elem, result)

	

	
get_child_handler(elem)

	

	
class robot.result.xmlelementhandlers.MessageHandler

	Bases: robot.result.xmlelementhandlers._Handler

	
tag = 'msg'

	

	
end(elem, result)

	

	
get_child_handler(elem)

	

	
start(elem, result)

	

	
class robot.result.xmlelementhandlers.KeywordStatusHandler

	Bases: robot.result.xmlelementhandlers._StatusHandler

	
end(elem, result)

	

	
get_child_handler(elem)

	

	
start(elem, result)

	

	
tag = 'status'

	

	
class robot.result.xmlelementhandlers.SuiteStatusHandler

	Bases: robot.result.xmlelementhandlers._StatusHandler

	
end(elem, result)

	

	
get_child_handler(elem)

	

	
start(elem, result)

	

	
tag = 'status'

	

	
class robot.result.xmlelementhandlers.TestStatusHandler

	Bases: robot.result.xmlelementhandlers._StatusHandler

	
end(elem, result)

	

	
get_child_handler(elem)

	

	
start(elem, result)

	

	
tag = 'status'

	

	
class robot.result.xmlelementhandlers.DocHandler

	Bases: robot.result.xmlelementhandlers._Handler

	
tag = 'doc'

	

	
end(elem, result)

	

	
get_child_handler(elem)

	

	
start(elem, result)

	

	
class robot.result.xmlelementhandlers.MetadataHandler

	Bases: robot.result.xmlelementhandlers._Handler

	
tag = 'metadata'

	

	
end(elem, result)

	

	
get_child_handler(elem)

	

	
start(elem, result)

	

	
class robot.result.xmlelementhandlers.MetadataItemHandler

	Bases: robot.result.xmlelementhandlers._Handler

	
tag = 'item'

	

	
end(elem, result)

	

	
get_child_handler(elem)

	

	
start(elem, result)

	

	
class robot.result.xmlelementhandlers.TagsHandler

	Bases: robot.result.xmlelementhandlers._Handler

	
tag = 'tags'

	

	
end(elem, result)

	

	
get_child_handler(elem)

	

	
start(elem, result)

	

	
class robot.result.xmlelementhandlers.TagHandler

	Bases: robot.result.xmlelementhandlers._Handler

	
tag = 'tag'

	

	
end(elem, result)

	

	
get_child_handler(elem)

	

	
start(elem, result)

	

	
class robot.result.xmlelementhandlers.TimeoutHandler

	Bases: robot.result.xmlelementhandlers._Handler

	
tag = 'timeout'

	

	
end(elem, result)

	

	
get_child_handler(elem)

	

	
start(elem, result)

	

	
class robot.result.xmlelementhandlers.AssignHandler

	Bases: robot.result.xmlelementhandlers._Handler

	
tag = 'assign'

	

	
end(elem, result)

	

	
get_child_handler(elem)

	

	
start(elem, result)

	

	
class robot.result.xmlelementhandlers.AssignVarHandler

	Bases: robot.result.xmlelementhandlers._Handler

	
tag = 'var'

	

	
end(elem, result)

	

	
get_child_handler(elem)

	

	
start(elem, result)

	

	
class robot.result.xmlelementhandlers.ArgumentsHandler

	Bases: robot.result.xmlelementhandlers._Handler

	
tag = 'arguments'

	

	
end(elem, result)

	

	
get_child_handler(elem)

	

	
start(elem, result)

	

	
class robot.result.xmlelementhandlers.ArgumentHandler

	Bases: robot.result.xmlelementhandlers._Handler

	
tag = 'arg'

	

	
end(elem, result)

	

	
get_child_handler(elem)

	

	
start(elem, result)

	

	
class robot.result.xmlelementhandlers.ErrorsHandler

	Bases: robot.result.xmlelementhandlers._Handler

	
tag = 'errors'

	

	
start(elem, result)

	

	
end(elem, result)

	

	
get_child_handler(elem)

	

	
class robot.result.xmlelementhandlers.StatisticsHandler

	Bases: robot.result.xmlelementhandlers._Handler

	
tag = 'statistics'

	

	
get_child_handler(elem)

	

	
end(elem, result)

	

	
start(elem, result)

	

robot.running package

Implements the core test execution logic.

The main public entry points of this package are of the following two classes:

	TestSuiteBuilder for creating
executable test suites based on existing test case files and directories.

	TestSuite for creating an executable
test suite structure programmatically.

It is recommended to import both of these classes via the robot.api
package like in the examples below. Also TestCase
and Keyword classes used internally by the
TestSuite class are part of the public API.
In those rare cases where these classes are needed directly, they can be
imported from this package.

Examples

First, let’s assume we have the following test suite in file
activate_skynet.robot:

*** Settings ***
Library OperatingSystem

*** Test Cases ***
Should Activate Skynet
 [Tags] smoke
 [Setup] Set Environment Variable SKYNET activated
 Environment Variable Should Be Set SKYNET

We can easily parse and create an executable test suite based on the above file
using the TestSuiteBuilder class as follows:

from robot.api import TestSuiteBuilder

suite = TestSuiteBuilder().build('path/to/activate_skynet.robot')

That was easy. Let’s next generate the same test suite from scratch
using the TestSuite class:

from robot.api import TestSuite

suite = TestSuite('Activate Skynet')
suite.resource.imports.library('OperatingSystem')
test = suite.tests.create('Should Activate Skynet', tags=['smoke'])
test.keywords.create('Set Environment Variable', args=['SKYNET', 'activated'], type='setup')
test.keywords.create('Environment Variable Should Be Set', args=['SKYNET'])

Not that complicated either, especially considering the flexibility. Notice
that the suite created based on the file could also be edited further using
the same API.

Now that we have a test suite ready, let’s execute it and verify that the returned
Result object contains correct
information:

result = suite.run(critical='smoke', output='skynet.xml')

assert result.return_code == 0
assert result.suite.name == 'Activate Skynet'
test = result.suite.tests[0]
assert test.name == 'Should Activate Skynet'
assert test.passed and test.critical
stats = result.suite.statistics
assert stats.critical.total == 1 and stats.critical.failed == 0

Running the suite generates a normal output XML file, unless it is disabled
by using output=None. Generating log, report, and xUnit files based on
the results is possible using the
ResultWriter class:

from robot.api import ResultWriter

Report and xUnit files can be generated based on the result object.
ResultWriter(result).write_results(report='skynet.html', log=None)
Generating log files requires processing the earlier generated output XML.
ResultWriter('skynet.xml').write_results()

Subpackages

	robot.running.arguments package
	Submodules

	robot.running.arguments.argumentconverter module

	robot.running.arguments.argumentmapper module

	robot.running.arguments.argumentparser module

	robot.running.arguments.argumentresolver module

	robot.running.arguments.argumentspec module

	robot.running.arguments.argumentvalidator module

	robot.running.arguments.embedded module

	robot.running.arguments.javaargumentcoercer module

	robot.running.arguments.typeconverters module

	robot.running.arguments.typevalidator module

	robot.running.builder package
	Submodules

	robot.running.builder.builders module

	robot.running.builder.parsers module

	robot.running.builder.testsettings module

	robot.running.builder.transformers module

	robot.running.timeouts package
	Submodules

	robot.running.timeouts.ironpython module

	robot.running.timeouts.jython module

	robot.running.timeouts.posix module

	robot.running.timeouts.windows module

Submodules

robot.running.context module

	
class robot.running.context.ExecutionContexts

	Bases: object

	
current

	

	
top

	

	
namespaces

	

	
start_suite(suite, namespace, output, dry_run=False)

	

	
end_suite()

	

robot.running.dynamicmethods module

	
robot.running.dynamicmethods.no_dynamic_method(*args)

	

	
class robot.running.dynamicmethods.GetKeywordNames(lib)

	Bases: robot.running.dynamicmethods._DynamicMethod

	
name

	

	
class robot.running.dynamicmethods.RunKeyword(lib)

	Bases: robot.running.dynamicmethods._DynamicMethod

	
supports_kwargs

	

	
name

	

	
class robot.running.dynamicmethods.GetKeywordDocumentation(lib)

	Bases: robot.running.dynamicmethods._DynamicMethod

	
name

	

	
class robot.running.dynamicmethods.GetKeywordArguments(lib)

	Bases: robot.running.dynamicmethods._DynamicMethod

	
name

	

	
class robot.running.dynamicmethods.GetKeywordTypes(lib)

	Bases: robot.running.dynamicmethods._DynamicMethod

	
name

	

	
class robot.running.dynamicmethods.GetKeywordTags(lib)

	Bases: robot.running.dynamicmethods._DynamicMethod

	
name

	

	
class robot.running.dynamicmethods.GetKeywordSource(lib)

	Bases: robot.running.dynamicmethods._DynamicMethod

	
name

	

robot.running.handlers module

	
robot.running.handlers.Handler(library, name, method)

	

	
robot.running.handlers.DynamicHandler(library, name, method, doc, argspec, tags=None)

	

	
robot.running.handlers.InitHandler(library, method=None, docgetter=None)

	

	
class robot.running.handlers.EmbeddedArgumentsHandler(name_regexp, orig_handler)

	Bases: object

	
library

	

	
matches(name)

	

	
create_runner(name)

	

robot.running.handlerstore module

	
class robot.running.handlerstore.HandlerStore(source, source_type)

	Bases: object

	
TEST_LIBRARY_TYPE = 'Test library'

	

	
TEST_CASE_FILE_TYPE = 'Test case file'

	

	
RESOURCE_FILE_TYPE = 'Resource file'

	

	
add(handler, embedded=False)

	

	
create_runner(name)

	

robot.running.importer module

	
class robot.running.importer.Importer

	Bases: object

	
reset()

	

	
close_global_library_listeners()

	

	
import_library(name, args, alias, variables)

	

	
import_resource(path)

	

	
class robot.running.importer.ImportCache

	Bases: object

Keeps track on and optionally caches imported items.

Handles paths in keys case-insensitively on case-insensitive OSes.
Unlike dicts, this storage accepts mutable values in keys.

	
add(key, item=None)

	

	
values()

	

robot.running.librarykeywordrunner module

	
class robot.running.librarykeywordrunner.LibraryKeywordRunner(handler, name=None)

	Bases: object

	
library

	

	
libname

	

	
longname

	

	
run(kw, context)

	

	
dry_run(kw, context)

	

	
class robot.running.librarykeywordrunner.EmbeddedArgumentsRunner(handler, name)

	Bases: robot.running.librarykeywordrunner.LibraryKeywordRunner

	
dry_run(kw, context)

	

	
libname

	

	
library

	

	
longname

	

	
run(kw, context)

	

	
class robot.running.librarykeywordrunner.RunKeywordRunner(handler, default_dry_run_keywords=False)

	Bases: robot.running.librarykeywordrunner.LibraryKeywordRunner

	
dry_run(kw, context)

	

	
libname

	

	
library

	

	
longname

	

	
run(kw, context)

	

robot.running.libraryscopes module

	
robot.running.libraryscopes.LibraryScope(libcode, library)

	

	
class robot.running.libraryscopes.GlobalScope(library)

	Bases: object

	
is_global = True

	

	
start_suite()

	

	
end_suite()

	

	
start_test()

	

	
end_test()

	

	
class robot.running.libraryscopes.TestSuiteScope(library)

	Bases: robot.running.libraryscopes.GlobalScope

	
is_global = False

	

	
start_suite()

	

	
end_suite()

	

	
end_test()

	

	
start_test()

	

	
class robot.running.libraryscopes.TestCaseScope(library)

	Bases: robot.running.libraryscopes.TestSuiteScope

	
start_test()

	

	
end_test()

	

	
end_suite()

	

	
is_global = False

	

	
start_suite()

	

robot.running.model module

Module implementing test execution related model objects.

When tests are executed normally, these objects are created based on the test
data on the file system by TestSuiteBuilder, but external
tools can also create an executable test suite model structure directly.
Regardless the approach to create it, the model is executed by calling
run() method of the root test suite. See the
robot.running package level documentation for more information and
examples.

The most important classes defined in this module are TestSuite,
TestCase and Keyword. When tests are executed, these objects
can be inspected and modified by pre-run modifiers [http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#programmatic-modification-of-results] and listeners [http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#listener-interface].
The aforementioned objects are considered stable, but other objects in this
module may still be changed in the future major releases.

	
class robot.running.model.Keyword(name='', doc='', args=(), assign=(), tags=(), timeout=None, type='kw', lineno=None)

	Bases: robot.model.keyword.Keyword

Represents a single executable keyword.

These keywords never have child keywords or messages. The actual keyword
that is executed depends on the context where this model is executed.

See the base class for documentation of attributes not documented here.

	
message_class = None

	Internal usage only.

	
lineno

	

	
run(context)

	Execute the keyword.

Typically called internally by TestSuite.run().

	
FOR_ITEM_TYPE = 'foritem'

	

	
FOR_LOOP_TYPE = 'for'

	

	
KEYWORD_TYPE = 'kw'

	

	
SETUP_TYPE = 'setup'

	

	
TEARDOWN_TYPE = 'teardown'

	

	
args

	

	
assign

	

	
children

	Child keywords and messages in creation order.

	
copy(**attributes)

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

New in Robot Framework 3.0.1.

	
deepcopy(**attributes)

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

New in Robot Framework 3.0.1.

	
doc

	

	
id

	Keyword id in format like s1-t3-k1.

See TestSuite.id for
more information.

	
keyword_class = None

	

	
keywords

	Child keywords as a Keywords object.

	
messages

	Messages as a Messages object.

	
name

	

	
parent

	Parent test suite, test case or keyword.

	
source

	

	
tags

	Keyword tags as a Tags object.

	
timeout

	

	
type

	

	
visit(visitor)

	Visitor interface entry-point.

	
class robot.running.model.ForLoop(variables, values, flavor, lineno=None, _header='FOR', _end='END')

	Bases: robot.running.model.Keyword

Represents a for loop in test data.

Contains keywords in the loop body as child keywords.

	
keyword_class

	Internal usage only.

alias of Keyword

	
flavor

	

	
lineno

	

	
variables

	

	
values

	

	
FOR_ITEM_TYPE = 'foritem'

	

	
FOR_LOOP_TYPE = 'for'

	

	
KEYWORD_TYPE = 'kw'

	

	
SETUP_TYPE = 'setup'

	

	
TEARDOWN_TYPE = 'teardown'

	

	
args

	

	
assign

	

	
children

	Child keywords and messages in creation order.

	
copy(**attributes)

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

New in Robot Framework 3.0.1.

	
deepcopy(**attributes)

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

New in Robot Framework 3.0.1.

	
doc

	

	
id

	Keyword id in format like s1-t3-k1.

See TestSuite.id for
more information.

	
keywords

	Child keywords as a Keywords object.

	
message_class = None

	

	
messages

	Messages as a Messages object.

	
name

	

	
parent

	Parent test suite, test case or keyword.

	
run(context)

	Execute the keyword.

Typically called internally by TestSuite.run().

	
source

	

	
tags

	Keyword tags as a Tags object.

	
timeout

	

	
type

	

	
visit(visitor)

	Visitor interface entry-point.

	
class robot.running.model.TestCase(name='', doc='', tags=None, timeout=None, template=None, lineno=None)

	Bases: robot.model.testcase.TestCase

Represents a single executable test case.

See the base class for documentation of attributes not documented here.

	
keyword_class

	Internal usage only.

alias of Keyword

	
template

	Name of the keyword that has been used as template
when building the test. None if no is template used.

	
lineno

	

	
copy(**attributes)

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

New in Robot Framework 3.0.1.

	
deepcopy(**attributes)

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

New in Robot Framework 3.0.1.

	
doc

	

	
id

	Test case id in format like s1-t3.

See TestSuite.id for
more information.

	
keywords

	Keywords as a Keywords object.

Contains also possible setup and teardown keywords.

	
longname

	Test name prefixed with the long name of the parent suite.

	
name

	

	
parent

	

	
source

	

	
tags

	Test tags as a Tags object.

	
timeout

	

	
visit(visitor)

	Visitor interface entry-point.

	
class robot.running.model.TestSuite(name='', doc='', metadata=None, source=None, rpa=None)

	Bases: robot.model.testsuite.TestSuite

Represents a single executable test suite.

See the base class for documentation of attributes not documented here.

	
test_class

	Internal usage only.

alias of TestCase

	
keyword_class

	Internal usage only.

alias of Keyword

	
resource

	ResourceFile instance containing imports, variables and
keywords the suite owns. When data is parsed from the file system,
this data comes from the same test case file that creates the suite.

	
classmethod from_file_system(*paths, **config)

	Create a TestSuite object based on the given paths.

paths are file or directory paths where to read the data from.

Internally utilizes the TestSuiteBuilder class
and config can be used to configure how it is initialized.

New in Robot Framework 3.2.

	
classmethod from_model(model, name=None)

	Create a TestSuite object based on the given model.

The model can be created by using the
get_model() function and possibly
modified by other tooling in the robot.parsing module.

New in Robot Framework 3.2.

	
configure(randomize_suites=False, randomize_tests=False, randomize_seed=None, **options)

	A shortcut to configure a suite using one method call.

Can only be used with the root test suite.

	Parameters

	
	randomize_xxx – Passed to randomize().

	options – Passed to
SuiteConfigurer that will then
set suite attributes, call filter(), etc. as needed.

Example:

suite.configure(included_tags=['smoke'],
 doc='Smoke test results.')

	
randomize(suites=True, tests=True, seed=None)

	Randomizes the order of suites and/or tests, recursively.

	Parameters

	
	suites – Boolean controlling should suites be randomized.

	tests – Boolean controlling should tests be randomized.

	seed – Random seed. Can be given if previous random order needs
to be re-created. Seed value is always shown in logs and reports.

	
run(settings=None, **options)

	Executes the suite based based the given settings or options.

	Parameters

	
	settings – RobotSettings object
to configure test execution.

	options – Used to construct new
RobotSettings object if settings
are not given.

	Returns

	Result object with
information about executed suites and tests.

If options are used, their names are the same as long command line
options except without hyphens. Some options are ignored (see below),
but otherwise they have the same semantics as on the command line.
Options that can be given on the command line multiple times can be
passed as lists like variable=['VAR1:value1', 'VAR2:value2'].
If such an option is used only once, it can be given also as a single
string like variable='VAR:value'.

Additionally listener option allows passing object directly instead of
listener name, e.g. run('tests.robot', listener=Listener()).

To capture stdout and/or stderr streams, pass open file objects in as
special keyword arguments stdout and stderr, respectively.

Only options related to the actual test execution have an effect.
For example, options related to selecting or modifying test cases or
suites (e.g. --include, --name, --prerunmodifier) or
creating logs and reports are silently ignored. The output XML
generated as part of the execution can be configured, though. This
includes disabling it with output=None.

Example:

stdout = StringIO()
result = suite.run(variable='EXAMPLE:value',
 critical='regression',
 output='example.xml',
 exitonfailure=True,
 stdout=stdout)
print(result.return_code)

To save memory, the returned
Result object does not
have any information about the executed keywords. If that information
is needed, the created output XML file needs to be read using the
ExecutionResult factory method.

See the package level documentation for
more examples, including how to construct executable test suites and
how to create logs and reports based on the execution results.

See the robot.run function for a higher-level
API for executing tests in files or directories.

	
copy(**attributes)

	Return shallow copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

New in Robot Framework 3.0.1.

	
deepcopy(**attributes)

	Return deep copy of this object.

	Parameters

	attributes – Attributes to be set for the returned copy
automatically. For example, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same
as with the standard copy.copy and copy.deepcopy functions
that these methods also use internally.

New in Robot Framework 3.0.1.

	
doc

	

	
filter(included_suites=None, included_tests=None, included_tags=None, excluded_tags=None)

	Select test cases and remove others from this suite.

Parameters have the same semantics as --suite, --test,
--include, and --exclude command line options. All of them
can be given as a list of strings, or when selecting only one, as
a single string.

Child suites that contain no tests after filtering are automatically
removed.

Example:

suite.filter(included_tests=['Test 1', '* Example'],
 included_tags='priority-1')

	
has_tests

	

	
id

	An automatically generated unique id.

The root suite has id s1, its child suites have ids s1-s1,
s1-s2, …, their child suites get ids s1-s1-s1, s1-s1-s2,
…, s1-s2-s1, …, and so on.

The first test in a suite has an id like s1-t1, the second has an
id s1-t2, and so on. Similarly keywords in suites (setup/teardown)
and in tests get ids like s1-k1, s1-t1-k1, and s1-s4-t2-k5.

	
keywords

	Suite setup and teardown as a Keywords object.

	
longname

	Suite name prefixed with the long name of the parent suite.

	
metadata

	Free test suite metadata as a dictionary.

	
name

	Test suite name. If not set, constructed from child suite names.

	
parent

	

	
remove_empty_suites(preserve_direct_children=False)

	Removes all child suites not containing any tests, recursively.

	
rpa

	

	
set_tags(add=None, remove=None, persist=False)

	Add and/or remove specified tags to the tests in this suite.

	Parameters

	
	add – Tags to add as a list or, if adding only one,
as a single string.

	remove – Tags to remove as a list or as a single string.
Can be given as patterns where * and ? work as wildcards.

	persist – Add/remove specified tags also to new tests added
to this suite in the future.

	
source

	

	
suites

	Child suites as a TestSuites object.

	
test_count

	Number of the tests in this suite, recursively.

	
tests

	Tests as a TestCases object.

	
visit(visitor)

	Visitor interface entry-point.

	
class robot.running.model.Variable(name, value, source=None, lineno=None, error=None)

	Bases: object

	
report_invalid_syntax(message, level='ERROR')

	

	
class robot.running.model.ResourceFile(doc='', source=None)

	Bases: object

	
imports

	

	
keywords

	

	
variables

	

	
class robot.running.model.UserKeyword(name, args=(), doc='', tags=(), return_=None, timeout=None, lineno=None, parent=None)

	Bases: object

	
keywords

	

	
tags

	

	
source

	

	
class robot.running.model.Import(type, name, args=(), alias=None, source=None, lineno=None)

	Bases: object

	
ALLOWED_TYPES = ('Library', 'Resource', 'Variables')

	

	
directory

	

	
report_invalid_syntax(message, level='ERROR')

	

	
class robot.running.model.Imports(source, imports=None)

	Bases: robot.model.itemlist.ItemList

	
append(item)

	

	
clear()

	

	
count(item)

	

	
create(*args, **kwargs)

	

	
extend(items)

	

	
index(item, *start_and_end)

	

	
insert(index, item)

	

	
pop(*index)

	

	
remove(item)

	

	
reverse()

	

	
sort()

	

	
visit(visitor)

	

	
library(name, args=(), alias=None, lineno=None)

	

	
resource(path, lineno=None)

	

	
variables(path, args=(), lineno=None)

	

robot.running.namespace module

	
class robot.running.namespace.Namespace(variables, suite, resource)

	Bases: object

	
libraries

	

	
handle_imports()

	

	
import_resource(name, overwrite=True)

	

	
import_variables(name, args, overwrite=False)

	

	
import_library(name, args=(), alias=None, notify=True)

	

	
set_search_order(new_order)

	

	
start_test()

	

	
end_test()

	

	
start_suite()

	

	
end_suite(suite)

	

	
start_user_keyword()

	

	
end_user_keyword()

	

	
get_library_instance(libname)

	

	
get_library_instances()

	

	
reload_library(libname_or_instance)

	

	
get_runner(name)

	

	
class robot.running.namespace.KeywordStore(resource)

	Bases: object

	
get_library(name_or_instance)

	

	
get_runner(name)

	

	
class robot.running.namespace.KeywordRecommendationFinder(user_keywords, libraries, resources)

	Bases: object

	
recommend_similar_keywords(name)

	Return keyword names similar to name.

	
static format_recommendations(message, recommendations)

	

robot.running.outputcapture module

	
class robot.running.outputcapture.OutputCapturer(library_import=False)

	Bases: object

	
class robot.running.outputcapture.PythonCapturer(stdout=True)

	Bases: object

	
release()

	

	
class robot.running.outputcapture.JavaCapturer(stdout=True)

	Bases: object

	
release()

	

robot.running.randomizer module

	
class robot.running.randomizer.Randomizer(randomize_suites=True, randomize_tests=True, seed=None)

	Bases: robot.model.visitor.SuiteVisitor

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_test(test)

	Implements traversing through the test and its keywords.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
visit_keyword(kw)

	Implements traversing through the keyword and its child keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_message(msg)

	Implements visiting the message.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through the suite and its direct children.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

robot.running.runkwregister module

robot.running.runner module

	
class robot.running.runner.Runner(output, settings)

	Bases: robot.model.visitor.SuiteVisitor

	
start_suite(suite)

	Called when suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
end_suite(suite)

	Called when suite ends. Default implementation does nothing.

	
visit_test(test)

	Implements traversing through the test and its keywords.

Can be overridden to allow modifying the passed in test without
calling start_test() or end_test() nor visiting keywords.

	
end_keyword(keyword)

	Called when keyword ends. Default implementation does nothing.

	
end_message(msg)

	Called when message ends. Default implementation does nothing.

	
end_test(test)

	Called when test ends. Default implementation does nothing.

	
start_keyword(keyword)

	Called when keyword starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_message(msg)

	Called when message starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
start_test(test)

	Called when test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

	
visit_keyword(kw)

	Implements traversing through the keyword and its child keywords.

Can be overridden to allow modifying the passed in kw without
calling start_keyword() or end_keyword() nor visiting
child keywords.

	
visit_message(msg)

	Implements visiting the message.

Can be overridden to allow modifying the passed in msg without
calling start_message() or end_message().

	
visit_suite(suite)

	Implements traversing through the suite and its direct children.

Can be overridden to allow modifying the passed in suite without
calling start_suite() or end_suite() nor visiting child
suites, tests or keywords (setup and teardown) at all.

	
class robot.running.runner.ModelCombiner(data, result, **priority)

	Bases: object

robot.running.signalhandler module

robot.running.status module

	
class robot.running.status.Failure

	Bases: object

	
class robot.running.status.Exit(failure_mode=False, error_mode=False, skip_teardown_mode=False)

	Bases: object

	
failure_occurred(failure=None, critical=False)

	

	
error_occurred()

	

	
teardown_allowed

	

	
class robot.running.status.SuiteStatus(parent=None, exit_on_failure_mode=False, exit_on_error_mode=False, skip_teardown_on_exit_mode=False)

	Bases: robot.running.status._ExecutionStatus

	
critical_failure_occurred()

	

	
error_occurred()

	

	
failures

	

	
message

	

	
setup_executed(failure=None)

	

	
status

	

	
teardown_allowed

	

	
teardown_executed(failure=None)

	

	
class robot.running.status.TestStatus(parent, test)

	Bases: robot.running.status._ExecutionStatus

	
test_failed(failure)

	

	
critical_failure_occurred()

	

	
error_occurred()

	

	
failures

	

	
message

	

	
setup_executed(failure=None)

	

	
status

	

	
teardown_allowed

	

	
teardown_executed(failure=None)

	

	
class robot.running.status.TestMessage(status)

	Bases: robot.running.status._Message

	
setup_message = 'Setup failed:\n%s'

	

	
teardown_message = 'Teardown failed:\n%s'

	

	
also_teardown_message = '%s\n\nAlso teardown failed:\n%s'

	

	
exit_on_fatal_message = 'Test execution stopped due to a fatal error.'

	

	
exit_on_failure_message = 'Critical failure occurred and exit-on-failure mode is in use.'

	

	
exit_on_error_message = 'Error occurred and exit-on-error mode is in use.'

	

	
message

	

	
class robot.running.status.SuiteMessage(status)

	Bases: robot.running.status._Message

	
setup_message = 'Suite setup failed:\n%s'

	

	
teardown_message = 'Suite teardown failed:\n%s'

	

	
also_teardown_message = '%s\n\nAlso suite teardown failed:\n%s'

	

	
message

	

	
class robot.running.status.ParentMessage(status)

	Bases: robot.running.status.SuiteMessage

	
setup_message = 'Parent suite setup failed:\n%s'

	

	
teardown_message = 'Parent suite teardown failed:\n%s'

	

	
also_teardown_message = '%s\n\nAlso parent suite teardown failed:\n%s'

	

	
message

	

robot.running.statusreporter module

	
class robot.running.statusreporter.StatusReporter(context, result, dry_run_lib_kw=False)

	Bases: object

robot.running.steprunner module

	
class robot.running.steprunner.StepRunner(context, templated=False)

	Bases: object

	
run_steps(steps)

	

	
run_step(step, name=None)

	

	
robot.running.steprunner.ForRunner(context, templated=False, flavor='IN')

	

	
class robot.running.steprunner.ForInRunner(context, templated=False)

	Bases: object

	
flavor = 'IN'

	

	
run(data, name=None)

	

	
class robot.running.steprunner.ForInRangeRunner(context, templated=False)

	Bases: robot.running.steprunner.ForInRunner

	
flavor = 'IN RANGE'

	

	
run(data, name=None)

	

	
class robot.running.steprunner.ForInZipRunner(context, templated=False)

	Bases: robot.running.steprunner.ForInRunner

	
flavor = 'IN ZIP'

	

	
run(data, name=None)

	

	
class robot.running.steprunner.ForInEnumerateRunner(context, templated=False)

	Bases: robot.running.steprunner.ForInRunner

	
flavor = 'IN ENUMERATE'

	

	
run(data, name=None)

	

robot.running.testlibraries module

	
robot.running.testlibraries.TestLibrary(name, args=None, variables=None, create_handlers=True, logger=<robot.output.logger.Logger object>)

	

robot.running.usererrorhandler module

	
class robot.running.usererrorhandler.UserErrorHandler(error, name, libname=None)

	Bases: object

Created if creating handlers fail – running raises DataError.

The idea is not to raise DataError at processing time and prevent all
tests in affected test case file from executing. Instead UserErrorHandler
is created and if it is ever run DataError is raised then.

	Parameters

	
	error (robot.errors.DataError) – Occurred error.

	name (str) – Name of the affected keyword.

	libname (str) – Name of the affected library or resource.

	
longname

	

	
doc

	

	
shortdoc

	

	
create_runner(name)

	

	
run(kw, context)

	

	
dry_run(kw, context)

	

robot.running.userkeyword module

	
class robot.running.userkeyword.UserLibrary(resource, source_type='Resource file')

	Bases: object

	
TEST_CASE_FILE_TYPE = 'Test case file'

	

	
RESOURCE_FILE_TYPE = 'Resource file'

	

	
class robot.running.userkeyword.UserKeywordHandler(keyword, libname)

	Bases: object

	
longname

	

	
shortdoc

	

	
create_runner(name)

	

	
class robot.running.userkeyword.EmbeddedArgumentsHandler(keyword, libname, embedded)

	Bases: robot.running.userkeyword.UserKeywordHandler

	
matches(name)

	

	
create_runner(name)

	

	
longname

	

	
shortdoc

	

robot.running.userkeywordrunner module

	
class robot.running.userkeywordrunner.UserKeywordRunner(handler, name=None)

	Bases: object

	
longname

	

	
libname

	

	
arguments

	

	
run(kw, context)

	

	
dry_run(kw, context)

	

	
class robot.running.userkeywordrunner.EmbeddedArgumentsRunner(handler, name)

	Bases: robot.running.userkeywordrunner.UserKeywordRunner

	
arguments

	

	
dry_run(kw, context)

	

	
libname

	

	
longname

	

	
run(kw, context)

	

robot.running.arguments package

Submodules

robot.running.arguments.argumentconverter module

	
class robot.running.arguments.argumentconverter.ArgumentConverter(argspec, dry_run=False)

	Bases: object

	
convert(positional, named)

	

robot.running.arguments.argumentmapper module

	
class robot.running.arguments.argumentmapper.ArgumentMapper(argspec)

	Bases: object

	
map(positional, named, replace_defaults=True)

	

	
class robot.running.arguments.argumentmapper.KeywordCallTemplate(argspec)

	Bases: object

	
fill_positional(positional)

	

	
fill_named(named)

	

	
replace_defaults()

	

	
class robot.running.arguments.argumentmapper.DefaultValue(value)

	Bases: object

	
resolve(variables)

	

robot.running.arguments.argumentparser module

	
robot.running.arguments.argumentparser.getfullargspec(func)

	

	
class robot.running.arguments.argumentparser.PythonArgumentParser(type='Keyword')

	Bases: robot.running.arguments.argumentparser._ArgumentParser

	
parse(handler, name=None)

	

	
class robot.running.arguments.argumentparser.JavaArgumentParser(type='Keyword')

	Bases: robot.running.arguments.argumentparser._ArgumentParser

	
parse(signatures, name=None)

	

	
class robot.running.arguments.argumentparser.DynamicArgumentParser(type='Keyword')

	Bases: robot.running.arguments.argumentparser._ArgumentSpecParser

	
parse(argspec, name=None)

	

	
class robot.running.arguments.argumentparser.UserKeywordArgumentParser(type='Keyword')

	Bases: robot.running.arguments.argumentparser._ArgumentSpecParser

	
parse(argspec, name=None)

	

robot.running.arguments.argumentresolver module

	
class robot.running.arguments.argumentresolver.ArgumentResolver(argspec, resolve_named=True, resolve_variables_until=None, dict_to_kwargs=False)

	Bases: object

	
resolve(arguments, variables=None)

	

	
class robot.running.arguments.argumentresolver.NamedArgumentResolver(argspec)

	Bases: object

	
resolve(arguments, variables=None)

	

	
class robot.running.arguments.argumentresolver.NullNamedArgumentResolver

	Bases: object

	
resolve(arguments, variables=None)

	

	
class robot.running.arguments.argumentresolver.DictToKwargs(argspec, enabled=False)

	Bases: object

	
handle(positional, named)

	

	
class robot.running.arguments.argumentresolver.VariableReplacer(resolve_until=None)

	Bases: object

	
replace(positional, named, variables=None)

	

robot.running.arguments.argumentspec module

	
class robot.running.arguments.argumentspec.ArgumentSpec(name=None, type='Keyword', positional=None, varargs=None, kwonlyargs=None, kwargs=None, defaults=None, types=None, supports_named=True)

	Bases: object

	
types

	

	
minargs

	

	
maxargs

	

	
argument_names

	

	
resolve(arguments, variables=None, resolve_named=True, resolve_variables_until=None, dict_to_kwargs=False)

	

	
map(positional, named, replace_defaults=True)

	

robot.running.arguments.argumentvalidator module

	
class robot.running.arguments.argumentvalidator.ArgumentValidator(argspec)

	Bases: object

	
validate(positional, named, dryrun=False)

	

robot.running.arguments.embedded module

	
class robot.running.arguments.embedded.EmbeddedArguments(name)

	Bases: object

	
class robot.running.arguments.embedded.EmbeddedArgumentParser

	Bases: object

	
parse(string)

	

robot.running.arguments.javaargumentcoercer module

robot.running.arguments.typeconverters module

	
class robot.running.arguments.typeconverters.Enum

	Bases: object

	
class robot.running.arguments.typeconverters.TypeConverter

	Bases: object

	
type = None

	

	
abc = None

	

	
aliases = ()

	

	
convert_none = True

	

	
type_name

	

	
classmethod register(converter_class)

	

	
classmethod converter_for(type_)

	

	
handles(type_)

	

	
get_converter(type_)

	

	
convert(name, value, explicit_type=True)

	

	
class robot.running.arguments.typeconverters.BooleanConverter

	Bases: robot.running.arguments.typeconverters.TypeConverter

	
type

	alias of __builtin__.bool

	
type_name = 'boolean'

	

	
aliases = ('bool',)

	

	
abc = None

	

	
convert(name, value, explicit_type=True)

	

	
convert_none = True

	

	
classmethod converter_for(type_)

	

	
get_converter(type_)

	

	
handles(type_)

	

	
classmethod register(converter_class)

	

	
class robot.running.arguments.typeconverters.IntegerConverter

	Bases: robot.running.arguments.typeconverters.TypeConverter

	
type

	alias of __builtin__.int

	
abc

	alias of numbers.Integral

	
type_name = 'integer'

	

	
aliases = ('int', 'long')

	

	
convert(name, value, explicit_type=True)

	

	
convert_none = True

	

	
classmethod converter_for(type_)

	

	
get_converter(type_)

	

	
handles(type_)

	

	
classmethod register(converter_class)

	

	
class robot.running.arguments.typeconverters.FloatConverter

	Bases: robot.running.arguments.typeconverters.TypeConverter

	
type

	alias of __builtin__.float

	
abc

	alias of numbers.Real

	
aliases = ('double',)

	

	
convert(name, value, explicit_type=True)

	

	
convert_none = True

	

	
classmethod converter_for(type_)

	

	
get_converter(type_)

	

	
handles(type_)

	

	
classmethod register(converter_class)

	

	
type_name

	

	
class robot.running.arguments.typeconverters.DecimalConverter

	Bases: robot.running.arguments.typeconverters.TypeConverter

	
type

	alias of decimal.Decimal

	
abc = None

	

	
aliases = ()

	

	
convert(name, value, explicit_type=True)

	

	
convert_none = True

	

	
classmethod converter_for(type_)

	

	
get_converter(type_)

	

	
handles(type_)

	

	
classmethod register(converter_class)

	

	
type_name

	

	
class robot.running.arguments.typeconverters.BytesConverter

	Bases: robot.running.arguments.typeconverters.TypeConverter

	
type

	alias of __builtin__.str

	
abc = None

	

	
type_name = 'bytes'

	

	
convert_none = False

	

	
aliases = ()

	

	
convert(name, value, explicit_type=True)

	

	
classmethod converter_for(type_)

	

	
get_converter(type_)

	

	
handles(type_)

	

	
classmethod register(converter_class)

	

	
class robot.running.arguments.typeconverters.ByteArrayConverter

	Bases: robot.running.arguments.typeconverters.TypeConverter

	
type

	alias of __builtin__.bytearray

	
convert_none = False

	

	
abc = None

	

	
aliases = ()

	

	
convert(name, value, explicit_type=True)

	

	
classmethod converter_for(type_)

	

	
get_converter(type_)

	

	
handles(type_)

	

	
classmethod register(converter_class)

	

	
type_name

	

	
class robot.running.arguments.typeconverters.DateTimeConverter

	Bases: robot.running.arguments.typeconverters.TypeConverter

	
type

	alias of datetime.datetime

	
abc = None

	

	
aliases = ()

	

	
convert(name, value, explicit_type=True)

	

	
convert_none = True

	

	
classmethod converter_for(type_)

	

	
get_converter(type_)

	

	
handles(type_)

	

	
classmethod register(converter_class)

	

	
type_name

	

	
class robot.running.arguments.typeconverters.DateConverter

	Bases: robot.running.arguments.typeconverters.TypeConverter

	
type

	alias of datetime.date

	
abc = None

	

	
aliases = ()

	

	
convert(name, value, explicit_type=True)

	

	
convert_none = True

	

	
classmethod converter_for(type_)

	

	
get_converter(type_)

	

	
handles(type_)

	

	
classmethod register(converter_class)

	

	
type_name

	

	
class robot.running.arguments.typeconverters.TimeDeltaConverter

	Bases: robot.running.arguments.typeconverters.TypeConverter

	
type

	alias of datetime.timedelta

	
abc = None

	

	
aliases = ()

	

	
convert(name, value, explicit_type=True)

	

	
convert_none = True

	

	
classmethod converter_for(type_)

	

	
get_converter(type_)

	

	
handles(type_)

	

	
classmethod register(converter_class)

	

	
type_name

	

	
class robot.running.arguments.typeconverters.EnumConverter(enum=None)

	Bases: robot.running.arguments.typeconverters.TypeConverter

	
type

	alias of Enum

	
type_name

	

	
get_converter(type_)

	

	
abc = None

	

	
aliases = ()

	

	
convert(name, value, explicit_type=True)

	

	
convert_none = True

	

	
classmethod converter_for(type_)

	

	
handles(type_)

	

	
classmethod register(converter_class)

	

	
class robot.running.arguments.typeconverters.NoneConverter

	Bases: robot.running.arguments.typeconverters.TypeConverter

	
type

	alias of __builtin__.NoneType

	
abc = None

	

	
aliases = ()

	

	
convert(name, value, explicit_type=True)

	

	
convert_none = True

	

	
classmethod converter_for(type_)

	

	
get_converter(type_)

	

	
handles(type_)

	

	
classmethod register(converter_class)

	

	
type_name

	

	
class robot.running.arguments.typeconverters.ListConverter

	Bases: robot.running.arguments.typeconverters.TypeConverter

	
type

	alias of __builtin__.list

	
abc

	alias of _abcoll.Sequence

	
aliases = ()

	

	
convert(name, value, explicit_type=True)

	

	
convert_none = True

	

	
classmethod converter_for(type_)

	

	
get_converter(type_)

	

	
handles(type_)

	

	
classmethod register(converter_class)

	

	
type_name

	

	
class robot.running.arguments.typeconverters.TupleConverter

	Bases: robot.running.arguments.typeconverters.TypeConverter

	
type

	alias of __builtin__.tuple

	
abc = None

	

	
aliases = ()

	

	
convert(name, value, explicit_type=True)

	

	
convert_none = True

	

	
classmethod converter_for(type_)

	

	
get_converter(type_)

	

	
handles(type_)

	

	
classmethod register(converter_class)

	

	
type_name

	

	
class robot.running.arguments.typeconverters.DictionaryConverter

	Bases: robot.running.arguments.typeconverters.TypeConverter

	
type

	alias of __builtin__.dict

	
abc

	alias of _abcoll.Mapping

	
type_name = 'dictionary'

	

	
aliases = ('dict', 'map')

	

	
convert(name, value, explicit_type=True)

	

	
convert_none = True

	

	
classmethod converter_for(type_)

	

	
get_converter(type_)

	

	
handles(type_)

	

	
classmethod register(converter_class)

	

	
class robot.running.arguments.typeconverters.SetConverter

	Bases: robot.running.arguments.typeconverters.TypeConverter

	
type

	alias of __builtin__.set

	
abc

	alias of _abcoll.Set

	
aliases = ()

	

	
convert(name, value, explicit_type=True)

	

	
convert_none = True

	

	
classmethod converter_for(type_)

	

	
get_converter(type_)

	

	
handles(type_)

	

	
classmethod register(converter_class)

	

	
type_name

	

	
class robot.running.arguments.typeconverters.FrozenSetConverter

	Bases: robot.running.arguments.typeconverters.TypeConverter

	
type

	alias of __builtin__.frozenset

	
abc = None

	

	
aliases = ()

	

	
convert(name, value, explicit_type=True)

	

	
convert_none = True

	

	
classmethod converter_for(type_)

	

	
get_converter(type_)

	

	
handles(type_)

	

	
classmethod register(converter_class)

	

	
type_name

	

robot.running.arguments.typevalidator module

	
class robot.running.arguments.typevalidator.TypeValidator(argspec)

	Bases: object

	
validate(types)

	

	
validate_type_dict(types)

	

	
convert_type_list_to_dict(types)

	

robot.running.builder package

Submodules

robot.running.builder.builders module

	
class robot.running.builder.builders.TestSuiteBuilder(included_suites=None, included_extensions=('robot',), rpa=None, allow_empty_suite=False, process_curdir=True)

	Bases: object

Builder to construct TestSuite objects based on data on the disk.

The build() method constructs executable
TestSuite objects based on test data files
or directories. There are two main use cases for this API:

	Execute the created suite by using its
run() method. The suite can be
can be modified before execution if needed.

	Inspect the suite to see, for example, what tests it has or what tags
tests have. This can be more convenient than using the lower level
parsing APIs but does not allow saving modified data
back to the disk.

Both modifying the suite and inspecting what data it contains are easiest
done by using the visitor interface.

This class is part of the public API and should be imported via the
robot.api package.

	Parameters

	
	include_suites – List of suite names to include. If None or an empty list,
all suites are included. Same as using --suite on
the command line.

	included_extensions – List of extensions of files to parse. Same as --extension.
This parameter was named extension before RF 3.2.

	rpa – Explicit test execution mode. True for RPA and
False for test automation. By default mode is got from test
data headers and possible conflicting headers cause an error.
Same as --rpa or --norpa.

	allow_empty_suite – Specify is it an error if the built suite contains no tests.
Same as --runemptysuite. New in RF 3.2.

	process_curdir – Control processing the special ${CURDIR} variable. It is
resolved already at parsing time by default, but that can be
changed by giving this argument False value. New in RF 3.2.

	
build(*paths)

	
	Parameters

	paths – Paths to test data files or directories.

	Returns

	TestSuite instance.

	
class robot.running.builder.builders.SuiteStructureParser(included_extensions, rpa=None, process_curdir=True)

	Bases: robot.parsing.suitestructure.SuiteStructureVisitor

	
parse(structure)

	

	
visit_file(structure)

	

	
start_directory(structure)

	

	
end_directory(structure)

	

	
visit_directory(structure)

	

	
class robot.running.builder.builders.ResourceFileBuilder(process_curdir=True)

	Bases: object

	
build(source)

	

robot.running.builder.parsers module

	
class robot.running.builder.parsers.BaseParser

	Bases: object

	
parse_init_file(source, defaults=None)

	

	
parse_suite_file(source, defaults=None)

	

	
parse_resource_file(source)

	

	
class robot.running.builder.parsers.RobotParser(process_curdir=True)

	Bases: robot.running.builder.parsers.BaseParser

	
parse_init_file(source, defaults=None)

	

	
parse_suite_file(source, defaults=None)

	

	
build_suite(model, name=None, defaults=None)

	

	
parse_resource_file(source)

	

	
class robot.running.builder.parsers.RestParser(process_curdir=True)

	Bases: robot.running.builder.parsers.RobotParser

	
build_suite(model, name=None, defaults=None)

	

	
parse_init_file(source, defaults=None)

	

	
parse_resource_file(source)

	

	
parse_suite_file(source, defaults=None)

	

	
class robot.running.builder.parsers.NoInitFileDirectoryParser

	Bases: robot.running.builder.parsers.BaseParser

	
parse_init_file(source, defaults=None)

	

	
parse_resource_file(source)

	

	
parse_suite_file(source, defaults=None)

	

	
robot.running.builder.parsers.format_name(source)

	

	
class robot.running.builder.parsers.ErrorReporter(source)

	Bases: ast.NodeVisitor

	
visit_Error(node)

	

	
generic_visit(node)

	Called if no explicit visitor function exists for a node.

	
visit(node)

	Visit a node.

robot.running.builder.testsettings module

	
class robot.running.builder.testsettings.TestDefaults(parent=None)

	Bases: object

	
setup

	

	
teardown

	

	
force_tags

	

	
timeout

	

	
class robot.running.builder.testsettings.TestSettings(defaults)

	Bases: object

	
setup

	

	
teardown

	

	
timeout

	

	
template

	

	
tags

	

robot.running.builder.transformers module

	
robot.running.builder.transformers.fixture(node, fixture_type)

	

	
class robot.running.builder.transformers.SettingsBuilder(suite, test_defaults)

	Bases: ast.NodeVisitor

	
visit_Documentation(node)

	

	
visit_Metadata(node)

	

	
visit_SuiteSetup(node)

	

	
visit_SuiteTeardown(node)

	

	
visit_TestSetup(node)

	

	
visit_TestTeardown(node)

	

	
visit_TestTimeout(node)

	

	
visit_DefaultTags(node)

	

	
visit_ForceTags(node)

	

	
visit_TestTemplate(node)

	

	
visit_ResourceImport(node)

	

	
visit_LibraryImport(node)

	

	
visit_VariablesImport(node)

	

	
visit_VariableSection(node)

	

	
visit_TestCaseSection(node)

	

	
visit_KeywordSection(node)

	

	
generic_visit(node)

	Called if no explicit visitor function exists for a node.

	
visit(node)

	Visit a node.

	
class robot.running.builder.transformers.SuiteBuilder(suite, test_defaults)

	Bases: ast.NodeVisitor

	
visit_SettingSection(node)

	

	
visit_Variable(node)

	

	
visit_TestCase(node)

	

	
visit_Keyword(node)

	

	
generic_visit(node)

	Called if no explicit visitor function exists for a node.

	
visit(node)

	Visit a node.

	
class robot.running.builder.transformers.ResourceBuilder(resource)

	Bases: ast.NodeVisitor

	
visit_Documentation(node)

	

	
visit_LibraryImport(node)

	

	
visit_ResourceImport(node)

	

	
visit_VariablesImport(node)

	

	
visit_Variable(node)

	

	
visit_Keyword(node)

	

	
generic_visit(node)

	Called if no explicit visitor function exists for a node.

	
visit(node)

	Visit a node.

	
class robot.running.builder.transformers.TestCaseBuilder(suite, defaults)

	Bases: ast.NodeVisitor

	
visit_TestCase(node)

	

	
visit_ForLoop(node)

	

	
visit_TemplateArguments(node)

	

	
visit_Documentation(node)

	

	
visit_Setup(node)

	

	
visit_Teardown(node)

	

	
visit_Timeout(node)

	

	
visit_Tags(node)

	

	
visit_Template(node)

	

	
visit_KeywordCall(node)

	

	
generic_visit(node)

	Called if no explicit visitor function exists for a node.

	
visit(node)

	Visit a node.

	
class robot.running.builder.transformers.KeywordBuilder(resource)

	Bases: ast.NodeVisitor

	
visit_Keyword(node)

	

	
visit_Documentation(node)

	

	
visit_Arguments(node)

	

	
visit_Tags(node)

	

	
visit_Return(node)

	

	
visit_Timeout(node)

	

	
visit_Teardown(node)

	

	
visit_KeywordCall(node)

	

	
visit_ForLoop(node)

	

	
generic_visit(node)

	Called if no explicit visitor function exists for a node.

	
visit(node)

	Visit a node.

	
class robot.running.builder.transformers.ForLoopBuilder(loop)

	Bases: ast.NodeVisitor

	
visit_KeywordCall(node)

	

	
visit_TemplateArguments(node)

	

	
generic_visit(node)

	Called if no explicit visitor function exists for a node.

	
visit(node)

	Visit a node.

robot.running.timeouts package

	
class robot.running.timeouts.TestTimeout(timeout=None, variables=None, rpa=False)

	Bases: robot.running.timeouts._Timeout

	
type = 'Test'

	

	
set_keyword_timeout(timeout_occurred)

	

	
any_timeout_occurred()

	

	
active

	

	
get_message()

	

	
replace_variables(variables)

	

	
run(runnable, args=None, kwargs=None)

	

	
start()

	

	
time_left()

	

	
timed_out()

	

	
class robot.running.timeouts.KeywordTimeout(timeout=None, variables=None)

	Bases: robot.running.timeouts._Timeout

	
active

	

	
get_message()

	

	
replace_variables(variables)

	

	
run(runnable, args=None, kwargs=None)

	

	
start()

	

	
time_left()

	

	
timed_out()

	

	
type = 'Keyword'

	

Submodules

robot.running.timeouts.ironpython module

robot.running.timeouts.jython module

robot.running.timeouts.posix module

	
class robot.running.timeouts.posix.Timeout(timeout, error)

	Bases: object

	
execute(runnable)

	

robot.running.timeouts.windows module

	
class robot.running.timeouts.windows.Timeout(timeout, error)

	Bases: object

	
execute(runnable)

	

robot.utils package

Various generic utility functions and classes.

Utilities are mainly for internal usage, but external libraries and tools
may find some of them useful. Utilities are generally stable, but absolute
backwards compatibility between major versions is not guaranteed.

All utilities are exposed via the robot.utils package, and should be
used either like:

from robot import utils

assert utils.Matcher('H?llo').match('Hillo')

or:

from robot.utils import Matcher

assert Matcher('H?llo').match('Hillo')

	
robot.utils.read_rest_data(rstfile)

	

Submodules

robot.utils.application module

	
class robot.utils.application.Application(usage, name=None, version=None, arg_limits=None, env_options=None, logger=None, **auto_options)

	Bases: object

	
main(arguments, **options)

	

	
validate(options, arguments)

	

	
execute_cli(cli_arguments, exit=True)

	

	
console(msg)

	

	
parse_arguments(cli_args)

	Public interface for parsing command line arguments.

	Parameters

	cli_args – Command line arguments as a list

	Returns

	options (dict), arguments (list)

	Raises

	Information when –help or –version used

	Raises

	DataError when parsing fails

	
execute(*arguments, **options)

	

	
class robot.utils.application.DefaultLogger

	Bases: object

	
info(message)

	

	
error(message)

	

	
close()

	

robot.utils.argumentparser module

	
robot.utils.argumentparser.cmdline2list(args, escaping=False)

	

	
class robot.utils.argumentparser.ArgumentParser(usage, name=None, version=None, arg_limits=None, validator=None, env_options=None, auto_help=True, auto_version=True, auto_pythonpath=True, auto_argumentfile=True)

	Bases: object

Available options and tool name are read from the usage.

Tool name is got from the first row of the usage. It is either the
whole row or anything before first ‘ – ‘.

	
parse_args(args)

	Parse given arguments and return options and positional arguments.

Arguments must be given as a list and are typically sys.argv[1:].

Options are returned as a dictionary where long options are keys. Value
is a string for those options that can be given only one time (if they
are given multiple times the last value is used) or None if the option
is not used at all. Value for options that can be given multiple times
(denoted with ‘*’ in the usage) is a list which contains all the given
values and is empty if options are not used. Options not taken
arguments have value False when they are not set and True otherwise.

Positional arguments are returned as a list in the order they are given.

If ‘check_args’ is True, this method will automatically check that
correct number of arguments, as parsed from the usage line, are given.
If the last argument in the usage line ends with the character ‘s’,
the maximum number of arguments is infinite.

Possible errors in processing arguments are reported using DataError.

Some options have a special meaning and are handled automatically
if defined in the usage and given from the command line:

–argumentfile can be used to automatically read arguments from
a specified file. When –argumentfile is used, the parser always
allows using it multiple times. Adding ‘*’ to denote that is thus
recommend. A special value ‘stdin’ can be used to read arguments from
stdin instead of a file.

–pythonpath can be used to add extra path(s) to sys.path.

–help and –version automatically generate help and version messages.
Version is generated based on the tool name and version – see __init__
for information how to set them. Help contains the whole usage given to
__init__. Possible <VERSION> text in the usage is replaced with the
given version. Both help and version are wrapped to Information
exception.

	
class robot.utils.argumentparser.ArgLimitValidator(arg_limits)

	Bases: object

	
class robot.utils.argumentparser.ArgFileParser(options)

	Bases: object

	
process(args)

	

robot.utils.asserts module

Convenience functions for testing both in unit and higher levels.

	Benefits:

	
	Integrates 100% with unittest (see example below)

	Can be easily used without unittest (using unittest.TestCase when you
only need convenient asserts is not so nice)

	Saved typing and shorter lines because no need to have ‘self.’ before
asserts. These are static functions after all so that is OK.

	All ‘equals’ methods (by default) report given values even if optional
message given. This behavior can be controlled with the optional values
argument.

	Drawbacks:

	
	unittest is not able to filter as much non-interesting traceback away
as with its own methods because AssertionErrors occur outside.

Most of the functions are copied more or less directly from unittest.TestCase
which comes with the following license. Further information about unittest in
general can be found from http://pyunit.sourceforge.net/. This module can be
used freely in same terms as unittest.

unittest license:

Copyright (c) 1999-2003 Steve Purcell
This module is free software, and you may redistribute it and/or modify
it under the same terms as Python itself, so long as this copyright message
and disclaimer are retained in their original form.

IN NO EVENT SHALL THE AUTHOR BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF
THIS CODE, EVEN IF THE AUTHOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

THE AUTHOR SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE CODE PROVIDED HEREUNDER IS ON AN "AS IS" BASIS,
AND THERE IS NO OBLIGATION WHATSOEVER TO PROVIDE MAINTENANCE,
SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Examples:

import unittest
from robot.utils.asserts import assert_equal

class MyTests(unittest.TestCase):

 def test_old_style(self):
 self.assertEqual(1, 2, 'my msg')

 def test_new_style(self):
 assert_equal(1, 2, 'my msg')

Example output:

FF
==
FAIL: test_old_style (example.MyTests)
--
Traceback (most recent call last):
 File "example.py", line 7, in test_old_style
 self.assertEqual(1, 2, 'my msg')
AssertionError: my msg

==
FAIL: test_new_style (example.MyTests)
--
Traceback (most recent call last):
 File "example.py", line 10, in test_new_style
 assert_equal(1, 2, 'my msg')
 File "/path/to/robot/utils/asserts.py", line 181, in assert_equal
 _report_inequality_failure(first, second, msg, values, '!=')
 File "/path/to/robot/utils/asserts.py", line 229, in _report_inequality_failure
 raise AssertionError(msg)
AssertionError: my msg: 1 != 2

--
Ran 2 tests in 0.000s

FAILED (failures=2)

	
robot.utils.asserts.fail(msg=None)

	Fail test immediately with the given message.

	
robot.utils.asserts.assert_false(expr, msg=None)

	Fail the test if the expression is True.

	
robot.utils.asserts.assert_true(expr, msg=None)

	Fail the test unless the expression is True.

	
robot.utils.asserts.assert_not_none(obj, msg=None, values=True)

	Fail the test if given object is None.

	
robot.utils.asserts.assert_none(obj, msg=None, values=True)

	Fail the test if given object is not None.

	
robot.utils.asserts.assert_raises(exc_class, callable_obj, *args, **kwargs)

	Fail unless an exception of class exc_class is thrown by callable_obj.

callable_obj is invoked with arguments args and keyword arguments
kwargs. If a different type of exception is thrown, it will not be
caught, and the test case will be deemed to have suffered an
error, exactly as for an unexpected exception.

If a correct exception is raised, the exception instance is returned
by this method.

	
robot.utils.asserts.assert_raises_with_msg(exc_class, expected_msg, callable_obj, *args, **kwargs)

	Similar to fail_unless_raises but also checks the exception message.

	
robot.utils.asserts.assert_equal(first, second, msg=None, values=True, formatter=None)

	Fail if given objects are unequal as determined by the ‘==’ operator.

	
robot.utils.asserts.assert_not_equal(first, second, msg=None, values=True, formatter=None)

	Fail if given objects are equal as determined by the ‘==’ operator.

	
robot.utils.asserts.assert_almost_equal(first, second, places=7, msg=None, values=True)

	Fail if the two objects are unequal after rounded to given places.

inequality is determined by object’s difference rounded to the
given number of decimal places (default 7) and comparing to zero.
Note that decimal places (from zero) are usually not the same as
significant digits (measured from the most significant digit).

	
robot.utils.asserts.assert_not_almost_equal(first, second, places=7, msg=None, values=True)

	Fail if the two objects are unequal after rounded to given places.

Equality is determined by object’s difference rounded to to the
given number of decimal places (default 7) and comparing to zero.
Note that decimal places (from zero) are usually not the same as
significant digits (measured from the most significant digit).

robot.utils.charwidth module

A module to handle different character widths on the console.

Some East Asian characters have width of two on console, and combining
characters themselves take no extra space.

See issue 604 [1] for more details about East Asian characters. The issue also
contains generate_wild_chars.py script that was originally used to create
_EAST_ASIAN_WILD_CHARS mapping. An updated version of the script is attached
to issue 1096. Big thanks for xieyanbo for the script and the original patch.

Note that Python’s unicodedata module is not used here because importing
it takes several seconds on Jython.

[1] https://github.com/robotframework/robotframework/issues/604
[2] https://github.com/robotframework/robotframework/issues/1096

	
robot.utils.charwidth.get_char_width(char)

	

robot.utils.compat module

	
robot.utils.compat.unwrap(func)

	

	
robot.utils.compat.py2to3(cls)

	

	
robot.utils.compat.with_metaclass(meta, *bases)

	Create a base class with a metaclass.

	
robot.utils.compat.isatty(stream)

	

robot.utils.compress module

	
robot.utils.compress.compress_text(text)

	

robot.utils.connectioncache module

	
class robot.utils.connectioncache.ConnectionCache(no_current_msg='No open connection.')

	Bases: object

Cache for test libs to use with concurrent connections, processes, etc.

The cache stores the registered connections (or other objects) and allows
switching between them using generated indices or user given aliases.
This is useful with any test library where there’s need for multiple
concurrent connections, processes, etc.

This class can, and is, used also outside the core framework by SSHLibrary,
Selenium(2)Library, etc. Backwards compatibility is thus important when
doing changes.

	
current = None

	Current active connection.

	
current_index

	

	
register(connection, alias=None)

	Registers given connection with optional alias and returns its index.

Given connection is set to be the current connection.

If alias is given, it must be a string. Aliases are case and space
insensitive.

The index of the first connection after initialization, and after
close_all() or empty_cache(), is 1, second is 2, etc.

	
switch(alias_or_index)

	Switches to the connection specified by the given alias or index.

Updates current and also returns its new value.

Alias is whatever was given to register() method and indices
are returned by it. Index can be given either as an integer or
as a string that can be converted to an integer. Raises an error
if no connection with the given index or alias found.

	
get_connection(alias_or_index=None)

	Get the connection specified by the given alias or index..

If alias_or_index is None, returns the current connection
if it is active, or raises an error if it is not.

Alias is whatever was given to register() method and indices
are returned by it. Index can be given either as an integer or
as a string that can be converted to an integer. Raises an error
if no connection with the given index or alias found.

	
close_all(closer_method='close')

	Closes connections using given closer method and empties cache.

If simply calling the closer method is not adequate for closing
connections, clients should close connections themselves and use
empty_cache() afterwards.

	
empty_cache()

	Empties the connection cache.

Indexes of the new connections starts from 1 after this.

	
resolve_alias_or_index(alias_or_index)

	

	
class robot.utils.connectioncache.NoConnection(message)

	Bases: object

	
raise_error()

	

robot.utils.dotdict module

	
class robot.utils.dotdict.DotDict(*args, **kwds)

	Bases: collections.OrderedDict

	
clear() → None. Remove all items from od.

	

	
copy() → a shallow copy of od

	

	
classmethod fromkeys(S[, v]) → New ordered dictionary with keys from S.

	If not specified, the value defaults to None.

	
get(k[, d]) → D[k] if k in D, else d. d defaults to None.

	

	
has_key(k) → True if D has a key k, else False

	

	
items() → list of (key, value) pairs in od

	

	
iteritems()

	od.iteritems -> an iterator over the (key, value) pairs in od

	
iterkeys() → an iterator over the keys in od

	

	
itervalues()

	od.itervalues -> an iterator over the values in od

	
keys() → list of keys in od

	

	
pop(k[, d]) → v, remove specified key and return the corresponding

	value. If key is not found, d is returned if given, otherwise KeyError
is raised.

	
popitem() → (k, v), return and remove a (key, value) pair.

	Pairs are returned in LIFO order if last is true or FIFO order if false.

	
setdefault(k[, d]) → od.get(k,d), also set od[k]=d if k not in od

	

	
update([E,]**F) → None. Update D from mapping/iterable E and F.

	If E present and has a .keys() method, does: for k in E: D[k] = E[k]
If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v
In either case, this is followed by: for k, v in F.items(): D[k] = v

	
values() → list of values in od

	

	
viewitems() → a set-like object providing a view on od's items

	

	
viewkeys() → a set-like object providing a view on od's keys

	

	
viewvalues() → an object providing a view on od's values

	

robot.utils.encoding module

	
robot.utils.encoding.console_decode(string, encoding='UTF-8', force=False)

	Decodes bytes from console encoding to Unicode.

By default uses the system console encoding, but that can be configured
using the encoding argument. In addition to the normal encodings,
it is possible to use case-insensitive values CONSOLE and SYSTEM to
use the system console and system encoding, respectively.

By default returns Unicode strings as-is. The force argument can be used
on IronPython where all strings are unicode and caller knows decoding
is needed.

	
robot.utils.encoding.console_encode(string, errors='replace', stream=<open file '<stdout>', mode 'w'>)

	Encodes Unicode to bytes in console or system encoding.

Determines the encoding to use based on the given stream and system
configuration. On Python 3 and IronPython returns Unicode, otherwise
returns bytes.

	
robot.utils.encoding.system_decode(string)

	Decodes bytes from system (e.g. cli args or env vars) to Unicode.

Depending on the usage, at least cli args may already be Unicode.

	
robot.utils.encoding.system_encode(string, errors='replace')

	Encodes Unicode to system encoding (e.g. cli args and env vars).

Non-Unicode values are first converted to Unicode.

robot.utils.encodingsniffer module

	
robot.utils.encodingsniffer.get_system_encoding()

	

	
robot.utils.encodingsniffer.get_console_encoding()

	

robot.utils.error module

	
robot.utils.error.get_error_message()

	Returns error message of the last occurred exception.

This method handles also exceptions containing unicode messages. Thus it
MUST be used to get messages from all exceptions originating outside the
framework.

	
robot.utils.error.get_error_details(exclude_robot_traces=True)

	Returns error message and details of the last occurred exception.

	
robot.utils.error.ErrorDetails(exc_info=None, exclude_robot_traces=True)

	This factory returns an object that wraps the last occurred exception

It has attributes message, traceback and error, where message
contains type and message of the original error, traceback contains the
traceback/stack trace and error contains the original error instance.

	
class robot.utils.error.PythonErrorDetails(exc_type, exc_value, exc_traceback, exclude_robot_traces=True)

	Bases: robot.utils.error._ErrorDetails

	
message

	

	
traceback

	

	
class robot.utils.error.JavaErrorDetails(exc_type, exc_value, exc_traceback, exclude_robot_traces=True)

	Bases: robot.utils.error._ErrorDetails

	
message

	

	
traceback

	

robot.utils.escaping module

	
robot.utils.escaping.escape(item)

	

	
robot.utils.escaping.glob_escape(item)

	

	
class robot.utils.escaping.Unescaper

	Bases: object

	
unescape(item)

	

	
robot.utils.escaping.split_from_equals(string)

	

robot.utils.etreewrapper module

	
class robot.utils.etreewrapper.ETSource(source)

	Bases: object

robot.utils.filereader module

	
class robot.utils.filereader.FileReader(source, accept_text=False)

	Bases: object

Utility to ease reading different kind of files.

Supports different sources where to read the data:

	The source can be a path to a file, either as a string or as a
pathlib.Path instance in Python 3. The file itself must be
UTF-8 encoded.

	Alternatively the source can be an already opened file object,
including a StringIO or BytesIO object. The file can contain either
Unicode text or UTF-8 encoded bytes.

	The third options is giving the source as Unicode text directly.
This requires setting accept_text=True when creating the reader.

In all cases bytes are automatically decoded to Unicode and possible
BOM removed.

	
read()

	

	
readlines()

	

robot.utils.frange module

	
robot.utils.frange.frange(*args)

	Like range() but accepts float arguments.

robot.utils.htmlformatters module

	
class robot.utils.htmlformatters.LinkFormatter

	Bases: object

	
format_url(text)

	

	
format_link(text)

	

	
class robot.utils.htmlformatters.LineFormatter

	Bases: object

	
handles(line)

	

	
newline = '\n'

	

	
format(line)

	

	
class robot.utils.htmlformatters.HtmlFormatter

	Bases: object

	
format(text)

	

	
class robot.utils.htmlformatters.RulerFormatter

	Bases: robot.utils.htmlformatters._SingleLineFormatter

	
match()

	match(string[, pos[, endpos]]) –> match object or None.
Matches zero or more characters at the beginning of the string

	
format_line(line)

	

	
add(line)

	

	
end()

	

	
format(lines)

	

	
handles(line)

	

	
class robot.utils.htmlformatters.HeaderFormatter

	Bases: robot.utils.htmlformatters._SingleLineFormatter

	
match()

	match(string[, pos[, endpos]]) –> match object or None.
Matches zero or more characters at the beginning of the string

	
format_line(line)

	

	
add(line)

	

	
end()

	

	
format(lines)

	

	
handles(line)

	

	
class robot.utils.htmlformatters.ParagraphFormatter(other_formatters)

	Bases: robot.utils.htmlformatters._Formatter

	
format(lines)

	

	
add(line)

	

	
end()

	

	
handles(line)

	

	
class robot.utils.htmlformatters.TableFormatter

	Bases: robot.utils.htmlformatters._Formatter

	
format(lines)

	

	
add(line)

	

	
end()

	

	
handles(line)

	

	
class robot.utils.htmlformatters.PreformattedFormatter

	Bases: robot.utils.htmlformatters._Formatter

	
format(lines)

	

	
add(line)

	

	
end()

	

	
handles(line)

	

	
class robot.utils.htmlformatters.ListFormatter

	Bases: robot.utils.htmlformatters._Formatter

	
format(lines)

	

	
add(line)

	

	
end()

	

	
handles(line)

	

robot.utils.importer module

	
robot.utils.importer.invalidate_import_caches()

	

	
class robot.utils.importer.Importer(type=None, logger=None)

	Bases: object

	
import_class_or_module(name, instantiate_with_args=None, return_source=False)

	Imports Python class/module or Java class with given name.

Class can either live in a module/package or be standalone Java class.
In the former case the name is something like ‘MyClass’ and in the
latter it could be ‘your.package.YourLibrary’. Python classes always
live in a module, but if the module name is exactly same as the class
name then simple ‘MyLibrary’ will import a class.

Python modules can be imported both using format ‘MyModule’ and
‘mymodule.submodule’.

name can also be a path to the imported file/directory. In that case
importing is done using import_class_or_module_by_path method.

If instantiate_with_args is not None, imported classes are
instantiated with the specified arguments automatically.

	
import_class_or_module_by_path(path, instantiate_with_args=None)

	Import a Python module or Java class using a file system path.

When importing a Python file, the path must end with ‘.py’ and the
actual file must also exist. When importing Java classes, the path
must end with ‘.java’ or ‘.class’. The class file must exist in both
cases and in the former case also the source file must exist.

If instantiate_with_args is not None, imported classes are
instantiated with the specified arguments automatically.

	
class robot.utils.importer.ByPathImporter(logger)

	Bases: robot.utils.importer._Importer

	
handles(path)

	

	
import_(path)

	

	
class robot.utils.importer.NonDottedImporter(logger)

	Bases: robot.utils.importer._Importer

	
handles(name)

	

	
import_(name)

	

	
class robot.utils.importer.DottedImporter(logger)

	Bases: robot.utils.importer._Importer

	
handles(name)

	

	
import_(name)

	

robot.utils.markuputils module

	
robot.utils.markuputils.html_escape(text, linkify=True)

	

	
robot.utils.markuputils.xml_escape(text)

	

	
robot.utils.markuputils.html_format(text)

	

	
robot.utils.markuputils.attribute_escape(attr)

	

robot.utils.markupwriters module

	
class robot.utils.markupwriters.HtmlWriter(output, write_empty=True, usage=None)

	Bases: robot.utils.markupwriters._MarkupWriter

	Parameters

	
	output – Either an opened, file like object, or a path to the
desired output file. In the latter case, the file is created
and clients should use close() method to close it.

	write_empty – Whether to write empty elements and attributes.

	
close()

	Closes the underlying output file.

	
content(content=None, escape=True, newline=False)

	

	
element(name, content=None, attrs=None, escape=True, newline=True, replace_newlines=False)

	

	
end(name, newline=True)

	

	
start(name, attrs=None, newline=True)

	

	
class robot.utils.markupwriters.XmlWriter(output, write_empty=True, usage=None)

	Bases: robot.utils.markupwriters._MarkupWriter

	Parameters

	
	output – Either an opened, file like object, or a path to the
desired output file. In the latter case, the file is created
and clients should use close() method to close it.

	write_empty – Whether to write empty elements and attributes.

	
close()

	Closes the underlying output file.

	
content(content=None, escape=True, newline=False)

	

	
element(name, content=None, attrs=None, escape=True, newline=True, replace_newlines=False)

	

	
end(name, newline=True)

	

	
start(name, attrs=None, newline=True)

	

	
class robot.utils.markupwriters.NullMarkupWriter(**kwargs)

	Bases: object

Null implementation of the _MarkupWriter interface.

	
start(**kwargs)

	

	
content(**kwargs)

	

	
element(**kwargs)

	

	
end(**kwargs)

	

	
close(**kwargs)

	

robot.utils.match module

	
robot.utils.match.eq(str1, str2, ignore=(), caseless=True, spaceless=True)

	

	
class robot.utils.match.Matcher(pattern, ignore=(), caseless=True, spaceless=True, regexp=False)

	Bases: object

	
match(string)

	

	
match_any(strings)

	

	
class robot.utils.match.MultiMatcher(patterns=None, ignore=(), caseless=True, spaceless=True, match_if_no_patterns=False, regexp=False)

	Bases: object

	
match(string)

	

	
match_any(strings)

	

robot.utils.misc module

	
robot.utils.misc.roundup(number, ndigits=0, return_type=None)

	Rounds number to the given number of digits.

Numbers equally close to a certain precision are always rounded away from
zero. By default return value is float when ndigits is positive and
int otherwise, but that can be controlled with return_type.

With the built-in round() rounding equally close numbers as well as
the return type depends on the Python version.

	
robot.utils.misc.printable_name(string, code_style=False)

	Generates and returns printable name from the given string.

Examples:
‘simple’ -> ‘Simple’
‘name with spaces’ -> ‘Name With Spaces’
‘more spaces’ -> ‘More Spaces’
‘Cases AND spaces’ -> ‘Cases AND Spaces’
‘’ -> ‘’

If ‘code_style’ is True:

‘mixedCAPSCamel’ -> ‘Mixed CAPS Camel’
‘camelCaseName’ -> ‘Camel Case Name’
‘under_score_name’ -> ‘Under Score Name’
‘under_and space’ -> ‘Under And Space’
‘miXed_CAPS_nAMe’ -> ‘MiXed CAPS NAMe’
‘’ -> ‘’

	
robot.utils.misc.plural_or_not(item)

	

	
robot.utils.misc.seq2str(sequence, quote="'", sep=', ', lastsep=' and ')

	Returns sequence in format ‘item 1’, ‘item 2’ and ‘item 3’.

	
robot.utils.misc.seq2str2(sequence)

	Returns sequence in format [item 1 | item 2 | …].

robot.utils.normalizing module

	
robot.utils.normalizing.normalize(string, ignore=(), caseless=True, spaceless=True)

	Normalizes given string according to given spec.

By default string is turned to lower case and all whitespace is removed.
Additional characters can be removed by giving them in ignore list.

	
robot.utils.normalizing.normalize_whitespace(string)

	

	
robot.utils.normalizing.lower(string)

	

	
class robot.utils.normalizing.NormalizedDict(initial=None, ignore=(), caseless=True, spaceless=True)

	Bases: _abcoll.MutableMapping

Custom dictionary implementation automatically normalizing keys.

Initialized with possible initial value and normalizing spec.

Initial values can be either a dictionary or an iterable of name/value
pairs. In the latter case items are added in the given order.

Normalizing spec has exact same semantics as with the normalize()
function.

	
copy()

	

	
clear() → None. Remove all items from D.

	

	
get(k[, d]) → D[k] if k in D, else d. d defaults to None.

	

	
items() → list of D's (key, value) pairs, as 2-tuples

	

	
iteritems() → an iterator over the (key, value) items of D

	

	
iterkeys() → an iterator over the keys of D

	

	
itervalues() → an iterator over the values of D

	

	
keys() → list of D's keys

	

	
pop(k[, d]) → v, remove specified key and return the corresponding value.

	If key is not found, d is returned if given, otherwise KeyError is raised.

	
popitem() → (k, v), remove and return some (key, value) pair

	as a 2-tuple; but raise KeyError if D is empty.

	
setdefault(k[, d]) → D.get(k,d), also set D[k]=d if k not in D

	

	
update([E,]**F) → None. Update D from mapping/iterable E and F.

	If E present and has a .keys() method, does: for k in E: D[k] = E[k]
If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v
In either case, this is followed by: for k, v in F.items(): D[k] = v

	
values() → list of D's values

	

robot.utils.platform module

robot.utils.recommendations module

	
class robot.utils.recommendations.RecommendationFinder(normalizer=None)

	Bases: object

	
find_and_format(name, candidates, message, max_matches=10)

	

	
find(name, candidates, max_matches=10)

	Return a list of close matches to name from candidates.

	
format(message, recommendations=None)

	Add recommendations to the given message.

The recommendation string looks like:

<message> Did you mean:
 <recommendations[0]>
 <recommendations[1]>
 <recommendations[2]>

robot.utils.restreader module

	
class robot.utils.restreader.CaptureRobotData(name, arguments, options, content, lineno, content_offset, block_text, state, state_machine)

	Bases: docutils.parsers.rst.directives.body.CodeBlock

	
run()

	

	
add_name(node)

	Append self.options[‘name’] to node[‘names’] if it exists.

Also normalize the name string and register it as explicit target.

	
assert_has_content()

	Throw an ERROR-level DirectiveError if the directive doesn’t
have contents.

	
debug(message)

	

	
directive_error(level, message)

	Return a DirectiveError suitable for being thrown as an exception.

Call “raise self.directive_error(level, message)” from within
a directive implementation to return one single system message
at level level, which automatically gets the directive block
and the line number added.

Preferably use the debug, info, warning, error, or severe
wrapper methods, e.g. self.error(message) to generate an
ERROR-level directive error.

	
error(message)

	

	
final_argument_whitespace = False

	

	
has_content = True

	

	
info(message)

	

	
option_spec = {'class': <function class_option>, 'name': <function unchanged>, 'number-lines': <function unchanged>}

	

	
optional_arguments = 1

	

	
required_arguments = 0

	

	
severe(message)

	

	
warning(message)

	

	
class robot.utils.restreader.RobotDataStorage(doctree)

	Bases: object

	
add_data(rows)

	

	
get_data()

	

	
has_data()

	

	
robot.utils.restreader.read_rest_data(rstfile)

	

robot.utils.robotenv module

	
robot.utils.robotenv.get_env_var(name, default=None)

	

	
robot.utils.robotenv.set_env_var(name, value)

	

	
robot.utils.robotenv.del_env_var(name)

	

	
robot.utils.robotenv.get_env_vars(upper=False)

	

robot.utils.robotinspect module

	
robot.utils.robotinspect.is_java_init(init)

	

	
robot.utils.robotinspect.is_java_method(method)

	

robot.utils.robotio module

	
robot.utils.robotio.file_writer(path=None, encoding='UTF-8', newline=None, usage=None)

	

	
robot.utils.robotio.binary_file_writer(path=None)

	

	
robot.utils.robotio.create_destination_directory(path, usage=None)

	

robot.utils.robotpath module

	
robot.utils.robotpath.path_to_url(path)

	

	
robot.utils.robotpath.normpath(path, case_normalize=False)

	Replacement for os.path.normpath with some enhancements.

	Convert non-Unicode paths to Unicode using the file system encoding.

	NFC normalize Unicode paths (affects mainly OSX).

	Optionally lower-case paths on case-insensitive file systems.
That includes Windows and also OSX in default configuration.

	Turn c: into c:\ on Windows instead of keeping it as c:.

	
robot.utils.robotpath.abspath(path, case_normalize=False)

	Replacement for os.path.abspath with some enhancements and bug fixes.

	Non-Unicode paths are converted to Unicode using file system encoding.

	Optionally lower-case paths on case-insensitive file systems.
That includes Windows and also OSX in default configuration.

	Turn c: into c:\ on Windows instead of c:\current\path.

	
robot.utils.robotpath.get_link_path(target, base)

	Returns a relative path to target from base.

If base is an existing file, then its parent directory is considered to
be the base. Otherwise base is assumed to be a directory.

The returned path is URL encoded. On Windows returns an absolute path with
file: prefix if the target is on a different drive.

	
robot.utils.robotpath.find_file(path, basedir='.', file_type=None)

	

robot.utils.robottime module

	
robot.utils.robottime.timestr_to_secs(timestr, round_to=3)

	Parses time like ‘1h 10s’, ‘01:00:10’ or ‘42’ and returns seconds.

	
robot.utils.robottime.secs_to_timestr(secs, compact=False)

	Converts time in seconds to a string representation.

Returned string is in format like
‘1 day 2 hours 3 minutes 4 seconds 5 milliseconds’ with following rules:

	Time parts having zero value are not included (e.g. ‘3 minutes 4 seconds’
instead of ‘0 days 0 hours 3 minutes 4 seconds’)

	Hour part has a maximun of 23 and minutes and seconds both have 59
(e.g. ‘1 minute 40 seconds’ instead of ‘100 seconds’)

If compact has value ‘True’, short suffixes are used.
(e.g. 1d 2h 3min 4s 5ms)

	
robot.utils.robottime.format_time(timetuple_or_epochsecs, daysep='', daytimesep=' ', timesep=':', millissep=None)

	Returns a timestamp formatted from given time using separators.

Time can be given either as a timetuple or seconds after epoch.

Timetuple is (year, month, day, hour, min, sec[, millis]), where parts must
be integers and millis is required only when millissep is not None.
Notice that this is not 100% compatible with standard Python timetuples
which do not have millis.

Seconds after epoch can be either an integer or a float.

	
robot.utils.robottime.get_time(format='timestamp', time_=None)

	Return the given or current time in requested format.

If time is not given, current time is used. How time is returned is
is deternined based on the given ‘format’ string as follows. Note that all
checks are case insensitive.

	If ‘format’ contains word ‘epoch’ the time is returned in seconds after
the unix epoch.

	If ‘format’ contains any of the words ‘year’, ‘month’, ‘day’, ‘hour’,
‘min’ or ‘sec’ only selected parts are returned. The order of the returned
parts is always the one in previous sentence and order of words in
‘format’ is not significant. Parts are returned as zero padded strings
(e.g. May -> ‘05’).

	Otherwise (and by default) the time is returned as a timestamp string in
format ‘2006-02-24 15:08:31’

	
robot.utils.robottime.parse_time(timestr)

	Parses the time string and returns its value as seconds since epoch.

Time can be given in five different formats:

	Numbers are interpreted as time since epoch directly. It is possible to
use also ints and floats, not only strings containing numbers.

	Valid timestamp (‘YYYY-MM-DD hh:mm:ss’ and ‘YYYYMMDD hhmmss’).

	‘NOW’ (case-insensitive) is the current local time.

	‘UTC’ (case-insensitive) is the current time in UTC.

	Format ‘NOW - 1 day’ or ‘UTC + 1 hour 30 min’ is the current local/UTC
time plus/minus the time specified with the time string.

Seconds are rounded down to avoid getting times in the future.

	
robot.utils.robottime.get_timestamp(daysep='', daytimesep=' ', timesep=':', millissep='.')

	

	
robot.utils.robottime.timestamp_to_secs(timestamp, seps=None)

	

	
robot.utils.robottime.secs_to_timestamp(secs, seps=None, millis=False)

	

	
robot.utils.robottime.get_elapsed_time(start_time, end_time)

	Returns the time between given timestamps in milliseconds.

	
robot.utils.robottime.elapsed_time_to_string(elapsed, include_millis=True)

	Converts elapsed time in milliseconds to format ‘hh:mm:ss.mil’.

If include_millis is True, ‘.mil’ part is omitted.

	
class robot.utils.robottime.TimestampCache

	Bases: object

	
get_timestamp(daysep='', daytimesep=' ', timesep=':', millissep='.')

	

robot.utils.robottypes module

	
robot.utils.robottypes.is_truthy(item)

	Returns True or False depending is the item considered true or not.

Validation rules:

	If the value is a string, it is considered false if it is ‘FALSE’,
‘NO’, ‘OFF’, ‘0’, ‘NONE’ or ‘’, case-insensitively.
Considering ‘NONE’ false is new in RF 3.0.3 and considering ‘OFF’
and ‘0’ false is new in RF 3.1.

	Other strings are considered true.

	Other values are handled by using the standard bool() function.

Designed to be used also by external test libraries that want to handle
Boolean values similarly as Robot Framework itself. See also
is_falsy().

	
robot.utils.robottypes.is_falsy(item)

	Opposite of is_truthy().

robot.utils.robottypes2 module

	
robot.utils.robottypes2.is_integer(item)

	

	
robot.utils.robottypes2.is_number(item)

	

	
robot.utils.robottypes2.is_bytes(item)

	

	
robot.utils.robottypes2.is_string(item)

	

	
robot.utils.robottypes2.is_unicode(item)

	

	
robot.utils.robottypes2.is_pathlike(item)

	

	
robot.utils.robottypes2.is_list_like(item)

	

	
robot.utils.robottypes2.is_dict_like(item)

	

	
robot.utils.robottypes2.type_name(item, capitalize=False)

	

robot.utils.robottypes3 module

robot.utils.setter module

	
class robot.utils.setter.setter(method)

	Bases: object

	
class robot.utils.setter.SetterAwareType

	Bases: type

	
mro() → list

	return a type’s method resolution order

robot.utils.sortable module

	
class robot.utils.sortable.Sortable

	Bases: object

Base class for sorting based self._sort_key

robot.utils.text module

	
robot.utils.text.cut_long_message(msg)

	

	
robot.utils.text.format_assign_message(variable, value, cut_long=True)

	

	
robot.utils.text.get_console_length(text)

	

	
robot.utils.text.pad_console_length(text, width)

	

	
robot.utils.text.split_args_from_name_or_path(name)

	

	
robot.utils.text.split_tags_from_doc(doc)

	

	
robot.utils.text.getdoc(item)

	

	
robot.utils.text.getshortdoc(doc_or_item, linesep='\n')

	

	
robot.utils.text.rstrip(string)

	

robot.utils.unic module

	
robot.utils.unic.unic(item)

	

	
robot.utils.unic.prepr(item, width=80)

	

	
class robot.utils.unic.PrettyRepr(indent=1, width=80, depth=None, stream=None)

	Bases: pprint.PrettyPrinter

Handle pretty printing operations onto a stream using a set of
configured parameters.

	indent

	Number of spaces to indent for each level of nesting.

	width

	Attempted maximum number of columns in the output.

	depth

	The maximum depth to print out nested structures.

	stream

	The desired output stream. If omitted (or false), the standard
output stream available at construction will be used.

	
format(object, context, maxlevels, level)

	

	
isreadable(object)

	

	
isrecursive(object)

	

	
pformat(object)

	

	
pprint(object)

	

robot.variables package

Implements storing and resolving variables.

This package is mainly for internal usage, but utilities for finding
variables can be used externally as well.

	
robot.variables.is_var(string, identifiers='$@&')

	Deprecated since RF 3.2. Use is_variable instead.

	
robot.variables.is_scalar_var(string)

	Deprecated since RF 3.2. Use is_scalar_variable instead.

	
robot.variables.is_list_var(string)

	Deprecated since RF 3.2. Use is_list_variable instead.

	
robot.variables.is_dict_var(string)

	Deprecated since RF 3.2. Use is_dict_variable instead.

	
robot.variables.contains_var(string, identifiers='$@&')

	Deprecated since RF 3.2. Use contains_variable instead.

Submodules

robot.variables.assigner module

	
class robot.variables.assigner.VariableAssignment(assignment)

	Bases: object

	
validate_assignment()

	

	
assigner(context)

	

	
class robot.variables.assigner.AssignmentValidator

	Bases: object

	
validate(variable)

	

	
class robot.variables.assigner.VariableAssigner(assignment, context)

	Bases: object

	
assign(return_value)

	

	
robot.variables.assigner.ReturnValueResolver(assignment)

	

	
class robot.variables.assigner.NoReturnValueResolver

	Bases: object

	
resolve(return_value)

	

	
class robot.variables.assigner.OneReturnValueResolver(variable)

	Bases: object

	
resolve(return_value)

	

	
class robot.variables.assigner.ScalarsOnlyReturnValueResolver(variables)

	Bases: robot.variables.assigner._MultiReturnValueResolver

	
resolve(return_value)

	

	
class robot.variables.assigner.ScalarsAndListReturnValueResolver(variables)

	Bases: robot.variables.assigner._MultiReturnValueResolver

	
resolve(return_value)

	

robot.variables.evaluation module

	
robot.variables.evaluation.evaluate_expression(expression, variable_store, modules=None, namespace=None)

	

	
class robot.variables.evaluation.EvaluationNamespace(variable_store, namespace=None)

	Bases: _abcoll.MutableMapping

	
clear() → None. Remove all items from D.

	

	
get(k[, d]) → D[k] if k in D, else d. d defaults to None.

	

	
items() → list of D's (key, value) pairs, as 2-tuples

	

	
iteritems() → an iterator over the (key, value) items of D

	

	
iterkeys() → an iterator over the keys of D

	

	
itervalues() → an iterator over the values of D

	

	
keys() → list of D's keys

	

	
pop(k[, d]) → v, remove specified key and return the corresponding value.

	If key is not found, d is returned if given, otherwise KeyError is raised.

	
popitem() → (k, v), remove and return some (key, value) pair

	as a 2-tuple; but raise KeyError if D is empty.

	
setdefault(k[, d]) → D.get(k,d), also set D[k]=d if k not in D

	

	
update([E,]**F) → None. Update D from mapping/iterable E and F.

	If E present and has a .keys() method, does: for k in E: D[k] = E[k]
If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v
In either case, this is followed by: for k, v in F.items(): D[k] = v

	
values() → list of D's values

	

robot.variables.filesetter module

	
class robot.variables.filesetter.VariableFileSetter(store)

	Bases: object

	
set(path_or_variables, args=None, overwrite=False)

	

	
class robot.variables.filesetter.YamlImporter

	Bases: object

	
import_variables(path, args=None)

	

	
class robot.variables.filesetter.PythonImporter

	Bases: object

	
import_variables(path, args=None)

	

robot.variables.finders module

	
robot.variables.finders.get_java_property(name)

	

	
robot.variables.finders.get_java_properties()

	

	
class robot.variables.finders.VariableFinder(variable_store)

	Bases: object

	
find(variable)

	

	
class robot.variables.finders.StoredFinder(store)

	Bases: object

	
identifiers = '$@&'

	

	
find(name)

	

	
class robot.variables.finders.NumberFinder

	Bases: object

	
identifiers = '$'

	

	
find(name)

	

	
class robot.variables.finders.EmptyFinder

	Bases: object

	
identifiers = '$@&'

	

	
classmethod find(key)

	

	
class robot.variables.finders.InlinePythonFinder(variables)

	Bases: object

	
identifiers = '$@&'

	

	
find(name)

	

	
class robot.variables.finders.ExtendedFinder(finder)

	Bases: object

	
identifiers = '$@&'

	

	
find(name)

	

	
class robot.variables.finders.EnvironmentFinder

	Bases: object

	
identifiers = '%'

	

	
find(name)

	

robot.variables.notfound module

	
robot.variables.notfound.variable_not_found(name, candidates, message=None, deco_braces=True)

	Raise DataError for missing variable name.

Return recommendations for similar variable names if any are found.

robot.variables.replacer module

	
class robot.variables.replacer.VariableReplacer(variables)

	Bases: object

	
replace_list(items, replace_until=None, ignore_errors=False)

	Replaces variables from a list of items.

If an item in a list is a @{list} variable its value is returned.
Possible variables from other items are replaced using ‘replace_scalar’.
Result is always a list.

‘replace_until’ can be used to limit replacing arguments to certain
index from the beginning. Used with Run Keyword variants that only
want to resolve some of the arguments in the beginning and pass others
to called keywords unmodified.

	
replace_scalar(item, ignore_errors=False)

	Replaces variables from a scalar item.

If the item is not a string it is returned as is. If it is a variable,
its value is returned. Otherwise possible variables are replaced with
‘replace_string’. Result may be any object.

	
replace_string(item, custom_unescaper=None, ignore_errors=False)

	Replaces variables from a string. Result is always a string.

Input can also be an already found VariableMatch.

robot.variables.scopes module

	
class robot.variables.scopes.VariableScopes(settings)

	Bases: object

	
current

	

	
start_suite()

	

	
end_suite()

	

	
start_test()

	

	
end_test()

	

	
start_keyword()

	

	
end_keyword()

	

	
replace_list(items, replace_until=None, ignore_errors=False)

	

	
replace_scalar(items, ignore_errors=False)

	

	
replace_string(string, custom_unescaper=None, ignore_errors=False)

	

	
set_from_file(path, args, overwrite=False)

	

	
set_from_variable_table(variables, overwrite=False)

	

	
resolve_delayed()

	

	
set_global(name, value)

	

	
set_suite(name, value, top=False, children=False)

	

	
set_test(name, value)

	

	
set_keyword(name, value)

	

	
set_local_variable(name, value)

	

	
as_dict(decoration=True)

	

	
class robot.variables.scopes.GlobalVariables(settings)

	Bases: robot.variables.variables.Variables

	
as_dict(decoration=True)

	

	
clear()

	

	
copy()

	

	
replace_list(items, replace_until=None, ignore_errors=False)

	

	
replace_scalar(item, ignore_errors=False)

	

	
replace_string(item, custom_unescaper=None, ignore_errors=False)

	

	
resolve_delayed()

	

	
set_from_file(path_or_variables, args=None, overwrite=False)

	

	
set_from_variable_table(variables, overwrite=False)

	

	
update(variables)

	

	
class robot.variables.scopes.SetVariables

	Bases: object

	
start_suite()

	

	
end_suite()

	

	
start_test()

	

	
end_test()

	

	
start_keyword()

	

	
end_keyword()

	

	
set_global(name, value)

	

	
set_suite(name, value)

	

	
set_test(name, value)

	

	
set_keyword(name, value)

	

	
update(variables)

	

robot.variables.search module

	
robot.variables.search.search_variable(string, identifiers='$@&%*', ignore_errors=False)

	

	
robot.variables.search.contains_variable(string, identifiers='$@&')

	

	
robot.variables.search.is_variable(string, identifiers='$@&')

	

	
robot.variables.search.is_scalar_variable(string)

	

	
robot.variables.search.is_list_variable(string)

	

	
robot.variables.search.is_dict_variable(string)

	

	
robot.variables.search.is_assign(string, identifiers='$@&', allow_assign_mark=False)

	

	
robot.variables.search.is_scalar_assign(string, allow_assign_mark=False)

	

	
robot.variables.search.is_list_assign(string, allow_assign_mark=False)

	

	
robot.variables.search.is_dict_assign(string, allow_assign_mark=False)

	

	
class robot.variables.search.VariableMatch(string, identifier=None, base=None, items=(), start=-1, end=-1)

	Bases: object

	
resolve_base(variables, ignore_errors=False)

	

	
name

	

	
before

	

	
match

	

	
after

	

	
is_variable()

	

	
is_scalar_variable()

	

	
is_list_variable()

	

	
is_dict_variable()

	

	
is_assign(allow_assign_mark=False)

	

	
is_scalar_assign(allow_assign_mark=False)

	

	
is_list_assign(allow_assign_mark=False)

	

	
is_dict_assign(allow_assign_mark=False)

	

	
class robot.variables.search.VariableSearcher(identifiers, ignore_errors=False)

	Bases: object

	
search(string)

	

	
variable_state(char)

	

	
waiting_item_state(char)

	

	
item_state(char)

	

	
robot.variables.search.unescape_variable_syntax(item)

	

	
class robot.variables.search.VariableIterator(string, identifiers='$@&%', ignore_errors=False)

	Bases: object

robot.variables.store module

	
class robot.variables.store.VariableStore(variables)

	Bases: object

	
resolve_delayed(item=None)

	

	
update(store)

	

	
clear()

	

	
add(name, value, overwrite=True, decorated=True)

	

	
remove(name)

	

	
as_dict(decoration=True)

	

robot.variables.tablesetter module

	
class robot.variables.tablesetter.VariableTableSetter(store)

	Bases: object

	
set(variables, overwrite=False)

	

	
robot.variables.tablesetter.VariableTableValue(value, name, error_reporter=None)

	

	
class robot.variables.tablesetter.VariableTableValueBase(values, error_reporter=None)

	Bases: object

	
resolve(variables)

	

	
report_error(error)

	

	
class robot.variables.tablesetter.ScalarVariableTableValue(values, error_reporter=None)

	Bases: robot.variables.tablesetter.VariableTableValueBase

	
report_error(error)

	

	
resolve(variables)

	

	
class robot.variables.tablesetter.ListVariableTableValue(values, error_reporter=None)

	Bases: robot.variables.tablesetter.VariableTableValueBase

	
report_error(error)

	

	
resolve(variables)

	

	
class robot.variables.tablesetter.DictVariableTableValue(values, error_reporter=None)

	Bases: robot.variables.tablesetter.VariableTableValueBase

	
report_error(error)

	

	
resolve(variables)

	

robot.variables.variables module

	
class robot.variables.variables.Variables

	Bases: object

Represents a set of variables.

Contains methods for replacing variables from list, scalars, and strings.
On top of ${scalar}, @{list} and &{dict} variables, these methods handle
also %{environment} variables.

	
resolve_delayed()

	

	
replace_list(items, replace_until=None, ignore_errors=False)

	

	
replace_scalar(item, ignore_errors=False)

	

	
replace_string(item, custom_unescaper=None, ignore_errors=False)

	

	
set_from_file(path_or_variables, args=None, overwrite=False)

	

	
set_from_variable_table(variables, overwrite=False)

	

	
clear()

	

	
copy()

	

	
update(variables)

	

	
as_dict(decoration=True)

	

 Python Module Index

 r

 		 	

 		
 r	

 	[image: -]
 	
 robot	

 	
 	
 robot.api	

 	
 	
 robot.api.deco	

 	
 	
 robot.api.logger	

 	
 	
 robot.conf	

 	
 	
 robot.conf.gatherfailed	

 	
 	
 robot.conf.settings	

 	
 	
 robot.errors	

 	
 	
 robot.htmldata	

 	
 	
 robot.htmldata.htmlfilewriter	

 	
 	
 robot.htmldata.jsonwriter	

 	
 	
 robot.htmldata.normaltemplate	

 	
 	
 robot.htmldata.template	

 	
 	
 robot.libdoc	

 	
 	
 robot.libdocpkg	

 	
 	
 robot.libdocpkg.builder	

 	
 	
 robot.libdocpkg.consoleviewer	

 	
 	
 robot.libdocpkg.htmlwriter	

 	
 	
 robot.libdocpkg.javabuilder	

 	
 	
 robot.libdocpkg.model	

 	
 	
 robot.libdocpkg.output	

 	
 	
 robot.libdocpkg.robotbuilder	

 	
 	
 robot.libdocpkg.specbuilder	

 	
 	
 robot.libdocpkg.writer	

 	
 	
 robot.libdocpkg.xmlwriter	

 	
 	
 robot.libraries	

 	
 	
 robot.libraries.BuiltIn	

 	
 	
 robot.libraries.Collections	

 	
 	
 robot.libraries.DateTime	

 	
 	
 robot.libraries.Dialogs	

 	
 	
 robot.libraries.dialogs_py	

 	
 	
 robot.libraries.Easter	

 	
 	
 robot.libraries.OperatingSystem	

 	
 	
 robot.libraries.Process	

 	
 	
 robot.libraries.Remote	

 	
 	
 robot.libraries.Reserved	

 	
 	
 robot.libraries.Screenshot	

 	
 	
 robot.libraries.String	

 	
 	
 robot.libraries.Telnet	

 	
 	
 robot.libraries.XML	

 	
 	
 robot.model	

 	
 	
 robot.model.configurer	

 	
 	
 robot.model.criticality	

 	
 	
 robot.model.filter	

 	
 	
 robot.model.itemlist	

 	
 	
 robot.model.keyword	

 	
 	
 robot.model.message	

 	
 	
 robot.model.metadata	

 	
 	
 robot.model.modelobject	

 	
 	
 robot.model.modifier	

 	
 	
 robot.model.namepatterns	

 	
 	
 robot.model.statistics	

 	
 	
 robot.model.stats	

 	
 	
 robot.model.suitestatistics	

 	
 	
 robot.model.tags	

 	
 	
 robot.model.tagsetter	

 	
 	
 robot.model.tagstatistics	

 	
 	
 robot.model.testcase	

 	
 	
 robot.model.testsuite	

 	
 	
 robot.model.totalstatistics	

 	
 	
 robot.model.visitor	

 	
 	
 robot.output	

 	
 	
 robot.output.console	

 	
 	
 robot.output.console.dotted	

 	
 	
 robot.output.console.highlighting	

 	
 	
 robot.output.console.quiet	

 	
 	
 robot.output.console.verbose	

 	
 	
 robot.output.debugfile	

 	
 	
 robot.output.filelogger	

 	
 	
 robot.output.librarylogger	

 	
 	
 robot.output.listenerarguments	

 	
 	
 robot.output.listenermethods	

 	
 	
 robot.output.listeners	

 	
 	
 robot.output.logger	

 	
 	
 robot.output.loggerhelper	

 	
 	
 robot.output.output	

 	
 	
 robot.output.pyloggingconf	

 	
 	
 robot.output.stdoutlogsplitter	

 	
 	
 robot.output.xmllogger	

 	
 	
 robot.parsing	

 	
 	
 robot.parsing.lexer	

 	
 	
 robot.parsing.lexer.blocklexers	

 	
 	
 robot.parsing.lexer.context	

 	
 	
 robot.parsing.lexer.lexer	

 	
 	
 robot.parsing.lexer.sections	

 	
 	
 robot.parsing.lexer.settings	

 	
 	
 robot.parsing.lexer.statementlexers	

 	
 	
 robot.parsing.lexer.tokenizer	

 	
 	
 robot.parsing.lexer.tokens	

 	
 	
 robot.parsing.model	

 	
 	
 robot.parsing.model.blocks	

 	
 	
 robot.parsing.model.statements	

 	
 	
 robot.parsing.model.visitor	

 	
 	
 robot.parsing.parser	

 	
 	
 robot.parsing.parser.blockparsers	

 	
 	
 robot.parsing.parser.fileparser	

 	
 	
 robot.parsing.parser.parser	

 	
 	
 robot.parsing.suitestructure	

 	
 	
 robot.pythonpathsetter	

 	
 	
 robot.rebot	

 	
 	
 robot.reporting	

 	
 	
 robot.reporting.expandkeywordmatcher	

 	
 	
 robot.reporting.jsbuildingcontext	

 	
 	
 robot.reporting.jsexecutionresult	

 	
 	
 robot.reporting.jsmodelbuilders	

 	
 	
 robot.reporting.jswriter	

 	
 	
 robot.reporting.logreportwriters	

 	
 	
 robot.reporting.outputwriter	

 	
 	
 robot.reporting.resultwriter	

 	
 	
 robot.reporting.stringcache	

 	
 	
 robot.reporting.xunitwriter	

 	
 	
 robot.result	

 	
 	
 robot.result.configurer	

 	
 	
 robot.result.executionerrors	

 	
 	
 robot.result.executionresult	

 	
 	
 robot.result.flattenkeywordmatcher	

 	
 	
 robot.result.keywordremover	

 	
 	
 robot.result.merger	

 	
 	
 robot.result.messagefilter	

 	
 	
 robot.result.model	

 	
 	
 robot.result.resultbuilder	

 	
 	
 robot.result.suiteteardownfailed	

 	
 	
 robot.result.visitor	

 	
 	
 robot.result.xmlelementhandlers	

 	
 	
 robot.run	

 	
 	
 robot.running	

 	
 	
 robot.running.arguments	

 	
 	
 robot.running.arguments.argumentconverter	

 	
 	
 robot.running.arguments.argumentmapper	

 	
 	
 robot.running.arguments.argumentparser	

 	
 	
 robot.running.arguments.argumentresolver	

 	
 	
 robot.running.arguments.argumentspec	

 	
 	
 robot.running.arguments.argumentvalidator	

 	
 	
 robot.running.arguments.embedded	

 	
 	
 robot.running.arguments.typeconverters	

 	
 	
 robot.running.arguments.typevalidator	

 	
 	
 robot.running.builder	

 	
 	
 robot.running.builder.builders	

 	
 	
 robot.running.builder.parsers	

 	
 	
 robot.running.builder.testsettings	

 	
 	
 robot.running.builder.transformers	

 	
 	
 robot.running.context	

 	
 	
 robot.running.dynamicmethods	

 	
 	
 robot.running.handlers	

 	
 	
 robot.running.handlerstore	

 	
 	
 robot.running.importer	

 	
 	
 robot.running.librarykeywordrunner	

 	
 	
 robot.running.libraryscopes	

 	
 	
 robot.running.model	

 	
 	
 robot.running.namespace	

 	
 	
 robot.running.outputcapture	

 	
 	
 robot.running.randomizer	

 	
 	
 robot.running.runkwregister	

 	
 	
 robot.running.runner	

 	
 	
 robot.running.signalhandler	

 	
 	
 robot.running.status	

 	
 	
 robot.running.statusreporter	

 	
 	
 robot.running.steprunner	

 	
 	
 robot.running.testlibraries	

 	
 	
 robot.running.timeouts	

 	
 	
 robot.running.timeouts.posix	

 	
 	
 robot.running.timeouts.windows	

 	
 	
 robot.running.usererrorhandler	

 	
 	
 robot.running.userkeyword	

 	
 	
 robot.running.userkeywordrunner	

 	
 	
 robot.testdoc	

 	
 	
 robot.tidy	

 	
 	
 robot.tidypkg	

 	
 	
 robot.tidypkg.transformers	

 	
 	
 robot.utils	

 	
 	
 robot.utils.application	

 	
 	
 robot.utils.argumentparser	

 	
 	
 robot.utils.asserts	

 	
 	
 robot.utils.charwidth	

 	
 	
 robot.utils.compat	

 	
 	
 robot.utils.compress	

 	
 	
 robot.utils.connectioncache	

 	
 	
 robot.utils.dotdict	

 	
 	
 robot.utils.encoding	

 	
 	
 robot.utils.encodingsniffer	

 	
 	
 robot.utils.error	

 	
 	
 robot.utils.escaping	

 	
 	
 robot.utils.etreewrapper	

 	
 	
 robot.utils.filereader	

 	
 	
 robot.utils.frange	

 	
 	
 robot.utils.htmlformatters	

 	
 	
 robot.utils.importer	

 	
 	
 robot.utils.markuputils	

 	
 	
 robot.utils.markupwriters	

 	
 	
 robot.utils.match	

 	
 	
 robot.utils.misc	

 	
 	
 robot.utils.normalizing	

 	
 	
 robot.utils.platform	

 	
 	
 robot.utils.recommendations	

 	
 	
 robot.utils.restreader	

 	
 	
 robot.utils.robotenv	

 	
 	
 robot.utils.robotinspect	

 	
 	
 robot.utils.robotio	

 	
 	
 robot.utils.robotpath	

 	
 	
 robot.utils.robottime	

 	
 	
 robot.utils.robottypes	

 	
 	
 robot.utils.robottypes2	

 	
 	
 robot.utils.setter	

 	
 	
 robot.utils.sortable	

 	
 	
 robot.utils.text	

 	
 	
 robot.utils.unic	

 	
 	
 robot.variables	

 	
 	
 robot.variables.assigner	

 	
 	
 robot.variables.evaluation	

 	
 	
 robot.variables.filesetter	

 	
 	
 robot.variables.finders	

 	
 	
 robot.variables.notfound	

 	
 	
 robot.variables.replacer	

 	
 	
 robot.variables.scopes	

 	
 	
 robot.variables.search	

 	
 	
 robot.variables.store	

 	
 	
 robot.variables.tablesetter	

 	
 	
 robot.variables.variables	

 	
 	
 robot.version	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y

A

 	
 	abc (robot.running.arguments.typeconverters.BooleanConverter attribute)

 	(robot.running.arguments.typeconverters.ByteArrayConverter attribute)

 	(robot.running.arguments.typeconverters.BytesConverter attribute)

 	(robot.running.arguments.typeconverters.DateConverter attribute)

 	(robot.running.arguments.typeconverters.DateTimeConverter attribute)

 	(robot.running.arguments.typeconverters.DecimalConverter attribute)

 	(robot.running.arguments.typeconverters.DictionaryConverter attribute)

 	(robot.running.arguments.typeconverters.EnumConverter attribute)

 	(robot.running.arguments.typeconverters.FloatConverter attribute)

 	(robot.running.arguments.typeconverters.FrozenSetConverter attribute)

 	(robot.running.arguments.typeconverters.IntegerConverter attribute)

 	(robot.running.arguments.typeconverters.ListConverter attribute)

 	(robot.running.arguments.typeconverters.NoneConverter attribute)

 	(robot.running.arguments.typeconverters.SetConverter attribute)

 	(robot.running.arguments.typeconverters.TimeDeltaConverter attribute)

 	(robot.running.arguments.typeconverters.TupleConverter attribute)

 	(robot.running.arguments.typeconverters.TypeConverter attribute)

 	abspath() (in module robot.utils.robotpath)

 	AbstractLogger (class in robot.output.loggerhelper)

 	AbstractLoggerProxy (class in robot.output.loggerhelper)

 	accept_gzip_encoding (robot.libraries.Remote.TimeoutHTTPSTransport attribute)

 	(robot.libraries.Remote.TimeoutHTTPTransport attribute)

 	accepts_more() (robot.parsing.lexer.blocklexers.BlockLexer method)

 	(robot.parsing.lexer.blocklexers.CommentSectionLexer method)

 	(robot.parsing.lexer.blocklexers.ErrorSectionLexer method)

 	(robot.parsing.lexer.blocklexers.FileLexer method)

 	(robot.parsing.lexer.blocklexers.ForLoopLexer method)

 	(robot.parsing.lexer.blocklexers.ImplicitCommentSectionLexer method)

 	(robot.parsing.lexer.blocklexers.KeywordLexer method)

 	(robot.parsing.lexer.blocklexers.KeywordSectionLexer method)

 	(robot.parsing.lexer.blocklexers.SectionLexer method)

 	(robot.parsing.lexer.blocklexers.SettingSectionLexer method)

 	(robot.parsing.lexer.blocklexers.TestCaseLexer method)

 	(robot.parsing.lexer.blocklexers.TestCaseSectionLexer method)

 	(robot.parsing.lexer.blocklexers.TestOrKeywordLexer method)

 	(robot.parsing.lexer.blocklexers.VariableSectionLexer method)

 	(robot.parsing.lexer.statementlexers.CommentLexer method)

 	(robot.parsing.lexer.statementlexers.CommentSectionHeaderLexer method)

 	(robot.parsing.lexer.statementlexers.EndLexer method)

 	(robot.parsing.lexer.statementlexers.ErrorSectionHeaderLexer method)

 	(robot.parsing.lexer.statementlexers.ForLoopHeaderLexer method)

 	(robot.parsing.lexer.statementlexers.KeywordCallLexer method)

 	(robot.parsing.lexer.statementlexers.KeywordSectionHeaderLexer method)

 	(robot.parsing.lexer.statementlexers.Lexer method)

 	(robot.parsing.lexer.statementlexers.SectionHeaderLexer method)

 	(robot.parsing.lexer.statementlexers.SettingLexer method)

 	(robot.parsing.lexer.statementlexers.SettingSectionHeaderLexer method)

 	(robot.parsing.lexer.statementlexers.StatementLexer method)

 	(robot.parsing.lexer.statementlexers.TestCaseSectionHeaderLexer method)

 	(robot.parsing.lexer.statementlexers.TestOrKeywordSettingLexer method)

 	(robot.parsing.lexer.statementlexers.VariableLexer method)

 	(robot.parsing.lexer.statementlexers.VariableSectionHeaderLexer method)

 	acquire() (robot.output.pyloggingconf.RobotHandler method)

 	active (robot.running.timeouts.KeywordTimeout attribute)

 	(robot.running.timeouts.TestTimeout attribute)

 	add() (robot.model.tags.Tags method)

 	(robot.reporting.stringcache.StringCache method)

 	(robot.result.executionerrors.ExecutionErrors method)

 	(robot.running.handlerstore.HandlerStore method)

 	(robot.running.importer.ImportCache method)

 	(robot.utils.htmlformatters.HeaderFormatter method)

 	(robot.utils.htmlformatters.ListFormatter method)

 	(robot.utils.htmlformatters.ParagraphFormatter method)

 	(robot.utils.htmlformatters.PreformattedFormatter method)

 	(robot.utils.htmlformatters.RulerFormatter method)

 	(robot.utils.htmlformatters.TableFormatter method)

 	(robot.variables.store.VariableStore method)

 	add_data() (robot.utils.restreader.RobotDataStorage method)

 	add_element() (robot.libraries.XML.XML method)

 	add_name() (robot.utils.restreader.CaptureRobotData method)

 	add_path() (in module robot.pythonpathsetter)

 	add_result() (robot.result.executionresult.CombinedResult method)

 	add_stat() (robot.model.stats.SuiteStat method)

 	add_tags (robot.model.configurer.SuiteConfigurer attribute)

 	(robot.result.configurer.SuiteConfigurer attribute)

 	add_test() (robot.model.stats.CombinedTagStat method)

 	(robot.model.stats.CriticalTagStat method)

 	(robot.model.stats.Stat method)

 	(robot.model.stats.SuiteStat method)

 	(robot.model.stats.TagStat method)

 	(robot.model.stats.TotalStat method)

 	(robot.model.suitestatistics.SuiteStatisticsBuilder method)

 	(robot.model.tagstatistics.TagStatisticsBuilder method)

 	(robot.model.totalstatistics.TotalStatisticsBuilder method)

 	add_time_to_date() (in module robot.libraries.DateTime)

 	add_time_to_time() (in module robot.libraries.DateTime)

 	addFilter() (robot.output.pyloggingconf.RobotHandler method)

 	after (robot.variables.search.VariableMatch attribute)

 	after() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	after_cancel() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	after_idle() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	alias (robot.parsing.model.statements.LibraryImport attribute)

 	aliases (robot.parsing.lexer.settings.InitFileSettings attribute)

 	(robot.parsing.lexer.settings.KeywordSettings attribute)

 	(robot.parsing.lexer.settings.ResourceFileSettings attribute)

 	(robot.parsing.lexer.settings.Settings attribute)

 	(robot.parsing.lexer.settings.TestCaseFileSettings attribute)

 	(robot.parsing.lexer.settings.TestCaseSettings attribute)

 	(robot.running.arguments.typeconverters.BooleanConverter attribute)

 	(robot.running.arguments.typeconverters.ByteArrayConverter attribute)

 	(robot.running.arguments.typeconverters.BytesConverter attribute)

 	(robot.running.arguments.typeconverters.DateConverter attribute)

 	(robot.running.arguments.typeconverters.DateTimeConverter attribute)

 	(robot.running.arguments.typeconverters.DecimalConverter attribute)

 	(robot.running.arguments.typeconverters.DictionaryConverter attribute)

 	(robot.running.arguments.typeconverters.EnumConverter attribute)

 	(robot.running.arguments.typeconverters.FloatConverter attribute)

 	(robot.running.arguments.typeconverters.FrozenSetConverter attribute)

 	(robot.running.arguments.typeconverters.IntegerConverter attribute)

 	(robot.running.arguments.typeconverters.ListConverter attribute)

 	(robot.running.arguments.typeconverters.NoneConverter attribute)

 	(robot.running.arguments.typeconverters.SetConverter attribute)

 	(robot.running.arguments.typeconverters.TimeDeltaConverter attribute)

 	(robot.running.arguments.typeconverters.TupleConverter attribute)

 	(robot.running.arguments.typeconverters.TypeConverter attribute)

 	
 	align_header() (robot.tidypkg.transformers.ColumnAligner method)

 	align_statement() (robot.tidypkg.transformers.ColumnAligner method)

 	Aligner (class in robot.tidypkg.transformers)

 	all (robot.model.keyword.Keywords attribute)

 	(robot.model.totalstatistics.TotalStatistics attribute)

 	all_tags (robot.libdocpkg.model.LibraryDoc attribute)

 	AllKeywordsRemover (class in robot.result.keywordremover)

 	ALLOW_VARIABLES (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	ALLOWED_TYPES (robot.running.model.Import attribute)

 	also_teardown_message (robot.running.status.ParentMessage attribute)

 	(robot.running.status.SuiteMessage attribute)

 	(robot.running.status.TestMessage attribute)

 	AndTagPattern (class in robot.model.tags)

 	AnsiHighlighter (class in robot.output.console.highlighting)

 	any_timeout_occurred() (robot.running.timeouts.TestTimeout method)

 	append() (robot.model.itemlist.ItemList method)

 	(robot.model.keyword.Keywords method)

 	(robot.model.message.Messages method)

 	(robot.model.testcase.TestCases method)

 	(robot.model.testsuite.TestSuites method)

 	(robot.running.model.Imports method)

 	append_to_environment_variable() (robot.libraries.OperatingSystem.OperatingSystem method)

 	append_to_file() (robot.libraries.OperatingSystem.OperatingSystem method)

 	append_to_list() (robot.libraries.Collections.Collections method)

 	Application (class in robot.utils.application)

 	ArgFileParser (class in robot.utils.argumentparser)

 	ArgLimitValidator (class in robot.utils.argumentparser)

 	args (robot.errors.ContinueForLoop attribute)

 	(robot.errors.DataError attribute)

 	(robot.errors.ExecutionFailed attribute)

 	(robot.errors.ExecutionFailures attribute)

 	(robot.errors.ExecutionPassed attribute)

 	(robot.errors.ExecutionStatus attribute)

 	(robot.errors.ExitForLoop attribute)

 	(robot.errors.FrameworkError attribute)

 	(robot.errors.HandlerExecutionFailed attribute)

 	(robot.errors.Information attribute)

 	(robot.errors.KeywordError attribute)

 	(robot.errors.PassExecution attribute)

 	(robot.errors.RemoteError attribute)

 	(robot.errors.ReturnFromKeyword attribute)

 	(robot.errors.RobotError attribute)

 	(robot.errors.TimeoutError attribute)

 	(robot.errors.UserKeywordExecutionFailed attribute)

 	(robot.errors.VariableError attribute)

 	(robot.libraries.BuiltIn.RobotNotRunningError attribute)

 	(robot.libraries.Telnet.NoMatchError attribute)

 	(robot.model.keyword.Keyword attribute)

 	(robot.parsing.model.statements.Fixture attribute)

 	(robot.parsing.model.statements.KeywordCall attribute)

 	(robot.parsing.model.statements.LibraryImport attribute)

 	(robot.parsing.model.statements.Setup attribute)

 	(robot.parsing.model.statements.SuiteSetup attribute)

 	(robot.parsing.model.statements.SuiteTeardown attribute)

 	(robot.parsing.model.statements.Teardown attribute)

 	(robot.parsing.model.statements.TemplateArguments attribute)

 	(robot.parsing.model.statements.TestSetup attribute)

 	(robot.parsing.model.statements.TestTeardown attribute)

 	(robot.parsing.model.statements.VariablesImport attribute)

 	(robot.result.model.Keyword attribute)

 	(robot.running.model.ForLoop attribute)

 	(robot.running.model.Keyword attribute)

 	ARGUMENT (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	argument_names (robot.running.arguments.argumentspec.ArgumentSpec attribute)

 	ArgumentCoercer (class in robot.libraries.Remote)

 	ArgumentConverter (class in robot.running.arguments.argumentconverter)

 	ArgumentHandler (class in robot.result.xmlelementhandlers)

 	ArgumentMapper (class in robot.running.arguments.argumentmapper)

 	ArgumentParser (class in robot.utils.argumentparser)

 	ArgumentResolver (class in robot.running.arguments.argumentresolver)

 	Arguments (class in robot.parsing.model.statements)

 	ARGUMENTS (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	arguments (robot.running.userkeywordrunner.EmbeddedArgumentsRunner attribute)

 	(robot.running.userkeywordrunner.UserKeywordRunner attribute)

 	ArgumentsHandler (class in robot.result.xmlelementhandlers)

 	ArgumentSpec (class in robot.running.arguments.argumentspec)

 	ArgumentValidator (class in robot.running.arguments.argumentvalidator)

 	(class in robot.tidy)

 	as_dict() (robot.variables.scopes.GlobalVariables method)

 	(robot.variables.scopes.VariableScopes method)

 	(robot.variables.store.VariableStore method)

 	(robot.variables.variables.Variables method)

 	aspect() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	assert_almost_equal() (in module robot.utils.asserts)

 	assert_equal() (in module robot.utils.asserts)

 	assert_false() (in module robot.utils.asserts)

 	assert_has_content() (robot.utils.restreader.CaptureRobotData method)

 	assert_none() (in module robot.utils.asserts)

 	assert_not_almost_equal() (in module robot.utils.asserts)

 	assert_not_equal() (in module robot.utils.asserts)

 	assert_not_none() (in module robot.utils.asserts)

 	assert_raises() (in module robot.utils.asserts)

 	assert_raises_with_msg() (in module robot.utils.asserts)

 	assert_true() (in module robot.utils.asserts)

 	assign (robot.model.keyword.Keyword attribute)

 	ASSIGN (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	assign (robot.parsing.model.statements.KeywordCall attribute)

 	(robot.result.model.Keyword attribute)

 	(robot.running.model.ForLoop attribute)

 	(robot.running.model.Keyword attribute)

 	assign() (robot.variables.assigner.VariableAssigner method)

 	assigner() (robot.variables.assigner.VariableAssignment method)

 	AssignHandler (class in robot.result.xmlelementhandlers)

 	AssignmentValidator (class in robot.variables.assigner)

 	AssignVarHandler (class in robot.result.xmlelementhandlers)

 	attribute_escape() (in module robot.utils.markuputils)

 	attributes() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

B

 	
 	BaseParser (class in robot.running.builder.parsers)

 	bbox() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	before (robot.variables.search.VariableMatch attribute)

 	bell() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	binary (robot.libraries.Remote.ArgumentCoercer attribute)

 	binary_file_writer() (in module robot.utils.robotio)

 	bind() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	bind_all() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	bind_class() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	bindtags() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	bit_length() (robot.reporting.stringcache.StringIndex method)

 	Block (class in robot.parsing.model.blocks)

 	
 	BlockLexer (class in robot.parsing.lexer.blocklexers)

 	BooleanConverter (class in robot.running.arguments.typeconverters)

 	build() (robot.libdocpkg.javabuilder.JavaDocBuilder method)

 	(robot.libdocpkg.robotbuilder.LibraryDocBuilder method)

 	(robot.libdocpkg.robotbuilder.ResourceDocBuilder method)

 	(robot.libdocpkg.specbuilder.SpecDocBuilder method)

 	(robot.parsing.suitestructure.SuiteStructureBuilder method)

 	(robot.reporting.jsmodelbuilders.ErrorMessageBuilder method)

 	(robot.reporting.jsmodelbuilders.ErrorsBuilder method)

 	(robot.reporting.jsmodelbuilders.KeywordBuilder method)

 	(robot.reporting.jsmodelbuilders.MessageBuilder method)

 	(robot.reporting.jsmodelbuilders.StatisticsBuilder method)

 	(robot.reporting.jsmodelbuilders.SuiteBuilder method)

 	(robot.reporting.jsmodelbuilders.TestBuilder method)

 	(robot.result.resultbuilder.ExecutionResultBuilder method)

 	(robot.running.builder.builders.ResourceFileBuilder method)

 	(robot.running.builder.builders.TestSuiteBuilder method)

 	build_from() (robot.reporting.jsmodelbuilders.JsModelBuilder method)

 	build_keyword() (robot.libdocpkg.robotbuilder.KeywordDocBuilder method)

 	build_keywords() (robot.libdocpkg.robotbuilder.KeywordDocBuilder method)

 	build_suite() (robot.running.builder.parsers.RestParser method)

 	(robot.running.builder.parsers.RobotParser method)

 	BuiltIn (class in robot.libraries.BuiltIn)

 	by_method_name() (robot.output.listenerarguments.EndKeywordArguments class method)

 	(robot.output.listenerarguments.EndSuiteArguments class method)

 	(robot.output.listenerarguments.EndTestArguments class method)

 	(robot.output.listenerarguments.ListenerArguments class method)

 	(robot.output.listenerarguments.MessageArguments class method)

 	(robot.output.listenerarguments.StartKeywordArguments class method)

 	(robot.output.listenerarguments.StartSuiteArguments class method)

 	(robot.output.listenerarguments.StartTestArguments class method)

 	ByNameKeywordRemover (class in robot.result.keywordremover)

 	ByPathImporter (class in robot.utils.importer)

 	ByTagKeywordRemover (class in robot.result.keywordremover)

 	ByteArrayConverter (class in robot.running.arguments.typeconverters)

 	BytesConverter (class in robot.running.arguments.typeconverters)

C

 	
 	cache_only (robot.output.logger.Logger attribute)

 	call_method() (robot.libraries.BuiltIn.BuiltIn method)

 	called (robot.output.listenermethods.ListenerMethod attribute)

 	can_continue() (robot.errors.ContinueForLoop method)

 	(robot.errors.ExecutionFailed method)

 	(robot.errors.ExecutionFailures method)

 	(robot.errors.ExecutionPassed method)

 	(robot.errors.ExecutionStatus method)

 	(robot.errors.ExitForLoop method)

 	(robot.errors.HandlerExecutionFailed method)

 	(robot.errors.PassExecution method)

 	(robot.errors.ReturnFromKeyword method)

 	(robot.errors.UserKeywordExecutionFailed method)

 	CaptureRobotData (class in robot.utils.restreader)

 	catenate() (robot.libraries.BuiltIn.BuiltIn method)

 	cget() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	check_expansion() (robot.reporting.jsbuildingcontext.JsBuildingContext method)

 	child() (robot.libraries.XML.Location method)

 	children (robot.model.keyword.Keyword attribute)

 	(robot.result.model.Keyword attribute)

 	(robot.running.model.ForLoop attribute)

 	(robot.running.model.Keyword attribute)

 	ClassDoc() (in module robot.libdocpkg.javabuilder)

 	Cleaner (class in robot.tidypkg.transformers)

 	clear() (robot.model.itemlist.ItemList method)

 	(robot.model.keyword.Keywords method)

 	(robot.model.message.Messages method)

 	(robot.model.metadata.Metadata method)

 	(robot.model.testcase.TestCases method)

 	(robot.model.testsuite.TestSuites method)

 	(robot.running.model.Imports method)

 	(robot.utils.dotdict.DotDict method)

 	(robot.utils.normalizing.NormalizedDict method)

 	(robot.variables.evaluation.EvaluationNamespace method)

 	(robot.variables.scopes.GlobalVariables method)

 	(robot.variables.store.VariableStore method)

 	(robot.variables.variables.Variables method)

 	clear_element() (robot.libraries.XML.XML method)

 	client() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	clipboard_append() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	clipboard_clear() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	clipboard_get() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	close() (robot.libraries.Remote.TimeoutHTTPSTransport method)

 	(robot.libraries.Remote.TimeoutHTTPTransport method)

 	(robot.libraries.Telnet.TelnetConnection method)

 	(robot.output.filelogger.FileLogger method)

 	(robot.output.logger.Logger method)

 	(robot.output.output.Output method)

 	(robot.output.pyloggingconf.RobotHandler method)

 	(robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.utils.application.DefaultLogger method)

 	(robot.utils.markupwriters.HtmlWriter method)

 	(robot.utils.markupwriters.NullMarkupWriter method)

 	(robot.utils.markupwriters.XmlWriter method)

 	close_all() (robot.utils.connectioncache.ConnectionCache method)

 	close_all_connections() (robot.libraries.Telnet.Telnet method)

 	close_connection() (robot.libraries.Telnet.TelnetConnection method)

 	close_global_library_listeners() (robot.running.importer.Importer method)

 	close_streams() (robot.libraries.Process.ExecutionResult method)

 	cmdline2list() (in module robot.utils.argumentparser)

 	coerce() (robot.libraries.Remote.ArgumentCoercer method)

 	col_offset (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	(robot.parsing.model.blocks.Block attribute)

 	(robot.parsing.model.blocks.CommentSection attribute)

 	(robot.parsing.model.blocks.File attribute)

 	(robot.parsing.model.blocks.ForLoop attribute)

 	(robot.parsing.model.blocks.Keyword attribute)

 	(robot.parsing.model.blocks.KeywordSection attribute)

 	(robot.parsing.model.blocks.Section attribute)

 	(robot.parsing.model.blocks.SettingSection attribute)

 	(robot.parsing.model.blocks.TestCase attribute)

 	(robot.parsing.model.blocks.TestCaseSection attribute)

 	(robot.parsing.model.blocks.VariableSection attribute)

 	(robot.parsing.model.statements.Arguments attribute)

 	(robot.parsing.model.statements.Comment attribute)

 	(robot.parsing.model.statements.CommentSectionHeader attribute)

 	(robot.parsing.model.statements.DefaultTags attribute)

 	(robot.parsing.model.statements.Documentation attribute)

 	(robot.parsing.model.statements.DocumentationOrMetadata attribute)

 	(robot.parsing.model.statements.EmptyLine attribute)

 	(robot.parsing.model.statements.End attribute)

 	(robot.parsing.model.statements.Error attribute)

 	(robot.parsing.model.statements.Fixture attribute)

 	(robot.parsing.model.statements.ForLoopHeader attribute)

 	(robot.parsing.model.statements.ForceTags attribute)

 	(robot.parsing.model.statements.KeywordCall attribute)

 	(robot.parsing.model.statements.KeywordName attribute)

 	(robot.parsing.model.statements.KeywordSectionHeader attribute)

 	(robot.parsing.model.statements.LibraryImport attribute)

 	(robot.parsing.model.statements.Metadata attribute)

 	(robot.parsing.model.statements.MultiValue attribute)

 	(robot.parsing.model.statements.ResourceImport attribute)

 	(robot.parsing.model.statements.Return attribute)

 	(robot.parsing.model.statements.SectionHeader attribute)

 	(robot.parsing.model.statements.SettingSectionHeader attribute)

 	(robot.parsing.model.statements.Setup attribute)

 	(robot.parsing.model.statements.SingleValue attribute)

 	(robot.parsing.model.statements.Statement attribute)

 	(robot.parsing.model.statements.SuiteSetup attribute)

 	(robot.parsing.model.statements.SuiteTeardown attribute)

 	(robot.parsing.model.statements.Tags attribute)

 	(robot.parsing.model.statements.Teardown attribute)

 	(robot.parsing.model.statements.Template attribute)

 	(robot.parsing.model.statements.TemplateArguments attribute)

 	(robot.parsing.model.statements.TestCaseName attribute)

 	(robot.parsing.model.statements.TestCaseSectionHeader attribute)

 	(robot.parsing.model.statements.TestSetup attribute)

 	(robot.parsing.model.statements.TestTeardown attribute)

 	(robot.parsing.model.statements.TestTemplate attribute)

 	(robot.parsing.model.statements.TestTimeout attribute)

 	(robot.parsing.model.statements.Timeout attribute)

 	(robot.parsing.model.statements.Variable attribute)

 	(robot.parsing.model.statements.VariableSectionHeader attribute)

 	(robot.parsing.model.statements.VariablesImport attribute)

 	Collections (class in robot.libraries.Collections)

 	colormapwindows() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	colormodel() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	ColumnAligner (class in robot.tidypkg.transformers)

 	columnconfigure() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	ColumnWidthCounter (class in robot.tidypkg.transformers)

 	combine_lists() (robot.libraries.Collections.Collections method)

 	combined (robot.model.stats.TagStat attribute)

 	(robot.model.tagstatistics.TagStatistics attribute)

 	CombinedResult (class in robot.result.executionresult)

 	CombinedTagStat (class in robot.model.stats)

 	command() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	Comment (class in robot.parsing.model.statements)

 	COMMENT (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	comment() (robot.libraries.BuiltIn.BuiltIn method)

 	(robot.parsing.lexer.sections.InitFileSections method)

 	(robot.parsing.lexer.sections.ResourceFileSections method)

 	(robot.parsing.lexer.sections.Sections method)

 	(robot.parsing.lexer.sections.TestCaseFileSections method)

 	COMMENT_HEADER (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	comment_markers (robot.parsing.lexer.sections.InitFileSections attribute)

 	(robot.parsing.lexer.sections.ResourceFileSections attribute)

 	(robot.parsing.lexer.sections.Sections attribute)

 	(robot.parsing.lexer.sections.TestCaseFileSections attribute)

 	comment_section() (robot.parsing.lexer.context.FileContext method)

 	(robot.parsing.lexer.context.InitFileContext method)

 	(robot.parsing.lexer.context.ResourceFileContext method)

 	(robot.parsing.lexer.context.TestCaseFileContext method)

 	CommentLexer (class in robot.parsing.lexer.statementlexers)

 	CommentSection (class in robot.parsing.model.blocks)

 	CommentSectionHeader (class in robot.parsing.model.statements)

 	CommentSectionHeaderLexer (class in robot.parsing.lexer.statementlexers)

 	CommentSectionLexer (class in robot.parsing.lexer.blocklexers)

 	CommentSectionParser (class in robot.parsing.parser.fileparser)

 	compare() (robot.libraries.XML.ElementComparator method)

 	compress_text() (in module robot.utils.compress)

 	config() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	
 	configure() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	(robot.model.testsuite.TestSuite method)

 	(robot.result.executionresult.CombinedResult method)

 	(robot.result.executionresult.Result method)

 	(robot.result.model.TestSuite method)

 	(robot.running.model.TestSuite method)

 	conjugate() (robot.reporting.stringcache.StringIndex method)

 	ConnectionCache (class in robot.utils.connectioncache)

 	console() (in module robot.api.logger)

 	(in module robot.output.librarylogger)

 	(robot.libdoc.LibDoc method)

 	(robot.rebot.Rebot method)

 	(robot.run.RobotFramework method)

 	(robot.testdoc.TestDoc method)

 	(robot.tidy.TidyCommandLine method)

 	(robot.utils.application.Application method)

 	console_colors (robot.conf.settings.RebotSettings attribute)

 	(robot.conf.settings.RobotSettings attribute)

 	console_decode() (in module robot.utils.encoding)

 	console_encode() (in module robot.utils.encoding)

 	console_markers (robot.conf.settings.RobotSettings attribute)

 	console_output_config (robot.conf.settings.RebotSettings attribute)

 	(robot.conf.settings.RobotSettings attribute)

 	console_type (robot.conf.settings.RobotSettings attribute)

 	console_width (robot.conf.settings.RobotSettings attribute)

 	ConsoleOutput() (in module robot.output.console)

 	ConsoleViewer (class in robot.libdocpkg.consoleviewer)

 	contains_var() (in module robot.variables)

 	contains_variable() (in module robot.variables.search)

 	content() (robot.utils.markupwriters.HtmlWriter method)

 	(robot.utils.markupwriters.NullMarkupWriter method)

 	(robot.utils.markupwriters.XmlWriter method)

 	CONTINUATION (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	continue_for_loop() (robot.libraries.BuiltIn.BuiltIn method)

 	continue_for_loop_if() (robot.libraries.BuiltIn.BuiltIn method)

 	continue_on_failure (robot.errors.ContinueForLoop attribute)

 	(robot.errors.ExecutionFailed attribute)

 	(robot.errors.ExecutionFailures attribute)

 	(robot.errors.ExecutionPassed attribute)

 	(robot.errors.ExecutionStatus attribute)

 	(robot.errors.ExitForLoop attribute)

 	(robot.errors.HandlerExecutionFailed attribute)

 	(robot.errors.PassExecution attribute)

 	(robot.errors.ReturnFromKeyword attribute)

 	(robot.errors.UserKeywordExecutionFailed attribute)

 	ContinueForLoop

 	convert() (robot.libdocpkg.htmlwriter.JsonConverter method)

 	(robot.running.arguments.argumentconverter.ArgumentConverter method)

 	(robot.running.arguments.typeconverters.BooleanConverter method)

 	(robot.running.arguments.typeconverters.ByteArrayConverter method)

 	(robot.running.arguments.typeconverters.BytesConverter method)

 	(robot.running.arguments.typeconverters.DateConverter method)

 	(robot.running.arguments.typeconverters.DateTimeConverter method)

 	(robot.running.arguments.typeconverters.DecimalConverter method)

 	(robot.running.arguments.typeconverters.DictionaryConverter method)

 	(robot.running.arguments.typeconverters.EnumConverter method)

 	(robot.running.arguments.typeconverters.FloatConverter method)

 	(robot.running.arguments.typeconverters.FrozenSetConverter method)

 	(robot.running.arguments.typeconverters.IntegerConverter method)

 	(robot.running.arguments.typeconverters.ListConverter method)

 	(robot.running.arguments.typeconverters.NoneConverter method)

 	(robot.running.arguments.typeconverters.SetConverter method)

 	(robot.running.arguments.typeconverters.TimeDeltaConverter method)

 	(robot.running.arguments.typeconverters.TupleConverter method)

 	(robot.running.arguments.typeconverters.TypeConverter method)

 	(robot.testdoc.JsonConverter method)

 	convert_date() (in module robot.libraries.DateTime)

 	convert_none (robot.running.arguments.typeconverters.BooleanConverter attribute)

 	(robot.running.arguments.typeconverters.ByteArrayConverter attribute)

 	(robot.running.arguments.typeconverters.BytesConverter attribute)

 	(robot.running.arguments.typeconverters.DateConverter attribute)

 	(robot.running.arguments.typeconverters.DateTimeConverter attribute)

 	(robot.running.arguments.typeconverters.DecimalConverter attribute)

 	(robot.running.arguments.typeconverters.DictionaryConverter attribute)

 	(robot.running.arguments.typeconverters.EnumConverter attribute)

 	(robot.running.arguments.typeconverters.FloatConverter attribute)

 	(robot.running.arguments.typeconverters.FrozenSetConverter attribute)

 	(robot.running.arguments.typeconverters.IntegerConverter attribute)

 	(robot.running.arguments.typeconverters.ListConverter attribute)

 	(robot.running.arguments.typeconverters.NoneConverter attribute)

 	(robot.running.arguments.typeconverters.SetConverter attribute)

 	(robot.running.arguments.typeconverters.TimeDeltaConverter attribute)

 	(robot.running.arguments.typeconverters.TupleConverter attribute)

 	(robot.running.arguments.typeconverters.TypeConverter attribute)

 	convert_time() (in module robot.libraries.DateTime)

 	convert_to_binary() (robot.libraries.BuiltIn.BuiltIn method)

 	convert_to_boolean() (robot.libraries.BuiltIn.BuiltIn method)

 	convert_to_bytes() (robot.libraries.BuiltIn.BuiltIn method)

 	convert_to_dictionary() (robot.libraries.Collections.Collections method)

 	convert_to_hex() (robot.libraries.BuiltIn.BuiltIn method)

 	convert_to_integer() (robot.libraries.BuiltIn.BuiltIn method)

 	convert_to_list() (robot.libraries.Collections.Collections method)

 	convert_to_lower_case() (robot.libraries.String.String method)

 	convert_to_number() (robot.libraries.BuiltIn.BuiltIn method)

 	convert_to_octal() (robot.libraries.BuiltIn.BuiltIn method)

 	convert_to_string() (robot.libraries.BuiltIn.BuiltIn method)

 	convert_to_title_case() (robot.libraries.String.String method)

 	convert_to_upper_case() (robot.libraries.String.String method)

 	convert_type_list_to_dict() (robot.running.arguments.typevalidator.TypeValidator method)

 	converter_for() (robot.running.arguments.typeconverters.BooleanConverter class method)

 	(robot.running.arguments.typeconverters.ByteArrayConverter class method)

 	(robot.running.arguments.typeconverters.BytesConverter class method)

 	(robot.running.arguments.typeconverters.DateConverter class method)

 	(robot.running.arguments.typeconverters.DateTimeConverter class method)

 	(robot.running.arguments.typeconverters.DecimalConverter class method)

 	(robot.running.arguments.typeconverters.DictionaryConverter class method)

 	(robot.running.arguments.typeconverters.EnumConverter class method)

 	(robot.running.arguments.typeconverters.FloatConverter class method)

 	(robot.running.arguments.typeconverters.FrozenSetConverter class method)

 	(robot.running.arguments.typeconverters.IntegerConverter class method)

 	(robot.running.arguments.typeconverters.ListConverter class method)

 	(robot.running.arguments.typeconverters.NoneConverter class method)

 	(robot.running.arguments.typeconverters.SetConverter class method)

 	(robot.running.arguments.typeconverters.TimeDeltaConverter class method)

 	(robot.running.arguments.typeconverters.TupleConverter class method)

 	(robot.running.arguments.typeconverters.TypeConverter class method)

 	copy() (robot.model.keyword.Keyword method)

 	(robot.model.message.Message method)

 	(robot.model.metadata.Metadata method)

 	(robot.model.modelobject.ModelObject method)

 	(robot.model.testcase.TestCase method)

 	(robot.model.testsuite.TestSuite method)

 	(robot.output.loggerhelper.Message method)

 	(robot.result.model.Keyword method)

 	(robot.result.model.Message method)

 	(robot.result.model.TestCase method)

 	(robot.result.model.TestSuite method)

 	(robot.running.model.ForLoop method)

 	(robot.running.model.Keyword method)

 	(robot.running.model.TestCase method)

 	(robot.running.model.TestSuite method)

 	(robot.utils.dotdict.DotDict method)

 	(robot.utils.normalizing.NormalizedDict method)

 	(robot.variables.scopes.GlobalVariables method)

 	(robot.variables.variables.Variables method)

 	copy_dictionary() (robot.libraries.Collections.Collections method)

 	copy_directory() (robot.libraries.OperatingSystem.OperatingSystem method)

 	copy_element() (robot.libraries.XML.XML method)

 	copy_file() (robot.libraries.OperatingSystem.OperatingSystem method)

 	copy_files() (robot.libraries.OperatingSystem.OperatingSystem method)

 	copy_list() (robot.libraries.Collections.Collections method)

 	count() (robot.model.itemlist.ItemList method)

 	(robot.model.keyword.Keywords method)

 	(robot.model.message.Messages method)

 	(robot.model.testcase.TestCases method)

 	(robot.model.testsuite.TestSuites method)

 	(robot.running.model.Imports method)

 	count_directories_in_directory() (robot.libraries.OperatingSystem.OperatingSystem method)

 	count_files_in_directory() (robot.libraries.OperatingSystem.OperatingSystem method)

 	count_items_in_directory() (robot.libraries.OperatingSystem.OperatingSystem method)

 	count_values_in_list() (robot.libraries.Collections.Collections method)

 	create() (robot.model.itemlist.ItemList method)

 	(robot.model.keyword.Keywords method)

 	(robot.model.message.Messages method)

 	(robot.model.testcase.TestCases method)

 	(robot.model.testsuite.TestSuites method)

 	(robot.running.model.Imports method)

 	create_binary_file() (robot.libraries.OperatingSystem.OperatingSystem method)

 	create_destination_directory() (in module robot.utils.robotio)

 	create_dictionary() (robot.libraries.BuiltIn.BuiltIn method)

 	create_directory() (robot.libraries.OperatingSystem.OperatingSystem method)

 	create_file() (robot.libraries.OperatingSystem.OperatingSystem method)

 	create_link_target() (robot.reporting.jsbuildingcontext.JsBuildingContext method)

 	create_list() (robot.libraries.BuiltIn.BuiltIn method)

 	create_runner() (robot.running.handlers.EmbeddedArgumentsHandler method)

 	(robot.running.handlerstore.HandlerStore method)

 	(robot.running.usererrorhandler.UserErrorHandler method)

 	(robot.running.userkeyword.EmbeddedArgumentsHandler method)

 	(robot.running.userkeyword.UserKeywordHandler method)

 	create_setup() (robot.model.keyword.Keywords method)

 	create_teardown() (robot.model.keyword.Keywords method)

 	createLock() (robot.output.pyloggingconf.RobotHandler method)

 	critical (robot.model.stats.TagStat attribute)

 	(robot.model.tagstatistics.TagStatistics attribute)

 	(robot.result.model.TestCase attribute)

 	critical_failure_occurred() (robot.running.status.SuiteStatus method)

 	(robot.running.status.TestStatus method)

 	critical_tags (robot.conf.settings.RebotSettings attribute)

 	(robot.conf.settings.RobotSettings attribute)

 	Criticality (class in robot.model.criticality)

 	criticality (robot.result.model.TestSuite attribute)

 	CriticalTagStat (class in robot.model.stats)

 	CssFileWriter (class in robot.htmldata.htmlfilewriter)

 	current (robot.model.suitestatistics.SuiteStatisticsBuilder attribute)

 	(robot.running.context.ExecutionContexts attribute)

 	(robot.utils.connectioncache.ConnectionCache attribute)

 	(robot.variables.scopes.VariableScopes attribute)

 	current_index (robot.utils.connectioncache.ConnectionCache attribute)

 	current_output (robot.libraries.Telnet.TerminalEmulator attribute)

 	cut_long_message() (in module robot.utils.text)

D

 	
 	data_tokens (robot.parsing.model.statements.Arguments attribute)

 	(robot.parsing.model.statements.Comment attribute)

 	(robot.parsing.model.statements.CommentSectionHeader attribute)

 	(robot.parsing.model.statements.DefaultTags attribute)

 	(robot.parsing.model.statements.Documentation attribute)

 	(robot.parsing.model.statements.DocumentationOrMetadata attribute)

 	(robot.parsing.model.statements.EmptyLine attribute)

 	(robot.parsing.model.statements.End attribute)

 	(robot.parsing.model.statements.Error attribute)

 	(robot.parsing.model.statements.Fixture attribute)

 	(robot.parsing.model.statements.ForLoopHeader attribute)

 	(robot.parsing.model.statements.ForceTags attribute)

 	(robot.parsing.model.statements.KeywordCall attribute)

 	(robot.parsing.model.statements.KeywordName attribute)

 	(robot.parsing.model.statements.KeywordSectionHeader attribute)

 	(robot.parsing.model.statements.LibraryImport attribute)

 	(robot.parsing.model.statements.Metadata attribute)

 	(robot.parsing.model.statements.MultiValue attribute)

 	(robot.parsing.model.statements.ResourceImport attribute)

 	(robot.parsing.model.statements.Return attribute)

 	(robot.parsing.model.statements.SectionHeader attribute)

 	(robot.parsing.model.statements.SettingSectionHeader attribute)

 	(robot.parsing.model.statements.Setup attribute)

 	(robot.parsing.model.statements.SingleValue attribute)

 	(robot.parsing.model.statements.Statement attribute)

 	(robot.parsing.model.statements.SuiteSetup attribute)

 	(robot.parsing.model.statements.SuiteTeardown attribute)

 	(robot.parsing.model.statements.Tags attribute)

 	(robot.parsing.model.statements.Teardown attribute)

 	(robot.parsing.model.statements.Template attribute)

 	(robot.parsing.model.statements.TemplateArguments attribute)

 	(robot.parsing.model.statements.TestCaseName attribute)

 	(robot.parsing.model.statements.TestCaseSectionHeader attribute)

 	(robot.parsing.model.statements.TestSetup attribute)

 	(robot.parsing.model.statements.TestTeardown attribute)

 	(robot.parsing.model.statements.TestTemplate attribute)

 	(robot.parsing.model.statements.TestTimeout attribute)

 	(robot.parsing.model.statements.Timeout attribute)

 	(robot.parsing.model.statements.Variable attribute)

 	(robot.parsing.model.statements.VariableSectionHeader attribute)

 	(robot.parsing.model.statements.VariablesImport attribute)

 	DataError

 	DateConverter (class in robot.running.arguments.typeconverters)

 	DateTimeConverter (class in robot.running.arguments.typeconverters)

 	debug() (in module robot.api.logger)

 	(in module robot.output.librarylogger)

 	(robot.output.filelogger.FileLogger method)

 	(robot.output.logger.Logger method)

 	(robot.output.loggerhelper.AbstractLogger method)

 	(robot.output.output.Output method)

 	(robot.utils.restreader.CaptureRobotData method)

 	debug_file (robot.conf.settings.RobotSettings attribute)

 	DebugFile() (in module robot.output.debugfile)

 	DecimalConverter (class in robot.running.arguments.typeconverters)

 	decode_bytes_to_string() (robot.libraries.String.String method)

 	deepcopy() (robot.model.keyword.Keyword method)

 	(robot.model.message.Message method)

 	(robot.model.modelobject.ModelObject method)

 	(robot.model.testcase.TestCase method)

 	(robot.model.testsuite.TestSuite method)

 	(robot.output.loggerhelper.Message method)

 	(robot.result.model.Keyword method)

 	(robot.result.model.Message method)

 	(robot.result.model.TestCase method)

 	(robot.result.model.TestSuite method)

 	(robot.running.model.ForLoop method)

 	(robot.running.model.Keyword method)

 	(robot.running.model.TestCase method)

 	(robot.running.model.TestSuite method)

 	DEFAULT_TAGS (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	DefaultLogger (class in robot.utils.application)

 	DefaultTags (class in robot.parsing.model.statements)

 	DefaultValue (class in robot.running.arguments.argumentmapper)

 	deiconify() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	del_env_var() (in module robot.utils.robotenv)

 	delayed_logging (robot.output.logger.Logger attribute)

 	deletecommand() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	
 	denominator (robot.reporting.stringcache.StringIndex attribute)

 	deprecated (robot.libdocpkg.model.KeywordDoc attribute)

 	destroy() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	DictDumper (class in robot.htmldata.jsonwriter)

 	dictionaries_should_be_equal() (robot.libraries.Collections.Collections method)

 	dictionary_should_contain_item() (robot.libraries.Collections.Collections method)

 	dictionary_should_contain_key() (robot.libraries.Collections.Collections method)

 	dictionary_should_contain_sub_dictionary() (robot.libraries.Collections.Collections method)

 	dictionary_should_contain_value() (robot.libraries.Collections.Collections method)

 	dictionary_should_not_contain_key() (robot.libraries.Collections.Collections method)

 	dictionary_should_not_contain_value() (robot.libraries.Collections.Collections method)

 	DictionaryConverter (class in robot.running.arguments.typeconverters)

 	DictToKwargs (class in robot.running.arguments.argumentresolver)

 	DictVariableTableValue (class in robot.variables.tablesetter)

 	directive_error() (robot.utils.restreader.CaptureRobotData method)

 	directory (robot.running.model.Import attribute)

 	directory() (robot.tidy.Tidy method)

 	directory_should_be_empty() (robot.libraries.OperatingSystem.OperatingSystem method)

 	directory_should_exist() (robot.libraries.OperatingSystem.OperatingSystem method)

 	directory_should_not_be_empty() (robot.libraries.OperatingSystem.OperatingSystem method)

 	directory_should_not_exist() (robot.libraries.OperatingSystem.OperatingSystem method)

 	disable_library_import_logging() (robot.output.logger.Logger method)

 	disable_message_cache() (robot.output.logger.Logger method)

 	discard_suite_scope() (robot.output.listenermethods.LibraryListenerMethods method)

 	(robot.output.listeners.LibraryListeners method)

 	doc (robot.libdocpkg.model.LibraryDoc attribute)

 	(robot.model.keyword.Keyword attribute)

 	(robot.model.stats.TagStat attribute)

 	(robot.model.testcase.TestCase attribute)

 	(robot.model.testsuite.TestSuite attribute)

 	(robot.result.model.Keyword attribute)

 	(robot.result.model.TestCase attribute)

 	(robot.result.model.TestSuite attribute)

 	(robot.running.model.ForLoop attribute)

 	(robot.running.model.Keyword attribute)

 	(robot.running.model.TestCase attribute)

 	(robot.running.model.TestSuite attribute)

 	(robot.running.usererrorhandler.UserErrorHandler attribute)

 	doc_format (robot.libdocpkg.model.LibraryDoc attribute)

 	DocFormatter (class in robot.libdocpkg.htmlwriter)

 	(class in robot.libdocpkg.xmlwriter)

 	DocHandler (class in robot.result.xmlelementhandlers)

 	DocToHtml (class in robot.libdocpkg.htmlwriter)

 	Documentation (class in robot.parsing.model.statements)

 	DOCUMENTATION (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	DocumentationBuilder() (in module robot.libdocpkg.builder)

 	DocumentationOrMetadata (class in robot.parsing.model.statements)

 	dont_continue (robot.errors.ContinueForLoop attribute)

 	(robot.errors.ExecutionFailed attribute)

 	(robot.errors.ExecutionFailures attribute)

 	(robot.errors.ExecutionPassed attribute)

 	(robot.errors.ExecutionStatus attribute)

 	(robot.errors.ExitForLoop attribute)

 	(robot.errors.HandlerExecutionFailed attribute)

 	(robot.errors.PassExecution attribute)

 	(robot.errors.ReturnFromKeyword attribute)

 	(robot.errors.UserKeywordExecutionFailed attribute)

 	DosHighlighter (class in robot.output.console.highlighting)

 	DotDict (class in robot.utils.dotdict)

 	DottedImporter (class in robot.utils.importer)

 	DottedOutput (class in robot.output.console.dotted)

 	dry_run (robot.conf.settings.RobotSettings attribute)

 	dry_run() (robot.running.librarykeywordrunner.EmbeddedArgumentsRunner method)

 	(robot.running.librarykeywordrunner.LibraryKeywordRunner method)

 	(robot.running.librarykeywordrunner.RunKeywordRunner method)

 	(robot.running.usererrorhandler.UserErrorHandler method)

 	(robot.running.userkeywordrunner.EmbeddedArgumentsRunner method)

 	(robot.running.userkeywordrunner.UserKeywordRunner method)

 	dump() (robot.htmldata.jsonwriter.DictDumper method)

 	(robot.htmldata.jsonwriter.IntegerDumper method)

 	(robot.htmldata.jsonwriter.JsonDumper method)

 	(robot.htmldata.jsonwriter.MappingDumper method)

 	(robot.htmldata.jsonwriter.NoneDumper method)

 	(robot.htmldata.jsonwriter.StringDumper method)

 	(robot.htmldata.jsonwriter.TupleListDumper method)

 	(robot.reporting.stringcache.StringCache method)

 	DynamicArgumentParser (class in robot.running.arguments.argumentparser)

 	DynamicHandler() (in module robot.running.handlers)

E

 	
 	earlier_failures (robot.errors.ContinueForLoop attribute)

 	(robot.errors.ExecutionPassed attribute)

 	(robot.errors.ExitForLoop attribute)

 	(robot.errors.PassExecution attribute)

 	(robot.errors.ReturnFromKeyword attribute)

 	elapsed (robot.model.stats.Stat attribute)

 	(robot.model.stats.SuiteStat attribute)

 	elapsed_time_to_string() (in module robot.utils.robottime)

 	elapsedtime (robot.result.model.Keyword attribute)

 	(robot.result.model.TestCase attribute)

 	(robot.result.model.TestSuite attribute)

 	element() (robot.utils.markupwriters.HtmlWriter method)

 	(robot.utils.markupwriters.NullMarkupWriter method)

 	(robot.utils.markupwriters.XmlWriter method)

 	element_attribute_should_be() (robot.libraries.XML.XML method)

 	element_attribute_should_match() (robot.libraries.XML.XML method)

 	element_should_exist() (robot.libraries.XML.XML method)

 	element_should_not_exist() (robot.libraries.XML.XML method)

 	element_should_not_have_attribute() (robot.libraries.XML.XML method)

 	element_text_should_be() (robot.libraries.XML.XML method)

 	element_text_should_match() (robot.libraries.XML.XML method)

 	element_to_string() (robot.libraries.XML.XML method)

 	ElementComparator (class in robot.libraries.XML)

 	ElementFinder (class in robot.libraries.XML)

 	elements_should_be_equal() (robot.libraries.XML.XML method)

 	elements_should_match() (robot.libraries.XML.XML method)

 	EmbeddedArgumentParser (class in robot.running.arguments.embedded)

 	EmbeddedArguments (class in robot.running.arguments.embedded)

 	EmbeddedArgumentsHandler (class in robot.running.handlers)

 	(class in robot.running.userkeyword)

 	EmbeddedArgumentsRunner (class in robot.running.librarykeywordrunner)

 	(class in robot.running.userkeywordrunner)

 	emit() (robot.output.pyloggingconf.RobotHandler method)

 	empty_cache() (robot.utils.connectioncache.ConnectionCache method)

 	empty_directory() (robot.libraries.OperatingSystem.OperatingSystem method)

 	EmptyFinder (class in robot.variables.finders)

 	EmptyLine (class in robot.parsing.model.statements)

 	EmptySuiteRemover (class in robot.model.filter)

 	enable_library_import_logging() (robot.output.logger.Logger method)

 	encode_string_to_bytes() (robot.libraries.String.String method)

 	encode_threshold (robot.libraries.Remote.TimeoutHTTPSTransport attribute)

 	(robot.libraries.Remote.TimeoutHTTPTransport attribute)

 	End (class in robot.parsing.model.statements)

 	END (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	end() (robot.result.xmlelementhandlers.ArgumentHandler method)

 	(robot.result.xmlelementhandlers.ArgumentsHandler method)

 	(robot.result.xmlelementhandlers.AssignHandler method)

 	(robot.result.xmlelementhandlers.AssignVarHandler method)

 	(robot.result.xmlelementhandlers.DocHandler method)

 	(robot.result.xmlelementhandlers.ErrorsHandler method)

 	(robot.result.xmlelementhandlers.KeywordHandler method)

 	(robot.result.xmlelementhandlers.KeywordStatusHandler method)

 	(robot.result.xmlelementhandlers.MessageHandler method)

 	(robot.result.xmlelementhandlers.MetadataHandler method)

 	(robot.result.xmlelementhandlers.MetadataItemHandler method)

 	(robot.result.xmlelementhandlers.RobotHandler method)

 	(robot.result.xmlelementhandlers.RootHandler method)

 	(robot.result.xmlelementhandlers.RootSuiteHandler method)

 	(robot.result.xmlelementhandlers.StatisticsHandler method)

 	(robot.result.xmlelementhandlers.SuiteHandler method)

 	(robot.result.xmlelementhandlers.SuiteStatusHandler method)

 	(robot.result.xmlelementhandlers.TagHandler method)

 	(robot.result.xmlelementhandlers.TagsHandler method)

 	(robot.result.xmlelementhandlers.TestCaseHandler method)

 	(robot.result.xmlelementhandlers.TestStatusHandler method)

 	(robot.result.xmlelementhandlers.TimeoutHandler method)

 	(robot.result.xmlelementhandlers.XmlElementHandler method)

 	(robot.utils.htmlformatters.HeaderFormatter method)

 	(robot.utils.htmlformatters.ListFormatter method)

 	(robot.utils.htmlformatters.ParagraphFormatter method)

 	(robot.utils.htmlformatters.PreformattedFormatter method)

 	(robot.utils.htmlformatters.RulerFormatter method)

 	(robot.utils.htmlformatters.TableFormatter method)

 	(robot.utils.markupwriters.HtmlWriter method)

 	(robot.utils.markupwriters.NullMarkupWriter method)

 	(robot.utils.markupwriters.XmlWriter method)

 	end_col_offset (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	(robot.parsing.model.blocks.Block attribute)

 	(robot.parsing.model.blocks.CommentSection attribute)

 	(robot.parsing.model.blocks.File attribute)

 	(robot.parsing.model.blocks.ForLoop attribute)

 	(robot.parsing.model.blocks.Keyword attribute)

 	(robot.parsing.model.blocks.KeywordSection attribute)

 	(robot.parsing.model.blocks.Section attribute)

 	(robot.parsing.model.blocks.SettingSection attribute)

 	(robot.parsing.model.blocks.TestCase attribute)

 	(robot.parsing.model.blocks.TestCaseSection attribute)

 	(robot.parsing.model.blocks.VariableSection attribute)

 	(robot.parsing.model.statements.Arguments attribute)

 	(robot.parsing.model.statements.Comment attribute)

 	(robot.parsing.model.statements.CommentSectionHeader attribute)

 	(robot.parsing.model.statements.DefaultTags attribute)

 	(robot.parsing.model.statements.Documentation attribute)

 	(robot.parsing.model.statements.DocumentationOrMetadata attribute)

 	(robot.parsing.model.statements.EmptyLine attribute)

 	(robot.parsing.model.statements.End attribute)

 	(robot.parsing.model.statements.Error attribute)

 	(robot.parsing.model.statements.Fixture attribute)

 	(robot.parsing.model.statements.ForLoopHeader attribute)

 	(robot.parsing.model.statements.ForceTags attribute)

 	(robot.parsing.model.statements.KeywordCall attribute)

 	(robot.parsing.model.statements.KeywordName attribute)

 	(robot.parsing.model.statements.KeywordSectionHeader attribute)

 	(robot.parsing.model.statements.LibraryImport attribute)

 	(robot.parsing.model.statements.Metadata attribute)

 	(robot.parsing.model.statements.MultiValue attribute)

 	(robot.parsing.model.statements.ResourceImport attribute)

 	(robot.parsing.model.statements.Return attribute)

 	(robot.parsing.model.statements.SectionHeader attribute)

 	(robot.parsing.model.statements.SettingSectionHeader attribute)

 	(robot.parsing.model.statements.Setup attribute)

 	(robot.parsing.model.statements.SingleValue attribute)

 	(robot.parsing.model.statements.Statement attribute)

 	(robot.parsing.model.statements.SuiteSetup attribute)

 	(robot.parsing.model.statements.SuiteTeardown attribute)

 	(robot.parsing.model.statements.Tags attribute)

 	(robot.parsing.model.statements.Teardown attribute)

 	(robot.parsing.model.statements.Template attribute)

 	(robot.parsing.model.statements.TemplateArguments attribute)

 	(robot.parsing.model.statements.TestCaseName attribute)

 	(robot.parsing.model.statements.TestCaseSectionHeader attribute)

 	(robot.parsing.model.statements.TestSetup attribute)

 	(robot.parsing.model.statements.TestTeardown attribute)

 	(robot.parsing.model.statements.TestTemplate attribute)

 	(robot.parsing.model.statements.TestTimeout attribute)

 	(robot.parsing.model.statements.Timeout attribute)

 	(robot.parsing.model.statements.Variable attribute)

 	(robot.parsing.model.statements.VariableSectionHeader attribute)

 	(robot.parsing.model.statements.VariablesImport attribute)

 	end_directory() (robot.parsing.suitestructure.SuiteStructureVisitor method)

 	(robot.running.builder.builders.SuiteStructureParser method)

 	(robot.tidy.Tidy method)

 	end_errors() (robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.visitor.ResultVisitor method)

 	end_keyword() (robot.conf.gatherfailed.GatherFailedSuites method)

 	(robot.conf.gatherfailed.GatherFailedTests method)

 	(robot.model.configurer.SuiteConfigurer method)

 	(robot.model.filter.EmptySuiteRemover method)

 	(robot.model.filter.Filter method)

 	(robot.model.modifier.ModelModifier method)

 	(robot.model.statistics.StatisticsBuilder method)

 	(robot.model.tagsetter.TagSetter method)

 	(robot.model.totalstatistics.TotalStatisticsBuilder method)

 	(robot.model.visitor.SuiteVisitor method)

 	(robot.output.console.dotted.StatusReporter method)

 	(robot.output.console.verbose.VerboseOutput method)

 	(robot.output.filelogger.FileLogger method)

 	(robot.output.logger.Logger method)

 	(robot.output.output.Output method)

 	(robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.configurer.SuiteConfigurer method)

 	(robot.result.keywordremover.AllKeywordsRemover method)

 	(robot.result.keywordremover.ByNameKeywordRemover method)

 	(robot.result.keywordremover.ByTagKeywordRemover method)

 	(robot.result.keywordremover.ForLoopItemsRemover method)

 	(robot.result.keywordremover.PassedKeywordRemover method)

 	(robot.result.keywordremover.WaitUntilKeywordSucceedsRemover method)

 	(robot.result.keywordremover.WarningAndErrorFinder method)

 	(robot.result.merger.Merger method)

 	(robot.result.messagefilter.MessageFilter method)

 	(robot.result.resultbuilder.RemoveKeywords method)

 	(robot.result.suiteteardownfailed.SuiteTeardownFailed method)

 	(robot.result.suiteteardownfailed.SuiteTeardownFailureHandler method)

 	(robot.result.visitor.ResultVisitor method)

 	(robot.running.randomizer.Randomizer method)

 	(robot.running.runner.Runner method)

 	(robot.variables.scopes.SetVariables method)

 	(robot.variables.scopes.VariableScopes method)

 	end_lineno (robot.parsing.model.blocks.Block attribute)

 	(robot.parsing.model.blocks.CommentSection attribute)

 	(robot.parsing.model.blocks.File attribute)

 	(robot.parsing.model.blocks.ForLoop attribute)

 	(robot.parsing.model.blocks.Keyword attribute)

 	(robot.parsing.model.blocks.KeywordSection attribute)

 	(robot.parsing.model.blocks.Section attribute)

 	(robot.parsing.model.blocks.SettingSection attribute)

 	(robot.parsing.model.blocks.TestCase attribute)

 	(robot.parsing.model.blocks.TestCaseSection attribute)

 	(robot.parsing.model.blocks.VariableSection attribute)

 	(robot.parsing.model.statements.Arguments attribute)

 	(robot.parsing.model.statements.Comment attribute)

 	(robot.parsing.model.statements.CommentSectionHeader attribute)

 	(robot.parsing.model.statements.DefaultTags attribute)

 	(robot.parsing.model.statements.Documentation attribute)

 	(robot.parsing.model.statements.DocumentationOrMetadata attribute)

 	(robot.parsing.model.statements.EmptyLine attribute)

 	(robot.parsing.model.statements.End attribute)

 	(robot.parsing.model.statements.Error attribute)

 	(robot.parsing.model.statements.Fixture attribute)

 	(robot.parsing.model.statements.ForLoopHeader attribute)

 	(robot.parsing.model.statements.ForceTags attribute)

 	(robot.parsing.model.statements.KeywordCall attribute)

 	(robot.parsing.model.statements.KeywordName attribute)

 	(robot.parsing.model.statements.KeywordSectionHeader attribute)

 	(robot.parsing.model.statements.LibraryImport attribute)

 	(robot.parsing.model.statements.Metadata attribute)

 	(robot.parsing.model.statements.MultiValue attribute)

 	(robot.parsing.model.statements.ResourceImport attribute)

 	(robot.parsing.model.statements.Return attribute)

 	(robot.parsing.model.statements.SectionHeader attribute)

 	(robot.parsing.model.statements.SettingSectionHeader attribute)

 	(robot.parsing.model.statements.Setup attribute)

 	(robot.parsing.model.statements.SingleValue attribute)

 	(robot.parsing.model.statements.Statement attribute)

 	(robot.parsing.model.statements.SuiteSetup attribute)

 	(robot.parsing.model.statements.SuiteTeardown attribute)

 	(robot.parsing.model.statements.Tags attribute)

 	(robot.parsing.model.statements.Teardown attribute)

 	(robot.parsing.model.statements.Template attribute)

 	(robot.parsing.model.statements.TemplateArguments attribute)

 	(robot.parsing.model.statements.TestCaseName attribute)

 	(robot.parsing.model.statements.TestCaseSectionHeader attribute)

 	(robot.parsing.model.statements.TestSetup attribute)

 	(robot.parsing.model.statements.TestTeardown attribute)

 	(robot.parsing.model.statements.TestTemplate attribute)

 	(robot.parsing.model.statements.TestTimeout attribute)

 	(robot.parsing.model.statements.Timeout attribute)

 	(robot.parsing.model.statements.Variable attribute)

 	(robot.parsing.model.statements.VariableSectionHeader attribute)

 	(robot.parsing.model.statements.VariablesImport attribute)

 	end_loggers (robot.output.logger.Logger attribute)

 	end_message() (robot.conf.gatherfailed.GatherFailedSuites method)

 	(robot.conf.gatherfailed.GatherFailedTests method)

 	(robot.model.configurer.SuiteConfigurer method)

 	(robot.model.filter.EmptySuiteRemover method)

 	(robot.model.filter.Filter method)

 	(robot.model.modifier.ModelModifier method)

 	(robot.model.statistics.StatisticsBuilder method)

 	(robot.model.tagsetter.TagSetter method)

 	(robot.model.totalstatistics.TotalStatisticsBuilder method)

 	(robot.model.visitor.SuiteVisitor method)

 	(robot.output.console.dotted.StatusReporter method)

 	(robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.configurer.SuiteConfigurer method)

 	(robot.result.keywordremover.AllKeywordsRemover method)

 	(robot.result.keywordremover.ByNameKeywordRemover method)

 	(robot.result.keywordremover.ByTagKeywordRemover method)

 	(robot.result.keywordremover.ForLoopItemsRemover method)

 	(robot.result.keywordremover.PassedKeywordRemover method)

 	(robot.result.keywordremover.WaitUntilKeywordSucceedsRemover method)

 	(robot.result.keywordremover.WarningAndErrorFinder method)

 	(robot.result.merger.Merger method)

 	(robot.result.messagefilter.MessageFilter method)

 	(robot.result.resultbuilder.RemoveKeywords method)

 	(robot.result.suiteteardownfailed.SuiteTeardownFailed method)

 	(robot.result.suiteteardownfailed.SuiteTeardownFailureHandler method)

 	(robot.result.visitor.ResultVisitor method)

 	(robot.running.randomizer.Randomizer method)

 	(robot.running.runner.Runner method)

 	end_result() (robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.visitor.ResultVisitor method)

 	end_splitting() (robot.reporting.jsbuildingcontext.JsBuildingContext method)

 	end_stat() (robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.visitor.ResultVisitor method)

 	
 	end_statistics() (robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.visitor.ResultVisitor method)

 	end_suite() (robot.conf.gatherfailed.GatherFailedSuites method)

 	(robot.conf.gatherfailed.GatherFailedTests method)

 	(robot.model.configurer.SuiteConfigurer method)

 	(robot.model.filter.EmptySuiteRemover method)

 	(robot.model.filter.Filter method)

 	(robot.model.modifier.ModelModifier method)

 	(robot.model.statistics.StatisticsBuilder method)

 	(robot.model.suitestatistics.SuiteStatisticsBuilder method)

 	(robot.model.tagsetter.TagSetter method)

 	(robot.model.totalstatistics.TotalStatisticsBuilder method)

 	(robot.model.visitor.SuiteVisitor method)

 	(robot.output.console.dotted.DottedOutput method)

 	(robot.output.console.dotted.StatusReporter method)

 	(robot.output.console.verbose.VerboseOutput method)

 	(robot.output.filelogger.FileLogger method)

 	(robot.output.logger.Logger method)

 	(robot.output.output.Output method)

 	(robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.configurer.SuiteConfigurer method)

 	(robot.result.keywordremover.AllKeywordsRemover method)

 	(robot.result.keywordremover.ByNameKeywordRemover method)

 	(robot.result.keywordremover.ByTagKeywordRemover method)

 	(robot.result.keywordremover.ForLoopItemsRemover method)

 	(robot.result.keywordremover.PassedKeywordRemover method)

 	(robot.result.keywordremover.WaitUntilKeywordSucceedsRemover method)

 	(robot.result.keywordremover.WarningAndErrorFinder method)

 	(robot.result.merger.Merger method)

 	(robot.result.messagefilter.MessageFilter method)

 	(robot.result.resultbuilder.RemoveKeywords method)

 	(robot.result.suiteteardownfailed.SuiteTeardownFailed method)

 	(robot.result.suiteteardownfailed.SuiteTeardownFailureHandler method)

 	(robot.result.visitor.ResultVisitor method)

 	(robot.running.context.ExecutionContexts method)

 	(robot.running.libraryscopes.GlobalScope method)

 	(robot.running.libraryscopes.TestCaseScope method)

 	(robot.running.libraryscopes.TestSuiteScope method)

 	(robot.running.namespace.Namespace method)

 	(robot.running.randomizer.Randomizer method)

 	(robot.running.runner.Runner method)

 	(robot.variables.scopes.SetVariables method)

 	(robot.variables.scopes.VariableScopes method)

 	end_suite_statistics() (robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.visitor.ResultVisitor method)

 	end_tag_statistics() (robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.visitor.ResultVisitor method)

 	end_test() (robot.conf.gatherfailed.GatherFailedSuites method)

 	(robot.conf.gatherfailed.GatherFailedTests method)

 	(robot.model.configurer.SuiteConfigurer method)

 	(robot.model.filter.EmptySuiteRemover method)

 	(robot.model.filter.Filter method)

 	(robot.model.modifier.ModelModifier method)

 	(robot.model.statistics.StatisticsBuilder method)

 	(robot.model.tagsetter.TagSetter method)

 	(robot.model.totalstatistics.TotalStatisticsBuilder method)

 	(robot.model.visitor.SuiteVisitor method)

 	(robot.output.console.dotted.DottedOutput method)

 	(robot.output.console.dotted.StatusReporter method)

 	(robot.output.console.verbose.VerboseOutput method)

 	(robot.output.filelogger.FileLogger method)

 	(robot.output.logger.Logger method)

 	(robot.output.output.Output method)

 	(robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.configurer.SuiteConfigurer method)

 	(robot.result.keywordremover.AllKeywordsRemover method)

 	(robot.result.keywordremover.ByNameKeywordRemover method)

 	(robot.result.keywordremover.ByTagKeywordRemover method)

 	(robot.result.keywordremover.ForLoopItemsRemover method)

 	(robot.result.keywordremover.PassedKeywordRemover method)

 	(robot.result.keywordremover.WaitUntilKeywordSucceedsRemover method)

 	(robot.result.keywordremover.WarningAndErrorFinder method)

 	(robot.result.merger.Merger method)

 	(robot.result.messagefilter.MessageFilter method)

 	(robot.result.resultbuilder.RemoveKeywords method)

 	(robot.result.suiteteardownfailed.SuiteTeardownFailed method)

 	(robot.result.suiteteardownfailed.SuiteTeardownFailureHandler method)

 	(robot.result.visitor.ResultVisitor method)

 	(robot.running.libraryscopes.GlobalScope method)

 	(robot.running.libraryscopes.TestCaseScope method)

 	(robot.running.libraryscopes.TestSuiteScope method)

 	(robot.running.namespace.Namespace method)

 	(robot.running.randomizer.Randomizer method)

 	(robot.running.runner.Runner method)

 	(robot.variables.scopes.SetVariables method)

 	(robot.variables.scopes.VariableScopes method)

 	end_total_statistics() (robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.visitor.ResultVisitor method)

 	end_user_keyword() (robot.running.namespace.Namespace method)

 	EndKeywordArguments (class in robot.output.listenerarguments)

 	EndLexer (class in robot.parsing.lexer.statementlexers)

 	EndSuiteArguments (class in robot.output.listenerarguments)

 	EndTestArguments (class in robot.output.listenerarguments)

 	endtime (robot.result.model.Keyword attribute)

 	(robot.result.model.TestCase attribute)

 	(robot.result.model.TestSuite attribute)

 	Enum (class in robot.libdocpkg.robotbuilder)

 	(class in robot.running.arguments.typeconverters)

 	EnumConverter (class in robot.running.arguments.typeconverters)

 	environment_variable_should_be_set() (robot.libraries.OperatingSystem.OperatingSystem method)

 	environment_variable_should_not_be_set() (robot.libraries.OperatingSystem.OperatingSystem method)

 	EnvironmentFinder (class in robot.variables.finders)

 	EOL (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	EOS (class in robot.parsing.lexer.tokens)

 	(robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	eq() (in module robot.utils.match)

 	Error (class in robot.parsing.model.statements)

 	ERROR (robot.parsing.lexer.tokens.EOS attribute)

 	error (robot.parsing.lexer.tokens.EOS attribute)

 	ERROR (robot.parsing.lexer.tokens.Token attribute)

 	error (robot.parsing.lexer.tokens.Token attribute)

 	(robot.parsing.model.statements.Arguments attribute)

 	(robot.parsing.model.statements.Comment attribute)

 	(robot.parsing.model.statements.CommentSectionHeader attribute)

 	(robot.parsing.model.statements.DefaultTags attribute)

 	(robot.parsing.model.statements.Documentation attribute)

 	(robot.parsing.model.statements.DocumentationOrMetadata attribute)

 	(robot.parsing.model.statements.EmptyLine attribute)

 	(robot.parsing.model.statements.End attribute)

 	(robot.parsing.model.statements.Error attribute)

 	(robot.parsing.model.statements.Fixture attribute)

 	(robot.parsing.model.statements.ForLoopHeader attribute)

 	(robot.parsing.model.statements.ForceTags attribute)

 	(robot.parsing.model.statements.KeywordCall attribute)

 	(robot.parsing.model.statements.KeywordName attribute)

 	(robot.parsing.model.statements.KeywordSectionHeader attribute)

 	(robot.parsing.model.statements.LibraryImport attribute)

 	(robot.parsing.model.statements.Metadata attribute)

 	(robot.parsing.model.statements.MultiValue attribute)

 	(robot.parsing.model.statements.ResourceImport attribute)

 	(robot.parsing.model.statements.Return attribute)

 	(robot.parsing.model.statements.SectionHeader attribute)

 	(robot.parsing.model.statements.SettingSectionHeader attribute)

 	(robot.parsing.model.statements.Setup attribute)

 	(robot.parsing.model.statements.SingleValue attribute)

 	(robot.parsing.model.statements.Statement attribute)

 	(robot.parsing.model.statements.SuiteSetup attribute)

 	(robot.parsing.model.statements.SuiteTeardown attribute)

 	(robot.parsing.model.statements.Tags attribute)

 	(robot.parsing.model.statements.Teardown attribute)

 	(robot.parsing.model.statements.Template attribute)

 	(robot.parsing.model.statements.TemplateArguments attribute)

 	(robot.parsing.model.statements.TestCaseName attribute)

 	(robot.parsing.model.statements.TestCaseSectionHeader attribute)

 	(robot.parsing.model.statements.TestSetup attribute)

 	(robot.parsing.model.statements.TestTeardown attribute)

 	(robot.parsing.model.statements.TestTemplate attribute)

 	(robot.parsing.model.statements.TestTimeout attribute)

 	(robot.parsing.model.statements.Timeout attribute)

 	(robot.parsing.model.statements.Variable attribute)

 	(robot.parsing.model.statements.VariableSectionHeader attribute)

 	(robot.parsing.model.statements.VariablesImport attribute)

 	error() (in module robot.api.logger)

 	(in module robot.output.librarylogger)

 	(robot.output.console.highlighting.HighlightingStream method)

 	(robot.output.console.verbose.VerboseWriter method)

 	(robot.output.filelogger.FileLogger method)

 	(robot.output.logger.Logger method)

 	(robot.output.loggerhelper.AbstractLogger method)

 	(robot.output.output.Output method)

 	(robot.utils.application.DefaultLogger method)

 	(robot.utils.restreader.CaptureRobotData method)

 	error_occurred() (robot.running.status.Exit method)

 	(robot.running.status.SuiteStatus method)

 	(robot.running.status.TestStatus method)

 	ErrorDetails() (in module robot.utils.error)

 	ErrorMessageBuilder (class in robot.reporting.jsmodelbuilders)

 	ErrorReporter (class in robot.running.builder.parsers)

 	errors (robot.result.executionresult.Result attribute)

 	ErrorsBuilder (class in robot.reporting.jsmodelbuilders)

 	ErrorSectionHeaderLexer (class in robot.parsing.lexer.statementlexers)

 	ErrorSectionLexer (class in robot.parsing.lexer.blocklexers)

 	ErrorsHandler (class in robot.result.xmlelementhandlers)

 	escape() (in module robot.utils.escaping)

 	ETSource (class in robot.utils.etreewrapper)

 	evaluate() (robot.libraries.BuiltIn.BuiltIn method)

 	evaluate_expression() (in module robot.variables.evaluation)

 	evaluate_xpath() (robot.libraries.XML.XML method)

 	EvaluationNamespace (class in robot.variables.evaluation)

 	event_add() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	event_delete() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	event_generate() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	event_info() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	exclude_tags (robot.model.filter.Filter attribute)

 	execute() (robot.libdoc.LibDoc method)

 	(robot.rebot.Rebot method)

 	(robot.run.RobotFramework method)

 	(robot.running.timeouts.posix.Timeout method)

 	(robot.running.timeouts.windows.Timeout method)

 	(robot.testdoc.TestDoc method)

 	(robot.tidy.TidyCommandLine method)

 	(robot.utils.application.Application method)

 	execute_cli() (robot.libdoc.LibDoc method)

 	(robot.rebot.Rebot method)

 	(robot.run.RobotFramework method)

 	(robot.testdoc.TestDoc method)

 	(robot.tidy.TidyCommandLine method)

 	(robot.utils.application.Application method)

 	execute_command() (robot.libraries.Telnet.TelnetConnection method)

 	execute_manual_step() (in module robot.libraries.Dialogs)

 	ExecutionContexts (class in robot.running.context)

 	ExecutionErrors (class in robot.result.executionerrors)

 	ExecutionFailed

 	ExecutionFailures

 	ExecutionPassed

 	ExecutionResult (class in robot.libraries.Process)

 	ExecutionResult() (in module robot.result.resultbuilder)

 	ExecutionResultBuilder (class in robot.result.resultbuilder)

 	ExecutionStatus

 	Exit (class in robot.running.status)

 	exit_for_loop() (robot.libraries.BuiltIn.BuiltIn method)

 	exit_for_loop_if() (robot.libraries.BuiltIn.BuiltIn method)

 	exit_on_error (robot.conf.settings.RobotSettings attribute)

 	exit_on_error_message (robot.running.status.TestMessage attribute)

 	exit_on_failure (robot.conf.settings.RobotSettings attribute)

 	exit_on_failure_message (robot.running.status.TestMessage attribute)

 	exit_on_fatal_message (robot.running.status.TestMessage attribute)

 	ExitForLoop

 	expand_keywords (robot.conf.settings.RebotSettings attribute)

 	(robot.reporting.jsbuildingcontext.JsBuildingContext attribute)

 	ExpandKeywordMatcher (class in robot.reporting.expandkeywordmatcher)

 	expect() (robot.libraries.Telnet.TelnetConnection method)

 	extend() (robot.model.itemlist.ItemList method)

 	(robot.model.keyword.Keywords method)

 	(robot.model.message.Messages method)

 	(robot.model.testcase.TestCases method)

 	(robot.model.testsuite.TestSuites method)

 	(robot.running.model.Imports method)

 	ExtendedFinder (class in robot.variables.finders)

 	extension (robot.conf.settings.RobotSettings attribute)

F

 	
 	fail() (in module robot.utils.asserts)

 	(robot.libraries.BuiltIn.BuiltIn method)

 	(robot.output.filelogger.FileLogger method)

 	(robot.output.logger.Logger method)

 	(robot.output.loggerhelper.AbstractLogger method)

 	(robot.output.output.Output method)

 	failed (robot.model.stats.Stat attribute)

 	Failure (class in robot.running.status)

 	failure_occurred() (robot.running.status.Exit method)

 	failures (robot.running.status.SuiteStatus attribute)

 	(robot.running.status.TestStatus attribute)

 	FATAL_ERROR (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	fatal_error() (robot.libraries.BuiltIn.BuiltIn method)

 	feed() (robot.libraries.Telnet.TerminalEmulator method)

 	fetch_from_left() (robot.libraries.String.String method)

 	fetch_from_right() (robot.libraries.String.String method)

 	File (class in robot.parsing.model.blocks)

 	file() (robot.tidy.Tidy method)

 	file_should_be_empty() (robot.libraries.OperatingSystem.OperatingSystem method)

 	file_should_exist() (robot.libraries.OperatingSystem.OperatingSystem method)

 	file_should_not_be_empty() (robot.libraries.OperatingSystem.OperatingSystem method)

 	file_should_not_exist() (robot.libraries.OperatingSystem.OperatingSystem method)

 	file_writer() (in module robot.utils.robotio)

 	FileContext (class in robot.parsing.lexer.context)

 	FileLexer (class in robot.parsing.lexer.blocklexers)

 	FileLogger (class in robot.output.filelogger)

 	fileno() (robot.libraries.Telnet.TelnetConnection method)

 	FileParser (class in robot.parsing.parser.fileparser)

 	FileReader (class in robot.utils.filereader)

 	fill_named() (robot.running.arguments.argumentmapper.KeywordCallTemplate method)

 	fill_positional() (robot.running.arguments.argumentmapper.KeywordCallTemplate method)

 	fill_rawq() (robot.libraries.Telnet.TelnetConnection method)

 	Filter (class in robot.model.filter)

 	filter() (robot.model.testsuite.TestSuite method)

 	(robot.output.pyloggingconf.RobotHandler method)

 	(robot.result.model.TestSuite method)

 	(robot.running.model.TestSuite method)

 	filter_messages() (robot.result.model.TestSuite method)

 	final_argument_whitespace (robot.utils.restreader.CaptureRobotData attribute)

 	find() (robot.utils.recommendations.RecommendationFinder method)

 	(robot.variables.finders.EmptyFinder class method)

 	(robot.variables.finders.EnvironmentFinder method)

 	(robot.variables.finders.ExtendedFinder method)

 	(robot.variables.finders.InlinePythonFinder method)

 	(robot.variables.finders.NumberFinder method)

 	(robot.variables.finders.StoredFinder method)

 	(robot.variables.finders.VariableFinder method)

 	find_all() (robot.libraries.XML.ElementFinder method)

 	find_and_format() (robot.utils.recommendations.RecommendationFinder method)

 	find_file() (in module robot.utils.robotpath)

 	find_from() (robot.parsing.model.blocks.FirstStatementFinder class method)

 	(robot.parsing.model.blocks.LastStatementFinder class method)

 	FirstStatementFinder (class in robot.parsing.model.blocks)

 	Fixture (class in robot.parsing.model.statements)

 	fixture() (in module robot.running.builder.transformers)

 	flatten_keywords (robot.conf.settings.RebotSettings attribute)

 	(robot.conf.settings.RobotSettings attribute)

 	FlattenByNameMatcher (class in robot.result.flattenkeywordmatcher)

 	FlattenByTagMatcher (class in robot.result.flattenkeywordmatcher)

 	FlattenByTypeMatcher (class in robot.result.flattenkeywordmatcher)

 	flavor (robot.parsing.model.blocks.ForLoop attribute)

 	(robot.parsing.model.statements.ForLoopHeader attribute)

 	(robot.running.model.ForLoop attribute)

 	(robot.running.steprunner.ForInEnumerateRunner attribute)

 	(robot.running.steprunner.ForInRangeRunner attribute)

 	(robot.running.steprunner.ForInRunner attribute)

 	(robot.running.steprunner.ForInZipRunner attribute)

 	FloatConverter (class in robot.running.arguments.typeconverters)

 	flush() (robot.output.console.highlighting.HighlightingStream method)

 	(robot.output.pyloggingconf.RobotHandler method)

 	focus() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	focus_displayof() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	focus_force() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	focus_get() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	focus_lastfor() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	focus_set() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	focusmodel() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	
 	FOR (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	FOR_ITEM_TYPE (robot.model.keyword.Keyword attribute)

 	(robot.result.model.Keyword attribute)

 	(robot.running.model.ForLoop attribute)

 	(robot.running.model.Keyword attribute)

 	FOR_LOOP_TYPE (robot.model.keyword.Keyword attribute)

 	(robot.result.model.Keyword attribute)

 	(robot.running.model.ForLoop attribute)

 	(robot.running.model.Keyword attribute)

 	FOR_SEPARATOR (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	FORCE_TAGS (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	force_tags (robot.running.builder.testsettings.TestDefaults attribute)

 	ForceTags (class in robot.parsing.model.statements)

 	ForInEnumerateRunner (class in robot.running.steprunner)

 	ForInRangeRunner (class in robot.running.steprunner)

 	ForInRunner (class in robot.running.steprunner)

 	ForInZipRunner (class in robot.running.steprunner)

 	ForLoop (class in robot.parsing.model.blocks)

 	(class in robot.running.model)

 	ForLoopBuilder (class in robot.running.builder.transformers)

 	ForLoopHeader (class in robot.parsing.model.statements)

 	ForLoopHeaderLexer (class in robot.parsing.lexer.statementlexers)

 	ForLoopItemsRemover (class in robot.result.keywordremover)

 	ForLoopLexer (class in robot.parsing.lexer.blocklexers)

 	ForLoopParser (class in robot.parsing.parser.blockparsers)

 	format() (robot.output.pyloggingconf.RobotHandler method)

 	(robot.utils.htmlformatters.HeaderFormatter method)

 	(robot.utils.htmlformatters.HtmlFormatter method)

 	(robot.utils.htmlformatters.LineFormatter method)

 	(robot.utils.htmlformatters.ListFormatter method)

 	(robot.utils.htmlformatters.ParagraphFormatter method)

 	(robot.utils.htmlformatters.PreformattedFormatter method)

 	(robot.utils.htmlformatters.RulerFormatter method)

 	(robot.utils.htmlformatters.TableFormatter method)

 	(robot.utils.recommendations.RecommendationFinder method)

 	(robot.utils.unic.PrettyRepr method)

 	format_assign_message() (in module robot.utils.text)

 	format_line() (robot.utils.htmlformatters.HeaderFormatter method)

 	(robot.utils.htmlformatters.RulerFormatter method)

 	format_link() (robot.utils.htmlformatters.LinkFormatter method)

 	format_name() (in module robot.running.builder.parsers)

 	format_recommendations() (robot.running.namespace.KeywordRecommendationFinder static method)

 	format_string() (robot.libraries.String.String method)

 	format_time() (in module robot.utils.robottime)

 	format_url() (robot.utils.htmlformatters.LinkFormatter method)

 	ForRunner() (in module robot.running.steprunner)

 	frame() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	FrameworkError

 	frange() (in module robot.utils.frange)

 	from_file_system() (robot.running.model.TestSuite class method)

 	from_model() (robot.running.model.TestSuite class method)

 	from_token() (robot.parsing.lexer.tokens.EOS class method)

 	from_tokens() (robot.parsing.model.statements.Arguments class method)

 	(robot.parsing.model.statements.Comment class method)

 	(robot.parsing.model.statements.CommentSectionHeader class method)

 	(robot.parsing.model.statements.DefaultTags class method)

 	(robot.parsing.model.statements.Documentation class method)

 	(robot.parsing.model.statements.DocumentationOrMetadata class method)

 	(robot.parsing.model.statements.EmptyLine class method)

 	(robot.parsing.model.statements.End class method)

 	(robot.parsing.model.statements.Error class method)

 	(robot.parsing.model.statements.Fixture class method)

 	(robot.parsing.model.statements.ForLoopHeader class method)

 	(robot.parsing.model.statements.ForceTags class method)

 	(robot.parsing.model.statements.KeywordCall class method)

 	(robot.parsing.model.statements.KeywordName class method)

 	(robot.parsing.model.statements.KeywordSectionHeader class method)

 	(robot.parsing.model.statements.LibraryImport class method)

 	(robot.parsing.model.statements.Metadata class method)

 	(robot.parsing.model.statements.MultiValue class method)

 	(robot.parsing.model.statements.ResourceImport class method)

 	(robot.parsing.model.statements.Return class method)

 	(robot.parsing.model.statements.SectionHeader class method)

 	(robot.parsing.model.statements.SettingSectionHeader class method)

 	(robot.parsing.model.statements.Setup class method)

 	(robot.parsing.model.statements.SingleValue class method)

 	(robot.parsing.model.statements.Statement class method)

 	(robot.parsing.model.statements.SuiteSetup class method)

 	(robot.parsing.model.statements.SuiteTeardown class method)

 	(robot.parsing.model.statements.Tags class method)

 	(robot.parsing.model.statements.Teardown class method)

 	(robot.parsing.model.statements.Template class method)

 	(robot.parsing.model.statements.TemplateArguments class method)

 	(robot.parsing.model.statements.TestCaseName class method)

 	(robot.parsing.model.statements.TestCaseSectionHeader class method)

 	(robot.parsing.model.statements.TestSetup class method)

 	(robot.parsing.model.statements.TestTeardown class method)

 	(robot.parsing.model.statements.TestTemplate class method)

 	(robot.parsing.model.statements.TestTimeout class method)

 	(robot.parsing.model.statements.Timeout class method)

 	(robot.parsing.model.statements.Variable class method)

 	(robot.parsing.model.statements.VariableSectionHeader class method)

 	(robot.parsing.model.statements.VariablesImport class method)

 	from_value() (robot.parsing.model.statements.EmptyLine class method)

 	fromkeys() (robot.utils.dotdict.DotDict class method)

 	FrozenSetConverter (class in robot.running.arguments.typeconverters)

 	full_message (robot.result.model.TestSuite attribute)

G

 	
 	gather_failed_suites() (in module robot.conf.gatherfailed)

 	gather_failed_tests() (in module robot.conf.gatherfailed)

 	GatherFailedSuites (class in robot.conf.gatherfailed)

 	GatherFailedTests (class in robot.conf.gatherfailed)

 	generate_random_string() (robot.libraries.String.String method)

 	GeneratorWriter (class in robot.htmldata.htmlfilewriter)

 	generic_visit() (robot.parsing.model.blocks.FirstStatementFinder method)

 	(robot.parsing.model.blocks.LastStatementFinder method)

 	(robot.parsing.model.blocks.ModelWriter method)

 	(robot.parsing.model.visitor.ModelTransformer method)

 	(robot.parsing.model.visitor.ModelVisitor method)

 	(robot.running.builder.parsers.ErrorReporter method)

 	(robot.running.builder.transformers.ForLoopBuilder method)

 	(robot.running.builder.transformers.KeywordBuilder method)

 	(robot.running.builder.transformers.ResourceBuilder method)

 	(robot.running.builder.transformers.SettingsBuilder method)

 	(robot.running.builder.transformers.SuiteBuilder method)

 	(robot.running.builder.transformers.TestCaseBuilder method)

 	(robot.tidypkg.transformers.Aligner method)

 	(robot.tidypkg.transformers.Cleaner method)

 	(robot.tidypkg.transformers.ColumnAligner method)

 	(robot.tidypkg.transformers.ColumnWidthCounter method)

 	(robot.tidypkg.transformers.NewlineNormalizer method)

 	(robot.tidypkg.transformers.SeparatorNormalizer method)

 	geometry() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	get() (robot.model.metadata.Metadata method)

 	(robot.utils.dotdict.DotDict method)

 	(robot.utils.normalizing.NormalizedDict method)

 	(robot.variables.evaluation.EvaluationNamespace method)

 	get_arguments() (robot.output.listenerarguments.EndKeywordArguments method)

 	(robot.output.listenerarguments.EndSuiteArguments method)

 	(robot.output.listenerarguments.EndTestArguments method)

 	(robot.output.listenerarguments.ListenerArguments method)

 	(robot.output.listenerarguments.MessageArguments method)

 	(robot.output.listenerarguments.StartKeywordArguments method)

 	(robot.output.listenerarguments.StartSuiteArguments method)

 	(robot.output.listenerarguments.StartTestArguments method)

 	get_attributes() (robot.model.stats.CombinedTagStat method)

 	(robot.model.stats.CriticalTagStat method)

 	(robot.model.stats.Stat method)

 	(robot.model.stats.SuiteStat method)

 	(robot.model.stats.TagStat method)

 	(robot.model.stats.TotalStat method)

 	get_binary_file() (robot.libraries.OperatingSystem.OperatingSystem method)

 	get_char_width() (in module robot.utils.charwidth)

 	get_child_elements() (robot.libraries.XML.XML method)

 	get_child_handler() (robot.result.xmlelementhandlers.ArgumentHandler method)

 	(robot.result.xmlelementhandlers.ArgumentsHandler method)

 	(robot.result.xmlelementhandlers.AssignHandler method)

 	(robot.result.xmlelementhandlers.AssignVarHandler method)

 	(robot.result.xmlelementhandlers.DocHandler method)

 	(robot.result.xmlelementhandlers.ErrorsHandler method)

 	(robot.result.xmlelementhandlers.KeywordHandler method)

 	(robot.result.xmlelementhandlers.KeywordStatusHandler method)

 	(robot.result.xmlelementhandlers.MessageHandler method)

 	(robot.result.xmlelementhandlers.MetadataHandler method)

 	(robot.result.xmlelementhandlers.MetadataItemHandler method)

 	(robot.result.xmlelementhandlers.RobotHandler method)

 	(robot.result.xmlelementhandlers.RootHandler method)

 	(robot.result.xmlelementhandlers.RootSuiteHandler method)

 	(robot.result.xmlelementhandlers.StatisticsHandler method)

 	(robot.result.xmlelementhandlers.SuiteHandler method)

 	(robot.result.xmlelementhandlers.SuiteStatusHandler method)

 	(robot.result.xmlelementhandlers.TagHandler method)

 	(robot.result.xmlelementhandlers.TagsHandler method)

 	(robot.result.xmlelementhandlers.TestCaseHandler method)

 	(robot.result.xmlelementhandlers.TestStatusHandler method)

 	(robot.result.xmlelementhandlers.TimeoutHandler method)

 	get_combined_stats() (robot.model.tagstatistics.TagStatInfo method)

 	get_command() (robot.libraries.Process.ProcessConfiguration method)

 	get_connection() (robot.utils.connectioncache.ConnectionCache method)

 	get_console_encoding() (in module robot.utils.encodingsniffer)

 	get_console_length() (in module robot.utils.text)

 	get_converter() (robot.running.arguments.typeconverters.BooleanConverter method)

 	(robot.running.arguments.typeconverters.ByteArrayConverter method)

 	(robot.running.arguments.typeconverters.BytesConverter method)

 	(robot.running.arguments.typeconverters.DateConverter method)

 	(robot.running.arguments.typeconverters.DateTimeConverter method)

 	(robot.running.arguments.typeconverters.DecimalConverter method)

 	(robot.running.arguments.typeconverters.DictionaryConverter method)

 	(robot.running.arguments.typeconverters.EnumConverter method)

 	(robot.running.arguments.typeconverters.FloatConverter method)

 	(robot.running.arguments.typeconverters.FrozenSetConverter method)

 	(robot.running.arguments.typeconverters.IntegerConverter method)

 	(robot.running.arguments.typeconverters.ListConverter method)

 	(robot.running.arguments.typeconverters.NoneConverter method)

 	(robot.running.arguments.typeconverters.SetConverter method)

 	(robot.running.arguments.typeconverters.TimeDeltaConverter method)

 	(robot.running.arguments.typeconverters.TupleConverter method)

 	(robot.running.arguments.typeconverters.TypeConverter method)

 	get_count() (robot.libraries.BuiltIn.BuiltIn method)

 	get_critical_stats() (robot.model.tagstatistics.TagStatInfo method)

 	get_current_date() (in module robot.libraries.DateTime)

 	get_data() (robot.utils.restreader.RobotDataStorage method)

 	get_dictionary_items() (robot.libraries.Collections.Collections method)

 	get_dictionary_keys() (robot.libraries.Collections.Collections method)

 	get_dictionary_values() (robot.libraries.Collections.Collections method)

 	get_doc() (robot.model.tagstatistics.TagStatInfo method)

 	get_elapsed_time() (in module robot.utils.robottime)

 	get_element() (robot.libraries.XML.XML method)

 	get_element_attribute() (robot.libraries.XML.XML method)

 	get_element_attributes() (robot.libraries.XML.XML method)

 	get_element_count() (robot.libraries.XML.XML method)

 	get_element_text() (robot.libraries.XML.XML method)

 	get_elements() (robot.libraries.XML.XML method)

 	get_elements_texts() (robot.libraries.XML.XML method)

 	get_env_var() (in module robot.utils.robotenv)

 	get_env_vars() (in module robot.utils.robotenv)

 	get_environment_variable() (robot.libraries.OperatingSystem.OperatingSystem method)

 	get_environment_variables() (robot.libraries.OperatingSystem.OperatingSystem method)

 	get_error_details() (in module robot.utils.error)

 	get_error_message() (in module robot.utils.error)

 	get_errors() (robot.errors.ContinueForLoop method)

 	(robot.errors.ExecutionFailed method)

 	(robot.errors.ExecutionFailures method)

 	(robot.errors.ExecutionPassed method)

 	(robot.errors.ExecutionStatus method)

 	(robot.errors.ExitForLoop method)

 	(robot.errors.HandlerExecutionFailed method)

 	(robot.errors.PassExecution method)

 	(robot.errors.ReturnFromKeyword method)

 	(robot.errors.UserKeywordExecutionFailed method)

 	get_file() (robot.libraries.OperatingSystem.OperatingSystem method)

 	get_file_size() (robot.libraries.OperatingSystem.OperatingSystem method)

 	get_from_dictionary() (robot.libraries.Collections.Collections method)

 	get_from_list() (robot.libraries.Collections.Collections method)

 	get_full_version() (in module robot.version)

 	get_host_info() (robot.libraries.Remote.TimeoutHTTPSTransport method)

 	(robot.libraries.Remote.TimeoutHTTPTransport method)

 	get_index_from_list() (robot.libraries.Collections.Collections method)

 	get_init_model() (in module robot.parsing.parser.parser)

 	get_init_tokens() (in module robot.parsing.lexer.lexer)

 	get_interpreter() (in module robot.version)

 	get_java_properties() (in module robot.variables.finders)

 	get_java_property() (in module robot.variables.finders)

 	get_keyword_arguments() (robot.libraries.Remote.Remote method)

 	(robot.libraries.Remote.XmlRpcRemoteClient method)

 	get_keyword_documentation() (robot.libraries.Remote.Remote method)

 	(robot.libraries.Remote.XmlRpcRemoteClient method)

 	get_keyword_names() (robot.libraries.Remote.Remote method)

 	(robot.libraries.Remote.XmlRpcRemoteClient method)

 	(robot.libraries.Reserved.Reserved method)

 	(robot.libraries.Telnet.Telnet method)

 	get_keyword_tags() (robot.libraries.Remote.Remote method)

 	(robot.libraries.Remote.XmlRpcRemoteClient method)

 	get_keyword_types() (robot.libraries.Remote.Remote method)

 	(robot.libraries.Remote.XmlRpcRemoteClient method)

 	get_length() (robot.libraries.BuiltIn.BuiltIn method)

 	get_library() (robot.running.namespace.KeywordStore method)

 	get_library_instance() (robot.libraries.BuiltIn.BuiltIn method)

 	(robot.running.namespace.Namespace method)

 	get_library_instances() (robot.running.namespace.Namespace method)

 	get_line() (robot.libraries.String.String method)

 	get_line_count() (robot.libraries.String.String method)

 	get_lines_containing_string() (robot.libraries.String.String method)

 	get_lines_matching_pattern() (robot.libraries.String.String method)

 	get_lines_matching_regexp() (robot.libraries.String.String method)

 	get_link() (robot.model.tagstatistics.TagStatLink method)

 	get_link_path() (in module robot.utils.robotpath)

 	get_links() (robot.model.tagstatistics.TagStatInfo method)

 	get_match_count() (robot.libraries.Collections.Collections method)

 	get_matches() (robot.libraries.Collections.Collections method)

 	get_message() (robot.running.timeouts.KeywordTimeout method)

 	(robot.running.timeouts.TestTimeout method)

 	get_model() (in module robot.parsing.parser.parser)

 	get_modified_time() (robot.libraries.OperatingSystem.OperatingSystem method)

 	get_name() (robot.output.pyloggingconf.RobotHandler method)

 	get_process_id() (robot.libraries.Process.Process method)

 	get_process_object() (robot.libraries.Process.Process method)

 	get_process_result() (robot.libraries.Process.Process method)

 	get_rebot_settings() (robot.conf.settings.RobotSettings method)

 	get_regexp_matches() (robot.libraries.String.String method)

 	get_resource_model() (in module robot.parsing.parser.parser)

 	get_resource_tokens() (in module robot.parsing.lexer.lexer)

 	get_runner() (robot.running.namespace.KeywordStore method)

 	(robot.running.namespace.Namespace method)

 	get_selection_from_user() (in module robot.libraries.Dialogs)

 	get_selections_from_user() (in module robot.libraries.Dialogs)

 	get_slice_from_list() (robot.libraries.Collections.Collections method)

 	get_socket() (robot.libraries.Telnet.TelnetConnection method)

 	get_stat() (robot.model.tagstatistics.TagStatInfo method)

 	get_substring() (robot.libraries.String.String method)

 	get_system_encoding() (in module robot.utils.encodingsniffer)

 	get_time() (in module robot.utils.robottime)

 	(robot.libraries.BuiltIn.BuiltIn method)

 	get_timestamp() (in module robot.utils.robottime)

 	(robot.utils.robottime.TimestampCache method)

 	get_token() (robot.parsing.model.statements.Arguments method)

 	(robot.parsing.model.statements.Comment method)

 	(robot.parsing.model.statements.CommentSectionHeader method)

 	(robot.parsing.model.statements.DefaultTags method)

 	(robot.parsing.model.statements.Documentation method)

 	(robot.parsing.model.statements.DocumentationOrMetadata method)

 	(robot.parsing.model.statements.EmptyLine method)

 	(robot.parsing.model.statements.End method)

 	(robot.parsing.model.statements.Error method)

 	(robot.parsing.model.statements.Fixture method)

 	(robot.parsing.model.statements.ForLoopHeader method)

 	(robot.parsing.model.statements.ForceTags method)

 	(robot.parsing.model.statements.KeywordCall method)

 	(robot.parsing.model.statements.KeywordName method)

 	(robot.parsing.model.statements.KeywordSectionHeader method)

 	(robot.parsing.model.statements.LibraryImport method)

 	(robot.parsing.model.statements.Metadata method)

 	(robot.parsing.model.statements.MultiValue method)

 	(robot.parsing.model.statements.ResourceImport method)

 	(robot.parsing.model.statements.Return method)

 	(robot.parsing.model.statements.SectionHeader method)

 	(robot.parsing.model.statements.SettingSectionHeader method)

 	(robot.parsing.model.statements.Setup method)

 	(robot.parsing.model.statements.SingleValue method)

 	(robot.parsing.model.statements.Statement method)

 	(robot.parsing.model.statements.SuiteSetup method)

 	(robot.parsing.model.statements.SuiteTeardown method)

 	(robot.parsing.model.statements.Tags method)

 	(robot.parsing.model.statements.Teardown method)

 	(robot.parsing.model.statements.Template method)

 	(robot.parsing.model.statements.TemplateArguments method)

 	(robot.parsing.model.statements.TestCaseName method)

 	(robot.parsing.model.statements.TestCaseSectionHeader method)

 	(robot.parsing.model.statements.TestSetup method)

 	(robot.parsing.model.statements.TestTeardown method)

 	(robot.parsing.model.statements.TestTemplate method)

 	(robot.parsing.model.statements.TestTimeout method)

 	(robot.parsing.model.statements.Timeout method)

 	(robot.parsing.model.statements.Variable method)

 	(robot.parsing.model.statements.VariableSectionHeader method)

 	(robot.parsing.model.statements.VariablesImport method)

 	get_tokens() (in module robot.parsing.lexer.lexer)

 	(robot.parsing.lexer.lexer.Lexer method)

 	(robot.parsing.model.statements.Arguments method)

 	(robot.parsing.model.statements.Comment method)

 	(robot.parsing.model.statements.CommentSectionHeader method)

 	(robot.parsing.model.statements.DefaultTags method)

 	(robot.parsing.model.statements.Documentation method)

 	(robot.parsing.model.statements.DocumentationOrMetadata method)

 	(robot.parsing.model.statements.EmptyLine method)

 	(robot.parsing.model.statements.End method)

 	(robot.parsing.model.statements.Error method)

 	(robot.parsing.model.statements.Fixture method)

 	(robot.parsing.model.statements.ForLoopHeader method)

 	(robot.parsing.model.statements.ForceTags method)

 	(robot.parsing.model.statements.KeywordCall method)

 	(robot.parsing.model.statements.KeywordName method)

 	(robot.parsing.model.statements.KeywordSectionHeader method)

 	(robot.parsing.model.statements.LibraryImport method)

 	(robot.parsing.model.statements.Metadata method)

 	(robot.parsing.model.statements.MultiValue method)

 	(robot.parsing.model.statements.ResourceImport method)

 	(robot.parsing.model.statements.Return method)

 	(robot.parsing.model.statements.SectionHeader method)

 	(robot.parsing.model.statements.SettingSectionHeader method)

 	(robot.parsing.model.statements.Setup method)

 	(robot.parsing.model.statements.SingleValue method)

 	(robot.parsing.model.statements.Statement method)

 	(robot.parsing.model.statements.SuiteSetup method)

 	(robot.parsing.model.statements.SuiteTeardown method)

 	(robot.parsing.model.statements.Tags method)

 	(robot.parsing.model.statements.Teardown method)

 	(robot.parsing.model.statements.Template method)

 	(robot.parsing.model.statements.TemplateArguments method)

 	(robot.parsing.model.statements.TestCaseName method)

 	(robot.parsing.model.statements.TestCaseSectionHeader method)

 	(robot.parsing.model.statements.TestSetup method)

 	(robot.parsing.model.statements.TestTeardown method)

 	(robot.parsing.model.statements.TestTemplate method)

 	(robot.parsing.model.statements.TestTimeout method)

 	(robot.parsing.model.statements.Timeout method)

 	(robot.parsing.model.statements.Variable method)

 	(robot.parsing.model.statements.VariableSectionHeader method)

 	(robot.parsing.model.statements.VariablesImport method)

 	
 	get_value() (robot.parsing.model.statements.Arguments method)

 	(robot.parsing.model.statements.Comment method)

 	(robot.parsing.model.statements.CommentSectionHeader method)

 	(robot.parsing.model.statements.DefaultTags method)

 	(robot.parsing.model.statements.Documentation method)

 	(robot.parsing.model.statements.DocumentationOrMetadata method)

 	(robot.parsing.model.statements.EmptyLine method)

 	(robot.parsing.model.statements.End method)

 	(robot.parsing.model.statements.Error method)

 	(robot.parsing.model.statements.Fixture method)

 	(robot.parsing.model.statements.ForLoopHeader method)

 	(robot.parsing.model.statements.ForceTags method)

 	(robot.parsing.model.statements.KeywordCall method)

 	(robot.parsing.model.statements.KeywordName method)

 	(robot.parsing.model.statements.KeywordSectionHeader method)

 	(robot.parsing.model.statements.LibraryImport method)

 	(robot.parsing.model.statements.Metadata method)

 	(robot.parsing.model.statements.MultiValue method)

 	(robot.parsing.model.statements.ResourceImport method)

 	(robot.parsing.model.statements.Return method)

 	(robot.parsing.model.statements.SectionHeader method)

 	(robot.parsing.model.statements.SettingSectionHeader method)

 	(robot.parsing.model.statements.Setup method)

 	(robot.parsing.model.statements.SingleValue method)

 	(robot.parsing.model.statements.Statement method)

 	(robot.parsing.model.statements.SuiteSetup method)

 	(robot.parsing.model.statements.SuiteTeardown method)

 	(robot.parsing.model.statements.Tags method)

 	(robot.parsing.model.statements.Teardown method)

 	(robot.parsing.model.statements.Template method)

 	(robot.parsing.model.statements.TemplateArguments method)

 	(robot.parsing.model.statements.TestCaseName method)

 	(robot.parsing.model.statements.TestCaseSectionHeader method)

 	(robot.parsing.model.statements.TestSetup method)

 	(robot.parsing.model.statements.TestTeardown method)

 	(robot.parsing.model.statements.TestTemplate method)

 	(robot.parsing.model.statements.TestTimeout method)

 	(robot.parsing.model.statements.Timeout method)

 	(robot.parsing.model.statements.Variable method)

 	(robot.parsing.model.statements.VariableSectionHeader method)

 	(robot.parsing.model.statements.VariablesImport method)

 	get_value_from_user() (in module robot.libraries.Dialogs)

 	get_values() (robot.parsing.model.statements.Arguments method)

 	(robot.parsing.model.statements.Comment method)

 	(robot.parsing.model.statements.CommentSectionHeader method)

 	(robot.parsing.model.statements.DefaultTags method)

 	(robot.parsing.model.statements.Documentation method)

 	(robot.parsing.model.statements.DocumentationOrMetadata method)

 	(robot.parsing.model.statements.EmptyLine method)

 	(robot.parsing.model.statements.End method)

 	(robot.parsing.model.statements.Error method)

 	(robot.parsing.model.statements.Fixture method)

 	(robot.parsing.model.statements.ForLoopHeader method)

 	(robot.parsing.model.statements.ForceTags method)

 	(robot.parsing.model.statements.KeywordCall method)

 	(robot.parsing.model.statements.KeywordName method)

 	(robot.parsing.model.statements.KeywordSectionHeader method)

 	(robot.parsing.model.statements.LibraryImport method)

 	(robot.parsing.model.statements.Metadata method)

 	(robot.parsing.model.statements.MultiValue method)

 	(robot.parsing.model.statements.ResourceImport method)

 	(robot.parsing.model.statements.Return method)

 	(robot.parsing.model.statements.SectionHeader method)

 	(robot.parsing.model.statements.SettingSectionHeader method)

 	(robot.parsing.model.statements.Setup method)

 	(robot.parsing.model.statements.SingleValue method)

 	(robot.parsing.model.statements.Statement method)

 	(robot.parsing.model.statements.SuiteSetup method)

 	(robot.parsing.model.statements.SuiteTeardown method)

 	(robot.parsing.model.statements.Tags method)

 	(robot.parsing.model.statements.Teardown method)

 	(robot.parsing.model.statements.Template method)

 	(robot.parsing.model.statements.TemplateArguments method)

 	(robot.parsing.model.statements.TestCaseName method)

 	(robot.parsing.model.statements.TestCaseSectionHeader method)

 	(robot.parsing.model.statements.TestSetup method)

 	(robot.parsing.model.statements.TestTeardown method)

 	(robot.parsing.model.statements.TestTemplate method)

 	(robot.parsing.model.statements.TestTimeout method)

 	(robot.parsing.model.statements.Timeout method)

 	(robot.parsing.model.statements.Variable method)

 	(robot.parsing.model.statements.VariableSectionHeader method)

 	(robot.parsing.model.statements.VariablesImport method)

 	get_variable_value() (robot.libraries.BuiltIn.BuiltIn method)

 	get_variables() (robot.libraries.BuiltIn.BuiltIn method)

 	get_version() (in module robot.version)

 	getboolean() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	getdoc() (in module robot.utils.text)

 	getdouble (robot.libraries.dialogs_py.InputDialog attribute)

 	(robot.libraries.dialogs_py.MessageDialog attribute)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog attribute)

 	(robot.libraries.dialogs_py.PassFailDialog attribute)

 	(robot.libraries.dialogs_py.SelectionDialog attribute)

 	getfullargspec() (in module robot.running.arguments.argumentparser)

 	getint (robot.libraries.dialogs_py.InputDialog attribute)

 	(robot.libraries.dialogs_py.MessageDialog attribute)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog attribute)

 	(robot.libraries.dialogs_py.PassFailDialog attribute)

 	(robot.libraries.dialogs_py.SelectionDialog attribute)

 	GetKeywordArguments (class in robot.running.dynamicmethods)

 	GetKeywordDocumentation (class in robot.running.dynamicmethods)

 	GetKeywordNames (class in robot.running.dynamicmethods)

 	GetKeywordSource (class in robot.running.dynamicmethods)

 	GetKeywordTags (class in robot.running.dynamicmethods)

 	GetKeywordTypes (class in robot.running.dynamicmethods)

 	getparser() (robot.libraries.Remote.TimeoutHTTPSTransport method)

 	(robot.libraries.Remote.TimeoutHTTPTransport method)

 	getshortdoc() (in module robot.utils.text)

 	getvar() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	glob_escape() (in module robot.utils.escaping)

 	GlobalScope (class in robot.running.libraryscopes)

 	GlobalVariables (class in robot.variables.scopes)

 	grab_current() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	grab_release() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	grab_set() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	grab_set_global() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	grab_status() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	green() (robot.output.console.highlighting.AnsiHighlighter method)

 	(robot.output.console.highlighting.DosHighlighter method)

 	(robot.output.console.highlighting.NoHighlighting method)

 	grep_file() (robot.libraries.OperatingSystem.OperatingSystem method)

 	grid() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	grid_bbox() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	grid_columnconfigure() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	grid_location() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	grid_propagate() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	grid_rowconfigure() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	grid_size() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	grid_slaves() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	group() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

H

 	
 	handle() (robot.output.pyloggingconf.RobotHandler method)

 	(robot.running.arguments.argumentresolver.DictToKwargs method)

 	handle_imports() (robot.running.namespace.Namespace method)

 	handle_suite_teardown_failures() (robot.result.executionresult.CombinedResult method)

 	(robot.result.executionresult.Result method)

 	(robot.result.model.TestSuite method)

 	handleError() (robot.output.pyloggingconf.RobotHandler method)

 	Handler() (in module robot.running.handlers)

 	HandlerExecutionFailed

 	HandlerStore (class in robot.running.handlerstore)

 	handles() (robot.htmldata.htmlfilewriter.CssFileWriter method)

 	(robot.htmldata.htmlfilewriter.GeneratorWriter method)

 	(robot.htmldata.htmlfilewriter.JsFileWriter method)

 	(robot.htmldata.htmlfilewriter.LineWriter method)

 	(robot.htmldata.htmlfilewriter.ModelWriter method)

 	(robot.htmldata.jsonwriter.DictDumper method)

 	(robot.htmldata.jsonwriter.IntegerDumper method)

 	(robot.htmldata.jsonwriter.MappingDumper method)

 	(robot.htmldata.jsonwriter.NoneDumper method)

 	(robot.htmldata.jsonwriter.StringDumper method)

 	(robot.htmldata.jsonwriter.TupleListDumper method)

 	(robot.libdocpkg.consoleviewer.ConsoleViewer class method)

 	(robot.libdocpkg.htmlwriter.LibdocModelWriter method)

 	(robot.parsing.lexer.blocklexers.BlockLexer method)

 	(robot.parsing.lexer.blocklexers.CommentSectionLexer method)

 	(robot.parsing.lexer.blocklexers.ErrorSectionLexer method)

 	(robot.parsing.lexer.blocklexers.FileLexer method)

 	(robot.parsing.lexer.blocklexers.ForLoopLexer method)

 	(robot.parsing.lexer.blocklexers.ImplicitCommentSectionLexer method)

 	(robot.parsing.lexer.blocklexers.KeywordLexer method)

 	(robot.parsing.lexer.blocklexers.KeywordSectionLexer method)

 	(robot.parsing.lexer.blocklexers.SectionLexer method)

 	(robot.parsing.lexer.blocklexers.SettingSectionLexer method)

 	(robot.parsing.lexer.blocklexers.TestCaseLexer method)

 	(robot.parsing.lexer.blocklexers.TestCaseSectionLexer method)

 	(robot.parsing.lexer.blocklexers.TestOrKeywordLexer method)

 	(robot.parsing.lexer.blocklexers.VariableSectionLexer method)

 	(robot.parsing.lexer.statementlexers.CommentLexer method)

 	(robot.parsing.lexer.statementlexers.CommentSectionHeaderLexer method)

 	(robot.parsing.lexer.statementlexers.EndLexer method)

 	(robot.parsing.lexer.statementlexers.ErrorSectionHeaderLexer method)

 	(robot.parsing.lexer.statementlexers.ForLoopHeaderLexer method)

 	(robot.parsing.lexer.statementlexers.KeywordCallLexer method)

 	(robot.parsing.lexer.statementlexers.KeywordSectionHeaderLexer method)

 	(robot.parsing.lexer.statementlexers.Lexer method)

 	(robot.parsing.lexer.statementlexers.SectionHeaderLexer method)

 	(robot.parsing.lexer.statementlexers.SettingLexer method)

 	(robot.parsing.lexer.statementlexers.SettingSectionHeaderLexer method)

 	(robot.parsing.lexer.statementlexers.StatementLexer method)

 	(robot.parsing.lexer.statementlexers.TestCaseSectionHeaderLexer method)

 	(robot.parsing.lexer.statementlexers.TestOrKeywordSettingLexer method)

 	(robot.parsing.lexer.statementlexers.VariableLexer method)

 	(robot.parsing.lexer.statementlexers.VariableSectionHeaderLexer method)

 	(robot.parsing.parser.blockparsers.ForLoopParser method)

 	(robot.parsing.parser.blockparsers.KeywordParser method)

 	(robot.parsing.parser.blockparsers.Parser method)

 	(robot.parsing.parser.blockparsers.TestCaseParser method)

 	(robot.parsing.parser.fileparser.CommentSectionParser method)

 	(robot.parsing.parser.fileparser.FileParser method)

 	(robot.parsing.parser.fileparser.ImplicitCommentSectionParser method)

 	(robot.parsing.parser.fileparser.KeywordSectionParser method)

 	(robot.parsing.parser.fileparser.SectionParser method)

 	(robot.parsing.parser.fileparser.SettingSectionParser method)

 	(robot.parsing.parser.fileparser.TestCaseSectionParser method)

 	(robot.parsing.parser.fileparser.VariableSectionParser method)

 	(robot.reporting.logreportwriters.RobotModelWriter method)

 	(robot.running.arguments.typeconverters.BooleanConverter method)

 	(robot.running.arguments.typeconverters.ByteArrayConverter method)

 	(robot.running.arguments.typeconverters.BytesConverter method)

 	(robot.running.arguments.typeconverters.DateConverter method)

 	(robot.running.arguments.typeconverters.DateTimeConverter method)

 	(robot.running.arguments.typeconverters.DecimalConverter method)

 	(robot.running.arguments.typeconverters.DictionaryConverter method)

 	(robot.running.arguments.typeconverters.EnumConverter method)

 	(robot.running.arguments.typeconverters.FloatConverter method)

 	(robot.running.arguments.typeconverters.FrozenSetConverter method)

 	(robot.running.arguments.typeconverters.IntegerConverter method)

 	(robot.running.arguments.typeconverters.ListConverter method)

 	(robot.running.arguments.typeconverters.NoneConverter method)

 	(robot.running.arguments.typeconverters.SetConverter method)

 	(robot.running.arguments.typeconverters.TimeDeltaConverter method)

 	(robot.running.arguments.typeconverters.TupleConverter method)

 	(robot.running.arguments.typeconverters.TypeConverter method)

 	(robot.testdoc.TestdocModelWriter method)

 	(robot.utils.htmlformatters.HeaderFormatter method)

 	(robot.utils.htmlformatters.LineFormatter method)

 	(robot.utils.htmlformatters.ListFormatter method)

 	(robot.utils.htmlformatters.ParagraphFormatter method)

 	(robot.utils.htmlformatters.PreformattedFormatter method)

 	(robot.utils.htmlformatters.RulerFormatter method)

 	(robot.utils.htmlformatters.TableFormatter method)

 	(robot.utils.importer.ByPathImporter method)

 	(robot.utils.importer.DottedImporter method)

 	(robot.utils.importer.NonDottedImporter method)

 	
 	has_content (robot.utils.restreader.CaptureRobotData attribute)

 	has_data() (robot.utils.restreader.RobotDataStorage method)

 	has_key() (robot.utils.dotdict.DotDict method)

 	has_tests (robot.model.testsuite.TestSuite attribute)

 	(robot.result.model.TestSuite attribute)

 	(robot.running.model.TestSuite attribute)

 	HEADER_TOKENS (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	HeaderFormatter (class in robot.utils.htmlformatters)

 	highlight() (robot.output.console.highlighting.HighlightingStream method)

 	Highlighter() (in module robot.output.console.highlighting)

 	HighlightingStream (class in robot.output.console.highlighting)

 	html (robot.model.message.Message attribute)

 	(robot.output.loggerhelper.Message attribute)

 	(robot.result.model.Message attribute)

 	html() (robot.libdocpkg.htmlwriter.DocFormatter method)

 	(robot.reporting.jsbuildingcontext.JsBuildingContext method)

 	html_escape() (in module robot.utils.markuputils)

 	html_format() (in module robot.utils.markuputils)

 	html_message (robot.model.message.Message attribute)

 	(robot.output.loggerhelper.Message attribute)

 	(robot.result.model.Message attribute)

 	HtmlFileWriter (class in robot.htmldata.htmlfilewriter)

 	HtmlFormatter (class in robot.utils.htmlformatters)

 	HtmlTemplate (class in robot.htmldata.normaltemplate)

 	HtmlWriter (class in robot.utils.markupwriters)

I

 	
 	iconbitmap() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	iconify() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	iconmask() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	iconname() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	iconposition() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	iconwindow() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	id (robot.model.keyword.Keyword attribute)

 	(robot.model.stats.SuiteStat attribute)

 	(robot.model.testcase.TestCase attribute)

 	(robot.model.testsuite.TestSuite attribute)

 	(robot.result.model.Keyword attribute)

 	(robot.result.model.TestCase attribute)

 	(robot.result.model.TestSuite attribute)

 	(robot.running.model.ForLoop attribute)

 	(robot.running.model.Keyword attribute)

 	(robot.running.model.TestCase attribute)

 	(robot.running.model.TestSuite attribute)

 	identifiers (robot.variables.finders.EmptyFinder attribute)

 	(robot.variables.finders.EnvironmentFinder attribute)

 	(robot.variables.finders.ExtendedFinder attribute)

 	(robot.variables.finders.InlinePythonFinder attribute)

 	(robot.variables.finders.NumberFinder attribute)

 	(robot.variables.finders.StoredFinder attribute)

 	ignored_dirs (robot.parsing.suitestructure.SuiteStructureBuilder attribute)

 	ignored_prefixes (robot.parsing.suitestructure.SuiteStructureBuilder attribute)

 	imag (robot.reporting.stringcache.StringIndex attribute)

 	image_names() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	image_types() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	ImplicitCommentSectionLexer (class in robot.parsing.lexer.blocklexers)

 	ImplicitCommentSectionParser (class in robot.parsing.parser.fileparser)

 	Import (class in robot.running.model)

 	import_() (robot.utils.importer.ByPathImporter method)

 	(robot.utils.importer.DottedImporter method)

 	(robot.utils.importer.NonDottedImporter method)

 	import_class_or_module() (robot.utils.importer.Importer method)

 	import_class_or_module_by_path() (robot.utils.importer.Importer method)

 	import_library() (robot.libraries.BuiltIn.BuiltIn method)

 	(robot.running.importer.Importer method)

 	(robot.running.namespace.Namespace method)

 	import_listeners() (robot.output.listeners.ListenerProxy class method)

 	import_resource() (robot.libraries.BuiltIn.BuiltIn method)

 	(robot.running.importer.Importer method)

 	(robot.running.namespace.Namespace method)

 	import_variables() (robot.libraries.BuiltIn.BuiltIn method)

 	(robot.running.namespace.Namespace method)

 	(robot.variables.filesetter.PythonImporter method)

 	(robot.variables.filesetter.YamlImporter method)

 	ImportCache (class in robot.running.importer)

 	imported() (robot.output.listeners.LibraryListeners method)

 	(robot.output.listeners.Listeners method)

 	(robot.output.logger.Logger method)

 	Importer (class in robot.running.importer)

 	(class in robot.utils.importer)

 	Imports (class in robot.running.model)

 	imports (robot.running.model.ResourceFile attribute)

 	include_suites (robot.model.filter.Filter attribute)

 	include_tags (robot.model.filter.Filter attribute)

 	include_tests (robot.model.filter.Filter attribute)

 	index() (robot.model.itemlist.ItemList method)

 	(robot.model.keyword.Keywords method)

 	(robot.model.message.Messages method)

 	(robot.model.testcase.TestCases method)

 	(robot.model.testsuite.TestSuites method)

 	(robot.running.model.Imports method)

 	info (robot.model.stats.CombinedTagStat attribute)

 	(robot.model.stats.CriticalTagStat attribute)

 	(robot.model.stats.TagStat attribute)

 	info() (in module robot.api.logger)

 	(in module robot.output.librarylogger)

 	(robot.output.console.verbose.VerboseWriter method)

 	(robot.output.filelogger.FileLogger method)

 	(robot.output.logger.Logger method)

 	(robot.output.loggerhelper.AbstractLogger method)

 	(robot.output.output.Output method)

 	(robot.utils.application.DefaultLogger method)

 	(robot.utils.restreader.CaptureRobotData method)

 	Information

 	
 	InitFileContext (class in robot.parsing.lexer.context)

 	InitFileSections (class in robot.parsing.lexer.sections)

 	InitFileSettings (class in robot.parsing.lexer.settings)

 	InitHandler() (in module robot.running.handlers)

 	InlinePythonFinder (class in robot.variables.finders)

 	inplace() (robot.tidy.Tidy method)

 	input() (robot.parsing.lexer.blocklexers.BlockLexer method)

 	(robot.parsing.lexer.blocklexers.CommentSectionLexer method)

 	(robot.parsing.lexer.blocklexers.ErrorSectionLexer method)

 	(robot.parsing.lexer.blocklexers.FileLexer method)

 	(robot.parsing.lexer.blocklexers.ForLoopLexer method)

 	(robot.parsing.lexer.blocklexers.ImplicitCommentSectionLexer method)

 	(robot.parsing.lexer.blocklexers.KeywordLexer method)

 	(robot.parsing.lexer.blocklexers.KeywordSectionLexer method)

 	(robot.parsing.lexer.blocklexers.SectionLexer method)

 	(robot.parsing.lexer.blocklexers.SettingSectionLexer method)

 	(robot.parsing.lexer.blocklexers.TestCaseLexer method)

 	(robot.parsing.lexer.blocklexers.TestCaseSectionLexer method)

 	(robot.parsing.lexer.blocklexers.TestOrKeywordLexer method)

 	(robot.parsing.lexer.blocklexers.VariableSectionLexer method)

 	(robot.parsing.lexer.lexer.Lexer method)

 	(robot.parsing.lexer.statementlexers.CommentLexer method)

 	(robot.parsing.lexer.statementlexers.CommentSectionHeaderLexer method)

 	(robot.parsing.lexer.statementlexers.EndLexer method)

 	(robot.parsing.lexer.statementlexers.ErrorSectionHeaderLexer method)

 	(robot.parsing.lexer.statementlexers.ForLoopHeaderLexer method)

 	(robot.parsing.lexer.statementlexers.KeywordCallLexer method)

 	(robot.parsing.lexer.statementlexers.KeywordSectionHeaderLexer method)

 	(robot.parsing.lexer.statementlexers.Lexer method)

 	(robot.parsing.lexer.statementlexers.SectionHeaderLexer method)

 	(robot.parsing.lexer.statementlexers.SettingLexer method)

 	(robot.parsing.lexer.statementlexers.SettingSectionHeaderLexer method)

 	(robot.parsing.lexer.statementlexers.StatementLexer method)

 	(robot.parsing.lexer.statementlexers.TestCaseSectionHeaderLexer method)

 	(robot.parsing.lexer.statementlexers.TestOrKeywordSettingLexer method)

 	(robot.parsing.lexer.statementlexers.VariableLexer method)

 	(robot.parsing.lexer.statementlexers.VariableSectionHeaderLexer method)

 	InputDialog (class in robot.libraries.dialogs_py)

 	insert() (robot.model.itemlist.ItemList method)

 	(robot.model.keyword.Keywords method)

 	(robot.model.message.Messages method)

 	(robot.model.testcase.TestCases method)

 	(robot.model.testsuite.TestSuites method)

 	(robot.running.model.Imports method)

 	insert_into_list() (robot.libraries.Collections.Collections method)

 	IntegerConverter (class in robot.running.arguments.typeconverters)

 	IntegerDumper (class in robot.htmldata.jsonwriter)

 	interact() (robot.libraries.Telnet.TelnetConnection method)

 	INTERNAL_UPDATE_FREQUENCY (robot.libraries.Telnet.TelnetConnection attribute)

 	invalidate_import_caches() (in module robot.utils.importer)

 	is_assign() (in module robot.variables.search)

 	(robot.variables.search.VariableMatch method)

 	is_bytes() (in module robot.utils.robottypes2)

 	is_dict_assign() (in module robot.variables.search)

 	(robot.variables.search.VariableMatch method)

 	is_dict_like() (in module robot.utils.robottypes2)

 	is_dict_var() (in module robot.variables)

 	is_dict_variable() (in module robot.variables.search)

 	(robot.variables.search.VariableMatch method)

 	is_directory (robot.parsing.suitestructure.SuiteStructure attribute)

 	is_falsy() (in module robot.utils.robottypes)

 	is_global (robot.running.libraryscopes.GlobalScope attribute)

 	(robot.running.libraryscopes.TestCaseScope attribute)

 	(robot.running.libraryscopes.TestSuiteScope attribute)

 	is_integer() (in module robot.utils.robottypes2)

 	is_java_init() (in module robot.utils.robotinspect)

 	is_java_method() (in module robot.utils.robotinspect)

 	is_list_assign() (in module robot.variables.search)

 	(robot.variables.search.VariableMatch method)

 	is_list_like() (in module robot.utils.robottypes2)

 	is_list_var() (in module robot.variables)

 	is_list_variable() (in module robot.variables.search)

 	(robot.variables.search.VariableMatch method)

 	is_number() (in module robot.utils.robottypes2)

 	is_pathlike() (in module robot.utils.robottypes2)

 	is_process_running() (robot.libraries.Process.Process method)

 	is_scalar_assign() (in module robot.variables.search)

 	(robot.variables.search.VariableMatch method)

 	is_scalar_var() (in module robot.variables)

 	is_scalar_variable() (in module robot.variables.search)

 	(robot.variables.search.VariableMatch method)

 	is_string() (in module robot.utils.robottypes2)

 	is_truthy() (in module robot.utils.robottypes)

 	is_unicode() (in module robot.utils.robottypes2)

 	is_var() (in module robot.variables)

 	is_variable() (in module robot.variables.search)

 	(robot.variables.search.VariableMatch method)

 	isatty() (in module robot.utils.compat)

 	IsLogged (class in robot.output.loggerhelper)

 	isreadable() (robot.utils.unic.PrettyRepr method)

 	isrecursive() (robot.utils.unic.PrettyRepr method)

 	item_state() (robot.variables.search.VariableSearcher method)

 	ItemList (class in robot.model.itemlist)

 	items() (robot.model.metadata.Metadata method)

 	(robot.utils.dotdict.DotDict method)

 	(robot.utils.normalizing.NormalizedDict method)

 	(robot.variables.evaluation.EvaluationNamespace method)

 	iteritems() (robot.model.metadata.Metadata method)

 	(robot.utils.dotdict.DotDict method)

 	(robot.utils.normalizing.NormalizedDict method)

 	(robot.variables.evaluation.EvaluationNamespace method)

 	iterkeys() (robot.model.metadata.Metadata method)

 	(robot.utils.dotdict.DotDict method)

 	(robot.utils.normalizing.NormalizedDict method)

 	(robot.variables.evaluation.EvaluationNamespace method)

 	itervalues() (robot.model.metadata.Metadata method)

 	(robot.utils.dotdict.DotDict method)

 	(robot.utils.normalizing.NormalizedDict method)

 	(robot.variables.evaluation.EvaluationNamespace method)

J

 	
 	JavaArgumentParser (class in robot.running.arguments.argumentparser)

 	JavaCapturer (class in robot.running.outputcapture)

 	JavaDocBuilder (class in robot.libdocpkg.javabuilder)

 	JavaDocBuilder() (in module robot.libdocpkg.builder)

 	JavaErrorDetails (class in robot.utils.error)

 	join_command_line() (robot.libraries.Process.Process method)

 	join_path() (robot.libraries.OperatingSystem.OperatingSystem method)

 	join_paths() (robot.libraries.OperatingSystem.OperatingSystem method)

 	js_result (robot.reporting.resultwriter.Results attribute)

 	
 	JsBuildingContext (class in robot.reporting.jsbuildingcontext)

 	JsExecutionResult (class in robot.reporting.jsexecutionresult)

 	JsFileWriter (class in robot.htmldata.htmlfilewriter)

 	JsModelBuilder (class in robot.reporting.jsmodelbuilders)

 	JsonConverter (class in robot.libdocpkg.htmlwriter)

 	(class in robot.testdoc)

 	JsonDumper (class in robot.htmldata.jsonwriter)

 	JsonWriter (class in robot.htmldata.jsonwriter)

 	JsResultWriter (class in robot.reporting.jswriter)

K

 	
 	keep_in_dictionary() (robot.libraries.Collections.Collections method)

 	keys() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	(robot.model.metadata.Metadata method)

 	(robot.utils.dotdict.DotDict method)

 	(robot.utils.normalizing.NormalizedDict method)

 	(robot.variables.evaluation.EvaluationNamespace method)

 	Keyword (class in robot.model.keyword)

 	(class in robot.parsing.model.blocks)

 	(class in robot.result.model)

 	(class in robot.running.model)

 	KEYWORD (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	keyword (robot.parsing.model.statements.KeywordCall attribute)

 	keyword() (in module robot.api.deco)

 	(robot.parsing.lexer.sections.InitFileSections method)

 	(robot.parsing.lexer.sections.ResourceFileSections method)

 	(robot.parsing.lexer.sections.Sections method)

 	(robot.parsing.lexer.sections.TestCaseFileSections method)

 	keyword_class (robot.model.keyword.Keyword attribute)

 	(robot.model.testcase.TestCase attribute)

 	(robot.model.testsuite.TestSuite attribute)

 	(robot.result.model.Keyword attribute)

 	(robot.result.model.TestCase attribute)

 	(robot.result.model.TestSuite attribute)

 	(robot.running.model.ForLoop attribute)

 	(robot.running.model.Keyword attribute)

 	(robot.running.model.TestCase attribute)

 	(robot.running.model.TestSuite attribute)

 	keyword_context() (robot.parsing.lexer.context.FileContext method)

 	(robot.parsing.lexer.context.InitFileContext method)

 	(robot.parsing.lexer.context.ResourceFileContext method)

 	(robot.parsing.lexer.context.TestCaseFileContext method)

 	KEYWORD_HEADER (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	keyword_marker() (robot.output.console.verbose.VerboseWriter method)

 	keyword_markers (robot.parsing.lexer.sections.InitFileSections attribute)

 	(robot.parsing.lexer.sections.ResourceFileSections attribute)

 	(robot.parsing.lexer.sections.Sections attribute)

 	(robot.parsing.lexer.sections.TestCaseFileSections attribute)

 	KEYWORD_NAME (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	keyword_section() (robot.parsing.lexer.context.FileContext method)

 	(robot.parsing.lexer.context.InitFileContext method)

 	(robot.parsing.lexer.context.ResourceFileContext method)

 	(robot.parsing.lexer.context.TestCaseFileContext method)

 	
 	keyword_should_exist() (robot.libraries.BuiltIn.BuiltIn method)

 	keyword_timeout (robot.errors.TimeoutError attribute)

 	KEYWORD_TYPE (robot.model.keyword.Keyword attribute)

 	(robot.result.model.Keyword attribute)

 	(robot.running.model.ForLoop attribute)

 	(robot.running.model.Keyword attribute)

 	KeywordBuilder (class in robot.reporting.jsmodelbuilders)

 	(class in robot.running.builder.transformers)

 	KeywordCall (class in robot.parsing.model.statements)

 	KeywordCallLexer (class in robot.parsing.lexer.statementlexers)

 	KeywordCallTemplate (class in robot.running.arguments.argumentmapper)

 	KeywordContext (class in robot.parsing.lexer.context)

 	KeywordDoc (class in robot.libdocpkg.model)

 	KeywordDocBuilder (class in robot.libdocpkg.robotbuilder)

 	KeywordError

 	KeywordHandler (class in robot.result.xmlelementhandlers)

 	KeywordLexer (class in robot.parsing.lexer.blocklexers)

 	KeywordMarker (class in robot.output.console.verbose)

 	KeywordMatcher (class in robot.libdocpkg.consoleviewer)

 	KeywordName (class in robot.parsing.model.statements)

 	KeywordParser (class in robot.parsing.parser.blockparsers)

 	KeywordRecommendationFinder (class in robot.running.namespace)

 	KeywordRemover() (in module robot.result.keywordremover)

 	Keywords (class in robot.model.keyword)

 	keywords (robot.libdocpkg.model.LibraryDoc attribute)

 	(robot.model.keyword.Keyword attribute)

 	(robot.model.testcase.TestCase attribute)

 	(robot.model.testsuite.TestSuite attribute)

 	(robot.result.model.Keyword attribute)

 	(robot.result.model.TestCase attribute)

 	(robot.result.model.TestSuite attribute)

 	(robot.running.model.ForLoop attribute)

 	(robot.running.model.Keyword attribute)

 	(robot.running.model.ResourceFile attribute)

 	(robot.running.model.TestCase attribute)

 	(robot.running.model.TestSuite attribute)

 	(robot.running.model.UserKeyword attribute)

 	KeywordSection (class in robot.parsing.model.blocks)

 	KeywordSectionHeader (class in robot.parsing.model.statements)

 	KeywordSectionHeaderLexer (class in robot.parsing.lexer.statementlexers)

 	KeywordSectionLexer (class in robot.parsing.lexer.blocklexers)

 	KeywordSectionParser (class in robot.parsing.parser.fileparser)

 	KeywordSettings (class in robot.parsing.lexer.settings)

 	KeywordStatusHandler (class in robot.result.xmlelementhandlers)

 	KeywordStore (class in robot.running.namespace)

 	KeywordTimeout (class in robot.running.timeouts)

 	KILL_TIMEOUT (robot.libraries.Process.Process attribute)

 	kwname (robot.result.model.Keyword attribute)

L

 	
 	LastStatementFinder (class in robot.parsing.model.blocks)

 	length_should_be() (robot.libraries.BuiltIn.BuiltIn method)

 	level (robot.model.message.Message attribute)

 	(robot.output.loggerhelper.Message attribute)

 	(robot.result.model.Message attribute)

 	lex() (robot.parsing.lexer.blocklexers.BlockLexer method)

 	(robot.parsing.lexer.blocklexers.CommentSectionLexer method)

 	(robot.parsing.lexer.blocklexers.ErrorSectionLexer method)

 	(robot.parsing.lexer.blocklexers.FileLexer method)

 	(robot.parsing.lexer.blocklexers.ForLoopLexer method)

 	(robot.parsing.lexer.blocklexers.ImplicitCommentSectionLexer method)

 	(robot.parsing.lexer.blocklexers.KeywordLexer method)

 	(robot.parsing.lexer.blocklexers.KeywordSectionLexer method)

 	(robot.parsing.lexer.blocklexers.SectionLexer method)

 	(robot.parsing.lexer.blocklexers.SettingSectionLexer method)

 	(robot.parsing.lexer.blocklexers.TestCaseLexer method)

 	(robot.parsing.lexer.blocklexers.TestCaseSectionLexer method)

 	(robot.parsing.lexer.blocklexers.TestOrKeywordLexer method)

 	(robot.parsing.lexer.blocklexers.VariableSectionLexer method)

 	(robot.parsing.lexer.settings.InitFileSettings method)

 	(robot.parsing.lexer.settings.KeywordSettings method)

 	(robot.parsing.lexer.settings.ResourceFileSettings method)

 	(robot.parsing.lexer.settings.Settings method)

 	(robot.parsing.lexer.settings.TestCaseFileSettings method)

 	(robot.parsing.lexer.settings.TestCaseSettings method)

 	(robot.parsing.lexer.statementlexers.CommentLexer method)

 	(robot.parsing.lexer.statementlexers.CommentSectionHeaderLexer method)

 	(robot.parsing.lexer.statementlexers.EndLexer method)

 	(robot.parsing.lexer.statementlexers.ErrorSectionHeaderLexer method)

 	(robot.parsing.lexer.statementlexers.ForLoopHeaderLexer method)

 	(robot.parsing.lexer.statementlexers.KeywordCallLexer method)

 	(robot.parsing.lexer.statementlexers.KeywordSectionHeaderLexer method)

 	(robot.parsing.lexer.statementlexers.Lexer method)

 	(robot.parsing.lexer.statementlexers.SectionHeaderLexer method)

 	(robot.parsing.lexer.statementlexers.SettingLexer method)

 	(robot.parsing.lexer.statementlexers.SettingSectionHeaderLexer method)

 	(robot.parsing.lexer.statementlexers.StatementLexer method)

 	(robot.parsing.lexer.statementlexers.TestCaseSectionHeaderLexer method)

 	(robot.parsing.lexer.statementlexers.TestOrKeywordSettingLexer method)

 	(robot.parsing.lexer.statementlexers.VariableLexer method)

 	(robot.parsing.lexer.statementlexers.VariableSectionHeaderLexer method)

 	lex_invalid() (robot.parsing.lexer.sections.InitFileSections method)

 	(robot.parsing.lexer.sections.ResourceFileSections method)

 	(robot.parsing.lexer.sections.Sections method)

 	(robot.parsing.lexer.sections.TestCaseFileSections method)

 	lex_invalid_section() (robot.parsing.lexer.context.FileContext method)

 	(robot.parsing.lexer.context.InitFileContext method)

 	(robot.parsing.lexer.context.ResourceFileContext method)

 	(robot.parsing.lexer.context.TestCaseFileContext method)

 	lex_setting() (robot.parsing.lexer.context.FileContext method)

 	(robot.parsing.lexer.context.InitFileContext method)

 	(robot.parsing.lexer.context.KeywordContext method)

 	(robot.parsing.lexer.context.LexingContext method)

 	(robot.parsing.lexer.context.ResourceFileContext method)

 	(robot.parsing.lexer.context.TestCaseContext method)

 	(robot.parsing.lexer.context.TestCaseFileContext method)

 	Lexer (class in robot.parsing.lexer.lexer)

 	(class in robot.parsing.lexer.statementlexers)

 	lexer_classes() (robot.parsing.lexer.blocklexers.BlockLexer method)

 	(robot.parsing.lexer.blocklexers.CommentSectionLexer method)

 	(robot.parsing.lexer.blocklexers.ErrorSectionLexer method)

 	(robot.parsing.lexer.blocklexers.FileLexer method)

 	(robot.parsing.lexer.blocklexers.ForLoopLexer method)

 	(robot.parsing.lexer.blocklexers.ImplicitCommentSectionLexer method)

 	(robot.parsing.lexer.blocklexers.KeywordLexer method)

 	(robot.parsing.lexer.blocklexers.KeywordSectionLexer method)

 	(robot.parsing.lexer.blocklexers.SectionLexer method)

 	(robot.parsing.lexer.blocklexers.SettingSectionLexer method)

 	(robot.parsing.lexer.blocklexers.TestCaseLexer method)

 	(robot.parsing.lexer.blocklexers.TestCaseSectionLexer method)

 	(robot.parsing.lexer.blocklexers.TestOrKeywordLexer method)

 	(robot.parsing.lexer.blocklexers.VariableSectionLexer method)

 	lexer_for() (robot.parsing.lexer.blocklexers.BlockLexer method)

 	(robot.parsing.lexer.blocklexers.CommentSectionLexer method)

 	(robot.parsing.lexer.blocklexers.ErrorSectionLexer method)

 	(robot.parsing.lexer.blocklexers.FileLexer method)

 	(robot.parsing.lexer.blocklexers.ForLoopLexer method)

 	(robot.parsing.lexer.blocklexers.ImplicitCommentSectionLexer method)

 	(robot.parsing.lexer.blocklexers.KeywordLexer method)

 	(robot.parsing.lexer.blocklexers.KeywordSectionLexer method)

 	(robot.parsing.lexer.blocklexers.SectionLexer method)

 	(robot.parsing.lexer.blocklexers.SettingSectionLexer method)

 	(robot.parsing.lexer.blocklexers.TestCaseLexer method)

 	(robot.parsing.lexer.blocklexers.TestCaseSectionLexer method)

 	(robot.parsing.lexer.blocklexers.TestOrKeywordLexer method)

 	(robot.parsing.lexer.blocklexers.VariableSectionLexer method)

 	LexingContext (class in robot.parsing.lexer.context)

 	LibDoc (class in robot.libdoc)

 	libdoc() (in module robot.libdoc)

 	libdoc_cli() (in module robot.libdoc)

 	LibdocHtmlWriter (class in robot.libdocpkg.htmlwriter)

 	LibdocModelWriter (class in robot.libdocpkg.htmlwriter)

 	LibdocOutput (class in robot.libdocpkg.output)

 	LibdocWriter() (in module robot.libdocpkg.writer)

 	LibdocXmlWriter (class in robot.libdocpkg.xmlwriter)

 	libname (robot.result.model.Keyword attribute)

 	(robot.running.librarykeywordrunner.EmbeddedArgumentsRunner attribute)

 	(robot.running.librarykeywordrunner.LibraryKeywordRunner attribute)

 	(robot.running.librarykeywordrunner.RunKeywordRunner attribute)

 	(robot.running.userkeywordrunner.EmbeddedArgumentsRunner attribute)

 	(robot.running.userkeywordrunner.UserKeywordRunner attribute)

 	libraries (robot.running.namespace.Namespace attribute)

 	LIBRARY (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	library (robot.running.handlers.EmbeddedArgumentsHandler attribute)

 	(robot.running.librarykeywordrunner.EmbeddedArgumentsRunner attribute)

 	(robot.running.librarykeywordrunner.LibraryKeywordRunner attribute)

 	(robot.running.librarykeywordrunner.RunKeywordRunner attribute)

 	library() (in module robot.api.deco)

 	(robot.running.model.Imports method)

 	LibraryDoc (class in robot.libdocpkg.model)

 	LibraryDocBuilder (class in robot.libdocpkg.robotbuilder)

 	LibraryDocumentation() (in module robot.libdocpkg.builder)

 	LibraryImport (class in robot.parsing.model.statements)

 	LibraryKeywordRunner (class in robot.running.librarykeywordrunner)

 	LibraryListenerMethods (class in robot.output.listenermethods)

 	LibraryListeners (class in robot.output.listeners)

 	LibraryScope() (in module robot.running.libraryscopes)

 	lift() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	line_sep() (robot.tidy.ArgumentValidator method)

 	LineFormatter (class in robot.utils.htmlformatters)

 	lineno (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	(robot.parsing.model.blocks.Block attribute)

 	(robot.parsing.model.blocks.CommentSection attribute)

 	(robot.parsing.model.blocks.File attribute)

 	(robot.parsing.model.blocks.ForLoop attribute)

 	(robot.parsing.model.blocks.Keyword attribute)

 	(robot.parsing.model.blocks.KeywordSection attribute)

 	(robot.parsing.model.blocks.Section attribute)

 	(robot.parsing.model.blocks.SettingSection attribute)

 	(robot.parsing.model.blocks.TestCase attribute)

 	(robot.parsing.model.blocks.TestCaseSection attribute)

 	(robot.parsing.model.blocks.VariableSection attribute)

 	(robot.parsing.model.statements.Arguments attribute)

 	(robot.parsing.model.statements.Comment attribute)

 	(robot.parsing.model.statements.CommentSectionHeader attribute)

 	(robot.parsing.model.statements.DefaultTags attribute)

 	(robot.parsing.model.statements.Documentation attribute)

 	(robot.parsing.model.statements.DocumentationOrMetadata attribute)

 	(robot.parsing.model.statements.EmptyLine attribute)

 	(robot.parsing.model.statements.End attribute)

 	(robot.parsing.model.statements.Error attribute)

 	(robot.parsing.model.statements.Fixture attribute)

 	(robot.parsing.model.statements.ForLoopHeader attribute)

 	(robot.parsing.model.statements.ForceTags attribute)

 	(robot.parsing.model.statements.KeywordCall attribute)

 	(robot.parsing.model.statements.KeywordName attribute)

 	(robot.parsing.model.statements.KeywordSectionHeader attribute)

 	(robot.parsing.model.statements.LibraryImport attribute)

 	(robot.parsing.model.statements.Metadata attribute)

 	(robot.parsing.model.statements.MultiValue attribute)

 	(robot.parsing.model.statements.ResourceImport attribute)

 	(robot.parsing.model.statements.Return attribute)

 	(robot.parsing.model.statements.SectionHeader attribute)

 	(robot.parsing.model.statements.SettingSectionHeader attribute)

 	(robot.parsing.model.statements.Setup attribute)

 	(robot.parsing.model.statements.SingleValue attribute)

 	(robot.parsing.model.statements.Statement attribute)

 	(robot.parsing.model.statements.SuiteSetup attribute)

 	(robot.parsing.model.statements.SuiteTeardown attribute)

 	(robot.parsing.model.statements.Tags attribute)

 	(robot.parsing.model.statements.Teardown attribute)

 	(robot.parsing.model.statements.Template attribute)

 	(robot.parsing.model.statements.TemplateArguments attribute)

 	(robot.parsing.model.statements.TestCaseName attribute)

 	(robot.parsing.model.statements.TestCaseSectionHeader attribute)

 	(robot.parsing.model.statements.TestSetup attribute)

 	(robot.parsing.model.statements.TestTeardown attribute)

 	(robot.parsing.model.statements.TestTemplate attribute)

 	(robot.parsing.model.statements.TestTimeout attribute)

 	(robot.parsing.model.statements.Timeout attribute)

 	(robot.parsing.model.statements.Variable attribute)

 	(robot.parsing.model.statements.VariableSectionHeader attribute)

 	(robot.parsing.model.statements.VariablesImport attribute)

 	(robot.running.model.ForLoop attribute)

 	(robot.running.model.Keyword attribute)

 	(robot.running.model.TestCase attribute)

 	
 	lines (robot.parsing.model.statements.Arguments attribute)

 	(robot.parsing.model.statements.Comment attribute)

 	(robot.parsing.model.statements.CommentSectionHeader attribute)

 	(robot.parsing.model.statements.DefaultTags attribute)

 	(robot.parsing.model.statements.Documentation attribute)

 	(robot.parsing.model.statements.DocumentationOrMetadata attribute)

 	(robot.parsing.model.statements.EmptyLine attribute)

 	(robot.parsing.model.statements.End attribute)

 	(robot.parsing.model.statements.Error attribute)

 	(robot.parsing.model.statements.Fixture attribute)

 	(robot.parsing.model.statements.ForLoopHeader attribute)

 	(robot.parsing.model.statements.ForceTags attribute)

 	(robot.parsing.model.statements.KeywordCall attribute)

 	(robot.parsing.model.statements.KeywordName attribute)

 	(robot.parsing.model.statements.KeywordSectionHeader attribute)

 	(robot.parsing.model.statements.LibraryImport attribute)

 	(robot.parsing.model.statements.Metadata attribute)

 	(robot.parsing.model.statements.MultiValue attribute)

 	(robot.parsing.model.statements.ResourceImport attribute)

 	(robot.parsing.model.statements.Return attribute)

 	(robot.parsing.model.statements.SectionHeader attribute)

 	(robot.parsing.model.statements.SettingSectionHeader attribute)

 	(robot.parsing.model.statements.Setup attribute)

 	(robot.parsing.model.statements.SingleValue attribute)

 	(robot.parsing.model.statements.Statement attribute)

 	(robot.parsing.model.statements.SuiteSetup attribute)

 	(robot.parsing.model.statements.SuiteTeardown attribute)

 	(robot.parsing.model.statements.Tags attribute)

 	(robot.parsing.model.statements.Teardown attribute)

 	(robot.parsing.model.statements.Template attribute)

 	(robot.parsing.model.statements.TemplateArguments attribute)

 	(robot.parsing.model.statements.TestCaseName attribute)

 	(robot.parsing.model.statements.TestCaseSectionHeader attribute)

 	(robot.parsing.model.statements.TestSetup attribute)

 	(robot.parsing.model.statements.TestTeardown attribute)

 	(robot.parsing.model.statements.TestTemplate attribute)

 	(robot.parsing.model.statements.TestTimeout attribute)

 	(robot.parsing.model.statements.Timeout attribute)

 	(robot.parsing.model.statements.Variable attribute)

 	(robot.parsing.model.statements.VariableSectionHeader attribute)

 	(robot.parsing.model.statements.VariablesImport attribute)

 	LineWriter (class in robot.htmldata.htmlfilewriter)

 	link() (robot.reporting.jsbuildingcontext.JsBuildingContext method)

 	LinkFormatter (class in robot.utils.htmlformatters)

 	links (robot.model.stats.TagStat attribute)

 	list() (robot.libdocpkg.consoleviewer.ConsoleViewer method)

 	list_directories_in_directory() (robot.libraries.OperatingSystem.OperatingSystem method)

 	list_directory() (robot.libraries.OperatingSystem.OperatingSystem method)

 	list_files_in_directory() (robot.libraries.OperatingSystem.OperatingSystem method)

 	list_should_contain_sub_list() (robot.libraries.Collections.Collections method)

 	list_should_contain_value() (robot.libraries.Collections.Collections method)

 	list_should_not_contain_duplicates() (robot.libraries.Collections.Collections method)

 	list_should_not_contain_value() (robot.libraries.Collections.Collections method)

 	ListConverter (class in robot.running.arguments.typeconverters)

 	listener() (robot.libraries.Telnet.TelnetConnection method)

 	ListenerArguments (class in robot.output.listenerarguments)

 	ListenerMethod (class in robot.output.listenermethods)

 	ListenerMethods (class in robot.output.listenermethods)

 	ListenerProxy (class in robot.output.listeners)

 	Listeners (class in robot.output.listeners)

 	listeners (robot.conf.settings.RobotSettings attribute)

 	ListFormatter (class in robot.utils.htmlformatters)

 	lists_should_be_equal() (robot.libraries.Collections.Collections method)

 	ListVariableTableValue (class in robot.variables.tablesetter)

 	Location (class in robot.libraries.XML)

 	log (robot.conf.settings.RebotSettings attribute)

 	(robot.conf.settings.RobotSettings attribute)

 	log() (robot.libraries.BuiltIn.BuiltIn method)

 	log_config (robot.conf.settings.RebotSettings attribute)

 	log_dictionary() (robot.libraries.Collections.Collections method)

 	log_element() (robot.libraries.XML.XML method)

 	log_environment_variables() (robot.libraries.OperatingSystem.OperatingSystem method)

 	log_file() (robot.libraries.OperatingSystem.OperatingSystem method)

 	log_level (robot.conf.settings.RebotSettings attribute)

 	(robot.conf.settings.RobotSettings attribute)

 	log_list() (robot.libraries.Collections.Collections method)

 	log_many() (robot.libraries.BuiltIn.BuiltIn method)

 	log_message() (robot.output.listeners.LibraryListeners method)

 	(robot.output.listeners.Listeners method)

 	(robot.output.logger.Logger method)

 	(robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	log_output() (robot.output.logger.Logger method)

 	log_to_console() (robot.libraries.BuiltIn.BuiltIn method)

 	log_variables() (robot.libraries.BuiltIn.BuiltIn method)

 	Logger (class in robot.output.logger)

 	LoggerProxy (class in robot.output.logger)

 	login() (robot.libraries.Telnet.TelnetConnection method)

 	LogWriter (class in robot.reporting.logreportwriters)

 	longname (robot.model.testcase.TestCase attribute)

 	(robot.model.testsuite.TestSuite attribute)

 	(robot.result.model.TestCase attribute)

 	(robot.result.model.TestSuite attribute)

 	(robot.running.librarykeywordrunner.EmbeddedArgumentsRunner attribute)

 	(robot.running.librarykeywordrunner.LibraryKeywordRunner attribute)

 	(robot.running.librarykeywordrunner.RunKeywordRunner attribute)

 	(robot.running.model.TestCase attribute)

 	(robot.running.model.TestSuite attribute)

 	(robot.running.usererrorhandler.UserErrorHandler attribute)

 	(robot.running.userkeyword.EmbeddedArgumentsHandler attribute)

 	(robot.running.userkeyword.UserKeywordHandler attribute)

 	(robot.running.userkeywordrunner.EmbeddedArgumentsRunner attribute)

 	(robot.running.userkeywordrunner.UserKeywordRunner attribute)

 	lower() (in module robot.utils.normalizing)

 	(robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

M

 	
 	main() (robot.libdoc.LibDoc method)

 	(robot.rebot.Rebot method)

 	(robot.run.RobotFramework method)

 	(robot.testdoc.TestDoc method)

 	(robot.tidy.TidyCommandLine method)

 	(robot.utils.application.Application method)

 	mainloop() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	make_connection() (robot.libraries.Remote.TimeoutHTTPSTransport method)

 	(robot.libraries.Remote.TimeoutHTTPTransport method)

 	map() (robot.running.arguments.argumentmapper.ArgumentMapper method)

 	(robot.running.arguments.argumentspec.ArgumentSpec method)

 	MappingDumper (class in robot.htmldata.jsonwriter)

 	mark() (robot.output.console.verbose.KeywordMarker method)

 	match (robot.variables.search.VariableMatch attribute)

 	match() (robot.model.namepatterns.SuiteNamePatterns method)

 	(robot.model.namepatterns.TestNamePatterns method)

 	(robot.model.stats.CombinedTagStat method)

 	(robot.model.stats.CriticalTagStat method)

 	(robot.model.tags.AndTagPattern method)

 	(robot.model.tags.NotTagPattern method)

 	(robot.model.tags.OrTagPattern method)

 	(robot.model.tags.SingleTagPattern method)

 	(robot.model.tags.TagPatterns method)

 	(robot.model.tags.Tags method)

 	(robot.model.tagstatistics.TagStatDoc method)

 	(robot.model.tagstatistics.TagStatLink method)

 	(robot.reporting.expandkeywordmatcher.ExpandKeywordMatcher method)

 	(robot.result.flattenkeywordmatcher.FlattenByNameMatcher method)

 	(robot.result.flattenkeywordmatcher.FlattenByTagMatcher method)

 	(robot.result.flattenkeywordmatcher.FlattenByTypeMatcher method)

 	(robot.utils.htmlformatters.HeaderFormatter method)

 	(robot.utils.htmlformatters.RulerFormatter method)

 	(robot.utils.match.Matcher method)

 	(robot.utils.match.MultiMatcher method)

 	match_any() (robot.utils.match.Matcher method)

 	(robot.utils.match.MultiMatcher method)

 	Matcher (class in robot.utils.match)

 	matches() (robot.running.handlers.EmbeddedArgumentsHandler method)

 	(robot.running.userkeyword.EmbeddedArgumentsHandler method)

 	max_error_lines (robot.conf.settings.RobotSettings attribute)

 	maxargs (robot.running.arguments.argumentspec.ArgumentSpec attribute)

 	maxsize() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	merge (robot.conf.settings.RebotSettings attribute)

 	merge() (robot.result.merger.Merger method)

 	Merger (class in robot.result.merger)

 	Message (class in robot.model.message)

 	(class in robot.output.loggerhelper)

 	(class in robot.result.model)

 	message (robot.errors.ContinueForLoop attribute)

 	(robot.errors.DataError attribute)

 	(robot.errors.ExecutionFailed attribute)

 	(robot.errors.ExecutionFailures attribute)

 	(robot.errors.ExecutionPassed attribute)

 	(robot.errors.ExecutionStatus attribute)

 	(robot.errors.ExitForLoop attribute)

 	(robot.errors.FrameworkError attribute)

 	(robot.errors.HandlerExecutionFailed attribute)

 	(robot.errors.Information attribute)

 	(robot.errors.KeywordError attribute)

 	(robot.errors.PassExecution attribute)

 	(robot.errors.RemoteError attribute)

 	(robot.errors.ReturnFromKeyword attribute)

 	(robot.errors.RobotError attribute)

 	(robot.errors.TimeoutError attribute)

 	(robot.errors.UserKeywordExecutionFailed attribute)

 	(robot.errors.VariableError attribute)

 	(robot.libraries.BuiltIn.RobotNotRunningError attribute)

 	(robot.libraries.Telnet.NoMatchError attribute)

 	(robot.model.message.Message attribute)

 	(robot.model.totalstatistics.TotalStatistics attribute)

 	(robot.output.loggerhelper.Message attribute)

 	(robot.result.model.Keyword attribute)

 	(robot.result.model.Message attribute)

 	(robot.result.model.TestCase attribute)

 	(robot.result.model.TestSuite attribute)

 	(robot.running.status.ParentMessage attribute)

 	(robot.running.status.SuiteMessage attribute)

 	(robot.running.status.SuiteStatus attribute)

 	(robot.running.status.TestMessage attribute)

 	(robot.running.status.TestStatus attribute)

 	(robot.utils.error.JavaErrorDetails attribute)

 	(robot.utils.error.PythonErrorDetails attribute)

 	
 	message() (robot.output.console.dotted.DottedOutput method)

 	(robot.output.console.quiet.QuietOutput method)

 	(robot.output.console.verbose.VerboseOutput method)

 	(robot.output.console.verbose.VerboseWriter method)

 	(robot.output.filelogger.FileLogger method)

 	(robot.output.logger.Logger method)

 	(robot.output.loggerhelper.AbstractLogger method)

 	(robot.output.output.Output method)

 	(robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	message_class (robot.model.keyword.Keyword attribute)

 	(robot.result.executionerrors.ExecutionErrors attribute)

 	(robot.result.model.Keyword attribute)

 	(robot.running.model.ForLoop attribute)

 	(robot.running.model.Keyword attribute)

 	message_level() (robot.reporting.jsbuildingcontext.JsBuildingContext method)

 	MessageArguments (class in robot.output.listenerarguments)

 	MessageBuilder (class in robot.reporting.jsmodelbuilders)

 	MessageDialog (class in robot.libraries.dialogs_py)

 	MessageFilter (class in robot.result.messagefilter)

 	MessageHandler (class in robot.result.xmlelementhandlers)

 	Messages (class in robot.model.message)

 	messages (robot.model.keyword.Keyword attribute)

 	(robot.result.executionerrors.ExecutionErrors attribute)

 	(robot.result.model.Keyword attribute)

 	(robot.running.model.ForLoop attribute)

 	(robot.running.model.Keyword attribute)

 	Metadata (class in robot.model.metadata)

 	(class in robot.parsing.model.statements)

 	metadata (robot.model.testsuite.TestSuite attribute)

 	METADATA (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	metadata (robot.result.model.TestSuite attribute)

 	(robot.running.model.TestSuite attribute)

 	MetadataHandler (class in robot.result.xmlelementhandlers)

 	MetadataItemHandler (class in robot.result.xmlelementhandlers)

 	minargs (robot.running.arguments.argumentspec.ArgumentSpec attribute)

 	minsize() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	mode_and_args() (robot.tidy.ArgumentValidator method)

 	ModelCombiner (class in robot.running.runner)

 	ModelModifier (class in robot.model.modifier)

 	ModelObject (class in robot.model.modelobject)

 	ModelTransformer (class in robot.parsing.model.visitor)

 	ModelVisitor (class in robot.parsing.model.visitor)

 	ModelWriter (class in robot.htmldata.htmlfilewriter)

 	(class in robot.parsing.model.blocks)

 	move_directory() (robot.libraries.OperatingSystem.OperatingSystem method)

 	move_file() (robot.libraries.OperatingSystem.OperatingSystem method)

 	move_files() (robot.libraries.OperatingSystem.OperatingSystem method)

 	mro() (robot.utils.setter.SetterAwareType method)

 	msg() (robot.libraries.Telnet.TelnetConnection method)

 	mt_interact() (robot.libraries.Telnet.TelnetConnection method)

 	multi_use (robot.parsing.lexer.settings.InitFileSettings attribute)

 	(robot.parsing.lexer.settings.KeywordSettings attribute)

 	(robot.parsing.lexer.settings.ResourceFileSettings attribute)

 	(robot.parsing.lexer.settings.Settings attribute)

 	(robot.parsing.lexer.settings.TestCaseFileSettings attribute)

 	(robot.parsing.lexer.settings.TestCaseSettings attribute)

 	MultiMatcher (class in robot.utils.match)

 	MultipleSelectionDialog (class in robot.libraries.dialogs_py)

 	MultiValue (class in robot.parsing.model.statements)

N

 	
 	name (robot.model.keyword.Keyword attribute)

 	(robot.model.stats.Stat attribute)

 	(robot.model.testcase.TestCase attribute)

 	(robot.model.testsuite.TestSuite attribute)

 	(robot.output.pyloggingconf.RobotHandler attribute)

 	NAME (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	name (robot.parsing.model.blocks.Keyword attribute)

 	(robot.parsing.model.blocks.TestCase attribute)

 	(robot.parsing.model.statements.CommentSectionHeader attribute)

 	(robot.parsing.model.statements.Fixture attribute)

 	(robot.parsing.model.statements.KeywordName attribute)

 	(robot.parsing.model.statements.KeywordSectionHeader attribute)

 	(robot.parsing.model.statements.LibraryImport attribute)

 	(robot.parsing.model.statements.Metadata attribute)

 	(robot.parsing.model.statements.ResourceImport attribute)

 	(robot.parsing.model.statements.SectionHeader attribute)

 	(robot.parsing.model.statements.SettingSectionHeader attribute)

 	(robot.parsing.model.statements.Setup attribute)

 	(robot.parsing.model.statements.SuiteSetup attribute)

 	(robot.parsing.model.statements.SuiteTeardown attribute)

 	(robot.parsing.model.statements.Teardown attribute)

 	(robot.parsing.model.statements.TestCaseName attribute)

 	(robot.parsing.model.statements.TestCaseSectionHeader attribute)

 	(robot.parsing.model.statements.TestSetup attribute)

 	(robot.parsing.model.statements.TestTeardown attribute)

 	(robot.parsing.model.statements.Variable attribute)

 	(robot.parsing.model.statements.VariableSectionHeader attribute)

 	(robot.parsing.model.statements.VariablesImport attribute)

 	(robot.result.model.Keyword attribute)

 	(robot.result.model.TestCase attribute)

 	(robot.result.model.TestSuite attribute)

 	(robot.running.dynamicmethods.GetKeywordArguments attribute)

 	(robot.running.dynamicmethods.GetKeywordDocumentation attribute)

 	(robot.running.dynamicmethods.GetKeywordNames attribute)

 	(robot.running.dynamicmethods.GetKeywordSource attribute)

 	(robot.running.dynamicmethods.GetKeywordTags attribute)

 	(robot.running.dynamicmethods.GetKeywordTypes attribute)

 	(robot.running.dynamicmethods.RunKeyword attribute)

 	(robot.running.model.ForLoop attribute)

 	(robot.running.model.Keyword attribute)

 	(robot.running.model.TestCase attribute)

 	(robot.running.model.TestSuite attribute)

 	(robot.variables.search.VariableMatch attribute)

 	name_and_arguments (robot.parsing.lexer.settings.InitFileSettings attribute)

 	(robot.parsing.lexer.settings.KeywordSettings attribute)

 	(robot.parsing.lexer.settings.ResourceFileSettings attribute)

 	(robot.parsing.lexer.settings.Settings attribute)

 	(robot.parsing.lexer.settings.TestCaseFileSettings attribute)

 	(robot.parsing.lexer.settings.TestCaseSettings attribute)

 	name_arguments_and_with_name (robot.parsing.lexer.settings.InitFileSettings attribute)

 	(robot.parsing.lexer.settings.KeywordSettings attribute)

 	(robot.parsing.lexer.settings.ResourceFileSettings attribute)

 	(robot.parsing.lexer.settings.Settings attribute)

 	(robot.parsing.lexer.settings.TestCaseFileSettings attribute)

 	(robot.parsing.lexer.settings.TestCaseSettings attribute)

 	
 	name_type (robot.parsing.lexer.blocklexers.KeywordLexer attribute)

 	(robot.parsing.lexer.blocklexers.TestCaseLexer attribute)

 	(robot.parsing.lexer.blocklexers.TestOrKeywordLexer attribute)

 	NamedArgumentResolver (class in robot.running.arguments.argumentresolver)

 	names (robot.parsing.lexer.settings.InitFileSettings attribute)

 	(robot.parsing.lexer.settings.KeywordSettings attribute)

 	(robot.parsing.lexer.settings.ResourceFileSettings attribute)

 	(robot.parsing.lexer.settings.Settings attribute)

 	(robot.parsing.lexer.settings.TestCaseFileSettings attribute)

 	(robot.parsing.lexer.settings.TestCaseSettings attribute)

 	Namespace (class in robot.running.namespace)

 	namespaces (robot.running.context.ExecutionContexts attribute)

 	NameSpaceStripper (class in robot.libraries.XML)

 	nametowidget() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	NEW_ENVIRON_IS (robot.libraries.Telnet.TelnetConnection attribute)

 	NEW_ENVIRON_VALUE (robot.libraries.Telnet.TelnetConnection attribute)

 	NEW_ENVIRON_VAR (robot.libraries.Telnet.TelnetConnection attribute)

 	new_suite_scope() (robot.output.listenermethods.LibraryListenerMethods method)

 	(robot.output.listeners.LibraryListeners method)

 	newline (robot.utils.htmlformatters.LineFormatter attribute)

 	NewlineNormalizer (class in robot.tidypkg.transformers)

 	no_dynamic_method() (in module robot.running.dynamicmethods)

 	no_operation() (robot.libraries.BuiltIn.BuiltIn method)

 	NoConnection (class in robot.utils.connectioncache)

 	NoHighlighting (class in robot.output.console.highlighting)

 	NoInitFileDirectoryParser (class in robot.running.builder.parsers)

 	NoMatchError

 	non_ascii (robot.libraries.Remote.ArgumentCoercer attribute)

 	non_critical (robot.model.stats.TagStat attribute)

 	(robot.model.tagstatistics.TagStatistics attribute)

 	non_critical_tags (robot.conf.settings.RebotSettings attribute)

 	(robot.conf.settings.RobotSettings attribute)

 	NON_DATA_TOKENS (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	NonDottedImporter (class in robot.utils.importer)

 	none_shall_pass() (in module robot.libraries.Easter)

 	NoneConverter (class in robot.running.arguments.typeconverters)

 	NoneDumper (class in robot.htmldata.jsonwriter)

 	NoOutput (class in robot.output.console.quiet)

 	NoReturnValueResolver (class in robot.variables.assigner)

 	normal (robot.model.keyword.Keywords attribute)

 	normalize() (in module robot.utils.normalizing)

 	normalize_path() (robot.libraries.OperatingSystem.OperatingSystem method)

 	normalize_whitespace() (in module robot.utils.normalizing)

 	NormalizedDict (class in robot.utils.normalizing)

 	normpath() (in module robot.utils.robotpath)

 	not_keyword() (in module robot.api.deco)

 	NotSet (class in robot.libraries.Collections)

 	NotTagPattern (class in robot.model.tags)

 	NullMarkupWriter (class in robot.utils.markupwriters)

 	NullNamedArgumentResolver (class in robot.running.arguments.argumentresolver)

 	NumberFinder (class in robot.variables.finders)

 	numerator (robot.reporting.stringcache.StringIndex attribute)

O

 	
 	OLD_FOR_INDENT (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	OneReturnValueResolver (class in robot.variables.assigner)

 	open() (robot.libraries.Telnet.TelnetConnection method)

 	open_connection() (robot.libraries.Telnet.Telnet method)

 	OperatingSystem (class in robot.libraries.OperatingSystem)

 	option_add() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	option_clear() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	option_get() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	option_readfile() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	
 	option_spec (robot.utils.restreader.CaptureRobotData attribute)

 	optional_arguments (robot.utils.restreader.CaptureRobotData attribute)

 	OrTagPattern (class in robot.model.tags)

 	Output (class in robot.output.output)

 	output (robot.conf.settings.RebotSettings attribute)

 	(robot.conf.settings.RobotSettings attribute)

 	output() (robot.output.console.verbose.VerboseWriter method)

 	output_directory (robot.conf.settings.RebotSettings attribute)

 	(robot.conf.settings.RobotSettings attribute)

 	output_file() (robot.output.console.dotted.DottedOutput method)

 	(robot.output.console.verbose.VerboseOutput method)

 	(robot.output.filelogger.FileLogger method)

 	(robot.output.listeners.LibraryListeners method)

 	(robot.output.listeners.Listeners method)

 	(robot.output.logger.Logger method)

 	OutputCapturer (class in robot.running.outputcapture)

 	OutputWriter (class in robot.reporting.outputwriter)

 	overrideredirect() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

P

 	
 	pack_propagate() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	pack_slaves() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	pad_console_length() (in module robot.utils.text)

 	ParagraphFormatter (class in robot.utils.htmlformatters)

 	parent (robot.model.keyword.Keyword attribute)

 	(robot.model.message.Message attribute)

 	(robot.model.testcase.TestCase attribute)

 	(robot.model.testsuite.TestSuite attribute)

 	(robot.output.loggerhelper.Message attribute)

 	(robot.result.model.Keyword attribute)

 	(robot.result.model.Message attribute)

 	(robot.result.model.TestCase attribute)

 	(robot.result.model.TestSuite attribute)

 	(robot.running.model.ForLoop attribute)

 	(robot.running.model.Keyword attribute)

 	(robot.running.model.TestCase attribute)

 	(robot.running.model.TestSuite attribute)

 	ParentMessage (class in robot.running.status)

 	parse() (robot.parsing.parser.blockparsers.ForLoopParser method)

 	(robot.parsing.parser.blockparsers.KeywordParser method)

 	(robot.parsing.parser.blockparsers.Parser method)

 	(robot.parsing.parser.blockparsers.TestCaseParser method)

 	(robot.parsing.parser.fileparser.CommentSectionParser method)

 	(robot.parsing.parser.fileparser.FileParser method)

 	(robot.parsing.parser.fileparser.ImplicitCommentSectionParser method)

 	(robot.parsing.parser.fileparser.KeywordSectionParser method)

 	(robot.parsing.parser.fileparser.SectionParser method)

 	(robot.parsing.parser.fileparser.SettingSectionParser method)

 	(robot.parsing.parser.fileparser.TestCaseSectionParser method)

 	(robot.parsing.parser.fileparser.VariableSectionParser method)

 	(robot.running.arguments.argumentparser.DynamicArgumentParser method)

 	(robot.running.arguments.argumentparser.JavaArgumentParser method)

 	(robot.running.arguments.argumentparser.PythonArgumentParser method)

 	(robot.running.arguments.argumentparser.UserKeywordArgumentParser method)

 	(robot.running.arguments.embedded.EmbeddedArgumentParser method)

 	(robot.running.builder.builders.SuiteStructureParser method)

 	parse_args() (robot.utils.argumentparser.ArgumentParser method)

 	parse_arguments() (robot.libdoc.LibDoc method)

 	(robot.rebot.Rebot method)

 	(robot.run.RobotFramework method)

 	(robot.testdoc.TestDoc method)

 	(robot.tidy.TidyCommandLine method)

 	(robot.utils.application.Application method)

 	parse_init_file() (robot.running.builder.parsers.BaseParser method)

 	(robot.running.builder.parsers.NoInitFileDirectoryParser method)

 	(robot.running.builder.parsers.RestParser method)

 	(robot.running.builder.parsers.RobotParser method)

 	parse_resource_file() (robot.running.builder.parsers.BaseParser method)

 	(robot.running.builder.parsers.NoInitFileDirectoryParser method)

 	(robot.running.builder.parsers.RestParser method)

 	(robot.running.builder.parsers.RobotParser method)

 	parse_response() (robot.libraries.Remote.TimeoutHTTPSTransport method)

 	(robot.libraries.Remote.TimeoutHTTPTransport method)

 	parse_suite_file() (robot.running.builder.parsers.BaseParser method)

 	(robot.running.builder.parsers.NoInitFileDirectoryParser method)

 	(robot.running.builder.parsers.RestParser method)

 	(robot.running.builder.parsers.RobotParser method)

 	parse_time() (in module robot.utils.robottime)

 	parse_xml() (robot.libraries.XML.XML method)

 	Parser (class in robot.parsing.parser.blockparsers)

 	pass_execution() (robot.libraries.BuiltIn.BuiltIn method)

 	
 	pass_execution_if() (robot.libraries.BuiltIn.BuiltIn method)

 	passed (robot.model.stats.Stat attribute)

 	(robot.result.model.Keyword attribute)

 	(robot.result.model.TestCase attribute)

 	(robot.result.model.TestSuite attribute)

 	PassedKeywordRemover (class in robot.result.keywordremover)

 	PassExecution

 	PassFailDialog (class in robot.libraries.dialogs_py)

 	path_to_url() (in module robot.utils.robotpath)

 	pause_execution() (in module robot.libraries.Dialogs)

 	pformat() (robot.utils.unic.PrettyRepr method)

 	place_slaves() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	plural_or_not() (in module robot.utils.misc)

 	pop() (robot.model.itemlist.ItemList method)

 	(robot.model.keyword.Keywords method)

 	(robot.model.message.Messages method)

 	(robot.model.metadata.Metadata method)

 	(robot.model.testcase.TestCases method)

 	(robot.model.testsuite.TestSuites method)

 	(robot.running.model.Imports method)

 	(robot.utils.dotdict.DotDict method)

 	(robot.utils.normalizing.NormalizedDict method)

 	(robot.variables.evaluation.EvaluationNamespace method)

 	pop_from_dictionary() (robot.libraries.Collections.Collections method)

 	popen_config (robot.libraries.Process.ProcessConfiguration attribute)

 	popitem() (robot.model.metadata.Metadata method)

 	(robot.utils.dotdict.DotDict method)

 	(robot.utils.normalizing.NormalizedDict method)

 	(robot.variables.evaluation.EvaluationNamespace method)

 	positionfrom() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	pprint() (robot.utils.unic.PrettyRepr method)

 	pre_rebot_modifiers (robot.conf.settings.RebotSettings attribute)

 	(robot.conf.settings.RobotSettings attribute)

 	pre_run_modifiers (robot.conf.settings.RobotSettings attribute)

 	PreformattedFormatter (class in robot.utils.htmlformatters)

 	prepr() (in module robot.utils.unic)

 	PrettyRepr (class in robot.utils.unic)

 	printable_name() (in module robot.utils.misc)

 	Process (class in robot.libraries.Process)

 	process() (robot.utils.argumentparser.ArgFileParser method)

 	process_empty_suite (robot.conf.settings.RebotSettings attribute)

 	process_rawq() (robot.libraries.Telnet.TelnetConnection method)

 	process_should_be_running() (robot.libraries.Process.Process method)

 	process_should_be_stopped() (robot.libraries.Process.Process method)

 	ProcessConfiguration (class in robot.libraries.Process)

 	propagate() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	protocol() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	prune_input() (robot.reporting.jsbuildingcontext.JsBuildingContext method)

 	py2to3() (in module robot.utils.compat)

 	PythonArgumentParser (class in robot.running.arguments.argumentparser)

 	PythonCapturer (class in robot.running.outputcapture)

 	PythonErrorDetails (class in robot.utils.error)

 	PythonImporter (class in robot.variables.filesetter)

Q

 	
 	QuietOutput (class in robot.output.console.quiet)

 	quit() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

R

 	
 	raise_error() (robot.utils.connectioncache.NoConnection method)

 	randomize() (robot.running.model.TestSuite method)

 	randomize_seed (robot.conf.settings.RobotSettings attribute)

 	randomize_suites (robot.conf.settings.RobotSettings attribute)

 	randomize_tests (robot.conf.settings.RobotSettings attribute)

 	Randomizer (class in robot.running.randomizer)

 	rawq_getchar() (robot.libraries.Telnet.TelnetConnection method)

 	read() (robot.libraries.Telnet.TelnetConnection method)

 	(robot.libraries.Telnet.TerminalEmulator method)

 	(robot.utils.filereader.FileReader method)

 	read_all() (robot.libraries.Telnet.TelnetConnection method)

 	read_eager() (robot.libraries.Telnet.TelnetConnection method)

 	read_lazy() (robot.libraries.Telnet.TelnetConnection method)

 	read_rest_data() (in module robot.utils)

 	(in module robot.utils.restreader)

 	read_sb_data() (robot.libraries.Telnet.TelnetConnection method)

 	read_some() (robot.libraries.Telnet.TelnetConnection method)

 	read_until() (robot.libraries.Telnet.TelnetConnection method)

 	(robot.libraries.Telnet.TerminalEmulator method)

 	read_until_prompt() (robot.libraries.Telnet.TelnetConnection method)

 	read_until_regexp() (robot.libraries.Telnet.TelnetConnection method)

 	(robot.libraries.Telnet.TerminalEmulator method)

 	read_very_eager() (robot.libraries.Telnet.TelnetConnection method)

 	read_very_lazy() (robot.libraries.Telnet.TelnetConnection method)

 	readlines() (robot.utils.filereader.FileReader method)

 	real (robot.reporting.stringcache.StringIndex attribute)

 	Rebot (class in robot.rebot)

 	rebot() (in module robot)

 	(in module robot.rebot)

 	rebot_cli() (in module robot)

 	(in module robot.rebot)

 	RebotSettings (class in robot.conf.settings)

 	recommend_similar_keywords() (robot.running.namespace.KeywordRecommendationFinder method)

 	RecommendationFinder (class in robot.utils.recommendations)

 	red() (robot.output.console.highlighting.AnsiHighlighter method)

 	(robot.output.console.highlighting.DosHighlighter method)

 	(robot.output.console.highlighting.NoHighlighting method)

 	regexp_escape() (robot.libraries.BuiltIn.BuiltIn method)

 	register() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	(robot.output.listenermethods.LibraryListenerMethods method)

 	(robot.output.listeners.LibraryListeners method)

 	(robot.parsing.model.statements.Arguments class method)

 	(robot.parsing.model.statements.Comment class method)

 	(robot.parsing.model.statements.CommentSectionHeader class method)

 	(robot.parsing.model.statements.DefaultTags class method)

 	(robot.parsing.model.statements.Documentation class method)

 	(robot.parsing.model.statements.DocumentationOrMetadata class method)

 	(robot.parsing.model.statements.EmptyLine class method)

 	(robot.parsing.model.statements.End class method)

 	(robot.parsing.model.statements.Error class method)

 	(robot.parsing.model.statements.Fixture class method)

 	(robot.parsing.model.statements.ForLoopHeader class method)

 	(robot.parsing.model.statements.ForceTags class method)

 	(robot.parsing.model.statements.KeywordCall class method)

 	(robot.parsing.model.statements.KeywordName class method)

 	(robot.parsing.model.statements.KeywordSectionHeader class method)

 	(robot.parsing.model.statements.LibraryImport class method)

 	(robot.parsing.model.statements.Metadata class method)

 	(robot.parsing.model.statements.MultiValue class method)

 	(robot.parsing.model.statements.ResourceImport class method)

 	(robot.parsing.model.statements.Return class method)

 	(robot.parsing.model.statements.SectionHeader class method)

 	(robot.parsing.model.statements.SettingSectionHeader class method)

 	(robot.parsing.model.statements.Setup class method)

 	(robot.parsing.model.statements.SingleValue class method)

 	(robot.parsing.model.statements.Statement class method)

 	(robot.parsing.model.statements.SuiteSetup class method)

 	(robot.parsing.model.statements.SuiteTeardown class method)

 	(robot.parsing.model.statements.Tags class method)

 	(robot.parsing.model.statements.Teardown class method)

 	(robot.parsing.model.statements.Template class method)

 	(robot.parsing.model.statements.TemplateArguments class method)

 	(robot.parsing.model.statements.TestCaseName class method)

 	(robot.parsing.model.statements.TestCaseSectionHeader class method)

 	(robot.parsing.model.statements.TestSetup class method)

 	(robot.parsing.model.statements.TestTeardown class method)

 	(robot.parsing.model.statements.TestTemplate class method)

 	(robot.parsing.model.statements.TestTimeout class method)

 	(robot.parsing.model.statements.Timeout class method)

 	(robot.parsing.model.statements.Variable class method)

 	(robot.parsing.model.statements.VariableSectionHeader class method)

 	(robot.parsing.model.statements.VariablesImport class method)

 	(robot.running.arguments.typeconverters.BooleanConverter class method)

 	(robot.running.arguments.typeconverters.ByteArrayConverter class method)

 	(robot.running.arguments.typeconverters.BytesConverter class method)

 	(robot.running.arguments.typeconverters.DateConverter class method)

 	(robot.running.arguments.typeconverters.DateTimeConverter class method)

 	(robot.running.arguments.typeconverters.DecimalConverter class method)

 	(robot.running.arguments.typeconverters.DictionaryConverter class method)

 	(robot.running.arguments.typeconverters.EnumConverter class method)

 	(robot.running.arguments.typeconverters.FloatConverter class method)

 	(robot.running.arguments.typeconverters.FrozenSetConverter class method)

 	(robot.running.arguments.typeconverters.IntegerConverter class method)

 	(robot.running.arguments.typeconverters.ListConverter class method)

 	(robot.running.arguments.typeconverters.NoneConverter class method)

 	(robot.running.arguments.typeconverters.SetConverter class method)

 	(robot.running.arguments.typeconverters.TimeDeltaConverter class method)

 	(robot.running.arguments.typeconverters.TupleConverter class method)

 	(robot.running.arguments.typeconverters.TypeConverter class method)

 	(robot.utils.connectioncache.ConnectionCache method)

 	register_console_logger() (robot.output.logger.Logger method)

 	register_error_listener() (robot.output.logger.Logger method)

 	(robot.output.output.Output method)

 	register_listeners() (robot.output.logger.Logger method)

 	register_logger() (robot.output.logger.Logger method)

 	register_run_keyword() (in module robot.libraries.BuiltIn)

 	register_syslog() (robot.output.logger.Logger method)

 	register_xml_logger() (robot.output.logger.Logger method)

 	relative_source() (robot.reporting.jsbuildingcontext.JsBuildingContext method)

 	release() (robot.output.pyloggingconf.RobotHandler method)

 	(robot.running.outputcapture.JavaCapturer method)

 	(robot.running.outputcapture.PythonCapturer method)

 	reload_library() (robot.libraries.BuiltIn.BuiltIn method)

 	(robot.running.namespace.Namespace method)

 	Remote (class in robot.libraries.Remote)

 	RemoteError

 	RemoteResult (class in robot.libraries.Remote)

 	RemovalMessage (class in robot.result.keywordremover)

 	remove() (robot.model.itemlist.ItemList method)

 	(robot.model.keyword.Keywords method)

 	(robot.model.message.Messages method)

 	(robot.model.tags.Tags method)

 	(robot.model.testcase.TestCases method)

 	(robot.model.testsuite.TestSuites method)

 	(robot.running.model.Imports method)

 	(robot.variables.store.VariableStore method)

 	remove_data_not_needed_in_report() (robot.reporting.jsexecutionresult.JsExecutionResult method)

 	remove_directory() (robot.libraries.OperatingSystem.OperatingSystem method)

 	remove_duplicates() (robot.libraries.Collections.Collections method)

 	remove_element() (robot.libraries.XML.XML method)

 	remove_element_attribute() (robot.libraries.XML.XML method)

 	remove_element_attributes() (robot.libraries.XML.XML method)

 	remove_elements() (robot.libraries.XML.XML method)

 	remove_elements_attribute() (robot.libraries.XML.XML method)

 	remove_elements_attributes() (robot.libraries.XML.XML method)

 	remove_empty_suites() (robot.model.testsuite.TestSuite method)

 	(robot.result.model.TestSuite method)

 	(robot.running.model.TestSuite method)

 	remove_environment_variable() (robot.libraries.OperatingSystem.OperatingSystem method)

 	remove_file() (robot.libraries.OperatingSystem.OperatingSystem method)

 	remove_files() (robot.libraries.OperatingSystem.OperatingSystem method)

 	remove_from_dictionary() (robot.libraries.Collections.Collections method)

 	remove_from_list() (robot.libraries.Collections.Collections method)

 	remove_keywords (robot.conf.settings.RebotSettings attribute)

 	(robot.conf.settings.RobotSettings attribute)

 	remove_keywords() (robot.result.model.TestSuite method)

 	remove_path() (in module robot.pythonpathsetter)

 	remove_string() (robot.libraries.String.String method)

 	remove_string_using_regexp() (robot.libraries.String.String method)

 	remove_tags (robot.model.configurer.SuiteConfigurer attribute)

 	(robot.result.configurer.SuiteConfigurer attribute)

 	remove_tags() (robot.libraries.BuiltIn.BuiltIn method)

 	remove_values_from_list() (robot.libraries.Collections.Collections method)

 	removeFilter() (robot.output.pyloggingconf.RobotHandler method)

 	RemoveKeywords (class in robot.result.resultbuilder)

 	repeat_keyword() (robot.libraries.BuiltIn.BuiltIn method)

 	replace() (robot.running.arguments.argumentresolver.VariableReplacer method)

 	replace_defaults() (robot.running.arguments.argumentmapper.KeywordCallTemplate method)

 	replace_list() (robot.variables.replacer.VariableReplacer method)

 	(robot.variables.scopes.GlobalVariables method)

 	(robot.variables.scopes.VariableScopes method)

 	(robot.variables.variables.Variables method)

 	replace_scalar() (robot.variables.replacer.VariableReplacer method)

 	(robot.variables.scopes.GlobalVariables method)

 	(robot.variables.scopes.VariableScopes method)

 	(robot.variables.variables.Variables method)

 	replace_string() (robot.libraries.String.String method)

 	(robot.variables.replacer.VariableReplacer method)

 	(robot.variables.scopes.GlobalVariables method)

 	(robot.variables.scopes.VariableScopes method)

 	(robot.variables.variables.Variables method)

 	replace_string_using_regexp() (robot.libraries.String.String method)

 	replace_variables() (robot.libraries.BuiltIn.BuiltIn method)

 	(robot.running.timeouts.KeywordTimeout method)

 	(robot.running.timeouts.TestTimeout method)

 	report (robot.conf.settings.RebotSettings attribute)

 	(robot.conf.settings.RobotSettings attribute)

 	report() (robot.output.console.dotted.StatusReporter method)

 	report_config (robot.conf.settings.RebotSettings attribute)

 	report_error() (robot.variables.tablesetter.DictVariableTableValue method)

 	(robot.variables.tablesetter.ListVariableTableValue method)

 	(robot.variables.tablesetter.ScalarVariableTableValue method)

 	(robot.variables.tablesetter.VariableTableValueBase method)

 	report_invalid_syntax() (robot.running.model.Import method)

 	(robot.running.model.Variable method)

 	ReportWriter (class in robot.reporting.logreportwriters)

 	request() (robot.libraries.Remote.TimeoutHTTPSTransport method)

 	(robot.libraries.Remote.TimeoutHTTPTransport method)

 	required_arguments (robot.utils.restreader.CaptureRobotData attribute)

 	Reserved (class in robot.libraries.Reserved)

 	reset() (robot.output.console.highlighting.AnsiHighlighter method)

 	(robot.output.console.highlighting.DosHighlighter method)

 	(robot.output.console.highlighting.NoHighlighting method)

 	(robot.running.importer.Importer method)

 	reset_count() (robot.output.console.verbose.KeywordMarker method)

 	resizable() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	resolve() (robot.running.arguments.argumentmapper.DefaultValue method)

 	(robot.running.arguments.argumentresolver.ArgumentResolver method)

 	(robot.running.arguments.argumentresolver.NamedArgumentResolver method)

 	(robot.running.arguments.argumentresolver.NullNamedArgumentResolver method)

 	(robot.running.arguments.argumentspec.ArgumentSpec method)

 	(robot.variables.assigner.NoReturnValueResolver method)

 	(robot.variables.assigner.OneReturnValueResolver method)

 	(robot.variables.assigner.ScalarsAndListReturnValueResolver method)

 	(robot.variables.assigner.ScalarsOnlyReturnValueResolver method)

 	(robot.variables.tablesetter.DictVariableTableValue method)

 	(robot.variables.tablesetter.ListVariableTableValue method)

 	(robot.variables.tablesetter.ScalarVariableTableValue method)

 	(robot.variables.tablesetter.VariableTableValueBase method)

 	resolve_alias_or_index() (robot.utils.connectioncache.ConnectionCache method)

 	resolve_base() (robot.variables.search.VariableMatch method)

 	resolve_delayed() (robot.variables.scopes.GlobalVariables method)

 	(robot.variables.scopes.VariableScopes method)

 	(robot.variables.store.VariableStore method)

 	(robot.variables.variables.Variables method)

 	resolve_delayed_message() (robot.output.loggerhelper.Message method)

 	RESOURCE (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	resource (robot.running.model.TestSuite attribute)

 	resource() (robot.running.model.Imports method)

 	RESOURCE_FILE_TYPE (robot.running.handlerstore.HandlerStore attribute)

 	(robot.running.userkeyword.UserLibrary attribute)

 	ResourceBuilder (class in robot.running.builder.transformers)

 	ResourceDocBuilder (class in robot.libdocpkg.robotbuilder)

 	ResourceFile (class in robot.running.model)

 	ResourceFileBuilder (class in robot.running.builder.builders)

 	ResourceFileContext (class in robot.parsing.lexer.context)

 	ResourceFileSections (class in robot.parsing.lexer.sections)

 	ResourceFileSettings (class in robot.parsing.lexer.settings)

 	ResourceImport (class in robot.parsing.model.statements)

 	RestParser (class in robot.running.builder.parsers)

 	Result (class in robot.result.executionresult)

 	result (robot.reporting.resultwriter.Results attribute)

 	result_config (robot.libraries.Process.ProcessConfiguration attribute)

 	Results (class in robot.reporting.resultwriter)

 	ResultVisitor (class in robot.result.visitor)

 	ResultWriter (class in robot.reporting.resultwriter)

 	Return (class in robot.parsing.model.statements)

 	RETURN (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	return_code (robot.result.executionresult.CombinedResult attribute)

 	(robot.result.executionresult.Result attribute)

 	return_from_keyword() (robot.libraries.BuiltIn.BuiltIn method)

 	return_from_keyword_if() (robot.libraries.BuiltIn.BuiltIn method)

 	ReturnFromKeyword

 	ReturnValueResolver() (in module robot.variables.assigner)

 	reverse() (robot.model.itemlist.ItemList method)

 	(robot.model.keyword.Keywords method)

 	(robot.model.message.Messages method)

 	(robot.model.testcase.TestCases method)

 	(robot.model.testsuite.TestSuites method)

 	(robot.running.model.Imports method)

 	reverse_list() (robot.libraries.Collections.Collections method)

 	robot (module)

 	robot.api (module), [1]

 	robot.api.deco (module)

 	robot.api.logger (module)

 	robot.conf (module)

 	robot.conf.gatherfailed (module)

 	robot.conf.settings (module)

 	robot.errors (module)

 	robot.htmldata (module)

 	robot.htmldata.htmlfilewriter (module)

 	robot.htmldata.jsonwriter (module)

 	robot.htmldata.normaltemplate (module)

 	robot.htmldata.template (module)

 	robot.libdoc (module)

 	robot.libdocpkg (module)

 	robot.libdocpkg.builder (module)

 	robot.libdocpkg.consoleviewer (module)

 	robot.libdocpkg.htmlwriter (module)

 	robot.libdocpkg.javabuilder (module)

 	robot.libdocpkg.model (module)

 	robot.libdocpkg.output (module)

 	robot.libdocpkg.robotbuilder (module)

 	robot.libdocpkg.specbuilder (module)

 	robot.libdocpkg.writer (module)

 	robot.libdocpkg.xmlwriter (module)

 	robot.libraries (module)

 	
 	robot.libraries.BuiltIn (module)

 	robot.libraries.Collections (module)

 	robot.libraries.DateTime (module)

 	robot.libraries.Dialogs (module)

 	robot.libraries.dialogs_py (module)

 	robot.libraries.Easter (module)

 	robot.libraries.OperatingSystem (module)

 	robot.libraries.Process (module)

 	robot.libraries.Remote (module)

 	robot.libraries.Reserved (module)

 	robot.libraries.Screenshot (module)

 	robot.libraries.String (module)

 	robot.libraries.Telnet (module)

 	robot.libraries.XML (module)

 	robot.model (module)

 	robot.model.configurer (module)

 	robot.model.criticality (module)

 	robot.model.filter (module)

 	robot.model.itemlist (module)

 	robot.model.keyword (module)

 	robot.model.message (module)

 	robot.model.metadata (module)

 	robot.model.modelobject (module)

 	robot.model.modifier (module)

 	robot.model.namepatterns (module)

 	robot.model.statistics (module)

 	robot.model.stats (module)

 	robot.model.suitestatistics (module)

 	robot.model.tags (module)

 	robot.model.tagsetter (module)

 	robot.model.tagstatistics (module)

 	robot.model.testcase (module)

 	robot.model.testsuite (module)

 	robot.model.totalstatistics (module)

 	robot.model.visitor (module)

 	robot.output (module)

 	robot.output.console (module)

 	robot.output.console.dotted (module)

 	robot.output.console.highlighting (module)

 	robot.output.console.quiet (module)

 	robot.output.console.verbose (module)

 	robot.output.debugfile (module)

 	robot.output.filelogger (module)

 	robot.output.librarylogger (module)

 	robot.output.listenerarguments (module)

 	robot.output.listenermethods (module)

 	robot.output.listeners (module)

 	robot.output.logger (module)

 	robot.output.loggerhelper (module)

 	robot.output.output (module)

 	robot.output.pyloggingconf (module)

 	robot.output.stdoutlogsplitter (module)

 	robot.output.xmllogger (module)

 	robot.parsing (module)

 	robot.parsing.lexer (module)

 	robot.parsing.lexer.blocklexers (module)

 	robot.parsing.lexer.context (module)

 	robot.parsing.lexer.lexer (module)

 	robot.parsing.lexer.sections (module)

 	robot.parsing.lexer.settings (module)

 	robot.parsing.lexer.statementlexers (module)

 	robot.parsing.lexer.tokenizer (module)

 	robot.parsing.lexer.tokens (module)

 	robot.parsing.model (module)

 	robot.parsing.model.blocks (module)

 	robot.parsing.model.statements (module)

 	robot.parsing.model.visitor (module)

 	robot.parsing.parser (module)

 	robot.parsing.parser.blockparsers (module)

 	robot.parsing.parser.fileparser (module)

 	robot.parsing.parser.parser (module)

 	robot.parsing.suitestructure (module)

 	robot.pythonpathsetter (module)

 	robot.rebot (module)

 	robot.reporting (module)

 	robot.reporting.expandkeywordmatcher (module)

 	robot.reporting.jsbuildingcontext (module)

 	robot.reporting.jsexecutionresult (module)

 	robot.reporting.jsmodelbuilders (module)

 	robot.reporting.jswriter (module)

 	robot.reporting.logreportwriters (module)

 	robot.reporting.outputwriter (module)

 	robot.reporting.resultwriter (module)

 	robot.reporting.stringcache (module)

 	robot.reporting.xunitwriter (module)

 	robot.result (module)

 	robot.result.configurer (module)

 	robot.result.executionerrors (module)

 	robot.result.executionresult (module)

 	robot.result.flattenkeywordmatcher (module)

 	robot.result.keywordremover (module)

 	robot.result.merger (module)

 	robot.result.messagefilter (module)

 	robot.result.model (module)

 	robot.result.resultbuilder (module)

 	robot.result.suiteteardownfailed (module)

 	robot.result.visitor (module)

 	robot.result.xmlelementhandlers (module)

 	robot.run (module)

 	robot.running (module)

 	robot.running.arguments (module)

 	robot.running.arguments.argumentconverter (module)

 	robot.running.arguments.argumentmapper (module)

 	robot.running.arguments.argumentparser (module)

 	robot.running.arguments.argumentresolver (module)

 	robot.running.arguments.argumentspec (module)

 	robot.running.arguments.argumentvalidator (module)

 	robot.running.arguments.embedded (module)

 	robot.running.arguments.typeconverters (module)

 	robot.running.arguments.typevalidator (module)

 	robot.running.builder (module)

 	robot.running.builder.builders (module)

 	robot.running.builder.parsers (module)

 	robot.running.builder.testsettings (module)

 	robot.running.builder.transformers (module)

 	robot.running.context (module)

 	robot.running.dynamicmethods (module)

 	robot.running.handlers (module)

 	robot.running.handlerstore (module)

 	robot.running.importer (module)

 	robot.running.librarykeywordrunner (module)

 	robot.running.libraryscopes (module)

 	robot.running.model (module)

 	robot.running.namespace (module)

 	robot.running.outputcapture (module)

 	robot.running.randomizer (module)

 	robot.running.runkwregister (module)

 	robot.running.runner (module)

 	robot.running.signalhandler (module)

 	robot.running.status (module)

 	robot.running.statusreporter (module)

 	robot.running.steprunner (module)

 	robot.running.testlibraries (module)

 	robot.running.timeouts (module)

 	robot.running.timeouts.posix (module)

 	robot.running.timeouts.windows (module)

 	robot.running.usererrorhandler (module)

 	robot.running.userkeyword (module)

 	robot.running.userkeywordrunner (module)

 	robot.testdoc (module)

 	robot.tidy (module)

 	robot.tidypkg (module)

 	robot.tidypkg.transformers (module)

 	robot.utils (module)

 	robot.utils.application (module)

 	robot.utils.argumentparser (module)

 	robot.utils.asserts (module)

 	robot.utils.charwidth (module)

 	robot.utils.compat (module)

 	robot.utils.compress (module)

 	robot.utils.connectioncache (module)

 	robot.utils.dotdict (module)

 	robot.utils.encoding (module)

 	robot.utils.encodingsniffer (module)

 	robot.utils.error (module)

 	robot.utils.escaping (module)

 	robot.utils.etreewrapper (module)

 	robot.utils.filereader (module)

 	robot.utils.frange (module)

 	robot.utils.htmlformatters (module)

 	robot.utils.importer (module)

 	robot.utils.markuputils (module)

 	robot.utils.markupwriters (module)

 	robot.utils.match (module)

 	robot.utils.misc (module)

 	robot.utils.normalizing (module)

 	robot.utils.platform (module)

 	robot.utils.recommendations (module)

 	robot.utils.restreader (module)

 	robot.utils.robotenv (module)

 	robot.utils.robotinspect (module)

 	robot.utils.robotio (module)

 	robot.utils.robotpath (module)

 	robot.utils.robottime (module)

 	robot.utils.robottypes (module)

 	robot.utils.robottypes2 (module)

 	robot.utils.setter (module)

 	robot.utils.sortable (module)

 	robot.utils.text (module)

 	robot.utils.unic (module)

 	robot.variables (module)

 	robot.variables.assigner (module)

 	robot.variables.evaluation (module)

 	robot.variables.filesetter (module)

 	robot.variables.finders (module)

 	robot.variables.notfound (module)

 	robot.variables.replacer (module)

 	robot.variables.scopes (module)

 	robot.variables.search (module)

 	robot.variables.store (module)

 	robot.variables.tablesetter (module)

 	robot.variables.variables (module)

 	robot.version (module)

 	robot_handler_enabled() (in module robot.output.pyloggingconf)

 	ROBOT_LIBRARY_SCOPE (robot.libraries.BuiltIn.BuiltIn attribute)

 	(robot.libraries.Collections.Collections attribute)

 	(robot.libraries.OperatingSystem.OperatingSystem attribute)

 	(robot.libraries.Process.Process attribute)

 	(robot.libraries.Remote.Remote attribute)

 	(robot.libraries.Reserved.Reserved attribute)

 	(robot.libraries.Screenshot.Screenshot attribute)

 	(robot.libraries.String.String attribute)

 	(robot.libraries.Telnet.Telnet attribute)

 	(robot.libraries.XML.XML attribute)

 	ROBOT_LIBRARY_VERSION (robot.libraries.BuiltIn.BuiltIn attribute)

 	(robot.libraries.Collections.Collections attribute)

 	(robot.libraries.OperatingSystem.OperatingSystem attribute)

 	(robot.libraries.Process.Process attribute)

 	(robot.libraries.Screenshot.Screenshot attribute)

 	(robot.libraries.String.String attribute)

 	(robot.libraries.Telnet.Telnet attribute)

 	(robot.libraries.XML.XML attribute)

 	ROBOT_SUPPRESS_NAME (robot.libraries.Telnet.NoMatchError attribute)

 	RobotDataStorage (class in robot.utils.restreader)

 	RobotError

 	RobotFramework (class in robot.run)

 	RobotHandler (class in robot.output.pyloggingconf)

 	(class in robot.result.xmlelementhandlers)

 	RobotModelWriter (class in robot.reporting.logreportwriters)

 	RobotNotRunningError

 	RobotParser (class in robot.running.builder.parsers)

 	RobotSettings (class in robot.conf.settings)

 	RootHandler (class in robot.result.xmlelementhandlers)

 	RootSuiteHandler (class in robot.result.xmlelementhandlers)

 	roundup() (in module robot.utils.misc)

 	rowconfigure() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	rpa (robot.conf.settings.RebotSettings attribute)

 	(robot.conf.settings.RobotSettings attribute)

 	(robot.model.testsuite.TestSuite attribute)

 	(robot.result.model.TestSuite attribute)

 	(robot.running.model.TestSuite attribute)

 	rstrip() (in module robot.utils.text)

 	RulerFormatter (class in robot.utils.htmlformatters)

 	run() (in module robot)

 	(in module robot.run)

 	(robot.libraries.OperatingSystem.OperatingSystem method)

 	(robot.running.librarykeywordrunner.EmbeddedArgumentsRunner method)

 	(robot.running.librarykeywordrunner.LibraryKeywordRunner method)

 	(robot.running.librarykeywordrunner.RunKeywordRunner method)

 	(robot.running.model.ForLoop method)

 	(robot.running.model.Keyword method)

 	(robot.running.model.TestSuite method)

 	(robot.running.steprunner.ForInEnumerateRunner method)

 	(robot.running.steprunner.ForInRangeRunner method)

 	(robot.running.steprunner.ForInRunner method)

 	(robot.running.steprunner.ForInZipRunner method)

 	(robot.running.timeouts.KeywordTimeout method)

 	(robot.running.timeouts.TestTimeout method)

 	(robot.running.usererrorhandler.UserErrorHandler method)

 	(robot.running.userkeywordrunner.EmbeddedArgumentsRunner method)

 	(robot.running.userkeywordrunner.UserKeywordRunner method)

 	(robot.utils.restreader.CaptureRobotData method)

 	run_and_return_rc() (robot.libraries.OperatingSystem.OperatingSystem method)

 	run_and_return_rc_and_output() (robot.libraries.OperatingSystem.OperatingSystem method)

 	run_cli() (in module robot)

 	(in module robot.run)

 	run_empty_suite (robot.conf.settings.RobotSettings attribute)

 	run_keyword() (robot.libraries.BuiltIn.BuiltIn method)

 	(robot.libraries.Remote.Remote method)

 	(robot.libraries.Remote.XmlRpcRemoteClient method)

 	(robot.libraries.Reserved.Reserved method)

 	run_keyword_and_continue_on_failure() (robot.libraries.BuiltIn.BuiltIn method)

 	run_keyword_and_expect_error() (robot.libraries.BuiltIn.BuiltIn method)

 	run_keyword_and_ignore_error() (robot.libraries.BuiltIn.BuiltIn method)

 	run_keyword_and_return() (robot.libraries.BuiltIn.BuiltIn method)

 	run_keyword_and_return_if() (robot.libraries.BuiltIn.BuiltIn method)

 	run_keyword_and_return_status() (robot.libraries.BuiltIn.BuiltIn method)

 	run_keyword_if() (robot.libraries.BuiltIn.BuiltIn method)

 	run_keyword_if_all_critical_tests_passed() (robot.libraries.BuiltIn.BuiltIn method)

 	run_keyword_if_all_tests_passed() (robot.libraries.BuiltIn.BuiltIn method)

 	run_keyword_if_any_critical_tests_failed() (robot.libraries.BuiltIn.BuiltIn method)

 	run_keyword_if_any_tests_failed() (robot.libraries.BuiltIn.BuiltIn method)

 	run_keyword_if_test_failed() (robot.libraries.BuiltIn.BuiltIn method)

 	run_keyword_if_test_passed() (robot.libraries.BuiltIn.BuiltIn method)

 	run_keyword_if_timeout_occurred() (robot.libraries.BuiltIn.BuiltIn method)

 	run_keyword_unless() (robot.libraries.BuiltIn.BuiltIn method)

 	run_keyword_variant() (in module robot.libraries.BuiltIn)

 	run_keywords() (robot.libraries.BuiltIn.BuiltIn method)

 	run_process() (robot.libraries.Process.Process method)

 	run_step() (robot.running.steprunner.StepRunner method)

 	run_steps() (robot.running.steprunner.StepRunner method)

 	RunKeyword (class in robot.running.dynamicmethods)

 	RunKeywordRunner (class in robot.running.librarykeywordrunner)

 	Runner (class in robot.running.runner)

S

 	
 	save() (robot.libdocpkg.model.LibraryDoc method)

 	(robot.parsing.model.blocks.File method)

 	(robot.result.executionresult.CombinedResult method)

 	(robot.result.executionresult.Result method)

 	save_xml() (robot.libraries.XML.XML method)

 	ScalarsAndListReturnValueResolver (class in robot.variables.assigner)

 	ScalarsOnlyReturnValueResolver (class in robot.variables.assigner)

 	ScalarVariableTableValue (class in robot.variables.tablesetter)

 	Screenshot (class in robot.libraries.Screenshot)

 	ScreenshotTaker (class in robot.libraries.Screenshot)

 	search() (robot.libdocpkg.consoleviewer.KeywordMatcher method)

 	(robot.variables.search.VariableSearcher method)

 	search_variable() (in module robot.variables.search)

 	secs_to_timestamp() (in module robot.utils.robottime)

 	secs_to_timestr() (in module robot.utils.robottime)

 	Section (class in robot.parsing.model.blocks)

 	SectionHeader (class in robot.parsing.model.statements)

 	SectionHeaderLexer (class in robot.parsing.lexer.statementlexers)

 	SectionLexer (class in robot.parsing.lexer.blocklexers)

 	SectionParser (class in robot.parsing.parser.fileparser)

 	Sections (class in robot.parsing.lexer.sections)

 	sections_class (robot.parsing.lexer.context.FileContext attribute)

 	(robot.parsing.lexer.context.InitFileContext attribute)

 	(robot.parsing.lexer.context.ResourceFileContext attribute)

 	(robot.parsing.lexer.context.TestCaseFileContext attribute)

 	selection_clear() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	selection_get() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	selection_handle() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	selection_own() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	selection_own_get() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	SelectionDialog (class in robot.libraries.dialogs_py)

 	send() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	send_content() (robot.libraries.Remote.TimeoutHTTPSTransport method)

 	(robot.libraries.Remote.TimeoutHTTPTransport method)

 	send_host() (robot.libraries.Remote.TimeoutHTTPSTransport method)

 	(robot.libraries.Remote.TimeoutHTTPTransport method)

 	send_request() (robot.libraries.Remote.TimeoutHTTPSTransport method)

 	(robot.libraries.Remote.TimeoutHTTPTransport method)

 	send_signal_to_process() (robot.libraries.Process.Process method)

 	send_user_agent() (robot.libraries.Remote.TimeoutHTTPSTransport method)

 	(robot.libraries.Remote.TimeoutHTTPTransport method)

 	SEPARATOR (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	SeparatorNormalizer (class in robot.tidypkg.transformers)

 	separators (robot.parsing.lexer.statementlexers.ForLoopHeaderLexer attribute)

 	seq2str() (in module robot.utils.misc)

 	seq2str2() (in module robot.utils.misc)

 	set() (robot.result.keywordremover.RemovalMessage method)

 	(robot.variables.filesetter.VariableFileSetter method)

 	(robot.variables.tablesetter.VariableTableSetter method)

 	set_criticality() (robot.result.model.TestSuite method)

 	set_debuglevel() (robot.libraries.Telnet.TelnetConnection method)

 	set_default_log_level() (robot.libraries.Telnet.TelnetConnection method)

 	set_earlier_failures() (robot.errors.ContinueForLoop method)

 	(robot.errors.ExecutionPassed method)

 	(robot.errors.ExitForLoop method)

 	(robot.errors.PassExecution method)

 	(robot.errors.ReturnFromKeyword method)

 	set_element_attribute() (robot.libraries.XML.XML method)

 	set_element_tag() (robot.libraries.XML.XML method)

 	set_element_text() (robot.libraries.XML.XML method)

 	set_elements_attribute() (robot.libraries.XML.XML method)

 	set_elements_tag() (robot.libraries.XML.XML method)

 	set_elements_text() (robot.libraries.XML.XML method)

 	set_encoding() (robot.libraries.Telnet.TelnetConnection method)

 	set_env_var() (in module robot.utils.robotenv)

 	set_environment_variable() (robot.libraries.OperatingSystem.OperatingSystem method)

 	set_error() (robot.parsing.lexer.tokens.EOS method)

 	(robot.parsing.lexer.tokens.Token method)

 	set_execution_mode() (robot.result.executionresult.CombinedResult method)

 	(robot.result.executionresult.Result method)

 	set_from_file() (robot.variables.scopes.GlobalVariables method)

 	(robot.variables.scopes.VariableScopes method)

 	(robot.variables.variables.Variables method)

 	set_from_variable_table() (robot.variables.scopes.GlobalVariables method)

 	(robot.variables.scopes.VariableScopes method)

 	(robot.variables.variables.Variables method)

 	set_global() (robot.variables.scopes.SetVariables method)

 	(robot.variables.scopes.VariableScopes method)

 	set_global_variable() (robot.libraries.BuiltIn.BuiltIn method)

 	set_if_removed() (robot.result.keywordremover.RemovalMessage method)

 	set_keyword() (robot.variables.scopes.SetVariables method)

 	(robot.variables.scopes.VariableScopes method)

 	set_keyword_timeout() (robot.running.timeouts.TestTimeout method)

 	set_level() (in module robot.output.pyloggingconf)

 	(robot.output.filelogger.FileLogger method)

 	(robot.output.logger.Logger method)

 	(robot.output.loggerhelper.AbstractLogger method)

 	(robot.output.loggerhelper.IsLogged method)

 	(robot.output.output.Output method)

 	set_library_search_order() (robot.libraries.BuiltIn.BuiltIn method)

 	set_list_value() (robot.libraries.Collections.Collections method)

 	set_local_variable() (robot.libraries.BuiltIn.BuiltIn method)

 	(robot.variables.scopes.VariableScopes method)

 	set_log_level() (robot.libraries.BuiltIn.BuiltIn method)

 	(robot.output.listeners.LibraryListeners method)

 	(robot.output.listeners.Listeners method)

 	(robot.output.output.Output method)

 	(robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	set_modified_time() (robot.libraries.OperatingSystem.OperatingSystem method)

 	set_name() (robot.output.pyloggingconf.RobotHandler method)

 	set_newline() (robot.libraries.Telnet.TelnetConnection method)

 	set_option_negotiation_callback() (robot.libraries.Telnet.TelnetConnection method)

 	set_prompt() (robot.libraries.Telnet.TelnetConnection method)

 	set_screenshot_directory() (robot.libraries.Screenshot.Screenshot method)

 	set_search_order() (robot.running.namespace.Namespace method)

 	set_suite() (robot.variables.scopes.SetVariables method)

 	(robot.variables.scopes.VariableScopes method)

 	set_suite_documentation() (robot.libraries.BuiltIn.BuiltIn method)

 	set_suite_metadata() (robot.libraries.BuiltIn.BuiltIn method)

 	set_suite_variable() (robot.libraries.BuiltIn.BuiltIn method)

 	set_tags() (robot.libraries.BuiltIn.BuiltIn method)

 	(robot.model.testsuite.TestSuite method)

 	(robot.result.model.TestSuite method)

 	(robot.running.model.TestSuite method)

 	set_task_variable() (robot.libraries.BuiltIn.BuiltIn method)

 	set_telnetlib_log_level() (robot.libraries.Telnet.TelnetConnection method)

 	set_test() (robot.variables.scopes.SetVariables method)

 	(robot.variables.scopes.VariableScopes method)

 	set_test_documentation() (robot.libraries.BuiltIn.BuiltIn method)

 	set_test_message() (robot.libraries.BuiltIn.BuiltIn method)

 	set_test_variable() (robot.libraries.BuiltIn.BuiltIn method)

 	set_timeout() (robot.libraries.Telnet.TelnetConnection method)

 	set_to_dictionary() (robot.libraries.Collections.Collections method)

 	set_variable() (robot.libraries.BuiltIn.BuiltIn method)

 	set_variable_if() (robot.libraries.BuiltIn.BuiltIn method)

 	SetConverter (class in robot.running.arguments.typeconverters)

 	setdefault() (robot.model.metadata.Metadata method)

 	(robot.utils.dotdict.DotDict method)

 	(robot.utils.normalizing.NormalizedDict method)

 	(robot.variables.evaluation.EvaluationNamespace method)

 	setFormatter() (robot.output.pyloggingconf.RobotHandler method)

 	setLevel() (robot.output.pyloggingconf.RobotHandler method)

 	setter (class in robot.utils.setter)

 	SetterAwareType (class in robot.utils.setter)

 	setting() (robot.parsing.lexer.sections.InitFileSections method)

 	(robot.parsing.lexer.sections.ResourceFileSections method)

 	(robot.parsing.lexer.sections.Sections method)

 	(robot.parsing.lexer.sections.TestCaseFileSections method)

 	SETTING_HEADER (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	setting_markers (robot.parsing.lexer.sections.InitFileSections attribute)

 	(robot.parsing.lexer.sections.ResourceFileSections attribute)

 	(robot.parsing.lexer.sections.Sections attribute)

 	(robot.parsing.lexer.sections.TestCaseFileSections attribute)

 	setting_section() (robot.parsing.lexer.context.FileContext method)

 	(robot.parsing.lexer.context.InitFileContext method)

 	(robot.parsing.lexer.context.ResourceFileContext method)

 	(robot.parsing.lexer.context.TestCaseFileContext method)

 	SETTING_TOKENS (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	SettingLexer (class in robot.parsing.lexer.statementlexers)

 	Settings (class in robot.parsing.lexer.settings)

 	settings_class (robot.parsing.lexer.context.FileContext attribute)

 	(robot.parsing.lexer.context.InitFileContext attribute)

 	(robot.parsing.lexer.context.KeywordContext attribute)

 	(robot.parsing.lexer.context.LexingContext attribute)

 	(robot.parsing.lexer.context.ResourceFileContext attribute)

 	(robot.parsing.lexer.context.TestCaseContext attribute)

 	(robot.parsing.lexer.context.TestCaseFileContext attribute)

 	SettingsBuilder (class in robot.running.builder.transformers)

 	SettingSection (class in robot.parsing.model.blocks)

 	SettingSectionHeader (class in robot.parsing.model.statements)

 	SettingSectionHeaderLexer (class in robot.parsing.lexer.statementlexers)

 	SettingSectionLexer (class in robot.parsing.lexer.blocklexers)

 	SettingSectionParser (class in robot.parsing.parser.fileparser)

 	Setup (class in robot.parsing.model.statements)

 	setup (robot.model.keyword.Keywords attribute)

 	SETUP (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	setup (robot.running.builder.testsettings.TestDefaults attribute)

 	(robot.running.builder.testsettings.TestSettings attribute)

 	setup_executed() (robot.running.status.SuiteStatus method)

 	(robot.running.status.TestStatus method)

 	setup_message (robot.running.status.ParentMessage attribute)

 	(robot.running.status.SuiteMessage attribute)

 	(robot.running.status.TestMessage attribute)

 	SETUP_TYPE (robot.model.keyword.Keyword attribute)

 	(robot.result.model.Keyword attribute)

 	(robot.running.model.ForLoop attribute)

 	(robot.running.model.Keyword attribute)

 	setvar() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	SetVariables (class in robot.variables.scopes)

 	severe() (robot.utils.restreader.CaptureRobotData method)

 	shortdoc (robot.libdocpkg.model.KeywordDoc attribute)

 	(robot.running.usererrorhandler.UserErrorHandler attribute)

 	(robot.running.userkeyword.EmbeddedArgumentsHandler attribute)

 	(robot.running.userkeyword.UserKeywordHandler attribute)

 	should_be_byte_string() (robot.libraries.String.String method)

 	should_be_empty() (robot.libraries.BuiltIn.BuiltIn method)

 	should_be_equal() (robot.libraries.BuiltIn.BuiltIn method)

 	should_be_equal_as_integers() (robot.libraries.BuiltIn.BuiltIn method)

 	should_be_equal_as_numbers() (robot.libraries.BuiltIn.BuiltIn method)

 	should_be_equal_as_strings() (robot.libraries.BuiltIn.BuiltIn method)

 	should_be_lowercase() (robot.libraries.String.String method)

 	should_be_string() (robot.libraries.String.String method)

 	should_be_titlecase() (robot.libraries.String.String method)

 	should_be_true() (robot.libraries.BuiltIn.BuiltIn method)

 	should_be_unicode_string() (robot.libraries.String.String method)

 	should_be_uppercase() (robot.libraries.String.String method)

 	should_contain() (robot.libraries.BuiltIn.BuiltIn method)

 	should_contain_any() (robot.libraries.BuiltIn.BuiltIn method)

 	should_contain_match() (robot.libraries.Collections.Collections method)

 	should_contain_x_times() (robot.libraries.BuiltIn.BuiltIn method)

 	should_end_with() (robot.libraries.BuiltIn.BuiltIn method)

 	should_exist() (robot.libraries.OperatingSystem.OperatingSystem method)

 	should_match() (robot.libraries.BuiltIn.BuiltIn method)

 	should_match_regexp() (robot.libraries.BuiltIn.BuiltIn method)

 	should_not_be_empty() (robot.libraries.BuiltIn.BuiltIn method)

 	should_not_be_equal() (robot.libraries.BuiltIn.BuiltIn method)

 	should_not_be_equal_as_integers() (robot.libraries.BuiltIn.BuiltIn method)

 	should_not_be_equal_as_numbers() (robot.libraries.BuiltIn.BuiltIn method)

 	should_not_be_equal_as_strings() (robot.libraries.BuiltIn.BuiltIn method)

 	should_not_be_string() (robot.libraries.String.String method)

 	should_not_be_true() (robot.libraries.BuiltIn.BuiltIn method)

 	should_not_contain() (robot.libraries.BuiltIn.BuiltIn method)

 	should_not_contain_any() (robot.libraries.BuiltIn.BuiltIn method)

 	should_not_contain_match() (robot.libraries.Collections.Collections method)

 	should_not_end_with() (robot.libraries.BuiltIn.BuiltIn method)

 	should_not_exist() (robot.libraries.OperatingSystem.OperatingSystem method)

 	should_not_match() (robot.libraries.BuiltIn.BuiltIn method)

 	should_not_match_regexp() (robot.libraries.BuiltIn.BuiltIn method)

 	should_not_start_with() (robot.libraries.BuiltIn.BuiltIn method)

 	should_start_with() (robot.libraries.BuiltIn.BuiltIn method)

 	should_write_content_after_name() (robot.tidypkg.transformers.ColumnAligner method)

 	show() (robot.libdocpkg.consoleviewer.ConsoleViewer method)

 	(robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	single_request() (robot.libraries.Remote.TimeoutHTTPSTransport method)

 	(robot.libraries.Remote.TimeoutHTTPTransport method)

 	single_value (robot.parsing.lexer.settings.InitFileSettings attribute)

 	(robot.parsing.lexer.settings.KeywordSettings attribute)

 	(robot.parsing.lexer.settings.ResourceFileSettings attribute)

 	(robot.parsing.lexer.settings.Settings attribute)

 	(robot.parsing.lexer.settings.TestCaseFileSettings attribute)

 	(robot.parsing.lexer.settings.TestCaseSettings attribute)

 	SingleTagPattern (class in robot.model.tags)

 	SingleValue (class in robot.parsing.model.statements)

 	size() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	sizefrom() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	skip_teardown_on_exit (robot.conf.settings.RobotSettings attribute)

 	slaves() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	sleep() (robot.libraries.BuiltIn.BuiltIn method)

 	sock_avail() (robot.libraries.Telnet.TelnetConnection method)

 	sort() (robot.model.itemlist.ItemList method)

 	(robot.model.keyword.Keywords method)

 	(robot.model.message.Messages method)

 	(robot.model.testcase.TestCases method)

 	(robot.model.testsuite.TestSuites method)

 	(robot.running.model.Imports method)

 	sort_list() (robot.libraries.Collections.Collections method)

 	Sortable (class in robot.utils.sortable)

 	source (robot.model.keyword.Keyword attribute)

 	(robot.model.testcase.TestCase attribute)

 	(robot.model.testsuite.TestSuite attribute)

 	(robot.result.executionresult.Result attribute)

 	(robot.result.model.Keyword attribute)

 	(robot.result.model.TestCase attribute)

 	(robot.result.model.TestSuite attribute)

 	(robot.running.model.ForLoop attribute)

 	(robot.running.model.Keyword attribute)

 	(robot.running.model.TestCase attribute)

 	(robot.running.model.TestSuite attribute)

 	(robot.running.model.UserKeyword attribute)

 	spacecount() (robot.tidy.ArgumentValidator method)

 	SpecDocBuilder (class in robot.libdocpkg.specbuilder)

 	split_args_from_name_or_path() (in module robot.utils.text)

 	split_command_line() (robot.libraries.Process.Process method)

 	split_extension() (robot.libraries.OperatingSystem.OperatingSystem method)

 	split_from_equals() (in module robot.utils.escaping)

 	split_log (robot.conf.settings.RebotSettings attribute)

 	(robot.conf.settings.RobotSettings attribute)

 	split_path() (robot.libraries.OperatingSystem.OperatingSystem method)

 	split_string() (robot.libraries.String.String method)

 	split_string_from_right() (robot.libraries.String.String method)

 	
 	split_string_to_characters() (robot.libraries.String.String method)

 	split_tags_from_doc() (in module robot.utils.text)

 	split_to_lines() (robot.libraries.String.String method)

 	SplitLogWriter (class in robot.reporting.jswriter)

 	start() (robot.result.xmlelementhandlers.ArgumentHandler method)

 	(robot.result.xmlelementhandlers.ArgumentsHandler method)

 	(robot.result.xmlelementhandlers.AssignHandler method)

 	(robot.result.xmlelementhandlers.AssignVarHandler method)

 	(robot.result.xmlelementhandlers.DocHandler method)

 	(robot.result.xmlelementhandlers.ErrorsHandler method)

 	(robot.result.xmlelementhandlers.KeywordHandler method)

 	(robot.result.xmlelementhandlers.KeywordStatusHandler method)

 	(robot.result.xmlelementhandlers.MessageHandler method)

 	(robot.result.xmlelementhandlers.MetadataHandler method)

 	(robot.result.xmlelementhandlers.MetadataItemHandler method)

 	(robot.result.xmlelementhandlers.RobotHandler method)

 	(robot.result.xmlelementhandlers.RootHandler method)

 	(robot.result.xmlelementhandlers.RootSuiteHandler method)

 	(robot.result.xmlelementhandlers.StatisticsHandler method)

 	(robot.result.xmlelementhandlers.SuiteHandler method)

 	(robot.result.xmlelementhandlers.SuiteStatusHandler method)

 	(robot.result.xmlelementhandlers.TagHandler method)

 	(robot.result.xmlelementhandlers.TagsHandler method)

 	(robot.result.xmlelementhandlers.TestCaseHandler method)

 	(robot.result.xmlelementhandlers.TestStatusHandler method)

 	(robot.result.xmlelementhandlers.TimeoutHandler method)

 	(robot.result.xmlelementhandlers.XmlElementHandler method)

 	(robot.running.timeouts.KeywordTimeout method)

 	(robot.running.timeouts.TestTimeout method)

 	(robot.utils.markupwriters.HtmlWriter method)

 	(robot.utils.markupwriters.NullMarkupWriter method)

 	(robot.utils.markupwriters.XmlWriter method)

 	start_directory() (robot.parsing.suitestructure.SuiteStructureVisitor method)

 	(robot.running.builder.builders.SuiteStructureParser method)

 	(robot.tidy.Tidy method)

 	start_errors() (robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.visitor.ResultVisitor method)

 	start_keyword() (robot.conf.gatherfailed.GatherFailedSuites method)

 	(robot.conf.gatherfailed.GatherFailedTests method)

 	(robot.model.configurer.SuiteConfigurer method)

 	(robot.model.filter.EmptySuiteRemover method)

 	(robot.model.filter.Filter method)

 	(robot.model.modifier.ModelModifier method)

 	(robot.model.statistics.StatisticsBuilder method)

 	(robot.model.tagsetter.TagSetter method)

 	(robot.model.totalstatistics.TotalStatisticsBuilder method)

 	(robot.model.visitor.SuiteVisitor method)

 	(robot.output.console.dotted.StatusReporter method)

 	(robot.output.console.verbose.VerboseOutput method)

 	(robot.output.filelogger.FileLogger method)

 	(robot.output.logger.Logger method)

 	(robot.output.output.Output method)

 	(robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.configurer.SuiteConfigurer method)

 	(robot.result.keywordremover.AllKeywordsRemover method)

 	(robot.result.keywordremover.ByNameKeywordRemover method)

 	(robot.result.keywordremover.ByTagKeywordRemover method)

 	(robot.result.keywordremover.ForLoopItemsRemover method)

 	(robot.result.keywordremover.PassedKeywordRemover method)

 	(robot.result.keywordremover.WaitUntilKeywordSucceedsRemover method)

 	(robot.result.keywordremover.WarningAndErrorFinder method)

 	(robot.result.merger.Merger method)

 	(robot.result.messagefilter.MessageFilter method)

 	(robot.result.resultbuilder.RemoveKeywords method)

 	(robot.result.suiteteardownfailed.SuiteTeardownFailed method)

 	(robot.result.suiteteardownfailed.SuiteTeardownFailureHandler method)

 	(robot.result.visitor.ResultVisitor method)

 	(robot.running.randomizer.Randomizer method)

 	(robot.running.runner.Runner method)

 	(robot.variables.scopes.SetVariables method)

 	(robot.variables.scopes.VariableScopes method)

 	start_loggers (robot.output.logger.Logger attribute)

 	start_message() (robot.conf.gatherfailed.GatherFailedSuites method)

 	(robot.conf.gatherfailed.GatherFailedTests method)

 	(robot.model.configurer.SuiteConfigurer method)

 	(robot.model.filter.EmptySuiteRemover method)

 	(robot.model.filter.Filter method)

 	(robot.model.modifier.ModelModifier method)

 	(robot.model.statistics.StatisticsBuilder method)

 	(robot.model.tagsetter.TagSetter method)

 	(robot.model.totalstatistics.TotalStatisticsBuilder method)

 	(robot.model.visitor.SuiteVisitor method)

 	(robot.output.console.dotted.StatusReporter method)

 	(robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.configurer.SuiteConfigurer method)

 	(robot.result.keywordremover.AllKeywordsRemover method)

 	(robot.result.keywordremover.ByNameKeywordRemover method)

 	(robot.result.keywordremover.ByTagKeywordRemover method)

 	(robot.result.keywordremover.ForLoopItemsRemover method)

 	(robot.result.keywordremover.PassedKeywordRemover method)

 	(robot.result.keywordremover.WaitUntilKeywordSucceedsRemover method)

 	(robot.result.keywordremover.WarningAndErrorFinder method)

 	(robot.result.merger.Merger method)

 	(robot.result.messagefilter.MessageFilter method)

 	(robot.result.resultbuilder.RemoveKeywords method)

 	(robot.result.suiteteardownfailed.SuiteTeardownFailed method)

 	(robot.result.suiteteardownfailed.SuiteTeardownFailureHandler method)

 	(robot.result.visitor.ResultVisitor method)

 	(robot.running.randomizer.Randomizer method)

 	(robot.running.runner.Runner method)

 	start_process() (robot.libraries.Process.Process method)

 	start_result() (robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.visitor.ResultVisitor method)

 	start_splitting_if_needed() (robot.reporting.jsbuildingcontext.JsBuildingContext method)

 	start_stat() (robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.visitor.ResultVisitor method)

 	start_statistics() (robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.visitor.ResultVisitor method)

 	start_suite() (robot.conf.gatherfailed.GatherFailedSuites method)

 	(robot.conf.gatherfailed.GatherFailedTests method)

 	(robot.model.configurer.SuiteConfigurer method)

 	(robot.model.filter.EmptySuiteRemover method)

 	(robot.model.filter.Filter method)

 	(robot.model.modifier.ModelModifier method)

 	(robot.model.statistics.StatisticsBuilder method)

 	(robot.model.suitestatistics.SuiteStatisticsBuilder method)

 	(robot.model.tagsetter.TagSetter method)

 	(robot.model.totalstatistics.TotalStatisticsBuilder method)

 	(robot.model.visitor.SuiteVisitor method)

 	(robot.output.console.dotted.DottedOutput method)

 	(robot.output.console.dotted.StatusReporter method)

 	(robot.output.console.verbose.VerboseOutput method)

 	(robot.output.filelogger.FileLogger method)

 	(robot.output.logger.Logger method)

 	(robot.output.output.Output method)

 	(robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.configurer.SuiteConfigurer method)

 	(robot.result.keywordremover.AllKeywordsRemover method)

 	(robot.result.keywordremover.ByNameKeywordRemover method)

 	(robot.result.keywordremover.ByTagKeywordRemover method)

 	(robot.result.keywordremover.ForLoopItemsRemover method)

 	(robot.result.keywordremover.PassedKeywordRemover method)

 	(robot.result.keywordremover.WaitUntilKeywordSucceedsRemover method)

 	(robot.result.keywordremover.WarningAndErrorFinder method)

 	(robot.result.merger.Merger method)

 	(robot.result.messagefilter.MessageFilter method)

 	(robot.result.resultbuilder.RemoveKeywords method)

 	(robot.result.suiteteardownfailed.SuiteTeardownFailed method)

 	(robot.result.suiteteardownfailed.SuiteTeardownFailureHandler method)

 	(robot.result.visitor.ResultVisitor method)

 	(robot.running.context.ExecutionContexts method)

 	(robot.running.libraryscopes.GlobalScope method)

 	(robot.running.libraryscopes.TestCaseScope method)

 	(robot.running.libraryscopes.TestSuiteScope method)

 	(robot.running.namespace.Namespace method)

 	(robot.running.randomizer.Randomizer method)

 	(robot.running.runner.Runner method)

 	(robot.variables.scopes.SetVariables method)

 	(robot.variables.scopes.VariableScopes method)

 	start_suite_statistics() (robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.visitor.ResultVisitor method)

 	start_tag_statistics() (robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.visitor.ResultVisitor method)

 	start_test() (robot.conf.gatherfailed.GatherFailedSuites method)

 	(robot.conf.gatherfailed.GatherFailedTests method)

 	(robot.model.configurer.SuiteConfigurer method)

 	(robot.model.filter.EmptySuiteRemover method)

 	(robot.model.filter.Filter method)

 	(robot.model.modifier.ModelModifier method)

 	(robot.model.statistics.StatisticsBuilder method)

 	(robot.model.tagsetter.TagSetter method)

 	(robot.model.totalstatistics.TotalStatisticsBuilder method)

 	(robot.model.visitor.SuiteVisitor method)

 	(robot.output.console.dotted.StatusReporter method)

 	(robot.output.console.verbose.VerboseOutput method)

 	(robot.output.filelogger.FileLogger method)

 	(robot.output.logger.Logger method)

 	(robot.output.output.Output method)

 	(robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.configurer.SuiteConfigurer method)

 	(robot.result.keywordremover.AllKeywordsRemover method)

 	(robot.result.keywordremover.ByNameKeywordRemover method)

 	(robot.result.keywordremover.ByTagKeywordRemover method)

 	(robot.result.keywordremover.ForLoopItemsRemover method)

 	(robot.result.keywordremover.PassedKeywordRemover method)

 	(robot.result.keywordremover.WaitUntilKeywordSucceedsRemover method)

 	(robot.result.keywordremover.WarningAndErrorFinder method)

 	(robot.result.merger.Merger method)

 	(robot.result.messagefilter.MessageFilter method)

 	(robot.result.resultbuilder.RemoveKeywords method)

 	(robot.result.suiteteardownfailed.SuiteTeardownFailed method)

 	(robot.result.suiteteardownfailed.SuiteTeardownFailureHandler method)

 	(robot.result.visitor.ResultVisitor method)

 	(robot.running.libraryscopes.GlobalScope method)

 	(robot.running.libraryscopes.TestCaseScope method)

 	(robot.running.libraryscopes.TestSuiteScope method)

 	(robot.running.namespace.Namespace method)

 	(robot.running.randomizer.Randomizer method)

 	(robot.running.runner.Runner method)

 	(robot.variables.scopes.SetVariables method)

 	(robot.variables.scopes.VariableScopes method)

 	start_total_statistics() (robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.visitor.ResultVisitor method)

 	start_user_keyword() (robot.running.namespace.Namespace method)

 	StartKeywordArguments (class in robot.output.listenerarguments)

 	StartSuiteArguments (class in robot.output.listenerarguments)

 	StartTestArguments (class in robot.output.listenerarguments)

 	starttime (robot.result.model.Keyword attribute)

 	(robot.result.model.TestCase attribute)

 	(robot.result.model.TestSuite attribute)

 	Stat (class in robot.model.stats)

 	stat (robot.model.suitestatistics.SuiteStatistics attribute)

 	stat_message (robot.result.model.TestSuite attribute)

 	state() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	Statement (class in robot.parsing.model.statements)

 	StatementLexer (class in robot.parsing.lexer.statementlexers)

 	Statistics (class in robot.model.statistics)

 	statistics (robot.result.executionresult.CombinedResult attribute)

 	(robot.result.executionresult.Result attribute)

 	(robot.result.model.TestSuite attribute)

 	statistics_config (robot.conf.settings.RebotSettings attribute)

 	(robot.conf.settings.RobotSettings attribute)

 	StatisticsBuilder (class in robot.model.statistics)

 	(class in robot.reporting.jsmodelbuilders)

 	StatisticsHandler (class in robot.result.xmlelementhandlers)

 	status (robot.errors.ContinueForLoop attribute)

 	(robot.errors.ExecutionFailed attribute)

 	(robot.errors.ExecutionFailures attribute)

 	(robot.errors.ExecutionPassed attribute)

 	(robot.errors.ExecutionStatus attribute)

 	(robot.errors.ExitForLoop attribute)

 	(robot.errors.HandlerExecutionFailed attribute)

 	(robot.errors.PassExecution attribute)

 	(robot.errors.ReturnFromKeyword attribute)

 	(robot.errors.UserKeywordExecutionFailed attribute)

 	(robot.result.model.Keyword attribute)

 	(robot.result.model.TestCase attribute)

 	(robot.result.model.TestSuite attribute)

 	(robot.running.status.SuiteStatus attribute)

 	(robot.running.status.TestStatus attribute)

 	status() (robot.output.console.verbose.VerboseWriter method)

 	status_rc (robot.conf.settings.RebotSettings attribute)

 	(robot.conf.settings.RobotSettings attribute)

 	StatusReporter (class in robot.output.console.dotted)

 	(class in robot.running.statusreporter)

 	stderr (robot.libraries.Process.ExecutionResult attribute)

 	stdout (robot.libraries.Process.ExecutionResult attribute)

 	StdoutLogSplitter (class in robot.output.stdoutlogsplitter)

 	StepRunner (class in robot.running.steprunner)

 	StoredFinder (class in robot.variables.finders)

 	String (class in robot.libraries.String)

 	string() (robot.reporting.jsbuildingcontext.JsBuildingContext method)

 	StringCache (class in robot.reporting.stringcache)

 	StringDumper (class in robot.htmldata.jsonwriter)

 	StringIndex (class in robot.reporting.stringcache)

 	strings (robot.reporting.jsbuildingcontext.JsBuildingContext attribute)

 	strip() (robot.libraries.XML.NameSpaceStripper method)

 	strip_string() (robot.libraries.String.String method)

 	subtract_date_from_date() (in module robot.libraries.DateTime)

 	subtract_time_from_date() (in module robot.libraries.DateTime)

 	subtract_time_from_time() (in module robot.libraries.DateTime)

 	suite (robot.model.statistics.Statistics attribute)

 	(robot.result.executionresult.Result attribute)

 	suite_config (robot.conf.settings.RebotSettings attribute)

 	(robot.conf.settings.RobotSettings attribute)

 	suite_separator() (robot.output.console.verbose.VerboseWriter method)

 	SUITE_SETUP (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	SUITE_TEARDOWN (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	suite_teardown_failed() (robot.result.model.TestSuite method)

 	SuiteBuilder (class in robot.reporting.jsmodelbuilders)

 	(class in robot.running.builder.transformers)

 	SuiteConfigurer (class in robot.model.configurer)

 	(class in robot.result.configurer)

 	SuiteHandler (class in robot.result.xmlelementhandlers)

 	SuiteMessage (class in robot.running.status)

 	SuiteNamePatterns (class in robot.model.namepatterns)

 	suites (robot.model.suitestatistics.SuiteStatistics attribute)

 	(robot.model.testsuite.TestSuite attribute)

 	(robot.result.model.TestSuite attribute)

 	(robot.running.model.TestSuite attribute)

 	SuiteSetup (class in robot.parsing.model.statements)

 	SuiteStat (class in robot.model.stats)

 	SuiteStatistics (class in robot.model.suitestatistics)

 	SuiteStatisticsBuilder (class in robot.model.suitestatistics)

 	SuiteStatus (class in robot.running.status)

 	SuiteStatusHandler (class in robot.result.xmlelementhandlers)

 	SuiteStructure (class in robot.parsing.suitestructure)

 	SuiteStructureBuilder (class in robot.parsing.suitestructure)

 	SuiteStructureParser (class in robot.running.builder.builders)

 	SuiteStructureVisitor (class in robot.parsing.suitestructure)

 	SuiteTeardown (class in robot.parsing.model.statements)

 	SuiteTeardownFailed (class in robot.result.suiteteardownfailed)

 	SuiteTeardownFailureHandler (class in robot.result.suiteteardownfailed)

 	SuiteVisitor (class in robot.model.visitor)

 	SuiteWriter (class in robot.reporting.jswriter)

 	supports_kwargs (robot.running.dynamicmethods.RunKeyword attribute)

 	switch() (robot.utils.connectioncache.ConnectionCache method)

 	switch_connection() (robot.libraries.Telnet.Telnet method)

 	switch_process() (robot.libraries.Process.Process method)

 	system_decode() (in module robot.utils.encoding)

 	system_encode() (in module robot.utils.encoding)

T

 	
 	TableFormatter (class in robot.utils.htmlformatters)

 	tag (robot.result.xmlelementhandlers.ArgumentHandler attribute)

 	(robot.result.xmlelementhandlers.ArgumentsHandler attribute)

 	(robot.result.xmlelementhandlers.AssignHandler attribute)

 	(robot.result.xmlelementhandlers.AssignVarHandler attribute)

 	(robot.result.xmlelementhandlers.DocHandler attribute)

 	(robot.result.xmlelementhandlers.ErrorsHandler attribute)

 	(robot.result.xmlelementhandlers.KeywordHandler attribute)

 	(robot.result.xmlelementhandlers.KeywordStatusHandler attribute)

 	(robot.result.xmlelementhandlers.MessageHandler attribute)

 	(robot.result.xmlelementhandlers.MetadataHandler attribute)

 	(robot.result.xmlelementhandlers.MetadataItemHandler attribute)

 	(robot.result.xmlelementhandlers.RobotHandler attribute)

 	(robot.result.xmlelementhandlers.RootSuiteHandler attribute)

 	(robot.result.xmlelementhandlers.StatisticsHandler attribute)

 	(robot.result.xmlelementhandlers.SuiteHandler attribute)

 	(robot.result.xmlelementhandlers.SuiteStatusHandler attribute)

 	(robot.result.xmlelementhandlers.TagHandler attribute)

 	(robot.result.xmlelementhandlers.TagsHandler attribute)

 	(robot.result.xmlelementhandlers.TestCaseHandler attribute)

 	(robot.result.xmlelementhandlers.TestStatusHandler attribute)

 	(robot.result.xmlelementhandlers.TimeoutHandler attribute)

 	tag_is_critical() (robot.model.criticality.Criticality method)

 	tag_is_non_critical() (robot.model.criticality.Criticality method)

 	TagHandler (class in robot.result.xmlelementhandlers)

 	TagPattern() (in module robot.model.tags)

 	TagPatterns (class in robot.model.tags)

 	Tags (class in robot.model.tags)

 	(class in robot.parsing.model.statements)

 	tags (robot.model.keyword.Keyword attribute)

 	(robot.model.statistics.Statistics attribute)

 	(robot.model.tagstatistics.TagStatistics attribute)

 	(robot.model.testcase.TestCase attribute)

 	TAGS (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	tags (robot.result.model.Keyword attribute)

 	(robot.result.model.TestCase attribute)

 	(robot.running.builder.testsettings.TestSettings attribute)

 	(robot.running.model.ForLoop attribute)

 	(robot.running.model.Keyword attribute)

 	(robot.running.model.TestCase attribute)

 	(robot.running.model.UserKeyword attribute)

 	TagSetter (class in robot.model.tagsetter)

 	TagsHandler (class in robot.result.xmlelementhandlers)

 	TagStat (class in robot.model.stats)

 	TagStatDoc (class in robot.model.tagstatistics)

 	TagStatInfo (class in robot.model.tagstatistics)

 	TagStatistics (class in robot.model.tagstatistics)

 	TagStatisticsBuilder (class in robot.model.tagstatistics)

 	TagStatLink (class in robot.model.tagstatistics)

 	take_screenshot() (robot.libraries.Screenshot.Screenshot method)

 	take_screenshot_without_embedding() (robot.libraries.Screenshot.Screenshot method)

 	tasks (robot.parsing.model.blocks.TestCaseSection attribute)

 	Teardown (class in robot.parsing.model.statements)

 	teardown (robot.model.keyword.Keywords attribute)

 	TEARDOWN (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	teardown (robot.running.builder.testsettings.TestDefaults attribute)

 	(robot.running.builder.testsettings.TestSettings attribute)

 	teardown_allowed (robot.running.status.Exit attribute)

 	(robot.running.status.SuiteStatus attribute)

 	(robot.running.status.TestStatus attribute)

 	teardown_executed() (robot.running.status.SuiteStatus method)

 	(robot.running.status.TestStatus method)

 	teardown_message (robot.running.status.ParentMessage attribute)

 	(robot.running.status.SuiteMessage attribute)

 	(robot.running.status.TestMessage attribute)

 	TEARDOWN_TYPE (robot.model.keyword.Keyword attribute)

 	(robot.result.model.Keyword attribute)

 	(robot.running.model.ForLoop attribute)

 	(robot.running.model.Keyword attribute)

 	Telnet (class in robot.libraries.Telnet)

 	TelnetConnection (class in robot.libraries.Telnet)

 	Template (class in robot.parsing.model.statements)

 	TEMPLATE (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	template (robot.running.builder.testsettings.TestSettings attribute)

 	(robot.running.model.TestCase attribute)

 	template_set (robot.parsing.lexer.context.KeywordContext attribute)

 	(robot.parsing.lexer.context.TestCaseContext attribute)

 	(robot.parsing.lexer.settings.TestCaseSettings attribute)

 	TemplateArguments (class in robot.parsing.model.statements)

 	TerminalEmulator (class in robot.libraries.Telnet)

 	terminate_all_processes() (robot.libraries.Process.Process method)

 	terminate_process() (robot.libraries.Process.Process method)

 	TERMINATE_TIMEOUT (robot.libraries.Process.Process attribute)

 	test() (robot.libraries.Screenshot.ScreenshotTaker method)

 	test_case() (robot.parsing.lexer.sections.InitFileSections method)

 	(robot.parsing.lexer.sections.ResourceFileSections method)

 	(robot.parsing.lexer.sections.Sections method)

 	(robot.parsing.lexer.sections.TestCaseFileSections method)

 	test_case_context() (robot.parsing.lexer.context.TestCaseFileContext method)

 	TEST_CASE_FILE_TYPE (robot.running.handlerstore.HandlerStore attribute)

 	(robot.running.userkeyword.UserLibrary attribute)

 	test_case_markers (robot.parsing.lexer.sections.InitFileSections attribute)

 	(robot.parsing.lexer.sections.ResourceFileSections attribute)

 	(robot.parsing.lexer.sections.Sections attribute)

 	(robot.parsing.lexer.sections.TestCaseFileSections attribute)

 	test_case_section() (robot.parsing.lexer.context.FileContext method)

 	(robot.parsing.lexer.context.InitFileContext method)

 	(robot.parsing.lexer.context.ResourceFileContext method)

 	(robot.parsing.lexer.context.TestCaseFileContext method)

 	test_class (robot.model.testsuite.TestSuite attribute)

 	(robot.result.model.TestSuite attribute)

 	(robot.running.model.TestSuite attribute)

 	test_count (robot.model.testsuite.TestSuite attribute)

 	(robot.result.model.TestSuite attribute)

 	(robot.running.model.TestSuite attribute)

 	test_failed() (robot.running.status.TestStatus method)

 	test_is_critical() (robot.model.criticality.Criticality method)

 	TEST_LIBRARY_TYPE (robot.running.handlerstore.HandlerStore attribute)

 	test_separator() (robot.output.console.verbose.VerboseWriter method)

 	TEST_SETUP (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	TEST_TEARDOWN (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	TEST_TEMPLATE (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	TEST_TIMEOUT (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	TestBuilder (class in robot.reporting.jsmodelbuilders)

 	TestCase (class in robot.model.testcase)

 	(class in robot.parsing.model.blocks)

 	(class in robot.result.model)

 	(class in robot.running.model)

 	TESTCASE_HEADER (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	TESTCASE_NAME (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	TestCaseBuilder (class in robot.running.builder.transformers)

 	TestCaseContext (class in robot.parsing.lexer.context)

 	TestCaseFileContext (class in robot.parsing.lexer.context)

 	TestCaseFileSections (class in robot.parsing.lexer.sections)

 	TestCaseFileSettings (class in robot.parsing.lexer.settings)

 	TestCaseHandler (class in robot.result.xmlelementhandlers)

 	TestCaseLexer (class in robot.parsing.lexer.blocklexers)

 	TestCaseName (class in robot.parsing.model.statements)

 	TestCaseParser (class in robot.parsing.parser.blockparsers)

 	TestCases (class in robot.model.testcase)

 	TestCaseScope (class in robot.running.libraryscopes)

 	TestCaseSection (class in robot.parsing.model.blocks)

 	TestCaseSectionHeader (class in robot.parsing.model.statements)

 	TestCaseSectionHeaderLexer (class in robot.parsing.lexer.statementlexers)

 	TestCaseSectionLexer (class in robot.parsing.lexer.blocklexers)

 	TestCaseSectionParser (class in robot.parsing.parser.fileparser)

 	TestCaseSettings (class in robot.parsing.lexer.settings)

 	TestDefaults (class in robot.running.builder.testsettings)

 	TestDoc (class in robot.testdoc)

 	testdoc() (in module robot.testdoc)

 	testdoc_cli() (in module robot.testdoc)

 	TestdocModelWriter (class in robot.testdoc)

 	TestLibrary() (in module robot.running.testlibraries)

 	TestMessage (class in robot.running.status)

 	TestNamePatterns (class in robot.model.namepatterns)

 	TestOrKeywordLexer (class in robot.parsing.lexer.blocklexers)

 	TestOrKeywordSettingLexer (class in robot.parsing.lexer.statementlexers)

 	tests (robot.model.testsuite.TestSuite attribute)

 	(robot.result.model.TestSuite attribute)

 	(robot.running.model.TestSuite attribute)

 	TestSettings (class in robot.running.builder.testsettings)

 	TestSetup (class in robot.parsing.model.statements)

 	TestStatus (class in robot.running.status)

 	TestStatusHandler (class in robot.result.xmlelementhandlers)

 	TestSuite (class in robot.model.testsuite)

 	(class in robot.result.model)

 	(class in robot.running.model)

 	TestSuiteBuilder (class in robot.running.builder.builders)

 	TestSuiteFactory() (in module robot.testdoc)

 	TestSuites (class in robot.model.testsuite)

 	TestSuiteScope (class in robot.running.libraryscopes)

 	TestTeardown (class in robot.parsing.model.statements)

 	TestTemplate (class in robot.parsing.model.statements)

 	TestTimeout (class in robot.parsing.model.statements)

 	(class in robot.running.timeouts)

 	Tidy (class in robot.tidy)

 	tidy_cli() (in module robot.tidy)

 	TidyCommandLine (class in robot.tidy)

 	time_left() (robot.running.timeouts.KeywordTimeout method)

 	(robot.running.timeouts.TestTimeout method)

 	timed_out() (robot.running.timeouts.KeywordTimeout method)

 	(robot.running.timeouts.TestTimeout method)

 	TimeDeltaConverter (class in robot.running.arguments.typeconverters)

 	Timeout (class in robot.parsing.model.statements)

 	(class in robot.running.timeouts.posix)

 	(class in robot.running.timeouts.windows)

 	timeout (robot.errors.ContinueForLoop attribute)

 	(robot.errors.ExecutionFailed attribute)

 	(robot.errors.ExecutionFailures attribute)

 	(robot.errors.ExecutionPassed attribute)

 	(robot.errors.ExecutionStatus attribute)

 	(robot.errors.ExitForLoop attribute)

 	(robot.errors.HandlerExecutionFailed attribute)

 	(robot.errors.PassExecution attribute)

 	(robot.errors.ReturnFromKeyword attribute)

 	(robot.errors.UserKeywordExecutionFailed attribute)

 	(robot.model.keyword.Keyword attribute)

 	(robot.model.testcase.TestCase attribute)

 	TIMEOUT (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	timeout (robot.result.model.Keyword attribute)

 	(robot.result.model.TestCase attribute)

 	(robot.running.builder.testsettings.TestDefaults attribute)

 	(robot.running.builder.testsettings.TestSettings attribute)

 	(robot.running.model.ForLoop attribute)

 	(robot.running.model.Keyword attribute)

 	(robot.running.model.TestCase attribute)

 	
 	TimeoutError

 	TimeoutHandler (class in robot.result.xmlelementhandlers)

 	TimeoutHTTPSTransport (class in robot.libraries.Remote)

 	TimeoutHTTPTransport (class in robot.libraries.Remote)

 	timestamp (robot.model.message.Message attribute)

 	(robot.output.loggerhelper.Message attribute)

 	(robot.result.model.Message attribute)

 	timestamp() (robot.reporting.jsbuildingcontext.JsBuildingContext method)

 	timestamp_to_secs() (in module robot.utils.robottime)

 	TimestampCache (class in robot.utils.robottime)

 	timestr_to_secs() (in module robot.utils.robottime)

 	title() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	tk_bisque() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	tk_focusFollowsMouse() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	tk_focusNext() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	tk_focusPrev() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	tk_menuBar() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	tk_setPalette() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	tk_strictMotif() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	tkraise() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	Token (class in robot.parsing.lexer.tokens)

 	token_type (robot.parsing.lexer.statementlexers.CommentLexer attribute)

 	(robot.parsing.lexer.statementlexers.CommentSectionHeaderLexer attribute)

 	(robot.parsing.lexer.statementlexers.EndLexer attribute)

 	(robot.parsing.lexer.statementlexers.ErrorSectionHeaderLexer attribute)

 	(robot.parsing.lexer.statementlexers.ForLoopHeaderLexer attribute)

 	(robot.parsing.lexer.statementlexers.KeywordCallLexer attribute)

 	(robot.parsing.lexer.statementlexers.KeywordSectionHeaderLexer attribute)

 	(robot.parsing.lexer.statementlexers.SectionHeaderLexer attribute)

 	(robot.parsing.lexer.statementlexers.SettingLexer attribute)

 	(robot.parsing.lexer.statementlexers.SettingSectionHeaderLexer attribute)

 	(robot.parsing.lexer.statementlexers.StatementLexer attribute)

 	(robot.parsing.lexer.statementlexers.TestCaseSectionHeaderLexer attribute)

 	(robot.parsing.lexer.statementlexers.TestOrKeywordSettingLexer attribute)

 	(robot.parsing.lexer.statementlexers.VariableLexer attribute)

 	(robot.parsing.lexer.statementlexers.VariableSectionHeaderLexer attribute)

 	tokenize() (robot.parsing.lexer.tokenizer.Tokenizer method)

 	tokenize_variables() (robot.parsing.lexer.tokens.EOS method)

 	(robot.parsing.lexer.tokens.Token method)

 	Tokenizer (class in robot.parsing.lexer.tokenizer)

 	top (robot.running.context.ExecutionContexts attribute)

 	total (robot.model.statistics.Statistics attribute)

 	(robot.model.stats.CombinedTagStat attribute)

 	(robot.model.stats.CriticalTagStat attribute)

 	(robot.model.stats.Stat attribute)

 	(robot.model.stats.SuiteStat attribute)

 	(robot.model.stats.TagStat attribute)

 	(robot.model.stats.TotalStat attribute)

 	TotalStat (class in robot.model.stats)

 	TotalStatistics (class in robot.model.totalstatistics)

 	TotalStatisticsBuilder (class in robot.model.totalstatistics)

 	touch() (robot.libraries.OperatingSystem.OperatingSystem method)

 	trace() (in module robot.api.logger)

 	(in module robot.output.librarylogger)

 	(robot.output.filelogger.FileLogger method)

 	(robot.output.logger.Logger method)

 	(robot.output.loggerhelper.AbstractLogger method)

 	(robot.output.output.Output method)

 	traceback (robot.utils.error.JavaErrorDetails attribute)

 	(robot.utils.error.PythonErrorDetails attribute)

 	transient() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	TupleConverter (class in robot.running.arguments.typeconverters)

 	TupleListDumper (class in robot.htmldata.jsonwriter)

 	type (robot.model.keyword.Keyword attribute)

 	(robot.model.stats.CombinedTagStat attribute)

 	(robot.model.stats.CriticalTagStat attribute)

 	(robot.model.stats.SuiteStat attribute)

 	(robot.model.stats.TagStat attribute)

 	(robot.model.stats.TotalStat attribute)

 	(robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	(robot.parsing.model.statements.Arguments attribute)

 	(robot.parsing.model.statements.Comment attribute)

 	(robot.parsing.model.statements.CommentSectionHeader attribute)

 	(robot.parsing.model.statements.DefaultTags attribute)

 	(robot.parsing.model.statements.Documentation attribute)

 	(robot.parsing.model.statements.DocumentationOrMetadata attribute)

 	(robot.parsing.model.statements.EmptyLine attribute)

 	(robot.parsing.model.statements.End attribute)

 	(robot.parsing.model.statements.Error attribute)

 	(robot.parsing.model.statements.Fixture attribute)

 	(robot.parsing.model.statements.ForLoopHeader attribute)

 	(robot.parsing.model.statements.ForceTags attribute)

 	(robot.parsing.model.statements.KeywordCall attribute)

 	(robot.parsing.model.statements.KeywordName attribute)

 	(robot.parsing.model.statements.KeywordSectionHeader attribute)

 	(robot.parsing.model.statements.LibraryImport attribute)

 	(robot.parsing.model.statements.Metadata attribute)

 	(robot.parsing.model.statements.MultiValue attribute)

 	(robot.parsing.model.statements.ResourceImport attribute)

 	(robot.parsing.model.statements.Return attribute)

 	(robot.parsing.model.statements.SectionHeader attribute)

 	(robot.parsing.model.statements.SettingSectionHeader attribute)

 	(robot.parsing.model.statements.Setup attribute)

 	(robot.parsing.model.statements.SingleValue attribute)

 	(robot.parsing.model.statements.Statement attribute)

 	(robot.parsing.model.statements.SuiteSetup attribute)

 	(robot.parsing.model.statements.SuiteTeardown attribute)

 	(robot.parsing.model.statements.Tags attribute)

 	(robot.parsing.model.statements.Teardown attribute)

 	(robot.parsing.model.statements.Template attribute)

 	(robot.parsing.model.statements.TemplateArguments attribute)

 	(robot.parsing.model.statements.TestCaseName attribute)

 	(robot.parsing.model.statements.TestCaseSectionHeader attribute)

 	(robot.parsing.model.statements.TestSetup attribute)

 	(robot.parsing.model.statements.TestTeardown attribute)

 	(robot.parsing.model.statements.TestTemplate attribute)

 	(robot.parsing.model.statements.TestTimeout attribute)

 	(robot.parsing.model.statements.Timeout attribute)

 	(robot.parsing.model.statements.Variable attribute)

 	(robot.parsing.model.statements.VariableSectionHeader attribute)

 	(robot.parsing.model.statements.VariablesImport attribute)

 	(robot.result.model.Keyword attribute)

 	(robot.running.arguments.typeconverters.BooleanConverter attribute)

 	(robot.running.arguments.typeconverters.ByteArrayConverter attribute)

 	(robot.running.arguments.typeconverters.BytesConverter attribute)

 	(robot.running.arguments.typeconverters.DateConverter attribute)

 	(robot.running.arguments.typeconverters.DateTimeConverter attribute)

 	(robot.running.arguments.typeconverters.DecimalConverter attribute)

 	(robot.running.arguments.typeconverters.DictionaryConverter attribute)

 	(robot.running.arguments.typeconverters.EnumConverter attribute)

 	(robot.running.arguments.typeconverters.FloatConverter attribute)

 	(robot.running.arguments.typeconverters.FrozenSetConverter attribute)

 	(robot.running.arguments.typeconverters.IntegerConverter attribute)

 	(robot.running.arguments.typeconverters.ListConverter attribute)

 	(robot.running.arguments.typeconverters.NoneConverter attribute)

 	(robot.running.arguments.typeconverters.SetConverter attribute)

 	(robot.running.arguments.typeconverters.TimeDeltaConverter attribute)

 	(robot.running.arguments.typeconverters.TupleConverter attribute)

 	(robot.running.arguments.typeconverters.TypeConverter attribute)

 	(robot.running.model.ForLoop attribute)

 	(robot.running.model.Keyword attribute)

 	(robot.running.timeouts.KeywordTimeout attribute)

 	(robot.running.timeouts.TestTimeout attribute)

 	type_name (robot.running.arguments.typeconverters.BooleanConverter attribute)

 	(robot.running.arguments.typeconverters.ByteArrayConverter attribute)

 	(robot.running.arguments.typeconverters.BytesConverter attribute)

 	(robot.running.arguments.typeconverters.DateConverter attribute)

 	(robot.running.arguments.typeconverters.DateTimeConverter attribute)

 	(robot.running.arguments.typeconverters.DecimalConverter attribute)

 	(robot.running.arguments.typeconverters.DictionaryConverter attribute)

 	(robot.running.arguments.typeconverters.EnumConverter attribute)

 	(robot.running.arguments.typeconverters.FloatConverter attribute)

 	(robot.running.arguments.typeconverters.FrozenSetConverter attribute)

 	(robot.running.arguments.typeconverters.IntegerConverter attribute)

 	(robot.running.arguments.typeconverters.ListConverter attribute)

 	(robot.running.arguments.typeconverters.NoneConverter attribute)

 	(robot.running.arguments.typeconverters.SetConverter attribute)

 	(robot.running.arguments.typeconverters.TimeDeltaConverter attribute)

 	(robot.running.arguments.typeconverters.TupleConverter attribute)

 	(robot.running.arguments.typeconverters.TypeConverter attribute)

 	type_name() (in module robot.utils.robottypes2)

 	TypeConverter (class in robot.running.arguments.typeconverters)

 	types (robot.running.arguments.argumentspec.ArgumentSpec attribute)

 	TypeValidator (class in robot.running.arguments.typevalidator)

U

 	
 	unbind() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	unbind_all() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	unbind_class() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	unescape() (robot.utils.escaping.Unescaper method)

 	unescape_variable_syntax() (in module robot.variables.search)

 	Unescaper (class in robot.utils.escaping)

 	unic() (in module robot.utils.unic)

 	unregister() (robot.output.listenermethods.LibraryListenerMethods method)

 	(robot.output.listeners.LibraryListeners method)

 	unregister_console_logger() (robot.output.logger.Logger method)

 	unregister_logger() (robot.output.logger.Logger method)

 	unregister_xml_logger() (robot.output.logger.Logger method)

 	unstrip() (robot.libraries.XML.NameSpaceStripper method)

 	unwrap() (in module robot.utils.compat)

 	update() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	(robot.model.metadata.Metadata method)

 	(robot.utils.dotdict.DotDict method)

 	(robot.utils.normalizing.NormalizedDict method)

 	(robot.variables.evaluation.EvaluationNamespace method)

 	(robot.variables.scopes.GlobalVariables method)

 	(robot.variables.scopes.SetVariables method)

 	(robot.variables.store.VariableStore method)

 	(robot.variables.variables.Variables method)

 	
 	update_idletasks() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	usage (robot.reporting.logreportwriters.LogWriter attribute)

 	(robot.reporting.logreportwriters.ReportWriter attribute)

 	user_agent (robot.libraries.Remote.TimeoutHTTPSTransport attribute)

 	(robot.libraries.Remote.TimeoutHTTPTransport attribute)

 	UserErrorHandler (class in robot.running.usererrorhandler)

 	UserKeyword (class in robot.running.model)

 	UserKeywordArgumentParser (class in robot.running.arguments.argumentparser)

 	UserKeywordExecutionFailed

 	UserKeywordHandler (class in robot.running.userkeyword)

 	UserKeywordRunner (class in robot.running.userkeywordrunner)

 	UserLibrary (class in robot.running.userkeyword)

V

 	
 	validate() (robot.libdoc.LibDoc method)

 	(robot.rebot.Rebot method)

 	(robot.run.RobotFramework method)

 	(robot.running.arguments.argumentvalidator.ArgumentValidator method)

 	(robot.running.arguments.typevalidator.TypeValidator method)

 	(robot.testdoc.TestDoc method)

 	(robot.tidy.TidyCommandLine method)

 	(robot.utils.application.Application method)

 	(robot.variables.assigner.AssignmentValidator method)

 	validate_assignment() (robot.variables.assigner.VariableAssignment method)

 	validate_command() (robot.libdocpkg.consoleviewer.ConsoleViewer class method)

 	validate_flatten_keyword() (in module robot.result.flattenkeywordmatcher)

 	validate_type_dict() (robot.running.arguments.typevalidator.TypeValidator method)

 	value (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	(robot.parsing.model.statements.Documentation attribute)

 	(robot.parsing.model.statements.End attribute)

 	(robot.parsing.model.statements.Metadata attribute)

 	(robot.parsing.model.statements.SingleValue attribute)

 	(robot.parsing.model.statements.Template attribute)

 	(robot.parsing.model.statements.TestTemplate attribute)

 	(robot.parsing.model.statements.TestTimeout attribute)

 	(robot.parsing.model.statements.Timeout attribute)

 	(robot.parsing.model.statements.Variable attribute)

 	values (robot.parsing.model.blocks.ForLoop attribute)

 	(robot.parsing.model.statements.Arguments attribute)

 	(robot.parsing.model.statements.DefaultTags attribute)

 	(robot.parsing.model.statements.ForLoopHeader attribute)

 	(robot.parsing.model.statements.ForceTags attribute)

 	(robot.parsing.model.statements.MultiValue attribute)

 	(robot.parsing.model.statements.Return attribute)

 	(robot.parsing.model.statements.Tags attribute)

 	(robot.running.model.ForLoop attribute)

 	values() (robot.model.metadata.Metadata method)

 	(robot.running.importer.ImportCache method)

 	(robot.utils.dotdict.DotDict method)

 	(robot.utils.normalizing.NormalizedDict method)

 	(robot.variables.evaluation.EvaluationNamespace method)

 	Variable (class in robot.parsing.model.statements)

 	(class in robot.running.model)

 	VARIABLE (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	variable() (robot.parsing.lexer.sections.InitFileSections method)

 	(robot.parsing.lexer.sections.ResourceFileSections method)

 	(robot.parsing.lexer.sections.Sections method)

 	(robot.parsing.lexer.sections.TestCaseFileSections method)

 	variable_files (robot.conf.settings.RobotSettings attribute)

 	VARIABLE_HEADER (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	variable_markers (robot.parsing.lexer.sections.InitFileSections attribute)

 	(robot.parsing.lexer.sections.ResourceFileSections attribute)

 	(robot.parsing.lexer.sections.Sections attribute)

 	(robot.parsing.lexer.sections.TestCaseFileSections attribute)

 	variable_not_found() (in module robot.variables.notfound)

 	variable_section() (robot.parsing.lexer.context.FileContext method)

 	(robot.parsing.lexer.context.InitFileContext method)

 	(robot.parsing.lexer.context.ResourceFileContext method)

 	(robot.parsing.lexer.context.TestCaseFileContext method)

 	variable_should_exist() (robot.libraries.BuiltIn.BuiltIn method)

 	variable_should_not_exist() (robot.libraries.BuiltIn.BuiltIn method)

 	variable_state() (robot.variables.search.VariableSearcher method)

 	VariableAssigner (class in robot.variables.assigner)

 	VariableAssignment (class in robot.variables.assigner)

 	VariableError

 	VariableFileSetter (class in robot.variables.filesetter)

 	VariableFinder (class in robot.variables.finders)

 	VariableIterator (class in robot.variables.search)

 	VariableLexer (class in robot.parsing.lexer.statementlexers)

 	VariableMatch (class in robot.variables.search)

 	VariableReplacer (class in robot.running.arguments.argumentresolver)

 	(class in robot.variables.replacer)

 	Variables (class in robot.variables.variables)

 	variables (robot.conf.settings.RobotSettings attribute)

 	VARIABLES (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	variables (robot.parsing.model.blocks.ForLoop attribute)

 	(robot.parsing.model.statements.ForLoopHeader attribute)

 	(robot.running.model.ForLoop attribute)

 	(robot.running.model.ResourceFile attribute)

 	variables() (robot.running.model.Imports method)

 	VariableScopes (class in robot.variables.scopes)

 	VariableSearcher (class in robot.variables.search)

 	VariableSection (class in robot.parsing.model.blocks)

 	VariableSectionHeader (class in robot.parsing.model.statements)

 	VariableSectionHeaderLexer (class in robot.parsing.lexer.statementlexers)

 	VariableSectionLexer (class in robot.parsing.lexer.blocklexers)

 	VariableSectionParser (class in robot.parsing.parser.fileparser)

 	VariablesImport (class in robot.parsing.model.statements)

 	VariableStore (class in robot.variables.store)

 	VariableTableSetter (class in robot.variables.tablesetter)

 	VariableTableValue() (in module robot.variables.tablesetter)

 	VariableTableValueBase (class in robot.variables.tablesetter)

 	VerboseOutput (class in robot.output.console.verbose)

 	VerboseWriter (class in robot.output.console.verbose)

 	version() (robot.libdocpkg.consoleviewer.ConsoleViewer method)

 	view() (robot.libdocpkg.consoleviewer.ConsoleViewer method)

 	viewitems() (robot.utils.dotdict.DotDict method)

 	viewkeys() (robot.utils.dotdict.DotDict method)

 	viewvalues() (robot.utils.dotdict.DotDict method)

 	visit() (robot.model.itemlist.ItemList method)

 	(robot.model.keyword.Keyword method)

 	(robot.model.keyword.Keywords method)

 	(robot.model.message.Message method)

 	(robot.model.message.Messages method)

 	(robot.model.statistics.Statistics method)

 	(robot.model.stats.CombinedTagStat method)

 	(robot.model.stats.CriticalTagStat method)

 	(robot.model.stats.Stat method)

 	(robot.model.stats.SuiteStat method)

 	(robot.model.stats.TagStat method)

 	(robot.model.stats.TotalStat method)

 	(robot.model.suitestatistics.SuiteStatistics method)

 	(robot.model.tagstatistics.TagStatistics method)

 	(robot.model.testcase.TestCase method)

 	(robot.model.testcase.TestCases method)

 	(robot.model.testsuite.TestSuite method)

 	(robot.model.testsuite.TestSuites method)

 	(robot.model.totalstatistics.TotalStatistics method)

 	(robot.output.loggerhelper.Message method)

 	(robot.parsing.model.blocks.FirstStatementFinder method)

 	(robot.parsing.model.blocks.LastStatementFinder method)

 	(robot.parsing.model.blocks.ModelWriter method)

 	(robot.parsing.model.visitor.ModelTransformer method)

 	(robot.parsing.model.visitor.ModelVisitor method)

 	(robot.parsing.suitestructure.SuiteStructure method)

 	(robot.result.executionerrors.ExecutionErrors method)

 	(robot.result.executionresult.CombinedResult method)

 	(robot.result.executionresult.Result method)

 	(robot.result.model.Keyword method)

 	(robot.result.model.Message method)

 	(robot.result.model.TestCase method)

 	(robot.result.model.TestSuite method)

 	(robot.running.builder.parsers.ErrorReporter method)

 	(robot.running.builder.transformers.ForLoopBuilder method)

 	(robot.running.builder.transformers.KeywordBuilder method)

 	(robot.running.builder.transformers.ResourceBuilder method)

 	(robot.running.builder.transformers.SettingsBuilder method)

 	(robot.running.builder.transformers.SuiteBuilder method)

 	(robot.running.builder.transformers.TestCaseBuilder method)

 	(robot.running.model.ForLoop method)

 	(robot.running.model.Imports method)

 	(robot.running.model.Keyword method)

 	(robot.running.model.TestCase method)

 	(robot.running.model.TestSuite method)

 	(robot.tidypkg.transformers.Aligner method)

 	(robot.tidypkg.transformers.Cleaner method)

 	(robot.tidypkg.transformers.ColumnAligner method)

 	(robot.tidypkg.transformers.ColumnWidthCounter method)

 	(robot.tidypkg.transformers.NewlineNormalizer method)

 	(robot.tidypkg.transformers.SeparatorNormalizer method)

 	visit_Arguments() (robot.running.builder.transformers.KeywordBuilder method)

 	visit_CommentSection() (robot.tidypkg.transformers.Cleaner method)

 	(robot.tidypkg.transformers.NewlineNormalizer method)

 	visit_DefaultTags() (robot.running.builder.transformers.SettingsBuilder method)

 	visit_directory() (robot.parsing.suitestructure.SuiteStructureVisitor method)

 	(robot.running.builder.builders.SuiteStructureParser method)

 	(robot.tidy.Tidy method)

 	visit_Documentation() (robot.running.builder.transformers.KeywordBuilder method)

 	(robot.running.builder.transformers.ResourceBuilder method)

 	(robot.running.builder.transformers.SettingsBuilder method)

 	(robot.running.builder.transformers.TestCaseBuilder method)

 	visit_Error() (robot.running.builder.parsers.ErrorReporter method)

 	visit_errors() (robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.visitor.ResultVisitor method)

 	visit_file() (robot.parsing.suitestructure.SuiteStructureVisitor method)

 	(robot.running.builder.builders.SuiteStructureParser method)

 	(robot.tidy.Tidy method)

 	visit_File() (robot.tidypkg.transformers.NewlineNormalizer method)

 	visit_ForceTags() (robot.running.builder.transformers.SettingsBuilder method)

 	visit_ForLoop() (robot.running.builder.transformers.KeywordBuilder method)

 	(robot.running.builder.transformers.TestCaseBuilder method)

 	(robot.tidypkg.transformers.Cleaner method)

 	(robot.tidypkg.transformers.ColumnAligner method)

 	(robot.tidypkg.transformers.SeparatorNormalizer method)

 	visit_keyword() (robot.conf.gatherfailed.GatherFailedSuites method)

 	(robot.conf.gatherfailed.GatherFailedTests method)

 	(robot.model.configurer.SuiteConfigurer method)

 	(robot.model.filter.EmptySuiteRemover method)

 	(robot.model.filter.Filter method)

 	(robot.model.modifier.ModelModifier method)

 	(robot.model.statistics.StatisticsBuilder method)

 	(robot.model.tagsetter.TagSetter method)

 	(robot.model.totalstatistics.TotalStatisticsBuilder method)

 	(robot.model.visitor.SuiteVisitor method)

 	(robot.output.console.dotted.StatusReporter method)

 	(robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.configurer.SuiteConfigurer method)

 	(robot.result.keywordremover.AllKeywordsRemover method)

 	(robot.result.keywordremover.ByNameKeywordRemover method)

 	(robot.result.keywordremover.ByTagKeywordRemover method)

 	(robot.result.keywordremover.ForLoopItemsRemover method)

 	(robot.result.keywordremover.PassedKeywordRemover method)

 	(robot.result.keywordremover.WaitUntilKeywordSucceedsRemover method)

 	(robot.result.keywordremover.WarningAndErrorFinder method)

 	(robot.result.merger.Merger method)

 	(robot.result.messagefilter.MessageFilter method)

 	(robot.result.resultbuilder.RemoveKeywords method)

 	(robot.result.suiteteardownfailed.SuiteTeardownFailed method)

 	(robot.result.suiteteardownfailed.SuiteTeardownFailureHandler method)

 	(robot.result.visitor.ResultVisitor method)

 	
 	visit_Keyword() (robot.running.builder.transformers.KeywordBuilder method)

 	(robot.running.builder.transformers.ResourceBuilder method)

 	(robot.running.builder.transformers.SuiteBuilder method)

 	visit_keyword() (robot.running.randomizer.Randomizer method)

 	(robot.running.runner.Runner method)

 	visit_Keyword() (robot.tidypkg.transformers.NewlineNormalizer method)

 	(robot.tidypkg.transformers.SeparatorNormalizer method)

 	visit_KeywordCall() (robot.running.builder.transformers.ForLoopBuilder method)

 	(robot.running.builder.transformers.KeywordBuilder method)

 	(robot.running.builder.transformers.TestCaseBuilder method)

 	visit_KeywordSection() (robot.running.builder.transformers.SettingsBuilder method)

 	(robot.tidypkg.transformers.Aligner method)

 	(robot.tidypkg.transformers.NewlineNormalizer method)

 	visit_LibraryImport() (robot.running.builder.transformers.ResourceBuilder method)

 	(robot.running.builder.transformers.SettingsBuilder method)

 	visit_message() (robot.conf.gatherfailed.GatherFailedSuites method)

 	(robot.conf.gatherfailed.GatherFailedTests method)

 	(robot.model.configurer.SuiteConfigurer method)

 	(robot.model.filter.EmptySuiteRemover method)

 	(robot.model.filter.Filter method)

 	(robot.model.modifier.ModelModifier method)

 	(robot.model.statistics.StatisticsBuilder method)

 	(robot.model.tagsetter.TagSetter method)

 	(robot.model.totalstatistics.TotalStatisticsBuilder method)

 	(robot.model.visitor.SuiteVisitor method)

 	(robot.output.console.dotted.StatusReporter method)

 	(robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.configurer.SuiteConfigurer method)

 	(robot.result.keywordremover.AllKeywordsRemover method)

 	(robot.result.keywordremover.ByNameKeywordRemover method)

 	(robot.result.keywordremover.ByTagKeywordRemover method)

 	(robot.result.keywordremover.ForLoopItemsRemover method)

 	(robot.result.keywordremover.PassedKeywordRemover method)

 	(robot.result.keywordremover.WaitUntilKeywordSucceedsRemover method)

 	(robot.result.keywordremover.WarningAndErrorFinder method)

 	(robot.result.merger.Merger method)

 	(robot.result.messagefilter.MessageFilter method)

 	(robot.result.resultbuilder.RemoveKeywords method)

 	(robot.result.suiteteardownfailed.SuiteTeardownFailed method)

 	(robot.result.suiteteardownfailed.SuiteTeardownFailureHandler method)

 	(robot.result.visitor.ResultVisitor method)

 	(robot.running.randomizer.Randomizer method)

 	(robot.running.runner.Runner method)

 	visit_Metadata() (robot.running.builder.transformers.SettingsBuilder method)

 	visit_ResourceImport() (robot.running.builder.transformers.ResourceBuilder method)

 	(robot.running.builder.transformers.SettingsBuilder method)

 	visit_result() (robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.visitor.ResultVisitor method)

 	visit_Return() (robot.running.builder.transformers.KeywordBuilder method)

 	visit_Section() (robot.tidypkg.transformers.Cleaner method)

 	(robot.tidypkg.transformers.NewlineNormalizer method)

 	visit_SettingSection() (robot.running.builder.transformers.SuiteBuilder method)

 	visit_Setup() (robot.running.builder.transformers.TestCaseBuilder method)

 	visit_stat() (robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.visitor.ResultVisitor method)

 	visit_Statement() (robot.parsing.model.blocks.FirstStatementFinder method)

 	(robot.parsing.model.blocks.LastStatementFinder method)

 	(robot.parsing.model.blocks.ModelWriter method)

 	(robot.tidypkg.transformers.Aligner method)

 	(robot.tidypkg.transformers.Cleaner method)

 	(robot.tidypkg.transformers.ColumnAligner method)

 	(robot.tidypkg.transformers.ColumnWidthCounter method)

 	(robot.tidypkg.transformers.NewlineNormalizer method)

 	(robot.tidypkg.transformers.SeparatorNormalizer method)

 	visit_statistics() (robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.visitor.ResultVisitor method)

 	visit_suite() (robot.conf.gatherfailed.GatherFailedSuites method)

 	(robot.conf.gatherfailed.GatherFailedTests method)

 	(robot.model.configurer.SuiteConfigurer method)

 	(robot.model.filter.EmptySuiteRemover method)

 	(robot.model.filter.Filter method)

 	(robot.model.modifier.ModelModifier method)

 	(robot.model.statistics.StatisticsBuilder method)

 	(robot.model.tagsetter.TagSetter method)

 	(robot.model.totalstatistics.TotalStatisticsBuilder method)

 	(robot.model.visitor.SuiteVisitor method)

 	(robot.output.console.dotted.StatusReporter method)

 	(robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.configurer.SuiteConfigurer method)

 	(robot.result.keywordremover.AllKeywordsRemover method)

 	(robot.result.keywordremover.ByNameKeywordRemover method)

 	(robot.result.keywordremover.ByTagKeywordRemover method)

 	(robot.result.keywordremover.ForLoopItemsRemover method)

 	(robot.result.keywordremover.PassedKeywordRemover method)

 	(robot.result.keywordremover.WaitUntilKeywordSucceedsRemover method)

 	(robot.result.keywordremover.WarningAndErrorFinder method)

 	(robot.result.merger.Merger method)

 	(robot.result.messagefilter.MessageFilter method)

 	(robot.result.resultbuilder.RemoveKeywords method)

 	(robot.result.suiteteardownfailed.SuiteTeardownFailed method)

 	(robot.result.suiteteardownfailed.SuiteTeardownFailureHandler method)

 	(robot.result.visitor.ResultVisitor method)

 	(robot.running.randomizer.Randomizer method)

 	(robot.running.runner.Runner method)

 	visit_suite_statistics() (robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.visitor.ResultVisitor method)

 	visit_SuiteSetup() (robot.running.builder.transformers.SettingsBuilder method)

 	visit_SuiteTeardown() (robot.running.builder.transformers.SettingsBuilder method)

 	visit_tag_statistics() (robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.visitor.ResultVisitor method)

 	visit_Tags() (robot.running.builder.transformers.KeywordBuilder method)

 	(robot.running.builder.transformers.TestCaseBuilder method)

 	visit_Teardown() (robot.running.builder.transformers.KeywordBuilder method)

 	(robot.running.builder.transformers.TestCaseBuilder method)

 	visit_Template() (robot.running.builder.transformers.TestCaseBuilder method)

 	visit_TemplateArguments() (robot.running.builder.transformers.ForLoopBuilder method)

 	(robot.running.builder.transformers.TestCaseBuilder method)

 	visit_test() (robot.conf.gatherfailed.GatherFailedSuites method)

 	(robot.conf.gatherfailed.GatherFailedTests method)

 	(robot.model.configurer.SuiteConfigurer method)

 	(robot.model.filter.EmptySuiteRemover method)

 	(robot.model.filter.Filter method)

 	(robot.model.modifier.ModelModifier method)

 	(robot.model.statistics.StatisticsBuilder method)

 	(robot.model.tagsetter.TagSetter method)

 	(robot.model.totalstatistics.TotalStatisticsBuilder method)

 	(robot.model.visitor.SuiteVisitor method)

 	(robot.output.console.dotted.StatusReporter method)

 	(robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.configurer.SuiteConfigurer method)

 	(robot.result.keywordremover.AllKeywordsRemover method)

 	(robot.result.keywordremover.ByNameKeywordRemover method)

 	(robot.result.keywordremover.ByTagKeywordRemover method)

 	(robot.result.keywordremover.ForLoopItemsRemover method)

 	(robot.result.keywordremover.PassedKeywordRemover method)

 	(robot.result.keywordremover.WaitUntilKeywordSucceedsRemover method)

 	(robot.result.keywordremover.WarningAndErrorFinder method)

 	(robot.result.merger.Merger method)

 	(robot.result.messagefilter.MessageFilter method)

 	(robot.result.resultbuilder.RemoveKeywords method)

 	(robot.result.suiteteardownfailed.SuiteTeardownFailed method)

 	(robot.result.suiteteardownfailed.SuiteTeardownFailureHandler method)

 	(robot.result.visitor.ResultVisitor method)

 	(robot.running.randomizer.Randomizer method)

 	(robot.running.runner.Runner method)

 	visit_TestCase() (robot.running.builder.transformers.SuiteBuilder method)

 	(robot.running.builder.transformers.TestCaseBuilder method)

 	(robot.tidypkg.transformers.ColumnAligner method)

 	(robot.tidypkg.transformers.NewlineNormalizer method)

 	(robot.tidypkg.transformers.SeparatorNormalizer method)

 	visit_TestCaseSection() (robot.running.builder.transformers.SettingsBuilder method)

 	(robot.tidypkg.transformers.Aligner method)

 	(robot.tidypkg.transformers.NewlineNormalizer method)

 	visit_TestSetup() (robot.running.builder.transformers.SettingsBuilder method)

 	visit_TestTeardown() (robot.running.builder.transformers.SettingsBuilder method)

 	visit_TestTemplate() (robot.running.builder.transformers.SettingsBuilder method)

 	visit_TestTimeout() (robot.running.builder.transformers.SettingsBuilder method)

 	visit_Timeout() (robot.running.builder.transformers.KeywordBuilder method)

 	(robot.running.builder.transformers.TestCaseBuilder method)

 	visit_total_statistics() (robot.output.xmllogger.XmlLogger method)

 	(robot.reporting.outputwriter.OutputWriter method)

 	(robot.reporting.xunitwriter.XUnitFileWriter method)

 	(robot.result.visitor.ResultVisitor method)

 	visit_Variable() (robot.running.builder.transformers.ResourceBuilder method)

 	(robot.running.builder.transformers.SuiteBuilder method)

 	visit_VariableSection() (robot.running.builder.transformers.SettingsBuilder method)

 	visit_VariablesImport() (robot.running.builder.transformers.ResourceBuilder method)

 	(robot.running.builder.transformers.SettingsBuilder method)

 	VisitorFinder (class in robot.parsing.model.visitor)

W

 	
 	wait_for_process() (robot.libraries.Process.Process method)

 	wait_until_created() (robot.libraries.OperatingSystem.OperatingSystem method)

 	wait_until_keyword_succeeds() (robot.libraries.BuiltIn.BuiltIn method)

 	wait_until_removed() (robot.libraries.OperatingSystem.OperatingSystem method)

 	wait_variable() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	wait_visibility() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	wait_window() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	waiting_item_state() (robot.variables.search.VariableSearcher method)

 	WaitUntilKeywordSucceedsRemover (class in robot.result.keywordremover)

 	waitvar() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	warn() (in module robot.api.logger)

 	(in module robot.output.librarylogger)

 	(robot.output.filelogger.FileLogger method)

 	(robot.output.logger.Logger method)

 	(robot.output.loggerhelper.AbstractLogger method)

 	(robot.output.output.Output method)

 	warning() (robot.utils.restreader.CaptureRobotData method)

 	WarningAndErrorFinder (class in robot.result.keywordremover)

 	widths_for_line() (robot.tidypkg.transformers.ColumnAligner method)

 	winfo_atom() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_atomname() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_cells() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_children() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_class() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_colormapfull() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_containing() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_depth() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_exists() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_fpixels() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_geometry() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_height() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_id() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_interps() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_ismapped() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_manager() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_name() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_parent() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_pathname() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_pixels() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_pointerx() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_pointerxy() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_pointery() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_reqheight() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_reqwidth() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_rgb() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_rootx() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_rooty() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_screen() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_screencells() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_screendepth() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_screenheight() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_screenmmheight() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_screenmmwidth() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_screenvisual() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_screenwidth() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_server() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_toplevel() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_viewable() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_visual() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	
 	winfo_visualid() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_visualsavailable() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_vrootheight() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_vrootwidth() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_vrootx() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_vrooty() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_width() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_x() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	winfo_y() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	with_metaclass() (in module robot.utils.compat)

 	WITH_NAME (robot.parsing.lexer.tokens.EOS attribute)

 	(robot.parsing.lexer.tokens.Token attribute)

 	withdraw() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	wm_aspect() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	wm_attributes() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	wm_client() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	wm_colormapwindows() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	wm_command() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	wm_deiconify() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	wm_focusmodel() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	wm_frame() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	wm_geometry() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	wm_grid() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	wm_group() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	wm_iconbitmap() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	wm_iconify() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	wm_iconmask() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	wm_iconname() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	wm_iconposition() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	wm_iconwindow() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	wm_maxsize() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	wm_minsize() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	wm_overrideredirect() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	wm_positionfrom() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	wm_protocol() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	wm_resizable() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	wm_sizefrom() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	wm_state() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	wm_title() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	wm_transient() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	wm_withdraw() (robot.libraries.dialogs_py.InputDialog method)

 	(robot.libraries.dialogs_py.MessageDialog method)

 	(robot.libraries.dialogs_py.MultipleSelectionDialog method)

 	(robot.libraries.dialogs_py.PassFailDialog method)

 	(robot.libraries.dialogs_py.SelectionDialog method)

 	write() (in module robot.api.logger)

 	(in module robot.output.librarylogger)

 	(robot.htmldata.htmlfilewriter.CssFileWriter method)

 	(robot.htmldata.htmlfilewriter.GeneratorWriter method)

 	(robot.htmldata.htmlfilewriter.HtmlFileWriter method)

 	(robot.htmldata.htmlfilewriter.JsFileWriter method)

 	(robot.htmldata.htmlfilewriter.LineWriter method)

 	(robot.htmldata.htmlfilewriter.ModelWriter method)

 	(robot.htmldata.jsonwriter.JsonDumper method)

 	(robot.htmldata.jsonwriter.JsonWriter method)

 	(robot.libdocpkg.htmlwriter.LibdocHtmlWriter method)

 	(robot.libdocpkg.htmlwriter.LibdocModelWriter method)

 	(robot.libdocpkg.xmlwriter.LibdocXmlWriter method)

 	(robot.libraries.Telnet.TelnetConnection method)

 	(robot.output.console.highlighting.HighlightingStream method)

 	(robot.output.filelogger.FileLogger method)

 	(robot.output.logger.Logger method)

 	(robot.output.loggerhelper.AbstractLogger method)

 	(robot.output.output.Output method)

 	(robot.parsing.model.blocks.ModelWriter method)

 	(robot.reporting.jswriter.JsResultWriter method)

 	(robot.reporting.jswriter.SplitLogWriter method)

 	(robot.reporting.jswriter.SuiteWriter method)

 	(robot.reporting.logreportwriters.LogWriter method)

 	(robot.reporting.logreportwriters.ReportWriter method)

 	(robot.reporting.logreportwriters.RobotModelWriter method)

 	(robot.reporting.xunitwriter.XUnitWriter method)

 	(robot.testdoc.TestdocModelWriter method)

 	write_bare() (robot.libraries.Telnet.TelnetConnection method)

 	write_control_character() (robot.libraries.Telnet.TelnetConnection method)

 	write_data() (robot.libdocpkg.htmlwriter.LibdocModelWriter method)

 	(robot.testdoc.TestdocModelWriter method)

 	write_json() (robot.htmldata.jsonwriter.JsonWriter method)

 	write_results() (robot.reporting.resultwriter.ResultWriter method)

 	write_until_expected_output() (robot.libraries.Telnet.TelnetConnection method)

X

 	
 	XML (class in robot.libraries.XML)

 	xml_escape() (in module robot.utils.markuputils)

 	XmlElementHandler (class in robot.result.xmlelementhandlers)

 	XmlLogger (class in robot.output.xmllogger)

 	XmlRpcRemoteClient (class in robot.libraries.Remote)

 	XmlWriter (class in robot.utils.markupwriters)

 	
 	xunit (robot.conf.settings.RebotSettings attribute)

 	(robot.conf.settings.RobotSettings attribute)

 	xunit_skip_noncritical (robot.conf.settings.RebotSettings attribute)

 	(robot.conf.settings.RobotSettings attribute)

 	XUnitFileWriter (class in robot.reporting.xunitwriter)

 	XUnitWriter (class in robot.reporting.xunitwriter)

Y

 	
 	YamlImporter (class in robot.variables.filesetter)

 	yellow() (robot.output.console.highlighting.AnsiHighlighter method)

 	(robot.output.console.highlighting.DosHighlighter method)

 	(robot.output.console.highlighting.NoHighlighting method)

 _static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Robot Framework API documentation

 		
 robot package

 		
 Subpackages

 		
 robot.api package

 		
 robot.conf package

 		
 robot.htmldata package

 		
 robot.libdocpkg package

 		
 robot.libraries package

 		
 robot.model package

 		
 robot.output package

 		
 robot.parsing package

 		
 robot.reporting package

 		
 robot.result package

 		
 robot.running package

 		
 robot.tidypkg package

 		
 robot.utils package

 		
 robot.variables package

 		
 Submodules

 		
 robot.errors module

 		
 robot.jarrunner module

 		
 robot.libdoc module

 		
 robot.pythonpathsetter module

 		
 robot.rebot module

 		
 robot.run module

 		
 robot.testdoc module

 		
 robot.tidy module

 		
 robot.version module

 		
 robot.api package

 		
 Submodules

 		
 robot.api.deco module

 		
 robot.api.logger module

 		
 Log levels

 		
 Logging HTML

 		
 Example

 		
 robot.conf package

 		
 Submodules

 		
 robot.conf.gatherfailed module

 		
 robot.conf.settings module

 		
 robot.htmldata package

 		
 Submodules

 		
 robot.htmldata.htmlfilewriter module

 		
 robot.htmldata.jartemplate module

 		
 robot.htmldata.jsonwriter module

 		
 robot.htmldata.normaltemplate module

 		
 robot.htmldata.template module

 		
 robot.libdocpkg package

 		
 Submodules

 		
 robot.libdocpkg.builder module

 		
 robot.libdocpkg.consoleviewer module

 		
 robot.libdocpkg.htmlwriter module

 		
 robot.libdocpkg.java9builder module

 		
 robot.libdocpkg.javabuilder module

 		
 robot.libdocpkg.model module

 		
 robot.libdocpkg.output module

 		
 robot.libdocpkg.robotbuilder module

 		
 robot.libdocpkg.specbuilder module

 		
 robot.libdocpkg.writer module

 		
 robot.libdocpkg.xmlwriter module

 		
 robot.libraries package

 		
 Submodules

 		
 robot.libraries.BuiltIn module

 		
 robot.libraries.Collections module

 		
 robot.libraries.DateTime module

 		
 robot.libraries.Dialogs module

 		
 robot.libraries.Easter module

 		
 robot.libraries.OperatingSystem module

 		
 robot.libraries.Process module

 		
 robot.libraries.Remote module

 		
 robot.libraries.Reserved module

 		
 robot.libraries.Screenshot module

 		
 robot.libraries.String module

 		
 robot.libraries.Telnet module

 		
 robot.libraries.XML module

 		
 robot.libraries.dialogs_ipy module

 		
 robot.libraries.dialogs_jy module

 		
 robot.libraries.dialogs_py module

 		
 robot.model package

 		
 Submodules

 		
 robot.model.configurer module

 		
 robot.model.criticality module

 		
 robot.model.filter module

 		
 robot.model.itemlist module

 		
 robot.model.keyword module

 		
 robot.model.message module

 		
 robot.model.metadata module

 		
 robot.model.modelobject module

 		
 robot.model.modifier module

 		
 robot.model.namepatterns module

 		
 robot.model.statistics module

 		
 robot.model.stats module

 		
 robot.model.suitestatistics module

 		
 robot.model.tags module

 		
 robot.model.tagsetter module

 		
 robot.model.tagstatistics module

 		
 robot.model.testcase module

 		
 robot.model.testsuite module

 		
 robot.model.totalstatistics module

 		
 robot.model.visitor module

 		
 Visitor algorithm

 		
 Examples

 		
 robot.output package

 		
 Subpackages

 		
 robot.output.console package

 		
 Submodules

 		
 robot.output.debugfile module

 		
 robot.output.filelogger module

 		
 robot.output.librarylogger module

 		
 robot.output.listenerarguments module

 		
 robot.output.listenermethods module

 		
 robot.output.listeners module

 		
 robot.output.logger module

 		
 robot.output.loggerhelper module

 		
 robot.output.output module

 		
 robot.output.pyloggingconf module

 		
 robot.output.stdoutlogsplitter module

 		
 robot.output.xmllogger module

 		
 robot.parsing package

 		
 Exposed API

 		
 Parsing data to tokens

 		
 Parsing data to model

 		
 Inspecting model

 		
 Modifying token values

 		
 Adding and removing nodes

 		
 Executing model

 		
 Subpackages

 		
 robot.parsing.lexer package

 		
 robot.parsing.model package

 		
 robot.parsing.parser package

 		
 Submodules

 		
 robot.parsing.suitestructure module

 		
 robot.reporting package

 		
 Submodules

 		
 robot.reporting.expandkeywordmatcher module

 		
 robot.reporting.jsbuildingcontext module

 		
 robot.reporting.jsexecutionresult module

 		
 robot.reporting.jsmodelbuilders module

 		
 robot.reporting.jswriter module

 		
 robot.reporting.logreportwriters module

 		
 robot.reporting.outputwriter module

 		
 robot.reporting.resultwriter module

 		
 robot.reporting.stringcache module

 		
 robot.reporting.xunitwriter module

 		
 robot.result package

 		
 Example

 		
 Submodules

 		
 robot.result.configurer module

 		
 robot.result.executionerrors module

 		
 robot.result.executionresult module

 		
 robot.result.flattenkeywordmatcher module

 		
 robot.result.keywordremover module

 		
 robot.result.merger module

 		
 robot.result.messagefilter module

 		
 robot.result.model module

 		
 robot.result.resultbuilder module

 		
 robot.result.suiteteardownfailed module

 		
 robot.result.visitor module

 		
 robot.result.xmlelementhandlers module

 		
 robot.running package

 		
 Examples

 		
 Subpackages

 		
 robot.running.arguments package

 		
 robot.running.builder package

 		
 robot.running.timeouts package

 		
 Submodules

 		
 robot.running.context module

 		
 robot.running.dynamicmethods module

 		
 robot.running.handlers module

 		
 robot.running.handlerstore module

 		
 robot.running.importer module

 		
 robot.running.librarykeywordrunner module

 		
 robot.running.libraryscopes module

 		
 robot.running.model module

 		
 robot.running.namespace module

 		
 robot.running.outputcapture module

 		
 robot.running.randomizer module

 		
 robot.running.runkwregister module

 		
 robot.running.runner module

 		
 robot.running.signalhandler module

 		
 robot.running.status module

 		
 robot.running.statusreporter module

 		
 robot.running.steprunner module

 		
 robot.running.testlibraries module

 		
 robot.running.usererrorhandler module

 		
 robot.running.userkeyword module

 		
 robot.running.userkeywordrunner module

 		
 robot.utils package

 		
 Submodules

 		
 robot.utils.application module

 		
 robot.utils.argumentparser module

 		
 robot.utils.asserts module

 		
 robot.utils.charwidth module

 		
 robot.utils.compat module

 		
 robot.utils.compress module

 		
 robot.utils.connectioncache module

 		
 robot.utils.dotdict module

 		
 robot.utils.encoding module

 		
 robot.utils.encodingsniffer module

 		
 robot.utils.error module

 		
 robot.utils.escaping module

 		
 robot.utils.etreewrapper module

 		
 robot.utils.filereader module

 		
 robot.utils.frange module

 		
 robot.utils.htmlformatters module

 		
 robot.utils.importer module

 		
 robot.utils.markuputils module

 		
 robot.utils.markupwriters module

 		
 robot.utils.match module

 		
 robot.utils.misc module

 		
 robot.utils.normalizing module

 		
 robot.utils.platform module

 		
 robot.utils.recommendations module

 		
 robot.utils.restreader module

 		
 robot.utils.robotenv module

 		
 robot.utils.robotinspect module

 		
 robot.utils.robotio module

 		
 robot.utils.robotpath module

 		
 robot.utils.robottime module

 		
 robot.utils.robottypes module

 		
 robot.utils.robottypes2 module

 		
 robot.utils.robottypes3 module

 		
 robot.utils.setter module

 		
 robot.utils.sortable module

 		
 robot.utils.text module

 		
 robot.utils.unic module

 		
 robot.variables package

 		
 Submodules

 		
 robot.variables.assigner module

 		
 robot.variables.evaluation module

 		
 robot.variables.filesetter module

 		
 robot.variables.finders module

 		
 robot.variables.notfound module

 		
 robot.variables.replacer module

 		
 robot.variables.scopes module

 		
 robot.variables.search module

 		
 robot.variables.store module

 		
 robot.variables.tablesetter module

 		
 robot.variables.variables module

_static/ajax-loader.gif

