
Robot Framework Documentation
Release 6.0.2

Robot Framework developers

Jan 08, 2023

Contents

1 Entry points 3

2 Public API 5

3 All packages 7
3.1 robot package . 7

4 Indices 627

Python Module Index 629

Index 633

i

ii

Robot Framework Documentation, Release 6.0.2

This documentation describes the public API of Robot Framework. Installation, basic usage and wealth of other topics
are covered by the Robot Framework User Guide.

Main API entry points are documented here, but the lower level implementation details are not always that well
documented. If the documentation is insufficient, it is possible to view the source code by clicking [source] link in
the documentation. In case viewing the source is not helpful either, questions may be sent to the robotframework-users
mailing list.

Contents 1

http://robotframework.org
http://robotframework.org/robotframework/#user-guide
http://groups.google.com/group/robotframework-users

Robot Framework Documentation, Release 6.0.2

2 Contents

CHAPTER 1

Entry points

Command line entry points are implemented as Python modules and they also provide programmatic APIs. Following
entry points exist:

• robot.run entry point for executing tests.

• robot.rebot entry point for post-processing outputs (Rebot).

• robot.libdoc entry point for Libdoc tool.

• robot.testdoc entry point for Testdoc tool.

See built-in tool documentation for more details about Rebot, Libdoc, and Testdoc tools.

3

http://robotframework.org/robotframework/#built-in-tools

Robot Framework Documentation, Release 6.0.2

4 Chapter 1. Entry points

CHAPTER 2

Public API

robot.api package exposes the public APIs of Robot Framework.

Unless stated otherwise, the APIs exposed in this package are considered stable, and thus safe to use when building
external tools on top of Robot Framework. Notice that all parsing APIs were rewritten in Robot Framework 3.2.

Currently exposed APIs are:

• logger module for libraries’ logging purposes.

• deco module with decorators libraries can utilize.

• exceptions module containing exceptions that libraries can utilize for reporting failures and other
events. These exceptions can be imported also directly via robot.api like from robot.api import
SkipExecution.

• parsing module exposing the parsing APIs. This module is new in Robot Framework 4.0. Various parsing
related functions and classes were exposed directly via robot.api already in Robot Framework 3.2, but they
are effectively deprecated and will be removed in the future.

• TestSuite class for creating executable test suites programmatically and TestSuiteBuilder class for
creating such suites based on existing test data on the file system.

• SuiteVisitor abstract class for processing testdata before execution. This can be used as a base for imple-
menting a pre-run modifier that is taken into use with --prerunmodifier commandline option.

• ExecutionResult() factory method for reading execution results from XML output files and
ResultVisitor abstract class to ease further processing the results. ResultVisitor can also be used as
a base for pre-Rebot modifier that is taken into use with --prerebotmodifier commandline option.

• ResultWriter class for writing reports, logs, XML outputs, and XUnit files. Can write results based on
XML outputs on the file system, as well as based on the result objects returned by the ExecutionResult()
or an executed TestSuite.

• Languages and Language classes for external tools that need to work with different translations. The latter
is also the base class to use with custom translations.

All of the above names can be imported like:

5

Robot Framework Documentation, Release 6.0.2

from robot.api import ApiName

See documentations of the individual APIs for more details.

Tip: APIs related to the command line entry points are exposed directly via the robot root package.

6 Chapter 2. Public API

CHAPTER 3

All packages

All robot packages are listed below. Typically you should not need to import anything from them directly, but the
above public APIs may return objects implemented in them.

3.1 robot package

The root of the Robot Framework package.

The command line entry points provided by the framework are exposed for programmatic usage as follows:

• run(): Function to run tests.

• run_cli(): Function to run tests with command line argument processing.

• rebot(): Function to post-process outputs.

• rebot_cli(): Function to post-process outputs with command line argument processing.

• libdoc: Module for library documentation generation.

• testdoc: Module for test case documentation generation.

All the functions above can be imported like from robot import run. Functions and classes provided by the
modules need to be imported like from robot.libdoc import libdoc_cli.

The functions and modules listed above are considered stable. Other modules in this package are for for internal usage
and may change without prior notice.

Tip: More public APIs are exposed by the robot.api package.

robot.run(*tests, **options)
Programmatic entry point for running tests.

Parameters

7

Robot Framework Documentation, Release 6.0.2

• tests – Paths to test case files/directories to be executed similarly as when running the
robot command on the command line.

• options – Options to configure and control execution. Accepted options are mostly same
as normal command line options to the robot command. Option names match command
line option long names without hyphens so that, for example, --name becomes name.

Most options that can be given from the command line work. An exception is that options --pythonpath,
--argumentfile, --help and --version are not supported.

Options that can be given on the command line multiple times can be passed as lists. For example,
include=['tag1', 'tag2'] is equivalent to --include tag1 --include tag2. If such op-
tions are used only once, they can be given also as a single string like include='tag'.

Options that accept no value can be given as Booleans. For example, dryrun=True is same as using the
--dryrun option.

Options that accept string NONE as a special value can also be used with Python None. For example, using
log=None is equivalent to --log NONE.

listener, prerunmodifier and prerebotmodifier options allow passing values as Python ob-
jects in addition to module names these command line options support. For example, run('tests',
listener=MyListener()).

To capture the standard output and error streams, pass an open file or file-like object as special keyword argu-
ments stdout and stderr, respectively.

A return code is returned similarly as when running on the command line. Zero means that tests were executed
and no test failed, values up to 250 denote the number of failed tests, and values between 251-255 are for other
statuses documented in the Robot Framework User Guide.

Example:

from robot import run

run('path/to/tests.robot')
run('tests.robot', include=['tag1', 'tag2'], splitlog=True)
with open('stdout.txt', 'w') as stdout:

run('t1.robot', 't2.robot', name='Example', log=None, stdout=stdout)

Equivalent command line usage:

robot path/to/tests.robot
robot --include tag1 --include tag2 --splitlog tests.robot
robot --name Example --log NONE t1.robot t2.robot > stdout.txt

robot.run_cli(arguments=None, exit=True)
Command line execution entry point for running tests.

Parameters

• arguments – Command line options and arguments as a list of strings. Defaults to sys.
argv[1:] if not given.

• exit – If True, call sys.exit with the return code denoting execution status, otherwise
just return the rc.

Entry point used when running tests from the command line, but can also be used by custom scripts that execute
tests. Especially useful if the script itself needs to accept same arguments as accepted by Robot Framework,
because the script can just pass them forward directly along with the possible default values it sets itself.

Example:

8 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

from robot import run_cli

Run tests and return the return code.
rc = run_cli(['--name', 'Example', 'tests.robot'], exit=False)

Run tests and exit to the system automatically.
run_cli(['--name', 'Example', 'tests.robot'])

See also the run() function that allows setting options as keyword arguments like name="Example" and
generally has a richer API for programmatic test execution.

robot.rebot(*outputs, **options)
Programmatic entry point for post-processing outputs.

Parameters

• outputs – Paths to Robot Framework output files similarly as when running the rebot
command on the command line.

• options – Options to configure processing outputs. Accepted options are mostly same as
normal command line options to the rebot command. Option names match command line
option long names without hyphens so that, for example, --name becomes name.

The semantics related to passing options are exactly the same as with the run() function. See its documentation
for more details.

Examples:

from robot import rebot

rebot('path/to/output.xml')
with open('stdout.txt', 'w') as stdout:

rebot('o1.xml', 'o2.xml', name='Example', log=None, stdout=stdout)

Equivalent command line usage:

rebot path/to/output.xml
rebot --name Example --log NONE o1.xml o2.xml > stdout.txt

robot.rebot_cli(arguments=None, exit=True)
Command line execution entry point for post-processing outputs.

Parameters

• arguments – Command line options and arguments as a list of strings. Defaults to sys.
argv[1:] if not given.

• exit – If True, call sys.exit with the return code denoting execution status, otherwise
just return the rc.

Entry point used when post-processing outputs from the command line, but can also be used by custom scripts.
Especially useful if the script itself needs to accept same arguments as accepted by Rebot, because the script can
just pass them forward directly along with the possible default values it sets itself.

Example:

from robot import rebot_cli

rebot_cli(['--name', 'Example', '--log', 'NONE', 'o1.xml', 'o2.xml'])

3.1. robot package 9

Robot Framework Documentation, Release 6.0.2

See also the rebot() function that allows setting options as keyword arguments like name="Example" and
generally has a richer API for programmatic Rebot execution.

3.1.1 Subpackages

robot.api package

robot.api package exposes the public APIs of Robot Framework.

Unless stated otherwise, the APIs exposed in this package are considered stable, and thus safe to use when building
external tools on top of Robot Framework. Notice that all parsing APIs were rewritten in Robot Framework 3.2.

Currently exposed APIs are:

• logger module for libraries’ logging purposes.

• deco module with decorators libraries can utilize.

• exceptions module containing exceptions that libraries can utilize for reporting failures and other
events. These exceptions can be imported also directly via robot.api like from robot.api import
SkipExecution.

• parsing module exposing the parsing APIs. This module is new in Robot Framework 4.0. Various parsing
related functions and classes were exposed directly via robot.api already in Robot Framework 3.2, but they
are effectively deprecated and will be removed in the future.

• TestSuite class for creating executable test suites programmatically and TestSuiteBuilder class for
creating such suites based on existing test data on the file system.

• SuiteVisitor abstract class for processing testdata before execution. This can be used as a base for imple-
menting a pre-run modifier that is taken into use with --prerunmodifier commandline option.

• ExecutionResult() factory method for reading execution results from XML output files and
ResultVisitor abstract class to ease further processing the results. ResultVisitor can also be used as
a base for pre-Rebot modifier that is taken into use with --prerebotmodifier commandline option.

• ResultWriter class for writing reports, logs, XML outputs, and XUnit files. Can write results based on
XML outputs on the file system, as well as based on the result objects returned by the ExecutionResult()
or an executed TestSuite.

• Languages and Language classes for external tools that need to work with different translations. The latter
is also the base class to use with custom translations.

All of the above names can be imported like:

from robot.api import ApiName

See documentations of the individual APIs for more details.

Tip: APIs related to the command line entry points are exposed directly via the robot root package.

Submodules

10 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

robot.api.deco module

robot.api.deco.not_keyword(func)
Decorator to disable exposing functions or methods as keywords.

Examples:

@not_keyword
def not_exposed_as_keyword():

...

def exposed_as_keyword():
...

Alternatively the automatic keyword discovery can be disabled with the library() decorator or by setting
the ROBOT_AUTO_KEYWORDS attribute to a false value.

New in Robot Framework 3.2.

robot.api.deco.keyword(name=None, tags=(), types=())
Decorator to set custom name, tags and argument types to keywords.

This decorator creates robot_name, robot_tags and robot_types attributes on the decorated keyword
function or method based on the provided arguments. Robot Framework checks them to determine the keyword’s
name, tags, and argument types, respectively.

Name must be given as a string, tags as a list of strings, and types either as a dictionary mapping argument
names to types or as a list of types mapped to arguments based on position. It is OK to specify types only to
some arguments, and setting types to None disables type conversion altogether.

If the automatic keyword discovery has been disabled with the library() decorator or by setting the
ROBOT_AUTO_KEYWORDS attribute to a false value, this decorator is needed to mark functions or methods
keywords.

Examples:

@keyword
def example():

...

@keyword('Login as user "${user}" with password "${password}"',
tags=['custom name', 'embedded arguments', 'tags'])

def login(user, password):
...

@keyword(types={'length': int, 'case_insensitive': bool})
def types_as_dict(length, case_insensitive):

...

@keyword(types=[int, bool])
def types_as_list(length, case_insensitive):

...

@keyword(types=None])
def no_conversion(length, case_insensitive=False):

...

robot.api.deco.library(scope=None, version=None, converters=None, doc_format=None, lis-
tener=None, auto_keywords=False)

Class decorator to control keyword discovery and other library settings.

3.1. robot package 11

Robot Framework Documentation, Release 6.0.2

By default disables automatic keyword detection by setting class attribute ROBOT_AUTO_KEYWORDS =
False to the decorated library. In that mode only methods decorated explicitly with the keyword()
decorator become keywords. If that is not desired, automatic keyword discovery can be enabled by using
auto_keywords=True.

Arguments scope, version, converters, doc_format and listener set library’s scope, ver-
sion, converters, documentation format and listener by using class attributes ROBOT_LIBRARY_SCOPE,
ROBOT_LIBRARY_VERSION, ROBOT_LIBRARY_CONVERTERS, ROBOT_LIBRARY_DOC_FORMAT and
ROBOT_LIBRARY_LISTENER, respectively. These attributes are only set if the related arguments are given
and they override possible existing attributes in the decorated class.

Examples:

@library
class KeywordDiscovery:

@keyword
def do_something(self):

...

def not_keyword(self):
...

@library(scope='GLOBAL', version='3.2')
class LibraryConfiguration:

...

The @library decorator is new in Robot Framework 3.2. The converters argument is new in Robot
Framework 5.0.

robot.api.exceptions module

Exceptions that libraries can use for communicating failures and other events.

These exceptions can be imported also via the top level robot.api package like from robot.api import
SkipExecution.

This module and all exceptions are new in Robot Framework 4.0.

exception robot.api.exceptions.Failure(message, html=False)
Bases: AssertionError

Report failed validation.

There is no practical difference in using this exception compared to using the standard AssertionError.
The main benefits are HTML support and that the name of this exception is consistent with other exceptions in
this module.

Parameters

• message – Exception message.

• html – When True, message is considered to be HTML and not escaped.

ROBOT_SUPPRESS_NAME = True

args

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

12 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

exception robot.api.exceptions.ContinuableFailure(message, html=False)
Bases: robot.api.exceptions.Failure

Report failed validation but allow continuing execution.

Parameters

• message – Exception message.

• html – When True, message is considered to be HTML and not escaped.

ROBOT_CONTINUE_ON_FAILURE = True

ROBOT_SUPPRESS_NAME = True

args

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception robot.api.exceptions.Error(message, html=False)
Bases: RuntimeError

Report error in execution.

Failures related to the system not behaving as expected should typically be reported using the Failure ex-
ception or the standard AssertionError. This exception can be used, for example, if the keyword is used
incorrectly.

There is no practical difference in using this exception compared to using the standard RuntimeError. The
main benefits are HTML support and that the name of this exception is consistent with other exceptions in this
module.

Parameters

• message – Exception message.

• html – When True, message is considered to be HTML and not escaped.

ROBOT_SUPPRESS_NAME = True

args

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception robot.api.exceptions.FatalError(message, html=False)
Bases: robot.api.exceptions.Error

Report error that stops the whole execution.

Parameters

• message – Exception message.

• html – When True, message is considered to be HTML and not escaped.

ROBOT_EXIT_ON_FAILURE = True

ROBOT_SUPPRESS_NAME = False

args

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

3.1. robot package 13

Robot Framework Documentation, Release 6.0.2

exception robot.api.exceptions.SkipExecution(message, html=False)
Bases: Exception

Mark the executed test or task skipped.

Parameters

• message – Exception message.

• html – When True, message is considered to be HTML and not escaped.

ROBOT_SKIP_EXECUTION = True

ROBOT_SUPPRESS_NAME = True

args

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

robot.api.logger module

Public logging API for test libraries.

This module provides a public API for writing messages to the log file and the console. Test libraries can use this API
like:

logger.info('My message')

instead of logging through the standard output like:

print('*INFO* My message')

In addition to a programmatic interface being cleaner to use, this API has a benefit that the log messages have accurate
timestamps.

If the logging methods are used when Robot Framework is not running, the messages are redirected to the standard
Python logging module using logger named RobotFramework.

Log levels

It is possible to log messages using levels TRACE, DEBUG, INFO, WARN and ERROR either using the write() func-
tion or, more commonly, with the log level specific trace(), debug(), info(), warn(), error() functions.

By default the trace and debug messages are not logged but that can be changed with the --loglevel command
line option. Warnings and errors are automatically written also to the console and to the Test Execution Errors section
in the log file.

Logging HTML

All methods that are used for writing messages to the log file have an optional html argument. If a message to be
logged is supposed to be shown as HTML, this argument should be set to True. Alternatively, write() accepts a
pseudo log level HTML.

14 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

Example

from robot.api import logger

def my_keyword(arg):
logger.debug('Got argument %s.' % arg)
do_something()
logger.info('<i>This</i> is a boring example.', html=True)

robot.api.logger.write(msg, level=’INFO’, html=False)
Writes the message to the log file using the given level.

Valid log levels are TRACE, DEBUG, INFO (default), WARN, and ERROR. Additionally it is possible to use HTML
pseudo log level that logs the message as HTML using the INFO level.

Instead of using this method, it is generally better to use the level specific methods such as info and debug
that have separate html argument to control the message format.

robot.api.logger.trace(msg, html=False)
Writes the message to the log file using the TRACE level.

robot.api.logger.debug(msg, html=False)
Writes the message to the log file using the DEBUG level.

robot.api.logger.info(msg, html=False, also_console=False)
Writes the message to the log file using the INFO level.

If also_console argument is set to True, the message is written both to the log file and to the console.

robot.api.logger.warn(msg, html=False)
Writes the message to the log file using the WARN level.

robot.api.logger.error(msg, html=False)
Writes the message to the log file using the ERROR level.

robot.api.logger.console(msg, newline=True, stream=’stdout’)
Writes the message to the console.

If the newline argument is True, a newline character is automatically added to the message.

By default the message is written to the standard output stream. Using the standard error stream is possibly by
giving the stream argument value 'stderr'.

robot.api.parsing module

Public API for parsing, inspecting and modifying test data.

Exposed API

The publicly exposed parsing entry points are the following:

• get_tokens(), get_resource_tokens(), and get_init_tokens() functions for parsing data to
tokens.

• Token class that contains all token types as class attributes.

• get_model(), get_resource_model(), and get_init_model() functions for parsing data to
model represented as an abstract syntax tree (AST).

3.1. robot package 15

Robot Framework Documentation, Release 6.0.2

• Model objects used by the AST model.

• ModelVisitor to ease inspecting model and modifying data.

• ModelTransformer for adding and removing nodes.

Note: This module is new in Robot Framework 4.0. In Robot Framework 3.2 functions for getting tokens and model
as well as the Token class were exposed directly via the robot.api package, but other parts of the parsing API
were not publicly exposed. All code targeting Robot Framework 4.0 or newer should use this module because parsing
related functions and classes will be removed from robot.api in the future.

Note: Parsing was totally rewritten in Robot Framework 3.2 and external tools using the parsing APIs need to be
updated. Depending on the use case, it may be possible to use the higher level TestSuiteBuilder() instead.

Parsing data to tokens

Data can be parsed to tokens by using get_tokens(), get_resource_tokens() or get_init_tokens()
functions depending on whether the data represent a test case (or task) file, a resource file, or a suite initialization file.
In practice the difference between these functions is what settings and sections are valid.

Typically the data is easier to inspect and modify by using the higher level model discussed in the next section, but
in some cases having just the tokens can be enough. Tokens returned by the aforementioned functions are Token
instances and they have the token type, value, and position easily available as their attributes. Tokens also have useful
string representation used by the example below:

from robot.api.parsing import get_tokens

path = 'example.robot'

for token in get_tokens(path):
print(repr(token))

If the example.robot used by the above example would contain

*** Test Cases ***
Example

Keyword argument

Second example
Keyword xxx

*** Keywords ***
Keyword

[Arguments] ${arg}
Log ${arg}

then the beginning of the output got when running the earlier code would look like this:

Token(TESTCASE_HEADER, '*** Test Cases ***', 1, 0)
Token(EOL, '\n', 1, 18)
Token(EOS, '', 1, 19)
Token(TESTCASE_NAME, 'Example', 2, 0)
Token(EOL, '\n', 2, 7)

(continues on next page)

16 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

(continued from previous page)

Token(EOS, '', 2, 8)
Token(SEPARATOR, ' ', 3, 0)
Token(KEYWORD, 'Keyword', 3, 4)
Token(SEPARATOR, ' ', 3, 11)
Token(ARGUMENT, 'argument', 3, 15)
Token(EOL, '\n', 3, 23)
Token(EOS, '', 3, 24)
Token(EOL, '\n', 4, 0)
Token(EOS, '', 4, 1)

The output shows the token type, value, line number and column offset. When finding tokens by their type, the
constants in the Token class such as Token.TESTCASE_NAME and Token.EOL should be used instead the values
of these constants like 'TESTCASE NAME' and 'EOL'. These values have changed slightly in Robot Framework
4.0 and they may change in the future as well.

The EOL tokens denote end of a line and they include the newline character and possible trailing spaces. The EOS
tokens denote end of a logical statement. Typically a single line forms a statement, but when the ... syntax is used
for continuation, a statement spans multiple lines. In special cases a single line can also contain multiple statements.

Errors caused by unrecognized data such as non-existing section or setting names are handled during the tokenizing
phase. Such errors are reported using tokens that have ERROR type and the actual error message in their error
attribute. Syntax errors such as empty FOR loops are only handled when building the higher level model discussed
below.

See the documentation of get_tokens() for details about different ways how to specify the data to be parsed, how
to control should all tokens or only data tokens be returned, and should variables in keyword arguments and elsewhere
be tokenized or not.

Parsing data to model

Data can be parsed to a higher level model by using get_model(), get_resource_model(), or
get_init_model() functions depending on the type of the parsed file same way as when parsing data to tokens.

The model is represented as an abstract syntax tree (AST) implemented on top of Python’s standard ast.AST class. To
see how the model looks like, it is possible to use the ast.dump() function or the third-party astpretty module:

import ast
import astpretty
from robot.api.parsing import get_model

model = get_model('example.robot')
print(ast.dump(model, include_attributes=True))
print('-' * 72)
astpretty.pprint(model)

Running this code with the example.robot file from the previous section would produce so much output that it is
not included here. If you are going to work with Robot Framework’s AST, you are recommended to try that on your
own.

Model objects

The model is build from nodes that are based ast.AST and further categorized to blocks and statements. Blocks can
contain other blocks and statements as child nodes whereas statements only have tokens containing the actual data

3.1. robot package 17

https://docs.python.org/library/ast.html#ast.AST
https://docs.python.org/library/ast.html#ast.dump
https://pypi.org/project/astpretty
https://docs.python.org/library/ast.html#ast.AST

Robot Framework Documentation, Release 6.0.2

as Token instances. Both statements and blocks expose their position information via lineno, col_offset,
end_lineno and end_col_offset attributes and some nodes have also other special attributes available.

Blocks:

• File (the root of the model)

• SettingSection

• VariableSection

• TestCaseSection

• KeywordSection

• CommentSection

• TestCase

• Keyword

• If

• Try

• For

• While

Statements:

• SectionHeader

• LibraryImport

• ResourceImport

• VariablesImport

• Documentation

• Metadata

• ForceTags

• DefaultTags

• SuiteSetup

• SuiteTeardown

• TestSetup

• TestTeardown

• TestTemplate

• TestTimeout

• Variable

• TestCaseName

• KeywordName

• Setup

• Teardown

• Tags

18 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

• Template

• Timeout

• Arguments

• Return

• KeywordCall

• TemplateArguments

• IfHeader

• InlineIfHeader

• ElseIfHeader

• ElseHeader

• TryHeader

• ExceptHeader

• FinallyHeader

• ForHeader

• WhileHeader

• End

• ReturnStatement

• Break

• Continue

• Comment

• Config (new in 6.0)

• Error

• EmptyLine

Inspecting model

The easiest way to inspect what data a model contains is implementing ModelVisitor and creating
visit_NodeName to visit nodes with name NodeName as needed. The following example illustrates how to find
what tests a certain test case file contains:

from robot.api.parsing import get_model, ModelVisitor

class TestNamePrinter(ModelVisitor):

def visit_File(self, node):
print(f"File '{node.source}' has the following tests:")
Call `generic_visit` to visit also child nodes.
self.generic_visit(node)

def visit_TestCaseName(self, node):
print(f"- {node.name} (on line {node.lineno})")

(continues on next page)

3.1. robot package 19

Robot Framework Documentation, Release 6.0.2

(continued from previous page)

model = get_model('example.robot')
printer = TestNamePrinter()
printer.visit(model)

When the above code is run using the earlier example.robot, the output is this:

File 'example.robot' has the following tests:
- Example (on line 2)
- Second example (on line 5)

Handling errors in model

All nodes in the model have errors attribute that contains possible errors the node has. These errors include syntax
errors such as empty FOR loops or IF without a condition as well as errors caused by unrecognized data such as
non-existing section or setting names.

Unrecognized data is handled already during the tokenizing phase. In the model such data is represented as Error
nodes and their errors attribute contain error information got from the underlying ERROR tokens. Syntax errors do
not create Error nodes, but instead the model has normal nodes such as If with errors in their errors attribute.

A simple way to go through the model and see are there errors is using the ModelVisitor discussed in the previous
section:

class ErrorReporter(ModelVisitor):

Implement `generic_visit` to visit all nodes.
def generic_visit(self, node):

if node.errors:
print(f'Error on line {node.lineno}:')
for error in node.errors:

print(f'- {error}')
ModelVisitor.generic_visit(self, node)

Modifying data

Existing data the model contains can be modified simply by modifying values of the underlying tokens. If changes
need to be saved, that is as easy as calling the save() method of the root model object. When just modifying token
values, it is possible to still use ModelVisitor discussed in the above section. The next section discusses adding
or removing nodes and then ModelTransformer should be used instead.

Modifications to tokens obviously require finding the tokens to be modified. The first step is finding nodes containing
the tokens by implementing needed visit_NodeName methods. Then the exact token or tokens can be found
using nodes’ get_token() or get_tokens() methods. If only token values are needed, get_value() or
get_values() can be used as a shortcut. First finding nodes and then the right tokens is illustrated by this keyword
renaming example:

from robot.api.parsing import get_model, ModelVisitor, Token

class KeywordRenamer(ModelVisitor):

(continues on next page)

20 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

(continued from previous page)

def __init__(self, old_name, new_name):
self.old_name = self.normalize(old_name)
self.new_name = new_name

def normalize(self, name):
return name.lower().replace(' ', '').replace('_', '')

def visit_KeywordName(self, node):
'''Rename keyword definitions.'''
if self.normalize(node.name) == self.old_name:

token = node.get_token(Token.KEYWORD_NAME)
token.value = self.new_name

def visit_KeywordCall(self, node):
'''Rename keyword usages.'''
if self.normalize(node.keyword) == self.old_name:

token = node.get_token(Token.KEYWORD)
token.value = self.new_name

model = get_model('example.robot')
renamer = KeywordRenamer('Keyword', 'New Name')
renamer.visit(model)
model.save()

If you run the above example using the earlier example.robot, you can see that the Keyword keyword has been
renamed to New Name. Notice that a real keyword renamer needed to take into account also keywords used with
setups, teardowns and templates.

When token values are changed, column offset of the other tokens on same line are likely to be wrong. This does not
affect saving the model or other typical usages, but if it is a problem then the caller needs to updated offsets separately.

Adding and removing nodes

Bigger changes to the model are somewhat more complicated than just modifying existing token values. When doing
this kind of changes, ModelTransformer should be used instead of ModelVisitor that was discussed in the
previous sections.

Removing nodes is relative easy and is accomplished by returning None from visit_NodeName methods. Re-
member to return the original node, or possibly a replacement node, from all of these methods when you do not want
a node to be removed.

Adding nodes requires constructing needed Model objects and adding them to the model. The following example
demonstrates both removing and adding nodes. If you run it against the earlier example.robot, you see that the
first test gets a new keyword, the second test is removed, and settings section with documentation is added.

from robot.api.parsing import (
get_model, Documentation, EmptyLine, KeywordCall,
ModelTransformer, SettingSection, SectionHeader, Token

)

class TestModifier(ModelTransformer):

def visit_TestCase(self, node):

(continues on next page)

3.1. robot package 21

Robot Framework Documentation, Release 6.0.2

(continued from previous page)

The matched `TestCase` node is a block with `header` and
`body` attributes. `header` is a statement with familiar
`get_token` and `get_value` methods for getting certain
tokens or their value.
name = node.header.get_value(Token.TESTCASE_NAME)
Returning `None` drops the node altogether i.e. removes
this test.
if name == 'Second example':

return None
Construct new keyword call statement from tokens. See `visit_File`
below for an example creating statements using `from_params`.
new_keyword = KeywordCall([

Token(Token.SEPARATOR, ' '),
Token(Token.KEYWORD, 'New Keyword'),
Token(Token.SEPARATOR, ' '),
Token(Token.ARGUMENT, 'xxx'),
Token(Token.EOL)

])
Add the keyword call to test as the second item.
node.body.insert(1, new_keyword)
No need to call `generic_visit` because we are not
modifying child nodes. The node itself must to be
returned to avoid dropping it.
return node

def visit_File(self, node):
Create settings section with documentation. Needed header and body
statements are created using `from_params` method. This is typically
more convenient than creating statements based on tokens like above.
settings = SettingSection(

header=SectionHeader.from_params(Token.SETTING_HEADER),
body=[

Documentation.from_params('This is a really\npowerful API!'),
EmptyLine.from_params()

]
)
Add settings to the beginning of the file.
node.sections.insert(0, settings)
Call `generic_visit` to visit also child nodes.
return self.generic_visit(node)

model = get_model('example.robot')
TestModifier().visit(model)
model.save('modified.robot')

Executing model

It is possible to convert a parsed and possibly modified model into an executable TestSuite structure by using its
from_model() class method. In this case the get_model() function should be given the curdir argument to
get possible ${CURDIR} variable resolved correctly.

from robot.api import TestSuite
from robot.api.parsing import get_model

(continues on next page)

22 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

(continued from previous page)

model = get_model('example.robot', curdir='/home/robot/example')
modify model as needed
suite = TestSuite.from_model(model)
suite.run()

For more details about executing the created TestSuite object, see the documentation of its run() method. No-
tice also that if you do not need to modify the parsed model, it is easier to get the executable suite by using the
from_file_system() class method.

robot.conf package

Implements settings for both test execution and output processing.

This package implements RobotSettings and RebotSettings classes used internally by the framework. There
should be no need to use these classes externally.

This package can be considered relatively stable. Aforementioned classes are likely to be rewritten at some point to
be more convenient to use. Instantiating them is not likely to change, though.

Submodules

robot.conf.gatherfailed module

class robot.conf.gatherfailed.GatherFailedTests
Bases: robot.model.visitor.SuiteVisitor

visit_test(test)
Implements traversing through tests.

Can be overridden to allow modifying the passed in test without calling start_test() or
end_test() nor visiting the body of the test.

visit_keyword(kw)
Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without calling start_keyword() or
end_keyword() nor visiting the body of the keyword

end_body_item(item)
Called, by default, when keywords, messages or control structures end.

More specific end_keyword(), end_message(), :meth:‘end_for, etc. can be implemented to visit
only keywords, messages or specific control structures.

Default implementation does nothing.

end_break(break_)
Called when a BREAK element ends.

By default, calls end_body_item() which, by default, does nothing.

end_continue(continue_)
Called when a CONTINUE element ends.

By default, calls end_body_item() which, by default, does nothing.

3.1. robot package 23

Robot Framework Documentation, Release 6.0.2

end_for(for_)
Called when a FOR loop ends.

By default, calls end_body_item() which, by default, does nothing.

end_for_iteration(iteration)
Called when a FOR loop iteration ends.

By default, calls end_body_item() which, by default, does nothing.

end_if(if_)
Called when an IF/ELSE structure ends.

By default, calls end_body_item() which, by default, does nothing.

end_if_branch(branch)
Called when an IF/ELSE branch ends.

By default, calls end_body_item() which, by default, does nothing.

end_keyword(keyword)
Called when a keyword ends.

By default, calls end_body_item() which, by default, does nothing.

end_message(msg)
Called when a message ends.

By default, calls end_body_item() which, by default, does nothing.

end_return(return_)
Called when a RETURN element ends.

By default, calls end_body_item() which, by default, does nothing.

end_suite(suite)
Called when a suite ends. Default implementation does nothing.

end_test(test)
Called when a test ends. Default implementation does nothing.

end_try(try_)
Called when a TRY/EXCEPT structure ends.

By default, calls end_body_item() which, by default, does nothing.

end_try_branch(branch)
Called when TRY, EXCEPT, ELSE and FINALLY branches end.

By default, calls end_body_item() which, by default, does nothing.

end_while(while_)
Called when a WHILE loop ends.

By default, calls end_body_item() which, by default, does nothing.

end_while_iteration(iteration)
Called when a WHILE loop iteration ends.

By default, calls end_body_item() which, by default, does nothing.

start_body_item(item)
Called, by default, when keywords, messages or control structures start.

More specific start_keyword(), start_message(), :meth:‘start_for, etc. can be implemented to
visit only keywords, messages or specific control structures.

24 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

Can return explicit False to stop visiting. Default implementation does nothing.

start_break(break_)
Called when a BREAK element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_continue(continue_)
Called when a CONTINUE element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_for(for_)
Called when a FOR loop starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_for_iteration(iteration)
Called when a FOR loop iteration starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_if(if_)
Called when an IF/ELSE structure starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_if_branch(branch)
Called when an IF/ELSE branch starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_keyword(keyword)
Called when a keyword starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_message(msg)
Called when a message starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_return(return_)
Called when a RETURN element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_suite(suite)
Called when a suite starts. Default implementation does nothing.

3.1. robot package 25

Robot Framework Documentation, Release 6.0.2

Can return explicit False to stop visiting.

start_test(test)
Called when a test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

start_try(try_)
Called when a TRY/EXCEPT structure starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_try_branch(branch)
Called when TRY, EXCEPT, ELSE or FINALLY branches start.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_while(while_)
Called when a WHILE loop starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_while_iteration(iteration)
Called when a WHILE loop iteration starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

visit_break(break_)
Visits BREAK elements.

visit_continue(continue_)
Visits CONTINUE elements.

visit_for(for_)
Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without calling start_for() or
end_for() nor visiting body.

visit_for_iteration(iteration)
Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side there are no iterations.

Can be overridden to allow modifying the passed in iteration without calling
start_for_iteration() or end_for_iteration() nor visiting body.

visit_if(if_)
Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches are in its body and visited
using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without calling start_if() or end_if()
nor visiting branches.

26 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

visit_if_branch(branch)
Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without calling start_if_branch() or
end_if_branch() nor visiting body.

visit_message(msg)
Implements visiting messages.

Can be overridden to allow modifying the passed in msg without calling start_message() or
end_message().

visit_return(return_)
Visits a RETURN elements.

visit_suite(suite)
Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without calling start_suite() or
end_suite() nor visiting child suites, tests or setup and teardown at all.

visit_try(try_)
Implements traversing through TRY/EXCEPT structures.

This method is used with the TRY/EXCEPT root element. Actual TRY, EXCEPT, ELSE and FINALLY
branches are visited separately using visit_try_branch().

visit_try_branch(branch)
Visits individual TRY, EXCEPT, ELSE and FINALLY branches.

visit_while(while_)
Implements traversing through WHILE loops.

Can be overridden to allow modifying the passed in while_ without calling start_while() or
end_while() nor visiting body.

visit_while_iteration(iteration)
Implements traversing through single WHILE loop iteration.

This is only used with the result side model because on the running side there are no iterations.

Can be overridden to allow modifying the passed in iteration without calling
start_while_iteration() or end_while_iteration() nor visiting body.

class robot.conf.gatherfailed.GatherFailedSuites
Bases: robot.model.visitor.SuiteVisitor

start_suite(suite)
Called when a suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

visit_test(test)
Implements traversing through tests.

Can be overridden to allow modifying the passed in test without calling start_test() or
end_test() nor visiting the body of the test.

visit_keyword(kw)
Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without calling start_keyword() or
end_keyword() nor visiting the body of the keyword

3.1. robot package 27

Robot Framework Documentation, Release 6.0.2

end_body_item(item)
Called, by default, when keywords, messages or control structures end.

More specific end_keyword(), end_message(), :meth:‘end_for, etc. can be implemented to visit
only keywords, messages or specific control structures.

Default implementation does nothing.

end_break(break_)
Called when a BREAK element ends.

By default, calls end_body_item() which, by default, does nothing.

end_continue(continue_)
Called when a CONTINUE element ends.

By default, calls end_body_item() which, by default, does nothing.

end_for(for_)
Called when a FOR loop ends.

By default, calls end_body_item() which, by default, does nothing.

end_for_iteration(iteration)
Called when a FOR loop iteration ends.

By default, calls end_body_item() which, by default, does nothing.

end_if(if_)
Called when an IF/ELSE structure ends.

By default, calls end_body_item() which, by default, does nothing.

end_if_branch(branch)
Called when an IF/ELSE branch ends.

By default, calls end_body_item() which, by default, does nothing.

end_keyword(keyword)
Called when a keyword ends.

By default, calls end_body_item() which, by default, does nothing.

end_message(msg)
Called when a message ends.

By default, calls end_body_item() which, by default, does nothing.

end_return(return_)
Called when a RETURN element ends.

By default, calls end_body_item() which, by default, does nothing.

end_suite(suite)
Called when a suite ends. Default implementation does nothing.

end_test(test)
Called when a test ends. Default implementation does nothing.

end_try(try_)
Called when a TRY/EXCEPT structure ends.

By default, calls end_body_item() which, by default, does nothing.

28 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

end_try_branch(branch)
Called when TRY, EXCEPT, ELSE and FINALLY branches end.

By default, calls end_body_item() which, by default, does nothing.

end_while(while_)
Called when a WHILE loop ends.

By default, calls end_body_item() which, by default, does nothing.

end_while_iteration(iteration)
Called when a WHILE loop iteration ends.

By default, calls end_body_item() which, by default, does nothing.

start_body_item(item)
Called, by default, when keywords, messages or control structures start.

More specific start_keyword(), start_message(), :meth:‘start_for, etc. can be implemented to
visit only keywords, messages or specific control structures.

Can return explicit False to stop visiting. Default implementation does nothing.

start_break(break_)
Called when a BREAK element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_continue(continue_)
Called when a CONTINUE element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_for(for_)
Called when a FOR loop starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_for_iteration(iteration)
Called when a FOR loop iteration starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_if(if_)
Called when an IF/ELSE structure starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_if_branch(branch)
Called when an IF/ELSE branch starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

3.1. robot package 29

Robot Framework Documentation, Release 6.0.2

start_keyword(keyword)
Called when a keyword starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_message(msg)
Called when a message starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_return(return_)
Called when a RETURN element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_test(test)
Called when a test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

start_try(try_)
Called when a TRY/EXCEPT structure starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_try_branch(branch)
Called when TRY, EXCEPT, ELSE or FINALLY branches start.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_while(while_)
Called when a WHILE loop starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_while_iteration(iteration)
Called when a WHILE loop iteration starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

visit_break(break_)
Visits BREAK elements.

visit_continue(continue_)
Visits CONTINUE elements.

visit_for(for_)
Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without calling start_for() or
end_for() nor visiting body.

30 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

visit_for_iteration(iteration)
Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side there are no iterations.

Can be overridden to allow modifying the passed in iteration without calling
start_for_iteration() or end_for_iteration() nor visiting body.

visit_if(if_)
Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches are in its body and visited
using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without calling start_if() or end_if()
nor visiting branches.

visit_if_branch(branch)
Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without calling start_if_branch() or
end_if_branch() nor visiting body.

visit_message(msg)
Implements visiting messages.

Can be overridden to allow modifying the passed in msg without calling start_message() or
end_message().

visit_return(return_)
Visits a RETURN elements.

visit_suite(suite)
Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without calling start_suite() or
end_suite() nor visiting child suites, tests or setup and teardown at all.

visit_try(try_)
Implements traversing through TRY/EXCEPT structures.

This method is used with the TRY/EXCEPT root element. Actual TRY, EXCEPT, ELSE and FINALLY
branches are visited separately using visit_try_branch().

visit_try_branch(branch)
Visits individual TRY, EXCEPT, ELSE and FINALLY branches.

visit_while(while_)
Implements traversing through WHILE loops.

Can be overridden to allow modifying the passed in while_ without calling start_while() or
end_while() nor visiting body.

visit_while_iteration(iteration)
Implements traversing through single WHILE loop iteration.

This is only used with the result side model because on the running side there are no iterations.

Can be overridden to allow modifying the passed in iteration without calling
start_while_iteration() or end_while_iteration() nor visiting body.

robot.conf.gatherfailed.gather_failed_tests(output, empty_suite_ok=False)

robot.conf.gatherfailed.gather_failed_suites(output, empty_suite_ok=False)

3.1. robot package 31

Robot Framework Documentation, Release 6.0.2

robot.conf.languages module

class robot.conf.languages.Languages(languages=None, add_english=True)
Bases: object

Keeps a list of languages and unifies the translations in the properties.

Example:

languages = Languages('de', add_english=False)
print(languages.settings)
languages = Languages(['pt-BR', 'Finnish', 'MyLang.py'])
for lang in languages:

print(lang.name, lang.code)

Parameters

• languages – Initial language or list of languages. Languages can be given as language
codes or names, paths or names of language modules to load, or as Language instances.

• add_english – If True, English is added automatically.

Raises DataError if a given language is not found.

add_language() can be used to add languages after initialization.

reset(languages=None, add_english=True)
Resets the instance to the given languages.

add_language(lang)
Add new language.

Parameters lang – Language to add. Can be a language code or name, name or path of a
language module to load, or a Language instance.

Raises DataError if the language is not found.

Language codes and names are passed to by Language.from_name(). Language modules are im-
ported and Language subclasses in them loaded.

class robot.conf.languages.Language
Bases: object

Base class for language definitions.

New translations can be added by extending this class and setting class attributes listed below.

Language code is got based on the class name and name based on the docstring.

settings_header = None

variables_header = None

test_cases_header = None

tasks_header = None

keywords_header = None

comments_header = None

library_setting = None

resource_setting = None

32 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

variables_setting = None

documentation_setting = None

metadata_setting = None

suite_setup_setting = None

suite_teardown_setting = None

test_setup_setting = None

task_setup_setting = None

test_teardown_setting = None

task_teardown_setting = None

test_template_setting = None

task_template_setting = None

test_timeout_setting = None

task_timeout_setting = None

test_tags_setting = None

task_tags_setting = None

keyword_tags_setting = None

tags_setting = None

setup_setting = None

teardown_setting = None

template_setting = None

timeout_setting = None

arguments_setting = None

given_prefixes = []

when_prefixes = []

then_prefixes = []

and_prefixes = []

but_prefixes = []

true_strings = []

false_strings = []

classmethod from_name(name)
Return language class based on given name.

Name can either be a language name (e.g. ‘Finnish’ or ‘Brazilian Portuguese’) or a language code (e.g.
‘fi’ or ‘pt-BR’). Matching is case and space insensitive and the hyphen is ignored when matching language
codes.

Raises ValueError if no matching language is found.

3.1. robot package 33

Robot Framework Documentation, Release 6.0.2

code
Language code like ‘fi’ or ‘pt-BR’.

Got based on the class name. If the class name is two characters (or less), the code is just the name in
lower case. If it is longer, a hyphen is added and the remainder of the class name is upper-cased.

This special property can be accessed also directly from the class.

name
Language name like ‘Finnish’ or ‘Brazilian Portuguese’.

Got from the first line of the class docstring.

This special property can be accessed also directly from the class.

headers

settings

bdd_prefixes

class robot.conf.languages.En
Bases: robot.conf.languages.Language

English

settings_header = 'Settings'

variables_header = 'Variables'

test_cases_header = 'Test Cases'

tasks_header = 'Tasks'

keywords_header = 'Keywords'

comments_header = 'Comments'

library_setting = 'Library'

resource_setting = 'Resource'

variables_setting = 'Variables'

documentation_setting = 'Documentation'

metadata_setting = 'Metadata'

suite_setup_setting = 'Suite Setup'

suite_teardown_setting = 'Suite Teardown'

test_setup_setting = 'Test Setup'

task_setup_setting = 'Task Setup'

test_teardown_setting = 'Test Teardown'

task_teardown_setting = 'Task Teardown'

test_template_setting = 'Test Template'

task_template_setting = 'Task Template'

test_timeout_setting = 'Test Timeout'

task_timeout_setting = 'Task Timeout'

test_tags_setting = 'Test Tags'

34 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

task_tags_setting = 'Task Tags'

keyword_tags_setting = 'Keyword Tags'

setup_setting = 'Setup'

teardown_setting = 'Teardown'

template_setting = 'Template'

tags_setting = 'Tags'

timeout_setting = 'Timeout'

arguments_setting = 'Arguments'

given_prefixes = ['Given']

when_prefixes = ['When']

then_prefixes = ['Then']

and_prefixes = ['And']

but_prefixes = ['But']

true_strings = ['True', 'Yes', 'On']

false_strings = ['False', 'No', 'Off']

bdd_prefixes

code = 'en'

classmethod from_name(name)
Return language class based on given name.

Name can either be a language name (e.g. ‘Finnish’ or ‘Brazilian Portuguese’) or a language code (e.g.
‘fi’ or ‘pt-BR’). Matching is case and space insensitive and the hyphen is ignored when matching language
codes.

Raises ValueError if no matching language is found.

headers

name = 'English'

settings

class robot.conf.languages.Cs
Bases: robot.conf.languages.Language

Czech

settings_header = 'Nastavení'

variables_header = 'Proměnné'

test_cases_header = 'Testovací případy'

tasks_header = 'Úlohy'

keywords_header = 'Klíčová slova'

comments_header = 'Komentáře'

library_setting = 'Knihovna'

resource_setting = 'Zdroj'

3.1. robot package 35

Robot Framework Documentation, Release 6.0.2

variables_setting = 'Proměnná'

documentation_setting = 'Dokumentace'

metadata_setting = 'Metadata'

suite_setup_setting = 'Příprava sady'

suite_teardown_setting = 'Ukončení sady'

test_setup_setting = 'Příprava testu'

test_teardown_setting = 'Ukončení testu'

test_template_setting = 'Šablona testu'

test_timeout_setting = 'Časový limit testu'

test_tags_setting = 'Štítky testů'

task_setup_setting = 'Příprava úlohy'

task_teardown_setting = 'Ukončení úlohy'

task_template_setting = 'Šablona úlohy'

task_timeout_setting = 'Časový limit úlohy'

task_tags_setting = 'Štítky úloh'

keyword_tags_setting = 'Štítky klíčových slov'

tags_setting = 'Štítky'

setup_setting = 'Příprava'

teardown_setting = 'Ukončení'

template_setting = 'Šablona'

timeout_setting = 'Časový limit'

arguments_setting = 'Argumenty'

given_prefixes = ['Pokud']

when_prefixes = ['Když']

then_prefixes = ['Pak']

and_prefixes = ['A']

but_prefixes = ['Ale']

true_strings = ['Pravda', 'Ano', 'Zapnuto']

false_strings = ['Nepravda', 'Ne', 'Vypnuto', 'Nic']

bdd_prefixes

code = 'cs'

classmethod from_name(name)
Return language class based on given name.

Name can either be a language name (e.g. ‘Finnish’ or ‘Brazilian Portuguese’) or a language code (e.g.
‘fi’ or ‘pt-BR’). Matching is case and space insensitive and the hyphen is ignored when matching language
codes.

Raises ValueError if no matching language is found.

36 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

headers

name = 'Czech'

settings

class robot.conf.languages.Nl
Bases: robot.conf.languages.Language

Dutch

settings_header = 'Instellingen'

variables_header = 'Variabelen'

test_cases_header = 'Testgevallen'

tasks_header = 'Taken'

keywords_header = 'Sleutelwoorden'

comments_header = 'Opmerkingen'

library_setting = 'Bibliotheek'

resource_setting = 'Resource'

variables_setting = 'Variabele'

documentation_setting = 'Documentatie'

metadata_setting = 'Metadata'

suite_setup_setting = 'Suite Preconditie'

suite_teardown_setting = 'Suite Postconditie'

test_setup_setting = 'Test Preconditie'

test_teardown_setting = 'Test Postconditie'

test_template_setting = 'Test Sjabloon'

test_timeout_setting = 'Test Time-out'

test_tags_setting = 'Test Labels'

task_setup_setting = 'Taak Preconditie'

task_teardown_setting = 'Taak Postconditie'

task_template_setting = 'Taak Sjabloon'

task_timeout_setting = 'Taak Time-out'

task_tags_setting = 'Taak Labels'

keyword_tags_setting = 'Sleutelwoord Labels'

tags_setting = 'Labels'

setup_setting = 'Preconditie'

teardown_setting = 'Postconditie'

template_setting = 'Sjabloon'

timeout_setting = 'Time-out'

arguments_setting = 'Parameters'

3.1. robot package 37

Robot Framework Documentation, Release 6.0.2

given_prefixes = ['Stel', 'Gegeven']

when_prefixes = ['Als']

then_prefixes = ['Dan']

and_prefixes = ['En']

but_prefixes = ['Maar']

true_strings = ['Waar', 'Ja', 'Aan']

false_strings = ['Onwaar', 'Nee', 'Uit', 'Geen']

bdd_prefixes

code = 'nl'

classmethod from_name(name)
Return language class based on given name.

Name can either be a language name (e.g. ‘Finnish’ or ‘Brazilian Portuguese’) or a language code (e.g.
‘fi’ or ‘pt-BR’). Matching is case and space insensitive and the hyphen is ignored when matching language
codes.

Raises ValueError if no matching language is found.

headers

name = 'Dutch'

settings

class robot.conf.languages.Bs
Bases: robot.conf.languages.Language

Bosnian

settings_header = 'Postavke'

variables_header = 'Varijable'

test_cases_header = 'Test Cases'

tasks_header = 'Taskovi'

keywords_header = 'Keywords'

comments_header = 'Komentari'

library_setting = 'Biblioteka'

resource_setting = 'Resursi'

variables_setting = 'Varijable'

documentation_setting = 'Dokumentacija'

metadata_setting = 'Metadata'

suite_setup_setting = 'Suite Postavke'

suite_teardown_setting = 'Suite Teardown'

test_setup_setting = 'Test Postavke'

test_teardown_setting = 'Test Teardown'

test_template_setting = 'Test Template'

38 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

test_timeout_setting = 'Test Timeout'

test_tags_setting = 'Test Tagovi'

task_setup_setting = 'Task Postavke'

task_teardown_setting = 'Task Teardown'

task_template_setting = 'Task Template'

task_timeout_setting = 'Task Timeout'

task_tags_setting = 'Task Tagovi'

keyword_tags_setting = 'Keyword Tagovi'

tags_setting = 'Tagovi'

setup_setting = 'Postavke'

teardown_setting = 'Teardown'

template_setting = 'Template'

timeout_setting = 'Timeout'

arguments_setting = 'Argumenti'

given_prefixes = ['Uslovno']

when_prefixes = ['Kada']

then_prefixes = ['Tada']

and_prefixes = ['I']

but_prefixes = ['Ali']

bdd_prefixes

code = 'bs'

false_strings = []

classmethod from_name(name)
Return language class based on given name.

Name can either be a language name (e.g. ‘Finnish’ or ‘Brazilian Portuguese’) or a language code (e.g.
‘fi’ or ‘pt-BR’). Matching is case and space insensitive and the hyphen is ignored when matching language
codes.

Raises ValueError if no matching language is found.

headers

name = 'Bosnian'

settings

true_strings = []

class robot.conf.languages.Fi
Bases: robot.conf.languages.Language

Finnish

settings_header = 'Asetukset'

variables_header = 'Muuttujat'

3.1. robot package 39

Robot Framework Documentation, Release 6.0.2

test_cases_header = 'Testit'

tasks_header = 'Tehtävät'

keywords_header = 'Avainsanat'

comments_header = 'Kommentit'

library_setting = 'Kirjasto'

resource_setting = 'Resurssi'

variables_setting = 'Muuttujat'

documentation_setting = 'Dokumentaatio'

metadata_setting = 'Metatiedot'

suite_setup_setting = 'Setin Alustus'

suite_teardown_setting = 'Setin Alasajo'

test_setup_setting = 'Testin Alustus'

task_setup_setting = 'Tehtävän Alustus'

test_teardown_setting = 'Testin Alasajo'

task_teardown_setting = 'Tehtävän Alasajo'

test_template_setting = 'Testin Malli'

task_template_setting = 'Tehtävän Malli'

test_timeout_setting = 'Testin Aikaraja'

task_timeout_setting = 'Tehtävän Aikaraja'

test_tags_setting = 'Testin Tagit'

task_tags_setting = 'Tehtävän Tagit'

keyword_tags_setting = 'Avainsanan Tagit'

tags_setting = 'Tagit'

setup_setting = 'Alustus'

teardown_setting = 'Alasajo'

template_setting = 'Malli'

timeout_setting = 'Aikaraja'

arguments_setting = 'Argumentit'

given_prefixes = ['Oletetaan']

when_prefixes = ['Kun']

then_prefixes = ['Niin']

and_prefixes = ['Ja']

but_prefixes = ['Mutta']

true_strings = ['Tosi', 'Kyllä', 'Päällä']

false_strings = ['Epätosi', 'Ei', 'Pois']

bdd_prefixes

40 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

code = 'fi'

classmethod from_name(name)
Return language class based on given name.

Name can either be a language name (e.g. ‘Finnish’ or ‘Brazilian Portuguese’) or a language code (e.g.
‘fi’ or ‘pt-BR’). Matching is case and space insensitive and the hyphen is ignored when matching language
codes.

Raises ValueError if no matching language is found.

headers

name = 'Finnish'

settings

class robot.conf.languages.Fr
Bases: robot.conf.languages.Language

French

settings_header = 'Paramètres'

variables_header = 'Variables'

test_cases_header = 'Unités de test'

tasks_header = 'Tâches'

keywords_header = 'Mots-clés'

comments_header = 'Commentaires'

library_setting = 'Bibliothèque'

resource_setting = 'Ressource'

variables_setting = 'Variable'

documentation_setting = 'Documentation'

metadata_setting = 'Méta-donnée'

suite_setup_setting = 'Mise en place de suite'

suite_teardown_setting = 'Démontage de suite'

test_setup_setting = 'Mise en place de test'

test_teardown_setting = 'Démontage de test'

test_template_setting = 'Modèle de test'

test_timeout_setting = 'Délai de test'

test_tags_setting = 'Étiquette de test'

task_setup_setting = 'Mise en place de tâche'

task_teardown_setting = 'Démontage de test'

task_template_setting = 'Modèle de tâche'

task_timeout_setting = 'Délai de tâche'

task_tags_setting = 'Étiquette de tâche'

keyword_tags_setting = 'Etiquette de mot-clé'

3.1. robot package 41

Robot Framework Documentation, Release 6.0.2

tags_setting = 'Étiquette'

setup_setting = 'Mise en place'

teardown_setting = 'Démontage'

template_setting = 'Modèle'

timeout_setting = "Délai d'attente"

arguments_setting = 'Arguments'

given_prefixes = ['Étant donné']

when_prefixes = ['Lorsque']

then_prefixes = ['Alors']

and_prefixes = ['Et']

but_prefixes = ['Mais']

true_strings = ['Vrai', 'Oui', 'Actif']

false_strings = ['Faux', 'Non', 'Désactivé', 'Aucun']

bdd_prefixes

code = 'fr'

classmethod from_name(name)
Return language class based on given name.

Name can either be a language name (e.g. ‘Finnish’ or ‘Brazilian Portuguese’) or a language code (e.g.
‘fi’ or ‘pt-BR’). Matching is case and space insensitive and the hyphen is ignored when matching language
codes.

Raises ValueError if no matching language is found.

headers

name = 'French'

settings

class robot.conf.languages.De
Bases: robot.conf.languages.Language

German

settings_header = 'Einstellungen'

variables_header = 'Variablen'

test_cases_header = 'Testfälle'

tasks_header = 'Aufgaben'

keywords_header = 'Schlüsselwörter'

comments_header = 'Kommentare'

library_setting = 'Bibliothek'

resource_setting = 'Ressource'

variables_setting = 'Variablen'

documentation_setting = 'Dokumentation'

42 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

metadata_setting = 'Metadaten'

suite_setup_setting = 'Suitevorbereitung'

suite_teardown_setting = 'Suitenachbereitung'

test_setup_setting = 'Testvorbereitung'

test_teardown_setting = 'Testnachbereitung'

test_template_setting = 'Testvorlage'

test_timeout_setting = 'Testzeitlimit'

test_tags_setting = 'Testmarker'

task_setup_setting = 'Aufgabenvorbereitung'

task_teardown_setting = 'Aufgabennachbereitung'

task_template_setting = 'Aufgabenvorlage'

task_timeout_setting = 'Aufgabenzeitlimit'

task_tags_setting = 'Aufgabenmarker'

keyword_tags_setting = 'Schlüsselwortmarker'

tags_setting = 'Marker'

setup_setting = 'Vorbereitung'

teardown_setting = 'Nachbereitung'

template_setting = 'Vorlage'

timeout_setting = 'Zeitlimit'

arguments_setting = 'Argumente'

given_prefixes = ['Angenommen']

when_prefixes = ['Wenn']

then_prefixes = ['Dann']

and_prefixes = ['Und']

but_prefixes = ['Aber']

true_strings = ['Wahr', 'Ja', 'An', 'Ein']

false_strings = ['Falsch', 'Nein', 'Aus', 'Unwahr']

bdd_prefixes

code = 'de'

classmethod from_name(name)
Return language class based on given name.

Name can either be a language name (e.g. ‘Finnish’ or ‘Brazilian Portuguese’) or a language code (e.g.
‘fi’ or ‘pt-BR’). Matching is case and space insensitive and the hyphen is ignored when matching language
codes.

Raises ValueError if no matching language is found.

headers

name = 'German'

3.1. robot package 43

Robot Framework Documentation, Release 6.0.2

settings

class robot.conf.languages.PtBr
Bases: robot.conf.languages.Language

Brazilian Portuguese

settings_header = 'Configurações'

variables_header = 'Variáveis'

test_cases_header = 'Casos de Teste'

tasks_header = 'Tarefas'

keywords_header = 'Palavras-Chave'

comments_header = 'Comentários'

library_setting = 'Biblioteca'

resource_setting = 'Recurso'

variables_setting = 'Variável'

documentation_setting = 'Documentação'

metadata_setting = 'Metadados'

suite_setup_setting = 'Configuração da Suíte'

suite_teardown_setting = 'Finalização de Suíte'

test_setup_setting = 'Inicialização de Teste'

test_teardown_setting = 'Finalização de Teste'

test_template_setting = 'Modelo de Teste'

test_timeout_setting = 'Tempo Limite de Teste'

test_tags_setting = 'Test Tags'

task_setup_setting = 'Inicialização de Tarefa'

task_teardown_setting = 'Finalização de Tarefa'

task_template_setting = 'Modelo de Tarefa'

task_timeout_setting = 'Tempo Limite de Tarefa'

task_tags_setting = 'Task Tags'

keyword_tags_setting = 'Keyword Tags'

tags_setting = 'Etiquetas'

setup_setting = 'Inicialização'

teardown_setting = 'Finalização'

template_setting = 'Modelo'

timeout_setting = 'Tempo Limite'

arguments_setting = 'Argumentos'

given_prefixes = ['Dado']

when_prefixes = ['Quando']

44 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

then_prefixes = ['Então']

and_prefixes = ['E']

but_prefixes = ['Mas']

true_strings = ['Verdadeiro', 'Verdade', 'Sim', 'Ligado']

false_strings = ['Falso', 'Não', 'Desligado', 'Desativado', 'Nada']

bdd_prefixes

code = 'pt-BR'

classmethod from_name(name)
Return language class based on given name.

Name can either be a language name (e.g. ‘Finnish’ or ‘Brazilian Portuguese’) or a language code (e.g.
‘fi’ or ‘pt-BR’). Matching is case and space insensitive and the hyphen is ignored when matching language
codes.

Raises ValueError if no matching language is found.

headers

name = 'Brazilian Portuguese'

settings

class robot.conf.languages.Pt
Bases: robot.conf.languages.Language

Portuguese

settings_header = 'Definições'

variables_header = 'Variáveis'

test_cases_header = 'Casos de Teste'

tasks_header = 'Tarefas'

keywords_header = 'Palavras-Chave'

comments_header = 'Comentários'

library_setting = 'Biblioteca'

resource_setting = 'Recurso'

variables_setting = 'Variável'

documentation_setting = 'Documentação'

metadata_setting = 'Metadados'

suite_setup_setting = 'Inicialização de Suíte'

suite_teardown_setting = 'Finalização de Suíte'

test_setup_setting = 'Inicialização de Teste'

test_teardown_setting = 'Finalização de Teste'

test_template_setting = 'Modelo de Teste'

test_timeout_setting = 'Tempo Limite de Teste'

test_tags_setting = 'Etiquetas de Testes'

3.1. robot package 45

Robot Framework Documentation, Release 6.0.2

task_setup_setting = 'Inicialização de Tarefa'

task_teardown_setting = 'Finalização de Tarefa'

task_template_setting = 'Modelo de Tarefa'

task_timeout_setting = 'Tempo Limite de Tarefa'

task_tags_setting = 'Etiquetas de Tarefas'

keyword_tags_setting = 'Etiquetas de Palavras-Chave'

tags_setting = 'Etiquetas'

setup_setting = 'Inicialização'

teardown_setting = 'Finalização'

template_setting = 'Modelo'

timeout_setting = 'Tempo Limite'

arguments_setting = 'Argumentos'

given_prefixes = ['Dado']

when_prefixes = ['Quando']

then_prefixes = ['Então']

and_prefixes = ['E']

but_prefixes = ['Mas']

true_strings = ['Verdadeiro', 'Verdade', 'Sim', 'Ligado']

false_strings = ['Falso', 'Não', 'Desligado', 'Desativado', 'Nada']

bdd_prefixes

code = 'pt'

classmethod from_name(name)
Return language class based on given name.

Name can either be a language name (e.g. ‘Finnish’ or ‘Brazilian Portuguese’) or a language code (e.g.
‘fi’ or ‘pt-BR’). Matching is case and space insensitive and the hyphen is ignored when matching language
codes.

Raises ValueError if no matching language is found.

headers

name = 'Portuguese'

settings

class robot.conf.languages.Th
Bases: robot.conf.languages.Language

Thai

settings_header = ''

variables_header = ''

test_cases_header = ''

tasks_header = ''

46 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

keywords_header = ''

comments_header = ''

library_setting = ''

resource_setting = ''

variables_setting = ''

documentation_setting = ''

metadata_setting = ''

suite_setup_setting = ''

suite_teardown_setting = ''

test_setup_setting = ''

task_setup_setting = ''

test_teardown_setting = ''

task_teardown_setting = ''

test_template_setting = ''

task_template_setting = ''

test_timeout_setting = ''

task_timeout_setting = ''

test_tags_setting = ''

task_tags_setting = ''

keyword_tags_setting = ''

setup_setting = ''

teardown_setting = ''

template_setting = ''

tags_setting = ''

timeout_setting = ''

arguments_setting = ''

given_prefixes = ['']

when_prefixes = ['']

then_prefixes = ['']

and_prefixes = ['']

but_prefixes = ['']

bdd_prefixes

code = 'th'

false_strings = []

3.1. robot package 47

Robot Framework Documentation, Release 6.0.2

classmethod from_name(name)
Return language class based on given name.

Name can either be a language name (e.g. ‘Finnish’ or ‘Brazilian Portuguese’) or a language code (e.g.
‘fi’ or ‘pt-BR’). Matching is case and space insensitive and the hyphen is ignored when matching language
codes.

Raises ValueError if no matching language is found.

headers

name = 'Thai'

settings

true_strings = []

class robot.conf.languages.Pl
Bases: robot.conf.languages.Language

Polish

settings_header = 'Ustawienia'

variables_header = 'Zmienne'

test_cases_header = 'Przypadki testowe'

tasks_header = 'Zadania'

keywords_header = 'Słowa kluczowe'

comments_header = 'Komentarze'

library_setting = 'Biblioteka'

resource_setting = 'Zasób'

variables_setting = 'Zmienne'

documentation_setting = 'Dokumentacja'

metadata_setting = 'Metadane'

suite_setup_setting = 'Inicjalizacja zestawu'

suite_teardown_setting = 'Ukończenie zestawu'

test_setup_setting = 'Inicjalizacja testu'

test_teardown_setting = 'Ukończenie testu'

test_template_setting = 'Szablon testu'

test_timeout_setting = 'Limit czasowy testu'

test_tags_setting = 'Znaczniki testu'

task_setup_setting = 'Inicjalizacja zadania'

task_teardown_setting = 'Ukończenie zadania'

task_template_setting = 'Szablon zadania'

task_timeout_setting = 'Limit czasowy zadania'

task_tags_setting = 'Znaczniki zadania'

keyword_tags_setting = 'Znaczniki słowa kluczowego'

48 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

tags_setting = 'Znaczniki'

setup_setting = 'Inicjalizacja'

teardown_setting = 'Ukończenie'

template_setting = 'Szablon'

timeout_setting = 'Limit czasowy'

arguments_setting = 'Argumenty'

given_prefixes = ['Zakładając', 'Zakładając, że', 'Mając']

when_prefixes = ['Jeżeli', 'Jeśli', 'Gdy', 'Kiedy']

then_prefixes = ['Wtedy']

and_prefixes = ['Oraz', 'I']

but_prefixes = ['Ale']

true_strings = ['Prawda', 'Tak', 'Włączone']

false_strings = ['Fałsz', 'Nie', 'Wyłączone', 'Nic']

bdd_prefixes

code = 'pl'

classmethod from_name(name)
Return language class based on given name.

Name can either be a language name (e.g. ‘Finnish’ or ‘Brazilian Portuguese’) or a language code (e.g.
‘fi’ or ‘pt-BR’). Matching is case and space insensitive and the hyphen is ignored when matching language
codes.

Raises ValueError if no matching language is found.

headers

name = 'Polish'

settings

class robot.conf.languages.Uk
Bases: robot.conf.languages.Language

Ukrainian

settings_header = ''

variables_header = ''

test_cases_header = '-'

tasks_header = ''

keywords_header = ' '

comments_header = ''

library_setting = ''

resource_setting = ''

variables_setting = ''

documentation_setting = ''

3.1. robot package 49

Robot Framework Documentation, Release 6.0.2

metadata_setting = ''

suite_setup_setting = ' Suite'

suite_teardown_setting = ' Suite'

test_setup_setting = ' '

test_teardown_setting = ' y'

test_template_setting = ' '

test_timeout_setting = ' '

test_tags_setting = ' '

task_setup_setting = ' '

task_teardown_setting = ' '

task_template_setting = ' '

task_timeout_setting = ' '

task_tags_setting = ' '

keyword_tags_setting = ' '

tags_setting = ''

setup_setting = ''

teardown_setting = 'C '

template_setting = ''

timeout_setting = ' '

arguments_setting = ''

given_prefixes = ['']

when_prefixes = ['']

then_prefixes = ['']

and_prefixes = ['']

but_prefixes = ['']

bdd_prefixes

code = 'uk'

false_strings = []

classmethod from_name(name)
Return language class based on given name.

Name can either be a language name (e.g. ‘Finnish’ or ‘Brazilian Portuguese’) or a language code (e.g.
‘fi’ or ‘pt-BR’). Matching is case and space insensitive and the hyphen is ignored when matching language
codes.

Raises ValueError if no matching language is found.

headers

name = 'Ukrainian'

settings

50 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

true_strings = []

class robot.conf.languages.Es
Bases: robot.conf.languages.Language

Spanish

settings_header = 'Configuraciones'

variables_header = 'Variables'

test_cases_header = 'Casos de prueba'

tasks_header = 'Tareas'

keywords_header = 'Palabras clave'

comments_header = 'Comentarios'

library_setting = 'Biblioteca'

resource_setting = 'Recursos'

variables_setting = 'Variable'

documentation_setting = 'Documentación'

metadata_setting = 'Metadatos'

suite_setup_setting = 'Configuración de la Suite'

suite_teardown_setting = 'Desmontaje de la Suite'

test_setup_setting = 'Configuración de prueba'

test_teardown_setting = 'Desmontaje de la prueba'

test_template_setting = 'Plantilla de prueba'

test_timeout_setting = 'Tiempo de espera de la prueba'

test_tags_setting = 'Etiquetas de la prueba'

task_setup_setting = 'Configuración de tarea'

task_teardown_setting = 'Desmontaje de tareas'

task_template_setting = 'Plantilla de tareas'

task_timeout_setting = 'Tiempo de espera de las tareas'

task_tags_setting = 'Etiquetas de las tareas'

keyword_tags_setting = 'Etiquetas de palabras clave'

tags_setting = 'Etiquetas'

setup_setting = 'Configuración'

teardown_setting = 'Desmontaje'

template_setting = 'Plantilla'

timeout_setting = 'Tiempo agotado'

arguments_setting = 'Argumentos'

given_prefixes = ['Dado']

when_prefixes = ['Cuando']

3.1. robot package 51

Robot Framework Documentation, Release 6.0.2

then_prefixes = ['Entonces']

and_prefixes = ['Y']

but_prefixes = ['Pero']

true_strings = ['Verdadero', 'Si', 'On']

false_strings = ['Falso', 'No', 'Off', 'Ninguno']

bdd_prefixes

code = 'es'

classmethod from_name(name)
Return language class based on given name.

Name can either be a language name (e.g. ‘Finnish’ or ‘Brazilian Portuguese’) or a language code (e.g.
‘fi’ or ‘pt-BR’). Matching is case and space insensitive and the hyphen is ignored when matching language
codes.

Raises ValueError if no matching language is found.

headers

name = 'Spanish'

settings

class robot.conf.languages.Ru
Bases: robot.conf.languages.Language

Russian

settings_header = ''

variables_header = ''

test_cases_header = ' '

tasks_header = ''

keywords_header = ' '

comments_header = ''

library_setting = ''

resource_setting = ''

variables_setting = ''

documentation_setting = ''

metadata_setting = ''

suite_setup_setting = ' '

suite_teardown_setting = ' '

test_setup_setting = ' '

test_teardown_setting = ' '

test_template_setting = ' '

test_timeout_setting = ' '

test_tags_setting = ' '

52 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

task_setup_setting = ' '

task_teardown_setting = ' '

task_template_setting = ' '

task_timeout_setting = ' '

task_tags_setting = ' '

keyword_tags_setting = ' '

tags_setting = ''

setup_setting = ''

teardown_setting = ''

template_setting = ''

timeout_setting = ''

arguments_setting = ''

given_prefixes = ['']

when_prefixes = ['']

then_prefixes = ['']

and_prefixes = ['']

but_prefixes = ['']

bdd_prefixes

code = 'ru'

false_strings = []

classmethod from_name(name)
Return language class based on given name.

Name can either be a language name (e.g. ‘Finnish’ or ‘Brazilian Portuguese’) or a language code (e.g.
‘fi’ or ‘pt-BR’). Matching is case and space insensitive and the hyphen is ignored when matching language
codes.

Raises ValueError if no matching language is found.

headers

name = 'Russian'

settings

true_strings = []

class robot.conf.languages.ZhCn
Bases: robot.conf.languages.Language

Chinese Simplified

settings_header = ''

variables_header = ''

test_cases_header = ''

tasks_header = ''

3.1. robot package 53

Robot Framework Documentation, Release 6.0.2

keywords_header = ''

comments_header = ''

library_setting = ''

resource_setting = ''

variables_setting = ''

documentation_setting = ''

metadata_setting = ''

suite_setup_setting = ''

suite_teardown_setting = ''

test_setup_setting = ''

test_teardown_setting = ''

test_template_setting = ''

test_timeout_setting = ''

test_tags_setting = ''

task_setup_setting = ''

task_teardown_setting = ''

task_template_setting = ''

task_timeout_setting = ''

task_tags_setting = ''

keyword_tags_setting = ''

tags_setting = ''

setup_setting = ''

teardown_setting = ''

template_setting = ''

timeout_setting = ''

arguments_setting = ''

given_prefixes = ['']

when_prefixes = ['']

then_prefixes = ['']

and_prefixes = ['']

but_prefixes = ['']

true_strings = ['', '', '']

false_strings = ['', '', '', '']

bdd_prefixes

code = 'zh-CN'

54 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

classmethod from_name(name)
Return language class based on given name.

Name can either be a language name (e.g. ‘Finnish’ or ‘Brazilian Portuguese’) or a language code (e.g.
‘fi’ or ‘pt-BR’). Matching is case and space insensitive and the hyphen is ignored when matching language
codes.

Raises ValueError if no matching language is found.

headers

name = 'Chinese Simplified'

settings

class robot.conf.languages.ZhTw
Bases: robot.conf.languages.Language

Chinese Traditional

settings_header = ''

variables_header = ''

test_cases_header = ''

tasks_header = ''

keywords_header = ''

comments_header = ''

library_setting = ''

resource_setting = ''

variables_setting = ''

documentation_setting = ''

metadata_setting = ''

suite_setup_setting = ''

suite_teardown_setting = ''

test_setup_setting = ''

test_teardown_setting = ''

test_template_setting = ''

test_timeout_setting = ''

test_tags_setting = ''

task_setup_setting = ''

task_teardown_setting = ''

task_template_setting = ''

task_timeout_setting = ''

task_tags_setting = ''

keyword_tags_setting = ''

tags_setting = ''

3.1. robot package 55

Robot Framework Documentation, Release 6.0.2

setup_setting = ''

teardown_setting = ''

template_setting = ''

timeout_setting = ''

arguments_setting = ''

given_prefixes = ['']

when_prefixes = ['']

then_prefixes = ['']

and_prefixes = ['']

but_prefixes = ['']

true_strings = ['', '', '']

false_strings = ['', '', '', '']

bdd_prefixes

code = 'zh-TW'

classmethod from_name(name)
Return language class based on given name.

Name can either be a language name (e.g. ‘Finnish’ or ‘Brazilian Portuguese’) or a language code (e.g.
‘fi’ or ‘pt-BR’). Matching is case and space insensitive and the hyphen is ignored when matching language
codes.

Raises ValueError if no matching language is found.

headers

name = 'Chinese Traditional'

settings

class robot.conf.languages.Tr
Bases: robot.conf.languages.Language

Turkish

settings_header = 'Ayarlar'

variables_header = 'Değişkenler'

test_cases_header = 'Test Durumları'

tasks_header = 'Görevler'

keywords_header = 'Anahtar Kelimeler'

comments_header = 'Yorumlar'

library_setting = 'Kütüphane'

resource_setting = 'Kaynak'

variables_setting = 'Değişkenler'

documentation_setting = 'Dokümantasyon'

metadata_setting = 'Üstveri'

56 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

suite_setup_setting = 'Takım Kurulumu'

suite_teardown_setting = 'Takım Bitişi'

test_setup_setting = 'Test Kurulumu'

task_setup_setting = 'Görev Kurulumu'

test_teardown_setting = 'Test Bitişi'

task_teardown_setting = 'Görev Bitişi'

test_template_setting = 'Test Taslağı'

task_template_setting = 'Görev Taslağı'

test_timeout_setting = 'Test Zaman Aşımı'

task_timeout_setting = 'Görev Zaman Aşımı'

test_tags_setting = 'Test Etiketleri'

task_tags_setting = 'Görev Etiketleri'

keyword_tags_setting = 'Anahtar Kelime Etiketleri'

setup_setting = 'Kurulum'

teardown_setting = 'Bitiş'

template_setting = 'Taslak'

tags_setting = 'Etiketler'

timeout_setting = 'Zaman Aşımı'

arguments_setting = 'Argümanlar'

given_prefixes = ['Diyelim ki']

when_prefixes = ['Eğer ki']

then_prefixes = ['O zaman']

and_prefixes = ['Ve']

but_prefixes = ['Ancak']

true_strings = ['Doğru', 'Evet', 'Açik']

false_strings = ['Yanliş', 'Hayir', 'Kapali']

bdd_prefixes

code = 'tr'

classmethod from_name(name)
Return language class based on given name.

Name can either be a language name (e.g. ‘Finnish’ or ‘Brazilian Portuguese’) or a language code (e.g.
‘fi’ or ‘pt-BR’). Matching is case and space insensitive and the hyphen is ignored when matching language
codes.

Raises ValueError if no matching language is found.

headers

name = 'Turkish'

settings

3.1. robot package 57

Robot Framework Documentation, Release 6.0.2

class robot.conf.languages.Sv
Bases: robot.conf.languages.Language

Swedish

settings_header = 'Inställningar'

variables_header = 'Variabler'

test_cases_header = 'Testfall'

tasks_header = 'Taskar'

keywords_header = 'Nyckelord'

comments_header = 'Kommentarer'

library_setting = 'Bibliotek'

resource_setting = 'Resurs'

variables_setting = 'Variabel'

documentation_setting = 'Dokumentation'

metadata_setting = 'Metadata'

suite_setup_setting = 'Svit konfigurering'

suite_teardown_setting = 'Svit nedrivning'

test_setup_setting = 'Test konfigurering'

test_teardown_setting = 'Test nedrivning'

test_template_setting = 'Test mall'

test_timeout_setting = 'Test timeout'

test_tags_setting = 'Test taggar'

task_setup_setting = 'Task konfigurering'

task_teardown_setting = 'Task nedrivning'

task_template_setting = 'Task mall'

task_timeout_setting = 'Task timeout'

task_tags_setting = 'Arbetsuppgift taggar'

keyword_tags_setting = 'Nyckelord taggar'

tags_setting = 'Taggar'

setup_setting = 'Konfigurering'

teardown_setting = 'Nedrivning'

template_setting = 'Mall'

timeout_setting = 'Timeout'

arguments_setting = 'Argument'

given_prefixes = ['Givet']

when_prefixes = ['När']

then_prefixes = ['Då']

58 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

and_prefixes = ['Och']

but_prefixes = ['Men']

true_strings = ['Sant', 'Ja', 'På']

false_strings = ['Falskt', 'Nej', 'Av', 'Ingen']

bdd_prefixes

code = 'sv'

classmethod from_name(name)
Return language class based on given name.

Name can either be a language name (e.g. ‘Finnish’ or ‘Brazilian Portuguese’) or a language code (e.g.
‘fi’ or ‘pt-BR’). Matching is case and space insensitive and the hyphen is ignored when matching language
codes.

Raises ValueError if no matching language is found.

headers

name = 'Swedish'

settings

class robot.conf.languages.Bg
Bases: robot.conf.languages.Language

Bulgarian

settings_header = ''

variables_header = ''

test_cases_header = ' '

tasks_header = ''

keywords_header = ' '

comments_header = ''

library_setting = ''

resource_setting = ''

variables_setting = ''

documentation_setting = ''

metadata_setting = ''

suite_setup_setting = ' '

suite_teardown_setting = ' '

test_setup_setting = ' '

test_teardown_setting = ' '

test_template_setting = ' '

test_timeout_setting = ' '

test_tags_setting = ' '

task_setup_setting = ' '

3.1. robot package 59

Robot Framework Documentation, Release 6.0.2

task_teardown_setting = ' '

task_template_setting = ' '

task_timeout_setting = ' '

task_tags_setting = ' '

keyword_tags_setting = ' '

tags_setting = ''

setup_setting = ' '

teardown_setting = ''

template_setting = ''

timeout_setting = ''

arguments_setting = ''

given_prefixes = [' ']

when_prefixes = ['']

then_prefixes = ['']

and_prefixes = ['']

but_prefixes = ['']

true_strings = ['', '', '']

false_strings = ['', '', '', '']

bdd_prefixes

code = 'bg'

classmethod from_name(name)
Return language class based on given name.

Name can either be a language name (e.g. ‘Finnish’ or ‘Brazilian Portuguese’) or a language code (e.g.
‘fi’ or ‘pt-BR’). Matching is case and space insensitive and the hyphen is ignored when matching language
codes.

Raises ValueError if no matching language is found.

headers

name = 'Bulgarian'

settings

class robot.conf.languages.Ro
Bases: robot.conf.languages.Language

Romanian

settings_header = 'Setari'

variables_header = 'Variabile'

test_cases_header = 'Cazuri De Test'

tasks_header = 'Sarcini'

keywords_header = 'Cuvinte Cheie'

60 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

comments_header = 'Comentarii'

library_setting = 'Librarie'

resource_setting = 'Resursa'

variables_setting = 'Variabila'

documentation_setting = 'Documentatie'

metadata_setting = 'Metadate'

suite_setup_setting = 'Configurare De Suita'

suite_teardown_setting = 'Configurare De Intrerupere'

test_setup_setting = 'Setare De Test'

test_teardown_setting = 'Inrerupere De Test'

test_template_setting = 'Sablon De Test'

test_timeout_setting = 'Timp Expirare Test'

test_tags_setting = 'Taguri De Test'

task_setup_setting = 'Configuarare activitate'

task_teardown_setting = 'Intrerupere activitate'

task_template_setting = 'Sablon de activitate'

task_timeout_setting = 'Timp de expirare activitate'

task_tags_setting = 'Etichete activitate'

keyword_tags_setting = 'Etichete metode'

tags_setting = 'Etichete'

setup_setting = 'Setare'

teardown_setting = 'Intrerupere'

template_setting = 'Sablon'

timeout_setting = 'Expirare'

arguments_setting = 'Argumente'

given_prefixes = ['Fie ca']

when_prefixes = ['Cand']

then_prefixes = ['Atunci']

and_prefixes = ['Si']

but_prefixes = ['Dar']

true_strings = ['Adevarat', 'Da', 'Cand']

false_strings = ['Fals', 'Nu', 'Oprit', 'Niciun']

bdd_prefixes

code = 'ro'

3.1. robot package 61

Robot Framework Documentation, Release 6.0.2

classmethod from_name(name)
Return language class based on given name.

Name can either be a language name (e.g. ‘Finnish’ or ‘Brazilian Portuguese’) or a language code (e.g.
‘fi’ or ‘pt-BR’). Matching is case and space insensitive and the hyphen is ignored when matching language
codes.

Raises ValueError if no matching language is found.

headers

name = 'Romanian'

settings

class robot.conf.languages.It
Bases: robot.conf.languages.Language

Italian

settings_header = 'Impostazioni'

variables_header = 'Variabili'

test_cases_header = 'Casi Di Test'

tasks_header = 'Attività'

keywords_header = 'Parole Chiave'

comments_header = 'Commenti'

library_setting = 'Libreria'

resource_setting = 'Risorsa'

variables_setting = 'Variabile'

documentation_setting = 'Documentazione'

metadata_setting = 'Metadati'

suite_setup_setting = 'Configurazione Suite'

suite_teardown_setting = 'Distruzione Suite'

test_setup_setting = 'Configurazione Test'

test_teardown_setting = 'Distruzione Test'

test_template_setting = 'Modello Test'

test_timeout_setting = 'Timeout Test'

test_tags_setting = 'Tag Del Test'

task_setup_setting = 'Configurazione Attività'

task_teardown_setting = 'Distruzione Attività'

task_template_setting = 'Modello Attività'

task_timeout_setting = 'Timeout Attività'

task_tags_setting = 'Tag Attività'

keyword_tags_setting = 'Tag Parola Chiave'

tags_setting = 'Tag'

62 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

setup_setting = 'Configurazione'

teardown_setting = 'Distruzione'

template_setting = 'Template'

timeout_setting = 'Timeout'

arguments_setting = 'Parametri'

given_prefixes = ['Dato']

when_prefixes = ['Quando']

then_prefixes = ['Allora']

and_prefixes = ['E']

but_prefixes = ['Ma']

true_strings = ['Vero', 'Sì', 'On']

false_strings = ['Falso', 'No', 'Off', 'Nessuno']

bdd_prefixes

code = 'it'

classmethod from_name(name)
Return language class based on given name.

Name can either be a language name (e.g. ‘Finnish’ or ‘Brazilian Portuguese’) or a language code (e.g.
‘fi’ or ‘pt-BR’). Matching is case and space insensitive and the hyphen is ignored when matching language
codes.

Raises ValueError if no matching language is found.

headers

name = 'Italian'

settings

class robot.conf.languages.Hi
Bases: robot.conf.languages.Language

Hindi

settings_header = ''

variables_header = ''

test_cases_header = ' '

tasks_header = ' '

keywords_header = ''

comments_header = ''

library_setting = ' '

resource_setting = ''

variables_setting = ''

documentation_setting = ''

metadata_setting = '-'

3.1. robot package 63

Robot Framework Documentation, Release 6.0.2

suite_setup_setting = ' '

suite_teardown_setting = ' '

test_setup_setting = ' '

test_teardown_setting = ' '

test_template_setting = ' '

test_timeout_setting = ' '

test_tags_setting = ' '

task_setup_setting = ' '

task_teardown_setting = ' '

task_template_setting = ' '

task_timeout_setting = ' '

task_tags_setting = ' '

keyword_tags_setting = ' '

tags_setting = ''

setup_setting = ''

teardown_setting = ''

template_setting = ''

timeout_setting = ' '

arguments_setting = ''

given_prefixes = [' ']

when_prefixes = ['']

then_prefixes = ['']

and_prefixes = ['']

but_prefixes = ['']

true_strings = ['', '', '', '']

false_strings = ['', '', '', '', '', '']

bdd_prefixes

code = 'hi'

classmethod from_name(name)
Return language class based on given name.

Name can either be a language name (e.g. ‘Finnish’ or ‘Brazilian Portuguese’) or a language code (e.g.
‘fi’ or ‘pt-BR’). Matching is case and space insensitive and the hyphen is ignored when matching language
codes.

Raises ValueError if no matching language is found.

headers

name = 'Hindi'

settings

64 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

robot.conf.settings module

class robot.conf.settings.RobotSettings(options=None, **extra_options)
Bases: robot.conf.settings._BaseSettings

get_rebot_settings()

listeners

debug_file

languages

suite_config

suite_names

test_names

randomize_seed

randomize_suites

randomize_tests

dry_run

exit_on_failure

exit_on_error

skip

skipped_tags

skip_on_failure

skip_teardown_on_exit

console_output_config

console_type

console_width

console_markers

max_error_lines

max_assign_length

pre_run_modifiers

run_empty_suite

variables

variable_files

extension

console_colors

exclude

flatten_keywords

include

log

3.1. robot package 65

Robot Framework Documentation, Release 6.0.2

log_level

output

output_directory

pre_rebot_modifiers

pythonpath

remove_keywords

report

rpa

split_log

statistics_config

status_rc

xunit

class robot.conf.settings.RebotSettings(options=None, **extra_options)
Bases: robot.conf.settings._BaseSettings

suite_config

log_config

report_config

merge

console_output_config

console_colors

exclude

flatten_keywords

include

log

log_level

output

output_directory

pre_rebot_modifiers

process_empty_suite

pythonpath

remove_keywords

report

rpa

split_log

statistics_config

status_rc

66 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

suite_names

test_names

xunit

expand_keywords

robot.htmldata package

Package for writing output files in HTML format.

This package is considered stable but it is not part of the public API.

Submodules

robot.htmldata.htmlfilewriter module

class robot.htmldata.htmlfilewriter.HtmlFileWriter(output, model_writer)
Bases: object

write(template)

class robot.htmldata.htmlfilewriter.ModelWriter
Bases: robot.htmldata.htmlfilewriter._Writer

handles(line)

write(line)

class robot.htmldata.htmlfilewriter.LineWriter(output)
Bases: robot.htmldata.htmlfilewriter._Writer

handles(line)

write(line)

class robot.htmldata.htmlfilewriter.GeneratorWriter(html_writer)
Bases: robot.htmldata.htmlfilewriter._Writer

write(line)

handles(line)

class robot.htmldata.htmlfilewriter.JsFileWriter(html_writer, base_dir)
Bases: robot.htmldata.htmlfilewriter._InliningWriter

write(line)

handles(line)

class robot.htmldata.htmlfilewriter.CssFileWriter(html_writer, base_dir)
Bases: robot.htmldata.htmlfilewriter._InliningWriter

write(line)

handles(line)

3.1. robot package 67

Robot Framework Documentation, Release 6.0.2

robot.htmldata.jsonwriter module

class robot.htmldata.jsonwriter.JsonWriter(output, separator=”)
Bases: object

write_json(prefix, data, postfix=’;\n’, mapping=None, separator=True)

write(string, postfix=’;\n’, separator=True)

class robot.htmldata.jsonwriter.JsonDumper(output)
Bases: object

dump(data, mapping=None)

class robot.htmldata.jsonwriter.StringDumper(jsondumper)
Bases: robot.htmldata.jsonwriter._Dumper

dump(data, mapping)

handles(data, mapping)

class robot.htmldata.jsonwriter.IntegerDumper(jsondumper)
Bases: robot.htmldata.jsonwriter._Dumper

dump(data, mapping)

handles(data, mapping)

class robot.htmldata.jsonwriter.DictDumper(jsondumper)
Bases: robot.htmldata.jsonwriter._Dumper

dump(data, mapping)

handles(data, mapping)

class robot.htmldata.jsonwriter.TupleListDumper(jsondumper)
Bases: robot.htmldata.jsonwriter._Dumper

dump(data, mapping)

handles(data, mapping)

class robot.htmldata.jsonwriter.MappingDumper(jsondumper)
Bases: robot.htmldata.jsonwriter._Dumper

handles(data, mapping)

dump(data, mapping)

class robot.htmldata.jsonwriter.NoneDumper(jsondumper)
Bases: robot.htmldata.jsonwriter._Dumper

handles(data, mapping)

dump(data, mapping)

robot.htmldata.template module

class robot.htmldata.template.HtmlTemplate(filename)
Bases: object

68 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

robot.libdocpkg package

Implements the Libdoc tool.

The public Libdoc API is exposed via the robot.libdoc module.

Submodules

robot.libdocpkg.builder module

robot.libdocpkg.builder.LibraryDocumentation(library_or_resource, name=None, ver-
sion=None, doc_format=None)

Generate keyword documentation for the given library, resource or suite file.

Parameters

• library_or_resource – Name or path of the library, or path of a resource or a suite
file.

• name – Set name with the given value.

• version – Set version to the given value.

• doc_format – Set documentation format to the given value.

Returns LibraryDoc instance.

This factory method is the recommended API to generate keyword documentation programmatically. It should
be imported via the robot.libdoc module.

Example:

from robot.libdoc import LibraryDocumentation

lib = LibraryDocumentation('OperatingSystem')
print(lib.name, lib.version)
for kw in lib.keywords:

print(kw.name)

class robot.libdocpkg.builder.DocumentationBuilder(library_or_resource=None)
Bases: object

Keyword documentation builder.

This is not part of Libdoc’s public API. Use LibraryDocumentation() instead.

library_or_resource is accepted for backwards compatibility reasons.

It is not used for anything internally and passing it to the builder is considered deprecated starting from RF 6.0.1.

build(source)

robot.libdocpkg.consoleviewer module

class robot.libdocpkg.consoleviewer.ConsoleViewer(libdoc)
Bases: object

classmethod handles(command)

3.1. robot package 69

Robot Framework Documentation, Release 6.0.2

classmethod validate_command(command, args)

view(command, *args)

list(*patterns)

show(*names)

version()

class robot.libdocpkg.consoleviewer.KeywordMatcher(libdoc)
Bases: object

search(patterns)

robot.libdocpkg.datatypes module

class robot.libdocpkg.datatypes.TypeDoc(type, name, doc, accepts=(), usages=None, mem-
bers=None, items=None)

Bases: robot.utils.sortable.Sortable

ENUM = 'Enum'

TYPED_DICT = 'TypedDict'

CUSTOM = 'Custom'

STANDARD = 'Standard'

classmethod for_type(type_hint, converters)

classmethod for_enum(enum)

classmethod for_typed_dict(typed_dict)

to_dictionary(legacy=False)

class robot.libdocpkg.datatypes.TypedDictItem(key, type, required=None)
Bases: object

to_dictionary()

class robot.libdocpkg.datatypes.EnumMember(name, value)
Bases: object

to_dictionary()

robot.libdocpkg.htmlutils module

class robot.libdocpkg.htmlutils.DocFormatter(keywords, type_info, introduction,
doc_format=’ROBOT’)

Bases: object

html(doc, intro=False)

class robot.libdocpkg.htmlutils.DocToHtml(doc_format)
Bases: object

class robot.libdocpkg.htmlutils.HtmlToText
Bases: object

html_tags = {'b': '*', 'code': '``', 'div.*?': '', 'em': '_', 'i': '_', 'strong': '*'}

html_chars = {'&': '&', ''': "'", '>': '>', '<': '<', '"': '"', '<br */?>': '\n'}

70 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

get_shortdoc_from_html(doc)

html_to_plain_text(doc)

robot.libdocpkg.htmlwriter module

class robot.libdocpkg.htmlwriter.LibdocHtmlWriter(theme=None)
Bases: object

write(libdoc, output)

class robot.libdocpkg.htmlwriter.LibdocModelWriter(output, libdoc, theme=None)
Bases: robot.htmldata.htmlfilewriter.ModelWriter

write(line)

handles(line)

robot.libdocpkg.jsonbuilder module

class robot.libdocpkg.jsonbuilder.JsonDocBuilder
Bases: object

build(path)

build_from_dict(spec)

robot.libdocpkg.jsonwriter module

class robot.libdocpkg.jsonwriter.LibdocJsonWriter
Bases: object

write(libdoc, outfile)

robot.libdocpkg.model module

class robot.libdocpkg.model.LibraryDoc(name=”, doc=”, version=”, type=’LIBRARY’,
scope=’TEST’, doc_format=’ROBOT’,
source=None, lineno=-1)

Bases: object

Documentation for a library, a resource file or a suite file.

doc

doc_format

inits
Initializer docs as KeywordDoc instances.

keywords
Keyword docs as KeywordDoc instances.

type_docs

all_tags

save(output=None, format=’HTML’, theme=None)

3.1. robot package 71

Robot Framework Documentation, Release 6.0.2

convert_docs_to_html()

to_dictionary(include_private=False, theme=None)

to_json(indent=None, include_private=True, theme=None)

class robot.libdocpkg.model.KeywordDoc(name=”, args=None, doc=”, shortdoc=”, tags=(),
private=False, deprecated=False, source=None,
lineno=-1, parent=None)

Bases: robot.utils.sortable.Sortable

Documentation for a single keyword or an initializer.

shortdoc

to_dictionary()

robot.libdocpkg.output module

class robot.libdocpkg.output.LibdocOutput(output_path, format)
Bases: object

robot.libdocpkg.output.get_generation_time()
Return a timestamp that honors SOURCE_DATE_EPOCH.

This timestamp is to be used for embedding in output files, so that builds can be made reproducible.

robot.libdocpkg.robotbuilder module

class robot.libdocpkg.robotbuilder.LibraryDocBuilder
Bases: object

build(library)

class robot.libdocpkg.robotbuilder.ResourceDocBuilder
Bases: object

type = 'RESOURCE'

build(path)

class robot.libdocpkg.robotbuilder.SuiteDocBuilder
Bases: robot.libdocpkg.robotbuilder.ResourceDocBuilder

type = 'SUITE'

build(path)

class robot.libdocpkg.robotbuilder.KeywordDocBuilder(resource=False)
Bases: object

build_keywords(lib)

build_keyword(kw)

robot.libdocpkg.standardtypes module

robot.libdocpkg.writer module

robot.libdocpkg.writer.LibdocWriter(format=None, theme=None)

72 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

robot.libdocpkg.xmlbuilder module

class robot.libdocpkg.xmlbuilder.XmlDocBuilder
Bases: object

build(path)

robot.libdocpkg.xmlwriter module

class robot.libdocpkg.xmlwriter.LibdocXmlWriter
Bases: object

write(libdoc, outfile)

robot.libraries package

Package hosting Robot Framework standard test libraries.

Libraries are mainly used externally in the test data, but they can be also used by custom test libraries if there is a need.
Especially the BuiltIn library is often useful when there is a need to interact with the framework.

Because libraries are documented using Robot Framework’s own documentation syntax, the generated API docs
are not that well formed. It is thus better to find the generated library documentations, for example, via the
http://robotframework.org web site.

Submodules

robot.libraries.BuiltIn module

robot.libraries.BuiltIn.run_keyword_variant(resolve, dry_run=False)

class robot.libraries.BuiltIn.BuiltIn
Bases: robot.libraries.BuiltIn._Verify, robot.libraries.BuiltIn._Converter,
robot.libraries.BuiltIn._Variables, robot.libraries.BuiltIn._RunKeyword,
robot.libraries.BuiltIn._Control, robot.libraries.BuiltIn._Misc

An always available standard library with often needed keywords.

BuiltIn is Robot Framework’s standard library that provides a set of generic keywords needed often. It
is imported automatically and thus always available. The provided keywords can be used, for example, for
verifications (e.g. Should Be Equal, Should Contain), conversions (e.g. Convert To Integer) and for various
other purposes (e.g. Log, Sleep, Run Keyword If, Set Global Variable).

== Table of contents ==

%TOC%

= HTML error messages =

Many of the keywords accept an optional error message to use if the keyword fails, and it is possible to use
HTML in these messages by prefixing them with *HTML*. See Fail keyword for a usage example. Notice that
using HTML in messages is not limited to BuiltIn library but works with any error message.

= Using variables with keywords creating or accessing variables =

This library has special keywords Set Global Variable, Set Suite Variable, Set Test Variable and Set Local Vari-
able for creating variables in different scopes. These keywords take the variable name and its value as arguments.

3.1. robot package 73

http://robotframework.org

Robot Framework Documentation, Release 6.0.2

The name can be given using the normal ${variable} syntax or in escaped format either like $variable
or \${variable}. For example, these are typically equivalent and create new suite level variable ${name}
with value value:

A problem with using the normal ${variable} syntax is that these keywords cannot easily know is the idea
to create a variable with exactly that name or does that variable actually contain the name of the variable to
create. If the variable does not initially exist, it will always be created. If it exists and its value is a variable
name either in the normal or in the escaped syntax, variable with _that_ name is created instead. For example, if
${name} variable would exist and contain value $example, these examples would create different variables:

Because the behavior when using the normal ${variable} syntax depends on the possible existing value of
the variable, it is highly recommended to use the escaped ‘‘$variable‘‘ or ‘‘${variable}‘‘ format instead.

This same problem occurs also with special keywords for accessing variables Get Variable Value, Variable
Should Exist and Variable Should Not Exist.

= Evaluating expressions =

Many keywords, such as Evaluate, Run Keyword If and Should Be True, accept an expression that is evaluated
in Python.

== Evaluation namespace ==

Expressions are evaluated using Python’s [http://docs.python.org/library/functions.html#eval|eval] function so
that all Python built-ins like len() and int() are available. In addition to that, all unrecognized variables
are considered to be modules that are automatically imported. It is possible to use all available Python modules,
including the standard modules and the installed third party modules.

Evaluate also allows configuring the execution namespace with a custom namespace and with custom modules to
be imported. The latter functionality is useful in special cases where the automatic module import does not work
such as when using nested modules like rootmod.submod or list comprehensions. See the documentation of
the Evaluate keyword for mode details.

== Variables in expressions ==

When a variable is used in the expressing using the normal ${variable} syntax, its value is replaced before
the expression is evaluated. This means that the value used in the expression will be the string representation of
the variable value, not the variable value itself. This is not a problem with numbers and other objects that have
a string representation that can be evaluated directly, but with other objects the behavior depends on the string
representation. Most importantly, strings must always be quoted, and if they can contain newlines, they must be
triple quoted.

Actual variables values are also available in the evaluation namespace. They can be accessed using special
variable syntax without the curly braces like $variable. These variables should never be quoted.

Using the $variable syntax slows down expression evaluation a little. This should not typically matter, but
should be taken into account if complex expressions are evaluated often and there are strict time constrains.

Notice that instead of creating complicated expressions, it is often better to move the logic into a library. That
eases maintenance and can also enhance execution speed.

= Boolean arguments =

Some keywords accept arguments that are handled as Boolean values true or false. If such an argument is
given as a string, it is considered false if it is an empty string or equal to FALSE, NONE, NO, OFF or 0, case-
insensitively. Keywords verifying something that allow dropping actual and expected values from the possible
error message also consider string no values to be false. Other strings are considered true unless the keyword
documentation explicitly states otherwise, and other argument types are tested using the same [http://docs.
python.org/library/stdtypes.html#truth|rules as in Python].

True examples:

74 Chapter 3. All packages

http://docs.python.org/library/functions
http://docs.python.org/library/stdtypes
http://docs.python.org/library/stdtypes

Robot Framework Documentation, Release 6.0.2

False examples:

= Pattern matching =

Many keywords accept arguments as either glob or regular expression patterns.

== Glob patterns ==

Some keywords, for example Should Match, support so called [http://en.wikipedia.org/wiki/Glob_
(programming)|glob patterns] where:

Unlike with glob patterns normally, path separator characters / and \ and the newline character \n are matches
by the above wildcards.

== Regular expressions ==

Some keywords, for example Should Match Regexp, support [http://en.wikipedia.org/
wiki/Regular_expression|regular expressions] that are more powerful but also more complicated that glob pat-
terns. The regular expression support is implemented using Python’s [http://docs.python.org/library/re.html|re
module] and its documentation should be consulted for more information about the syntax.

Because the backslash character (\) is an escape character in Robot Framework test data, possible backslash
characters in regular expressions need to be escaped with another backslash like \\d\\w+. Strings that may
contain special characters but should be handled as literal strings, can be escaped with the Regexp Escape
keyword.

= Multiline string comparison =

Should Be Equal and Should Be Equal As Strings report the failures using [http://en.wikipedia.org/
wiki/Diff_utility#Unified_format|unified diff format] if both strings have more than two lines.

Results in the following error message:

= String representations =

Several keywords log values explicitly (e.g. Log) or implicitly (e.g. Should Be Equal when there are failures). By
default, keywords log values using human-readable string representation, which means that strings like Hello
and numbers like 42 are logged as-is. Most of the time this is the desired behavior, but there are some problems
as well:

• It is not possible to see difference between different objects that have the same string representation like
string 42 and integer 42. Should Be Equal and some other keywords add the type information to the error
message in these cases, though.

• Non-printable characters such as the null byte are not visible.

• Trailing whitespace is not visible.

• Different newlines (\r\n on Windows, \n elsewhere) cannot be separated from each others.

• There are several Unicode characters that are different but look the same. One example is the Latin a
(\u0061) and the Cyrillic (\u0430). Error messages like a != are not very helpful.

• Some Unicode characters can be represented using [https://en.wikipedia.org/
wiki/Unicode_equivalence|different forms]. For example, ä can be represented either as a single
code point \u00e4 or using two combined code points \u0061 and \u0308. Such forms are
considered canonically equivalent, but strings containing them are not considered equal when compared
in Python. Error messages like ä != ä are not that helpful either.

• Containers such as lists and dictionaries are formatted into a single line making it hard to see individual
items they contain.

To overcome the above problems, some keywords such as Log and Should Be Equal have an optional
formatter argument that can be used to configure the string representation. The supported values are str

3.1. robot package 75

http://en.wikipedia.org/wiki/Glob_(programming
http://en.wikipedia.org/wiki/Glob_(programming
http://en.wikipedia.org/wiki
http://en.wikipedia.org/wiki
http://docs.python.org/library/re
http://en.wikipedia.org/wiki
http://en.wikipedia.org/wiki
https://en.wikipedia.org/wiki
https://en.wikipedia.org/wiki

Robot Framework Documentation, Release 6.0.2

(default), repr, and ascii that work similarly as [https://docs.python.org/library/functions.html|Python built-
in functions] with same names. More detailed semantics are explained below.

== str ==

Use the human-readable string representation. Equivalent to using str() in Python. This is the default.

== repr ==

Use the machine-readable string representation. Similar to using repr() in Python, which means that strings
like Hello are logged like 'Hello', newlines and non-printable characters are escaped like \n and \x00,
and so on. Non-ASCII characters are shown as-is like ä.

In this mode bigger lists, dictionaries and other containers are pretty-printed so that there is one item per row.

== ascii ==

Same as using ascii() in Python. Similar to using repr explained above but with the following differences:

• Non-ASCII characters are escaped like \xe4 instead of showing them as-is like ä. This makes it easier to
see differences between Unicode characters that look the same but are not equal.

• Containers are not pretty-printed.

ROBOT_LIBRARY_SCOPE = 'GLOBAL'

ROBOT_LIBRARY_VERSION = '6.0.2'

call_method(object, method_name, *args, **kwargs)
Calls the named method of the given object with the provided arguments.

The possible return value from the method is returned and can be assigned to a variable. Keyword fails both
if the object does not have a method with the given name or if executing the method raises an exception.

Possible equal signs in arguments must be escaped with a backslash like \=.

catenate(*items)
Catenates the given items together and returns the resulted string.

By default, items are catenated with spaces, but if the first item contains the string SEPARATOR=<sep>,
the separator <sep> is used instead. Items are converted into strings when necessary.

comment(*messages)
Displays the given messages in the log file as keyword arguments.

This keyword does nothing with the arguments it receives, but as they are visible in the log, this keyword
can be used to display simple messages. Given arguments are ignored so thoroughly that they can even
contain non-existing variables. If you are interested about variable values, you can use the Log or Log
Many keywords.

continue_for_loop()
Skips the current FOR loop iteration and continues from the next.

—

NOTE: Robot Framework 5.0 added support for native CONTINUE statement that is recommended over
this keyword. In the examples below, Continue For Loop can simply be replaced with CONTINUE.
In addition to that, native IF syntax (new in RF 4.0) or inline IF syntax (new in RF 5.0) can be used
instead of Run Keyword If. For example, the first example below could be written like this instead:

This keyword will eventually be deprecated and removed.

—

Skips the remaining keywords in the current FOR loop iteration and continues from the next one. Starting
from Robot Framework 5.0, this keyword can only be used inside a loop, not in a keyword used in a loop.

76 Chapter 3. All packages

https://docs.python.org/library/functions

Robot Framework Documentation, Release 6.0.2

See Continue For Loop If to conditionally continue a FOR loop without using Run Keyword If or other
wrapper keywords.

continue_for_loop_if(condition)
Skips the current FOR loop iteration if the condition is true.

—

NOTE: Robot Framework 5.0 added support for native CONTINUE statement and for inline IF, and that
combination should be used instead of this keyword. For example, Continue For Loop If usage in
the example below could be replaced with

This keyword will eventually be deprecated and removed.

—

A wrapper for Continue For Loop to continue a FOR loop based on the given condition. The condition is
evaluated using the same semantics as with Should Be True keyword.

convert_to_binary(item, base=None, prefix=None, length=None)
Converts the given item to a binary string.

The item, with an optional base, is first converted to an integer using Convert To Integer internally.
After that it is converted to a binary number (base 2) represented as a string such as 1011.

The returned value can contain an optional prefix and can be required to be of minimum length
(excluding the prefix and a possible minus sign). If the value is initially shorter than the required length, it
is padded with zeros.

See also Convert To Integer, Convert To Octal and Convert To Hex.

convert_to_boolean(item)
Converts the given item to Boolean true or false.

Handles strings True and False (case-insensitive) as expected, otherwise returns item’s [http://docs.
python.org/library/stdtypes.html#truth|truth value] using Python’s bool() method.

convert_to_bytes(input, input_type=’text’)
Converts the given input to bytes according to the input_type.

Valid input types are listed below:

• text: Converts text to bytes character by character. All characters with ordinal below 256 can be
used and are converted to bytes with same values. Many characters are easiest to represent using
escapes like \x00 or \xff. Supports both Unicode strings and bytes.

• int: Converts integers separated by spaces to bytes. Similarly as with Convert To Integer, it is
possible to use binary, octal, or hex values by prefixing the values with 0b, 0o, or 0x, respectively.

• hex: Converts hexadecimal values to bytes. Single byte is always two characters long (e.g. 01 or
FF). Spaces are ignored and can be used freely as a visual separator.

• bin: Converts binary values to bytes. Single byte is always eight characters long (e.g. 00001010).
Spaces are ignored and can be used freely as a visual separator.

In addition to giving the input as a string, it is possible to use lists or other iterables containing individual
characters or numbers. In that case numbers do not need to be padded to certain length and they cannot
contain extra spaces.

Use Encode String To Bytes in String library if you need to convert text to bytes using a certain encoding.

convert_to_hex(item, base=None, prefix=None, length=None, lowercase=False)
Converts the given item to a hexadecimal string.

3.1. robot package 77

http://docs.python.org/library/stdtypes
http://docs.python.org/library/stdtypes

Robot Framework Documentation, Release 6.0.2

The item, with an optional base, is first converted to an integer using Convert To Integer internally.
After that it is converted to a hexadecimal number (base 16) represented as a string such as FF0A.

The returned value can contain an optional prefix and can be required to be of minimum length
(excluding the prefix and a possible minus sign). If the value is initially shorter than the required length, it
is padded with zeros.

By default the value is returned as an upper case string, but the lowercase argument a true value (see
Boolean arguments) turns the value (but not the given prefix) to lower case.

See also Convert To Integer, Convert To Binary and Convert To Octal.

convert_to_integer(item, base=None)
Converts the given item to an integer number.

If the given item is a string, it is by default expected to be an integer in base 10. There are two ways to
convert from other bases:

• Give base explicitly to the keyword as base argument.

• Prefix the given string with the base so that 0b means binary (base 2), 0o means octal (base 8), and
0x means hex (base 16). The prefix is considered only when base argument is not given and may
itself be prefixed with a plus or minus sign.

The syntax is case-insensitive and possible spaces are ignored.

See also Convert To Number, Convert To Binary, Convert To Octal, Convert To Hex, and Convert To Bytes.

convert_to_number(item, precision=None)
Converts the given item to a floating point number.

If the optional precision is positive or zero, the returned number is rounded to that number of decimal
digits. Negative precision means that the number is rounded to the closest multiple of 10 to the power of
the absolute precision. If a number is equally close to a certain precision, it is always rounded away from
zero.

Notice that machines generally cannot store floating point numbers accurately. This may cause surprises
with these numbers in general and also when they are rounded. For more information see, for example,
these resources:

• http://docs.python.org/tutorial/floatingpoint.html

• http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition

If you want to avoid possible problems with floating point numbers, you can implement custom key-
words using Python’s [http://docs.python.org/library/decimal.html|decimal] or [http://docs.python.org/
library/fractions.html|fractions] modules.

If you need an integer number, use Convert To Integer instead.

convert_to_octal(item, base=None, prefix=None, length=None)
Converts the given item to an octal string.

The item, with an optional base, is first converted to an integer using Convert To Integer internally.
After that it is converted to an octal number (base 8) represented as a string such as 775.

The returned value can contain an optional prefix and can be required to be of minimum length
(excluding the prefix and a possible minus sign). If the value is initially shorter than the required length, it
is padded with zeros.

See also Convert To Integer, Convert To Binary and Convert To Hex.

convert_to_string(item)
Converts the given item to a Unicode string.

78 Chapter 3. All packages

http://docs.python.org/tutorial/floatingpoint.html
http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition
http://docs.python.org/library/decimal
http://docs.python.org/library/fractions
http://docs.python.org/library/fractions

Robot Framework Documentation, Release 6.0.2

Strings are also [http://www.macchiato.com/unicode/nfc-faq| NFC normalized].

Use Encode String To Bytes and Decode Bytes To String keywords in String library if you need to
convert between Unicode and byte strings using different encodings. Use Convert To Bytes if you just
want to create byte strings.

create_dictionary(*items)
Creates and returns a dictionary based on the given items.

Items are typically given using the key=value syntax same way as &{dictionary} variables are
created in the Variable table. Both keys and values can contain variables, and possible equal sign in key
can be escaped with a backslash like escaped\=key=value. It is also possible to get items from
existing dictionaries by simply using them like &{dict}.

Alternatively items can be specified so that keys and values are given separately. This and the key=value
syntax can even be combined, but separately given items must be first. If same key is used multiple times,
the last value has precedence.

The returned dictionary is ordered, and values with strings as keys can also be accessed using a convenient
dot-access syntax like ${dict.key}. Technically the returned dictionary is Robot Framework’s own
DotDict instance. If there is a need, it can be converted into a regular Python dict instance by using
the Convert To Dictionary keyword from the Collections library.

create_list(*items)
Returns a list containing given items.

The returned list can be assigned both to ${scalar} and @{list} variables.

evaluate(expression, modules=None, namespace=None)
Evaluates the given expression in Python and returns the result.

expression is evaluated in Python as explained in the Evaluating expressions section.

modules argument can be used to specify a comma separated list of Python modules to be imported and
added to the evaluation namespace.

namespace argument can be used to pass a custom evaluation namespace as a dictionary. Possible
modules are added to this namespace.

Variables used like ${variable} are replaced in the expression before evaluation. Variables are also
available in the evaluation namespace and can be accessed using the special $variable syntax as ex-
plained in the Evaluating expressions section.

Starting from Robot Framework 3.2, modules used in the expression are imported automatically. There
are, however, two cases where they need to be explicitly specified using the modules argument:

• When nested modules like rootmod.submod are implemented so that the root module does not au-
tomatically import sub modules. This is illustrated by the selenium.webdriver example below.

• When using a module in the expression part of a list comprehension. This is illustrated by the json
example below.

NOTE: Prior to Robot Framework 3.2 using modules=rootmod.submod was not enough to make the
root module itself available in the evaluation namespace. It needed to be taken into use explicitly like
modules=rootmod, rootmod.submod.

exit_for_loop()
Stops executing the enclosing FOR loop.

—

NOTE: Robot Framework 5.0 added support for native BREAK statement that is recommended over this
keyword. In the examples below, Exit For Loop can simply be replaced with BREAK. In addition to

3.1. robot package 79

http://www.macchiato.com/unicode/nfc

Robot Framework Documentation, Release 6.0.2

that, native IF syntax (new in RF 4.0) or inline IF syntax (new in RF 5.0) can be used instead of Run
Keyword If. For example, the first example below could be written like this instead:

This keyword will eventually be deprecated and removed.

—

Exits the enclosing FOR loop and continues execution after it. Starting from Robot Framework 5.0, this
keyword can only be used inside a loop, not in a keyword used in a loop.

See Exit For Loop If to conditionally exit a FOR loop without using Run Keyword If or other wrapper
keywords.

exit_for_loop_if(condition)
Stops executing the enclosing FOR loop if the condition is true.

—

NOTE: Robot Framework 5.0 added support for native BREAK statement and for inline IF, and that combi-
nation should be used instead of this keyword. For example, Exit For Loop If usage in the example
below could be replaced with

This keyword will eventually be deprecated and removed.

—

A wrapper for Exit For Loop to exit a FOR loop based on the given condition. The condition is evaluated
using the same semantics as with Should Be True keyword.

fail(msg=None, *tags)
Fails the test with the given message and optionally alters its tags.

The error message is specified using the msg argument. It is possible to use HTML in the given error
message, similarly as with any other keyword accepting an error message, by prefixing the error with
HTML.

It is possible to modify tags of the current test case by passing tags after the message. Tags starting
with a hyphen (e.g. -regression) are removed and others added. Tags are modified using Set Tags and
Remove Tags internally, and the semantics setting and removing them are the same as with these keywords.

See Fatal Error if you need to stop the whole test execution.

fatal_error(msg=None)
Stops the whole test execution.

The test or suite where this keyword is used fails with the provided message, and subsequent tests fail with
a canned message. Possible teardowns will nevertheless be executed.

See Fail if you only want to stop one test case unconditionally.

get_count(container, item)
Returns and logs how many times item is found from container.

This keyword works with Python strings and lists and all objects that either have count method or can be
converted to Python lists.

get_length(item)
Returns and logs the length of the given item as an integer.

The item can be anything that has a length, for example, a string, a list, or a mapping. The keyword first
tries to get the length with the Python function len, which calls the item’s __len__ method internally.
If that fails, the keyword tries to call the item’s possible length and size methods directly. The final
attempt is trying to get the value of the item’s length attribute. If all these attempts are unsuccessful, the
keyword fails.

80 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

See also Length Should Be, Should Be Empty and Should Not Be Empty.

get_library_instance(name=None, all=False)
Returns the currently active instance of the specified library.

This keyword makes it easy for libraries to interact with other libraries that have state. This is illustrated
by the Python example below:

It is also possible to use this keyword in the test data and pass the returned library instance to another
keyword. If a library is imported with a custom name, the name used to get the instance must be that
name and not the original library name.

If the optional argument all is given a true value, then a dictionary mapping all library names to instances
will be returned.

get_time(format=’timestamp’, time_=’NOW’)
Returns the given time in the requested format.

NOTE: DateTime library contains much more flexible keywords for getting the current date and time and
for date and time handling in general.

How time is returned is determined based on the given format string as follows. Note that all checks are
case-insensitive.

1) If format contains the word epoch, the time is returned in seconds after the UNIX epoch (1970-
01-01 00:00:00 UTC). The return value is always an integer.

2) If format contains any of the words year, month, day, hour, min, or sec, only the selected
parts are returned. The order of the returned parts is always the one in the previous sentence and the
order of words in format is not significant. The parts are returned as zero-padded strings (e.g. May
-> 05).

3) Otherwise (and by default) the time is returned as a timestamp string in the format 2006-02-24
15:08:31.

By default this keyword returns the current local time, but that can be altered using time argument as
explained below. Note that all checks involving strings are case-insensitive.

1) If time is a number, or a string that can be converted to a number, it is interpreted as seconds since the
UNIX epoch. This documentation was originally written about 1177654467 seconds after the epoch.

2) If time is a timestamp, that time will be used. Valid timestamp formats are YYYY-MM-DD
hh:mm:ss and YYYYMMDD hhmmss.

3) If time is equal to NOW (default), the current local time is used.

4) If time is equal to UTC, the current time in [http://en.wikipedia.org/
wiki/Coordinated_Universal_Time|UTC] is used.

5) If time is in the format like NOW - 1 day or UTC + 1 hour 30 min, the current local/UTC
time plus/minus the time specified with the time string is used. The time string format is described in
an appendix of Robot Framework User Guide.

UTC time is 2006-03-29 12:06:21):

get_variable_value(name, default=None)
Returns variable value or default if the variable does not exist.

3.1. robot package 81

http://en.wikipedia.org/wiki
http://en.wikipedia.org/wiki

Robot Framework Documentation, Release 6.0.2

The name of the variable can be given either as a normal variable name like ${name} or in escaped format
like $name or \${name}. For the reasons explained in the Using variables with keywords creating or
accessing variables section, using the escaped format is recommended.

• ${x} gets value of ${a} if ${a} exists and string default otherwise

• ${y} gets value of ${a} if ${a} exists and value of ${b} otherwise

• ${z} is set to Python None if it does not exist previously

get_variables(no_decoration=False)
Returns a dictionary containing all variables in the current scope.

Variables are returned as a special dictionary that allows accessing variables in space, case, and underscore
insensitive manner similarly as accessing variables in the test data. This dictionary supports all same
operations as normal Python dictionaries and, for example, Collections library can be used to access or
modify it. Modifying the returned dictionary has no effect on the variables available in the current scope.

By default variables are returned with ${}, @{} or &{} decoration based on variable types. Giving a
true value (see Boolean arguments) to the optional argument no_decoration will return the variables
without the decoration.

import_library(name, *args)
Imports a library with the given name and optional arguments.

This functionality allows dynamic importing of libraries while tests are running. That may be necessary,
if the library itself is dynamic and not yet available when test data is processed. In a normal case, libraries
should be imported using the Library setting in the Setting section.

This keyword supports importing libraries both using library names and physical paths. When paths are
used, they must be given in absolute format or found from [http://robotframework.org/robotframework/
latest/RobotFrameworkUserGuide.html#module-search-path| search path]. Forward slashes can be used
as path separators in all operating systems.

It is possible to pass arguments to the imported library and also named argument syntax works if the library
supports it. WITH NAME syntax can be used to give a custom name to the imported library.

import_resource(path)
Imports a resource file with the given path.

Resources imported with this keyword are set into the test suite scope similarly when importing them in
the Setting table using the Resource setting.

The given path must be absolute or found from [http://robotframework.org/robotframework/latest/
RobotFrameworkUserGuide.html#module-search-path|search path]. Forward slashes can be used as path
separator regardless the operating system.

import_variables(path, *args)
Imports a variable file with the given path and optional arguments.

Variables imported with this keyword are set into the test suite scope similarly when importing them in
the Setting table using the Variables setting. These variables override possible existing variables with the
same names. This functionality can thus be used to import new variables, for example, for each test in a
test suite.

The given path must be absolute or found from [http://robotframework.org/robotframework/latest/
RobotFrameworkUserGuide.html##module-search-path|search path]. Forward slashes can be used as path
separator regardless the operating system.

keyword_should_exist(name, msg=None)
Fails unless the given keyword exists in the current scope.

82 Chapter 3. All packages

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#module-search
http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#module-search
http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#module-search
http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#module-search
http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide
http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide

Robot Framework Documentation, Release 6.0.2

Fails also if there is more than one keyword with the same name. Works both with the short name (e.g.
Log) and the full name (e.g. BuiltIn.Log).

The default error message can be overridden with the msg argument.

See also Variable Should Exist.

length_should_be(item, length, msg=None)
Verifies that the length of the given item is correct.

The length of the item is got using the Get Length keyword. The default error message can be overridden
with the msg argument.

log(message, level=’INFO’, html=False, console=False, repr=’DEPRECATED’, formatter=’str’)
Logs the given message with the given level.

Valid levels are TRACE, DEBUG, INFO (default), HTML, WARN, and ERROR. Messages below the
current active log level are ignored. See Set Log Level keyword and --loglevel command line option
for more details about setting the level.

Messages logged with the WARN or ERROR levels will be automatically visible also in the console and
in the Test Execution Errors section in the log file.

If the html argument is given a true value (see Boolean arguments), the message will be considered
HTML and special characters such as < are not escaped. For example, logging <img src="image.
png"> creates an image when html is true, but otherwise the message is that exact string. An alternative
to using the html argument is using the HTML pseudo log level. It logs the message as HTML using the
INFO level.

If the console argument is true, the message will be written to the console where test execution was
started from in addition to the log file. This keyword always uses the standard output stream and adds a
newline after the written message. Use Log To Console instead if either of these is undesirable,

The formatter argument controls how to format the string representation of the message. Possible
values are str (default), repr, ascii, len, and type. They work similarly to Python built-in functions
with same names. When using repr, bigger lists, dictionaries and other containers are also pretty-printed
so that there is one item per row. For more details see String representations.

The old way to control string representation was using the repr argument. This argument has been
deprecated and formatter=repr should be used instead.

See Log Many if you want to log multiple messages in one go, and Log To Console if you only want to
write to the console.

Formatter options type and log are new in Robot Framework 5.0.

log_many(*messages)
Logs the given messages as separate entries using the INFO level.

Supports also logging list and dictionary variable items individually.

See Log and Log To Console keywords if you want to use alternative log levels, use HTML, or log to the
console.

log_to_console(message, stream=’STDOUT’, no_newline=False, format=”)
Logs the given message to the console.

By default uses the standard output stream. Using the standard error stream is possible by giving the
stream argument value STDERR (case-insensitive).

By default appends a newline to the logged message. This can be disabled by giving the no_newline
argument a true value (see Boolean arguments).

3.1. robot package 83

Robot Framework Documentation, Release 6.0.2

By default adds no alignment formatting. The format argument allows, for example, align-
ment and customized padding of the log message. Please see the [https://docs.python.org/3/library/
string.html#formatspec|format specification] for detailed alignment possibilities. This argument is new
in Robot Framework 5.0.

This keyword does not log the message to the normal log file. Use Log keyword, possibly with argument
console, if that is desired.

log_variables(level=’INFO’)
Logs all variables in the current scope with given log level.

no_operation()
Does absolutely nothing.

pass_execution(message, *tags)
Skips rest of the current test, setup, or teardown with PASS status.

This keyword can be used anywhere in the test data, but the place where used affects the behavior:

• When used in any setup or teardown (suite, test or keyword), passes that setup or teardown. Possi-
ble keyword teardowns of the started keywords are executed. Does not affect execution or statuses
otherwise.

• When used in a test outside setup or teardown, passes that particular test case. Possible test and
keyword teardowns are executed.

Possible continuable failures before this keyword is used, as well as failures in executed teardowns, will
fail the execution.

It is mandatory to give a message explaining why execution was passed. By default the message is consid-
ered plain text, but starting it with *HTML* allows using HTML formatting.

It is also possible to modify test tags passing tags after the message similarly as with Fail keyword. Tags
starting with a hyphen (e.g. -regression) are removed and others added. Tags are modified using Set
Tags and Remove Tags internally, and the semantics setting and removing them are the same as with these
keywords.

This keyword is typically wrapped to some other keyword, such as Run Keyword If, to pass based on a
condition. The most common case can be handled also with Pass Execution If :

Passing execution in the middle of a test, setup or teardown should be used with care. In the worst case it
leads to tests that skip all the parts that could actually uncover problems in the tested application. In cases
where execution cannot continue do to external factors, it is often safer to fail the test case and make it
non-critical.

pass_execution_if(condition, message, *tags)
Conditionally skips rest of the current test, setup, or teardown with PASS status.

A wrapper for Pass Execution to skip rest of the current test, setup or teardown based the given
condition. The condition is evaluated similarly as with Should Be True keyword, and message and
*tags have same semantics as with Pass Execution.

regexp_escape(*patterns)
Returns each argument string escaped for use as a regular expression.

This keyword can be used to escape strings to be used with Should Match Regexp and Should Not Match
Regexp keywords.

Escaping is done with Python’s re.escape() function.

reload_library(name_or_instance)
Rechecks what keywords the specified library provides.

84 Chapter 3. All packages

https://docs.python.org/3/library/string
https://docs.python.org/3/library/string

Robot Framework Documentation, Release 6.0.2

Can be called explicitly in the test data or by a library itself when keywords it provides have changed.

The library can be specified by its name or as the active instance of the library. The latter is especially
useful if the library itself calls this keyword as a method.

remove_tags(*tags)
Removes given tags from the current test or all tests in a suite.

Tags can be given exactly or using a pattern with *, ? and [chars] acting as wildcards. See the Glob
patterns section for more information.

This keyword can affect either one test case or all test cases in a test suite similarly as Set Tags keyword.

The current tags are available as a built-in variable @{TEST TAGS}.

See Set Tags if you want to add certain tags and Fail if you want to fail the test case after setting and/or
removing tags.

repeat_keyword(repeat, name, *args)
Executes the specified keyword multiple times.

name and args define the keyword that is executed similarly as with Run Keyword. repeat specifies
how many times (as a count) or how long time (as a timeout) the keyword should be executed.

If repeat is given as count, it specifies how many times the keyword should be executed. repeat can
be given as an integer or as a string that can be converted to an integer. If it is a string, it can have postfix
times or x (case and space insensitive) to make the expression more explicit.

If repeat is given as timeout, it must be in Robot Framework’s time format (e.g. 1 minute, 2 min
3 s). Using a number alone (e.g. 1 or 1.5) does not work in this context.

If repeat is zero or negative, the keyword is not executed at all. This keyword fails immediately if any
of the execution rounds fails.

replace_variables(text)
Replaces variables in the given text with their current values.

If the text contains undefined variables, this keyword fails. If the given text contains only a single
variable, its value is returned as-is and it can be any object. Otherwise this keyword always returns a
string.

The file template.txt contains Hello ${NAME}! and variable ${NAME} has the value Robot.

return_from_keyword(*return_values)
Returns from the enclosing user keyword.

—

NOTE: Robot Framework 5.0 added support for native RETURN statement that is recommended over this
keyword. In the examples below, Return From Keyword can simply be replaced with RETURN. In
addition to that, native IF syntax (new in RF 4.0) or inline IF syntax (new in RF 5.0) can be used instead
of Run Keyword If. For example, the first example below could be written like this instead:

This keyword will eventually be deprecated and removed.

—

This keyword can be used to return from a user keyword with PASS status without executing it fully. It
is also possible to return values similarly as with the [Return] setting. For more detailed information
about working with the return values, see the User Guide.

This keyword is typically wrapped to some other keyword, such as Run Keyword If, to return based on a
condition:

3.1. robot package 85

Robot Framework Documentation, Release 6.0.2

It is possible to use this keyword to return from a keyword also inside a for loop. That, as well as returning
values, is demonstrated by the Find Index keyword in the following somewhat advanced example. Notice
that it is often a good idea to move this kind of complicated logic into a library.

The most common use case, returning based on an expression, can be accomplished directly with Return
From Keyword If. See also Run Keyword And Return and Run Keyword And Return If.

return_from_keyword_if(condition, *return_values)
Returns from the enclosing user keyword if condition is true.

—

NOTE: Robot Framework 5.0 added support for native RETURN statement and for inline IF, and that
combination should be used instead of this keyword. For example, Return From Keyword usage in
the example below could be replaced with

This keyword will eventually be deprecated and removed.

—

A wrapper for Return From Keyword to return based on the given condition. The condition is evaluated
using the same semantics as with Should Be True keyword.

Given the same example as in Return From Keyword, we can rewrite the Find Index keyword as follows:

See also Run Keyword And Return and Run Keyword And Return If.

run_keyword(name, *args)
Executes the given keyword with the given arguments.

Because the name of the keyword to execute is given as an argument, it can be a variable and thus set
dynamically, e.g. from a return value of another keyword or from the command line.

run_keyword_and_continue_on_failure(name, *args)
Runs the keyword and continues execution even if a failure occurs.

The keyword name and arguments work as with Run Keyword.

The execution is not continued if the failure is caused by invalid syntax, timeout, or fatal exception.

run_keyword_and_expect_error(expected_error, name, *args)
Runs the keyword and checks that the expected error occurred.

The keyword to execute and its arguments are specified using name and *args exactly like with Run
Keyword.

The expected error must be given in the same format as in Robot Framework reports. By default it is
interpreted as a glob pattern with *, ? and [chars] as wildcards, but that can be changed by using
various prefixes explained in the table below. Prefixes are case-sensitive and they must be separated from
the actual message with a colon and an optional space like PREFIX: Message or PREFIX:Message.

See the Pattern matching section for more information about glob patterns and regular expressions.

If the expected error occurs, the error message is returned and it can be further processed or tested if
needed. If there is no error, or the error does not match the expected error, this keyword fails.

Errors caused by invalid syntax, timeouts, or fatal exceptions are not caught by this keyword.

86 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

NOTE: Regular expression matching used to require only the beginning of the error to match the given
pattern. That was changed in Robot Framework 5.0 and nowadays the pattern must match the error fully.
To match only the beginning, add .* at the end of the pattern like REGEXP: Start.*.

NOTE: Robot Framework 5.0 introduced native TRY/EXCEPT functionality that is generally recom-
mended for error handling. It supports same pattern matching syntax as this keyword.

run_keyword_and_ignore_error(name, *args)
Runs the given keyword with the given arguments and ignores possible error.

This keyword returns two values, so that the first is either string PASS or FAIL, depending on the status
of the executed keyword. The second value is either the return value of the keyword or the received error
message. See Run Keyword And Return Status If you are only interested in the execution status.

The keyword name and arguments work as in Run Keyword. See Run Keyword If for a usage example.

Errors caused by invalid syntax, timeouts, or fatal exceptions are not caught by this keyword. Otherwise
this keyword itself never fails.

NOTE: Robot Framework 5.0 introduced native TRY/EXCEPT functionality that is generally recom-
mended for error handling.

run_keyword_and_return(name, *args)
Runs the specified keyword and returns from the enclosing user keyword.

The keyword to execute is defined with name and *args exactly like with Run Keyword. After running
the keyword, returns from the enclosing user keyword and passes possible return value from the executed
keyword further. Returning from a keyword has exactly same semantics as with Return From Keyword.

Use Run Keyword And Return If if you want to run keyword and return based on a condition.

run_keyword_and_return_if(condition, name, *args)
Runs the specified keyword and returns from the enclosing user keyword.

A wrapper for Run Keyword And Return to run and return based on the given condition. The condition
is evaluated using the same semantics as with Should Be True keyword.

Use Return From Keyword If if you want to return a certain value based on a condition.

run_keyword_and_return_status(name, *args)
Runs the given keyword with given arguments and returns the status as a Boolean value.

This keyword returns Boolean True if the keyword that is executed succeeds and False if it fails. This
is useful, for example, in combination with Run Keyword If. If you are interested in the error message or
return value, use Run Keyword And Ignore Error instead.

The keyword name and arguments work as in Run Keyword.

Errors caused by invalid syntax, timeouts, or fatal exceptions are not caught by this keyword. Otherwise
this keyword itself never fails.

run_keyword_and_warn_on_failure(name, *args)
Runs the specified keyword logs a warning if the keyword fails.

This keyword is similar to Run Keyword And Ignore Error but if the executed keyword fails, the error
message is logged as a warning to make it more visible. Returns status and possible return value or error
message exactly like Run Keyword And Ignore Error does.

Errors caused by invalid syntax, timeouts, or fatal exceptions are not caught by this keyword. Otherwise
this keyword itself never fails.

New in Robot Framework 4.0.

3.1. robot package 87

Robot Framework Documentation, Release 6.0.2

run_keyword_if(condition, name, *args)
Runs the given keyword with the given arguments, if condition is true.

NOTE: Robot Framework 4.0 introduced built-in IF/ELSE support and using that is generally recom-
mended over using this keyword.

The given condition is evaluated in Python as explained in the Evaluating expressions section, and
name and *args have same semantics as with Run Keyword.

In this example, only either Some Action or Another Action is executed, based on the value of the
${status} variable.

Variables used like ${variable}, as in the examples above, are replaced in the expression before
evaluation. Variables are also available in the evaluation namespace and can be accessed using special
$variable syntax as explained in the Evaluating expressions section.

This keyword supports also optional ELSE and ELSE IF branches. Both of them are defined in *args and
must use exactly format ELSE or ELSE IF, respectively. ELSE branches must contain first the name of
the keyword to execute and then its possible arguments. ELSE IF branches must first contain a condition,
like the first argument to this keyword, and then the keyword to execute and its possible arguments. It is
possible to have ELSE branch after ELSE IF and to have multiple ELSE IF branches. Nested Run Keyword
If usage is not supported when using ELSE and/or ELSE IF branches.

Given previous example, if/else construct can also be created like this:

The return value of this keyword is the return value of the actually executed keyword or Python None if
no keyword was executed (i.e. if condition was false). Hence, it is recommended to use ELSE and/or
ELSE IF branches to conditionally assign return values from keyword to variables (see Set Variable If you
need to set fixed values conditionally). This is illustrated by the example below:

In this example, ${var2} will be set to None if ${condition} is false.

Notice that ELSE and ELSE IF control words must be used explicitly and thus cannot come from vari-
ables. If you need to use literal ELSE and ELSE IF strings as arguments, you can escape them with a
backslash like \ELSE and \ELSE IF.

run_keyword_if_all_tests_passed(name, *args)
Runs the given keyword with the given arguments, if all tests passed.

This keyword can only be used in a suite teardown. Trying to use it anywhere else results in an error.

Otherwise, this keyword works exactly like Run Keyword, see its documentation for more details.

run_keyword_if_any_tests_failed(name, *args)
Runs the given keyword with the given arguments, if one or more tests failed.

This keyword can only be used in a suite teardown. Trying to use it anywhere else results in an error.

Otherwise, this keyword works exactly like Run Keyword, see its documentation for more details.

run_keyword_if_test_failed(name, *args)
Runs the given keyword with the given arguments, if the test failed.

This keyword can only be used in a test teardown. Trying to use it anywhere else results in an error.

Otherwise, this keyword works exactly like Run Keyword, see its documentation for more details.

run_keyword_if_test_passed(name, *args)
Runs the given keyword with the given arguments, if the test passed.

This keyword can only be used in a test teardown. Trying to use it anywhere else results in an error.

Otherwise, this keyword works exactly like Run Keyword, see its documentation for more details.

88 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

run_keyword_if_timeout_occurred(name, *args)
Runs the given keyword if either a test or a keyword timeout has occurred.

This keyword can only be used in a test teardown. Trying to use it anywhere else results in an error.

Otherwise, this keyword works exactly like Run Keyword, see its documentation for more details.

run_keyword_unless(condition, name, *args)
DEPRECATED since RF 5.0. Use Native IF/ELSE or ‘Run Keyword If‘ instead.

Runs the given keyword with the given arguments if condition is false.

See Run Keyword If for more information and an example. Notice that this keyword does not support
ELSE or ELSE IF branches like Run Keyword If does.

run_keywords(*keywords)
Executes all the given keywords in a sequence.

This keyword is mainly useful in setups and teardowns when they need to take care of multiple actions and
creating a new higher level user keyword would be an overkill.

By default all arguments are expected to be keywords to be executed.

Keywords can also be run with arguments using upper case AND as a separator between keywords. The
keywords are executed so that the first argument is the first keyword and proceeding arguments until the
first AND are arguments to it. First argument after the first AND is the second keyword and proceeding
arguments until the next AND are its arguments. And so on.

Notice that the AND control argument must be used explicitly and cannot itself come from a variable. If
you need to use literal AND string as argument, you can either use variables or escape it with a backslash
like \AND.

set_global_variable(name, *values)
Makes a variable available globally in all tests and suites.

Variables set with this keyword are globally available in all subsequent test suites, test cases and user
keywords. Also variables created Variables sections are overridden. Variables assigned locally based on
keyword return values or by using Set Suite Variable, Set Test Variable or Set Local Variable override these
variables in that scope, but the global value is not changed in those cases.

In practice setting variables with this keyword has the same effect as using command line options
--variable and --variablefile. Because this keyword can change variables everywhere, it
should be used with care.

See Set Suite Variable for more information and usage examples. See also the Using variables with key-
words creating or accessing variables section for information why it is recommended to give the variable
name in escaped format like $name or \${name} instead of the normal ${name}.

set_library_search_order(*search_order)
Sets the resolution order to use when a name matches multiple keywords.

The library search order is used to resolve conflicts when a keyword name that is used matches multiple
keyword implementations. The first library (or resource, see below) containing the keyword is selected and
that keyword implementation used. If the keyword is not found from any library (or resource), execution
fails the same way as when the search order is not set.

When this keyword is used, there is no need to use the long LibraryName.Keyword Name notation.
For example, instead of having

you can have

This keyword can be used also to set the order of keywords in different resource files. In this case resource
names must be given without paths or extensions like:

3.1. robot package 89

Robot Framework Documentation, Release 6.0.2

NOTE: - The search order is valid only in the suite where this keyword is used. - Keywords in resources
always have higher priority than

keywords in libraries regardless the search order.

• The old order is returned and can be used to reset the search order later.

• Calling this keyword without arguments removes possible search order.

• Library and resource names in the search order are both case and space insensitive.

set_local_variable(name, *values)
Makes a variable available everywhere within the local scope.

Variables set with this keyword are available within the local scope of the currently executed test case or
in the local scope of the keyword in which they are defined. For example, if you set a variable in a user
keyword, it is available only in that keyword. Other test cases or keywords will not see variables set with
this keyword.

This keyword is equivalent to a normal variable assignment based on a keyword return value. For example,

are equivalent with

The main use case for this keyword is creating local variables in libraries.

See Set Suite Variable for more information and usage examples. See also the Using variables with key-
words creating or accessing variables section for information why it is recommended to give the variable
name in escaped format like $name or \${name} instead of the normal ${name}.

See also Set Global Variable and Set Test Variable.

set_log_level(level)
Sets the log threshold to the specified level and returns the old level.

Messages below the level will not logged. The default logging level is INFO, but it can be overridden with
the command line option --loglevel.

The available levels: TRACE, DEBUG, INFO (default), WARN, ERROR and NONE (no logging).

set_suite_documentation(doc, append=False, top=False)
Sets documentation for the current test suite.

By default the possible existing documentation is overwritten, but this can be changed using the optional
append argument similarly as with Set Test Message keyword.

This keyword sets the documentation of the current suite by default. If the optional top argument is given
a true value (see Boolean arguments), the documentation of the top level suite is altered instead.

The documentation of the current suite is available as a built-in variable ${SUITE DOCUMENTATION}.

set_suite_metadata(name, value, append=False, top=False)
Sets metadata for the current test suite.

By default possible existing metadata values are overwritten, but this can be changed using the optional
append argument similarly as with Set Test Message keyword.

This keyword sets the metadata of the current suite by default. If the optional top argument is given a true
value (see Boolean arguments), the metadata of the top level suite is altered instead.

The metadata of the current suite is available as a built-in variable ${SUITE METADATA} in a Python
dictionary. Notice that modifying this variable directly has no effect on the actual metadata the suite has.

90 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

set_suite_variable(name, *values)
Makes a variable available everywhere within the scope of the current suite.

Variables set with this keyword are available everywhere within the scope of the currently executed test
suite. Setting variables with this keyword thus has the same effect as creating them using the Variables
section in the data file or importing them from variable files.

Possible child test suites do not see variables set with this keyword by default, but that can be controlled
by using children=<option> as the last argument. If the specified <option> is given a true value
(see Boolean arguments), the variable is set also to the child suites. Parent and sibling suites will never see
variables set with this keyword.

The name of the variable can be given either as a normal variable name like ${NAME} or in escaped
format as \${NAME} or $NAME. For the reasons explained in the Using variables with keywords creating
or accessing variables section, using the escaped format is highly recommended.

Variable value can be specified using the same syntax as when variables are created in the Variables section.
Same way as in that section, it is possible to create scalar values, lists and dictionaries. The type is got
from the variable name prefix $, @ and &, respectively.

If a variable already exists within the new scope, its value will be overwritten. If a variable already exists
within the current scope, the value can be left empty and the variable within the new scope gets the value
within the current scope.

To override an existing value with an empty value, use built-in variables ${EMPTY}, @{EMPTY} or
&{EMPTY}:

See also Set Global Variable, Set Test Variable and Set Local Variable.

set_tags(*tags)
Adds given tags for the current test or all tests in a suite.

When this keyword is used inside a test case, that test gets the specified tags and other tests are not affected.

If this keyword is used in a suite setup, all test cases in that suite, recursively, gets the given tags. It is a
failure to use this keyword in a suite teardown.

The current tags are available as a built-in variable @{TEST TAGS}.

See Remove Tags if you want to remove certain tags and Fail if you want to fail the test case after setting
and/or removing tags.

set_task_variable(name, *values)
Makes a variable available everywhere within the scope of the current task.

This is an alias for Set Test Variable that is more applicable when creating tasks, not tests.

set_test_documentation(doc, append=False)
Sets documentation for the current test case.

By default the possible existing documentation is overwritten, but this can be changed using the optional
append argument similarly as with Set Test Message keyword.

The current test documentation is available as a built-in variable ${TEST DOCUMENTATION}. This
keyword can not be used in suite setup or suite teardown.

set_test_message(message, append=False)
Sets message for the current test case.

If the optional append argument is given a true value (see Boolean arguments), the given message is
added after the possible earlier message by joining the messages with a space.

3.1. robot package 91

Robot Framework Documentation, Release 6.0.2

In test teardown this keyword can alter the possible failure message, but otherwise failures override mes-
sages set by this keyword. Notice that in teardown the message is available as a built-in variable ${TEST
MESSAGE}.

It is possible to use HTML format in the message by starting the message with *HTML*.

This keyword can not be used in suite setup or suite teardown.

set_test_variable(name, *values)
Makes a variable available everywhere within the scope of the current test.

Variables set with this keyword are available everywhere within the scope of the currently executed test
case. For example, if you set a variable in a user keyword, it is available both in the test case level and
also in all other user keywords used in the current test. Other test cases will not see variables set with
this keyword. It is an error to call Set Test Variable outside the scope of a test (e.g. in a Suite Setup or
Teardown).

See Set Suite Variable for more information and usage examples. See also the Using variables with key-
words creating or accessing variables section for information why it is recommended to give the variable
name in escaped format like $name or \${name} instead of the normal ${name}.

When creating automated tasks, not tests, it is possible to use Set Task Variable. See also Set Global
Variable and Set Local Variable.

set_variable(*values)
Returns the given values which can then be assigned to a variables.

This keyword is mainly used for setting scalar variables. Additionally it can be used for converting a scalar
variable containing a list to a list variable or to multiple scalar variables. It is recommended to use Create
List when creating new lists.

Variables created with this keyword are available only in the scope where they are created. See Set Global
Variable, Set Test Variable and Set Suite Variable for information on how to set variables so that they are
available also in a larger scope.

set_variable_if(condition, *values)
Sets variable based on the given condition.

The basic usage is giving a condition and two values. The given condition is first evaluated the same way
as with the Should Be True keyword. If the condition is true, then the first value is returned, and otherwise
the second value is returned. The second value can also be omitted, in which case it has a default value
None. This usage is illustrated in the examples below, where ${rc} is assumed to be zero.

It is also possible to have ‘else if’ support by replacing the second value with another condition, and having
two new values after it. If the first condition is not true, the second is evaluated and one of the values after
it is returned based on its truth value. This can be continued by adding more conditions without a limit.

Use Get Variable Value if you need to set variables dynamically based on whether a variable exist or not.

should_be_empty(item, msg=None)
Verifies that the given item is empty.

The length of the item is got using the Get Length keyword. The default error message can be overridden
with the msg argument.

should_be_equal(first, second, msg=None, values=True, ignore_case=False, formatter=’str’,
strip_spaces=False, collapse_spaces=False)

Fails if the given objects are unequal.

Optional msg, values and formatter arguments specify how to construct the error message if this
keyword fails:

• If msg is not given, the error message is <first> != <second>.

92 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

• If msg is given and values gets a true value (default), the error message is <msg>: <first>
!= <second>.

• If msg is given and values gets a false value (see Boolean arguments), the error message is simply
<msg>.

• formatter controls how to format the values. Possible values are str (default), repr and ascii,
and they work similarly as Python built-in functions with same names. See String representations for
more details.

If ignore_case is given a true value (see Boolean arguments) and both arguments are strings, compar-
ison is done case-insensitively. If both arguments are multiline strings, this keyword uses multiline string
comparison.

If strip_spaces is given a true value (see Boolean arguments) and both arguments are strings, the com-
parison is done without leading and trailing spaces. If strip_spaces is given a string value LEADING
or TRAILING (case-insensitive), the comparison is done without leading or trailing spaces, respectively.

If collapse_spaces is given a true value (see Boolean arguments) and both arguments are strings, the
comparison is done with all white spaces replaced by a single space character.

strip_spaces is new in Robot Framework 4.0 and collapse_spaces is new in Robot Framework
4.1.

should_be_equal_as_integers(first, second, msg=None, values=True, base=None)
Fails if objects are unequal after converting them to integers.

See Convert To Integer for information how to convert integers from other bases than 10 using base
argument or 0b/0o/0x prefixes.

See Should Be Equal for an explanation on how to override the default error message with msg and
values.

should_be_equal_as_numbers(first, second, msg=None, values=True, precision=6)
Fails if objects are unequal after converting them to real numbers.

The conversion is done with Convert To Number keyword using the given precision.

As discussed in the documentation of Convert To Number, machines generally cannot store floating point
numbers accurately. Because of this limitation, comparing floats for equality is problematic and a cor-
rect approach to use depends on the context. This keyword uses a very naive approach of rounding the
numbers before comparing them, which is both prone to rounding errors and does not work very well if
numbers are really big or small. For more information about comparing floats, and ideas on how to imple-
ment your own context specific comparison algorithm, see http://randomascii.wordpress.com/2012/02/25/
comparing-floating-point-numbers-2012-edition/.

If you want to avoid possible problems with floating point numbers, you can implement custom key-
words using Python’s [http://docs.python.org/library/decimal.html|decimal] or [http://docs.python.org/
library/fractions.html|fractions] modules.

See Should Not Be Equal As Numbers for a negative version of this keyword and Should Be Equal for an
explanation on how to override the default error message with msg and values.

should_be_equal_as_strings(first, second, msg=None, values=True, ignore_case=False,
strip_spaces=False, formatter=’str’, collapse_spaces=False)

Fails if objects are unequal after converting them to strings.

See Should Be Equal for an explanation on how to override the default error message with msg, values
and formatter.

If ignore_case is given a true value (see Boolean arguments), comparison is done case-insensitively.
If both arguments are multiline strings, this keyword uses multiline string comparison.

3.1. robot package 93

http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
http://docs.python.org/library/decimal
http://docs.python.org/library/fractions
http://docs.python.org/library/fractions

Robot Framework Documentation, Release 6.0.2

If strip_spaces is given a true value (see Boolean arguments) and both arguments are strings, the com-
parison is done without leading and trailing spaces. If strip_spaces is given a string value LEADING
or TRAILING (case-insensitive), the comparison is done without leading or trailing spaces, respectively.

If collapse_spaces is given a true value (see Boolean arguments) and both arguments are strings, the
comparison is done with all white spaces replaced by a single space character.

Strings are always [http://www.macchiato.com/unicode/nfc-faq| NFC normalized].

strip_spaces is new in Robot Framework 4.0 and collapse_spaces is new in Robot Framework
4.1.

should_be_true(condition, msg=None)
Fails if the given condition is not true.

If condition is a string (e.g. ${rc} < 10), it is evaluated as a Python expression as explained in
Evaluating expressions and the keyword status is decided based on the result. If a non-string item is given,
the status is got directly from its [http://docs.python.org/library/stdtypes.html#truth|truth value].

The default error message (<condition> should be true) is not very informative, but it can be
overridden with the msg argument.

Variables used like ${variable}, as in the examples above, are replaced in the expression before
evaluation. Variables are also available in the evaluation namespace, and can be accessed using special
$variable syntax as explained in the Evaluating expressions section.

should_contain(container, item, msg=None, values=True, ignore_case=False, strip_spaces=False,
collapse_spaces=False)

Fails if container does not contain item one or more times.

Works with strings, lists, and anything that supports Python’s in operator.

See Should Be Equal for an explanation on how to override the default error message with arguments msg
and values.

If ignore_case is given a true value (see Boolean arguments) and compared items are strings, it indi-
cates that comparison should be case-insensitive. If the container is a list-like object, string items in it
are compared case-insensitively.

If strip_spaces is given a true value (see Boolean arguments) and both arguments are strings, the com-
parison is done without leading and trailing spaces. If strip_spaces is given a string value LEADING
or TRAILING (case-insensitive), the comparison is done without leading or trailing spaces, respectively.

If collapse_spaces is given a true value (see Boolean arguments) and both arguments are strings, the
comparison is done with all white spaces replaced by a single space character.

strip_spaces is new in Robot Framework 4.0 and collapse_spaces is new in Robot Framework
4.1.

should_contain_any(container, *items, **configuration)
Fails if container does not contain any of the *items.

Works with strings, lists, and anything that supports Python’s in operator.

Supports additional configuration parameters msg, values, ignore_case and strip_spaces, and
collapse_spaces which have exactly the same semantics as arguments with same names have with
Should Contain. These arguments must always be given using name=value syntax after all items.

Note that possible equal signs in items must be escaped with a backslash (e.g. foo\=bar) to avoid
them to be passed in as **configuration.

should_contain_x_times(container, item, count, msg=None, ignore_case=False,
strip_spaces=False, collapse_spaces=False)

Fails if container does not contain item count times.

94 Chapter 3. All packages

http://www.macchiato.com/unicode/nfc
http://docs.python.org/library/stdtypes

Robot Framework Documentation, Release 6.0.2

Works with strings, lists and all objects that Get Count works with. The default error message can be
overridden with msg and the actual count is always logged.

If ignore_case is given a true value (see Boolean arguments) and compared items are strings, it indi-
cates that comparison should be case-insensitive. If the container is a list-like object, string items in it
are compared case-insensitively.

If strip_spaces is given a true value (see Boolean arguments) and both arguments are strings, the com-
parison is done without leading and trailing spaces. If strip_spaces is given a string value LEADING
or TRAILING (case-insensitive), the comparison is done without leading or trailing spaces, respectively.

If collapse_spaces is given a true value (see Boolean arguments) and both arguments are strings, the
comparison is done with all white spaces replaced by a single space character.

strip_spaces is new in Robot Framework 4.0 and collapse_spaces is new in Robot Framework
4.1.

should_end_with(str1, str2, msg=None, values=True, ignore_case=False, strip_spaces=False, col-
lapse_spaces=False)

Fails if the string str1 does not end with the string str2.

See Should Be Equal for an explanation on how to override the default error message with msg and
values, as well as for semantics of the ignore_case, strip_spaces, and collapse_spaces
options.

should_match(string, pattern, msg=None, values=True, ignore_case=False)
Fails if the given string does not match the given pattern.

Pattern matching is similar as matching files in a shell with *, ? and [chars] acting as wildcards. See
the Glob patterns section for more information.

If ignore_case is given a true value (see Boolean arguments) and compared items are strings, it indi-
cates that comparison should be case-insensitive.

See Should Be Equal for an explanation on how to override the default error message with msg and
values.

should_match_regexp(string, pattern, msg=None, values=True, flags=None)
Fails if string does not match pattern as a regular expression.

See the Regular expressions section for more information about regular expressions and how to use then
in Robot Framework test data.

Notice that the given pattern does not need to match the whole string. For example, the pattern ello
matches the string Hello world!. If a full match is needed, the ^ and $ characters can be used to
denote the beginning and end of the string, respectively. For example, ^ello$ only matches the exact
string ello.

Possible flags altering how the expression is parsed (e.g. re.IGNORECASE, re.MULTILINE) can be
given using the flags argument (e.g. flags=IGNORECASE | MULTILINE) or embedded to the
pattern (e.g. (?im)pattern).

If this keyword passes, it returns the portion of the string that matched the pattern. Additionally, the
possible captured groups are returned.

See the Should Be Equal keyword for an explanation on how to override the default error message with the
msg and values arguments.

The flags argument is new in Robot Framework 6.0.

should_not_be_empty(item, msg=None)
Verifies that the given item is not empty.

3.1. robot package 95

Robot Framework Documentation, Release 6.0.2

The length of the item is got using the Get Length keyword. The default error message can be overridden
with the msg argument.

should_not_be_equal(first, second, msg=None, values=True, ignore_case=False,
strip_spaces=False, collapse_spaces=False)

Fails if the given objects are equal.

See Should Be Equal for an explanation on how to override the default error message with msg and
values.

If ignore_case is given a true value (see Boolean arguments) and both arguments are strings, compar-
ison is done case-insensitively.

If strip_spaces is given a true value (see Boolean arguments) and both arguments are strings, the com-
parison is done without leading and trailing spaces. If strip_spaces is given a string value LEADING
or TRAILING (case-insensitive), the comparison is done without leading or trailing spaces, respectively.

If collapse_spaces is given a true value (see Boolean arguments) and both arguments are strings, the
comparison is done with all white spaces replaced by a single space character.

strip_spaces is new in Robot Framework 4.0 and collapse_spaces is new in Robot Framework
4.1.

should_not_be_equal_as_integers(first, second, msg=None, values=True, base=None)
Fails if objects are equal after converting them to integers.

See Convert To Integer for information how to convert integers from other bases than 10 using base
argument or 0b/0o/0x prefixes.

See Should Be Equal for an explanation on how to override the default error message with msg and
values.

See Should Be Equal As Integers for some usage examples.

should_not_be_equal_as_numbers(first, second, msg=None, values=True, precision=6)
Fails if objects are equal after converting them to real numbers.

The conversion is done with Convert To Number keyword using the given precision.

See Should Be Equal As Numbers for examples on how to use precision and why it does not always
work as expected. See also Should Be Equal for an explanation on how to override the default error
message with msg and values.

should_not_be_equal_as_strings(first, second, msg=None, values=True, ignore_case=False,
strip_spaces=False, collapse_spaces=False)

Fails if objects are equal after converting them to strings.

See Should Be Equal for an explanation on how to override the default error message with msg and
values.

If ignore_case is given a true value (see Boolean arguments), comparison is done case-insensitively.

If strip_spaces is given a true value (see Boolean arguments) and both arguments are strings, the com-
parison is done without leading and trailing spaces. If strip_spaces is given a string value LEADING
or TRAILING (case-insensitive), the comparison is done without leading or trailing spaces, respectively.

If collapse_spaces is given a true value (see Boolean arguments) and both arguments are strings, the
comparison is done with all white spaces replaced by a single space character.

Strings are always [http://www.macchiato.com/unicode/nfc-faq| NFC normalized].

strip_spaces is new in Robot Framework 4.0 and collapse_spaces is new in Robot Framework
4.1.

96 Chapter 3. All packages

http://www.macchiato.com/unicode/nfc

Robot Framework Documentation, Release 6.0.2

should_not_be_true(condition, msg=None)
Fails if the given condition is true.

See Should Be True for details about how condition is evaluated and how msg can be used to override
the default error message.

should_not_contain(container, item, msg=None, values=True, ignore_case=False,
strip_spaces=False, collapse_spaces=False)

Fails if container contains item one or more times.

Works with strings, lists, and anything that supports Python’s in operator.

See Should Be Equal for an explanation on how to override the default error message with arguments msg
and values. ignore_case has exactly the same semantics as with Should Contain.

If strip_spaces is given a true value (see Boolean arguments) and both arguments are strings, the com-
parison is done without leading and trailing spaces. If strip_spaces is given a string value LEADING
or TRAILING (case-insensitive), the comparison is done without leading or trailing spaces, respectively.

If collapse_spaces is given a true value (see Boolean arguments) and both arguments are strings, the
comparison is done with all white spaces replaced by a single space character.

strip_spaces is new in Robot Framework 4.0 and collapse_spaces is new in Robot Framework
4.1.

should_not_contain_any(container, *items, **configuration)
Fails if container contains one or more of the *items.

Works with strings, lists, and anything that supports Python’s in operator.

Supports additional configuration parameters msg, values, ignore_case and strip_spaces, and
collapse_spaces which have exactly the same semantics as arguments with same names have with
Should Contain. These arguments must always be given using name=value syntax after all items.

Note that possible equal signs in items must be escaped with a backslash (e.g. foo\=bar) to avoid
them to be passed in as **configuration.

should_not_end_with(str1, str2, msg=None, values=True, ignore_case=False,
strip_spaces=False, collapse_spaces=False)

Fails if the string str1 ends with the string str2.

See Should Be Equal for an explanation on how to override the default error message with msg and
values, as well as for semantics of the ignore_case, strip_spaces, and collapse_spaces
options.

should_not_match(string, pattern, msg=None, values=True, ignore_case=False)
Fails if the given string matches the given pattern.

Pattern matching is similar as matching files in a shell with *, ? and [chars] acting as wildcards. See
the Glob patterns section for more information.

If ignore_case is given a true value (see Boolean arguments), the comparison is case-insensitive.

See Should Be Equal for an explanation on how to override the default error message with msg and
‘‘values‘.

should_not_match_regexp(string, pattern, msg=None, values=True, flags=None)
Fails if string matches pattern as a regular expression.

See Should Match Regexp for more information about arguments.

should_not_start_with(str1, str2, msg=None, values=True, ignore_case=False,
strip_spaces=False, collapse_spaces=False)

Fails if the string str1 starts with the string str2.

3.1. robot package 97

Robot Framework Documentation, Release 6.0.2

See Should Be Equal for an explanation on how to override the default error message with msg and
values, as well as for semantics of the ignore_case, strip_spaces, and collapse_spaces
options.

should_start_with(str1, str2, msg=None, values=True, ignore_case=False, strip_spaces=False,
collapse_spaces=False)

Fails if the string str1 does not start with the string str2.

See Should Be Equal for an explanation on how to override the default error message with msg and
values, as well as for semantics of the ignore_case, strip_spaces, and collapse_spaces
options.

skip(msg=’Skipped with Skip keyword.’)
Skips the rest of the current test.

Skips the remaining keywords in the current test and sets the given message to the test. If the test has
teardown, it will be executed.

skip_if(condition, msg=None)
Skips the rest of the current test if the condition is True.

Skips the remaining keywords in the current test and sets the given message to the test. If msg is not given,
the condition will be used as the message. If the test has teardown, it will be executed.

If the condition evaluates to False, does nothing.

sleep(time_, reason=None)
Pauses the test executed for the given time.

time may be either a number or a time string. Time strings are in a format such as 1 day 2 hours 3
minutes 4 seconds 5milliseconds or 1d 2h 3m 4s 5ms, and they are fully explained in
an appendix of Robot Framework User Guide. Providing a value without specifying minutes or seconds,
defaults to seconds. Optional reason can be used to explain why sleeping is necessary. Both the time slept
and the reason are logged.

variable_should_exist(name, msg=None)
Fails unless the given variable exists within the current scope.

The name of the variable can be given either as a normal variable name like ${name} or in escaped format
like $name or \${name}. For the reasons explained in the Using variables with keywords creating or
accessing variables section, using the escaped format is recommended.

The default error message can be overridden with the msg argument.

See also Variable Should Not Exist and Keyword Should Exist.

variable_should_not_exist(name, msg=None)
Fails if the given variable exists within the current scope.

The name of the variable can be given either as a normal variable name like ${name} or in escaped format
like $name or \${name}. For the reasons explained in the Using variables with keywords creating or
accessing variables section, using the escaped format is recommended.

The default error message can be overridden with the msg argument.

See also Variable Should Exist and Keyword Should Exist.

wait_until_keyword_succeeds(retry, retry_interval, name, *args)
Runs the specified keyword and retries if it fails.

name and args define the keyword that is executed similarly as with Run Keyword. How long to retry
running the keyword is defined using retry argument either as timeout or count. retry_interval is
the time to wait between execution attempts.

98 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

If retry is given as timeout, it must be in Robot Framework’s time format (e.g. 1 minute, 2 min 3
s, 4.5) that is explained in an appendix of Robot Framework User Guide. If it is given as count, it must
have times or x postfix (e.g. 5 times, 10 x). retry_interval must always be given in Robot
Framework’s time format.

By default retry_interval is the time to wait _after_ a keyword has failed. For example, if the first
run takes 2 seconds and the retry interval is 3 seconds, the second run starts 5 seconds after the first run
started. If retry_interval start with prefix strict:, the execution time of the previous keyword is
subtracted from the retry time. With the earlier example the second run would thus start 3 seconds after
the first run started. A warning is logged if keyword execution time is longer than a strict interval.

If the keyword does not succeed regardless of retries, this keyword fails. If the executed keyword passes,
its return value is returned.

All normal failures are caught by this keyword. Errors caused by invalid syntax, test or keyword timeouts,
or fatal exceptions (caused e.g. by Fatal Error) are not caught.

Running the same keyword multiple times inside this keyword can create lots of output and considerably
increase the size of the generated output files. It is possible to remove unnecessary keywords from the
outputs using --RemoveKeywords WUKS command line option.

Support for “strict” retry interval is new in Robot Framework 4.1.

exception robot.libraries.BuiltIn.RobotNotRunningError
Bases: AttributeError

Used when something cannot be done because Robot is not running.

Based on AttributeError to be backwards compatible with RF < 2.8.5. May later be based directly on Exception,
so new code should except this exception explicitly.

args

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

robot.libraries.BuiltIn.register_run_keyword(library, keyword, args_to_process=0, dep-
recation_warning=True)

Tell Robot Framework that this keyword runs other keywords internally.

NOTE: This API will change in the future. For more information see https://github.com/robotframework/
robotframework/issues/2190.

Parameters

• library – Name of the library the keyword belongs to.

• keyword – Name of the keyword itself.

• args_to_process – How many arguments to process normally before passing them to
the keyword. Other arguments are not touched at all.

• deprecation_warning – Set to ‘‘False‘‘‘to avoid the warning.

Registered keywords are handled specially by Robot so that:

• Their arguments are not resolved normally (use args_to_process to control that). This basically
means not replacing variables or handling escapes.

• They are not stopped by timeouts.

• If there are conflicts with keyword names, these keywords have lower precedence than other keywords.

Main use cases are:

3.1. robot package 99

https://github.com/robotframework/robotframework/issues/2190
https://github.com/robotframework/robotframework/issues/2190

Robot Framework Documentation, Release 6.0.2

• Library keyword is using BuiltIn.run_keyword internally to execute other keywords. Registering the caller
as a “run keyword variant” avoids variables and escapes in arguments being resolved multiple times. All
arguments passed to run_keyword can and should be left unresolved.

• Keyword has some need to not resolve variables in arguments. This way variable values are not logged
anywhere by Robot automatically.

As mentioned above, this API will likely be reimplemented in the future or there could be new API for library
keywords to execute other keywords. External libraries can nevertheless use this API if they really need it and
are aware of the possible breaking changes in the future.

from robot.libraries.BuiltIn import BuiltIn, register_run_keyword

def my_run_keyword(name, *args): # do something return BuiltIn().run_keyword(name, *args)

register_run_keyword(__name__, ‘My Run Keyword’)

from robot.libraries.BuiltIn import BuiltIn, register_run_keyword

class MyLibrary:

def my_run_keyword_if(self, expression, name, *args): # Do something if
self._is_true(expression):

return BuiltIn().run_keyword(name, *args)

Process one argument normally to get expression resolved. register_run_keyword(‘MyLibrary’,
‘my_run_keyword_if’, args_to_process=1)

robot.libraries.Collections module

class robot.libraries.Collections.NotSet
Bases: object

class robot.libraries.Collections.Collections
Bases: robot.libraries.Collections._List, robot.libraries.Collections.
_Dictionary

A library providing keywords for handling lists and dictionaries.

Collections is Robot Framework’s standard library that provides a set of keywords for handling Python
lists and dictionaries. This library has keywords, for example, for modifying and getting values from lists and
dictionaries (e.g. Append To List, Get From Dictionary) and for verifying their contents (e.g. Lists Should Be
Equal, Dictionary Should Contain Value).

== Table of contents ==

%TOC%

= Related keywords in BuiltIn =

Following keywords in the BuiltIn library can also be used with lists and dictionaries:

= Using with list-like and dictionary-like objects =

List keywords that do not alter the given list can also be used with tuples, and to some extend also with other
iterables. Convert To List can be used to convert tuples and other iterables to Python list objects.

Similarly dictionary keywords can, for most parts, be used with other mappings. Convert To Dictionary can be
used if real Python dict objects are needed.

= Boolean arguments =

100 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

Some keywords accept arguments that are handled as Boolean values true or false. If such an argument
is given as a string, it is considered false if it is an empty string or equal to FALSE, NONE, NO, OFF or
0, case-insensitively. Keywords verifying something that allow dropping actual and expected values from
the possible error message also consider string no values to be false. Other strings are considered true
regardless their value, and other argument types are tested using the same [http://docs.python.org/library/
stdtypes.html#truth|rules as in Python].

True examples:

False examples:

Considering OFF and 0 false is new in Robot Framework 3.1.

= Data in examples =

List related keywords use variables in format ${Lx} in their examples. They mean lists with as many alphabetic
characters as specified by x. For example, ${L1} means ['a'] and ${L3} means ['a', 'b', 'c'].

Dictionary keywords use similar ${Dx} variables. For example, ${D1} means {'a': 1} and ${D3}
means {'a': 1, 'b': 2, 'c': 3}.

ROBOT_LIBRARY_SCOPE = 'GLOBAL'

ROBOT_LIBRARY_VERSION = '6.0.2'

should_contain_match(list, pattern, msg=None, case_insensitive=False, whites-
pace_insensitive=False)

Fails if pattern is not found in list.

By default, pattern matching is similar to matching files in a shell and is case-sensitive and whitespace-
sensitive. In the pattern syntax, * matches to anything and ? matches to any single character. You can also
prepend glob= to your pattern to explicitly use this pattern matching behavior.

If you prepend regexp= to your pattern, your pattern will be used according to the Python [http:
//docs.python.org/library/re.html|re module] regular expression syntax. Important note: Backslashes are
an escape character, and must be escaped with another backslash (e.g. regexp=\\d{6} to search for
\d{6}). See BuiltIn.Should Match Regexp for more details.

If case_insensitive is given a true value (see Boolean arguments), the pattern matching will ignore
case.

If whitespace_insensitive is given a true value (see Boolean arguments), the pattern matching
will ignore whitespace.

Non-string values in lists are ignored when matching patterns.

Use the msg argument to override the default error message.

See also Should Not Contain Match.

should_not_contain_match(list, pattern, msg=None, case_insensitive=False, whites-
pace_insensitive=False)

Fails if pattern is found in list.

Exact opposite of Should Contain Match keyword. See that keyword for information about arguments and
usage in general.

get_matches(list, pattern, case_insensitive=False, whitespace_insensitive=False)
Returns a list of matches to pattern in list.

For more information on pattern, case_insensitive, and whitespace_insensitive, see
Should Contain Match.

get_match_count(list, pattern, case_insensitive=False, whitespace_insensitive=False)
Returns the count of matches to pattern in list.

3.1. robot package 101

http://docs.python.org/library/stdtypes
http://docs.python.org/library/stdtypes
http://docs.python.org/library/re
http://docs.python.org/library/re

Robot Framework Documentation, Release 6.0.2

For more information on pattern, case_insensitive, and whitespace_insensitive, see
Should Contain Match.

append_to_list(list_, *values)
Adds values to the end of list.

combine_lists(*lists)
Combines the given lists together and returns the result.

The given lists are not altered by this keyword.

convert_to_dictionary(item)
Converts the given item to a Python dict type.

Mainly useful for converting other mappings to normal dictionaries. This includes converting Robot
Framework’s own DotDict instances that it uses if variables are created using the &{var} syntax.

Use Create Dictionary from the BuiltIn library for constructing new dictionaries.

convert_to_list(item)
Converts the given item to a Python list type.

Mainly useful for converting tuples and other iterable to lists. Use Create List from the BuiltIn library for
constructing new lists.

copy_dictionary(dictionary, deepcopy=False)
Returns a copy of the given dictionary.

The deepcopy argument controls should the returned dictionary be a [https://docs.python.org/library/
copy.html|shallow or deep copy]. By default returns a shallow copy, but that can be changed by giving
deepcopy a true value (see Boolean arguments). This is a new option in Robot Framework 3.1.2. Earlier
versions always returned shallow copies.

The given dictionary is never altered by this keyword.

copy_list(list_, deepcopy=False)
Returns a copy of the given list.

If the optional deepcopy is given a true value, the returned list is a deep copy. New option in Robot
Framework 3.1.2.

The given list is never altered by this keyword.

count_values_in_list(list_, value, start=0, end=None)
Returns the number of occurrences of the given value in list.

The search can be narrowed to the selected sublist by the start and end indexes having the same
semantics as with Get Slice From List keyword. The given list is never altered by this keyword.

dictionaries_should_be_equal(dict1, dict2, msg=None, values=True)
Fails if the given dictionaries are not equal.

First the equality of dictionaries’ keys is checked and after that all the key value pairs. If there are differ-
ences between the values, those are listed in the error message. The types of the dictionaries do not need
to be same.

See Lists Should Be Equal for more information about configuring the error message with msg and
values arguments.

dictionary_should_contain_item(dictionary, key, value, msg=None)
An item of key / value must be found in a dictionary.

Value is converted to unicode for comparison.

Use the msg argument to override the default error message.

102 Chapter 3. All packages

https://docs.python.org/library/copy
https://docs.python.org/library/copy

Robot Framework Documentation, Release 6.0.2

dictionary_should_contain_key(dictionary, key, msg=None)
Fails if key is not found from dictionary.

Use the msg argument to override the default error message.

dictionary_should_contain_sub_dictionary(dict1, dict2, msg=None, values=True)
Fails unless all items in dict2 are found from dict1.

See Lists Should Be Equal for more information about configuring the error message with msg and
values arguments.

dictionary_should_contain_value(dictionary, value, msg=None)
Fails if value is not found from dictionary.

Use the msg argument to override the default error message.

dictionary_should_not_contain_key(dictionary, key, msg=None)
Fails if key is found from dictionary.

Use the msg argument to override the default error message.

dictionary_should_not_contain_value(dictionary, value, msg=None)
Fails if value is found from dictionary.

Use the msg argument to override the default error message.

get_dictionary_items(dictionary, sort_keys=True)
Returns items of the given dictionary as a list.

Uses Get Dictionary Keys to get keys and then returns corresponding items. By default keys are sorted and
items returned in that order, but this can be changed by giving sort_keys a false value (see Boolean
arguments). Notice that with Python 3.5 and earlier dictionary order is undefined unless using ordered
dictionaries.

Items are returned as a flat list so that first item is a key, second item is a corresponding value, third item
is the second key, and so on.

The given dictionary is never altered by this keyword.

sort_keys is a new option in Robot Framework 3.1.2. Earlier items were always sorted based on keys.

get_dictionary_keys(dictionary, sort_keys=True)
Returns keys of the given dictionary as a list.

By default keys are returned in sorted order (assuming they are sortable), but they can be returned in the
original order by giving sort_keys a false value (see Boolean arguments). Notice that with Python 3.5
and earlier dictionary order is undefined unless using ordered dictionaries.

The given dictionary is never altered by this keyword.

sort_keys is a new option in Robot Framework 3.1.2. Earlier keys were always sorted.

get_dictionary_values(dictionary, sort_keys=True)
Returns values of the given dictionary as a list.

Uses Get Dictionary Keys to get keys and then returns corresponding values. By default keys are sorted and
values returned in that order, but this can be changed by giving sort_keys a false value (see Boolean
arguments). Notice that with Python 3.5 and earlier dictionary order is undefined unless using ordered
dictionaries.

The given dictionary is never altered by this keyword.

sort_keys is a new option in Robot Framework 3.1.2. Earlier values were always sorted based on keys.

3.1. robot package 103

Robot Framework Documentation, Release 6.0.2

get_from_dictionary(dictionary, key, default=)
Returns a value from the given dictionary based on the given key.

If the given key cannot be found from the dictionary, this keyword fails. If optional default value
is given, it will be returned instead of failing.

The given dictionary is never altered by this keyword.

Support for default is new in Robot Framework 6.0.

get_from_list(list_, index)
Returns the value specified with an index from list.

The given list is never altered by this keyword.

Index 0 means the first position, 1 the second, and so on. Similarly, -1 is the last position, -2 the second
last, and so on. Using an index that does not exist on the list causes an error. The index can be either an
integer or a string that can be converted to an integer.

get_index_from_list(list_, value, start=0, end=None)
Returns the index of the first occurrence of the value on the list.

The search can be narrowed to the selected sublist by the start and end indexes having the same
semantics as with Get Slice From List keyword. In case the value is not found, -1 is returned. The given
list is never altered by this keyword.

get_slice_from_list(list_, start=0, end=None)
Returns a slice of the given list between start and end indexes.

The given list is never altered by this keyword.

If both start and end are given, a sublist containing values from start to end is returned. This is the
same as list[start:end] in Python. To get all items from the beginning, use 0 as the start value, and
to get all items until and including the end, use None (default) as the end value.

Using start or end not found on the list is the same as using the largest (or smallest) available index.

insert_into_list(list_, index, value)
Inserts value into list to the position specified with index.

Index 0 adds the value into the first position, 1 to the second, and so on. Inserting from right works with
negative indices so that -1 is the second last position, -2 third last, and so on. Use Append To List to add
items to the end of the list.

If the absolute value of the index is greater than the length of the list, the value is added at the end (positive
index) or the beginning (negative index). An index can be given either as an integer or a string that can be
converted to an integer.

keep_in_dictionary(dictionary, *keys)
Keeps the given keys in the dictionary and removes all other.

If the given key cannot be found from the dictionary, it is ignored.

list_should_contain_sub_list(list1, list2, msg=None, values=True)
Fails if not all elements in list2 are found in list1.

The order of values and the number of values are not taken into account.

See Lists Should Be Equal for more information about configuring the error message with msg and
values arguments.

list_should_contain_value(list_, value, msg=None)
Fails if the value is not found from list.

Use the msg argument to override the default error message.

104 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

list_should_not_contain_duplicates(list_, msg=None)
Fails if any element in the list is found from it more than once.

The default error message lists all the elements that were found from the list multiple times, but it can
be overridden by giving a custom msg. All multiple times found items and their counts are also logged.

This keyword works with all iterables that can be converted to a list. The original iterable is never altered.

list_should_not_contain_value(list_, value, msg=None)
Fails if the value is found from list.

Use the msg argument to override the default error message.

lists_should_be_equal(list1, list2, msg=None, values=True, names=None, ig-
nore_order=False)

Fails if given lists are unequal.

The keyword first verifies that the lists have equal lengths, and then it checks are all their values equal.
Possible differences between the values are listed in the default error message like Index 4: ABC !=
Abc. The types of the lists do not need to be the same. For example, Python tuple and list with same
content are considered equal.

The error message can be configured using msg and values arguments: - If msg is not given, the default
error message is used. - If msg is given and values gets a value considered true

(see Boolean arguments), the error message starts with the given msg followed by a newline and
the default message.

• If msg is given and values is not given a true value, the error message is just the given msg.

The optional names argument can be used for naming the indices shown in the default error message. It
can either be a list of names matching the indices in the lists or a dictionary where keys are indices that
need to be named. It is not necessary to name all indices. When using a dictionary, keys can be either
integers or strings that can be converted to integers.

If the items in index 2 would differ in the above examples, the error message would contain a row like
Index 2 (email): name@foo.com != name@bar.com.

The optional ignore_order argument can be used to ignore the order of the elements in the lists. Using
it requires items to be sortable. This is new in Robot Framework 3.2.

log_dictionary(dictionary, level=’INFO’)
Logs the size and contents of the dictionary using given level.

Valid levels are TRACE, DEBUG, INFO (default), and WARN.

If you only want to log the size, use keyword Get Length from the BuiltIn library.

log_list(list_, level=’INFO’)
Logs the length and contents of the list using given level.

Valid levels are TRACE, DEBUG, INFO (default), and WARN.

If you only want to the length, use keyword Get Length from the BuiltIn library.

pop_from_dictionary(dictionary, key, default=)
Pops the given key from the dictionary and returns its value.

By default the keyword fails if the given key cannot be found from the dictionary. If optional
default value is given, it will be returned instead of failing.

remove_duplicates(list_)
Returns a list without duplicates based on the given list.

3.1. robot package 105

Robot Framework Documentation, Release 6.0.2

Creates and returns a new list that contains all items in the given list so that one item can appear only once.
Order of the items in the new list is the same as in the original except for missing duplicates. Number of
the removed duplicates is logged.

remove_from_dictionary(dictionary, *keys)
Removes the given keys from the dictionary.

If the given key cannot be found from the dictionary, it is ignored.

remove_from_list(list_, index)
Removes and returns the value specified with an index from list.

Index 0 means the first position, 1 the second and so on. Similarly, -1 is the last position, -2 the second
last, and so on. Using an index that does not exist on the list causes an error. The index can be either an
integer or a string that can be converted to an integer.

remove_values_from_list(list_, *values)
Removes all occurrences of given values from list.

It is not an error if a value does not exist in the list at all.

reverse_list(list_)
Reverses the given list in place.

Note that the given list is changed and nothing is returned. Use Copy List first, if you need to keep also the
original order.

set_list_value(list_, index, value)
Sets the value of list specified by index to the given value.

Index 0 means the first position, 1 the second and so on. Similarly, -1 is the last position, -2 second last,
and so on. Using an index that does not exist on the list causes an error. The index can be either an integer
or a string that can be converted to an integer.

set_to_dictionary(dictionary, *key_value_pairs, **items)
Adds the given key_value_pairs and items to the dictionary.

Giving items as key_value_pairs means giving keys and values as separate arguments:

The latter syntax is typically more convenient to use, but it has a limitation that keys must be strings.

If given keys already exist in the dictionary, their values are updated.

sort_list(list_)
Sorts the given list in place.

Sorting fails if items in the list are not comparable with each others. On Python 2 most objects are compa-
rable, but on Python 3 comparing, for example, strings with numbers is not possible.

Note that the given list is changed and nothing is returned. Use Copy List first, if you need to keep also the
original order.

robot.libraries.DateTime module

A library for handling date and time values.

DateTime is a Robot Framework standard library that supports creating and converting date and time values (e.g.
Get Current Date, Convert Time), as well as doing simple calculations with them (e.g. Subtract Time From Date, Add
Time To Time). It supports dates and times in various formats, and can also be used by other libraries programmatically.

== Table of contents ==

%TOC%

106 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

= Terminology =

In the context of this library, date and time generally have the following meanings:

• date: An entity with both date and time components but without any time zone information. For exam-
ple, 2014-06-11 10:07:42.

• time: A time interval. For example, 1 hour 20 minutes or 01:20:00.

This terminology differs from what Python’s standard [http://docs.python.org/library/datetime.html|datetime] module
uses. Basically its [http://docs.python.org/library/datetime.html#datetime-objects|datetime] and [http://docs.python.
org/library/datetime.html#timedelta-objects|timedelta] objects match date and time as defined by this library.

= Date formats =

Dates can be given to and received from keywords in timestamp, custom timestamp, Python datetime and epoch time
formats. These formats are discussed thoroughly in subsequent sections.

Input format is determined automatically based on the given date except when using custom timestamps, in which
case it needs to be given using date_format argument. Default result format is timestamp, but it can be overridden
using result_format argument.

== Timestamp ==

If a date is given as a string, it is always considered to be a timestamp. If no custom formatting is given using
date_format argument, the timestamp is expected to be in [http://en.wikipedia.org/wiki/ISO_8601|ISO 8601] like
format YYYY-MM-DD hh:mm:ss.mil, where any non-digit character can be used as a separator or separators
can be omitted altogether. Additionally, only the date part is mandatory, all possibly missing time components are
considered to be zeros.

Dates can also be returned in the same YYYY-MM-DD hh:mm:ss.mil format by using timestamp value with
result_format argument. This is also the default format that keywords returning dates use. Milliseconds can be
excluded using exclude_millis as explained in Millisecond handling section.

== Custom timestamp ==

It is possible to use custom timestamps in both input and output. The custom format is same as accepted by Python’s
[http://docs.python.org/library/datetime.html#strftime-strptime-behavior| datetime.strptime] function. For example,
the default timestamp discussed in the previous section would match %Y-%m-%d %H:%M:%S.%f.

When using a custom timestamp in input, it must be specified using date_format argument. The actual input value
must be a string that matches the specified format exactly. When using a custom timestamp in output, it must be given
using result_format argument.

== Python datetime ==

Python’s standard [http://docs.python.org/library/datetime.html#datetime-objects|datetime] objects can be used both
in input and output. In input they are recognized automatically, and in output it is possible to get them by giving
datetime value to result_format argument.

One nice benefit with datetime objects is that they have different time components available as attributes that can be
easily accessed using the extended variable syntax.

== Epoch time ==

Epoch time is the time in seconds since the [http://en.wikipedia.org/wiki/Unix_time|UNIX epoch] i.e. 00:00:00.000
(UTC) January 1, 1970. To give a date as an epoch time, it must be given as a number (integer or float), not as a string.
To return a date as an epoch time, it is possible to use epoch value with result_format argument. Epoch times
are returned as floating point numbers.

Notice that epoch times are independent on time zones and thus same around the world at a certain time. For example,
epoch times returned by Get Current Date are not affected by the time_zone argument. What local time a certain
epoch time matches then depends on the time zone.

3.1. robot package 107

http://docs.python.org/library/datetime
http://docs.python.org/library/datetime.html#datetime
http://docs.python.org/library/datetime.html#timedelta
http://docs.python.org/library/datetime.html#timedelta
http://en.wikipedia.org/wiki
http://docs.python.org/library/datetime.html#strftime-strptime
http://docs.python.org/library/datetime.html#datetime
http://en.wikipedia.org/wiki

Robot Framework Documentation, Release 6.0.2

Following examples demonstrate using epoch times. They are tested in Finland, and due to the reasons explained
above they would fail on other time zones.

== Earliest supported date ==

The earliest date that is supported depends on the date format and to some extent on the platform:

• Timestamps support year 1900 and above.

• Python datetime objects support year 1 and above.

• Epoch time supports 1970 and above on Windows.

• On other platforms epoch time supports 1900 and above or even earlier.

= Time formats =

Similarly as dates, times can be given to and received from keywords in various different formats. Supported formats
are number, time string (verbose and compact), timer string and Python timedelta.

Input format for time is always determined automatically based on the input. Result format is number by default, but
it can be customised using result_format argument.

== Number ==

Time given as a number is interpreted to be seconds. It can be given either as an integer or a float, or it can be a string
that can be converted to a number.

To return a time as a number, result_format argument must have value number, which is also the default.
Returned number is always a float.

== Time string ==

Time strings are strings in format like 1 minute 42 seconds or 1min 42s. The basic idea of this format is
having first a number and then a text specifying what time that number represents. Numbers can be either integers
or floating point numbers, the whole format is case and space insensitive, and it is possible to add a minus prefix to
specify negative times. The available time specifiers are:

• days, day, d

• hours, hour, h

• minutes, minute, mins, min, m

• seconds, second, secs, sec, s

• milliseconds, millisecond, millis, ms

• microseconds, microsecond, us, 𝜇s (new in RF 6.0)

• nanoseconds, nanosecond, ns (new in RF 6.0)

When returning a time string, it is possible to select between verbose and compact representations using
result_format argument. The verbose format uses long specifiers day, hour, minute, second and
millisecond, and adds s at the end when needed. The compact format uses shorter specifiers d, h, min, s
and ms, and even drops the space between the number and the specifier.

== Timer string ==

Timer string is a string given in timer like format hh:mm:ss.mil. In this format both hour and millisecond parts are
optional, leading and trailing zeros can be left out when they are not meaningful, and negative times can be represented
by adding a minus prefix.

To return a time as timer string, result_format argument must be given value timer. Timer strings are by default
returned in full hh:mm:ss.mil format, but milliseconds can be excluded using exclude_millis as explained
in Millisecond handling section.

108 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

== Python timedelta ==

Python’s standard [http://docs.python.org/library/datetime.html#datetime.timedelta|timedelta] objects are also sup-
ported both in input and in output. In input they are recognized automatically, and in output it is possible to receive
them by giving timedelta value to result_format argument.

= Millisecond handling =

This library handles dates and times internally using the precision of the given input. With timestamp, time string, and
timer string result formats seconds are, however, rounded to millisecond accuracy. Milliseconds may also be included
even if there would be none.

All keywords returning dates or times have an option to leave milliseconds out by giving a true value to
exclude_millis argument. If the argument is given as a string, it is considered true unless it is empty or case-
insensitively equal to false, none or no. Other argument types are tested using same [http://docs.python.org/
library/stdtypes.html#truth|rules as in Python].

When milliseconds are excluded, seconds in returned dates and times are rounded to the nearest full second. With
timestamp and timer string result formats, milliseconds will also be removed from the returned string altogether.

= Programmatic usage =

In addition to be used as normal library, this library is intended to provide a stable API for other libraries to use if they
want to support same date and time formats as this library. All the provided keywords are available as functions that
can be easily imported:

Additionally helper classes Date and Time can be used directly:

robot.libraries.DateTime.get_current_date(time_zone=’local’, increment=0,
result_format=’timestamp’, ex-
clude_millis=False)

Returns current local or UTC time with an optional increment.

Arguments: - time_zone: Get the current time on this time zone. Currently only

local (default) and UTC are supported. Has no effect if date is returned as an epoch time.

• increment: Optional time increment to add to the returned date in one of the supported time for-
mats. Can be negative.

• result_format: Format of the returned date (see date formats).

• exclude_millis: When set to any true value, rounds and drops milliseconds as explained in mil-
lisecond handling.

robot.libraries.DateTime.convert_date(date, result_format=’timestamp’, ex-
clude_millis=False, date_format=None)

Converts between supported date formats.

Arguments: - date: Date in one of the supported date formats. - result_format: Format of the returned
date. - exclude_millis: When set to any true value, rounds and drops

milliseconds as explained in millisecond handling.

3.1. robot package 109

http://docs.python.org/library/datetime.html#datetime
http://docs.python.org/library/stdtypes
http://docs.python.org/library/stdtypes

Robot Framework Documentation, Release 6.0.2

• date_format: Specifies possible custom timestamp format.

robot.libraries.DateTime.convert_time(time, result_format=’number’, exclude_millis=False)
Converts between supported time formats.

Arguments: - time: Time in one of the supported time formats. - result_format: Format of the returned
time. - exclude_millis: When set to any true value, rounds and drops

milliseconds as explained in millisecond handling.

robot.libraries.DateTime.subtract_date_from_date(date1, date2, re-
sult_format=’number’,
exclude_millis=False,
date1_format=None,
date2_format=None)

Subtracts date from another date and returns time between.

Arguments: - date1: Date to subtract another date from in one of the

supported date formats.

• date2: Date that is subtracted in one of the supported date formats.

• result_format: Format of the returned time (see time formats).

• exclude_millis: When set to any true value, rounds and drops milliseconds as explained in mil-
lisecond handling.

• date1_format: Possible custom timestamp format of date1.

• date2_format: Possible custom timestamp format of date2.

Examples:

robot.libraries.DateTime.add_time_to_date(date, time, result_format=’timestamp’, ex-
clude_millis=False, date_format=None)

Adds time to date and returns the resulting date.

Arguments: - date: Date to add time to in one of the supported

date formats.

• time: Time that is added in one of the supported time formats.

• result_format: Format of the returned date.

• exclude_millis: When set to any true value, rounds and drops milliseconds as explained in mil-
lisecond handling.

• date_format: Possible custom timestamp format of date.

robot.libraries.DateTime.subtract_time_from_date(date, time, re-
sult_format=’timestamp’,
exclude_millis=False,
date_format=None)

Subtracts time from date and returns the resulting date.

Arguments: - date: Date to subtract time from in one of the supported

date formats.

• time: Time that is subtracted in one of the supported time formats.

110 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

• result_format: Format of the returned date.

• exclude_millis: When set to any true value, rounds and drops milliseconds as explained in mil-
lisecond handling.

• date_format: Possible custom timestamp format of date.

robot.libraries.DateTime.add_time_to_time(time1, time2, result_format=’number’, ex-
clude_millis=False)

Adds time to another time and returns the resulting time.

Arguments: - time1: First time in one of the supported time formats. - time2: Second time in one of the
supported time formats. - result_format: Format of the returned time. - exclude_millis: When set
to any true value, rounds and drops

milliseconds as explained in millisecond handling.

robot.libraries.DateTime.subtract_time_from_time(time1, time2, re-
sult_format=’number’, ex-
clude_millis=False)

Subtracts time from another time and returns the resulting time.

Arguments: - time1: Time to subtract another time from in one of

the supported time formats.

• time2: Time to subtract in one of the supported time formats.

• result_format: Format of the returned time.

• exclude_millis: When set to any true value, rounds and drops milliseconds as explained in mil-
lisecond handling.

robot.libraries.Dialogs module

A library providing dialogs for interacting with users.

Dialogs is Robot Framework’s standard library that provides means for pausing the test or task execution and getting
input from users.

Long lines in the provided messages are wrapped automatically. If you want to wrap lines manually, you can add
newlines using the \n character sequence.

The library has a known limitation that it cannot be used with timeouts.

robot.libraries.Dialogs.pause_execution(message=’Execution paused. Press OK to con-
tinue.’)

Pauses execution until user clicks Ok button.

message is the message shown in the dialog.

robot.libraries.Dialogs.execute_manual_step(message, default_error=”)
Pauses execution until user sets the keyword status.

User can press either PASS or FAIL button. In the latter case execution fails and an additional dialog is opened
for defining the error message.

message is the instruction shown in the initial dialog and default_error is the default value shown in the
possible error message dialog.

robot.libraries.Dialogs.get_value_from_user(message, default_value=”, hidden=False)
Pauses execution and asks user to input a value.

3.1. robot package 111

Robot Framework Documentation, Release 6.0.2

Value typed by the user, or the possible default value, is returned. Returning an empty value is fine, but pressing
Cancel fails the keyword.

message is the instruction shown in the dialog and default_value is the possible default value shown in
the input field.

If hidden is given a true value, the value typed by the user is hidden. hidden is considered true if it is a
non-empty string not equal to false, none or no, case-insensitively. If it is not a string, its truth value is got
directly using same [http://docs.python.org/library/stdtypes.html#truth|rules as in Python].

robot.libraries.Dialogs.get_selection_from_user(message, *values)
Pauses execution and asks user to select a value.

The selected value is returned. Pressing Cancel fails the keyword.

message is the instruction shown in the dialog and values are the options given to the user.

robot.libraries.Dialogs.get_selections_from_user(message, *values)
Pauses execution and asks user to select multiple values.

The selected values are returned as a list. Selecting no values is OK and in that case the returned list is empty.
Pressing Cancel fails the keyword.

message is the instruction shown in the dialog and values are the options given to the user.

robot.libraries.Easter module

robot.libraries.Easter.none_shall_pass(who)

robot.libraries.OperatingSystem module

class robot.libraries.OperatingSystem.OperatingSystem
Bases: object

A library providing keywords for operating system related tasks.

OperatingSystem is Robot Framework’s standard library that enables various operating system related
tasks to be performed in the system where Robot Framework is running. It can, among other things, execute
commands (e.g. Run), create and remove files and directories (e.g. Create File, Remove Directory), check
whether files or directories exists or contain something (e.g. File Should Exist, Directory Should Be Empty) and
manipulate environment variables (e.g. Set Environment Variable).

== Table of contents ==

%TOC%

= Path separators =

Because Robot Framework uses the backslash (\) as an escape character in its data, using a literal backslash
requires duplicating it like in c:\\path\\file.txt. That can be inconvenient especially with longer Win-
dows paths, and thus all keywords expecting paths as arguments convert forward slashes to backslashes auto-
matically on Windows. This also means that paths like ${CURDIR}/path/file.txt are operating system
independent.

Notice that the automatic path separator conversion does not work if the path is only a part of an argument like
with the Run keyword. In these cases the built-in variable ${/} that contains \ or /, depending on the operating
system, can be used instead.

= Pattern matching =

112 Chapter 3. All packages

http://docs.python.org/library/stdtypes

Robot Framework Documentation, Release 6.0.2

Many keywords accept arguments as either _glob_ or _regular expression_ patterns.

== Glob patterns ==

Some keywords, for example List Directory, support so called [http://en.wikipedia.org/wiki/Glob_
(programming)|glob patterns] where:

Unless otherwise noted, matching is case-insensitive on case-insensitive operating systems such as Windows.

== Regular expressions ==

Some keywords, for example Grep File, support [http://en.wikipedia.org/wiki/Regular_expression|regular ex-
pressions] that are more powerful but also more complicated that glob patterns. The regular expression support
is implemented using Python’s [http://docs.python.org/library/re.html|re module] and its documentation should
be consulted for more information about the syntax.

Because the backslash character (\) is an escape character in Robot Framework data, possible backslash charac-
ters in regular expressions need to be escaped with another backslash like \\d\\w+. Strings that may contain
special characters but should be handled as literal strings, can be escaped with the Regexp Escape keyword from
the BuiltIn library.

= Tilde expansion =

Paths beginning with ~ or ~username are expanded to the current or specified user’s home directory, re-
spectively. The resulting path is operating system dependent, but typically e.g. ~/robot is expanded to
C:\Users\<user>\robot on Windows and /home/<user>/robot on Unixes.

= pathlib.Path support =

Starting from Robot Framework 6.0, arguments representing paths can be given as [https://docs.python.org/3/
library/pathlib.html pathlib.Path] instances in addition to strings.

All keywords returning paths return them as strings. This may change in the future so that the return value type
matches the argument type.

= Boolean arguments =

Some keywords accept arguments that are handled as Boolean values true or false. If such an argument is
given as a string, it is considered false if it is an empty string or equal to FALSE, NONE, NO, OFF or 0, case-
insensitively. Other strings are considered true regardless their value, and other argument types are tested using
the same [http://docs.python.org/library/stdtypes.html#truth|rules as in Python].

True examples:

False examples:

= Example =

ROBOT_LIBRARY_SCOPE = 'GLOBAL'

ROBOT_LIBRARY_VERSION = '6.0.2'

run(command)
Runs the given command in the system and returns the output.

The execution status of the command is not checked by this keyword, and it must be done separately based
on the returned output. If the execution return code is needed, either Run And Return RC or Run And
Return RC And Output can be used.

3.1. robot package 113

http://en.wikipedia.org/wiki/Glob_(programming
http://en.wikipedia.org/wiki/Glob_(programming
http://en.wikipedia.org/wiki
http://docs.python.org/library/re
https://docs.python.org/3/library/pathlib.html
https://docs.python.org/3/library/pathlib.html
http://docs.python.org/library/stdtypes

Robot Framework Documentation, Release 6.0.2

The standard error stream is automatically redirected to the standard output stream by adding 2>&1 after
the executed command. This automatic redirection is done only when the executed command does not
contain additional output redirections. You can thus freely forward the standard error somewhere else, for
example, like my_command 2>stderr.txt.

The returned output contains everything written into the standard output or error streams by the command
(unless either of them is redirected explicitly). Many commands add an extra newline (\n) after the output
to make it easier to read in the console. To ease processing the returned output, this possible trailing
newline is stripped by this keyword.

TIP: Run Process keyword provided by the [http://robotframework.org/robotframework/latest/libraries/
Process.html| Process library] supports better process configuration and is generally recommended as a
replacement for this keyword.

run_and_return_rc(command)
Runs the given command in the system and returns the return code.

The return code (RC) is returned as a positive integer in range from 0 to 255 as returned by the executed
command. On some operating systems (notable Windows) original return codes can be something else,
but this keyword always maps them to the 0-255 range. Since the RC is an integer, it must be checked e.g.
with the keyword Should Be Equal As Integers instead of Should Be Equal (both are built-in keywords).

See Run and Run And Return RC And Output if you need to get the output of the executed command.

TIP: Run Process keyword provided by the [http://robotframework.org/robotframework/latest/libraries/
Process.html| Process library] supports better process configuration and is generally recommended as a
replacement for this keyword.

run_and_return_rc_and_output(command)
Runs the given command in the system and returns the RC and output.

The return code (RC) is returned similarly as with Run And Return RC and the output similarly as with
Run.

TIP: Run Process keyword provided by the [http://robotframework.org/robotframework/latest/libraries/
Process.html| Process library] supports better process configuration and is generally recommended as a
replacement for this keyword.

get_file(path, encoding=’UTF-8’, encoding_errors=’strict’)
Returns the contents of a specified file.

This keyword reads the specified file and returns the contents. Line breaks in content are converted to
platform independent form. See also Get Binary File.

encoding defines the encoding of the file. The default value is UTF-8, which means that UTF-8 and
ASCII encoded files are read correctly. In addition to the encodings supported by the underlying Python
implementation, the following special encoding values can be used:

• SYSTEM: Use the default system encoding.

• CONSOLE: Use the console encoding. Outside Windows this is same as the system encoding.

encoding_errors argument controls what to do if decoding some bytes fails. All values accepted by
decode method in Python are valid, but in practice the following values are most useful:

• strict: Fail if characters cannot be decoded (default).

• ignore: Ignore characters that cannot be decoded.

• replace: Replace characters that cannot be decoded with a replacement character.

get_binary_file(path)
Returns the contents of a specified file.

114 Chapter 3. All packages

http://robotframework.org/robotframework/latest/libraries/Process
http://robotframework.org/robotframework/latest/libraries/Process
http://robotframework.org/robotframework/latest/libraries/Process
http://robotframework.org/robotframework/latest/libraries/Process
http://robotframework.org/robotframework/latest/libraries/Process
http://robotframework.org/robotframework/latest/libraries/Process

Robot Framework Documentation, Release 6.0.2

This keyword reads the specified file and returns the contents as is. See also Get File.

grep_file(path, pattern, encoding=’UTF-8’, encoding_errors=’strict’, regexp=False)
Returns the lines of the specified file that match the pattern.

This keyword reads a file from the file system using the defined path, encoding and
encoding_errors similarly as Get File. A difference is that only the lines that match the given
pattern are returned. Lines are returned as a single string concatenated back together with newlines
and the number of matched lines is automatically logged. Possible trailing newline is never returned.

A line matches if it contains the pattern anywhere in it i.e. it does not need to match the pattern fully.
There are two supported pattern types:

• By default the pattern is considered a _glob_ pattern where, for example, * and ? can be used as
wildcards.

• If the regexp argument is given a true value, the pattern is considered to be a _regular expression_.
These patterns are more powerful but also more complicated than glob patterns. They often use the
backslash character and it needs to be escaped in Robot Framework date like \.

For more information about glob and regular expression syntax, see the Pattern matching section. With
this keyword matching is always case-sensitive.

Special encoding values SYSTEM and CONSOLE that Get File supports are supported by this keyword only
with Robot Framework 4.0 and newer.

Support for regular expressions is new in Robot Framework 5.0.

log_file(path, encoding=’UTF-8’, encoding_errors=’strict’)
Wrapper for Get File that also logs the returned file.

The file is logged with the INFO level. If you want something else, just use Get File and the built-in
keyword Log with the desired level.

See Get File for more information about encoding and encoding_errors arguments.

should_exist(path, msg=None)
Fails unless the given path (file or directory) exists.

The path can be given as an exact path or as a glob pattern. See the Glob patterns section for details about
the supported syntax.

The default error message can be overridden with the msg argument.

should_not_exist(path, msg=None)
Fails if the given path (file or directory) exists.

The path can be given as an exact path or as a glob pattern. See the Glob patterns section for details about
the supported syntax.

The default error message can be overridden with the msg argument.

file_should_exist(path, msg=None)
Fails unless the given path points to an existing file.

The path can be given as an exact path or as a glob pattern. See the Glob patterns section for details about
the supported syntax.

The default error message can be overridden with the msg argument.

file_should_not_exist(path, msg=None)
Fails if the given path points to an existing file.

The path can be given as an exact path or as a glob pattern. See the Glob patterns section for details about
the supported syntax.

3.1. robot package 115

Robot Framework Documentation, Release 6.0.2

The default error message can be overridden with the msg argument.

directory_should_exist(path, msg=None)
Fails unless the given path points to an existing directory.

The path can be given as an exact path or as a glob pattern. See the Glob patterns section for details about
the supported syntax.

The default error message can be overridden with the msg argument.

directory_should_not_exist(path, msg=None)
Fails if the given path points to an existing file.

The path can be given as an exact path or as a glob pattern. See the Glob patterns section for details about
the supported syntax.

The default error message can be overridden with the msg argument.

wait_until_removed(path, timeout=’1 minute’)
Waits until the given file or directory is removed.

The path can be given as an exact path or as a glob pattern. See the Glob patterns section for details about
the supported syntax. If the path is a pattern, the keyword waits until all matching items are removed.

The optional timeout can be used to control the maximum time of waiting. The timeout is given as a
timeout string, e.g. in a format 15 seconds, 1min 10s or just 10. The time string format is described
in an appendix of Robot Framework User Guide.

If the timeout is negative, the keyword is never timed-out. The keyword returns immediately, if the path
does not exist in the first place.

wait_until_created(path, timeout=’1 minute’)
Waits until the given file or directory is created.

The path can be given as an exact path or as a glob pattern. See the Glob patterns section for details about
the supported syntax. If the path is a pattern, the keyword returns when an item matching it is created.

The optional timeout can be used to control the maximum time of waiting. The timeout is given as a
timeout string, e.g. in a format 15 seconds, 1min 10s or just 10. The time string format is described
in an appendix of Robot Framework User Guide.

If the timeout is negative, the keyword is never timed-out. The keyword returns immediately, if the path
already exists.

directory_should_be_empty(path, msg=None)
Fails unless the specified directory is empty.

The default error message can be overridden with the msg argument.

directory_should_not_be_empty(path, msg=None)
Fails if the specified directory is empty.

The default error message can be overridden with the msg argument.

file_should_be_empty(path, msg=None)
Fails unless the specified file is empty.

The default error message can be overridden with the msg argument.

file_should_not_be_empty(path, msg=None)
Fails if the specified file is empty.

The default error message can be overridden with the msg argument.

116 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

create_file(path, content=”, encoding=’UTF-8’)
Creates a file with the given content and encoding.

If the directory where the file is created does not exist, it is automatically created along with possible
missing intermediate directories. Possible existing file is overwritten.

On Windows newline characters (\n) in content are automatically converted to Windows native newline
sequence (\r\n).

See Get File for more information about possible encoding values, including special values SYSTEM
and CONSOLE.

Use Append To File if you want to append to an existing file and Create Binary File if you need to write
bytes without encoding. File Should Not Exist can be used to avoid overwriting existing files.

create_binary_file(path, content)
Creates a binary file with the given content.

If content is given as a Unicode string, it is first converted to bytes character by character. All characters
with ordinal below 256 can be used and are converted to bytes with same values. Using characters with
higher ordinal is an error.

Byte strings, and possible other types, are written to the file as is.

If the directory for the file does not exist, it is created, along with missing intermediate directories.

Use Create File if you want to create a text file using a certain encoding. File Should Not Exist can be used
to avoid overwriting existing files.

append_to_file(path, content, encoding=’UTF-8’)
Appends the given content to the specified file.

If the file exists, the given text is written to its end. If the file does not exist, it is created.

Other than not overwriting possible existing files, this keyword works exactly like Create File. See its
documentation for more details about the usage.

remove_file(path)
Removes a file with the given path.

Passes if the file does not exist, but fails if the path does not point to a regular file (e.g. it points to a
directory).

The path can be given as an exact path or as a glob pattern. See the Glob patterns section for details about
the supported syntax. If the path is a pattern, all files matching it are removed.

remove_files(*paths)
Uses Remove File to remove multiple files one-by-one.

empty_directory(path)
Deletes all the content from the given directory.

Deletes both files and sub-directories, but the specified directory itself if not removed. Use Remove Direc-
tory if you want to remove the whole directory.

create_directory(path)
Creates the specified directory.

Also possible intermediate directories are created. Passes if the directory already exists, but fails if the
path exists and is not a directory.

remove_directory(path, recursive=False)
Removes the directory pointed to by the given path.

3.1. robot package 117

Robot Framework Documentation, Release 6.0.2

If the second argument recursive is given a true value (see Boolean arguments), the directory is re-
moved recursively. Otherwise removing fails if the directory is not empty.

If the directory pointed to by the path does not exist, the keyword passes, but it fails, if the path points
to a file.

copy_file(source, destination)
Copies the source file into the destination.

Source must be a path to an existing file or a glob pattern (see Glob patterns) that matches exactly one file.
How the destination is interpreted is explained below.

1) If the destination is an existing file, the source file is copied over it.

2) If the destination is an existing directory, the source file is copied into it. A possible file with the same
name as the source is overwritten.

3) If the destination does not exist and it ends with a path separator (/ or \), it is considered a directory.
That directory is created and a source file copied into it. Possible missing intermediate directories are also
created.

4) If the destination does not exist and it does not end with a path separator, it is considered a file. If the
path to the file does not exist, it is created.

The resulting destination path is returned.

See also Copy Files, Move File, and Move Files.

move_file(source, destination)
Moves the source file into the destination.

Arguments have exactly same semantics as with Copy File keyword. Destination file path is returned.

If the source and destination are on the same filesystem, rename operation is used. Otherwise file is copied
to the destination filesystem and then removed from the original filesystem.

See also Move Files, Copy File, and Copy Files.

copy_files(*sources_and_destination)
Copies specified files to the target directory.

Source files can be given as exact paths and as glob patterns (see Glob patterns). At least one source must
be given, but it is not an error if it is a pattern that does not match anything.

Last argument must be the destination directory. If the destination does not exist, it will be created.

See also Copy File, Move File, and Move Files.

move_files(*sources_and_destination)
Moves specified files to the target directory.

Arguments have exactly same semantics as with Copy Files keyword.

See also Move File, Copy File, and Copy Files.

copy_directory(source, destination)
Copies the source directory into the destination.

If the destination exists, the source is copied under it. Otherwise the destination directory and the possible
missing intermediate directories are created.

move_directory(source, destination)
Moves the source directory into a destination.

Uses Copy Directory keyword internally, and source and destination arguments have exactly same
semantics as with that keyword.

118 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

get_environment_variable(name, default=None)
Returns the value of an environment variable with the given name.

If no environment variable is found, returns possible default value. If no default value is given, the keyword
fails.

Returned variables are automatically decoded to Unicode using the system encoding.

Note that you can also access environment variables directly using the variable syntax
%{ENV_VAR_NAME}.

set_environment_variable(name, value)
Sets an environment variable to a specified value.

Values are converted to strings automatically. Set variables are automatically encoded using the system
encoding.

append_to_environment_variable(name, *values, **config)
Appends given values to environment variable name.

If the environment variable already exists, values are added after it, and otherwise a new environment
variable is created.

Values are, by default, joined together using the operating system path separator (; on Windows, : else-
where). This can be changed by giving a separator after the values like separator=value. No other
configuration parameters are accepted.

remove_environment_variable(*names)
Deletes the specified environment variable.

Does nothing if the environment variable is not set.

It is possible to remove multiple variables by passing them to this keyword as separate arguments.

environment_variable_should_be_set(name, msg=None)
Fails if the specified environment variable is not set.

The default error message can be overridden with the msg argument.

environment_variable_should_not_be_set(name, msg=None)
Fails if the specified environment variable is set.

The default error message can be overridden with the msg argument.

get_environment_variables()
Returns currently available environment variables as a dictionary.

Both keys and values are decoded to Unicode using the system encoding. Altering the returned dictionary
has no effect on the actual environment variables.

log_environment_variables(level=’INFO’)
Logs all environment variables using the given log level.

Environment variables are also returned the same way as with Get Environment Variables keyword.

join_path(base, *parts)
Joins the given path part(s) to the given base path.

The path separator (/ or \) is inserted when needed and the possible absolute paths handled as expected.
The resulted path is also normalized.

• ${path} = ‘my/path’

• ${p2} = ‘my/path’

• ${p3} = ‘my/path/my/file.txt’

3.1. robot package 119

Robot Framework Documentation, Release 6.0.2

• ${p4} = ‘/path’

• ${p5} = ‘/my/path2’

join_paths(base, *paths)
Joins given paths with base and returns resulted paths.

See Join Path for more information.

• @{p1} = [‘base/example’, ‘base/other’]

• @{p2} = [‘/example’, ‘/my/base/other’]

• @{p3} = [‘my/base/example/path’, ‘my/base/other’, ‘my/base/one/more’]

normalize_path(path, case_normalize=False)
Normalizes the given path.

• Collapses redundant separators and up-level references.

• Converts / to \ on Windows.

• Replaces initial ~ or ~user by that user’s home directory.

• If case_normalize is given a true value (see Boolean arguments) on Windows, converts the path
to all lowercase.

• Converts pathlib.Path instances to str.

• ${path1} = ‘abc’

• ${path2} = ‘def’

• ${path3} = ‘abc/def/ghi’

• ${path4} = ‘/home/robot/stuff’

On Windows result would use \ instead of / and home directory would be different.

split_path(path)
Splits the given path from the last path separator (/ or \).

The given path is first normalized (e.g. a possible trailing path separator is removed, special directories ..
and . removed). The parts that are split are returned as separate components.

• ${path1} = ‘abc’ & ${dir} = ‘def’

• ${path2} = ‘abc/def’ & ${file} = ‘ghi.txt’

• ${path3} = ‘def’ & ${d2} = ‘ghi’

split_extension(path)
Splits the extension from the given path.

The given path is first normalized (e.g. possible trailing path separators removed, special directories ..
and . removed). The base path and extension are returned as separate components so that the dot used
as an extension separator is removed. If the path contains no extension, an empty string is returned for it.
Possible leading and trailing dots in the file name are never considered to be extension separators.

• ${path} = ‘file’ & ${ext} = ‘extension’

• ${p2} = ‘path/file’ & ${e2} = ‘ext’

• ${p3} = ‘path/file’ & ${e3} = ‘’

• ${p4} = ‘p2/file’ & ${e4} = ‘ext’

• ${p5} = ‘path/.file’ & ${e5} = ‘ext’

120 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

• ${p6} = ‘path/.file’ & ${e6} = ‘’

get_modified_time(path, format=’timestamp’)
Returns the last modification time of a file or directory.

How time is returned is determined based on the given format string as follows. Note that all checks are
case-insensitive. Returned time is also automatically logged.

1) If format contains the word epoch, the time is returned in seconds after the UNIX epoch. The
return value is always an integer.

2) If format contains any of the words year, month, day, hour, min or sec, only the selected
parts are returned. The order of the returned parts is always the one in the previous sentence and the
order of the words in format is not significant. The parts are returned as zero-padded strings (e.g.
May -> 05).

3) Otherwise, and by default, the time is returned as a timestamp string in the format 2006-02-24
15:08:31.

2006-03-29 15:06:21): - ${time} = ‘2006-03-29 15:06:21’ - ${secs} = 1143637581 - ${year} = ‘2006’ -
${y} = ‘2006’ & ${d} = ‘29’ - @{time} = [‘2006’, ‘03’, ‘29’, ‘15’, ‘06’, ‘21’]

set_modified_time(path, mtime)
Sets the file modification and access times.

Changes the modification and access times of the given file to the value determined by mtime. The
time can be given in different formats described below. Note that all checks involving strings are case-
insensitive. Modified time can only be set to regular files.

1) If mtime is a number, or a string that can be converted to a number, it is interpreted as seconds
since the UNIX epoch (1970-01-01 00:00:00 UTC). This documentation was originally written about
1177654467 seconds after the epoch.

2) If mtime is a timestamp, that time will be used. Valid timestamp formats are YYYY-MM-DD
hh:mm:ss and YYYYMMDD hhmmss.

3) If mtime is equal to NOW, the current local time is used.

4) If mtime is equal to UTC, the current time in [http://en.wikipedia.org/
wiki/Coordinated_Universal_Time|UTC] is used.

5) If mtime is in the format like NOW - 1 day or UTC + 1 hour 30 min, the current local/UTC
time plus/minus the time specified with the time string is used. The time string format is described in
an appendix of Robot Framework User Guide.

get_file_size(path)
Returns and logs file size as an integer in bytes.

list_directory(path, pattern=None, absolute=False)
Returns and logs items in a directory, optionally filtered with pattern.

File and directory names are returned in case-sensitive alphabetical order, e.g. ['A Name',
'Second', 'a lower case name', 'one more']. Implicit directories . and .. are not re-
turned. The returned items are automatically logged.

File and directory names are returned relative to the given path (e.g. 'file.txt') by default. If you
want them be returned in absolute format (e.g. '/home/robot/file.txt'), give the absolute
argument a true value (see Boolean arguments).

If pattern is given, only items matching it are returned. The pattern is considered to be a _glob pattern_
and the full syntax is explained in the Glob patterns section. With this keyword matching is always case-
sensitive.

3.1. robot package 121

http://en.wikipedia.org/wiki
http://en.wikipedia.org/wiki

Robot Framework Documentation, Release 6.0.2

list_files_in_directory(path, pattern=None, absolute=False)
Wrapper for List Directory that returns only files.

list_directories_in_directory(path, pattern=None, absolute=False)
Wrapper for List Directory that returns only directories.

count_items_in_directory(path, pattern=None)
Returns and logs the number of all items in the given directory.

The argument pattern has the same semantics as with List Directory keyword. The count is returned as
an integer, so it must be checked e.g. with the built-in keyword Should Be Equal As Integers.

count_files_in_directory(path, pattern=None)
Wrapper for Count Items In Directory returning only file count.

count_directories_in_directory(path, pattern=None)
Wrapper for Count Items In Directory returning only directory count.

touch(path)
Emulates the UNIX touch command.

Creates a file, if it does not exist. Otherwise changes its access and modification times to the current time.

Fails if used with the directories or the parent directory of the given file does not exist.

robot.libraries.Process module

class robot.libraries.Process.Process
Bases: object

Robot Framework library for running processes.

This library utilizes Python’s [http://docs.python.org/library/subprocess.html|subprocess] module and its [http:
//docs.python.org/library/subprocess.html#popen-constructor|Popen] class.

The library has following main usages:

• Running processes in system and waiting for their completion using Run Process keyword.

• Starting processes on background using Start Process.

• Waiting started process to complete using Wait For Process or stopping them with Terminate Process or
Terminate All Processes.

== Table of contents ==

%TOC%

= Specifying command and arguments =

Both Run Process and Start Process accept the command to execute and all arguments passed to the command
as separate arguments. This makes usage convenient and also allows these keywords to automatically escape
possible spaces and other special characters in commands and arguments. Notice that if a command accepts
options that themselves accept values, these options and their values must be given as separate arguments.

When running processes in shell, it is also possible to give the whole command to execute as a single string.
The command can then contain multiple commands to be run together. When using this approach, the caller is
responsible on escaping.

Possible non-string arguments are converted to strings automatically.

= Process configuration =

122 Chapter 3. All packages

http://docs.python.org/library/subprocess
http://docs.python.org/library/subprocess.html#popen
http://docs.python.org/library/subprocess.html#popen

Robot Framework Documentation, Release 6.0.2

Run Process and Start Process keywords can be configured using optional **configuration keyword ar-
guments. Configuration arguments must be given after other arguments passed to these keywords and must use
syntax like name=value. Available configuration arguments are listed below and discussed further in sections
afterwards.

Note that because **configuration is passed using name=value syntax, possible equal signs in other
arguments passed to Run Process and Start Process must be escaped with a backslash like name\=value. See
Run Process for an example.

== Running processes in shell ==

The shell argument specifies whether to run the process in a shell or not. By default shell is not used, which
means that shell specific commands, like copy and dir on Windows, are not available. You can, however, run
shell scripts and batch files without using a shell.

Giving the shell argument any non-false value, such as shell=True, changes the program to be executed
in a shell. It allows using the shell capabilities, but can also make the process invocation operating system
dependent. Having a shell between the actually started process and this library can also interfere communication
with the process such as stopping it and reading its outputs. Because of these problems, it is recommended to
use the shell only when absolutely necessary.

When using a shell it is possible to give the whole command to execute as a single string. See Specifying
command and arguments section for examples and more details in general.

== Current working directory ==

By default, the child process will be executed in the same directory as the parent process, the process running
Robot Framework, is executed. This can be changed by giving an alternative location using the cwd argument.
Forward slashes in the given path are automatically converted to backslashes on Windows.

Standard output and error streams, when redirected to files, are also relative to the current working directory
possibly set using the cwd argument.

== Environment variables ==

By default the child process will get a copy of the parent process’s environment variables. The env argument
can be used to give the child a custom environment as a Python dictionary. If there is a need to specify only
certain environment variable, it is possible to use the env:<name>=<value> format to set or override only
that named variables. It is also possible to use these two approaches together.

== Standard output and error streams ==

By default processes are run so that their standard output and standard error streams are kept in the memory.
This works fine normally, but if there is a lot of output, the output buffers may get full and the program can
hang.

To avoid the above mentioned problems, it is possible to use stdout and stderr arguments to specify files
on the file system where to redirect the outputs. This can also be useful if other processes or other keywords
need to read or manipulate the outputs somehow.

Given stdout and stderr paths are relative to the current working directory. Forward slashes in the given
paths are automatically converted to backslashes on Windows.

As a special feature, it is possible to redirect the standard error to the standard output by using
stderr=STDOUT.

Regardless are outputs redirected to files or not, they are accessible through the result object returned when the
process ends. Commands are expected to write outputs using the console encoding, but output encoding can be
configured using the output_encoding argument if needed.

If you are not interested in outputs at all, you can explicitly ignore them by using a special value DEVNULL both
with stdout and stderr. For example, stdout=DEVNULL is the same as redirecting output on console

3.1. robot package 123

Robot Framework Documentation, Release 6.0.2

with > /dev/null on UNIX-like operating systems or > NUL on Windows. This way the process will not
hang even if there would be a lot of output, but naturally output is not available after execution either.

Support for the special value DEVNULL is new in Robot Framework 3.2.

Note that the created output files are not automatically removed after the test run. The user is responsible to
remove them if needed.

== Standard input stream ==

The stdin argument makes it possible to pass information to the standard input stream of the started process.
How its value is interpreted is explained in the table below.

Values PIPE and NONE are internally mapped directly to subprocess.PIPE and None, respectively,
when calling [https://docs.python.org/3/library/subprocess.html#subprocess.Popen|subprocess.Popen]. The de-
fault behavior may change from PIPE to NONE in future releases. If you depend on the PIPE behavior, it is a
good idea to use it explicitly.

The support to configure stdin is new in Robot Framework 4.1.2.

== Output encoding ==

Executed commands are, by default, expected to write outputs to the standard output and error streams using the
encoding used by the system console. If the command uses some other encoding, that can be configured using
the output_encoding argument. This is especially useful on Windows where the console uses a different
encoding than rest of the system, and many commands use the general system encoding instead of the console
encoding.

The value used with the output_encoding argument must be a valid encoding and must match the encoding
actually used by the command. As a convenience, it is possible to use strings CONSOLE and SYSTEM to specify
that the console or system encoding is used, respectively. If produced outputs use different encoding then
configured, values got through the result object will be invalid.

== Alias ==

A custom name given to the process that can be used when selecting the active process.

= Active process =

The library keeps record which of the started processes is currently active. By default it is the latest process
started with Start Process, but Switch Process can be used to activate a different process. Using Run Process
does not affect the active process.

The keywords that operate on started processes will use the active process by default, but it is possible to
explicitly select a different process using the handle argument. The handle can be an alias explicitly given
to Start Process or the process object returned by it.

= Result object =

Run Process, Wait For Process and Terminate Process keywords return a result object that contains information
about the process execution as its attributes. The same result object, or some of its attributes, can also be get
using Get Process Result keyword. Attributes available in the object are documented in the table below.

= Boolean arguments =

Some keywords accept arguments that are handled as Boolean values true or false. If such an argument is
given as a string, it is considered false if it is an empty string or equal to FALSE, NONE, NO, OFF or 0, case-
insensitively. Other strings are considered true regardless their value, and other argument types are tested using
the same [http://docs.python.org/library/stdtypes.html#truth|rules as in Python].

True examples:

False examples:

124 Chapter 3. All packages

https://docs.python.org/3/library/subprocess.html#subprocess
http://docs.python.org/library/stdtypes

Robot Framework Documentation, Release 6.0.2

Considering OFF and 0 false is new in Robot Framework 3.1.

= Example =

ROBOT_LIBRARY_SCOPE = 'GLOBAL'

ROBOT_LIBRARY_VERSION = '6.0.2'

TERMINATE_TIMEOUT = 30

KILL_TIMEOUT = 10

run_process(command, *arguments, **configuration)
Runs a process and waits for it to complete.

command and *arguments specify the command to execute and arguments passed to it. See Specifying
command and arguments for more details.

**configuration contains additional configuration related to starting processes and waiting for them
to finish. See Process configuration for more details about configuration related to starting processes.
Configuration related to waiting for processes consists of timeout and on_timeout arguments that
have same semantics as with Wait For Process keyword. By default there is no timeout, and if timeout is
defined the default action on timeout is terminate.

Returns a result object containing information about the execution.

Note that possible equal signs in *arguments must be escaped with a backslash (e.g. name\=value)
to avoid them to be passed in as **configuration.

This keyword does not change the active process.

start_process(command, *arguments, **configuration)
Starts a new process on background.

See Specifying command and arguments and Process configuration for more information about the argu-
ments, and Run Process keyword for related examples.

Makes the started process new active process. Returns the created [https://docs.python.org/3/library/
subprocess.html#popen-constructor | subprocess.Popen] object which can be be used later to active this
process. Popen attributes like pid can also be accessed directly.

Processes are started so that they create a new process group. This allows terminating and sending signals
to possible child processes.

Start process and wait for it to end later using alias:

Use returned Popen object:

Use started process in a pipeline with another process:

Returning a subprocess.Popen object is new in Robot Framework 5.0. Earlier versions returned a
generic handle and getting the process object required using Get Process Object separately.

is_process_running(handle=None)
Checks is the process running or not.

If handle is not given, uses the current active process.

Returns True if the process is still running and False otherwise.

3.1. robot package 125

https://docs.python.org/3/library/subprocess.html#popen-constructor
https://docs.python.org/3/library/subprocess.html#popen-constructor

Robot Framework Documentation, Release 6.0.2

process_should_be_running(handle=None, error_message=’Process is not running.’)
Verifies that the process is running.

If handle is not given, uses the current active process.

Fails if the process has stopped.

process_should_be_stopped(handle=None, error_message=’Process is running.’)
Verifies that the process is not running.

If handle is not given, uses the current active process.

Fails if the process is still running.

wait_for_process(handle=None, timeout=None, on_timeout=’continue’)
Waits for the process to complete or to reach the given timeout.

The process to wait for must have been started earlier with Start Process. If handle is not given, uses the
current active process.

timeout defines the maximum time to wait for the process. It can be given in [http://robotframework.org/
robotframework/latest/RobotFrameworkUserGuide.html#time-format| various time formats] supported by
Robot Framework, for example, 42, 42 s, or 1 minute 30 seconds. The timeout is ignored if it is
Python None (default), string NONE (case-insensitively), zero, or negative.

on_timeout defines what to do if the timeout occurs. Possible values and corresponding actions are
explained in the table below. Notice that reaching the timeout never fails the test.

See Terminate Process keyword for more details how processes are terminated and killed.

If the process ends before the timeout or it is terminated or killed, this keyword returns a result object
containing information about the execution. If the process is left running, Python None is returned instead.

Ignoring timeout if it is string NONE, zero, or negative is new in Robot Framework 3.2.

terminate_process(handle=None, kill=False)
Stops the process gracefully or forcefully.

If handle is not given, uses the current active process.

By default first tries to stop the process gracefully. If the process does not stop in 30 seconds, or kill
argument is given a true value, (see Boolean arguments) kills the process forcefully. Stops also all the
child processes of the originally started process.

Waits for the process to stop after terminating it. Returns a result object containing information about the
execution similarly as Wait For Process.

On Unix-like machines graceful termination is done using TERM (15) signal and killing using KILL
(9). Use Send Signal To Process instead if you just want to send either of these signals without waiting
for the process to stop.

On Windows graceful termination is done using CTRL_BREAK_EVENT event and killing using Win32
API function TerminateProcess().

Limitations: - On Windows forceful kill only stops the main process, not possible

child processes.

terminate_all_processes(kill=False)
Terminates all still running processes started by this library.

This keyword can be used in suite teardown or elsewhere to make sure that all processes are stopped,

By default tries to terminate processes gracefully, but can be configured to forcefully kill them immediately.
See Terminate Process that this keyword uses internally for more details.

126 Chapter 3. All packages

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#time
http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#time

Robot Framework Documentation, Release 6.0.2

send_signal_to_process(signal, handle=None, group=False)
Sends the given signal to the specified process.

If handle is not given, uses the current active process.

Signal can be specified either as an integer as a signal name. In the latter case it is possible to give the
name both with or without SIG prefix, but names are case-sensitive. For example, all the examples below
send signal INT (2):

This keyword is only supported on Unix-like machines, not on Windows. What signals are supported
depends on the system. For a list of existing signals on your system, see the Unix man pages related to
signal handling (typically man signal or man 7 signal).

By default sends the signal only to the parent process, not to possible child processes started by it. Notice
that when running processes in shell, the shell is the parent process and it depends on the system does the
shell propagate the signal to the actual started process.

To send the signal to the whole process group, group argument can be set to any true value (see Boolean
arguments).

get_process_id(handle=None)
Returns the process ID (pid) of the process as an integer.

If handle is not given, uses the current active process.

Starting from Robot Framework 5.0, it is also possible to directly access the pid attribute of the
subprocess.Popen object returned by Start Process like ${process.pid}.

get_process_object(handle=None)
Return the underlying subprocess.Popen object.

If handle is not given, uses the current active process.

Starting from Robot Framework 5.0, Start Process returns the created subprocess.Popen object, not
a generic handle, making this keyword mostly redundant.

get_process_result(handle=None, rc=False, stdout=False, stderr=False, stdout_path=False,
stderr_path=False)

Returns the specified result object or some of its attributes.

The given handle specifies the process whose results should be returned. If no handle is given, results
of the current active process are returned. In either case, the process must have been finishes before this
keyword can be used. In practice this means that processes started with Start Process must be finished
either with Wait For Process or Terminate Process before using this keyword.

If no other arguments than the optional handle are given, a whole result object is returned. If one or
more of the other arguments are given any true value, only the specified attributes of the result object are
returned. These attributes are always returned in the same order as arguments are specified in the keyword
signature. See Boolean arguments section for more details about true and false values.

Although getting results of a previously executed process can be handy in general, the main use case for
this keyword is returning results over the remote library interface. The remote interface does not support
returning the whole result object, but individual attributes can be returned without problems.

switch_process(handle)
Makes the specified process the current active process.

The handle can be an identifier returned by Start Process or the alias given to it explicitly.

split_command_line(args, escaping=False)
Splits command line string into a list of arguments.

3.1. robot package 127

Robot Framework Documentation, Release 6.0.2

String is split from spaces, but argument surrounded in quotes may contain spaces in them. If escaping
is given a true value, then backslash is treated as an escape character. It can escape unquoted spaces, quotes
inside quotes, and so on, but it also requires using double backslashes when using Windows paths.

join_command_line(*args)
Joins arguments into one command line string.

In resulting command line string arguments are delimited with a space, arguments containing spaces are
surrounded with quotes, and possible quotes are escaped with a backslash.

If this keyword is given only one argument and that is a list like object, then the values of that list are
joined instead.

class robot.libraries.Process.ExecutionResult(process, stdout, stderr, stdin=None,
rc=None, output_encoding=None)

Bases: object

stdout

stderr

close_streams()

class robot.libraries.Process.ProcessConfiguration(cwd=None, shell=False, std-
out=None, stderr=None,
stdin=’PIPE’, out-
put_encoding=’CONSOLE’,
alias=None, env=None, **rest)

Bases: object

get_command(command, arguments)

popen_config

result_config

robot.libraries.Remote module

class robot.libraries.Remote.Remote(uri=’http://127.0.0.1:8270’, timeout=None)
Bases: object

Connects to a remote server at uri.

Optional timeout can be used to specify a timeout to wait when initially connecting to the server and if a
connection accidentally closes. Timeout can be given as seconds (e.g. 60) or using Robot Framework time
format (e.g. 60s, 2 minutes 10 seconds).

The default timeout is typically several minutes, but it depends on the operating system and its configuration.
Notice that setting a timeout that is shorter than keyword execution time will interrupt the keyword.

ROBOT_LIBRARY_SCOPE = 'TEST SUITE'

get_keyword_names()

get_keyword_arguments(name)

get_keyword_types(name)

get_keyword_tags(name)

get_keyword_documentation(name)

run_keyword(name, args, kwargs)

128 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

class robot.libraries.Remote.ArgumentCoercer
Bases: object

binary = re.compile('[\x00-\x08\x0b\x0c\x0e-\x1f]')

non_ascii = re.compile('[\x80-ÿ]')

coerce(argument)

class robot.libraries.Remote.RemoteResult(result)
Bases: object

class robot.libraries.Remote.XmlRpcRemoteClient(uri, timeout=None)
Bases: object

get_library_information()

get_keyword_names()

get_keyword_arguments(name)

get_keyword_types(name)

get_keyword_tags(name)

get_keyword_documentation(name)

run_keyword(name, args, kwargs)

class robot.libraries.Remote.TimeoutHTTPTransport(use_datetime=0, timeout=None)
Bases: xmlrpc.client.Transport

make_connection(host)

accept_gzip_encoding = True

close()

encode_threshold = None

get_host_info(host)

getparser()

parse_response(response)

request(host, handler, request_body, verbose=False)

send_content(connection, request_body)

send_headers(connection, headers)

send_request(host, handler, request_body, debug)

single_request(host, handler, request_body, verbose=False)

user_agent = 'Python-xmlrpc/3.7'

class robot.libraries.Remote.TimeoutHTTPSTransport(use_datetime=0, timeout=None)
Bases: robot.libraries.Remote.TimeoutHTTPTransport

accept_gzip_encoding = True

close()

encode_threshold = None

get_host_info(host)

getparser()

3.1. robot package 129

Robot Framework Documentation, Release 6.0.2

make_connection(host)

parse_response(response)

request(host, handler, request_body, verbose=False)

send_content(connection, request_body)

send_headers(connection, headers)

send_request(host, handler, request_body, debug)

single_request(host, handler, request_body, verbose=False)

user_agent = 'Python-xmlrpc/3.7'

robot.libraries.Reserved module

class robot.libraries.Reserved.Reserved
Bases: object

ROBOT_LIBRARY_SCOPE = 'GLOBAL'

robot.libraries.Screenshot module

class robot.libraries.Screenshot.Screenshot(screenshot_directory=None, screen-
shot_module=None)

Bases: object

Library for taking screenshots on the machine where tests are executed.

Taking the actual screenshot requires a suitable tool or module that may need to be installed separately. Taking
screenshots also requires tests to be run with a physical or virtual display.

== Table of contents ==

%TOC%

= Supported screenshot taking tools and modules =

How screenshots are taken depends on the operating system. On OSX screenshots are taken using the built-in
screencapture utility. On other operating systems you need to have one of the following tools or Python
modules installed. You can specify the tool/module to use when importing the library. If no tool or module is
specified, the first one found will be used.

• wxPython :: http://wxpython.org :: Generic Python GUI toolkit.

• PyGTK :: http://pygtk.org :: This module is available by default on most Linux distributions.

• Pillow :: http://python-pillow.github.io :: Only works on Windows. Also the original PIL package is
supported.

• Scrot :: http://en.wikipedia.org/wiki/Scrot :: Not used on Windows. Install with apt-get install
scrot or similar.

= Where screenshots are saved =

By default screenshots are saved into the same directory where the Robot Framework log file is written. If no
log is created, screenshots are saved into the directory where the XML output file is written.

It is possible to specify a custom location for screenshots using screenshot_directory argument when
importing the library and using Set Screenshot Directory keyword during execution. It is also possible to save
screenshots using an absolute path.

130 Chapter 3. All packages

http://wxpython.org
http://pygtk.org
http://python-pillow.github.io
http://en.wikipedia.org/wiki/Scrot

Robot Framework Documentation, Release 6.0.2

= ScreenCapLibrary =

[https://github.com/mihaiparvu/ScreenCapLibrary|ScreenCapLibrary] is an external Robot Framework library
that can be used as an alternative, which additionally provides support for multiple formats, adjusting the quality,
using GIFs and video capturing.

Configure where screenshots are saved.

If screenshot_directory is not given, screenshots are saved into same directory as the log file. The
directory can also be set using Set Screenshot Directory keyword.

screenshot_module specifies the module or tool to use when using this library outside OSX. Possible
values are wxPython, PyGTK, PIL and scrot, case-insensitively. If no value is given, the first module/tool
found is used in that order.

ROBOT_LIBRARY_SCOPE = 'TEST SUITE'

ROBOT_LIBRARY_VERSION = '6.0.2'

set_screenshot_directory(path)
Sets the directory where screenshots are saved.

It is possible to use / as a path separator in all operating systems. Path to the old directory is returned.

The directory can also be set in importing.

take_screenshot(name=’screenshot’, width=’800px’)
Takes a screenshot in JPEG format and embeds it into the log file.

Name of the file where the screenshot is stored is derived from the given name. If the name ends with
extension .jpg or .jpeg, the screenshot will be stored with that exact name. Otherwise a unique name
is created by adding an underscore, a running index and an extension to the name.

The name will be interpreted to be relative to the directory where the log file is written. It is also possible
to use absolute paths. Using / as a path separator works in all operating systems.

width specifies the size of the screenshot in the log file.

The path where the screenshot is saved is returned.

take_screenshot_without_embedding(name=’screenshot’)
Takes a screenshot and links it from the log file.

This keyword is otherwise identical to Take Screenshot but the saved screenshot is not embedded into the
log file. The screenshot is linked so it is nevertheless easily available.

class robot.libraries.Screenshot.ScreenshotTaker(module_name=None)
Bases: object

test(path=None)

robot.libraries.String module

class robot.libraries.String.String
Bases: object

A library for string manipulation and verification.

String is Robot Framework’s standard library for manipulating strings (e.g. Replace String Using Regexp,
Split To Lines) and verifying their contents (e.g. Should Be String).

Following keywords from BuiltIn library can also be used with strings:

• Catenate

3.1. robot package 131

https://github.com/mihaiparvu

Robot Framework Documentation, Release 6.0.2

• Get Length

• Length Should Be

• Should (Not) Be Empty

• Should (Not) Be Equal (As Strings/Integers/Numbers)

• Should (Not) Match (Regexp)

• Should (Not) Contain

• Should (Not) Start With

• Should (Not) End With

• Convert To String

• Convert To Bytes

ROBOT_LIBRARY_SCOPE = 'GLOBAL'

ROBOT_LIBRARY_VERSION = '6.0.2'

convert_to_lower_case(string)
Converts string to lower case.

Uses Python’s standard [https://docs.python.org/library/stdtypes.html#str.lower|lower()] method.

convert_to_upper_case(string)
Converts string to upper case.

Uses Python’s standard [https://docs.python.org/library/stdtypes.html#str.upper|upper()] method.

convert_to_title_case(string, exclude=None)
Converts string to title case.

Uses the following algorithm:

• Split the string to words from whitespace characters (spaces, newlines, etc.).

• Exclude words that are not all lower case. This preserves, for example, “OK” and “iPhone”.

• Exclude also words listed in the optional exclude argument.

• Title case the first alphabetical character of each word that has not been excluded.

• Join all words together so that original whitespace is preserved.

Explicitly excluded words can be given as a list or as a string with words separated by a comma and an
optional space. Excluded words are actually considered to be regular expression patterns, so it is possible
to use something like “example[.!?]?” to match the word “example” on it own and also if followed by “.”,
“!” or “?”. See BuiltIn.Should Match Regexp for more information about Python regular expression syntax
in general and how to use it in Robot Framework data in particular.

The reason this keyword does not use Python’s standard [https://docs.python.org/library/stdtypes.html#
str.title|title()] method is that it can yield undesired results, for example, if strings contain upper case
letters or special characters like apostrophes. It would, for example, convert “it’s an OK iPhone” to “It’S
An Ok Iphone”.

New in Robot Framework 3.2.

encode_string_to_bytes(string, encoding, errors=’strict’)
Encodes the given Unicode string to bytes using the given encoding.

errors argument controls what to do if encoding some characters fails. All values accepted by encode
method in Python are valid, but in practice the following values are most useful:

132 Chapter 3. All packages

https://docs.python.org/library/stdtypes.html#str
https://docs.python.org/library/stdtypes.html#str
https://docs.python.org/library/stdtypes.html#str
https://docs.python.org/library/stdtypes.html#str

Robot Framework Documentation, Release 6.0.2

• strict: fail if characters cannot be encoded (default)

• ignore: ignore characters that cannot be encoded

• replace: replace characters that cannot be encoded with a replacement character

Use Convert To Bytes in BuiltIn if you want to create bytes based on character or integer sequences.
Use Decode Bytes To String if you need to convert byte strings to Unicode strings and Convert To String
in BuiltIn if you need to convert arbitrary objects to Unicode.

decode_bytes_to_string(bytes, encoding, errors=’strict’)
Decodes the given bytes to a Unicode string using the given encoding.

errors argument controls what to do if decoding some bytes fails. All values accepted by decode
method in Python are valid, but in practice the following values are most useful:

• strict: fail if characters cannot be decoded (default)

• ignore: ignore characters that cannot be decoded

• replace: replace characters that cannot be decoded with a replacement character

Use Encode String To Bytes if you need to convert Unicode strings to byte strings, and Convert To String
in BuiltIn if you need to convert arbitrary objects to Unicode strings.

format_string(template, *positional, **named)
Formats a template using the given positional and named arguments.

The template can be either be a string or an absolute path to an existing file. In the latter case the file is
read and its contents are used as the template. If the template file contains non-ASCII characters, it must
be encoded using UTF-8.

The template is formatted using Python’s [https://docs.python.org/library/string.html#format-string-
syntax|format string syntax]. Placeholders are marked using {} with possible field name and format
specification inside. Literal curly braces can be inserted by doubling them like {{ and }}.

New in Robot Framework 3.1.

get_line_count(string)
Returns and logs the number of lines in the given string.

split_to_lines(string, start=0, end=None)
Splits the given string to lines.

It is possible to get only a selection of lines from start to end so that start index is inclusive and
end is exclusive. Line numbering starts from 0, and it is possible to use negative indices to refer to lines
from the end.

Lines are returned without the newlines. The number of returned lines is automatically logged.

Use Get Line if you only need to get a single line.

get_line(string, line_number)
Returns the specified line from the given string.

Line numbering starts from 0 and it is possible to use negative indices to refer to lines from the end. The
line is returned without the newline character.

Use Split To Lines if all lines are needed.

get_lines_containing_string(string, pattern, case_insensitive=False)
Returns lines of the given string that contain the pattern.

The pattern is always considered to be a normal string, not a glob or regexp pattern. A line matches if
the pattern is found anywhere on it.

3.1. robot package 133

https://docs.python.org/library/string.html#format-string

Robot Framework Documentation, Release 6.0.2

The match is case-sensitive by default, but giving case_insensitive a true value makes it case-
insensitive. The value is considered true if it is a non-empty string that is not equal to false, none or
no. If the value is not a string, its truth value is got directly in Python.

Lines are returned as one string catenated back together with newlines. Possible trailing newline is never
returned. The number of matching lines is automatically logged.

See Get Lines Matching Pattern and Get Lines Matching Regexp if you need more complex pattern match-
ing.

get_lines_matching_pattern(string, pattern, case_insensitive=False)
Returns lines of the given string that match the pattern.

The pattern is a _glob pattern_ where:

A line matches only if it matches the pattern fully.

The match is case-sensitive by default, but giving case_insensitive a true value makes it case-
insensitive. The value is considered true if it is a non-empty string that is not equal to false, none or
no. If the value is not a string, its truth value is got directly in Python.

Lines are returned as one string catenated back together with newlines. Possible trailing newline is never
returned. The number of matching lines is automatically logged.

See Get Lines Matching Regexp if you need more complex patterns and Get Lines Containing String if
searching literal strings is enough.

get_lines_matching_regexp(string, pattern, partial_match=False, flags=None)
Returns lines of the given string that match the regexp pattern.

See BuiltIn.Should Match Regexp for more information about Python regular expression syntax in general
and how to use it in Robot Framework data in particular.

Lines match only if they match the pattern fully by default, but partial matching can be enabled by giving
the partial_match argument a true value. The value is considered true if it is a non-empty string that
is not equal to false, none or no. If the value is not a string, its truth value is got directly in Python.

If the pattern is empty, it matches only empty lines by default. When partial matching is enabled, empty
pattern matches all lines.

Possible flags altering how the expression is parsed (e.g. re.IGNORECASE, re.VERBOSE) can be given
using the flags argument (e.g. flags=IGNORECASE | VERBOSE) or embedded to the pattern (e.g.
(?ix)pattern).

Lines are returned as one string concatenated back together with newlines. Possible trailing newline is
never returned. The number of matching lines is automatically logged.

See Get Lines Matching Pattern and Get Lines Containing String if you do not need the full regular
expression powers (and complexity).

The flags argument is new in Robot Framework 6.0.

get_regexp_matches(string, pattern, *groups, flags=None)
Returns a list of all non-overlapping matches in the given string.

string is the string to find matches from and pattern is the regular expression. See BuiltIn.Should
Match Regexp for more information about Python regular expression syntax in general and how to use it
in Robot Framework data in particular.

If no groups are used, the returned list contains full matches. If one group is used, the list contains only
contents of that group. If multiple groups are used, the list contains tuples that contain individual group
contents. All groups can be given as indexes (starting from 1) and named groups also as names.

134 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

Possible flags altering how the expression is parsed (e.g. re.IGNORECASE, re.MULTILINE) can be
given using the flags argument (e.g. flags=IGNORECASE | MULTILINE) or embedded to the
pattern (e.g. (?im)pattern).

The flags argument is new in Robot Framework 6.0.

replace_string(string, search_for, replace_with, count=-1)
Replaces search_for in the given string with replace_with.

search_for is used as a literal string. See Replace String Using Regexp if more powerful pattern
matching is needed. If you need to just remove a string see Remove String.

If the optional argument count is given, only that many occurrences from left are replaced. Negative
count means that all occurrences are replaced (default behaviour) and zero means that nothing is done.

A modified version of the string is returned and the original string is not altered.

replace_string_using_regexp(string, pattern, replace_with, count=-1, flags=None)
Replaces pattern in the given string with replace_with.

This keyword is otherwise identical to Replace String, but the pattern to search for is considered to
be a regular expression. See BuiltIn.Should Match Regexp for more information about Python regular
expression syntax in general and how to use it in Robot Framework data in particular.

Possible flags altering how the expression is parsed (e.g. re.IGNORECASE, re.MULTILINE) can be
given using the flags argument (e.g. flags=IGNORECASE | MULTILINE) or embedded to the
pattern (e.g. (?im)pattern).

If you need to just remove a string see Remove String Using Regexp.

The flags argument is new in Robot Framework 6.0.

remove_string(string, *removables)
Removes all removables from the given string.

removables are used as literal strings. Each removable will be matched to a temporary string from
which preceding removables have been already removed. See second example below.

Use Remove String Using Regexp if more powerful pattern matching is needed. If only a certain number
of matches should be removed, Replace String or Replace String Using Regexp can be used.

A modified version of the string is returned and the original string is not altered.

remove_string_using_regexp(string, *patterns, flags=None)
Removes patterns from the given string.

This keyword is otherwise identical to Remove String, but the patterns to search for are considered to be
a regular expression. See Replace String Using Regexp for more information about the regular expression
syntax. That keyword can also be used if there is a need to remove only a certain number of occurrences.

Possible flags altering how the expression is parsed (e.g. re.IGNORECASE, re.MULTILINE) can be
given using the flags argument (e.g. flags=IGNORECASE | MULTILINE) or embedded to the
pattern (e.g. (?im)pattern).

The flags argument is new in Robot Framework 6.0.

split_string(string, separator=None, max_split=-1)
Splits the string using separator as a delimiter string.

If a separator is not given, any whitespace string is a separator. In that case also possible consecutive
whitespace as well as leading and trailing whitespace is ignored.

Split words are returned as a list. If the optional max_split is given, at most max_split splits are
done, and the returned list will have maximum max_split + 1 elements.

3.1. robot package 135

Robot Framework Documentation, Release 6.0.2

See Split String From Right if you want to start splitting from right, and Fetch From Left and Fetch From
Right if you only want to get first/last part of the string.

split_string_from_right(string, separator=None, max_split=-1)
Splits the string using separator starting from right.

Same as Split String, but splitting is started from right. This has an effect only when max_split is given.

split_string_to_characters(string)
Splits the given string to characters.

fetch_from_left(string, marker)
Returns contents of the string before the first occurrence of marker.

If the marker is not found, whole string is returned.

See also Fetch From Right, Split String and Split String From Right.

fetch_from_right(string, marker)
Returns contents of the string after the last occurrence of marker.

If the marker is not found, whole string is returned.

See also Fetch From Left, Split String and Split String From Right.

generate_random_string(length=8, chars=’[LETTERS][NUMBERS]’)
Generates a string with a desired length from the given chars.

length can be given as a number, a string representation of a number, or as a range of numbers, such as
5-10. When a range of values is given the range will be selected by random within the range.

The population sequence chars contains the characters to use when generating the random string. It can
contain any characters, and it is possible to use special markers explained in the table below:

Giving length as a range of values is new in Robot Framework 5.0.

get_substring(string, start, end=None)
Returns a substring from start index to end index.

The start index is inclusive and end is exclusive. Indexing starts from 0, and it is possible to use
negative indices to refer to characters from the end.

strip_string(string, mode=’both’, characters=None)
Remove leading and/or trailing whitespaces from the given string.

mode is either left to remove leading characters, right to remove trailing characters, both (default)
to remove the characters from both sides of the string or none to return the unmodified string.

If the optional characters is given, it must be a string and the characters in the string will be stripped
in the string. Please note, that this is not a substring to be removed but a list of characters, see the example
below.

should_be_string(item, msg=None)
Fails if the given item is not a string.

The default error message can be overridden with the optional msg argument.

should_not_be_string(item, msg=None)
Fails if the given item is a string.

The default error message can be overridden with the optional msg argument.

should_be_unicode_string(item, msg=None)
Fails if the given item is not a Unicode string.

136 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

On Python 3 this keyword behaves exactly the same way Should Be String. That keyword should be used
instead and this keyword will be deprecated.

should_be_byte_string(item, msg=None)
Fails if the given item is not a byte string.

Use Should Be String if you want to verify the item is a string.

The default error message can be overridden with the optional msg argument.

should_be_lower_case(string, msg=None)
Fails if the given string is not in lower case.

For example, 'string' and 'with specials!' would pass, and 'String', '' and ' ' would
fail.

The default error message can be overridden with the optional msg argument.

See also Should Be Upper Case and Should Be Title Case.

should_be_upper_case(string, msg=None)
Fails if the given string is not in upper case.

For example, 'STRING' and 'WITH SPECIALS!' would pass, and 'String', '' and ' ' would
fail.

The default error message can be overridden with the optional msg argument.

See also Should Be Title Case and Should Be Lower Case.

should_be_title_case(string, msg=None, exclude=None)
Fails if given string is not title.

string is a title cased string if there is at least one upper case letter in each word.

For example, 'This Is Title' and 'OK, Give Me My iPhone' would pass. 'all words
lower' and 'Word In lower' would fail.

This logic changed in Robot Framework 4.0 to be compatible with Convert to Title Case. See Convert to
Title Case for title case algorithm and reasoning.

The default error message can be overridden with the optional msg argument.

Words can be explicitly excluded with the optional exclude argument.

Explicitly excluded words can be given as a list or as a string with words separated by a comma and an
optional space. Excluded words are actually considered to be regular expression patterns, so it is possible
to use something like “example[.!?]?” to match the word “example” on it own and also if followed by “.”,
“!” or “?”. See BuiltIn.Should Match Regexp for more information about Python regular expression syntax
in general and how to use it in Robot Framework data in particular.

See also Should Be Upper Case and Should Be Lower Case.

robot.libraries.Telnet module

class robot.libraries.Telnet.Telnet(timeout=’3 seconds’, newline=’CRLF’, prompt=None,
prompt_is_regexp=False, encoding=’UTF-8’, en-
coding_errors=’ignore’, default_log_level=’INFO’,
window_size=None, environ_user=None, termi-
nal_emulation=False, terminal_type=None, tel-
netlib_log_level=’TRACE’, connection_timeout=None)

Bases: object

3.1. robot package 137

Robot Framework Documentation, Release 6.0.2

A library providing communication over Telnet connections.

Telnet is Robot Framework’s standard library that makes it possible to connect to Telnet servers and execute
commands on the opened connections.

== Table of contents ==

%TOC%

= Connections =

The first step of using Telnet is opening a connection with Open Connection keyword. Typically the next step
is logging in with Login keyword, and in the end the opened connection can be closed with Close Connection.

It is possible to open multiple connections and switch the active one using Switch Connection. Close All Con-
nections can be used to close all the connections, which is especially useful in suite teardowns to guarantee that
all connections are always closed.

= Writing and reading =

After opening a connection and possibly logging in, commands can be executed or text written to the connection
for other reasons using Write and Write Bare keywords. The main difference between these two is that the former
adds a [#Configuration|configurable newline] after the text automatically.

After writing something to the connection, the resulting output can be read using Read, Read Until, Read Until
Regexp, and Read Until Prompt keywords. Which one to use depends on the context, but the latest one is often
the most convenient.

As a convenience when running a command, it is possible to use Execute Command that simply uses Write and
Read Until Prompt internally. Write Until Expected Output is useful if you need to wait until writing something
produces a desired output.

Written and read text is automatically encoded/decoded using a [#Configuration|configured encoding].

The ANSI escape codes, like cursor movement and color codes, are normally returned as part of the read
operation. If an escape code occurs in middle of a search pattern it may also prevent finding the searched string.
Terminal emulation can be used to process these escape codes as they would be if a real terminal would be in
use.

= Configuration =

Many aspects related the connections can be easily configured either globally or per connection basis. Global
configuration is done when [#Importing|library is imported], and these values can be overridden per connection
by Open Connection or with setting specific keywords Set Timeout, Set Newline, Set Prompt, Set Encoding, Set
Default Log Level and Set Telnetlib Log Level.

Values of environ_user, window_size, terminal_emulation, and terminal_type can not be
changed after opening the connection.

== Timeout ==

Timeout defines how long is the maximum time to wait when reading output. It is used internally by Read Until,
Read Until Regexp, Read Until Prompt, and Login keywords. The default value is 3 seconds.

== Connection Timeout ==

Connection Timeout defines how long is the maximum time to wait when opening the telnet connection. It is
used internally by Open Connection. The default value is the system global default timeout.

== Newline ==

Newline defines which line separator Write keyword should use. The default value is CRLF that is typically
used by Telnet connections.

Newline can be given either in escaped format using \n and \r or with special LF and CR syntax.

138 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

== Prompt ==

Often the easiest way to read the output of a command is reading all the output until the next prompt with Read
Until Prompt. It also makes it easier, and faster, to verify did Login succeed.

Prompt can be specified either as a normal string or a regular expression. The latter is especially useful if the
prompt changes as a result of the executed commands. Prompt can be set to be a regular expression by giving
prompt_is_regexp argument a true value (see Boolean arguments).

== Encoding ==

To ease handling text containing non-ASCII characters, all written text is encoded and read text decoded by
default. The default encoding is UTF-8 that works also with ASCII. Encoding can be disabled by using a
special encoding value NONE. This is mainly useful if you need to get the bytes received from the connection
as-is.

Notice that when writing to the connection, only Unicode strings are encoded using the defined encoding. Byte
strings are expected to be already encoded correctly. Notice also that normal text in data is passed to the library
as Unicode and you need to use variables to use bytes.

It is also possible to configure the error handler to use if encoding or decoding characters fails. Accepted values
are the same that encode/decode functions in Python strings accept. In practice the following values are the most
useful:

• ignore: ignore characters that cannot be encoded (default)

• strict: fail if characters cannot be encoded

• replace: replace characters that cannot be encoded with a replacement character

== Default log level ==

Default log level specifies the log level keywords use for logging unless they are given an explicit log level. The
default value is INFO, and changing it, for example, to DEBUG can be a good idea if there is lot of unnecessary
output that makes log files big.

== Terminal type ==

By default the Telnet library does not negotiate any specific terminal type with the server. If a specific ter-
minal type, for example vt100, is desired, the terminal type can be configured in importing and with Open
Connection.

== Window size ==

Window size for negotiation with the server can be configured when importing the library and with Open Con-
nection.

== USER environment variable ==

Telnet protocol allows the USER environment variable to be sent when connecting to the server. On some servers
it may happen that there is no login prompt, and on those cases this configuration option will allow still to define
the desired username. The option environ_user can be used in importing and with Open Connection.

= Terminal emulation =

Telnet library supports terminal emulation with [http://pyte.readthedocs.io|Pyte]. Terminal emulation will pro-
cess the output in a virtual screen. This means that ANSI escape codes, like cursor movements, and also control
characters, like carriage returns and backspaces, have the same effect on the result as they would have on a
normal terminal screen. For example the sequence acdc\x1b[3Dbba will result in output abba.

Terminal emulation is taken into use by giving terminal_emulation argument a true value (see Boolean
arguments) either in the library initialization or with Open Connection.

3.1. robot package 139

http://pyte.readthedocs

Robot Framework Documentation, Release 6.0.2

As Pyte approximates vt-style terminal, you may also want to set the terminal type as vt100. We also recom-
mend that you increase the window size, as the terminal emulation will break all lines that are longer than the
window row length.

When terminal emulation is used, the newline and encoding can not be changed anymore after opening the
connection.

As a prerequisite for using terminal emulation, you need to have Pyte installed. Due to backwards incompatible
changes in Pyte, different Robot Framework versions support different Pyte versions:

• Pyte 0.6 and newer are supported by Robot Framework 3.0.3. Latest Pyte version can be installed (or
upgraded) with pip install --upgrade pyte.

• Pyte 0.5.2 and older are supported by Robot Framework 3.0.2 and earlier. Pyte 0.5.2 can be installed with
pip install pyte==0.5.2.

= Logging =

All keywords that read something log the output. These keywords take the log level to use as an optional
argument, and if no log level is specified they use the [#Configuration|configured] default value.

The valid log levels to use are TRACE, DEBUG, INFO (default), and WARN. Levels below INFO are not shown
in log files by default whereas warnings are shown more prominently.

The [http://docs.python.org/library/telnetlib.html|telnetlib module] used by this library has a custom logging
system for logging content it sends and receives. By default these messages are written using TRACE level, but
the level is configurable with the telnetlib_log_level option either in the library initialization, to the
Open Connection or by using the Set Telnetlib Log Level keyword to the active connection. Special level NONE
con be used to disable the logging altogether.

= Time string format =

Timeouts and other times used must be given as a time string using format like 15 seconds or 1min 10s.
If the timeout is given as just a number, for example, 10 or 1.5, it is considered to be seconds. The time
string format is described in more detail in an appendix of [http://robotframework.org/robotframework/#user-
guide|Robot Framework User Guide].

= Boolean arguments =

Some keywords accept arguments that are handled as Boolean values true or false. If such an argument is
given as a string, it is considered false if it is an empty string or equal to FALSE, NONE, NO, OFF or 0, case-
insensitively. Other strings are considered true regardless their value, and other argument types are tested using
the same [http://docs.python.org/library/stdtypes.html#truth|rules as in Python].

True examples:

False examples:

Considering string NONE false is new in Robot Framework 3.0.3 and considering also OFF and 0 false is new
in Robot Framework 3.1.

Telnet library can be imported with optional configuration parameters.

Configuration parameters are used as default values when new connections are opened with Open Connection
keyword. They can also be overridden after opening the connection using the Set . . . keywords. See these
keywords as well as Configuration, Terminal emulation and Logging sections above for more information about
these parameters and their possible values.

See Time string format and Boolean arguments sections for information about using arguments accepting times
and Boolean values, respectively.

ROBOT_LIBRARY_SCOPE = 'SUITE'

ROBOT_LIBRARY_VERSION = '6.0.2'

140 Chapter 3. All packages

http://docs.python.org/library/telnetlib
http://robotframework.org/robotframework/#user
http://docs.python.org/library/stdtypes

Robot Framework Documentation, Release 6.0.2

get_keyword_names()

open_connection(host, alias=None, port=23, timeout=None, newline=None, prompt=None,
prompt_is_regexp=False, encoding=None, encoding_errors=None, de-
fault_log_level=None, window_size=None, environ_user=None, termi-
nal_emulation=None, terminal_type=None, telnetlib_log_level=None, con-
nection_timeout=None)

Opens a new Telnet connection to the given host and port.

The timeout, newline, prompt, prompt_is_regexp, encoding, default_log_level,
window_size, environ_user, terminal_emulation, terminal_type and
telnetlib_log_level arguments get default values when the library is [#Importing|imported].
Setting them here overrides those values for the opened connection. See Configuration, Terminal
emulation and Logging sections for more information about these parameters and their possible values.

Possible already opened connections are cached and it is possible to switch back to them using Switch
Connection keyword. It is possible to switch either using explicitly given alias or using index returned
by this keyword. Indexing starts from 1 and is reset back to it by Close All Connections keyword.

switch_connection(index_or_alias)
Switches between active connections using an index or an alias.

Aliases can be given to Open Connection keyword which also always returns the connection index.

This keyword returns the index of previous active connection.

The example above expects that there were no other open connections when opening the first one, because
it used index 1 when switching to the connection later. If you are not sure about that, you can store the
index into a variable as shown below.

close_all_connections()
Closes all open connections and empties the connection cache.

If multiple connections are opened, this keyword should be used in a test or suite teardown to make sure
that all connections are closed. It is not an error if some of the connections have already been closed by
Close Connection.

After this keyword, new indexes returned by Open Connection keyword are reset to 1.

class robot.libraries.Telnet.TelnetConnection(host=None, port=23, time-
out=3.0, newline=’CRLF’,
prompt=None, prompt_is_regexp=False,
encoding=’UTF-8’, encod-
ing_errors=’ignore’, de-
fault_log_level=’INFO’, win-
dow_size=None, environ_user=None,
terminal_emulation=False,
terminal_type=None, tel-
netlib_log_level=’TRACE’, connec-
tion_timeout=None)

Bases: telnetlib.Telnet

NEW_ENVIRON_IS = b'\x00'

NEW_ENVIRON_VAR = b'\x00'

NEW_ENVIRON_VALUE = b'\x01'

INTERNAL_UPDATE_FREQUENCY = 0.03

set_timeout(timeout)
Sets the timeout used for waiting output in the current connection.

3.1. robot package 141

Robot Framework Documentation, Release 6.0.2

Read operations that expect some output to appear (Read Until, Read Until Regexp, Read Until Prompt,
Login) use this timeout and fail if the expected output does not appear before this timeout expires.

The timeout must be given in time string format. The old timeout is returned and can be used to restore
the timeout later.

See Configuration section for more information about global and connection specific configuration.

set_newline(newline)
Sets the newline used by Write keyword in the current connection.

The old newline is returned and can be used to restore the newline later. See Set Timeout for a similar
example.

If terminal emulation is used, the newline can not be changed on an open connection.

See Configuration section for more information about global and connection specific configuration.

set_prompt(prompt, prompt_is_regexp=False)
Sets the prompt used by Read Until Prompt and Login in the current connection.

If prompt_is_regexp is given a true value (see Boolean arguments), the given prompt is considered
to be a regular expression.

The old prompt is returned and can be used to restore the prompt later.

See the documentation of [http://docs.python.org/library/re.html|Python re module] for more information
about the supported regular expression syntax. Notice that possible backslashes need to be escaped in
Robot Framework data.

See Configuration section for more information about global and connection specific configuration.

set_encoding(encoding=None, errors=None)
Sets the encoding to use for writing and reading in the current connection.

The given encoding specifies the encoding to use when written/read text is encoded/decoded, and
errors specifies the error handler to use if encoding/decoding fails. Either of these can be omitted
and in that case the old value is not affected. Use string NONE to disable encoding altogether.

See Configuration section for more information about encoding and error handlers, as well as global and
connection specific configuration in general.

The old values are returned and can be used to restore the encoding and the error handler later. See Set
Prompt for a similar example.

If terminal emulation is used, the encoding can not be changed on an open connection.

set_telnetlib_log_level(level)
Sets the log level used for logging in the underlying telnetlib.

Note that telnetlib can be very noisy thus using the level NONE can shutdown the messages generated
by this library.

set_default_log_level(level)
Sets the default log level used for logging in the current connection.

The old default log level is returned and can be used to restore the log level later.

See Configuration section for more information about global and connection specific configuration.

close_connection(loglevel=None)
Closes the current Telnet connection.

Remaining output in the connection is read, logged, and returned. It is not an error to close an already
closed connection.

142 Chapter 3. All packages

http://docs.python.org/library/re

Robot Framework Documentation, Release 6.0.2

Use Close All Connections if you want to make sure all opened connections are closed.

See Logging section for more information about log levels.

login(username, password, login_prompt=’login: ’, password_prompt=’Password: ’, lo-
gin_timeout=’1 second’, login_incorrect=’Login incorrect’)

Logs in to the Telnet server with the given user information.

This keyword reads from the connection until the login_prompt is encountered and then types the
given username. Then it reads until the password_prompt and types the given password. In
both cases a newline is appended automatically and the connection specific timeout used when waiting for
outputs.

How logging status is verified depends on whether a prompt is set for this connection or not:

1) If the prompt is set, this keyword reads the output until the prompt is found using the normal timeout.
If no prompt is found, login is considered failed and also this keyword fails. Note that in this case both
login_timeout and login_incorrect arguments are ignored.

2) If the prompt is not set, this keywords sleeps until login_timeout and then reads all the output
available on the connection. If the output contains login_incorrect text, login is considered failed
and also this keyword fails.

See Configuration section for more information about setting newline, timeout, and prompt.

write(text, loglevel=None)
Writes the given text plus a newline into the connection.

The newline character sequence to use can be [#Configuration|configured] both globally and per connec-
tion basis. The default value is CRLF.

This keyword consumes the written text, until the added newline, from the output and logs and returns it.
The given text itself must not contain newlines. Use Write Bare instead if either of these features causes a
problem.

Note: This keyword does not return the possible output of the executed command. To get the output, one
of the Read . . . keywords must be used. See Writing and reading section for more details.

See Logging section for more information about log levels.

write_bare(text)
Writes the given text, and nothing else, into the connection.

This keyword does not append a newline nor consume the written text. Use Write if these features are
needed.

write_until_expected_output(text, expected, timeout, retry_interval, loglevel=None)
Writes the given text repeatedly, until expected appears in the output.

text is written without appending a newline and it is consumed from the output before trying to find
expected. If expected does not appear in the output within timeout, this keyword fails.

retry_interval defines the time to wait expected to appear before writing the text again. Con-
suming the written text is subject to the normal [#Configuration|configured timeout].

Both timeout and retry_interval must be given in time string format. See Logging section for
more information about log levels.

The above example writes command ps -ef | grep myprocess\r\n until myprocess appears
in the output. The command is written every 0.5 seconds and the keyword fails if myprocess does not
appear in the output in 5 seconds.

write_control_character(character)
Writes the given control character into the connection.

3.1. robot package 143

Robot Framework Documentation, Release 6.0.2

The control character is prepended with an IAC (interpret as command) character.

The following control character names are supported: BRK, IP, AO, AYT, EC, EL, NOP. Additionally, you
can use arbitrary numbers to send any control character.

read(loglevel=None)
Reads everything that is currently available in the output.

Read output is both returned and logged. See Logging section for more information about log levels.

read_until(expected, loglevel=None)
Reads output until expected text is encountered.

Text up to and including the match is returned and logged. If no match is found, this keyword fails. How
much to wait for the output depends on the [#Configuration|configured timeout].

See Logging section for more information about log levels. Use Read Until Regexp if more complex
matching is needed.

read_until_regexp(*expected)
Reads output until any of the expected regular expressions match.

This keyword accepts any number of regular expressions patterns or compiled Python regular expression
objects as arguments. Text up to and including the first match to any of the regular expressions is returned
and logged. If no match is found, this keyword fails. How much to wait for the output depends on the
[#Configuration|configured timeout].

If the last given argument is a [#Logging|valid log level], it is used as loglevel similarly as with Read
Until keyword.

See the documentation of [http://docs.python.org/library/re.html|Python re module] for more information
about the supported regular expression syntax. Notice that possible backslashes need to be escaped in
Robot Framework data.

read_until_prompt(loglevel=None, strip_prompt=False)
Reads output until the prompt is encountered.

This keyword requires the prompt to be [#Configuration|configured] either in importing or with Open
Connection or Set Prompt keyword.

By default, text up to and including the prompt is returned and logged. If no prompt is found, this keyword
fails. How much to wait for the output depends on the [#Configuration|configured timeout].

If you want to exclude the prompt from the returned output, set strip_prompt to a true value (see
Boolean arguments). If your prompt is a regular expression, make sure that the expression spans the whole
prompt, because only the part of the output that matches the regular expression is stripped away.

See Logging section for more information about log levels.

execute_command(command, loglevel=None, strip_prompt=False)
Executes the given command and reads, logs, and returns everything until the prompt.

This keyword requires the prompt to be [#Configuration|configured] either in importing or with Open
Connection or Set Prompt keyword.

This is a convenience keyword that uses Write and Read Until Prompt internally. Following two examples
are thus functionally identical:

See Logging section for more information about log levels and Read Until Prompt for more information
about the strip_prompt parameter.

msg(msg, *args)
Print a debug message, when the debug level is > 0.

144 Chapter 3. All packages

http://docs.python.org/library/re

Robot Framework Documentation, Release 6.0.2

If extra arguments are present, they are substituted in the message using the standard string formatting
operator.

close()
Close the connection.

expect(list, timeout=None)
Read until one from a list of a regular expressions matches.

The first argument is a list of regular expressions, either compiled (re.Pattern instances) or uncompiled
(strings). The optional second argument is a timeout, in seconds; default is no timeout.

Return a tuple of three items: the index in the list of the first regular expression that matches; the re.Match
object returned; and the text read up till and including the match.

If EOF is read and no text was read, raise EOFError. Otherwise, when nothing matches, return (-1, None,
text) where text is the text received so far (may be the empty string if a timeout happened).

If a regular expression ends with a greedy match (e.g. ‘.*’) or if more than one expression can match the
same input, the results are undeterministic, and may depend on the I/O timing.

fileno()
Return the fileno() of the socket object used internally.

fill_rawq()
Fill raw queue from exactly one recv() system call.

Block if no data is immediately available. Set self.eof when connection is closed.

get_socket()
Return the socket object used internally.

interact()
Interaction function, emulates a very dumb telnet client.

listener()
Helper for mt_interact() – this executes in the other thread.

mt_interact()
Multithreaded version of interact().

open(host, port=0, timeout=<object object>)
Connect to a host.

The optional second argument is the port number, which defaults to the standard telnet port (23).

Don’t try to reopen an already connected instance.

process_rawq()
Transfer from raw queue to cooked queue.

Set self.eof when connection is closed. Don’t block unless in the midst of an IAC sequence.

rawq_getchar()
Get next char from raw queue.

Block if no data is immediately available. Raise EOFError when connection is closed.

read_all()
Read all data until EOF; block until connection closed.

read_eager()
Read readily available data.

3.1. robot package 145

Robot Framework Documentation, Release 6.0.2

Raise EOFError if connection closed and no cooked data available. Return b” if no cooked data available
otherwise. Don’t block unless in the midst of an IAC sequence.

read_lazy()
Process and return data that’s already in the queues (lazy).

Raise EOFError if connection closed and no data available. Return b” if no cooked data available other-
wise. Don’t block unless in the midst of an IAC sequence.

read_sb_data()
Return any data available in the SB . . . SE queue.

Return b” if no SB . . . SE available. Should only be called after seeing a SB or SE command. When a
new SB command is found, old unread SB data will be discarded. Don’t block.

read_some()
Read at least one byte of cooked data unless EOF is hit.

Return b” if EOF is hit. Block if no data is immediately available.

read_very_eager()
Read everything that’s possible without blocking in I/O (eager).

Raise EOFError if connection closed and no cooked data available. Return b” if no cooked data available
otherwise. Don’t block unless in the midst of an IAC sequence.

read_very_lazy()
Return any data available in the cooked queue (very lazy).

Raise EOFError if connection closed and no data available. Return b” if no cooked data available other-
wise. Don’t block.

set_debuglevel(debuglevel)
Set the debug level.

The higher it is, the more debug output you get (on sys.stdout).

set_option_negotiation_callback(callback)
Provide a callback function called after each receipt of a telnet option.

sock_avail()
Test whether data is available on the socket.

class robot.libraries.Telnet.TerminalEmulator(window_size=None, newline=’rn’)
Bases: object

current_output

feed(text)

read()

read_until(expected)

read_until_regexp(regexp_list)

exception robot.libraries.Telnet.NoMatchError(expected, timeout, output=None)
Bases: AssertionError

ROBOT_SUPPRESS_NAME = True

args

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

146 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

robot.libraries.XML module

class robot.libraries.XML.XML(use_lxml=False)
Bases: object

Robot Framework library for verifying and modifying XML documents.

As the name implies, _XML_ is a library for verifying contents of XML files. In practice, it is a pretty thin
wrapper on top of Python’s [http://docs.python.org/library/xml.etree.elementtree.html|ElementTree XML API].

The library has the following main usages:

• Parsing an XML file, or a string containing XML, into an XML element structure and finding certain
elements from it for for further analysis (e.g. Parse XML and Get Element keywords).

• Getting text or attributes of elements (e.g. Get Element Text and Get Element Attribute).

• Directly verifying text, attributes, or whole elements (e.g Element Text Should Be and Elements Should Be
Equal).

• Modifying XML and saving it (e.g. Set Element Text, Add Element and Save XML).

== Table of contents ==

%TOC%

= Parsing XML =

XML can be parsed into an element structure using Parse XML keyword. The XML to be parsed can be spec-
ified using a path to an XML file or as a string or bytes that contain XML directly. The keyword returns the
root element of the structure, which then contains other elements as its children and their children. Possible
comments and processing instructions in the source XML are removed.

XML is not validated during parsing even if has a schema defined. How possible doctype elements are handled
otherwise depends on the used XML module and on the platform. The standard ElementTree strips doctypes
altogether but when using lxml they are preserved when XML is saved.

The element structure returned by Parse XML, as well as elements returned by keywords such as Get Element,
can be used as the source argument with other keywords. In addition to an already parsed XML structure,
other keywords also accept paths to XML files and strings containing XML similarly as Parse XML. Notice that
keywords that modify XML do not write those changes back to disk even if the source would be given as a path
to a file. Changes must always be saved explicitly using Save XML keyword.

When the source is given as a path to a file, the forward slash character (/) can be used as the path separator
regardless the operating system. On Windows also the backslash works, but in the data it needs to be escaped
by doubling it (\\). Using the built-in variable ${/} naturally works too.

Note: Support for XML as bytes is new in Robot Framework 3.2.

= Using lxml =

By default, this library uses Python’s standard [http://docs.python.org/library/xml.etree.
elementtree.html|ElementTree] module for parsing XML, but it can be configured to use [http://lxml.de|lxml]
module instead when importing the library. The resulting element structure has same API regardless which
module is used for parsing.

The main benefits of using lxml is that it supports richer xpath syntax than the standard ElementTree and enables
using Evaluate Xpath keyword. It also preserves the doctype and possible namespace prefixes saving XML.

= Example =

The following simple example demonstrates parsing XML and verifying its contents both using keywords in this
library and in _BuiltIn_ and _Collections_ libraries. How to use xpath expressions to find elements and what

3.1. robot package 147

http://docs.python.org/library/xml.etree.elementtree
http://docs.python.org/library/xml.etree.elementtree
http://docs.python.org/library/xml.etree.elementtree
http://lxml

Robot Framework Documentation, Release 6.0.2

attributes the returned elements contain are discussed, with more examples, in Finding elements with xpath and
Element attributes sections.

In this example, as well as in many other examples in this documentation, ${XML} refers to the following
example XML document. In practice ${XML} could either be a path to an XML file or it could contain the
XML itself.

Notice that in the example three last lines are equivalent. Which one to use in practice depends on which other
elements you need to get or verify. If you only need to do one verification, using the last line alone would suffice.
If more verifications are needed, parsing the XML with Parse XML only once would be more efficient.

= Finding elements with xpath =

ElementTree, and thus also this library, supports finding elements using xpath expressions. ElementTree does
not, however, support the full xpath standard. The supported xpath syntax is explained below and [https://
docs.python.org/library/xml.etree.elementtree.html#xpath-support| ElementTree documentation] provides more
details. In the examples ${XML} refers to the same XML structure as in the earlier example.

If lxml support is enabled when importing the library, the whole [http://www.w3.org/TR/xpath/|xpath 1.0 stan-
dard] is supported. That includes everything listed below but also lot of other useful constructs.

== Tag names ==

When just a single tag name is used, xpath matches all direct child elements that have that tag name.

== Paths ==

Paths are created by combining tag names with a forward slash (/). For example, parent/child matches
all child elements under parent element. Notice that if there are multiple parent elements that all have
child elements, parent/child xpath will match all these child elements.

== Wildcards ==

An asterisk (*) can be used in paths instead of a tag name to denote any element.

== Current element ==

The current element is denoted with a dot (.). Normally the current element is implicit and does not need to be
included in the xpath.

== Parent element ==

The parent element of another element is denoted with two dots (..). Notice that it is not possible to refer to
the parent of the current element.

== Search all sub elements ==

Two forward slashes (//) mean that all sub elements, not only the direct children, are searched. If the search is
started from the current element, an explicit dot is required.

== Predicates ==

Predicates allow selecting elements using also other criteria than tag names, for example, attributes or position.
They are specified after the normal tag name or path using syntax path[predicate]. The path can have
wildcards and other special syntax explained earlier. What predicates the standard ElementTree supports is
explained in the table below.

Predicates can also be stacked like path[predicate1][predicate2]. A limitation is that possible po-
sition predicate must always be first.

= Element attributes =

All keywords returning elements, such as Parse XML, and Get Element, return ElementTree’s [http://docs.
python.org/library/xml.etree.elementtree.html#element-objects|Element objects]. These elements can be used

148 Chapter 3. All packages

https://docs.python.org/library/xml.etree.elementtree.html#xpath
https://docs.python.org/library/xml.etree.elementtree.html#xpath
http://www.w3.org/TR/xpath/
http://docs.python.org/library/xml.etree.elementtree.html#element
http://docs.python.org/library/xml.etree.elementtree.html#element

Robot Framework Documentation, Release 6.0.2

as inputs for other keywords, but they also contain several useful attributes that can be accessed directly using
the extended variable syntax.

The attributes that are both useful and convenient to use in the data are explained below. Also other attributes,
including methods, can be accessed, but that is typically better to do in custom libraries than directly in the data.

The examples use the same ${XML} structure as the earlier examples.

== tag ==

The tag of the element.

== text ==

The text that the element contains or Python None if the element has no text. Notice that the text _does not_
contain texts of possible child elements nor text after or between children. Notice also that in XML whitespace is
significant, so the text contains also possible indentation and newlines. To get also text of the possible children,
optionally whitespace normalized, use Get Element Text keyword.

== tail ==

The text after the element before the next opening or closing tag. Python None if the element has no tail.
Similarly as with text, also tail contains possible indentation and newlines.

== attrib ==

A Python dictionary containing attributes of the element.

= Handling XML namespaces =

ElementTree and lxml handle possible namespaces in XML documents by adding the namespace URI to tag
names in so called Clark Notation. That is inconvenient especially with xpaths, and by default this library
strips those namespaces away and moves them to xmlns attribute instead. That can be avoided by passing
keep_clark_notation argument to Parse XML keyword. Alternatively Parse XML supports stripping
namespace information altogether by using strip_namespaces argument. The pros and cons of different
approaches are discussed in more detail below.

== How ElementTree handles namespaces ==

If an XML document has namespaces, ElementTree adds namespace information to tag names in [http://www.
jclark.com/xml/xmlns.htm|Clark Notation] (e.g. {http://ns.uri}tag) and removes original xmlns at-
tributes. This is done both with default namespaces and with namespaces with a prefix. How it works in practice
is illustrated by the following example, where ${NS} variable contains this XML document:

As you can see, including the namespace URI in tag names makes xpaths really long and complex.

If you save the XML, ElementTree moves namespace information back to xmlns attributes. Unfortunately it
does not restore the original prefixes:

The resulting output is semantically same as the original, but mangling prefixes like this may still not be desir-
able. Notice also that the actual output depends slightly on ElementTree version.

== Default namespace handling ==

Because the way ElementTree handles namespaces makes xpaths so complicated, this library, by default, strips
namespaces from tag names and moves that information back to xmlns attributes. How this works in practice
is shown by the example below, where ${NS} variable contains the same XML document as in the previous
example.

Now that tags do not contain namespace information, xpaths are simple again.

A minor limitation of this approach is that namespace prefixes are lost. As a result the saved output is not exactly
same as the original one in this case either:

3.1. robot package 149

http://www.jclark.com/xml/xmlns
http://www.jclark.com/xml/xmlns

Robot Framework Documentation, Release 6.0.2

Also this output is semantically same as the original. If the original XML had only default namespaces, the
output would also look identical.

== Namespaces when using lxml ==

This library handles namespaces same way both when using lxml and when not using it. There are, however, dif-
ferences how lxml internally handles namespaces compared to the standard ElementTree. The main difference
is that lxml stores information about namespace prefixes and they are thus preserved if XML is saved. Another
visible difference is that lxml includes namespace information in child elements got with Get Element if the
parent element has namespaces.

== Stripping namespaces altogether ==

Because namespaces often add unnecessary complexity, Parse XML supports stripping them altogether by using
strip_namespaces=True. When this option is enabled, namespaces are not shown anywhere nor are they
included if XML is saved.

== Attribute namespaces ==

Attributes in XML documents are, by default, in the same namespaces as the element they belong to. It is
possible to use different namespaces by using prefixes, but this is pretty rare.

If an attribute has a namespace prefix, ElementTree will replace it with Clark Notation the same way it handles
elements. Because stripping namespaces from attributes could cause attribute conflicts, this library does not
handle attribute namespaces at all. Thus the following example works the same way regardless how namespaces
are handled.

= Boolean arguments =

Some keywords accept arguments that are handled as Boolean values true or false. If such an argument is
given as a string, it is considered false if it is an empty string or equal to FALSE, NONE, NO, OFF or 0, case-
insensitively. Other strings are considered true regardless their value, and other argument types are tested using
the same [http://docs.python.org/library/stdtypes.html#truth|rules as in Python].

True examples:

False examples:

Considering OFF and 0 false is new in Robot Framework 3.1.

== Pattern matching ==

Some keywords, for example Elements Should Match, support so called [http://en.wikipedia.org/wiki/Glob_
(programming)|glob patterns] where:

Unlike with glob patterns normally, path separator characters / and \ and the newline character \n are matches
by the above wildcards.

Support for brackets like [abc] and [!a-z] is new in Robot Framework 3.1

Import library with optionally lxml mode enabled.

By default this library uses Python’s standard [http://docs.python.org/library/xml.etree.
elementtree.html|ElementTree] module for parsing XML. If use_lxml argument is given a true value
(see Boolean arguments), the library will use [http://lxml.de|lxml] module instead. See Using lxml section for
benefits provided by lxml.

Using lxml requires that the lxml module is installed on the system. If lxml mode is enabled but the module is
not installed, this library will emit a warning and revert back to using the standard ElementTree.

ROBOT_LIBRARY_SCOPE = 'GLOBAL'

ROBOT_LIBRARY_VERSION = '6.0.2'

150 Chapter 3. All packages

http://docs.python.org/library/stdtypes
http://en.wikipedia.org/wiki/Glob_(programming
http://en.wikipedia.org/wiki/Glob_(programming
http://docs.python.org/library/xml.etree.elementtree
http://docs.python.org/library/xml.etree.elementtree
http://lxml

Robot Framework Documentation, Release 6.0.2

parse_xml(source, keep_clark_notation=False, strip_namespaces=False)
Parses the given XML file or string into an element structure.

The source can either be a path to an XML file or a string containing XML. In both cases
the XML is parsed into ElementTree [http://docs.python.org/library/xml.etree.elementtree.html#element-
objects|element structure] and the root element is returned. Possible comments and processing instructions
in the source XML are removed.

As discussed in Handling XML namespaces section, this keyword, by default, removes namespace infor-
mation ElementTree has added to tag names and moves it into xmlns attributes. This typically eases han-
dling XML documents with namespaces considerably. If you do not want that to happen, or want to avoid
the small overhead of going through the element structure when your XML does not have namespaces,
you can disable this feature by giving keep_clark_notation argument a true value (see Boolean
arguments).

If you want to strip namespace information altogether so that it is not included even if XML is saved, you
can give a true value to strip_namespaces argument.

Use Get Element keyword if you want to get a certain element and not the whole structure. See Parsing
XML section for more details and examples.

get_element(source, xpath=’.’)
Returns an element in the source matching the xpath.

The source can be a path to an XML file, a string containing XML, or an already parsed XML element.
The xpath specifies which element to find. See the introduction for more details about both the possible
sources and the supported xpath syntax.

The keyword fails if more, or less, than one element matches the xpath. Use Get Elements if you want
all matching elements to be returned.

Parse XML is recommended for parsing XML when the whole structure is needed. It must be used if there
is a need to configure how XML namespaces are handled.

Many other keywords use this keyword internally, and keywords modifying XML are typically documented
to both to modify the given source and to return it. Modifying the source does not apply if the source is
given as a string. The XML structure parsed based on the string and then modified is nevertheless returned.

get_elements(source, xpath)
Returns a list of elements in the source matching the xpath.

The source can be a path to an XML file, a string containing XML, or an already parsed XML element.
The xpath specifies which element to find. See the introduction for more details.

Elements matching the xpath are returned as a list. If no elements match, an empty list is returned. Use
Get Element if you want to get exactly one match.

get_child_elements(source, xpath=’.’)
Returns the child elements of the specified element as a list.

The element whose children to return is specified using source and xpath. They have exactly the same
semantics as with Get Element keyword.

All the direct child elements of the specified element are returned. If the element has no children, an empty
list is returned.

get_element_count(source, xpath=’.’)
Returns and logs how many elements the given xpath matches.

Arguments source and xpath have exactly the same semantics as with Get Elements keyword that this
keyword uses internally.

See also Element Should Exist and Element Should Not Exist.

3.1. robot package 151

http://docs.python.org/library/xml.etree.elementtree.html#element

Robot Framework Documentation, Release 6.0.2

element_should_exist(source, xpath=’.’, message=None)
Verifies that one or more element match the given xpath.

Arguments source and xpath have exactly the same semantics as with Get Elements keyword. Key-
word passes if the xpath matches one or more elements in the source. The default error message can
be overridden with the message argument.

See also Element Should Not Exist as well as Get Element Count that this keyword uses internally.

element_should_not_exist(source, xpath=’.’, message=None)
Verifies that no element match the given xpath.

Arguments source and xpath have exactly the same semantics as with Get Elements keyword. Key-
word fails if the xpathmatches any element in the source. The default error message can be overridden
with the message argument.

See also Element Should Exist as well as Get Element Count that this keyword uses internally.

get_element_text(source, xpath=’.’, normalize_whitespace=False)
Returns all text of the element, possibly whitespace normalized.

The element whose text to return is specified using source and xpath. They have exactly the same
semantics as with Get Element keyword.

This keyword returns all the text of the specified element, including all the text its children and grandchil-
dren contain. If the element has no text, an empty string is returned. The returned text is thus not always
the same as the text attribute of the element.

By default all whitespace, including newlines and indentation, inside the element is returned as-is. If
normalize_whitespace is given a true value (see Boolean arguments), then leading and trailing
whitespace is stripped, newlines and tabs converted to spaces, and multiple spaces collapsed into one.
This is especially useful when dealing with HTML data.

See also Get Elements Texts, Element Text Should Be and Element Text Should Match.

get_elements_texts(source, xpath, normalize_whitespace=False)
Returns text of all elements matching xpath as a list.

The elements whose text to return is specified using source and xpath. They have exactly the same
semantics as with Get Elements keyword.

The text of the matched elements is returned using the same logic as with Get Element Text. This includes
optional whitespace normalization using the normalize_whitespace option.

element_text_should_be(source, expected, xpath=’.’, normalize_whitespace=False, mes-
sage=None)

Verifies that the text of the specified element is expected.

The element whose text is verified is specified using source and xpath. They have exactly the same
semantics as with Get Element keyword.

The text to verify is got from the specified element using the same logic as with Get Element Text. This
includes optional whitespace normalization using the normalize_whitespace option.

The keyword passes if the text of the element is equal to the expected value, and otherwise it fails. The
default error message can be overridden with the message argument. Use Element Text Should Match to
verify the text against a pattern instead of an exact value.

element_text_should_match(source, pattern, xpath=’.’, normalize_whitespace=False, mes-
sage=None)

Verifies that the text of the specified element matches expected.

This keyword works exactly like Element Text Should Be except that the expected value can be given as a
pattern that the text of the element must match.

152 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

Pattern matching is similar as matching files in a shell with *, ? and [chars] acting as wildcards. See
the Pattern matching section for more information.

get_element_attribute(source, name, xpath=’.’, default=None)
Returns the named attribute of the specified element.

The element whose attribute to return is specified using source and xpath. They have exactly the same
semantics as with Get Element keyword.

The value of the attribute name of the specified element is returned. If the element does not have such
element, the default value is returned instead.

See also Get Element Attributes, Element Attribute Should Be, Element Attribute Should Match and Ele-
ment Should Not Have Attribute.

get_element_attributes(source, xpath=’.’)
Returns all attributes of the specified element.

The element whose attributes to return is specified using source and xpath. They have exactly the
same semantics as with Get Element keyword.

Attributes are returned as a Python dictionary. It is a copy of the original attributes so modifying it has no
effect on the XML structure.

Use Get Element Attribute to get the value of a single attribute.

element_attribute_should_be(source, name, expected, xpath=’.’, message=None)
Verifies that the specified attribute is expected.

The element whose attribute is verified is specified using source and xpath. They have exactly the
same semantics as with Get Element keyword.

The keyword passes if the attribute name of the element is equal to the expected value, and otherwise
it fails. The default error message can be overridden with the message argument.

To test that the element does not have a certain attribute, Python None (i.e. variable ${NONE}) can be
used as the expected value. A cleaner alternative is using Element Should Not Have Attribute.

See also Element Attribute Should Match and Get Element Attribute.

element_attribute_should_match(source, name, pattern, xpath=’.’, message=None)
Verifies that the specified attribute matches expected.

This keyword works exactly like Element Attribute Should Be except that the expected value can be given
as a pattern that the attribute of the element must match.

Pattern matching is similar as matching files in a shell with *, ? and [chars] acting as wildcards. See
the Pattern matching section for more information.

element_should_not_have_attribute(source, name, xpath=’.’, message=None)
Verifies that the specified element does not have attribute name.

The element whose attribute is verified is specified using source and xpath. They have exactly the
same semantics as with Get Element keyword.

The keyword fails if the specified element has attribute name. The default error message can be overridden
with the message argument.

See also Get Element Attribute, Get Element Attributes, Element Text Should Be and Element Text Should
Match.

elements_should_be_equal(source, expected, exclude_children=False, normal-
ize_whitespace=False)

Verifies that the given source element is equal to expected.

3.1. robot package 153

Robot Framework Documentation, Release 6.0.2

Both source and expected can be given as a path to an XML file, as a string containing XML, or as
an already parsed XML element structure. See introduction for more information about parsing XML in
general.

The keyword passes if the source element and expected element are equal. This includes testing the
tag names, texts, and attributes of the elements. By default also child elements are verified the same way,
but this can be disabled by setting exclude_children to a true value (see Boolean arguments).

All texts inside the given elements are verified, but possible text outside them is not. By default texts must
match exactly, but setting normalize_whitespace to a true value makes text verification independent
on newlines, tabs, and the amount of spaces. For more details about handling text see Get Element Text
keyword and discussion about elements’ text and tail attributes in the introduction.

The last example may look a bit strange because the <p> element only has text Text with. The reason
is that rest of the text inside <p> actually belongs to the child elements. This includes the . at the end that
is the tail text of the <i> element.

See also Elements Should Match.

elements_should_match(source, expected, exclude_children=False, normal-
ize_whitespace=False)

Verifies that the given source element matches expected.

This keyword works exactly like Elements Should Be Equal except that texts and attribute values in the
expected value can be given as patterns.

Pattern matching is similar as matching files in a shell with *, ? and [chars] acting as wildcards. See
the Pattern matching section for more information.

See Elements Should Be Equal for more examples.

set_element_tag(source, tag, xpath=’.’)
Sets the tag of the specified element.

The element whose tag to set is specified using source and xpath. They have exactly the same se-
mantics as with Get Element keyword. The resulting XML structure is returned, and if the source is an
already parsed XML structure, it is also modified in place.

Can only set the tag of a single element. Use Set Elements Tag to set the tag of multiple elements in one
call.

set_elements_tag(source, tag, xpath=’.’)
Sets the tag of the specified elements.

Like Set Element Tag but sets the tag of all elements matching the given xpath.

set_element_text(source, text=None, tail=None, xpath=’.’)
Sets text and/or tail text of the specified element.

The element whose text to set is specified using source and xpath. They have exactly the same se-
mantics as with Get Element keyword. The resulting XML structure is returned, and if the source is an
already parsed XML structure, it is also modified in place.

Element’s text and tail text are changed only if new text and/or tail values are given. See Element
attributes section for more information about text and tail in general.

Can only set the text/tail of a single element. Use Set Elements Text to set the text/tail of multiple elements
in one call.

set_elements_text(source, text=None, tail=None, xpath=’.’)
Sets text and/or tail text of the specified elements.

Like Set Element Text but sets the text or tail of all elements matching the given xpath.

154 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

set_element_attribute(source, name, value, xpath=’.’)
Sets attribute name of the specified element to value.

The element whose attribute to set is specified using source and xpath. They have exactly the same
semantics as with Get Element keyword. The resulting XML structure is returned, and if the source is
an already parsed XML structure, it is also modified in place.

It is possible to both set new attributes and to overwrite existing. Use Remove Element Attribute or Remove
Element Attributes for removing them.

Can only set an attribute of a single element. Use Set Elements Attribute to set an attribute of multiple
elements in one call.

set_elements_attribute(source, name, value, xpath=’.’)
Sets attribute name of the specified elements to value.

Like Set Element Attribute but sets the attribute of all elements matching the given xpath.

remove_element_attribute(source, name, xpath=’.’)
Removes attribute name from the specified element.

The element whose attribute to remove is specified using source and xpath. They have exactly the same
semantics as with Get Element keyword. The resulting XML structure is returned, and if the source is
an already parsed XML structure, it is also modified in place.

It is not a failure to remove a non-existing attribute. Use Remove Element Attributes to remove all attributes
and Set Element Attribute to set them.

Can only remove an attribute from a single element. Use Remove Elements Attribute to remove an attribute
of multiple elements in one call.

remove_elements_attribute(source, name, xpath=’.’)
Removes attribute name from the specified elements.

Like Remove Element Attribute but removes the attribute of all elements matching the given xpath.

remove_element_attributes(source, xpath=’.’)
Removes all attributes from the specified element.

The element whose attributes to remove is specified using source and xpath. They have exactly the
same semantics as with Get Element keyword. The resulting XML structure is returned, and if the source
is an already parsed XML structure, it is also modified in place.

Use Remove Element Attribute to remove a single attribute and Set Element Attribute to set them.

Can only remove attributes from a single element. Use Remove Elements Attributes to remove all attributes
of multiple elements in one call.

remove_elements_attributes(source, xpath=’.’)
Removes all attributes from the specified elements.

Like Remove Element Attributes but removes all attributes of all elements matching the given xpath.

add_element(source, element, index=None, xpath=’.’)
Adds a child element to the specified element.

The element to whom to add the new element is specified using source and xpath. They have exactly
the same semantics as with Get Element keyword. The resulting XML structure is returned, and if the
source is an already parsed XML structure, it is also modified in place.

The element to add can be specified as a path to an XML file or as a string containing XML, or it can
be an already parsed XML element. The element is copied before adding so modifying either the original
or the added element has no effect on the other . The element is added as the last child by default, but
a custom index can be used to alter the position. Indices start from zero (0 = first position, 1 = second

3.1. robot package 155

Robot Framework Documentation, Release 6.0.2

position, etc.), and negative numbers refer to positions at the end (-1 = second last position, -2 = third last,
etc.).

Use Remove Element or Remove Elements to remove elements.

remove_element(source, xpath=”, remove_tail=False)
Removes the element matching xpath from the source structure.

The element to remove from the source is specified with xpath using the same semantics as with Get
Element keyword. The resulting XML structure is returned, and if the source is an already parsed XML
structure, it is also modified in place.

The keyword fails if xpath does not match exactly one element. Use Remove Elements to remove all
matched elements.

Element’s tail text is not removed by default, but that can be changed by giving remove_tail a true
value (see Boolean arguments). See Element attributes section for more information about tail in general.

remove_elements(source, xpath=”, remove_tail=False)
Removes all elements matching xpath from the source structure.

The elements to remove from the source are specified with xpath using the same semantics as with
Get Elements keyword. The resulting XML structure is returned, and if the source is an already parsed
XML structure, it is also modified in place.

It is not a failure if xpath matches no elements. Use Remove Element to remove exactly one element.

Element’s tail text is not removed by default, but that can be changed by using remove_tail argument
similarly as with Remove Element.

clear_element(source, xpath=’.’, clear_tail=False)
Clears the contents of the specified element.

The element to clear is specified using source and xpath. They have exactly the same semantics as
with Get Element keyword. The resulting XML structure is returned, and if the source is an already
parsed XML structure, it is also modified in place.

Clearing the element means removing its text, attributes, and children. Element’s tail text is not removed
by default, but that can be changed by giving clear_tail a true value (see Boolean arguments). See
Element attributes section for more information about tail in general.

Use Remove Element to remove the whole element.

copy_element(source, xpath=’.’)
Returns a copy of the specified element.

The element to copy is specified using source and xpath. They have exactly the same semantics as
with Get Element keyword.

If the copy or the original element is modified afterwards, the changes have no effect on the other.

element_to_string(source, xpath=’.’, encoding=None)
Returns the string representation of the specified element.

The element to convert to a string is specified using source and xpath. They have exactly the same
semantics as with Get Element keyword.

By default the string is returned as Unicode. If encoding argument is given any value, the string is
returned as bytes in the specified encoding. The resulting string never contains the XML declaration.

See also Log Element and Save XML.

log_element(source, level=’INFO’, xpath=’.’)
Logs the string representation of the specified element.

156 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

The element specified with source and xpath is first converted into a string using Element To String
keyword internally. The resulting string is then logged using the given level.

The logged string is also returned.

save_xml(source, path, encoding=’UTF-8’)
Saves the given element to the specified file.

The element to save is specified with source using the same semantics as with Get Element keyword.

The file where the element is saved is denoted with path and the encoding to use with encoding. The
resulting file always contains the XML declaration.

The resulting XML file may not be exactly the same as the original: - Comments and processing instruc-
tions are always stripped. - Possible doctype and namespace prefixes are only preserved when

using lxml.

• Other small differences are possible depending on the ElementTree or lxml version.

Use Element To String if you just need a string representation of the element.

evaluate_xpath(source, expression, context=’.’)
Evaluates the given xpath expression and returns results.

The element in which context the expression is executed is specified using source and context argu-
ments. They have exactly the same semantics as source and xpath arguments have with Get Element
keyword.

The xpath expression to evaluate is given as expression argument. The result of the evaluation is
returned as-is.

This keyword works only if lxml mode is taken into use when importing the library.

class robot.libraries.XML.NameSpaceStripper(etree, lxml_etree=False)
Bases: object

strip(elem, preserve=True, current_ns=None, top=True)

unstrip(elem, current_ns=None, copied=False)

class robot.libraries.XML.ElementFinder(etree, modern=True, lxml=False)
Bases: object

find_all(elem, xpath)

class robot.libraries.XML.ElementComparator(comparator, normalizer=None, ex-
clude_children=False)

Bases: object

compare(actual, expected, location=None)

class robot.libraries.XML.Location(path, is_root=True)
Bases: object

child(tag)

robot.libraries.dialogs_py module

class robot.libraries.dialogs_py.MessageDialog(message, value=None, **extra)
Bases: robot.libraries.dialogs_py._TkDialog

3.1. robot package 157

Robot Framework Documentation, Release 6.0.2

after(ms, func=None, *args)
Call function once after given time.

MS specifies the time in milliseconds. FUNC gives the function which shall be called. Additional param-
eters are given as parameters to the function call. Return identifier to cancel scheduling with after_cancel.

after_cancel(id)
Cancel scheduling of function identified with ID.

Identifier returned by after or after_idle must be given as first parameter.

after_idle(func, *args)
Call FUNC once if the Tcl main loop has no event to process.

Return an identifier to cancel the scheduling with after_cancel.

anchor(anchor=None)
The anchor value controls how to place the grid within the master when no row/column has any weight.

The default anchor is nw.

aspect(minNumer=None, minDenom=None, maxNumer=None, maxDenom=None)
Instruct the window manager to set the aspect ratio (width/height) of this widget to be between MINNU-
MER/MINDENOM and MAXNUMER/MAXDENOM. Return a tuple of the actual values if no argument
is given.

attributes(*args)
This subcommand returns or sets platform specific attributes

The first form returns a list of the platform specific flags and their values. The second form returns the
value for the specific option. The third form sets one or more of the values. The values are as follows:

On Windows, -disabled gets or sets whether the window is in a disabled state. -toolwindow gets or sets
the style of the window to toolwindow (as defined in the MSDN). -topmost gets or sets whether this is a
topmost window (displays above all other windows).

On Macintosh, XXXXX

On Unix, there are currently no special attribute values.

bbox(column=None, row=None, col2=None, row2=None)
Return a tuple of integer coordinates for the bounding box of this widget controlled by the geometry
manager grid.

If COLUMN, ROW is given the bounding box applies from the cell with row and column 0 to the specified
cell. If COL2 and ROW2 are given the bounding box starts at that cell.

The returned integers specify the offset of the upper left corner in the master widget and the width and
height.

bell(displayof=0)
Ring a display’s bell.

bind(sequence=None, func=None, add=None)
Bind to this widget at event SEQUENCE a call to function FUNC.

SEQUENCE is a string of concatenated event patterns. An event pattern is of the form <MODIFIER-
MODIFIER-TYPE-DETAIL> where MODIFIER is one of Control, Mod2, M2, Shift, Mod3, M3, Lock,
Mod4, M4, Button1, B1, Mod5, M5 Button2, B2, Meta, M, Button3, B3, Alt, Button4, B4, Double,
Button5, B5 Triple, Mod1, M1. TYPE is one of Activate, Enter, Map, ButtonPress, Button, Expose, Mo-
tion, ButtonRelease FocusIn, MouseWheel, Circulate, FocusOut, Property, Colormap, Gravity Reparent,
Configure, KeyPress, Key, Unmap, Deactivate, KeyRelease Visibility, Destroy, Leave and DETAIL is the
button number for ButtonPress, ButtonRelease and DETAIL is the Keysym for KeyPress and KeyRelease.

158 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

Examples are <Control-Button-1> for pressing Control and mouse button 1 or <Alt-A> for pressing A and
the Alt key (KeyPress can be omitted). An event pattern can also be a virtual event of the form <<AS-
tring>> where AString can be arbitrary. This event can be generated by event_generate. If events are
concatenated they must appear shortly after each other.

FUNC will be called if the event sequence occurs with an instance of Event as argument. If the return
value of FUNC is “break” no further bound function is invoked.

An additional boolean parameter ADD specifies whether FUNC will be called additionally to the other
bound function or whether it will replace the previous function.

Bind will return an identifier to allow deletion of the bound function with unbind without memory leak.

If FUNC or SEQUENCE is omitted the bound function or list of bound events are returned.

bind_all(sequence=None, func=None, add=None)
Bind to all widgets at an event SEQUENCE a call to function FUNC. An additional boolean parameter
ADD specifies whether FUNC will be called additionally to the other bound function or whether it will
replace the previous function. See bind for the return value.

bind_class(className, sequence=None, func=None, add=None)
Bind to widgets with bindtag CLASSNAME at event SEQUENCE a call of function FUNC. An additional
boolean parameter ADD specifies whether FUNC will be called additionally to the other bound function
or whether it will replace the previous function. See bind for the return value.

bindtags(tagList=None)
Set or get the list of bindtags for this widget.

With no argument return the list of all bindtags associated with this widget. With a list of strings as
argument the bindtags are set to this list. The bindtags determine in which order events are processed (see
bind).

cget(key)
Return the resource value for a KEY given as string.

client(name=None)
Store NAME in WM_CLIENT_MACHINE property of this widget. Return current value.

clipboard_append(string, **kw)
Append STRING to the Tk clipboard.

A widget specified at the optional displayof keyword argument specifies the target display. The clipboard
can be retrieved with selection_get.

clipboard_clear(**kw)
Clear the data in the Tk clipboard.

A widget specified for the optional displayof keyword argument specifies the target display.

clipboard_get(**kw)
Retrieve data from the clipboard on window’s display.

The window keyword defaults to the root window of the Tkinter application.

The type keyword specifies the form in which the data is to be returned and should be an atom name
such as STRING or FILE_NAME. Type defaults to STRING, except on X11, where the default is to try
UTF8_STRING and fall back to STRING.

This command is equivalent to:

selection_get(CLIPBOARD)

colormapwindows(*wlist)
Store list of window names (WLIST) into WM_COLORMAPWINDOWS property of this widget. This

3.1. robot package 159

Robot Framework Documentation, Release 6.0.2

list contains windows whose colormaps differ from their parents. Return current list of widgets if WLIST
is empty.

columnconfigure(index, cnf={}, **kw)
Configure column INDEX of a grid.

Valid resources are minsize (minimum size of the column), weight (how much does additional space
propagate to this column) and pad (how much space to let additionally).

command(value=None)
Store VALUE in WM_COMMAND property. It is the command which shall be used to invoke the appli-
cation. Return current command if VALUE is None.

config(cnf=None, **kw)
Configure resources of a widget.

The values for resources are specified as keyword arguments. To get an overview about the allowed
keyword arguments call the method keys.

configure(cnf=None, **kw)
Configure resources of a widget.

The values for resources are specified as keyword arguments. To get an overview about the allowed
keyword arguments call the method keys.

deiconify()
Deiconify this widget. If it was never mapped it will not be mapped. On Windows it will raise this widget
and give it the focus.

deletecommand(name)
Internal function.

Delete the Tcl command provided in NAME.

destroy()
Destroy this and all descendants widgets.

event_add(virtual, *sequences)
Bind a virtual event VIRTUAL (of the form <<Name>>) to an event SEQUENCE such that the virtual
event is triggered whenever SEQUENCE occurs.

event_delete(virtual, *sequences)
Unbind a virtual event VIRTUAL from SEQUENCE.

event_generate(sequence, **kw)
Generate an event SEQUENCE. Additional keyword arguments specify parameter of the event (e.g. x, y,
rootx, rooty).

event_info(virtual=None)
Return a list of all virtual events or the information about the SEQUENCE bound to the virtual event
VIRTUAL.

focus()
Direct input focus to this widget.

If the application currently does not have the focus this widget will get the focus if the application gets the
focus through the window manager.

focus_displayof()
Return the widget which has currently the focus on the display where this widget is located.

Return None if the application does not have the focus.

160 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

focus_force()
Direct input focus to this widget even if the application does not have the focus. Use with caution!

focus_get()
Return the widget which has currently the focus in the application.

Use focus_displayof to allow working with several displays. Return None if application does not have the
focus.

focus_lastfor()
Return the widget which would have the focus if top level for this widget gets the focus from the window
manager.

focus_set()
Direct input focus to this widget.

If the application currently does not have the focus this widget will get the focus if the application gets the
focus through the window manager.

focusmodel(model=None)
Set focus model to MODEL. “active” means that this widget will claim the focus itself, “passive” means
that the window manager shall give the focus. Return current focus model if MODEL is None.

forget(window)
The window will be unmapped from the screen and will no longer be managed by wm. toplevel windows
will be treated like frame windows once they are no longer managed by wm, however, the menu option
configuration will be remembered and the menus will return once the widget is managed again.

frame()
Return identifier for decorative frame of this widget if present.

geometry(newGeometry=None)
Set geometry to NEWGEOMETRY of the form =widthxheight+x+y. Return current value if None is given.

getboolean(s)
Return a boolean value for Tcl boolean values true and false given as parameter.

getdouble(s)

getint(s)

getvar(name=’PY_VAR’)
Return value of Tcl variable NAME.

grab_current()
Return widget which has currently the grab in this application or None.

grab_release()
Release grab for this widget if currently set.

grab_set(timeout=30)
Set grab for this widget.

A grab directs all events to this and descendant widgets in the application.

grab_set_global()
Set global grab for this widget.

A global grab directs all events to this and descendant widgets on the display. Use with caution - other
applications do not get events anymore.

grab_status()
Return None, “local” or “global” if this widget has no, a local or a global grab.

3.1. robot package 161

Robot Framework Documentation, Release 6.0.2

grid(baseWidth=None, baseHeight=None, widthInc=None, heightInc=None)
Instruct the window manager that this widget shall only be resized on grid boundaries. WIDTHINC and
HEIGHTINC are the width and height of a grid unit in pixels. BASEWIDTH and BASEHEIGHT are the
number of grid units requested in Tk_GeometryRequest.

grid_anchor(anchor=None)
The anchor value controls how to place the grid within the master when no row/column has any weight.

The default anchor is nw.

grid_bbox(column=None, row=None, col2=None, row2=None)
Return a tuple of integer coordinates for the bounding box of this widget controlled by the geometry
manager grid.

If COLUMN, ROW is given the bounding box applies from the cell with row and column 0 to the specified
cell. If COL2 and ROW2 are given the bounding box starts at that cell.

The returned integers specify the offset of the upper left corner in the master widget and the width and
height.

grid_columnconfigure(index, cnf={}, **kw)
Configure column INDEX of a grid.

Valid resources are minsize (minimum size of the column), weight (how much does additional space
propagate to this column) and pad (how much space to let additionally).

grid_location(x, y)
Return a tuple of column and row which identify the cell at which the pixel at position X and Y inside the
master widget is located.

grid_propagate(flag=[’_noarg_’])
Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information of the slaves will determine the size of
this widget. If no argument is given, the current setting will be returned.

grid_rowconfigure(index, cnf={}, **kw)
Configure row INDEX of a grid.

Valid resources are minsize (minimum size of the row), weight (how much does additional space propagate
to this row) and pad (how much space to let additionally).

grid_size()
Return a tuple of the number of column and rows in the grid.

grid_slaves(row=None, column=None)
Return a list of all slaves of this widget in its packing order.

group(pathName=None)
Set the group leader widgets for related widgets to PATHNAME. Return the group leader of this widget if
None is given.

iconbitmap(bitmap=None, default=None)
Set bitmap for the iconified widget to BITMAP. Return the bitmap if None is given.

Under Windows, the DEFAULT parameter can be used to set the icon for the widget and any descen-
dents that don’t have an icon set explicitly. DEFAULT can be the relative path to a .ico file (example:
root.iconbitmap(default=’myicon.ico’)). See Tk documentation for more information.

iconify()
Display widget as icon.

162 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

iconmask(bitmap=None)
Set mask for the icon bitmap of this widget. Return the mask if None is given.

iconname(newName=None)
Set the name of the icon for this widget. Return the name if None is given.

iconphoto(default=False, *args)
Sets the titlebar icon for this window based on the named photo images passed through args. If default is
True, this is applied to all future created toplevels as well.

The data in the images is taken as a snapshot at the time of invocation. If the images are later changed,
this is not reflected to the titlebar icons. Multiple images are accepted to allow different images sizes to be
provided. The window manager may scale provided icons to an appropriate size.

On Windows, the images are packed into a Windows icon structure. This will override an icon specified to
wm_iconbitmap, and vice versa.

On X, the images are arranged into the _NET_WM_ICON X property, which most modern window man-
agers support. An icon specified by wm_iconbitmap may exist simultaneously.

On Macintosh, this currently does nothing.

iconposition(x=None, y=None)
Set the position of the icon of this widget to X and Y. Return a tuple of the current values of X and X if
None is given.

iconwindow(pathName=None)
Set widget PATHNAME to be displayed instead of icon. Return the current value if None is given.

image_names()
Return a list of all existing image names.

image_types()
Return a list of all available image types (e.g. photo bitmap).

keys()
Return a list of all resource names of this widget.

lift(aboveThis=None)
Raise this widget in the stacking order.

lower(belowThis=None)
Lower this widget in the stacking order.

mainloop(n=0)
Call the mainloop of Tk.

manage(widget)
The widget specified will become a stand alone top-level window. The window will be decorated with the
window managers title bar, etc.

maxsize(width=None, height=None)
Set max WIDTH and HEIGHT for this widget. If the window is gridded the values are given in grid units.
Return the current values if None is given.

minsize(width=None, height=None)
Set min WIDTH and HEIGHT for this widget. If the window is gridded the values are given in grid units.
Return the current values if None is given.

nametowidget(name)
Return the Tkinter instance of a widget identified by its Tcl name NAME.

3.1. robot package 163

Robot Framework Documentation, Release 6.0.2

option_add(pattern, value, priority=None)
Set a VALUE (second parameter) for an option PATTERN (first parameter).

An optional third parameter gives the numeric priority (defaults to 80).

option_clear()
Clear the option database.

It will be reloaded if option_add is called.

option_get(name, className)
Return the value for an option NAME for this widget with CLASSNAME.

Values with higher priority override lower values.

option_readfile(fileName, priority=None)
Read file FILENAME into the option database.

An optional second parameter gives the numeric priority.

overrideredirect(boolean=None)
Instruct the window manager to ignore this widget if BOOLEAN is given with 1. Return the current value
if None is given.

pack_propagate(flag=[’_noarg_’])
Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information of the slaves will determine the size of
this widget. If no argument is given the current setting will be returned.

pack_slaves()
Return a list of all slaves of this widget in its packing order.

place_slaves()
Return a list of all slaves of this widget in its packing order.

positionfrom(who=None)
Instruct the window manager that the position of this widget shall be defined by the user if WHO is “user”,
and by its own policy if WHO is “program”.

propagate(flag=[’_noarg_’])
Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information of the slaves will determine the size of
this widget. If no argument is given the current setting will be returned.

protocol(name=None, func=None)
Bind function FUNC to command NAME for this widget. Return the function bound to NAME if None is
given. NAME could be e.g. “WM_SAVE_YOURSELF” or “WM_DELETE_WINDOW”.

quit()
Quit the Tcl interpreter. All widgets will be destroyed.

register(func, subst=None, needcleanup=1)
Return a newly created Tcl function. If this function is called, the Python function FUNC will be executed.
An optional function SUBST can be given which will be executed before FUNC.

resizable(width=None, height=None)
Instruct the window manager whether this width can be resized in WIDTH or HEIGHT. Both values are
boolean values.

rowconfigure(index, cnf={}, **kw)
Configure row INDEX of a grid.

164 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

Valid resources are minsize (minimum size of the row), weight (how much does additional space propagate
to this row) and pad (how much space to let additionally).

selection_clear(**kw)
Clear the current X selection.

selection_get(**kw)
Return the contents of the current X selection.

A keyword parameter selection specifies the name of the selection and defaults to PRIMARY. A keyword
parameter displayof specifies a widget on the display to use. A keyword parameter type specifies the
form of data to be fetched, defaulting to STRING except on X11, where UTF8_STRING is tried before
STRING.

selection_handle(command, **kw)
Specify a function COMMAND to call if the X selection owned by this widget is queried by another
application.

This function must return the contents of the selection. The function will be called with the arguments
OFFSET and LENGTH which allows the chunking of very long selections. The following keyword pa-
rameters can be provided: selection - name of the selection (default PRIMARY), type - type of the selection
(e.g. STRING, FILE_NAME).

selection_own(**kw)
Become owner of X selection.

A keyword parameter selection specifies the name of the selection (default PRIMARY).

selection_own_get(**kw)
Return owner of X selection.

The following keyword parameter can be provided: selection - name of the selection (default PRIMARY),
type - type of the selection (e.g. STRING, FILE_NAME).

send(interp, cmd, *args)
Send Tcl command CMD to different interpreter INTERP to be executed.

setvar(name=’PY_VAR’, value=’1’)
Set Tcl variable NAME to VALUE.

show()

size()
Return a tuple of the number of column and rows in the grid.

sizefrom(who=None)
Instruct the window manager that the size of this widget shall be defined by the user if WHO is “user”, and
by its own policy if WHO is “program”.

slaves()
Return a list of all slaves of this widget in its packing order.

state(newstate=None)
Query or set the state of this widget as one of normal, icon, iconic (see wm_iconwindow), withdrawn, or
zoomed (Windows only).

title(string=None)
Set the title of this widget.

tk_bisque()
Change the color scheme to light brown as used in Tk 3.6 and before.

3.1. robot package 165

Robot Framework Documentation, Release 6.0.2

tk_focusFollowsMouse()
The widget under mouse will get automatically focus. Can not be disabled easily.

tk_focusNext()
Return the next widget in the focus order which follows widget which has currently the focus.

The focus order first goes to the next child, then to the children of the child recursively and then to the next
sibling which is higher in the stacking order. A widget is omitted if it has the takefocus resource set to 0.

tk_focusPrev()
Return previous widget in the focus order. See tk_focusNext for details.

tk_setPalette(*args, **kw)
Set a new color scheme for all widget elements.

A single color as argument will cause that all colors of Tk widget elements are derived from this. Alter-
natively several keyword parameters and its associated colors can be given. The following keywords are
valid: activeBackground, foreground, selectColor, activeForeground, highlightBackground, selectBack-
ground, background, highlightColor, selectForeground, disabledForeground, insertBackground, trough-
Color.

tk_strictMotif(boolean=None)
Set Tcl internal variable, whether the look and feel should adhere to Motif.

A parameter of 1 means adhere to Motif (e.g. no color change if mouse passes over slider). Returns the
set value.

tkraise(aboveThis=None)
Raise this widget in the stacking order.

transient(master=None)
Instruct the window manager that this widget is transient with regard to widget MASTER.

unbind(sequence, funcid=None)
Unbind for this widget for event SEQUENCE the function identified with FUNCID.

unbind_all(sequence)
Unbind for all widgets for event SEQUENCE all functions.

unbind_class(className, sequence)
Unbind for all widgets with bindtag CLASSNAME for event SEQUENCE all functions.

update()
Enter event loop until all pending events have been processed by Tcl.

update_idletasks()
Enter event loop until all idle callbacks have been called. This will update the display of windows but not
process events caused by the user.

wait_variable(name=’PY_VAR’)
Wait until the variable is modified.

A parameter of type IntVar, StringVar, DoubleVar or BooleanVar must be given.

wait_visibility(window=None)
Wait until the visibility of a WIDGET changes (e.g. it appears).

If no parameter is given self is used.

wait_window(window=None)
Wait until a WIDGET is destroyed.

If no parameter is given self is used.

166 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

waitvar(name=’PY_VAR’)
Wait until the variable is modified.

A parameter of type IntVar, StringVar, DoubleVar or BooleanVar must be given.

winfo_atom(name, displayof=0)
Return integer which represents atom NAME.

winfo_atomname(id, displayof=0)
Return name of atom with identifier ID.

winfo_cells()
Return number of cells in the colormap for this widget.

winfo_children()
Return a list of all widgets which are children of this widget.

winfo_class()
Return window class name of this widget.

winfo_colormapfull()
Return True if at the last color request the colormap was full.

winfo_containing(rootX, rootY, displayof=0)
Return the widget which is at the root coordinates ROOTX, ROOTY.

winfo_depth()
Return the number of bits per pixel.

winfo_exists()
Return true if this widget exists.

winfo_fpixels(number)
Return the number of pixels for the given distance NUMBER (e.g. “3c”) as float.

winfo_geometry()
Return geometry string for this widget in the form “widthxheight+X+Y”.

winfo_height()
Return height of this widget.

winfo_id()
Return identifier ID for this widget.

winfo_interps(displayof=0)
Return the name of all Tcl interpreters for this display.

winfo_ismapped()
Return true if this widget is mapped.

winfo_manager()
Return the window manager name for this widget.

winfo_name()
Return the name of this widget.

winfo_parent()
Return the name of the parent of this widget.

winfo_pathname(id, displayof=0)
Return the pathname of the widget given by ID.

winfo_pixels(number)
Rounded integer value of winfo_fpixels.

3.1. robot package 167

Robot Framework Documentation, Release 6.0.2

winfo_pointerx()
Return the x coordinate of the pointer on the root window.

winfo_pointerxy()
Return a tuple of x and y coordinates of the pointer on the root window.

winfo_pointery()
Return the y coordinate of the pointer on the root window.

winfo_reqheight()
Return requested height of this widget.

winfo_reqwidth()
Return requested width of this widget.

winfo_rgb(color)
Return tuple of decimal values for red, green, blue for COLOR in this widget.

winfo_rootx()
Return x coordinate of upper left corner of this widget on the root window.

winfo_rooty()
Return y coordinate of upper left corner of this widget on the root window.

winfo_screen()
Return the screen name of this widget.

winfo_screencells()
Return the number of the cells in the colormap of the screen of this widget.

winfo_screendepth()
Return the number of bits per pixel of the root window of the screen of this widget.

winfo_screenheight()
Return the number of pixels of the height of the screen of this widget in pixel.

winfo_screenmmheight()
Return the number of pixels of the height of the screen of this widget in mm.

winfo_screenmmwidth()
Return the number of pixels of the width of the screen of this widget in mm.

winfo_screenvisual()
Return one of the strings directcolor, grayscale, pseudocolor, staticcolor, staticgray, or truecolor for the
default colormodel of this screen.

winfo_screenwidth()
Return the number of pixels of the width of the screen of this widget in pixel.

winfo_server()
Return information of the X-Server of the screen of this widget in the form “XmajorRminor vendor ven-
dorVersion”.

winfo_toplevel()
Return the toplevel widget of this widget.

winfo_viewable()
Return true if the widget and all its higher ancestors are mapped.

winfo_visual()
Return one of the strings directcolor, grayscale, pseudocolor, staticcolor, staticgray, or truecolor for the
colormodel of this widget.

168 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

winfo_visualid()
Return the X identifier for the visual for this widget.

winfo_visualsavailable(includeids=False)
Return a list of all visuals available for the screen of this widget.

Each item in the list consists of a visual name (see winfo_visual), a depth and if includeids is true is given
also the X identifier.

winfo_vrootheight()
Return the height of the virtual root window associated with this widget in pixels. If there is no virtual root
window return the height of the screen.

winfo_vrootwidth()
Return the width of the virtual root window associated with this widget in pixel. If there is no virtual root
window return the width of the screen.

winfo_vrootx()
Return the x offset of the virtual root relative to the root window of the screen of this widget.

winfo_vrooty()
Return the y offset of the virtual root relative to the root window of the screen of this widget.

winfo_width()
Return the width of this widget.

winfo_x()
Return the x coordinate of the upper left corner of this widget in the parent.

winfo_y()
Return the y coordinate of the upper left corner of this widget in the parent.

withdraw()
Withdraw this widget from the screen such that it is unmapped and forgotten by the window manager.
Re-draw it with wm_deiconify.

wm_aspect(minNumer=None, minDenom=None, maxNumer=None, maxDenom=None)
Instruct the window manager to set the aspect ratio (width/height) of this widget to be between MINNU-
MER/MINDENOM and MAXNUMER/MAXDENOM. Return a tuple of the actual values if no argument
is given.

wm_attributes(*args)
This subcommand returns or sets platform specific attributes

The first form returns a list of the platform specific flags and their values. The second form returns the
value for the specific option. The third form sets one or more of the values. The values are as follows:

On Windows, -disabled gets or sets whether the window is in a disabled state. -toolwindow gets or sets
the style of the window to toolwindow (as defined in the MSDN). -topmost gets or sets whether this is a
topmost window (displays above all other windows).

On Macintosh, XXXXX

On Unix, there are currently no special attribute values.

wm_client(name=None)
Store NAME in WM_CLIENT_MACHINE property of this widget. Return current value.

wm_colormapwindows(*wlist)
Store list of window names (WLIST) into WM_COLORMAPWINDOWS property of this widget. This
list contains windows whose colormaps differ from their parents. Return current list of widgets if WLIST
is empty.

3.1. robot package 169

Robot Framework Documentation, Release 6.0.2

wm_command(value=None)
Store VALUE in WM_COMMAND property. It is the command which shall be used to invoke the appli-
cation. Return current command if VALUE is None.

wm_deiconify()
Deiconify this widget. If it was never mapped it will not be mapped. On Windows it will raise this widget
and give it the focus.

wm_focusmodel(model=None)
Set focus model to MODEL. “active” means that this widget will claim the focus itself, “passive” means
that the window manager shall give the focus. Return current focus model if MODEL is None.

wm_forget(window)
The window will be unmapped from the screen and will no longer be managed by wm. toplevel windows
will be treated like frame windows once they are no longer managed by wm, however, the menu option
configuration will be remembered and the menus will return once the widget is managed again.

wm_frame()
Return identifier for decorative frame of this widget if present.

wm_geometry(newGeometry=None)
Set geometry to NEWGEOMETRY of the form =widthxheight+x+y. Return current value if None is given.

wm_grid(baseWidth=None, baseHeight=None, widthInc=None, heightInc=None)
Instruct the window manager that this widget shall only be resized on grid boundaries. WIDTHINC and
HEIGHTINC are the width and height of a grid unit in pixels. BASEWIDTH and BASEHEIGHT are the
number of grid units requested in Tk_GeometryRequest.

wm_group(pathName=None)
Set the group leader widgets for related widgets to PATHNAME. Return the group leader of this widget if
None is given.

wm_iconbitmap(bitmap=None, default=None)
Set bitmap for the iconified widget to BITMAP. Return the bitmap if None is given.

Under Windows, the DEFAULT parameter can be used to set the icon for the widget and any descen-
dents that don’t have an icon set explicitly. DEFAULT can be the relative path to a .ico file (example:
root.iconbitmap(default=’myicon.ico’)). See Tk documentation for more information.

wm_iconify()
Display widget as icon.

wm_iconmask(bitmap=None)
Set mask for the icon bitmap of this widget. Return the mask if None is given.

wm_iconname(newName=None)
Set the name of the icon for this widget. Return the name if None is given.

wm_iconphoto(default=False, *args)
Sets the titlebar icon for this window based on the named photo images passed through args. If default is
True, this is applied to all future created toplevels as well.

The data in the images is taken as a snapshot at the time of invocation. If the images are later changed,
this is not reflected to the titlebar icons. Multiple images are accepted to allow different images sizes to be
provided. The window manager may scale provided icons to an appropriate size.

On Windows, the images are packed into a Windows icon structure. This will override an icon specified to
wm_iconbitmap, and vice versa.

On X, the images are arranged into the _NET_WM_ICON X property, which most modern window man-
agers support. An icon specified by wm_iconbitmap may exist simultaneously.

170 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

On Macintosh, this currently does nothing.

wm_iconposition(x=None, y=None)
Set the position of the icon of this widget to X and Y. Return a tuple of the current values of X and X if
None is given.

wm_iconwindow(pathName=None)
Set widget PATHNAME to be displayed instead of icon. Return the current value if None is given.

wm_manage(widget)
The widget specified will become a stand alone top-level window. The window will be decorated with the
window managers title bar, etc.

wm_maxsize(width=None, height=None)
Set max WIDTH and HEIGHT for this widget. If the window is gridded the values are given in grid units.
Return the current values if None is given.

wm_minsize(width=None, height=None)
Set min WIDTH and HEIGHT for this widget. If the window is gridded the values are given in grid units.
Return the current values if None is given.

wm_overrideredirect(boolean=None)
Instruct the window manager to ignore this widget if BOOLEAN is given with 1. Return the current value
if None is given.

wm_positionfrom(who=None)
Instruct the window manager that the position of this widget shall be defined by the user if WHO is “user”,
and by its own policy if WHO is “program”.

wm_protocol(name=None, func=None)
Bind function FUNC to command NAME for this widget. Return the function bound to NAME if None is
given. NAME could be e.g. “WM_SAVE_YOURSELF” or “WM_DELETE_WINDOW”.

wm_resizable(width=None, height=None)
Instruct the window manager whether this width can be resized in WIDTH or HEIGHT. Both values are
boolean values.

wm_sizefrom(who=None)
Instruct the window manager that the size of this widget shall be defined by the user if WHO is “user”, and
by its own policy if WHO is “program”.

wm_state(newstate=None)
Query or set the state of this widget as one of normal, icon, iconic (see wm_iconwindow), withdrawn, or
zoomed (Windows only).

wm_title(string=None)
Set the title of this widget.

wm_transient(master=None)
Instruct the window manager that this widget is transient with regard to widget MASTER.

wm_withdraw()
Withdraw this widget from the screen such that it is unmapped and forgotten by the window manager.
Re-draw it with wm_deiconify.

class robot.libraries.dialogs_py.InputDialog(message, default=”, hidden=False)
Bases: robot.libraries.dialogs_py._TkDialog

after(ms, func=None, *args)
Call function once after given time.

3.1. robot package 171

Robot Framework Documentation, Release 6.0.2

MS specifies the time in milliseconds. FUNC gives the function which shall be called. Additional param-
eters are given as parameters to the function call. Return identifier to cancel scheduling with after_cancel.

after_cancel(id)
Cancel scheduling of function identified with ID.

Identifier returned by after or after_idle must be given as first parameter.

after_idle(func, *args)
Call FUNC once if the Tcl main loop has no event to process.

Return an identifier to cancel the scheduling with after_cancel.

anchor(anchor=None)
The anchor value controls how to place the grid within the master when no row/column has any weight.

The default anchor is nw.

aspect(minNumer=None, minDenom=None, maxNumer=None, maxDenom=None)
Instruct the window manager to set the aspect ratio (width/height) of this widget to be between MINNU-
MER/MINDENOM and MAXNUMER/MAXDENOM. Return a tuple of the actual values if no argument
is given.

attributes(*args)
This subcommand returns or sets platform specific attributes

The first form returns a list of the platform specific flags and their values. The second form returns the
value for the specific option. The third form sets one or more of the values. The values are as follows:

On Windows, -disabled gets or sets whether the window is in a disabled state. -toolwindow gets or sets
the style of the window to toolwindow (as defined in the MSDN). -topmost gets or sets whether this is a
topmost window (displays above all other windows).

On Macintosh, XXXXX

On Unix, there are currently no special attribute values.

bbox(column=None, row=None, col2=None, row2=None)
Return a tuple of integer coordinates for the bounding box of this widget controlled by the geometry
manager grid.

If COLUMN, ROW is given the bounding box applies from the cell with row and column 0 to the specified
cell. If COL2 and ROW2 are given the bounding box starts at that cell.

The returned integers specify the offset of the upper left corner in the master widget and the width and
height.

bell(displayof=0)
Ring a display’s bell.

bind(sequence=None, func=None, add=None)
Bind to this widget at event SEQUENCE a call to function FUNC.

SEQUENCE is a string of concatenated event patterns. An event pattern is of the form <MODIFIER-
MODIFIER-TYPE-DETAIL> where MODIFIER is one of Control, Mod2, M2, Shift, Mod3, M3, Lock,
Mod4, M4, Button1, B1, Mod5, M5 Button2, B2, Meta, M, Button3, B3, Alt, Button4, B4, Double,
Button5, B5 Triple, Mod1, M1. TYPE is one of Activate, Enter, Map, ButtonPress, Button, Expose, Mo-
tion, ButtonRelease FocusIn, MouseWheel, Circulate, FocusOut, Property, Colormap, Gravity Reparent,
Configure, KeyPress, Key, Unmap, Deactivate, KeyRelease Visibility, Destroy, Leave and DETAIL is the
button number for ButtonPress, ButtonRelease and DETAIL is the Keysym for KeyPress and KeyRelease.
Examples are <Control-Button-1> for pressing Control and mouse button 1 or <Alt-A> for pressing A and

172 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

the Alt key (KeyPress can be omitted). An event pattern can also be a virtual event of the form <<AS-
tring>> where AString can be arbitrary. This event can be generated by event_generate. If events are
concatenated they must appear shortly after each other.

FUNC will be called if the event sequence occurs with an instance of Event as argument. If the return
value of FUNC is “break” no further bound function is invoked.

An additional boolean parameter ADD specifies whether FUNC will be called additionally to the other
bound function or whether it will replace the previous function.

Bind will return an identifier to allow deletion of the bound function with unbind without memory leak.

If FUNC or SEQUENCE is omitted the bound function or list of bound events are returned.

bind_all(sequence=None, func=None, add=None)
Bind to all widgets at an event SEQUENCE a call to function FUNC. An additional boolean parameter
ADD specifies whether FUNC will be called additionally to the other bound function or whether it will
replace the previous function. See bind for the return value.

bind_class(className, sequence=None, func=None, add=None)
Bind to widgets with bindtag CLASSNAME at event SEQUENCE a call of function FUNC. An additional
boolean parameter ADD specifies whether FUNC will be called additionally to the other bound function
or whether it will replace the previous function. See bind for the return value.

bindtags(tagList=None)
Set or get the list of bindtags for this widget.

With no argument return the list of all bindtags associated with this widget. With a list of strings as
argument the bindtags are set to this list. The bindtags determine in which order events are processed (see
bind).

cget(key)
Return the resource value for a KEY given as string.

client(name=None)
Store NAME in WM_CLIENT_MACHINE property of this widget. Return current value.

clipboard_append(string, **kw)
Append STRING to the Tk clipboard.

A widget specified at the optional displayof keyword argument specifies the target display. The clipboard
can be retrieved with selection_get.

clipboard_clear(**kw)
Clear the data in the Tk clipboard.

A widget specified for the optional displayof keyword argument specifies the target display.

clipboard_get(**kw)
Retrieve data from the clipboard on window’s display.

The window keyword defaults to the root window of the Tkinter application.

The type keyword specifies the form in which the data is to be returned and should be an atom name
such as STRING or FILE_NAME. Type defaults to STRING, except on X11, where the default is to try
UTF8_STRING and fall back to STRING.

This command is equivalent to:

selection_get(CLIPBOARD)

colormapwindows(*wlist)
Store list of window names (WLIST) into WM_COLORMAPWINDOWS property of this widget. This

3.1. robot package 173

Robot Framework Documentation, Release 6.0.2

list contains windows whose colormaps differ from their parents. Return current list of widgets if WLIST
is empty.

columnconfigure(index, cnf={}, **kw)
Configure column INDEX of a grid.

Valid resources are minsize (minimum size of the column), weight (how much does additional space
propagate to this column) and pad (how much space to let additionally).

command(value=None)
Store VALUE in WM_COMMAND property. It is the command which shall be used to invoke the appli-
cation. Return current command if VALUE is None.

config(cnf=None, **kw)
Configure resources of a widget.

The values for resources are specified as keyword arguments. To get an overview about the allowed
keyword arguments call the method keys.

configure(cnf=None, **kw)
Configure resources of a widget.

The values for resources are specified as keyword arguments. To get an overview about the allowed
keyword arguments call the method keys.

deiconify()
Deiconify this widget. If it was never mapped it will not be mapped. On Windows it will raise this widget
and give it the focus.

deletecommand(name)
Internal function.

Delete the Tcl command provided in NAME.

destroy()
Destroy this and all descendants widgets.

event_add(virtual, *sequences)
Bind a virtual event VIRTUAL (of the form <<Name>>) to an event SEQUENCE such that the virtual
event is triggered whenever SEQUENCE occurs.

event_delete(virtual, *sequences)
Unbind a virtual event VIRTUAL from SEQUENCE.

event_generate(sequence, **kw)
Generate an event SEQUENCE. Additional keyword arguments specify parameter of the event (e.g. x, y,
rootx, rooty).

event_info(virtual=None)
Return a list of all virtual events or the information about the SEQUENCE bound to the virtual event
VIRTUAL.

focus()
Direct input focus to this widget.

If the application currently does not have the focus this widget will get the focus if the application gets the
focus through the window manager.

focus_displayof()
Return the widget which has currently the focus on the display where this widget is located.

Return None if the application does not have the focus.

174 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

focus_force()
Direct input focus to this widget even if the application does not have the focus. Use with caution!

focus_get()
Return the widget which has currently the focus in the application.

Use focus_displayof to allow working with several displays. Return None if application does not have the
focus.

focus_lastfor()
Return the widget which would have the focus if top level for this widget gets the focus from the window
manager.

focus_set()
Direct input focus to this widget.

If the application currently does not have the focus this widget will get the focus if the application gets the
focus through the window manager.

focusmodel(model=None)
Set focus model to MODEL. “active” means that this widget will claim the focus itself, “passive” means
that the window manager shall give the focus. Return current focus model if MODEL is None.

forget(window)
The window will be unmapped from the screen and will no longer be managed by wm. toplevel windows
will be treated like frame windows once they are no longer managed by wm, however, the menu option
configuration will be remembered and the menus will return once the widget is managed again.

frame()
Return identifier for decorative frame of this widget if present.

geometry(newGeometry=None)
Set geometry to NEWGEOMETRY of the form =widthxheight+x+y. Return current value if None is given.

getboolean(s)
Return a boolean value for Tcl boolean values true and false given as parameter.

getdouble(s)

getint(s)

getvar(name=’PY_VAR’)
Return value of Tcl variable NAME.

grab_current()
Return widget which has currently the grab in this application or None.

grab_release()
Release grab for this widget if currently set.

grab_set(timeout=30)
Set grab for this widget.

A grab directs all events to this and descendant widgets in the application.

grab_set_global()
Set global grab for this widget.

A global grab directs all events to this and descendant widgets on the display. Use with caution - other
applications do not get events anymore.

grab_status()
Return None, “local” or “global” if this widget has no, a local or a global grab.

3.1. robot package 175

Robot Framework Documentation, Release 6.0.2

grid(baseWidth=None, baseHeight=None, widthInc=None, heightInc=None)
Instruct the window manager that this widget shall only be resized on grid boundaries. WIDTHINC and
HEIGHTINC are the width and height of a grid unit in pixels. BASEWIDTH and BASEHEIGHT are the
number of grid units requested in Tk_GeometryRequest.

grid_anchor(anchor=None)
The anchor value controls how to place the grid within the master when no row/column has any weight.

The default anchor is nw.

grid_bbox(column=None, row=None, col2=None, row2=None)
Return a tuple of integer coordinates for the bounding box of this widget controlled by the geometry
manager grid.

If COLUMN, ROW is given the bounding box applies from the cell with row and column 0 to the specified
cell. If COL2 and ROW2 are given the bounding box starts at that cell.

The returned integers specify the offset of the upper left corner in the master widget and the width and
height.

grid_columnconfigure(index, cnf={}, **kw)
Configure column INDEX of a grid.

Valid resources are minsize (minimum size of the column), weight (how much does additional space
propagate to this column) and pad (how much space to let additionally).

grid_location(x, y)
Return a tuple of column and row which identify the cell at which the pixel at position X and Y inside the
master widget is located.

grid_propagate(flag=[’_noarg_’])
Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information of the slaves will determine the size of
this widget. If no argument is given, the current setting will be returned.

grid_rowconfigure(index, cnf={}, **kw)
Configure row INDEX of a grid.

Valid resources are minsize (minimum size of the row), weight (how much does additional space propagate
to this row) and pad (how much space to let additionally).

grid_size()
Return a tuple of the number of column and rows in the grid.

grid_slaves(row=None, column=None)
Return a list of all slaves of this widget in its packing order.

group(pathName=None)
Set the group leader widgets for related widgets to PATHNAME. Return the group leader of this widget if
None is given.

iconbitmap(bitmap=None, default=None)
Set bitmap for the iconified widget to BITMAP. Return the bitmap if None is given.

Under Windows, the DEFAULT parameter can be used to set the icon for the widget and any descen-
dents that don’t have an icon set explicitly. DEFAULT can be the relative path to a .ico file (example:
root.iconbitmap(default=’myicon.ico’)). See Tk documentation for more information.

iconify()
Display widget as icon.

176 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

iconmask(bitmap=None)
Set mask for the icon bitmap of this widget. Return the mask if None is given.

iconname(newName=None)
Set the name of the icon for this widget. Return the name if None is given.

iconphoto(default=False, *args)
Sets the titlebar icon for this window based on the named photo images passed through args. If default is
True, this is applied to all future created toplevels as well.

The data in the images is taken as a snapshot at the time of invocation. If the images are later changed,
this is not reflected to the titlebar icons. Multiple images are accepted to allow different images sizes to be
provided. The window manager may scale provided icons to an appropriate size.

On Windows, the images are packed into a Windows icon structure. This will override an icon specified to
wm_iconbitmap, and vice versa.

On X, the images are arranged into the _NET_WM_ICON X property, which most modern window man-
agers support. An icon specified by wm_iconbitmap may exist simultaneously.

On Macintosh, this currently does nothing.

iconposition(x=None, y=None)
Set the position of the icon of this widget to X and Y. Return a tuple of the current values of X and X if
None is given.

iconwindow(pathName=None)
Set widget PATHNAME to be displayed instead of icon. Return the current value if None is given.

image_names()
Return a list of all existing image names.

image_types()
Return a list of all available image types (e.g. photo bitmap).

keys()
Return a list of all resource names of this widget.

lift(aboveThis=None)
Raise this widget in the stacking order.

lower(belowThis=None)
Lower this widget in the stacking order.

mainloop(n=0)
Call the mainloop of Tk.

manage(widget)
The widget specified will become a stand alone top-level window. The window will be decorated with the
window managers title bar, etc.

maxsize(width=None, height=None)
Set max WIDTH and HEIGHT for this widget. If the window is gridded the values are given in grid units.
Return the current values if None is given.

minsize(width=None, height=None)
Set min WIDTH and HEIGHT for this widget. If the window is gridded the values are given in grid units.
Return the current values if None is given.

nametowidget(name)
Return the Tkinter instance of a widget identified by its Tcl name NAME.

3.1. robot package 177

Robot Framework Documentation, Release 6.0.2

option_add(pattern, value, priority=None)
Set a VALUE (second parameter) for an option PATTERN (first parameter).

An optional third parameter gives the numeric priority (defaults to 80).

option_clear()
Clear the option database.

It will be reloaded if option_add is called.

option_get(name, className)
Return the value for an option NAME for this widget with CLASSNAME.

Values with higher priority override lower values.

option_readfile(fileName, priority=None)
Read file FILENAME into the option database.

An optional second parameter gives the numeric priority.

overrideredirect(boolean=None)
Instruct the window manager to ignore this widget if BOOLEAN is given with 1. Return the current value
if None is given.

pack_propagate(flag=[’_noarg_’])
Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information of the slaves will determine the size of
this widget. If no argument is given the current setting will be returned.

pack_slaves()
Return a list of all slaves of this widget in its packing order.

place_slaves()
Return a list of all slaves of this widget in its packing order.

positionfrom(who=None)
Instruct the window manager that the position of this widget shall be defined by the user if WHO is “user”,
and by its own policy if WHO is “program”.

propagate(flag=[’_noarg_’])
Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information of the slaves will determine the size of
this widget. If no argument is given the current setting will be returned.

protocol(name=None, func=None)
Bind function FUNC to command NAME for this widget. Return the function bound to NAME if None is
given. NAME could be e.g. “WM_SAVE_YOURSELF” or “WM_DELETE_WINDOW”.

quit()
Quit the Tcl interpreter. All widgets will be destroyed.

register(func, subst=None, needcleanup=1)
Return a newly created Tcl function. If this function is called, the Python function FUNC will be executed.
An optional function SUBST can be given which will be executed before FUNC.

resizable(width=None, height=None)
Instruct the window manager whether this width can be resized in WIDTH or HEIGHT. Both values are
boolean values.

rowconfigure(index, cnf={}, **kw)
Configure row INDEX of a grid.

178 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

Valid resources are minsize (minimum size of the row), weight (how much does additional space propagate
to this row) and pad (how much space to let additionally).

selection_clear(**kw)
Clear the current X selection.

selection_get(**kw)
Return the contents of the current X selection.

A keyword parameter selection specifies the name of the selection and defaults to PRIMARY. A keyword
parameter displayof specifies a widget on the display to use. A keyword parameter type specifies the
form of data to be fetched, defaulting to STRING except on X11, where UTF8_STRING is tried before
STRING.

selection_handle(command, **kw)
Specify a function COMMAND to call if the X selection owned by this widget is queried by another
application.

This function must return the contents of the selection. The function will be called with the arguments
OFFSET and LENGTH which allows the chunking of very long selections. The following keyword pa-
rameters can be provided: selection - name of the selection (default PRIMARY), type - type of the selection
(e.g. STRING, FILE_NAME).

selection_own(**kw)
Become owner of X selection.

A keyword parameter selection specifies the name of the selection (default PRIMARY).

selection_own_get(**kw)
Return owner of X selection.

The following keyword parameter can be provided: selection - name of the selection (default PRIMARY),
type - type of the selection (e.g. STRING, FILE_NAME).

send(interp, cmd, *args)
Send Tcl command CMD to different interpreter INTERP to be executed.

setvar(name=’PY_VAR’, value=’1’)
Set Tcl variable NAME to VALUE.

show()

size()
Return a tuple of the number of column and rows in the grid.

sizefrom(who=None)
Instruct the window manager that the size of this widget shall be defined by the user if WHO is “user”, and
by its own policy if WHO is “program”.

slaves()
Return a list of all slaves of this widget in its packing order.

state(newstate=None)
Query or set the state of this widget as one of normal, icon, iconic (see wm_iconwindow), withdrawn, or
zoomed (Windows only).

title(string=None)
Set the title of this widget.

tk_bisque()
Change the color scheme to light brown as used in Tk 3.6 and before.

3.1. robot package 179

Robot Framework Documentation, Release 6.0.2

tk_focusFollowsMouse()
The widget under mouse will get automatically focus. Can not be disabled easily.

tk_focusNext()
Return the next widget in the focus order which follows widget which has currently the focus.

The focus order first goes to the next child, then to the children of the child recursively and then to the next
sibling which is higher in the stacking order. A widget is omitted if it has the takefocus resource set to 0.

tk_focusPrev()
Return previous widget in the focus order. See tk_focusNext for details.

tk_setPalette(*args, **kw)
Set a new color scheme for all widget elements.

A single color as argument will cause that all colors of Tk widget elements are derived from this. Alter-
natively several keyword parameters and its associated colors can be given. The following keywords are
valid: activeBackground, foreground, selectColor, activeForeground, highlightBackground, selectBack-
ground, background, highlightColor, selectForeground, disabledForeground, insertBackground, trough-
Color.

tk_strictMotif(boolean=None)
Set Tcl internal variable, whether the look and feel should adhere to Motif.

A parameter of 1 means adhere to Motif (e.g. no color change if mouse passes over slider). Returns the
set value.

tkraise(aboveThis=None)
Raise this widget in the stacking order.

transient(master=None)
Instruct the window manager that this widget is transient with regard to widget MASTER.

unbind(sequence, funcid=None)
Unbind for this widget for event SEQUENCE the function identified with FUNCID.

unbind_all(sequence)
Unbind for all widgets for event SEQUENCE all functions.

unbind_class(className, sequence)
Unbind for all widgets with bindtag CLASSNAME for event SEQUENCE all functions.

update()
Enter event loop until all pending events have been processed by Tcl.

update_idletasks()
Enter event loop until all idle callbacks have been called. This will update the display of windows but not
process events caused by the user.

wait_variable(name=’PY_VAR’)
Wait until the variable is modified.

A parameter of type IntVar, StringVar, DoubleVar or BooleanVar must be given.

wait_visibility(window=None)
Wait until the visibility of a WIDGET changes (e.g. it appears).

If no parameter is given self is used.

wait_window(window=None)
Wait until a WIDGET is destroyed.

If no parameter is given self is used.

180 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

waitvar(name=’PY_VAR’)
Wait until the variable is modified.

A parameter of type IntVar, StringVar, DoubleVar or BooleanVar must be given.

winfo_atom(name, displayof=0)
Return integer which represents atom NAME.

winfo_atomname(id, displayof=0)
Return name of atom with identifier ID.

winfo_cells()
Return number of cells in the colormap for this widget.

winfo_children()
Return a list of all widgets which are children of this widget.

winfo_class()
Return window class name of this widget.

winfo_colormapfull()
Return True if at the last color request the colormap was full.

winfo_containing(rootX, rootY, displayof=0)
Return the widget which is at the root coordinates ROOTX, ROOTY.

winfo_depth()
Return the number of bits per pixel.

winfo_exists()
Return true if this widget exists.

winfo_fpixels(number)
Return the number of pixels for the given distance NUMBER (e.g. “3c”) as float.

winfo_geometry()
Return geometry string for this widget in the form “widthxheight+X+Y”.

winfo_height()
Return height of this widget.

winfo_id()
Return identifier ID for this widget.

winfo_interps(displayof=0)
Return the name of all Tcl interpreters for this display.

winfo_ismapped()
Return true if this widget is mapped.

winfo_manager()
Return the window manager name for this widget.

winfo_name()
Return the name of this widget.

winfo_parent()
Return the name of the parent of this widget.

winfo_pathname(id, displayof=0)
Return the pathname of the widget given by ID.

winfo_pixels(number)
Rounded integer value of winfo_fpixels.

3.1. robot package 181

Robot Framework Documentation, Release 6.0.2

winfo_pointerx()
Return the x coordinate of the pointer on the root window.

winfo_pointerxy()
Return a tuple of x and y coordinates of the pointer on the root window.

winfo_pointery()
Return the y coordinate of the pointer on the root window.

winfo_reqheight()
Return requested height of this widget.

winfo_reqwidth()
Return requested width of this widget.

winfo_rgb(color)
Return tuple of decimal values for red, green, blue for COLOR in this widget.

winfo_rootx()
Return x coordinate of upper left corner of this widget on the root window.

winfo_rooty()
Return y coordinate of upper left corner of this widget on the root window.

winfo_screen()
Return the screen name of this widget.

winfo_screencells()
Return the number of the cells in the colormap of the screen of this widget.

winfo_screendepth()
Return the number of bits per pixel of the root window of the screen of this widget.

winfo_screenheight()
Return the number of pixels of the height of the screen of this widget in pixel.

winfo_screenmmheight()
Return the number of pixels of the height of the screen of this widget in mm.

winfo_screenmmwidth()
Return the number of pixels of the width of the screen of this widget in mm.

winfo_screenvisual()
Return one of the strings directcolor, grayscale, pseudocolor, staticcolor, staticgray, or truecolor for the
default colormodel of this screen.

winfo_screenwidth()
Return the number of pixels of the width of the screen of this widget in pixel.

winfo_server()
Return information of the X-Server of the screen of this widget in the form “XmajorRminor vendor ven-
dorVersion”.

winfo_toplevel()
Return the toplevel widget of this widget.

winfo_viewable()
Return true if the widget and all its higher ancestors are mapped.

winfo_visual()
Return one of the strings directcolor, grayscale, pseudocolor, staticcolor, staticgray, or truecolor for the
colormodel of this widget.

182 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

winfo_visualid()
Return the X identifier for the visual for this widget.

winfo_visualsavailable(includeids=False)
Return a list of all visuals available for the screen of this widget.

Each item in the list consists of a visual name (see winfo_visual), a depth and if includeids is true is given
also the X identifier.

winfo_vrootheight()
Return the height of the virtual root window associated with this widget in pixels. If there is no virtual root
window return the height of the screen.

winfo_vrootwidth()
Return the width of the virtual root window associated with this widget in pixel. If there is no virtual root
window return the width of the screen.

winfo_vrootx()
Return the x offset of the virtual root relative to the root window of the screen of this widget.

winfo_vrooty()
Return the y offset of the virtual root relative to the root window of the screen of this widget.

winfo_width()
Return the width of this widget.

winfo_x()
Return the x coordinate of the upper left corner of this widget in the parent.

winfo_y()
Return the y coordinate of the upper left corner of this widget in the parent.

withdraw()
Withdraw this widget from the screen such that it is unmapped and forgotten by the window manager.
Re-draw it with wm_deiconify.

wm_aspect(minNumer=None, minDenom=None, maxNumer=None, maxDenom=None)
Instruct the window manager to set the aspect ratio (width/height) of this widget to be between MINNU-
MER/MINDENOM and MAXNUMER/MAXDENOM. Return a tuple of the actual values if no argument
is given.

wm_attributes(*args)
This subcommand returns or sets platform specific attributes

The first form returns a list of the platform specific flags and their values. The second form returns the
value for the specific option. The third form sets one or more of the values. The values are as follows:

On Windows, -disabled gets or sets whether the window is in a disabled state. -toolwindow gets or sets
the style of the window to toolwindow (as defined in the MSDN). -topmost gets or sets whether this is a
topmost window (displays above all other windows).

On Macintosh, XXXXX

On Unix, there are currently no special attribute values.

wm_client(name=None)
Store NAME in WM_CLIENT_MACHINE property of this widget. Return current value.

wm_colormapwindows(*wlist)
Store list of window names (WLIST) into WM_COLORMAPWINDOWS property of this widget. This
list contains windows whose colormaps differ from their parents. Return current list of widgets if WLIST
is empty.

3.1. robot package 183

Robot Framework Documentation, Release 6.0.2

wm_command(value=None)
Store VALUE in WM_COMMAND property. It is the command which shall be used to invoke the appli-
cation. Return current command if VALUE is None.

wm_deiconify()
Deiconify this widget. If it was never mapped it will not be mapped. On Windows it will raise this widget
and give it the focus.

wm_focusmodel(model=None)
Set focus model to MODEL. “active” means that this widget will claim the focus itself, “passive” means
that the window manager shall give the focus. Return current focus model if MODEL is None.

wm_forget(window)
The window will be unmapped from the screen and will no longer be managed by wm. toplevel windows
will be treated like frame windows once they are no longer managed by wm, however, the menu option
configuration will be remembered and the menus will return once the widget is managed again.

wm_frame()
Return identifier for decorative frame of this widget if present.

wm_geometry(newGeometry=None)
Set geometry to NEWGEOMETRY of the form =widthxheight+x+y. Return current value if None is given.

wm_grid(baseWidth=None, baseHeight=None, widthInc=None, heightInc=None)
Instruct the window manager that this widget shall only be resized on grid boundaries. WIDTHINC and
HEIGHTINC are the width and height of a grid unit in pixels. BASEWIDTH and BASEHEIGHT are the
number of grid units requested in Tk_GeometryRequest.

wm_group(pathName=None)
Set the group leader widgets for related widgets to PATHNAME. Return the group leader of this widget if
None is given.

wm_iconbitmap(bitmap=None, default=None)
Set bitmap for the iconified widget to BITMAP. Return the bitmap if None is given.

Under Windows, the DEFAULT parameter can be used to set the icon for the widget and any descen-
dents that don’t have an icon set explicitly. DEFAULT can be the relative path to a .ico file (example:
root.iconbitmap(default=’myicon.ico’)). See Tk documentation for more information.

wm_iconify()
Display widget as icon.

wm_iconmask(bitmap=None)
Set mask for the icon bitmap of this widget. Return the mask if None is given.

wm_iconname(newName=None)
Set the name of the icon for this widget. Return the name if None is given.

wm_iconphoto(default=False, *args)
Sets the titlebar icon for this window based on the named photo images passed through args. If default is
True, this is applied to all future created toplevels as well.

The data in the images is taken as a snapshot at the time of invocation. If the images are later changed,
this is not reflected to the titlebar icons. Multiple images are accepted to allow different images sizes to be
provided. The window manager may scale provided icons to an appropriate size.

On Windows, the images are packed into a Windows icon structure. This will override an icon specified to
wm_iconbitmap, and vice versa.

On X, the images are arranged into the _NET_WM_ICON X property, which most modern window man-
agers support. An icon specified by wm_iconbitmap may exist simultaneously.

184 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

On Macintosh, this currently does nothing.

wm_iconposition(x=None, y=None)
Set the position of the icon of this widget to X and Y. Return a tuple of the current values of X and X if
None is given.

wm_iconwindow(pathName=None)
Set widget PATHNAME to be displayed instead of icon. Return the current value if None is given.

wm_manage(widget)
The widget specified will become a stand alone top-level window. The window will be decorated with the
window managers title bar, etc.

wm_maxsize(width=None, height=None)
Set max WIDTH and HEIGHT for this widget. If the window is gridded the values are given in grid units.
Return the current values if None is given.

wm_minsize(width=None, height=None)
Set min WIDTH and HEIGHT for this widget. If the window is gridded the values are given in grid units.
Return the current values if None is given.

wm_overrideredirect(boolean=None)
Instruct the window manager to ignore this widget if BOOLEAN is given with 1. Return the current value
if None is given.

wm_positionfrom(who=None)
Instruct the window manager that the position of this widget shall be defined by the user if WHO is “user”,
and by its own policy if WHO is “program”.

wm_protocol(name=None, func=None)
Bind function FUNC to command NAME for this widget. Return the function bound to NAME if None is
given. NAME could be e.g. “WM_SAVE_YOURSELF” or “WM_DELETE_WINDOW”.

wm_resizable(width=None, height=None)
Instruct the window manager whether this width can be resized in WIDTH or HEIGHT. Both values are
boolean values.

wm_sizefrom(who=None)
Instruct the window manager that the size of this widget shall be defined by the user if WHO is “user”, and
by its own policy if WHO is “program”.

wm_state(newstate=None)
Query or set the state of this widget as one of normal, icon, iconic (see wm_iconwindow), withdrawn, or
zoomed (Windows only).

wm_title(string=None)
Set the title of this widget.

wm_transient(master=None)
Instruct the window manager that this widget is transient with regard to widget MASTER.

wm_withdraw()
Withdraw this widget from the screen such that it is unmapped and forgotten by the window manager.
Re-draw it with wm_deiconify.

class robot.libraries.dialogs_py.SelectionDialog(message, values)
Bases: robot.libraries.dialogs_py._TkDialog

after(ms, func=None, *args)
Call function once after given time.

3.1. robot package 185

Robot Framework Documentation, Release 6.0.2

MS specifies the time in milliseconds. FUNC gives the function which shall be called. Additional param-
eters are given as parameters to the function call. Return identifier to cancel scheduling with after_cancel.

after_cancel(id)
Cancel scheduling of function identified with ID.

Identifier returned by after or after_idle must be given as first parameter.

after_idle(func, *args)
Call FUNC once if the Tcl main loop has no event to process.

Return an identifier to cancel the scheduling with after_cancel.

anchor(anchor=None)
The anchor value controls how to place the grid within the master when no row/column has any weight.

The default anchor is nw.

aspect(minNumer=None, minDenom=None, maxNumer=None, maxDenom=None)
Instruct the window manager to set the aspect ratio (width/height) of this widget to be between MINNU-
MER/MINDENOM and MAXNUMER/MAXDENOM. Return a tuple of the actual values if no argument
is given.

attributes(*args)
This subcommand returns or sets platform specific attributes

The first form returns a list of the platform specific flags and their values. The second form returns the
value for the specific option. The third form sets one or more of the values. The values are as follows:

On Windows, -disabled gets or sets whether the window is in a disabled state. -toolwindow gets or sets
the style of the window to toolwindow (as defined in the MSDN). -topmost gets or sets whether this is a
topmost window (displays above all other windows).

On Macintosh, XXXXX

On Unix, there are currently no special attribute values.

bbox(column=None, row=None, col2=None, row2=None)
Return a tuple of integer coordinates for the bounding box of this widget controlled by the geometry
manager grid.

If COLUMN, ROW is given the bounding box applies from the cell with row and column 0 to the specified
cell. If COL2 and ROW2 are given the bounding box starts at that cell.

The returned integers specify the offset of the upper left corner in the master widget and the width and
height.

bell(displayof=0)
Ring a display’s bell.

bind(sequence=None, func=None, add=None)
Bind to this widget at event SEQUENCE a call to function FUNC.

SEQUENCE is a string of concatenated event patterns. An event pattern is of the form <MODIFIER-
MODIFIER-TYPE-DETAIL> where MODIFIER is one of Control, Mod2, M2, Shift, Mod3, M3, Lock,
Mod4, M4, Button1, B1, Mod5, M5 Button2, B2, Meta, M, Button3, B3, Alt, Button4, B4, Double,
Button5, B5 Triple, Mod1, M1. TYPE is one of Activate, Enter, Map, ButtonPress, Button, Expose, Mo-
tion, ButtonRelease FocusIn, MouseWheel, Circulate, FocusOut, Property, Colormap, Gravity Reparent,
Configure, KeyPress, Key, Unmap, Deactivate, KeyRelease Visibility, Destroy, Leave and DETAIL is the
button number for ButtonPress, ButtonRelease and DETAIL is the Keysym for KeyPress and KeyRelease.
Examples are <Control-Button-1> for pressing Control and mouse button 1 or <Alt-A> for pressing A and

186 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

the Alt key (KeyPress can be omitted). An event pattern can also be a virtual event of the form <<AS-
tring>> where AString can be arbitrary. This event can be generated by event_generate. If events are
concatenated they must appear shortly after each other.

FUNC will be called if the event sequence occurs with an instance of Event as argument. If the return
value of FUNC is “break” no further bound function is invoked.

An additional boolean parameter ADD specifies whether FUNC will be called additionally to the other
bound function or whether it will replace the previous function.

Bind will return an identifier to allow deletion of the bound function with unbind without memory leak.

If FUNC or SEQUENCE is omitted the bound function or list of bound events are returned.

bind_all(sequence=None, func=None, add=None)
Bind to all widgets at an event SEQUENCE a call to function FUNC. An additional boolean parameter
ADD specifies whether FUNC will be called additionally to the other bound function or whether it will
replace the previous function. See bind for the return value.

bind_class(className, sequence=None, func=None, add=None)
Bind to widgets with bindtag CLASSNAME at event SEQUENCE a call of function FUNC. An additional
boolean parameter ADD specifies whether FUNC will be called additionally to the other bound function
or whether it will replace the previous function. See bind for the return value.

bindtags(tagList=None)
Set or get the list of bindtags for this widget.

With no argument return the list of all bindtags associated with this widget. With a list of strings as
argument the bindtags are set to this list. The bindtags determine in which order events are processed (see
bind).

cget(key)
Return the resource value for a KEY given as string.

client(name=None)
Store NAME in WM_CLIENT_MACHINE property of this widget. Return current value.

clipboard_append(string, **kw)
Append STRING to the Tk clipboard.

A widget specified at the optional displayof keyword argument specifies the target display. The clipboard
can be retrieved with selection_get.

clipboard_clear(**kw)
Clear the data in the Tk clipboard.

A widget specified for the optional displayof keyword argument specifies the target display.

clipboard_get(**kw)
Retrieve data from the clipboard on window’s display.

The window keyword defaults to the root window of the Tkinter application.

The type keyword specifies the form in which the data is to be returned and should be an atom name
such as STRING or FILE_NAME. Type defaults to STRING, except on X11, where the default is to try
UTF8_STRING and fall back to STRING.

This command is equivalent to:

selection_get(CLIPBOARD)

colormapwindows(*wlist)
Store list of window names (WLIST) into WM_COLORMAPWINDOWS property of this widget. This

3.1. robot package 187

Robot Framework Documentation, Release 6.0.2

list contains windows whose colormaps differ from their parents. Return current list of widgets if WLIST
is empty.

columnconfigure(index, cnf={}, **kw)
Configure column INDEX of a grid.

Valid resources are minsize (minimum size of the column), weight (how much does additional space
propagate to this column) and pad (how much space to let additionally).

command(value=None)
Store VALUE in WM_COMMAND property. It is the command which shall be used to invoke the appli-
cation. Return current command if VALUE is None.

config(cnf=None, **kw)
Configure resources of a widget.

The values for resources are specified as keyword arguments. To get an overview about the allowed
keyword arguments call the method keys.

configure(cnf=None, **kw)
Configure resources of a widget.

The values for resources are specified as keyword arguments. To get an overview about the allowed
keyword arguments call the method keys.

deiconify()
Deiconify this widget. If it was never mapped it will not be mapped. On Windows it will raise this widget
and give it the focus.

deletecommand(name)
Internal function.

Delete the Tcl command provided in NAME.

destroy()
Destroy this and all descendants widgets.

event_add(virtual, *sequences)
Bind a virtual event VIRTUAL (of the form <<Name>>) to an event SEQUENCE such that the virtual
event is triggered whenever SEQUENCE occurs.

event_delete(virtual, *sequences)
Unbind a virtual event VIRTUAL from SEQUENCE.

event_generate(sequence, **kw)
Generate an event SEQUENCE. Additional keyword arguments specify parameter of the event (e.g. x, y,
rootx, rooty).

event_info(virtual=None)
Return a list of all virtual events or the information about the SEQUENCE bound to the virtual event
VIRTUAL.

focus()
Direct input focus to this widget.

If the application currently does not have the focus this widget will get the focus if the application gets the
focus through the window manager.

focus_displayof()
Return the widget which has currently the focus on the display where this widget is located.

Return None if the application does not have the focus.

188 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

focus_force()
Direct input focus to this widget even if the application does not have the focus. Use with caution!

focus_get()
Return the widget which has currently the focus in the application.

Use focus_displayof to allow working with several displays. Return None if application does not have the
focus.

focus_lastfor()
Return the widget which would have the focus if top level for this widget gets the focus from the window
manager.

focus_set()
Direct input focus to this widget.

If the application currently does not have the focus this widget will get the focus if the application gets the
focus through the window manager.

focusmodel(model=None)
Set focus model to MODEL. “active” means that this widget will claim the focus itself, “passive” means
that the window manager shall give the focus. Return current focus model if MODEL is None.

forget(window)
The window will be unmapped from the screen and will no longer be managed by wm. toplevel windows
will be treated like frame windows once they are no longer managed by wm, however, the menu option
configuration will be remembered and the menus will return once the widget is managed again.

frame()
Return identifier for decorative frame of this widget if present.

geometry(newGeometry=None)
Set geometry to NEWGEOMETRY of the form =widthxheight+x+y. Return current value if None is given.

getboolean(s)
Return a boolean value for Tcl boolean values true and false given as parameter.

getdouble(s)

getint(s)

getvar(name=’PY_VAR’)
Return value of Tcl variable NAME.

grab_current()
Return widget which has currently the grab in this application or None.

grab_release()
Release grab for this widget if currently set.

grab_set(timeout=30)
Set grab for this widget.

A grab directs all events to this and descendant widgets in the application.

grab_set_global()
Set global grab for this widget.

A global grab directs all events to this and descendant widgets on the display. Use with caution - other
applications do not get events anymore.

grab_status()
Return None, “local” or “global” if this widget has no, a local or a global grab.

3.1. robot package 189

Robot Framework Documentation, Release 6.0.2

grid(baseWidth=None, baseHeight=None, widthInc=None, heightInc=None)
Instruct the window manager that this widget shall only be resized on grid boundaries. WIDTHINC and
HEIGHTINC are the width and height of a grid unit in pixels. BASEWIDTH and BASEHEIGHT are the
number of grid units requested in Tk_GeometryRequest.

grid_anchor(anchor=None)
The anchor value controls how to place the grid within the master when no row/column has any weight.

The default anchor is nw.

grid_bbox(column=None, row=None, col2=None, row2=None)
Return a tuple of integer coordinates for the bounding box of this widget controlled by the geometry
manager grid.

If COLUMN, ROW is given the bounding box applies from the cell with row and column 0 to the specified
cell. If COL2 and ROW2 are given the bounding box starts at that cell.

The returned integers specify the offset of the upper left corner in the master widget and the width and
height.

grid_columnconfigure(index, cnf={}, **kw)
Configure column INDEX of a grid.

Valid resources are minsize (minimum size of the column), weight (how much does additional space
propagate to this column) and pad (how much space to let additionally).

grid_location(x, y)
Return a tuple of column and row which identify the cell at which the pixel at position X and Y inside the
master widget is located.

grid_propagate(flag=[’_noarg_’])
Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information of the slaves will determine the size of
this widget. If no argument is given, the current setting will be returned.

grid_rowconfigure(index, cnf={}, **kw)
Configure row INDEX of a grid.

Valid resources are minsize (minimum size of the row), weight (how much does additional space propagate
to this row) and pad (how much space to let additionally).

grid_size()
Return a tuple of the number of column and rows in the grid.

grid_slaves(row=None, column=None)
Return a list of all slaves of this widget in its packing order.

group(pathName=None)
Set the group leader widgets for related widgets to PATHNAME. Return the group leader of this widget if
None is given.

iconbitmap(bitmap=None, default=None)
Set bitmap for the iconified widget to BITMAP. Return the bitmap if None is given.

Under Windows, the DEFAULT parameter can be used to set the icon for the widget and any descen-
dents that don’t have an icon set explicitly. DEFAULT can be the relative path to a .ico file (example:
root.iconbitmap(default=’myicon.ico’)). See Tk documentation for more information.

iconify()
Display widget as icon.

190 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

iconmask(bitmap=None)
Set mask for the icon bitmap of this widget. Return the mask if None is given.

iconname(newName=None)
Set the name of the icon for this widget. Return the name if None is given.

iconphoto(default=False, *args)
Sets the titlebar icon for this window based on the named photo images passed through args. If default is
True, this is applied to all future created toplevels as well.

The data in the images is taken as a snapshot at the time of invocation. If the images are later changed,
this is not reflected to the titlebar icons. Multiple images are accepted to allow different images sizes to be
provided. The window manager may scale provided icons to an appropriate size.

On Windows, the images are packed into a Windows icon structure. This will override an icon specified to
wm_iconbitmap, and vice versa.

On X, the images are arranged into the _NET_WM_ICON X property, which most modern window man-
agers support. An icon specified by wm_iconbitmap may exist simultaneously.

On Macintosh, this currently does nothing.

iconposition(x=None, y=None)
Set the position of the icon of this widget to X and Y. Return a tuple of the current values of X and X if
None is given.

iconwindow(pathName=None)
Set widget PATHNAME to be displayed instead of icon. Return the current value if None is given.

image_names()
Return a list of all existing image names.

image_types()
Return a list of all available image types (e.g. photo bitmap).

keys()
Return a list of all resource names of this widget.

lift(aboveThis=None)
Raise this widget in the stacking order.

lower(belowThis=None)
Lower this widget in the stacking order.

mainloop(n=0)
Call the mainloop of Tk.

manage(widget)
The widget specified will become a stand alone top-level window. The window will be decorated with the
window managers title bar, etc.

maxsize(width=None, height=None)
Set max WIDTH and HEIGHT for this widget. If the window is gridded the values are given in grid units.
Return the current values if None is given.

minsize(width=None, height=None)
Set min WIDTH and HEIGHT for this widget. If the window is gridded the values are given in grid units.
Return the current values if None is given.

nametowidget(name)
Return the Tkinter instance of a widget identified by its Tcl name NAME.

3.1. robot package 191

Robot Framework Documentation, Release 6.0.2

option_add(pattern, value, priority=None)
Set a VALUE (second parameter) for an option PATTERN (first parameter).

An optional third parameter gives the numeric priority (defaults to 80).

option_clear()
Clear the option database.

It will be reloaded if option_add is called.

option_get(name, className)
Return the value for an option NAME for this widget with CLASSNAME.

Values with higher priority override lower values.

option_readfile(fileName, priority=None)
Read file FILENAME into the option database.

An optional second parameter gives the numeric priority.

overrideredirect(boolean=None)
Instruct the window manager to ignore this widget if BOOLEAN is given with 1. Return the current value
if None is given.

pack_propagate(flag=[’_noarg_’])
Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information of the slaves will determine the size of
this widget. If no argument is given the current setting will be returned.

pack_slaves()
Return a list of all slaves of this widget in its packing order.

place_slaves()
Return a list of all slaves of this widget in its packing order.

positionfrom(who=None)
Instruct the window manager that the position of this widget shall be defined by the user if WHO is “user”,
and by its own policy if WHO is “program”.

propagate(flag=[’_noarg_’])
Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information of the slaves will determine the size of
this widget. If no argument is given the current setting will be returned.

protocol(name=None, func=None)
Bind function FUNC to command NAME for this widget. Return the function bound to NAME if None is
given. NAME could be e.g. “WM_SAVE_YOURSELF” or “WM_DELETE_WINDOW”.

quit()
Quit the Tcl interpreter. All widgets will be destroyed.

register(func, subst=None, needcleanup=1)
Return a newly created Tcl function. If this function is called, the Python function FUNC will be executed.
An optional function SUBST can be given which will be executed before FUNC.

resizable(width=None, height=None)
Instruct the window manager whether this width can be resized in WIDTH or HEIGHT. Both values are
boolean values.

rowconfigure(index, cnf={}, **kw)
Configure row INDEX of a grid.

192 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

Valid resources are minsize (minimum size of the row), weight (how much does additional space propagate
to this row) and pad (how much space to let additionally).

selection_clear(**kw)
Clear the current X selection.

selection_get(**kw)
Return the contents of the current X selection.

A keyword parameter selection specifies the name of the selection and defaults to PRIMARY. A keyword
parameter displayof specifies a widget on the display to use. A keyword parameter type specifies the
form of data to be fetched, defaulting to STRING except on X11, where UTF8_STRING is tried before
STRING.

selection_handle(command, **kw)
Specify a function COMMAND to call if the X selection owned by this widget is queried by another
application.

This function must return the contents of the selection. The function will be called with the arguments
OFFSET and LENGTH which allows the chunking of very long selections. The following keyword pa-
rameters can be provided: selection - name of the selection (default PRIMARY), type - type of the selection
(e.g. STRING, FILE_NAME).

selection_own(**kw)
Become owner of X selection.

A keyword parameter selection specifies the name of the selection (default PRIMARY).

selection_own_get(**kw)
Return owner of X selection.

The following keyword parameter can be provided: selection - name of the selection (default PRIMARY),
type - type of the selection (e.g. STRING, FILE_NAME).

send(interp, cmd, *args)
Send Tcl command CMD to different interpreter INTERP to be executed.

setvar(name=’PY_VAR’, value=’1’)
Set Tcl variable NAME to VALUE.

show()

size()
Return a tuple of the number of column and rows in the grid.

sizefrom(who=None)
Instruct the window manager that the size of this widget shall be defined by the user if WHO is “user”, and
by its own policy if WHO is “program”.

slaves()
Return a list of all slaves of this widget in its packing order.

state(newstate=None)
Query or set the state of this widget as one of normal, icon, iconic (see wm_iconwindow), withdrawn, or
zoomed (Windows only).

title(string=None)
Set the title of this widget.

tk_bisque()
Change the color scheme to light brown as used in Tk 3.6 and before.

3.1. robot package 193

Robot Framework Documentation, Release 6.0.2

tk_focusFollowsMouse()
The widget under mouse will get automatically focus. Can not be disabled easily.

tk_focusNext()
Return the next widget in the focus order which follows widget which has currently the focus.

The focus order first goes to the next child, then to the children of the child recursively and then to the next
sibling which is higher in the stacking order. A widget is omitted if it has the takefocus resource set to 0.

tk_focusPrev()
Return previous widget in the focus order. See tk_focusNext for details.

tk_setPalette(*args, **kw)
Set a new color scheme for all widget elements.

A single color as argument will cause that all colors of Tk widget elements are derived from this. Alter-
natively several keyword parameters and its associated colors can be given. The following keywords are
valid: activeBackground, foreground, selectColor, activeForeground, highlightBackground, selectBack-
ground, background, highlightColor, selectForeground, disabledForeground, insertBackground, trough-
Color.

tk_strictMotif(boolean=None)
Set Tcl internal variable, whether the look and feel should adhere to Motif.

A parameter of 1 means adhere to Motif (e.g. no color change if mouse passes over slider). Returns the
set value.

tkraise(aboveThis=None)
Raise this widget in the stacking order.

transient(master=None)
Instruct the window manager that this widget is transient with regard to widget MASTER.

unbind(sequence, funcid=None)
Unbind for this widget for event SEQUENCE the function identified with FUNCID.

unbind_all(sequence)
Unbind for all widgets for event SEQUENCE all functions.

unbind_class(className, sequence)
Unbind for all widgets with bindtag CLASSNAME for event SEQUENCE all functions.

update()
Enter event loop until all pending events have been processed by Tcl.

update_idletasks()
Enter event loop until all idle callbacks have been called. This will update the display of windows but not
process events caused by the user.

wait_variable(name=’PY_VAR’)
Wait until the variable is modified.

A parameter of type IntVar, StringVar, DoubleVar or BooleanVar must be given.

wait_visibility(window=None)
Wait until the visibility of a WIDGET changes (e.g. it appears).

If no parameter is given self is used.

wait_window(window=None)
Wait until a WIDGET is destroyed.

If no parameter is given self is used.

194 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

waitvar(name=’PY_VAR’)
Wait until the variable is modified.

A parameter of type IntVar, StringVar, DoubleVar or BooleanVar must be given.

winfo_atom(name, displayof=0)
Return integer which represents atom NAME.

winfo_atomname(id, displayof=0)
Return name of atom with identifier ID.

winfo_cells()
Return number of cells in the colormap for this widget.

winfo_children()
Return a list of all widgets which are children of this widget.

winfo_class()
Return window class name of this widget.

winfo_colormapfull()
Return True if at the last color request the colormap was full.

winfo_containing(rootX, rootY, displayof=0)
Return the widget which is at the root coordinates ROOTX, ROOTY.

winfo_depth()
Return the number of bits per pixel.

winfo_exists()
Return true if this widget exists.

winfo_fpixels(number)
Return the number of pixels for the given distance NUMBER (e.g. “3c”) as float.

winfo_geometry()
Return geometry string for this widget in the form “widthxheight+X+Y”.

winfo_height()
Return height of this widget.

winfo_id()
Return identifier ID for this widget.

winfo_interps(displayof=0)
Return the name of all Tcl interpreters for this display.

winfo_ismapped()
Return true if this widget is mapped.

winfo_manager()
Return the window manager name for this widget.

winfo_name()
Return the name of this widget.

winfo_parent()
Return the name of the parent of this widget.

winfo_pathname(id, displayof=0)
Return the pathname of the widget given by ID.

winfo_pixels(number)
Rounded integer value of winfo_fpixels.

3.1. robot package 195

Robot Framework Documentation, Release 6.0.2

winfo_pointerx()
Return the x coordinate of the pointer on the root window.

winfo_pointerxy()
Return a tuple of x and y coordinates of the pointer on the root window.

winfo_pointery()
Return the y coordinate of the pointer on the root window.

winfo_reqheight()
Return requested height of this widget.

winfo_reqwidth()
Return requested width of this widget.

winfo_rgb(color)
Return tuple of decimal values for red, green, blue for COLOR in this widget.

winfo_rootx()
Return x coordinate of upper left corner of this widget on the root window.

winfo_rooty()
Return y coordinate of upper left corner of this widget on the root window.

winfo_screen()
Return the screen name of this widget.

winfo_screencells()
Return the number of the cells in the colormap of the screen of this widget.

winfo_screendepth()
Return the number of bits per pixel of the root window of the screen of this widget.

winfo_screenheight()
Return the number of pixels of the height of the screen of this widget in pixel.

winfo_screenmmheight()
Return the number of pixels of the height of the screen of this widget in mm.

winfo_screenmmwidth()
Return the number of pixels of the width of the screen of this widget in mm.

winfo_screenvisual()
Return one of the strings directcolor, grayscale, pseudocolor, staticcolor, staticgray, or truecolor for the
default colormodel of this screen.

winfo_screenwidth()
Return the number of pixels of the width of the screen of this widget in pixel.

winfo_server()
Return information of the X-Server of the screen of this widget in the form “XmajorRminor vendor ven-
dorVersion”.

winfo_toplevel()
Return the toplevel widget of this widget.

winfo_viewable()
Return true if the widget and all its higher ancestors are mapped.

winfo_visual()
Return one of the strings directcolor, grayscale, pseudocolor, staticcolor, staticgray, or truecolor for the
colormodel of this widget.

196 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

winfo_visualid()
Return the X identifier for the visual for this widget.

winfo_visualsavailable(includeids=False)
Return a list of all visuals available for the screen of this widget.

Each item in the list consists of a visual name (see winfo_visual), a depth and if includeids is true is given
also the X identifier.

winfo_vrootheight()
Return the height of the virtual root window associated with this widget in pixels. If there is no virtual root
window return the height of the screen.

winfo_vrootwidth()
Return the width of the virtual root window associated with this widget in pixel. If there is no virtual root
window return the width of the screen.

winfo_vrootx()
Return the x offset of the virtual root relative to the root window of the screen of this widget.

winfo_vrooty()
Return the y offset of the virtual root relative to the root window of the screen of this widget.

winfo_width()
Return the width of this widget.

winfo_x()
Return the x coordinate of the upper left corner of this widget in the parent.

winfo_y()
Return the y coordinate of the upper left corner of this widget in the parent.

withdraw()
Withdraw this widget from the screen such that it is unmapped and forgotten by the window manager.
Re-draw it with wm_deiconify.

wm_aspect(minNumer=None, minDenom=None, maxNumer=None, maxDenom=None)
Instruct the window manager to set the aspect ratio (width/height) of this widget to be between MINNU-
MER/MINDENOM and MAXNUMER/MAXDENOM. Return a tuple of the actual values if no argument
is given.

wm_attributes(*args)
This subcommand returns or sets platform specific attributes

The first form returns a list of the platform specific flags and their values. The second form returns the
value for the specific option. The third form sets one or more of the values. The values are as follows:

On Windows, -disabled gets or sets whether the window is in a disabled state. -toolwindow gets or sets
the style of the window to toolwindow (as defined in the MSDN). -topmost gets or sets whether this is a
topmost window (displays above all other windows).

On Macintosh, XXXXX

On Unix, there are currently no special attribute values.

wm_client(name=None)
Store NAME in WM_CLIENT_MACHINE property of this widget. Return current value.

wm_colormapwindows(*wlist)
Store list of window names (WLIST) into WM_COLORMAPWINDOWS property of this widget. This
list contains windows whose colormaps differ from their parents. Return current list of widgets if WLIST
is empty.

3.1. robot package 197

Robot Framework Documentation, Release 6.0.2

wm_command(value=None)
Store VALUE in WM_COMMAND property. It is the command which shall be used to invoke the appli-
cation. Return current command if VALUE is None.

wm_deiconify()
Deiconify this widget. If it was never mapped it will not be mapped. On Windows it will raise this widget
and give it the focus.

wm_focusmodel(model=None)
Set focus model to MODEL. “active” means that this widget will claim the focus itself, “passive” means
that the window manager shall give the focus. Return current focus model if MODEL is None.

wm_forget(window)
The window will be unmapped from the screen and will no longer be managed by wm. toplevel windows
will be treated like frame windows once they are no longer managed by wm, however, the menu option
configuration will be remembered and the menus will return once the widget is managed again.

wm_frame()
Return identifier for decorative frame of this widget if present.

wm_geometry(newGeometry=None)
Set geometry to NEWGEOMETRY of the form =widthxheight+x+y. Return current value if None is given.

wm_grid(baseWidth=None, baseHeight=None, widthInc=None, heightInc=None)
Instruct the window manager that this widget shall only be resized on grid boundaries. WIDTHINC and
HEIGHTINC are the width and height of a grid unit in pixels. BASEWIDTH and BASEHEIGHT are the
number of grid units requested in Tk_GeometryRequest.

wm_group(pathName=None)
Set the group leader widgets for related widgets to PATHNAME. Return the group leader of this widget if
None is given.

wm_iconbitmap(bitmap=None, default=None)
Set bitmap for the iconified widget to BITMAP. Return the bitmap if None is given.

Under Windows, the DEFAULT parameter can be used to set the icon for the widget and any descen-
dents that don’t have an icon set explicitly. DEFAULT can be the relative path to a .ico file (example:
root.iconbitmap(default=’myicon.ico’)). See Tk documentation for more information.

wm_iconify()
Display widget as icon.

wm_iconmask(bitmap=None)
Set mask for the icon bitmap of this widget. Return the mask if None is given.

wm_iconname(newName=None)
Set the name of the icon for this widget. Return the name if None is given.

wm_iconphoto(default=False, *args)
Sets the titlebar icon for this window based on the named photo images passed through args. If default is
True, this is applied to all future created toplevels as well.

The data in the images is taken as a snapshot at the time of invocation. If the images are later changed,
this is not reflected to the titlebar icons. Multiple images are accepted to allow different images sizes to be
provided. The window manager may scale provided icons to an appropriate size.

On Windows, the images are packed into a Windows icon structure. This will override an icon specified to
wm_iconbitmap, and vice versa.

On X, the images are arranged into the _NET_WM_ICON X property, which most modern window man-
agers support. An icon specified by wm_iconbitmap may exist simultaneously.

198 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

On Macintosh, this currently does nothing.

wm_iconposition(x=None, y=None)
Set the position of the icon of this widget to X and Y. Return a tuple of the current values of X and X if
None is given.

wm_iconwindow(pathName=None)
Set widget PATHNAME to be displayed instead of icon. Return the current value if None is given.

wm_manage(widget)
The widget specified will become a stand alone top-level window. The window will be decorated with the
window managers title bar, etc.

wm_maxsize(width=None, height=None)
Set max WIDTH and HEIGHT for this widget. If the window is gridded the values are given in grid units.
Return the current values if None is given.

wm_minsize(width=None, height=None)
Set min WIDTH and HEIGHT for this widget. If the window is gridded the values are given in grid units.
Return the current values if None is given.

wm_overrideredirect(boolean=None)
Instruct the window manager to ignore this widget if BOOLEAN is given with 1. Return the current value
if None is given.

wm_positionfrom(who=None)
Instruct the window manager that the position of this widget shall be defined by the user if WHO is “user”,
and by its own policy if WHO is “program”.

wm_protocol(name=None, func=None)
Bind function FUNC to command NAME for this widget. Return the function bound to NAME if None is
given. NAME could be e.g. “WM_SAVE_YOURSELF” or “WM_DELETE_WINDOW”.

wm_resizable(width=None, height=None)
Instruct the window manager whether this width can be resized in WIDTH or HEIGHT. Both values are
boolean values.

wm_sizefrom(who=None)
Instruct the window manager that the size of this widget shall be defined by the user if WHO is “user”, and
by its own policy if WHO is “program”.

wm_state(newstate=None)
Query or set the state of this widget as one of normal, icon, iconic (see wm_iconwindow), withdrawn, or
zoomed (Windows only).

wm_title(string=None)
Set the title of this widget.

wm_transient(master=None)
Instruct the window manager that this widget is transient with regard to widget MASTER.

wm_withdraw()
Withdraw this widget from the screen such that it is unmapped and forgotten by the window manager.
Re-draw it with wm_deiconify.

class robot.libraries.dialogs_py.MultipleSelectionDialog(message, values)
Bases: robot.libraries.dialogs_py._TkDialog

after(ms, func=None, *args)
Call function once after given time.

3.1. robot package 199

Robot Framework Documentation, Release 6.0.2

MS specifies the time in milliseconds. FUNC gives the function which shall be called. Additional param-
eters are given as parameters to the function call. Return identifier to cancel scheduling with after_cancel.

after_cancel(id)
Cancel scheduling of function identified with ID.

Identifier returned by after or after_idle must be given as first parameter.

after_idle(func, *args)
Call FUNC once if the Tcl main loop has no event to process.

Return an identifier to cancel the scheduling with after_cancel.

anchor(anchor=None)
The anchor value controls how to place the grid within the master when no row/column has any weight.

The default anchor is nw.

aspect(minNumer=None, minDenom=None, maxNumer=None, maxDenom=None)
Instruct the window manager to set the aspect ratio (width/height) of this widget to be between MINNU-
MER/MINDENOM and MAXNUMER/MAXDENOM. Return a tuple of the actual values if no argument
is given.

attributes(*args)
This subcommand returns or sets platform specific attributes

The first form returns a list of the platform specific flags and their values. The second form returns the
value for the specific option. The third form sets one or more of the values. The values are as follows:

On Windows, -disabled gets or sets whether the window is in a disabled state. -toolwindow gets or sets
the style of the window to toolwindow (as defined in the MSDN). -topmost gets or sets whether this is a
topmost window (displays above all other windows).

On Macintosh, XXXXX

On Unix, there are currently no special attribute values.

bbox(column=None, row=None, col2=None, row2=None)
Return a tuple of integer coordinates for the bounding box of this widget controlled by the geometry
manager grid.

If COLUMN, ROW is given the bounding box applies from the cell with row and column 0 to the specified
cell. If COL2 and ROW2 are given the bounding box starts at that cell.

The returned integers specify the offset of the upper left corner in the master widget and the width and
height.

bell(displayof=0)
Ring a display’s bell.

bind(sequence=None, func=None, add=None)
Bind to this widget at event SEQUENCE a call to function FUNC.

SEQUENCE is a string of concatenated event patterns. An event pattern is of the form <MODIFIER-
MODIFIER-TYPE-DETAIL> where MODIFIER is one of Control, Mod2, M2, Shift, Mod3, M3, Lock,
Mod4, M4, Button1, B1, Mod5, M5 Button2, B2, Meta, M, Button3, B3, Alt, Button4, B4, Double,
Button5, B5 Triple, Mod1, M1. TYPE is one of Activate, Enter, Map, ButtonPress, Button, Expose, Mo-
tion, ButtonRelease FocusIn, MouseWheel, Circulate, FocusOut, Property, Colormap, Gravity Reparent,
Configure, KeyPress, Key, Unmap, Deactivate, KeyRelease Visibility, Destroy, Leave and DETAIL is the
button number for ButtonPress, ButtonRelease and DETAIL is the Keysym for KeyPress and KeyRelease.
Examples are <Control-Button-1> for pressing Control and mouse button 1 or <Alt-A> for pressing A and

200 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

the Alt key (KeyPress can be omitted). An event pattern can also be a virtual event of the form <<AS-
tring>> where AString can be arbitrary. This event can be generated by event_generate. If events are
concatenated they must appear shortly after each other.

FUNC will be called if the event sequence occurs with an instance of Event as argument. If the return
value of FUNC is “break” no further bound function is invoked.

An additional boolean parameter ADD specifies whether FUNC will be called additionally to the other
bound function or whether it will replace the previous function.

Bind will return an identifier to allow deletion of the bound function with unbind without memory leak.

If FUNC or SEQUENCE is omitted the bound function or list of bound events are returned.

bind_all(sequence=None, func=None, add=None)
Bind to all widgets at an event SEQUENCE a call to function FUNC. An additional boolean parameter
ADD specifies whether FUNC will be called additionally to the other bound function or whether it will
replace the previous function. See bind for the return value.

bind_class(className, sequence=None, func=None, add=None)
Bind to widgets with bindtag CLASSNAME at event SEQUENCE a call of function FUNC. An additional
boolean parameter ADD specifies whether FUNC will be called additionally to the other bound function
or whether it will replace the previous function. See bind for the return value.

bindtags(tagList=None)
Set or get the list of bindtags for this widget.

With no argument return the list of all bindtags associated with this widget. With a list of strings as
argument the bindtags are set to this list. The bindtags determine in which order events are processed (see
bind).

cget(key)
Return the resource value for a KEY given as string.

client(name=None)
Store NAME in WM_CLIENT_MACHINE property of this widget. Return current value.

clipboard_append(string, **kw)
Append STRING to the Tk clipboard.

A widget specified at the optional displayof keyword argument specifies the target display. The clipboard
can be retrieved with selection_get.

clipboard_clear(**kw)
Clear the data in the Tk clipboard.

A widget specified for the optional displayof keyword argument specifies the target display.

clipboard_get(**kw)
Retrieve data from the clipboard on window’s display.

The window keyword defaults to the root window of the Tkinter application.

The type keyword specifies the form in which the data is to be returned and should be an atom name
such as STRING or FILE_NAME. Type defaults to STRING, except on X11, where the default is to try
UTF8_STRING and fall back to STRING.

This command is equivalent to:

selection_get(CLIPBOARD)

colormapwindows(*wlist)
Store list of window names (WLIST) into WM_COLORMAPWINDOWS property of this widget. This

3.1. robot package 201

Robot Framework Documentation, Release 6.0.2

list contains windows whose colormaps differ from their parents. Return current list of widgets if WLIST
is empty.

columnconfigure(index, cnf={}, **kw)
Configure column INDEX of a grid.

Valid resources are minsize (minimum size of the column), weight (how much does additional space
propagate to this column) and pad (how much space to let additionally).

command(value=None)
Store VALUE in WM_COMMAND property. It is the command which shall be used to invoke the appli-
cation. Return current command if VALUE is None.

config(cnf=None, **kw)
Configure resources of a widget.

The values for resources are specified as keyword arguments. To get an overview about the allowed
keyword arguments call the method keys.

configure(cnf=None, **kw)
Configure resources of a widget.

The values for resources are specified as keyword arguments. To get an overview about the allowed
keyword arguments call the method keys.

deiconify()
Deiconify this widget. If it was never mapped it will not be mapped. On Windows it will raise this widget
and give it the focus.

deletecommand(name)
Internal function.

Delete the Tcl command provided in NAME.

destroy()
Destroy this and all descendants widgets.

event_add(virtual, *sequences)
Bind a virtual event VIRTUAL (of the form <<Name>>) to an event SEQUENCE such that the virtual
event is triggered whenever SEQUENCE occurs.

event_delete(virtual, *sequences)
Unbind a virtual event VIRTUAL from SEQUENCE.

event_generate(sequence, **kw)
Generate an event SEQUENCE. Additional keyword arguments specify parameter of the event (e.g. x, y,
rootx, rooty).

event_info(virtual=None)
Return a list of all virtual events or the information about the SEQUENCE bound to the virtual event
VIRTUAL.

focus()
Direct input focus to this widget.

If the application currently does not have the focus this widget will get the focus if the application gets the
focus through the window manager.

focus_displayof()
Return the widget which has currently the focus on the display where this widget is located.

Return None if the application does not have the focus.

202 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

focus_force()
Direct input focus to this widget even if the application does not have the focus. Use with caution!

focus_get()
Return the widget which has currently the focus in the application.

Use focus_displayof to allow working with several displays. Return None if application does not have the
focus.

focus_lastfor()
Return the widget which would have the focus if top level for this widget gets the focus from the window
manager.

focus_set()
Direct input focus to this widget.

If the application currently does not have the focus this widget will get the focus if the application gets the
focus through the window manager.

focusmodel(model=None)
Set focus model to MODEL. “active” means that this widget will claim the focus itself, “passive” means
that the window manager shall give the focus. Return current focus model if MODEL is None.

forget(window)
The window will be unmapped from the screen and will no longer be managed by wm. toplevel windows
will be treated like frame windows once they are no longer managed by wm, however, the menu option
configuration will be remembered and the menus will return once the widget is managed again.

frame()
Return identifier for decorative frame of this widget if present.

geometry(newGeometry=None)
Set geometry to NEWGEOMETRY of the form =widthxheight+x+y. Return current value if None is given.

getboolean(s)
Return a boolean value for Tcl boolean values true and false given as parameter.

getdouble(s)

getint(s)

getvar(name=’PY_VAR’)
Return value of Tcl variable NAME.

grab_current()
Return widget which has currently the grab in this application or None.

grab_release()
Release grab for this widget if currently set.

grab_set(timeout=30)
Set grab for this widget.

A grab directs all events to this and descendant widgets in the application.

grab_set_global()
Set global grab for this widget.

A global grab directs all events to this and descendant widgets on the display. Use with caution - other
applications do not get events anymore.

grab_status()
Return None, “local” or “global” if this widget has no, a local or a global grab.

3.1. robot package 203

Robot Framework Documentation, Release 6.0.2

grid(baseWidth=None, baseHeight=None, widthInc=None, heightInc=None)
Instruct the window manager that this widget shall only be resized on grid boundaries. WIDTHINC and
HEIGHTINC are the width and height of a grid unit in pixels. BASEWIDTH and BASEHEIGHT are the
number of grid units requested in Tk_GeometryRequest.

grid_anchor(anchor=None)
The anchor value controls how to place the grid within the master when no row/column has any weight.

The default anchor is nw.

grid_bbox(column=None, row=None, col2=None, row2=None)
Return a tuple of integer coordinates for the bounding box of this widget controlled by the geometry
manager grid.

If COLUMN, ROW is given the bounding box applies from the cell with row and column 0 to the specified
cell. If COL2 and ROW2 are given the bounding box starts at that cell.

The returned integers specify the offset of the upper left corner in the master widget and the width and
height.

grid_columnconfigure(index, cnf={}, **kw)
Configure column INDEX of a grid.

Valid resources are minsize (minimum size of the column), weight (how much does additional space
propagate to this column) and pad (how much space to let additionally).

grid_location(x, y)
Return a tuple of column and row which identify the cell at which the pixel at position X and Y inside the
master widget is located.

grid_propagate(flag=[’_noarg_’])
Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information of the slaves will determine the size of
this widget. If no argument is given, the current setting will be returned.

grid_rowconfigure(index, cnf={}, **kw)
Configure row INDEX of a grid.

Valid resources are minsize (minimum size of the row), weight (how much does additional space propagate
to this row) and pad (how much space to let additionally).

grid_size()
Return a tuple of the number of column and rows in the grid.

grid_slaves(row=None, column=None)
Return a list of all slaves of this widget in its packing order.

group(pathName=None)
Set the group leader widgets for related widgets to PATHNAME. Return the group leader of this widget if
None is given.

iconbitmap(bitmap=None, default=None)
Set bitmap for the iconified widget to BITMAP. Return the bitmap if None is given.

Under Windows, the DEFAULT parameter can be used to set the icon for the widget and any descen-
dents that don’t have an icon set explicitly. DEFAULT can be the relative path to a .ico file (example:
root.iconbitmap(default=’myicon.ico’)). See Tk documentation for more information.

iconify()
Display widget as icon.

204 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

iconmask(bitmap=None)
Set mask for the icon bitmap of this widget. Return the mask if None is given.

iconname(newName=None)
Set the name of the icon for this widget. Return the name if None is given.

iconphoto(default=False, *args)
Sets the titlebar icon for this window based on the named photo images passed through args. If default is
True, this is applied to all future created toplevels as well.

The data in the images is taken as a snapshot at the time of invocation. If the images are later changed,
this is not reflected to the titlebar icons. Multiple images are accepted to allow different images sizes to be
provided. The window manager may scale provided icons to an appropriate size.

On Windows, the images are packed into a Windows icon structure. This will override an icon specified to
wm_iconbitmap, and vice versa.

On X, the images are arranged into the _NET_WM_ICON X property, which most modern window man-
agers support. An icon specified by wm_iconbitmap may exist simultaneously.

On Macintosh, this currently does nothing.

iconposition(x=None, y=None)
Set the position of the icon of this widget to X and Y. Return a tuple of the current values of X and X if
None is given.

iconwindow(pathName=None)
Set widget PATHNAME to be displayed instead of icon. Return the current value if None is given.

image_names()
Return a list of all existing image names.

image_types()
Return a list of all available image types (e.g. photo bitmap).

keys()
Return a list of all resource names of this widget.

lift(aboveThis=None)
Raise this widget in the stacking order.

lower(belowThis=None)
Lower this widget in the stacking order.

mainloop(n=0)
Call the mainloop of Tk.

manage(widget)
The widget specified will become a stand alone top-level window. The window will be decorated with the
window managers title bar, etc.

maxsize(width=None, height=None)
Set max WIDTH and HEIGHT for this widget. If the window is gridded the values are given in grid units.
Return the current values if None is given.

minsize(width=None, height=None)
Set min WIDTH and HEIGHT for this widget. If the window is gridded the values are given in grid units.
Return the current values if None is given.

nametowidget(name)
Return the Tkinter instance of a widget identified by its Tcl name NAME.

3.1. robot package 205

Robot Framework Documentation, Release 6.0.2

option_add(pattern, value, priority=None)
Set a VALUE (second parameter) for an option PATTERN (first parameter).

An optional third parameter gives the numeric priority (defaults to 80).

option_clear()
Clear the option database.

It will be reloaded if option_add is called.

option_get(name, className)
Return the value for an option NAME for this widget with CLASSNAME.

Values with higher priority override lower values.

option_readfile(fileName, priority=None)
Read file FILENAME into the option database.

An optional second parameter gives the numeric priority.

overrideredirect(boolean=None)
Instruct the window manager to ignore this widget if BOOLEAN is given with 1. Return the current value
if None is given.

pack_propagate(flag=[’_noarg_’])
Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information of the slaves will determine the size of
this widget. If no argument is given the current setting will be returned.

pack_slaves()
Return a list of all slaves of this widget in its packing order.

place_slaves()
Return a list of all slaves of this widget in its packing order.

positionfrom(who=None)
Instruct the window manager that the position of this widget shall be defined by the user if WHO is “user”,
and by its own policy if WHO is “program”.

propagate(flag=[’_noarg_’])
Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information of the slaves will determine the size of
this widget. If no argument is given the current setting will be returned.

protocol(name=None, func=None)
Bind function FUNC to command NAME for this widget. Return the function bound to NAME if None is
given. NAME could be e.g. “WM_SAVE_YOURSELF” or “WM_DELETE_WINDOW”.

quit()
Quit the Tcl interpreter. All widgets will be destroyed.

register(func, subst=None, needcleanup=1)
Return a newly created Tcl function. If this function is called, the Python function FUNC will be executed.
An optional function SUBST can be given which will be executed before FUNC.

resizable(width=None, height=None)
Instruct the window manager whether this width can be resized in WIDTH or HEIGHT. Both values are
boolean values.

rowconfigure(index, cnf={}, **kw)
Configure row INDEX of a grid.

206 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

Valid resources are minsize (minimum size of the row), weight (how much does additional space propagate
to this row) and pad (how much space to let additionally).

selection_clear(**kw)
Clear the current X selection.

selection_get(**kw)
Return the contents of the current X selection.

A keyword parameter selection specifies the name of the selection and defaults to PRIMARY. A keyword
parameter displayof specifies a widget on the display to use. A keyword parameter type specifies the
form of data to be fetched, defaulting to STRING except on X11, where UTF8_STRING is tried before
STRING.

selection_handle(command, **kw)
Specify a function COMMAND to call if the X selection owned by this widget is queried by another
application.

This function must return the contents of the selection. The function will be called with the arguments
OFFSET and LENGTH which allows the chunking of very long selections. The following keyword pa-
rameters can be provided: selection - name of the selection (default PRIMARY), type - type of the selection
(e.g. STRING, FILE_NAME).

selection_own(**kw)
Become owner of X selection.

A keyword parameter selection specifies the name of the selection (default PRIMARY).

selection_own_get(**kw)
Return owner of X selection.

The following keyword parameter can be provided: selection - name of the selection (default PRIMARY),
type - type of the selection (e.g. STRING, FILE_NAME).

send(interp, cmd, *args)
Send Tcl command CMD to different interpreter INTERP to be executed.

setvar(name=’PY_VAR’, value=’1’)
Set Tcl variable NAME to VALUE.

show()

size()
Return a tuple of the number of column and rows in the grid.

sizefrom(who=None)
Instruct the window manager that the size of this widget shall be defined by the user if WHO is “user”, and
by its own policy if WHO is “program”.

slaves()
Return a list of all slaves of this widget in its packing order.

state(newstate=None)
Query or set the state of this widget as one of normal, icon, iconic (see wm_iconwindow), withdrawn, or
zoomed (Windows only).

title(string=None)
Set the title of this widget.

tk_bisque()
Change the color scheme to light brown as used in Tk 3.6 and before.

3.1. robot package 207

Robot Framework Documentation, Release 6.0.2

tk_focusFollowsMouse()
The widget under mouse will get automatically focus. Can not be disabled easily.

tk_focusNext()
Return the next widget in the focus order which follows widget which has currently the focus.

The focus order first goes to the next child, then to the children of the child recursively and then to the next
sibling which is higher in the stacking order. A widget is omitted if it has the takefocus resource set to 0.

tk_focusPrev()
Return previous widget in the focus order. See tk_focusNext for details.

tk_setPalette(*args, **kw)
Set a new color scheme for all widget elements.

A single color as argument will cause that all colors of Tk widget elements are derived from this. Alter-
natively several keyword parameters and its associated colors can be given. The following keywords are
valid: activeBackground, foreground, selectColor, activeForeground, highlightBackground, selectBack-
ground, background, highlightColor, selectForeground, disabledForeground, insertBackground, trough-
Color.

tk_strictMotif(boolean=None)
Set Tcl internal variable, whether the look and feel should adhere to Motif.

A parameter of 1 means adhere to Motif (e.g. no color change if mouse passes over slider). Returns the
set value.

tkraise(aboveThis=None)
Raise this widget in the stacking order.

transient(master=None)
Instruct the window manager that this widget is transient with regard to widget MASTER.

unbind(sequence, funcid=None)
Unbind for this widget for event SEQUENCE the function identified with FUNCID.

unbind_all(sequence)
Unbind for all widgets for event SEQUENCE all functions.

unbind_class(className, sequence)
Unbind for all widgets with bindtag CLASSNAME for event SEQUENCE all functions.

update()
Enter event loop until all pending events have been processed by Tcl.

update_idletasks()
Enter event loop until all idle callbacks have been called. This will update the display of windows but not
process events caused by the user.

wait_variable(name=’PY_VAR’)
Wait until the variable is modified.

A parameter of type IntVar, StringVar, DoubleVar or BooleanVar must be given.

wait_visibility(window=None)
Wait until the visibility of a WIDGET changes (e.g. it appears).

If no parameter is given self is used.

wait_window(window=None)
Wait until a WIDGET is destroyed.

If no parameter is given self is used.

208 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

waitvar(name=’PY_VAR’)
Wait until the variable is modified.

A parameter of type IntVar, StringVar, DoubleVar or BooleanVar must be given.

winfo_atom(name, displayof=0)
Return integer which represents atom NAME.

winfo_atomname(id, displayof=0)
Return name of atom with identifier ID.

winfo_cells()
Return number of cells in the colormap for this widget.

winfo_children()
Return a list of all widgets which are children of this widget.

winfo_class()
Return window class name of this widget.

winfo_colormapfull()
Return True if at the last color request the colormap was full.

winfo_containing(rootX, rootY, displayof=0)
Return the widget which is at the root coordinates ROOTX, ROOTY.

winfo_depth()
Return the number of bits per pixel.

winfo_exists()
Return true if this widget exists.

winfo_fpixels(number)
Return the number of pixels for the given distance NUMBER (e.g. “3c”) as float.

winfo_geometry()
Return geometry string for this widget in the form “widthxheight+X+Y”.

winfo_height()
Return height of this widget.

winfo_id()
Return identifier ID for this widget.

winfo_interps(displayof=0)
Return the name of all Tcl interpreters for this display.

winfo_ismapped()
Return true if this widget is mapped.

winfo_manager()
Return the window manager name for this widget.

winfo_name()
Return the name of this widget.

winfo_parent()
Return the name of the parent of this widget.

winfo_pathname(id, displayof=0)
Return the pathname of the widget given by ID.

winfo_pixels(number)
Rounded integer value of winfo_fpixels.

3.1. robot package 209

Robot Framework Documentation, Release 6.0.2

winfo_pointerx()
Return the x coordinate of the pointer on the root window.

winfo_pointerxy()
Return a tuple of x and y coordinates of the pointer on the root window.

winfo_pointery()
Return the y coordinate of the pointer on the root window.

winfo_reqheight()
Return requested height of this widget.

winfo_reqwidth()
Return requested width of this widget.

winfo_rgb(color)
Return tuple of decimal values for red, green, blue for COLOR in this widget.

winfo_rootx()
Return x coordinate of upper left corner of this widget on the root window.

winfo_rooty()
Return y coordinate of upper left corner of this widget on the root window.

winfo_screen()
Return the screen name of this widget.

winfo_screencells()
Return the number of the cells in the colormap of the screen of this widget.

winfo_screendepth()
Return the number of bits per pixel of the root window of the screen of this widget.

winfo_screenheight()
Return the number of pixels of the height of the screen of this widget in pixel.

winfo_screenmmheight()
Return the number of pixels of the height of the screen of this widget in mm.

winfo_screenmmwidth()
Return the number of pixels of the width of the screen of this widget in mm.

winfo_screenvisual()
Return one of the strings directcolor, grayscale, pseudocolor, staticcolor, staticgray, or truecolor for the
default colormodel of this screen.

winfo_screenwidth()
Return the number of pixels of the width of the screen of this widget in pixel.

winfo_server()
Return information of the X-Server of the screen of this widget in the form “XmajorRminor vendor ven-
dorVersion”.

winfo_toplevel()
Return the toplevel widget of this widget.

winfo_viewable()
Return true if the widget and all its higher ancestors are mapped.

winfo_visual()
Return one of the strings directcolor, grayscale, pseudocolor, staticcolor, staticgray, or truecolor for the
colormodel of this widget.

210 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

winfo_visualid()
Return the X identifier for the visual for this widget.

winfo_visualsavailable(includeids=False)
Return a list of all visuals available for the screen of this widget.

Each item in the list consists of a visual name (see winfo_visual), a depth and if includeids is true is given
also the X identifier.

winfo_vrootheight()
Return the height of the virtual root window associated with this widget in pixels. If there is no virtual root
window return the height of the screen.

winfo_vrootwidth()
Return the width of the virtual root window associated with this widget in pixel. If there is no virtual root
window return the width of the screen.

winfo_vrootx()
Return the x offset of the virtual root relative to the root window of the screen of this widget.

winfo_vrooty()
Return the y offset of the virtual root relative to the root window of the screen of this widget.

winfo_width()
Return the width of this widget.

winfo_x()
Return the x coordinate of the upper left corner of this widget in the parent.

winfo_y()
Return the y coordinate of the upper left corner of this widget in the parent.

withdraw()
Withdraw this widget from the screen such that it is unmapped and forgotten by the window manager.
Re-draw it with wm_deiconify.

wm_aspect(minNumer=None, minDenom=None, maxNumer=None, maxDenom=None)
Instruct the window manager to set the aspect ratio (width/height) of this widget to be between MINNU-
MER/MINDENOM and MAXNUMER/MAXDENOM. Return a tuple of the actual values if no argument
is given.

wm_attributes(*args)
This subcommand returns or sets platform specific attributes

The first form returns a list of the platform specific flags and their values. The second form returns the
value for the specific option. The third form sets one or more of the values. The values are as follows:

On Windows, -disabled gets or sets whether the window is in a disabled state. -toolwindow gets or sets
the style of the window to toolwindow (as defined in the MSDN). -topmost gets or sets whether this is a
topmost window (displays above all other windows).

On Macintosh, XXXXX

On Unix, there are currently no special attribute values.

wm_client(name=None)
Store NAME in WM_CLIENT_MACHINE property of this widget. Return current value.

wm_colormapwindows(*wlist)
Store list of window names (WLIST) into WM_COLORMAPWINDOWS property of this widget. This
list contains windows whose colormaps differ from their parents. Return current list of widgets if WLIST
is empty.

3.1. robot package 211

Robot Framework Documentation, Release 6.0.2

wm_command(value=None)
Store VALUE in WM_COMMAND property. It is the command which shall be used to invoke the appli-
cation. Return current command if VALUE is None.

wm_deiconify()
Deiconify this widget. If it was never mapped it will not be mapped. On Windows it will raise this widget
and give it the focus.

wm_focusmodel(model=None)
Set focus model to MODEL. “active” means that this widget will claim the focus itself, “passive” means
that the window manager shall give the focus. Return current focus model if MODEL is None.

wm_forget(window)
The window will be unmapped from the screen and will no longer be managed by wm. toplevel windows
will be treated like frame windows once they are no longer managed by wm, however, the menu option
configuration will be remembered and the menus will return once the widget is managed again.

wm_frame()
Return identifier for decorative frame of this widget if present.

wm_geometry(newGeometry=None)
Set geometry to NEWGEOMETRY of the form =widthxheight+x+y. Return current value if None is given.

wm_grid(baseWidth=None, baseHeight=None, widthInc=None, heightInc=None)
Instruct the window manager that this widget shall only be resized on grid boundaries. WIDTHINC and
HEIGHTINC are the width and height of a grid unit in pixels. BASEWIDTH and BASEHEIGHT are the
number of grid units requested in Tk_GeometryRequest.

wm_group(pathName=None)
Set the group leader widgets for related widgets to PATHNAME. Return the group leader of this widget if
None is given.

wm_iconbitmap(bitmap=None, default=None)
Set bitmap for the iconified widget to BITMAP. Return the bitmap if None is given.

Under Windows, the DEFAULT parameter can be used to set the icon for the widget and any descen-
dents that don’t have an icon set explicitly. DEFAULT can be the relative path to a .ico file (example:
root.iconbitmap(default=’myicon.ico’)). See Tk documentation for more information.

wm_iconify()
Display widget as icon.

wm_iconmask(bitmap=None)
Set mask for the icon bitmap of this widget. Return the mask if None is given.

wm_iconname(newName=None)
Set the name of the icon for this widget. Return the name if None is given.

wm_iconphoto(default=False, *args)
Sets the titlebar icon for this window based on the named photo images passed through args. If default is
True, this is applied to all future created toplevels as well.

The data in the images is taken as a snapshot at the time of invocation. If the images are later changed,
this is not reflected to the titlebar icons. Multiple images are accepted to allow different images sizes to be
provided. The window manager may scale provided icons to an appropriate size.

On Windows, the images are packed into a Windows icon structure. This will override an icon specified to
wm_iconbitmap, and vice versa.

On X, the images are arranged into the _NET_WM_ICON X property, which most modern window man-
agers support. An icon specified by wm_iconbitmap may exist simultaneously.

212 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

On Macintosh, this currently does nothing.

wm_iconposition(x=None, y=None)
Set the position of the icon of this widget to X and Y. Return a tuple of the current values of X and X if
None is given.

wm_iconwindow(pathName=None)
Set widget PATHNAME to be displayed instead of icon. Return the current value if None is given.

wm_manage(widget)
The widget specified will become a stand alone top-level window. The window will be decorated with the
window managers title bar, etc.

wm_maxsize(width=None, height=None)
Set max WIDTH and HEIGHT for this widget. If the window is gridded the values are given in grid units.
Return the current values if None is given.

wm_minsize(width=None, height=None)
Set min WIDTH and HEIGHT for this widget. If the window is gridded the values are given in grid units.
Return the current values if None is given.

wm_overrideredirect(boolean=None)
Instruct the window manager to ignore this widget if BOOLEAN is given with 1. Return the current value
if None is given.

wm_positionfrom(who=None)
Instruct the window manager that the position of this widget shall be defined by the user if WHO is “user”,
and by its own policy if WHO is “program”.

wm_protocol(name=None, func=None)
Bind function FUNC to command NAME for this widget. Return the function bound to NAME if None is
given. NAME could be e.g. “WM_SAVE_YOURSELF” or “WM_DELETE_WINDOW”.

wm_resizable(width=None, height=None)
Instruct the window manager whether this width can be resized in WIDTH or HEIGHT. Both values are
boolean values.

wm_sizefrom(who=None)
Instruct the window manager that the size of this widget shall be defined by the user if WHO is “user”, and
by its own policy if WHO is “program”.

wm_state(newstate=None)
Query or set the state of this widget as one of normal, icon, iconic (see wm_iconwindow), withdrawn, or
zoomed (Windows only).

wm_title(string=None)
Set the title of this widget.

wm_transient(master=None)
Instruct the window manager that this widget is transient with regard to widget MASTER.

wm_withdraw()
Withdraw this widget from the screen such that it is unmapped and forgotten by the window manager.
Re-draw it with wm_deiconify.

class robot.libraries.dialogs_py.PassFailDialog(message, value=None, **extra)
Bases: robot.libraries.dialogs_py._TkDialog

after(ms, func=None, *args)
Call function once after given time.

3.1. robot package 213

Robot Framework Documentation, Release 6.0.2

MS specifies the time in milliseconds. FUNC gives the function which shall be called. Additional param-
eters are given as parameters to the function call. Return identifier to cancel scheduling with after_cancel.

after_cancel(id)
Cancel scheduling of function identified with ID.

Identifier returned by after or after_idle must be given as first parameter.

after_idle(func, *args)
Call FUNC once if the Tcl main loop has no event to process.

Return an identifier to cancel the scheduling with after_cancel.

anchor(anchor=None)
The anchor value controls how to place the grid within the master when no row/column has any weight.

The default anchor is nw.

aspect(minNumer=None, minDenom=None, maxNumer=None, maxDenom=None)
Instruct the window manager to set the aspect ratio (width/height) of this widget to be between MINNU-
MER/MINDENOM and MAXNUMER/MAXDENOM. Return a tuple of the actual values if no argument
is given.

attributes(*args)
This subcommand returns or sets platform specific attributes

The first form returns a list of the platform specific flags and their values. The second form returns the
value for the specific option. The third form sets one or more of the values. The values are as follows:

On Windows, -disabled gets or sets whether the window is in a disabled state. -toolwindow gets or sets
the style of the window to toolwindow (as defined in the MSDN). -topmost gets or sets whether this is a
topmost window (displays above all other windows).

On Macintosh, XXXXX

On Unix, there are currently no special attribute values.

bbox(column=None, row=None, col2=None, row2=None)
Return a tuple of integer coordinates for the bounding box of this widget controlled by the geometry
manager grid.

If COLUMN, ROW is given the bounding box applies from the cell with row and column 0 to the specified
cell. If COL2 and ROW2 are given the bounding box starts at that cell.

The returned integers specify the offset of the upper left corner in the master widget and the width and
height.

bell(displayof=0)
Ring a display’s bell.

bind(sequence=None, func=None, add=None)
Bind to this widget at event SEQUENCE a call to function FUNC.

SEQUENCE is a string of concatenated event patterns. An event pattern is of the form <MODIFIER-
MODIFIER-TYPE-DETAIL> where MODIFIER is one of Control, Mod2, M2, Shift, Mod3, M3, Lock,
Mod4, M4, Button1, B1, Mod5, M5 Button2, B2, Meta, M, Button3, B3, Alt, Button4, B4, Double,
Button5, B5 Triple, Mod1, M1. TYPE is one of Activate, Enter, Map, ButtonPress, Button, Expose, Mo-
tion, ButtonRelease FocusIn, MouseWheel, Circulate, FocusOut, Property, Colormap, Gravity Reparent,
Configure, KeyPress, Key, Unmap, Deactivate, KeyRelease Visibility, Destroy, Leave and DETAIL is the
button number for ButtonPress, ButtonRelease and DETAIL is the Keysym for KeyPress and KeyRelease.
Examples are <Control-Button-1> for pressing Control and mouse button 1 or <Alt-A> for pressing A and

214 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

the Alt key (KeyPress can be omitted). An event pattern can also be a virtual event of the form <<AS-
tring>> where AString can be arbitrary. This event can be generated by event_generate. If events are
concatenated they must appear shortly after each other.

FUNC will be called if the event sequence occurs with an instance of Event as argument. If the return
value of FUNC is “break” no further bound function is invoked.

An additional boolean parameter ADD specifies whether FUNC will be called additionally to the other
bound function or whether it will replace the previous function.

Bind will return an identifier to allow deletion of the bound function with unbind without memory leak.

If FUNC or SEQUENCE is omitted the bound function or list of bound events are returned.

bind_all(sequence=None, func=None, add=None)
Bind to all widgets at an event SEQUENCE a call to function FUNC. An additional boolean parameter
ADD specifies whether FUNC will be called additionally to the other bound function or whether it will
replace the previous function. See bind for the return value.

bind_class(className, sequence=None, func=None, add=None)
Bind to widgets with bindtag CLASSNAME at event SEQUENCE a call of function FUNC. An additional
boolean parameter ADD specifies whether FUNC will be called additionally to the other bound function
or whether it will replace the previous function. See bind for the return value.

bindtags(tagList=None)
Set or get the list of bindtags for this widget.

With no argument return the list of all bindtags associated with this widget. With a list of strings as
argument the bindtags are set to this list. The bindtags determine in which order events are processed (see
bind).

cget(key)
Return the resource value for a KEY given as string.

client(name=None)
Store NAME in WM_CLIENT_MACHINE property of this widget. Return current value.

clipboard_append(string, **kw)
Append STRING to the Tk clipboard.

A widget specified at the optional displayof keyword argument specifies the target display. The clipboard
can be retrieved with selection_get.

clipboard_clear(**kw)
Clear the data in the Tk clipboard.

A widget specified for the optional displayof keyword argument specifies the target display.

clipboard_get(**kw)
Retrieve data from the clipboard on window’s display.

The window keyword defaults to the root window of the Tkinter application.

The type keyword specifies the form in which the data is to be returned and should be an atom name
such as STRING or FILE_NAME. Type defaults to STRING, except on X11, where the default is to try
UTF8_STRING and fall back to STRING.

This command is equivalent to:

selection_get(CLIPBOARD)

colormapwindows(*wlist)
Store list of window names (WLIST) into WM_COLORMAPWINDOWS property of this widget. This

3.1. robot package 215

Robot Framework Documentation, Release 6.0.2

list contains windows whose colormaps differ from their parents. Return current list of widgets if WLIST
is empty.

columnconfigure(index, cnf={}, **kw)
Configure column INDEX of a grid.

Valid resources are minsize (minimum size of the column), weight (how much does additional space
propagate to this column) and pad (how much space to let additionally).

command(value=None)
Store VALUE in WM_COMMAND property. It is the command which shall be used to invoke the appli-
cation. Return current command if VALUE is None.

config(cnf=None, **kw)
Configure resources of a widget.

The values for resources are specified as keyword arguments. To get an overview about the allowed
keyword arguments call the method keys.

configure(cnf=None, **kw)
Configure resources of a widget.

The values for resources are specified as keyword arguments. To get an overview about the allowed
keyword arguments call the method keys.

deiconify()
Deiconify this widget. If it was never mapped it will not be mapped. On Windows it will raise this widget
and give it the focus.

deletecommand(name)
Internal function.

Delete the Tcl command provided in NAME.

destroy()
Destroy this and all descendants widgets.

event_add(virtual, *sequences)
Bind a virtual event VIRTUAL (of the form <<Name>>) to an event SEQUENCE such that the virtual
event is triggered whenever SEQUENCE occurs.

event_delete(virtual, *sequences)
Unbind a virtual event VIRTUAL from SEQUENCE.

event_generate(sequence, **kw)
Generate an event SEQUENCE. Additional keyword arguments specify parameter of the event (e.g. x, y,
rootx, rooty).

event_info(virtual=None)
Return a list of all virtual events or the information about the SEQUENCE bound to the virtual event
VIRTUAL.

focus()
Direct input focus to this widget.

If the application currently does not have the focus this widget will get the focus if the application gets the
focus through the window manager.

focus_displayof()
Return the widget which has currently the focus on the display where this widget is located.

Return None if the application does not have the focus.

216 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

focus_force()
Direct input focus to this widget even if the application does not have the focus. Use with caution!

focus_get()
Return the widget which has currently the focus in the application.

Use focus_displayof to allow working with several displays. Return None if application does not have the
focus.

focus_lastfor()
Return the widget which would have the focus if top level for this widget gets the focus from the window
manager.

focus_set()
Direct input focus to this widget.

If the application currently does not have the focus this widget will get the focus if the application gets the
focus through the window manager.

focusmodel(model=None)
Set focus model to MODEL. “active” means that this widget will claim the focus itself, “passive” means
that the window manager shall give the focus. Return current focus model if MODEL is None.

forget(window)
The window will be unmapped from the screen and will no longer be managed by wm. toplevel windows
will be treated like frame windows once they are no longer managed by wm, however, the menu option
configuration will be remembered and the menus will return once the widget is managed again.

frame()
Return identifier for decorative frame of this widget if present.

geometry(newGeometry=None)
Set geometry to NEWGEOMETRY of the form =widthxheight+x+y. Return current value if None is given.

getboolean(s)
Return a boolean value for Tcl boolean values true and false given as parameter.

getdouble(s)

getint(s)

getvar(name=’PY_VAR’)
Return value of Tcl variable NAME.

grab_current()
Return widget which has currently the grab in this application or None.

grab_release()
Release grab for this widget if currently set.

grab_set(timeout=30)
Set grab for this widget.

A grab directs all events to this and descendant widgets in the application.

grab_set_global()
Set global grab for this widget.

A global grab directs all events to this and descendant widgets on the display. Use with caution - other
applications do not get events anymore.

grab_status()
Return None, “local” or “global” if this widget has no, a local or a global grab.

3.1. robot package 217

Robot Framework Documentation, Release 6.0.2

grid(baseWidth=None, baseHeight=None, widthInc=None, heightInc=None)
Instruct the window manager that this widget shall only be resized on grid boundaries. WIDTHINC and
HEIGHTINC are the width and height of a grid unit in pixels. BASEWIDTH and BASEHEIGHT are the
number of grid units requested in Tk_GeometryRequest.

grid_anchor(anchor=None)
The anchor value controls how to place the grid within the master when no row/column has any weight.

The default anchor is nw.

grid_bbox(column=None, row=None, col2=None, row2=None)
Return a tuple of integer coordinates for the bounding box of this widget controlled by the geometry
manager grid.

If COLUMN, ROW is given the bounding box applies from the cell with row and column 0 to the specified
cell. If COL2 and ROW2 are given the bounding box starts at that cell.

The returned integers specify the offset of the upper left corner in the master widget and the width and
height.

grid_columnconfigure(index, cnf={}, **kw)
Configure column INDEX of a grid.

Valid resources are minsize (minimum size of the column), weight (how much does additional space
propagate to this column) and pad (how much space to let additionally).

grid_location(x, y)
Return a tuple of column and row which identify the cell at which the pixel at position X and Y inside the
master widget is located.

grid_propagate(flag=[’_noarg_’])
Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information of the slaves will determine the size of
this widget. If no argument is given, the current setting will be returned.

grid_rowconfigure(index, cnf={}, **kw)
Configure row INDEX of a grid.

Valid resources are minsize (minimum size of the row), weight (how much does additional space propagate
to this row) and pad (how much space to let additionally).

grid_size()
Return a tuple of the number of column and rows in the grid.

grid_slaves(row=None, column=None)
Return a list of all slaves of this widget in its packing order.

group(pathName=None)
Set the group leader widgets for related widgets to PATHNAME. Return the group leader of this widget if
None is given.

iconbitmap(bitmap=None, default=None)
Set bitmap for the iconified widget to BITMAP. Return the bitmap if None is given.

Under Windows, the DEFAULT parameter can be used to set the icon for the widget and any descen-
dents that don’t have an icon set explicitly. DEFAULT can be the relative path to a .ico file (example:
root.iconbitmap(default=’myicon.ico’)). See Tk documentation for more information.

iconify()
Display widget as icon.

218 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

iconmask(bitmap=None)
Set mask for the icon bitmap of this widget. Return the mask if None is given.

iconname(newName=None)
Set the name of the icon for this widget. Return the name if None is given.

iconphoto(default=False, *args)
Sets the titlebar icon for this window based on the named photo images passed through args. If default is
True, this is applied to all future created toplevels as well.

The data in the images is taken as a snapshot at the time of invocation. If the images are later changed,
this is not reflected to the titlebar icons. Multiple images are accepted to allow different images sizes to be
provided. The window manager may scale provided icons to an appropriate size.

On Windows, the images are packed into a Windows icon structure. This will override an icon specified to
wm_iconbitmap, and vice versa.

On X, the images are arranged into the _NET_WM_ICON X property, which most modern window man-
agers support. An icon specified by wm_iconbitmap may exist simultaneously.

On Macintosh, this currently does nothing.

iconposition(x=None, y=None)
Set the position of the icon of this widget to X and Y. Return a tuple of the current values of X and X if
None is given.

iconwindow(pathName=None)
Set widget PATHNAME to be displayed instead of icon. Return the current value if None is given.

image_names()
Return a list of all existing image names.

image_types()
Return a list of all available image types (e.g. photo bitmap).

keys()
Return a list of all resource names of this widget.

lift(aboveThis=None)
Raise this widget in the stacking order.

lower(belowThis=None)
Lower this widget in the stacking order.

mainloop(n=0)
Call the mainloop of Tk.

manage(widget)
The widget specified will become a stand alone top-level window. The window will be decorated with the
window managers title bar, etc.

maxsize(width=None, height=None)
Set max WIDTH and HEIGHT for this widget. If the window is gridded the values are given in grid units.
Return the current values if None is given.

minsize(width=None, height=None)
Set min WIDTH and HEIGHT for this widget. If the window is gridded the values are given in grid units.
Return the current values if None is given.

nametowidget(name)
Return the Tkinter instance of a widget identified by its Tcl name NAME.

3.1. robot package 219

Robot Framework Documentation, Release 6.0.2

option_add(pattern, value, priority=None)
Set a VALUE (second parameter) for an option PATTERN (first parameter).

An optional third parameter gives the numeric priority (defaults to 80).

option_clear()
Clear the option database.

It will be reloaded if option_add is called.

option_get(name, className)
Return the value for an option NAME for this widget with CLASSNAME.

Values with higher priority override lower values.

option_readfile(fileName, priority=None)
Read file FILENAME into the option database.

An optional second parameter gives the numeric priority.

overrideredirect(boolean=None)
Instruct the window manager to ignore this widget if BOOLEAN is given with 1. Return the current value
if None is given.

pack_propagate(flag=[’_noarg_’])
Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information of the slaves will determine the size of
this widget. If no argument is given the current setting will be returned.

pack_slaves()
Return a list of all slaves of this widget in its packing order.

place_slaves()
Return a list of all slaves of this widget in its packing order.

positionfrom(who=None)
Instruct the window manager that the position of this widget shall be defined by the user if WHO is “user”,
and by its own policy if WHO is “program”.

propagate(flag=[’_noarg_’])
Set or get the status for propagation of geometry information.

A boolean argument specifies whether the geometry information of the slaves will determine the size of
this widget. If no argument is given the current setting will be returned.

protocol(name=None, func=None)
Bind function FUNC to command NAME for this widget. Return the function bound to NAME if None is
given. NAME could be e.g. “WM_SAVE_YOURSELF” or “WM_DELETE_WINDOW”.

quit()
Quit the Tcl interpreter. All widgets will be destroyed.

register(func, subst=None, needcleanup=1)
Return a newly created Tcl function. If this function is called, the Python function FUNC will be executed.
An optional function SUBST can be given which will be executed before FUNC.

resizable(width=None, height=None)
Instruct the window manager whether this width can be resized in WIDTH or HEIGHT. Both values are
boolean values.

rowconfigure(index, cnf={}, **kw)
Configure row INDEX of a grid.

220 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

Valid resources are minsize (minimum size of the row), weight (how much does additional space propagate
to this row) and pad (how much space to let additionally).

selection_clear(**kw)
Clear the current X selection.

selection_get(**kw)
Return the contents of the current X selection.

A keyword parameter selection specifies the name of the selection and defaults to PRIMARY. A keyword
parameter displayof specifies a widget on the display to use. A keyword parameter type specifies the
form of data to be fetched, defaulting to STRING except on X11, where UTF8_STRING is tried before
STRING.

selection_handle(command, **kw)
Specify a function COMMAND to call if the X selection owned by this widget is queried by another
application.

This function must return the contents of the selection. The function will be called with the arguments
OFFSET and LENGTH which allows the chunking of very long selections. The following keyword pa-
rameters can be provided: selection - name of the selection (default PRIMARY), type - type of the selection
(e.g. STRING, FILE_NAME).

selection_own(**kw)
Become owner of X selection.

A keyword parameter selection specifies the name of the selection (default PRIMARY).

selection_own_get(**kw)
Return owner of X selection.

The following keyword parameter can be provided: selection - name of the selection (default PRIMARY),
type - type of the selection (e.g. STRING, FILE_NAME).

send(interp, cmd, *args)
Send Tcl command CMD to different interpreter INTERP to be executed.

setvar(name=’PY_VAR’, value=’1’)
Set Tcl variable NAME to VALUE.

show()

size()
Return a tuple of the number of column and rows in the grid.

sizefrom(who=None)
Instruct the window manager that the size of this widget shall be defined by the user if WHO is “user”, and
by its own policy if WHO is “program”.

slaves()
Return a list of all slaves of this widget in its packing order.

state(newstate=None)
Query or set the state of this widget as one of normal, icon, iconic (see wm_iconwindow), withdrawn, or
zoomed (Windows only).

title(string=None)
Set the title of this widget.

tk_bisque()
Change the color scheme to light brown as used in Tk 3.6 and before.

3.1. robot package 221

Robot Framework Documentation, Release 6.0.2

tk_focusFollowsMouse()
The widget under mouse will get automatically focus. Can not be disabled easily.

tk_focusNext()
Return the next widget in the focus order which follows widget which has currently the focus.

The focus order first goes to the next child, then to the children of the child recursively and then to the next
sibling which is higher in the stacking order. A widget is omitted if it has the takefocus resource set to 0.

tk_focusPrev()
Return previous widget in the focus order. See tk_focusNext for details.

tk_setPalette(*args, **kw)
Set a new color scheme for all widget elements.

A single color as argument will cause that all colors of Tk widget elements are derived from this. Alter-
natively several keyword parameters and its associated colors can be given. The following keywords are
valid: activeBackground, foreground, selectColor, activeForeground, highlightBackground, selectBack-
ground, background, highlightColor, selectForeground, disabledForeground, insertBackground, trough-
Color.

tk_strictMotif(boolean=None)
Set Tcl internal variable, whether the look and feel should adhere to Motif.

A parameter of 1 means adhere to Motif (e.g. no color change if mouse passes over slider). Returns the
set value.

tkraise(aboveThis=None)
Raise this widget in the stacking order.

transient(master=None)
Instruct the window manager that this widget is transient with regard to widget MASTER.

unbind(sequence, funcid=None)
Unbind for this widget for event SEQUENCE the function identified with FUNCID.

unbind_all(sequence)
Unbind for all widgets for event SEQUENCE all functions.

unbind_class(className, sequence)
Unbind for all widgets with bindtag CLASSNAME for event SEQUENCE all functions.

update()
Enter event loop until all pending events have been processed by Tcl.

update_idletasks()
Enter event loop until all idle callbacks have been called. This will update the display of windows but not
process events caused by the user.

wait_variable(name=’PY_VAR’)
Wait until the variable is modified.

A parameter of type IntVar, StringVar, DoubleVar or BooleanVar must be given.

wait_visibility(window=None)
Wait until the visibility of a WIDGET changes (e.g. it appears).

If no parameter is given self is used.

wait_window(window=None)
Wait until a WIDGET is destroyed.

If no parameter is given self is used.

222 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

waitvar(name=’PY_VAR’)
Wait until the variable is modified.

A parameter of type IntVar, StringVar, DoubleVar or BooleanVar must be given.

winfo_atom(name, displayof=0)
Return integer which represents atom NAME.

winfo_atomname(id, displayof=0)
Return name of atom with identifier ID.

winfo_cells()
Return number of cells in the colormap for this widget.

winfo_children()
Return a list of all widgets which are children of this widget.

winfo_class()
Return window class name of this widget.

winfo_colormapfull()
Return True if at the last color request the colormap was full.

winfo_containing(rootX, rootY, displayof=0)
Return the widget which is at the root coordinates ROOTX, ROOTY.

winfo_depth()
Return the number of bits per pixel.

winfo_exists()
Return true if this widget exists.

winfo_fpixels(number)
Return the number of pixels for the given distance NUMBER (e.g. “3c”) as float.

winfo_geometry()
Return geometry string for this widget in the form “widthxheight+X+Y”.

winfo_height()
Return height of this widget.

winfo_id()
Return identifier ID for this widget.

winfo_interps(displayof=0)
Return the name of all Tcl interpreters for this display.

winfo_ismapped()
Return true if this widget is mapped.

winfo_manager()
Return the window manager name for this widget.

winfo_name()
Return the name of this widget.

winfo_parent()
Return the name of the parent of this widget.

winfo_pathname(id, displayof=0)
Return the pathname of the widget given by ID.

winfo_pixels(number)
Rounded integer value of winfo_fpixels.

3.1. robot package 223

Robot Framework Documentation, Release 6.0.2

winfo_pointerx()
Return the x coordinate of the pointer on the root window.

winfo_pointerxy()
Return a tuple of x and y coordinates of the pointer on the root window.

winfo_pointery()
Return the y coordinate of the pointer on the root window.

winfo_reqheight()
Return requested height of this widget.

winfo_reqwidth()
Return requested width of this widget.

winfo_rgb(color)
Return tuple of decimal values for red, green, blue for COLOR in this widget.

winfo_rootx()
Return x coordinate of upper left corner of this widget on the root window.

winfo_rooty()
Return y coordinate of upper left corner of this widget on the root window.

winfo_screen()
Return the screen name of this widget.

winfo_screencells()
Return the number of the cells in the colormap of the screen of this widget.

winfo_screendepth()
Return the number of bits per pixel of the root window of the screen of this widget.

winfo_screenheight()
Return the number of pixels of the height of the screen of this widget in pixel.

winfo_screenmmheight()
Return the number of pixels of the height of the screen of this widget in mm.

winfo_screenmmwidth()
Return the number of pixels of the width of the screen of this widget in mm.

winfo_screenvisual()
Return one of the strings directcolor, grayscale, pseudocolor, staticcolor, staticgray, or truecolor for the
default colormodel of this screen.

winfo_screenwidth()
Return the number of pixels of the width of the screen of this widget in pixel.

winfo_server()
Return information of the X-Server of the screen of this widget in the form “XmajorRminor vendor ven-
dorVersion”.

winfo_toplevel()
Return the toplevel widget of this widget.

winfo_viewable()
Return true if the widget and all its higher ancestors are mapped.

winfo_visual()
Return one of the strings directcolor, grayscale, pseudocolor, staticcolor, staticgray, or truecolor for the
colormodel of this widget.

224 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

winfo_visualid()
Return the X identifier for the visual for this widget.

winfo_visualsavailable(includeids=False)
Return a list of all visuals available for the screen of this widget.

Each item in the list consists of a visual name (see winfo_visual), a depth and if includeids is true is given
also the X identifier.

winfo_vrootheight()
Return the height of the virtual root window associated with this widget in pixels. If there is no virtual root
window return the height of the screen.

winfo_vrootwidth()
Return the width of the virtual root window associated with this widget in pixel. If there is no virtual root
window return the width of the screen.

winfo_vrootx()
Return the x offset of the virtual root relative to the root window of the screen of this widget.

winfo_vrooty()
Return the y offset of the virtual root relative to the root window of the screen of this widget.

winfo_width()
Return the width of this widget.

winfo_x()
Return the x coordinate of the upper left corner of this widget in the parent.

winfo_y()
Return the y coordinate of the upper left corner of this widget in the parent.

withdraw()
Withdraw this widget from the screen such that it is unmapped and forgotten by the window manager.
Re-draw it with wm_deiconify.

wm_aspect(minNumer=None, minDenom=None, maxNumer=None, maxDenom=None)
Instruct the window manager to set the aspect ratio (width/height) of this widget to be between MINNU-
MER/MINDENOM and MAXNUMER/MAXDENOM. Return a tuple of the actual values if no argument
is given.

wm_attributes(*args)
This subcommand returns or sets platform specific attributes

The first form returns a list of the platform specific flags and their values. The second form returns the
value for the specific option. The third form sets one or more of the values. The values are as follows:

On Windows, -disabled gets or sets whether the window is in a disabled state. -toolwindow gets or sets
the style of the window to toolwindow (as defined in the MSDN). -topmost gets or sets whether this is a
topmost window (displays above all other windows).

On Macintosh, XXXXX

On Unix, there are currently no special attribute values.

wm_client(name=None)
Store NAME in WM_CLIENT_MACHINE property of this widget. Return current value.

wm_colormapwindows(*wlist)
Store list of window names (WLIST) into WM_COLORMAPWINDOWS property of this widget. This
list contains windows whose colormaps differ from their parents. Return current list of widgets if WLIST
is empty.

3.1. robot package 225

Robot Framework Documentation, Release 6.0.2

wm_command(value=None)
Store VALUE in WM_COMMAND property. It is the command which shall be used to invoke the appli-
cation. Return current command if VALUE is None.

wm_deiconify()
Deiconify this widget. If it was never mapped it will not be mapped. On Windows it will raise this widget
and give it the focus.

wm_focusmodel(model=None)
Set focus model to MODEL. “active” means that this widget will claim the focus itself, “passive” means
that the window manager shall give the focus. Return current focus model if MODEL is None.

wm_forget(window)
The window will be unmapped from the screen and will no longer be managed by wm. toplevel windows
will be treated like frame windows once they are no longer managed by wm, however, the menu option
configuration will be remembered and the menus will return once the widget is managed again.

wm_frame()
Return identifier for decorative frame of this widget if present.

wm_geometry(newGeometry=None)
Set geometry to NEWGEOMETRY of the form =widthxheight+x+y. Return current value if None is given.

wm_grid(baseWidth=None, baseHeight=None, widthInc=None, heightInc=None)
Instruct the window manager that this widget shall only be resized on grid boundaries. WIDTHINC and
HEIGHTINC are the width and height of a grid unit in pixels. BASEWIDTH and BASEHEIGHT are the
number of grid units requested in Tk_GeometryRequest.

wm_group(pathName=None)
Set the group leader widgets for related widgets to PATHNAME. Return the group leader of this widget if
None is given.

wm_iconbitmap(bitmap=None, default=None)
Set bitmap for the iconified widget to BITMAP. Return the bitmap if None is given.

Under Windows, the DEFAULT parameter can be used to set the icon for the widget and any descen-
dents that don’t have an icon set explicitly. DEFAULT can be the relative path to a .ico file (example:
root.iconbitmap(default=’myicon.ico’)). See Tk documentation for more information.

wm_iconify()
Display widget as icon.

wm_iconmask(bitmap=None)
Set mask for the icon bitmap of this widget. Return the mask if None is given.

wm_iconname(newName=None)
Set the name of the icon for this widget. Return the name if None is given.

wm_iconphoto(default=False, *args)
Sets the titlebar icon for this window based on the named photo images passed through args. If default is
True, this is applied to all future created toplevels as well.

The data in the images is taken as a snapshot at the time of invocation. If the images are later changed,
this is not reflected to the titlebar icons. Multiple images are accepted to allow different images sizes to be
provided. The window manager may scale provided icons to an appropriate size.

On Windows, the images are packed into a Windows icon structure. This will override an icon specified to
wm_iconbitmap, and vice versa.

On X, the images are arranged into the _NET_WM_ICON X property, which most modern window man-
agers support. An icon specified by wm_iconbitmap may exist simultaneously.

226 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

On Macintosh, this currently does nothing.

wm_iconposition(x=None, y=None)
Set the position of the icon of this widget to X and Y. Return a tuple of the current values of X and X if
None is given.

wm_iconwindow(pathName=None)
Set widget PATHNAME to be displayed instead of icon. Return the current value if None is given.

wm_manage(widget)
The widget specified will become a stand alone top-level window. The window will be decorated with the
window managers title bar, etc.

wm_maxsize(width=None, height=None)
Set max WIDTH and HEIGHT for this widget. If the window is gridded the values are given in grid units.
Return the current values if None is given.

wm_minsize(width=None, height=None)
Set min WIDTH and HEIGHT for this widget. If the window is gridded the values are given in grid units.
Return the current values if None is given.

wm_overrideredirect(boolean=None)
Instruct the window manager to ignore this widget if BOOLEAN is given with 1. Return the current value
if None is given.

wm_positionfrom(who=None)
Instruct the window manager that the position of this widget shall be defined by the user if WHO is “user”,
and by its own policy if WHO is “program”.

wm_protocol(name=None, func=None)
Bind function FUNC to command NAME for this widget. Return the function bound to NAME if None is
given. NAME could be e.g. “WM_SAVE_YOURSELF” or “WM_DELETE_WINDOW”.

wm_resizable(width=None, height=None)
Instruct the window manager whether this width can be resized in WIDTH or HEIGHT. Both values are
boolean values.

wm_sizefrom(who=None)
Instruct the window manager that the size of this widget shall be defined by the user if WHO is “user”, and
by its own policy if WHO is “program”.

wm_state(newstate=None)
Query or set the state of this widget as one of normal, icon, iconic (see wm_iconwindow), withdrawn, or
zoomed (Windows only).

wm_title(string=None)
Set the title of this widget.

wm_transient(master=None)
Instruct the window manager that this widget is transient with regard to widget MASTER.

wm_withdraw()
Withdraw this widget from the screen such that it is unmapped and forgotten by the window manager.
Re-draw it with wm_deiconify.

robot.model package

Package with generic, reusable and extensible model classes.

This package contains, for example, TestSuite, TestCase, Keyword and SuiteVisitor base classes. These
classes are extended both by execution and result related model objects and used also elsewhere.

3.1. robot package 227

Robot Framework Documentation, Release 6.0.2

This package is considered stable.

Submodules

robot.model.body module

class robot.model.body.BodyItem
Bases: robot.model.modelobject.ModelObject

KEYWORD = 'KEYWORD'

SETUP = 'SETUP'

TEARDOWN = 'TEARDOWN'

FOR = 'FOR'

ITERATION = 'ITERATION'

IF_ELSE_ROOT = 'IF/ELSE ROOT'

IF = 'IF'

ELSE_IF = 'ELSE IF'

ELSE = 'ELSE'

TRY_EXCEPT_ROOT = 'TRY/EXCEPT ROOT'

TRY = 'TRY'

EXCEPT = 'EXCEPT'

FINALLY = 'FINALLY'

WHILE = 'WHILE'

RETURN = 'RETURN'

CONTINUE = 'CONTINUE'

BREAK = 'BREAK'

MESSAGE = 'MESSAGE'

type = None

id
Item id in format like s1-t3-k1.

See TestSuite.id for more information.

has_setup

has_teardown

config(**attributes)
Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting obj.name =
'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

copy(**attributes)
Return shallow copy of this object.

228 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same as with the standard copy.copy
and copy.deepcopy functions that these methods also use internally.

deepcopy(**attributes)
Return deep copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same as with the standard copy.copy and
copy.deepcopy functions that these methods also use internally.

parent

repr_args = ()

class robot.model.body.BaseBody(parent=None, items=None)
Bases: robot.model.itemlist.ItemList

Base class for Body and Branches objects.

keyword_class = None

for_class = None

if_class = None

try_class = None

while_class = None

return_class = None

continue_class = None

break_class = None

message_class = None

classmethod register(item_class)
Register a virtual subclass of an ABC.

Returns the subclass, to allow usage as a class decorator.

create

create_keyword(*args, **kwargs)

create_for(*args, **kwargs)

create_if(*args, **kwargs)

create_try(*args, **kwargs)

create_while(*args, **kwargs)

create_return(*args, **kwargs)

create_continue(*args, **kwargs)

create_break(*args, **kwargs)

create_message(*args, **kwargs)

3.1. robot package 229

Robot Framework Documentation, Release 6.0.2

filter(keywords=None, messages=None, predicate=None)
Filter body items based on type and/or custom predicate.

To include or exclude items based on types, give matching arguments True or False values. For ex-
ample, to include only keywords, use body.filter(keywords=True) and to exclude messages use
body.filter(messages=False). Including and excluding by types at the same time is not sup-
ported and filtering my messages is supported only if the Body object actually supports messages.

Custom predicate is a callable getting each body item as an argument that must return True/False
depending on should the item be included or not.

Selected items are returned as a list and the original body is not modified.

It was earlier possible to filter also based on FOR and IF types. That support was removed
in RF 5.0 because it was not considered useful in general and because adding support for all
new control structures would have required extra work. To exclude all control structures, use
body.filter(keywords=True, messages=True) and to only include them use body.
filter(keywords=False, messages=False)‘‘. For more detailed filtering it is possible to use
predicate.

flatten()
Return steps so that IF and TRY structures are flattened.

Basically the IF/ELSE and TRY/EXCEPT root elements are replaced with their branches. This is how they
are shown in log files.

append(item)
S.append(value) – append value to the end of the sequence

clear()→ None – remove all items from S

count(value)→ integer – return number of occurrences of value

extend(items)
S.extend(iterable) – extend sequence by appending elements from the iterable

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

Supporting start and stop arguments is optional, but recommended.

insert(index, item)
S.insert(index, value) – insert value before index

pop([index])→ item – remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.

remove(value)
S.remove(value) – remove first occurrence of value. Raise ValueError if the value is not present.

reverse()
S.reverse() – reverse IN PLACE

sort()

visit(visitor)

class robot.model.body.Body(parent=None, items=None)
Bases: robot.model.body.BaseBody

A list-like object representing body of a suite, a test or a keyword.

Body contains the keywords and other structures such as FOR loops.

230 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

append(item)
S.append(value) – append value to the end of the sequence

break_class
alias of robot.model.control.Break

clear()→ None – remove all items from S

continue_class
alias of robot.model.control.Continue

count(value)→ integer – return number of occurrences of value

create

create_break(*args, **kwargs)

create_continue(*args, **kwargs)

create_for(*args, **kwargs)

create_if(*args, **kwargs)

create_keyword(*args, **kwargs)

create_message(*args, **kwargs)

create_return(*args, **kwargs)

create_try(*args, **kwargs)

create_while(*args, **kwargs)

extend(items)
S.extend(iterable) – extend sequence by appending elements from the iterable

filter(keywords=None, messages=None, predicate=None)
Filter body items based on type and/or custom predicate.

To include or exclude items based on types, give matching arguments True or False values. For ex-
ample, to include only keywords, use body.filter(keywords=True) and to exclude messages use
body.filter(messages=False). Including and excluding by types at the same time is not sup-
ported and filtering my messages is supported only if the Body object actually supports messages.

Custom predicate is a callable getting each body item as an argument that must return True/False
depending on should the item be included or not.

Selected items are returned as a list and the original body is not modified.

It was earlier possible to filter also based on FOR and IF types. That support was removed
in RF 5.0 because it was not considered useful in general and because adding support for all
new control structures would have required extra work. To exclude all control structures, use
body.filter(keywords=True, messages=True) and to only include them use body.
filter(keywords=False, messages=False)‘‘. For more detailed filtering it is possible to use
predicate.

flatten()
Return steps so that IF and TRY structures are flattened.

Basically the IF/ELSE and TRY/EXCEPT root elements are replaced with their branches. This is how they
are shown in log files.

for_class
alias of robot.model.control.For

3.1. robot package 231

Robot Framework Documentation, Release 6.0.2

if_class
alias of robot.model.control.If

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

Supporting start and stop arguments is optional, but recommended.

insert(index, item)
S.insert(index, value) – insert value before index

keyword_class
alias of robot.model.keyword.Keyword

message_class = None

pop([index])→ item – remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.

classmethod register(item_class)
Register a virtual subclass of an ABC.

Returns the subclass, to allow usage as a class decorator.

remove(value)
S.remove(value) – remove first occurrence of value. Raise ValueError if the value is not present.

return_class
alias of robot.model.control.Return

reverse()
S.reverse() – reverse IN PLACE

sort()

try_class
alias of robot.model.control.Try

visit(visitor)

while_class
alias of robot.model.control.While

class robot.model.body.Branches(branch_class, parent=None, items=None)
Bases: robot.model.body.BaseBody

A list-like object representing branches IF and TRY objects contain.

branch_class

create_branch(*args, **kwargs)

append(item)
S.append(value) – append value to the end of the sequence

break_class = None

clear()→ None – remove all items from S

continue_class = None

count(value)→ integer – return number of occurrences of value

create

create_break(*args, **kwargs)

232 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

create_continue(*args, **kwargs)

create_for(*args, **kwargs)

create_if(*args, **kwargs)

create_keyword(*args, **kwargs)

create_message(*args, **kwargs)

create_return(*args, **kwargs)

create_try(*args, **kwargs)

create_while(*args, **kwargs)

extend(items)
S.extend(iterable) – extend sequence by appending elements from the iterable

filter(keywords=None, messages=None, predicate=None)
Filter body items based on type and/or custom predicate.

To include or exclude items based on types, give matching arguments True or False values. For ex-
ample, to include only keywords, use body.filter(keywords=True) and to exclude messages use
body.filter(messages=False). Including and excluding by types at the same time is not sup-
ported and filtering my messages is supported only if the Body object actually supports messages.

Custom predicate is a callable getting each body item as an argument that must return True/False
depending on should the item be included or not.

Selected items are returned as a list and the original body is not modified.

It was earlier possible to filter also based on FOR and IF types. That support was removed
in RF 5.0 because it was not considered useful in general and because adding support for all
new control structures would have required extra work. To exclude all control structures, use
body.filter(keywords=True, messages=True) and to only include them use body.
filter(keywords=False, messages=False)‘‘. For more detailed filtering it is possible to use
predicate.

flatten()
Return steps so that IF and TRY structures are flattened.

Basically the IF/ELSE and TRY/EXCEPT root elements are replaced with their branches. This is how they
are shown in log files.

for_class = None

if_class = None

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

Supporting start and stop arguments is optional, but recommended.

insert(index, item)
S.insert(index, value) – insert value before index

keyword_class = None

message_class = None

pop([index])→ item – remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.

3.1. robot package 233

Robot Framework Documentation, Release 6.0.2

classmethod register(item_class)
Register a virtual subclass of an ABC.

Returns the subclass, to allow usage as a class decorator.

remove(value)
S.remove(value) – remove first occurrence of value. Raise ValueError if the value is not present.

return_class = None

reverse()
S.reverse() – reverse IN PLACE

sort()

try_class = None

visit(visitor)

while_class = None

robot.model.configurer module

class robot.model.configurer.SuiteConfigurer(name=None, doc=None, meta-
data=None, set_tags=None, in-
clude_tags=None, exclude_tags=None,
include_suites=None, include_tests=None,
empty_suite_ok=False)

Bases: robot.model.visitor.SuiteVisitor

add_tags

remove_tags

visit_suite(suite)
Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without calling start_suite() or
end_suite() nor visiting child suites, tests or setup and teardown at all.

end_body_item(item)
Called, by default, when keywords, messages or control structures end.

More specific end_keyword(), end_message(), :meth:‘end_for, etc. can be implemented to visit
only keywords, messages or specific control structures.

Default implementation does nothing.

end_break(break_)
Called when a BREAK element ends.

By default, calls end_body_item() which, by default, does nothing.

end_continue(continue_)
Called when a CONTINUE element ends.

By default, calls end_body_item() which, by default, does nothing.

end_for(for_)
Called when a FOR loop ends.

By default, calls end_body_item() which, by default, does nothing.

234 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

end_for_iteration(iteration)
Called when a FOR loop iteration ends.

By default, calls end_body_item() which, by default, does nothing.

end_if(if_)
Called when an IF/ELSE structure ends.

By default, calls end_body_item() which, by default, does nothing.

end_if_branch(branch)
Called when an IF/ELSE branch ends.

By default, calls end_body_item() which, by default, does nothing.

end_keyword(keyword)
Called when a keyword ends.

By default, calls end_body_item() which, by default, does nothing.

end_message(msg)
Called when a message ends.

By default, calls end_body_item() which, by default, does nothing.

end_return(return_)
Called when a RETURN element ends.

By default, calls end_body_item() which, by default, does nothing.

end_suite(suite)
Called when a suite ends. Default implementation does nothing.

end_test(test)
Called when a test ends. Default implementation does nothing.

end_try(try_)
Called when a TRY/EXCEPT structure ends.

By default, calls end_body_item() which, by default, does nothing.

end_try_branch(branch)
Called when TRY, EXCEPT, ELSE and FINALLY branches end.

By default, calls end_body_item() which, by default, does nothing.

end_while(while_)
Called when a WHILE loop ends.

By default, calls end_body_item() which, by default, does nothing.

end_while_iteration(iteration)
Called when a WHILE loop iteration ends.

By default, calls end_body_item() which, by default, does nothing.

start_body_item(item)
Called, by default, when keywords, messages or control structures start.

More specific start_keyword(), start_message(), :meth:‘start_for, etc. can be implemented to
visit only keywords, messages or specific control structures.

Can return explicit False to stop visiting. Default implementation does nothing.

3.1. robot package 235

Robot Framework Documentation, Release 6.0.2

start_break(break_)
Called when a BREAK element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_continue(continue_)
Called when a CONTINUE element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_for(for_)
Called when a FOR loop starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_for_iteration(iteration)
Called when a FOR loop iteration starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_if(if_)
Called when an IF/ELSE structure starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_if_branch(branch)
Called when an IF/ELSE branch starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_keyword(keyword)
Called when a keyword starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_message(msg)
Called when a message starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_return(return_)
Called when a RETURN element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_suite(suite)
Called when a suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

236 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

start_test(test)
Called when a test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

start_try(try_)
Called when a TRY/EXCEPT structure starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_try_branch(branch)
Called when TRY, EXCEPT, ELSE or FINALLY branches start.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_while(while_)
Called when a WHILE loop starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_while_iteration(iteration)
Called when a WHILE loop iteration starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

visit_break(break_)
Visits BREAK elements.

visit_continue(continue_)
Visits CONTINUE elements.

visit_for(for_)
Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without calling start_for() or
end_for() nor visiting body.

visit_for_iteration(iteration)
Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side there are no iterations.

Can be overridden to allow modifying the passed in iteration without calling
start_for_iteration() or end_for_iteration() nor visiting body.

visit_if(if_)
Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches are in its body and visited
using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without calling start_if() or end_if()
nor visiting branches.

visit_if_branch(branch)
Implements traversing through single IF/ELSE branch.

3.1. robot package 237

Robot Framework Documentation, Release 6.0.2

Can be overridden to allow modifying the passed in branch without calling start_if_branch() or
end_if_branch() nor visiting body.

visit_keyword(kw)
Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without calling start_keyword() or
end_keyword() nor visiting the body of the keyword

visit_message(msg)
Implements visiting messages.

Can be overridden to allow modifying the passed in msg without calling start_message() or
end_message().

visit_return(return_)
Visits a RETURN elements.

visit_test(test)
Implements traversing through tests.

Can be overridden to allow modifying the passed in test without calling start_test() or
end_test() nor visiting the body of the test.

visit_try(try_)
Implements traversing through TRY/EXCEPT structures.

This method is used with the TRY/EXCEPT root element. Actual TRY, EXCEPT, ELSE and FINALLY
branches are visited separately using visit_try_branch().

visit_try_branch(branch)
Visits individual TRY, EXCEPT, ELSE and FINALLY branches.

visit_while(while_)
Implements traversing through WHILE loops.

Can be overridden to allow modifying the passed in while_ without calling start_while() or
end_while() nor visiting body.

visit_while_iteration(iteration)
Implements traversing through single WHILE loop iteration.

This is only used with the result side model because on the running side there are no iterations.

Can be overridden to allow modifying the passed in iteration without calling
start_while_iteration() or end_while_iteration() nor visiting body.

robot.model.control module

class robot.model.control.For(variables=(), flavor=’IN’, values=(), parent=None)
Bases: robot.model.body.BodyItem

type = 'FOR'

body_class
alias of robot.model.body.Body

repr_args = ('variables', 'flavor', 'values')

variables

flavor

238 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

values

parent

body

keywords
Deprecated since Robot Framework 4.0. Use body instead.

visit(visitor)

BREAK = 'BREAK'

CONTINUE = 'CONTINUE'

ELSE = 'ELSE'

ELSE_IF = 'ELSE IF'

EXCEPT = 'EXCEPT'

FINALLY = 'FINALLY'

FOR = 'FOR'

IF = 'IF'

IF_ELSE_ROOT = 'IF/ELSE ROOT'

ITERATION = 'ITERATION'

KEYWORD = 'KEYWORD'

MESSAGE = 'MESSAGE'

RETURN = 'RETURN'

SETUP = 'SETUP'

TEARDOWN = 'TEARDOWN'

TRY = 'TRY'

TRY_EXCEPT_ROOT = 'TRY/EXCEPT ROOT'

WHILE = 'WHILE'

config(**attributes)
Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting obj.name =
'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

copy(**attributes)
Return shallow copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same as with the standard copy.copy
and copy.deepcopy functions that these methods also use internally.

deepcopy(**attributes)
Return deep copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.deepcopy(name='New name').

3.1. robot package 239

Robot Framework Documentation, Release 6.0.2

See also copy(). The difference between these two is the same as with the standard copy.copy and
copy.deepcopy functions that these methods also use internally.

has_setup

has_teardown

id
Item id in format like s1-t3-k1.

See TestSuite.id for more information.

class robot.model.control.While(condition=None, limit=None, parent=None)
Bases: robot.model.body.BodyItem

type = 'WHILE'

body_class
alias of robot.model.body.Body

repr_args = ('condition', 'limit')

condition

limit

parent

body

visit(visitor)

BREAK = 'BREAK'

CONTINUE = 'CONTINUE'

ELSE = 'ELSE'

ELSE_IF = 'ELSE IF'

EXCEPT = 'EXCEPT'

FINALLY = 'FINALLY'

FOR = 'FOR'

IF = 'IF'

IF_ELSE_ROOT = 'IF/ELSE ROOT'

ITERATION = 'ITERATION'

KEYWORD = 'KEYWORD'

MESSAGE = 'MESSAGE'

RETURN = 'RETURN'

SETUP = 'SETUP'

TEARDOWN = 'TEARDOWN'

TRY = 'TRY'

TRY_EXCEPT_ROOT = 'TRY/EXCEPT ROOT'

WHILE = 'WHILE'

240 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

config(**attributes)
Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting obj.name =
'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

copy(**attributes)
Return shallow copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same as with the standard copy.copy
and copy.deepcopy functions that these methods also use internally.

deepcopy(**attributes)
Return deep copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same as with the standard copy.copy and
copy.deepcopy functions that these methods also use internally.

has_setup

has_teardown

id
Item id in format like s1-t3-k1.

See TestSuite.id for more information.

class robot.model.control.IfBranch(type=’IF’, condition=None, parent=None)
Bases: robot.model.body.BodyItem

body_class
alias of robot.model.body.Body

repr_args = ('type', 'condition')

type

condition

parent

body

id
Branch id omits IF/ELSE root from the parent id part.

visit(visitor)

BREAK = 'BREAK'

CONTINUE = 'CONTINUE'

ELSE = 'ELSE'

ELSE_IF = 'ELSE IF'

EXCEPT = 'EXCEPT'

FINALLY = 'FINALLY'

3.1. robot package 241

Robot Framework Documentation, Release 6.0.2

FOR = 'FOR'

IF = 'IF'

IF_ELSE_ROOT = 'IF/ELSE ROOT'

ITERATION = 'ITERATION'

KEYWORD = 'KEYWORD'

MESSAGE = 'MESSAGE'

RETURN = 'RETURN'

SETUP = 'SETUP'

TEARDOWN = 'TEARDOWN'

TRY = 'TRY'

TRY_EXCEPT_ROOT = 'TRY/EXCEPT ROOT'

WHILE = 'WHILE'

config(**attributes)
Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting obj.name =
'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

copy(**attributes)
Return shallow copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same as with the standard copy.copy
and copy.deepcopy functions that these methods also use internally.

deepcopy(**attributes)
Return deep copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same as with the standard copy.copy and
copy.deepcopy functions that these methods also use internally.

has_setup

has_teardown

class robot.model.control.If(parent=None)
Bases: robot.model.body.BodyItem

IF/ELSE structure root. Branches are stored in body .

type = 'IF/ELSE ROOT'

branch_class
alias of IfBranch

branches_class
alias of robot.model.body.Branches

parent

242 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

body

id
Root IF/ELSE id is always None.

visit(visitor)

BREAK = 'BREAK'

CONTINUE = 'CONTINUE'

ELSE = 'ELSE'

ELSE_IF = 'ELSE IF'

EXCEPT = 'EXCEPT'

FINALLY = 'FINALLY'

FOR = 'FOR'

IF = 'IF'

IF_ELSE_ROOT = 'IF/ELSE ROOT'

ITERATION = 'ITERATION'

KEYWORD = 'KEYWORD'

MESSAGE = 'MESSAGE'

RETURN = 'RETURN'

SETUP = 'SETUP'

TEARDOWN = 'TEARDOWN'

TRY = 'TRY'

TRY_EXCEPT_ROOT = 'TRY/EXCEPT ROOT'

WHILE = 'WHILE'

config(**attributes)
Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting obj.name =
'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

copy(**attributes)
Return shallow copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same as with the standard copy.copy
and copy.deepcopy functions that these methods also use internally.

deepcopy(**attributes)
Return deep copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same as with the standard copy.copy and
copy.deepcopy functions that these methods also use internally.

3.1. robot package 243

Robot Framework Documentation, Release 6.0.2

has_setup

has_teardown

repr_args = ()

class robot.model.control.TryBranch(type=’TRY’, patterns=(), pattern_type=None, vari-
able=None, parent=None)

Bases: robot.model.body.BodyItem

body_class
alias of robot.model.body.Body

repr_args = ('type', 'patterns', 'pattern_type', 'variable')

type

patterns

pattern_type

variable

parent

body

id
Branch id omits TRY/EXCEPT root from the parent id part.

visit(visitor)

BREAK = 'BREAK'

CONTINUE = 'CONTINUE'

ELSE = 'ELSE'

ELSE_IF = 'ELSE IF'

EXCEPT = 'EXCEPT'

FINALLY = 'FINALLY'

FOR = 'FOR'

IF = 'IF'

IF_ELSE_ROOT = 'IF/ELSE ROOT'

ITERATION = 'ITERATION'

KEYWORD = 'KEYWORD'

MESSAGE = 'MESSAGE'

RETURN = 'RETURN'

SETUP = 'SETUP'

TEARDOWN = 'TEARDOWN'

TRY = 'TRY'

TRY_EXCEPT_ROOT = 'TRY/EXCEPT ROOT'

WHILE = 'WHILE'

244 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

config(**attributes)
Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting obj.name =
'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

copy(**attributes)
Return shallow copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same as with the standard copy.copy
and copy.deepcopy functions that these methods also use internally.

deepcopy(**attributes)
Return deep copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same as with the standard copy.copy and
copy.deepcopy functions that these methods also use internally.

has_setup

has_teardown

class robot.model.control.Try(parent=None)
Bases: robot.model.body.BodyItem

TRY/EXCEPT structure root. Branches are stored in body .

type = 'TRY/EXCEPT ROOT'

branch_class
alias of TryBranch

branches_class
alias of robot.model.body.Branches

parent

body

try_branch

except_branches

else_branch

finally_branch

id
Root TRY/EXCEPT id is always None.

visit(visitor)

BREAK = 'BREAK'

CONTINUE = 'CONTINUE'

ELSE = 'ELSE'

ELSE_IF = 'ELSE IF'

3.1. robot package 245

Robot Framework Documentation, Release 6.0.2

EXCEPT = 'EXCEPT'

FINALLY = 'FINALLY'

FOR = 'FOR'

IF = 'IF'

IF_ELSE_ROOT = 'IF/ELSE ROOT'

ITERATION = 'ITERATION'

KEYWORD = 'KEYWORD'

MESSAGE = 'MESSAGE'

RETURN = 'RETURN'

SETUP = 'SETUP'

TEARDOWN = 'TEARDOWN'

TRY = 'TRY'

TRY_EXCEPT_ROOT = 'TRY/EXCEPT ROOT'

WHILE = 'WHILE'

config(**attributes)
Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting obj.name =
'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

copy(**attributes)
Return shallow copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same as with the standard copy.copy
and copy.deepcopy functions that these methods also use internally.

deepcopy(**attributes)
Return deep copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same as with the standard copy.copy and
copy.deepcopy functions that these methods also use internally.

has_setup

has_teardown

repr_args = ()

class robot.model.control.Return(values=(), parent=None)
Bases: robot.model.body.BodyItem

type = 'RETURN'

repr_args = ('values',)

values

246 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

parent

visit(visitor)

BREAK = 'BREAK'

CONTINUE = 'CONTINUE'

ELSE = 'ELSE'

ELSE_IF = 'ELSE IF'

EXCEPT = 'EXCEPT'

FINALLY = 'FINALLY'

FOR = 'FOR'

IF = 'IF'

IF_ELSE_ROOT = 'IF/ELSE ROOT'

ITERATION = 'ITERATION'

KEYWORD = 'KEYWORD'

MESSAGE = 'MESSAGE'

RETURN = 'RETURN'

SETUP = 'SETUP'

TEARDOWN = 'TEARDOWN'

TRY = 'TRY'

TRY_EXCEPT_ROOT = 'TRY/EXCEPT ROOT'

WHILE = 'WHILE'

config(**attributes)
Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting obj.name =
'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

copy(**attributes)
Return shallow copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same as with the standard copy.copy
and copy.deepcopy functions that these methods also use internally.

deepcopy(**attributes)
Return deep copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same as with the standard copy.copy and
copy.deepcopy functions that these methods also use internally.

has_setup

has_teardown

3.1. robot package 247

Robot Framework Documentation, Release 6.0.2

id
Item id in format like s1-t3-k1.

See TestSuite.id for more information.

class robot.model.control.Continue(parent=None)
Bases: robot.model.body.BodyItem

type = 'CONTINUE'

parent

BREAK = 'BREAK'

CONTINUE = 'CONTINUE'

ELSE = 'ELSE'

ELSE_IF = 'ELSE IF'

EXCEPT = 'EXCEPT'

FINALLY = 'FINALLY'

FOR = 'FOR'

IF = 'IF'

IF_ELSE_ROOT = 'IF/ELSE ROOT'

ITERATION = 'ITERATION'

KEYWORD = 'KEYWORD'

MESSAGE = 'MESSAGE'

RETURN = 'RETURN'

SETUP = 'SETUP'

TEARDOWN = 'TEARDOWN'

TRY = 'TRY'

TRY_EXCEPT_ROOT = 'TRY/EXCEPT ROOT'

WHILE = 'WHILE'

config(**attributes)
Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting obj.name =
'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

copy(**attributes)
Return shallow copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same as with the standard copy.copy
and copy.deepcopy functions that these methods also use internally.

deepcopy(**attributes)
Return deep copy of this object.

248 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same as with the standard copy.copy and
copy.deepcopy functions that these methods also use internally.

has_setup

has_teardown

id
Item id in format like s1-t3-k1.

See TestSuite.id for more information.

repr_args = ()

visit(visitor)

class robot.model.control.Break(parent=None)
Bases: robot.model.body.BodyItem

BREAK = 'BREAK'

CONTINUE = 'CONTINUE'

ELSE = 'ELSE'

ELSE_IF = 'ELSE IF'

EXCEPT = 'EXCEPT'

FINALLY = 'FINALLY'

FOR = 'FOR'

IF = 'IF'

IF_ELSE_ROOT = 'IF/ELSE ROOT'

ITERATION = 'ITERATION'

KEYWORD = 'KEYWORD'

MESSAGE = 'MESSAGE'

RETURN = 'RETURN'

SETUP = 'SETUP'

TEARDOWN = 'TEARDOWN'

TRY = 'TRY'

TRY_EXCEPT_ROOT = 'TRY/EXCEPT ROOT'

WHILE = 'WHILE'

config(**attributes)
Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting obj.name =
'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

copy(**attributes)
Return shallow copy of this object.

3.1. robot package 249

Robot Framework Documentation, Release 6.0.2

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same as with the standard copy.copy
and copy.deepcopy functions that these methods also use internally.

deepcopy(**attributes)
Return deep copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same as with the standard copy.copy and
copy.deepcopy functions that these methods also use internally.

has_setup

has_teardown

id
Item id in format like s1-t3-k1.

See TestSuite.id for more information.

repr_args = ()

type = 'BREAK'

parent

visit(visitor)

robot.model.filter module

class robot.model.filter.EmptySuiteRemover(preserve_direct_children=False)
Bases: robot.model.visitor.SuiteVisitor

end_suite(suite)
Called when a suite ends. Default implementation does nothing.

visit_test(test)
Implements traversing through tests.

Can be overridden to allow modifying the passed in test without calling start_test() or
end_test() nor visiting the body of the test.

visit_keyword(kw)
Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without calling start_keyword() or
end_keyword() nor visiting the body of the keyword

end_body_item(item)
Called, by default, when keywords, messages or control structures end.

More specific end_keyword(), end_message(), :meth:‘end_for, etc. can be implemented to visit
only keywords, messages or specific control structures.

Default implementation does nothing.

end_break(break_)
Called when a BREAK element ends.

By default, calls end_body_item() which, by default, does nothing.

250 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

end_continue(continue_)
Called when a CONTINUE element ends.

By default, calls end_body_item() which, by default, does nothing.

end_for(for_)
Called when a FOR loop ends.

By default, calls end_body_item() which, by default, does nothing.

end_for_iteration(iteration)
Called when a FOR loop iteration ends.

By default, calls end_body_item() which, by default, does nothing.

end_if(if_)
Called when an IF/ELSE structure ends.

By default, calls end_body_item() which, by default, does nothing.

end_if_branch(branch)
Called when an IF/ELSE branch ends.

By default, calls end_body_item() which, by default, does nothing.

end_keyword(keyword)
Called when a keyword ends.

By default, calls end_body_item() which, by default, does nothing.

end_message(msg)
Called when a message ends.

By default, calls end_body_item() which, by default, does nothing.

end_return(return_)
Called when a RETURN element ends.

By default, calls end_body_item() which, by default, does nothing.

end_test(test)
Called when a test ends. Default implementation does nothing.

end_try(try_)
Called when a TRY/EXCEPT structure ends.

By default, calls end_body_item() which, by default, does nothing.

end_try_branch(branch)
Called when TRY, EXCEPT, ELSE and FINALLY branches end.

By default, calls end_body_item() which, by default, does nothing.

end_while(while_)
Called when a WHILE loop ends.

By default, calls end_body_item() which, by default, does nothing.

end_while_iteration(iteration)
Called when a WHILE loop iteration ends.

By default, calls end_body_item() which, by default, does nothing.

start_body_item(item)
Called, by default, when keywords, messages or control structures start.

3.1. robot package 251

Robot Framework Documentation, Release 6.0.2

More specific start_keyword(), start_message(), :meth:‘start_for, etc. can be implemented to
visit only keywords, messages or specific control structures.

Can return explicit False to stop visiting. Default implementation does nothing.

start_break(break_)
Called when a BREAK element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_continue(continue_)
Called when a CONTINUE element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_for(for_)
Called when a FOR loop starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_for_iteration(iteration)
Called when a FOR loop iteration starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_if(if_)
Called when an IF/ELSE structure starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_if_branch(branch)
Called when an IF/ELSE branch starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_keyword(keyword)
Called when a keyword starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_message(msg)
Called when a message starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_return(return_)
Called when a RETURN element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

252 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

start_suite(suite)
Called when a suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

start_test(test)
Called when a test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

start_try(try_)
Called when a TRY/EXCEPT structure starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_try_branch(branch)
Called when TRY, EXCEPT, ELSE or FINALLY branches start.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_while(while_)
Called when a WHILE loop starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_while_iteration(iteration)
Called when a WHILE loop iteration starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

visit_break(break_)
Visits BREAK elements.

visit_continue(continue_)
Visits CONTINUE elements.

visit_for(for_)
Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without calling start_for() or
end_for() nor visiting body.

visit_for_iteration(iteration)
Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side there are no iterations.

Can be overridden to allow modifying the passed in iteration without calling
start_for_iteration() or end_for_iteration() nor visiting body.

visit_if(if_)
Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches are in its body and visited
using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without calling start_if() or end_if()
nor visiting branches.

3.1. robot package 253

Robot Framework Documentation, Release 6.0.2

visit_if_branch(branch)
Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without calling start_if_branch() or
end_if_branch() nor visiting body.

visit_message(msg)
Implements visiting messages.

Can be overridden to allow modifying the passed in msg without calling start_message() or
end_message().

visit_return(return_)
Visits a RETURN elements.

visit_suite(suite)
Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without calling start_suite() or
end_suite() nor visiting child suites, tests or setup and teardown at all.

visit_try(try_)
Implements traversing through TRY/EXCEPT structures.

This method is used with the TRY/EXCEPT root element. Actual TRY, EXCEPT, ELSE and FINALLY
branches are visited separately using visit_try_branch().

visit_try_branch(branch)
Visits individual TRY, EXCEPT, ELSE and FINALLY branches.

visit_while(while_)
Implements traversing through WHILE loops.

Can be overridden to allow modifying the passed in while_ without calling start_while() or
end_while() nor visiting body.

visit_while_iteration(iteration)
Implements traversing through single WHILE loop iteration.

This is only used with the result side model because on the running side there are no iterations.

Can be overridden to allow modifying the passed in iteration without calling
start_while_iteration() or end_while_iteration() nor visiting body.

class robot.model.filter.Filter(include_suites=None, include_tests=None, in-
clude_tags=None, exclude_tags=None)

Bases: robot.model.filter.EmptySuiteRemover

include_suites

include_tests

include_tags

exclude_tags

start_suite(suite)
Called when a suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

end_body_item(item)
Called, by default, when keywords, messages or control structures end.

More specific end_keyword(), end_message(), :meth:‘end_for, etc. can be implemented to visit
only keywords, messages or specific control structures.

254 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

Default implementation does nothing.

end_break(break_)
Called when a BREAK element ends.

By default, calls end_body_item() which, by default, does nothing.

end_continue(continue_)
Called when a CONTINUE element ends.

By default, calls end_body_item() which, by default, does nothing.

end_for(for_)
Called when a FOR loop ends.

By default, calls end_body_item() which, by default, does nothing.

end_for_iteration(iteration)
Called when a FOR loop iteration ends.

By default, calls end_body_item() which, by default, does nothing.

end_if(if_)
Called when an IF/ELSE structure ends.

By default, calls end_body_item() which, by default, does nothing.

end_if_branch(branch)
Called when an IF/ELSE branch ends.

By default, calls end_body_item() which, by default, does nothing.

end_keyword(keyword)
Called when a keyword ends.

By default, calls end_body_item() which, by default, does nothing.

end_message(msg)
Called when a message ends.

By default, calls end_body_item() which, by default, does nothing.

end_return(return_)
Called when a RETURN element ends.

By default, calls end_body_item() which, by default, does nothing.

end_suite(suite)
Called when a suite ends. Default implementation does nothing.

end_test(test)
Called when a test ends. Default implementation does nothing.

end_try(try_)
Called when a TRY/EXCEPT structure ends.

By default, calls end_body_item() which, by default, does nothing.

end_try_branch(branch)
Called when TRY, EXCEPT, ELSE and FINALLY branches end.

By default, calls end_body_item() which, by default, does nothing.

end_while(while_)
Called when a WHILE loop ends.

By default, calls end_body_item() which, by default, does nothing.

3.1. robot package 255

Robot Framework Documentation, Release 6.0.2

end_while_iteration(iteration)
Called when a WHILE loop iteration ends.

By default, calls end_body_item() which, by default, does nothing.

start_body_item(item)
Called, by default, when keywords, messages or control structures start.

More specific start_keyword(), start_message(), :meth:‘start_for, etc. can be implemented to
visit only keywords, messages or specific control structures.

Can return explicit False to stop visiting. Default implementation does nothing.

start_break(break_)
Called when a BREAK element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_continue(continue_)
Called when a CONTINUE element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_for(for_)
Called when a FOR loop starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_for_iteration(iteration)
Called when a FOR loop iteration starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_if(if_)
Called when an IF/ELSE structure starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_if_branch(branch)
Called when an IF/ELSE branch starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_keyword(keyword)
Called when a keyword starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_message(msg)
Called when a message starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

256 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

start_return(return_)
Called when a RETURN element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_test(test)
Called when a test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

start_try(try_)
Called when a TRY/EXCEPT structure starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_try_branch(branch)
Called when TRY, EXCEPT, ELSE or FINALLY branches start.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_while(while_)
Called when a WHILE loop starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_while_iteration(iteration)
Called when a WHILE loop iteration starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

visit_break(break_)
Visits BREAK elements.

visit_continue(continue_)
Visits CONTINUE elements.

visit_for(for_)
Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without calling start_for() or
end_for() nor visiting body.

visit_for_iteration(iteration)
Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side there are no iterations.

Can be overridden to allow modifying the passed in iteration without calling
start_for_iteration() or end_for_iteration() nor visiting body.

visit_if(if_)
Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches are in its body and visited
using visit_if_branch().

3.1. robot package 257

Robot Framework Documentation, Release 6.0.2

Can be overridden to allow modifying the passed in if_ without calling start_if() or end_if()
nor visiting branches.

visit_if_branch(branch)
Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without calling start_if_branch() or
end_if_branch() nor visiting body.

visit_keyword(kw)
Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without calling start_keyword() or
end_keyword() nor visiting the body of the keyword

visit_message(msg)
Implements visiting messages.

Can be overridden to allow modifying the passed in msg without calling start_message() or
end_message().

visit_return(return_)
Visits a RETURN elements.

visit_suite(suite)
Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without calling start_suite() or
end_suite() nor visiting child suites, tests or setup and teardown at all.

visit_test(test)
Implements traversing through tests.

Can be overridden to allow modifying the passed in test without calling start_test() or
end_test() nor visiting the body of the test.

visit_try(try_)
Implements traversing through TRY/EXCEPT structures.

This method is used with the TRY/EXCEPT root element. Actual TRY, EXCEPT, ELSE and FINALLY
branches are visited separately using visit_try_branch().

visit_try_branch(branch)
Visits individual TRY, EXCEPT, ELSE and FINALLY branches.

visit_while(while_)
Implements traversing through WHILE loops.

Can be overridden to allow modifying the passed in while_ without calling start_while() or
end_while() nor visiting body.

visit_while_iteration(iteration)
Implements traversing through single WHILE loop iteration.

This is only used with the result side model because on the running side there are no iterations.

Can be overridden to allow modifying the passed in iteration without calling
start_while_iteration() or end_while_iteration() nor visiting body.

robot.model.fixture module

robot.model.fixture.create_fixture(fixture, parent, type)

258 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

robot.model.itemlist module

class robot.model.itemlist.ItemList(item_class, common_attrs=None, items=None)
Bases: collections.abc.MutableSequence

create(*args, **kwargs)

append(item)
S.append(value) – append value to the end of the sequence

extend(items)
S.extend(iterable) – extend sequence by appending elements from the iterable

insert(index, item)
S.insert(index, value) – insert value before index

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

Supporting start and stop arguments is optional, but recommended.

clear()→ None – remove all items from S

visit(visitor)

count(value)→ integer – return number of occurrences of value

sort()

reverse()
S.reverse() – reverse IN PLACE

pop([index])→ item – remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.

remove(value)
S.remove(value) – remove first occurrence of value. Raise ValueError if the value is not present.

robot.model.keyword module

class robot.model.keyword.Keyword(name=”, doc=”, args=(), assign=(), tags=(), time-
out=None, type=’KEYWORD’, parent=None)

Bases: robot.model.body.BodyItem

Base model for a single keyword.

Extended by robot.running.model.Keyword and robot.result.model.Keyword.

repr_args = ('name', 'args', 'assign')

doc

args

assign

timeout

type

parent

name

3.1. robot package 259

Robot Framework Documentation, Release 6.0.2

teardown
Keyword teardown as a Keyword object.

Teardown can be modified by setting attributes directly:

keyword.teardown.name = 'Example'
keyword.teardown.args = ('First', 'Second')

Alternatively the config() method can be used to set multiple attributes in one call:

keyword.teardown.config(name='Example', args=('First', 'Second'))

The easiest way to reset the whole teardown is setting it to None. It will automatically recreate the
underlying Keyword object:

keyword.teardown = None

This attribute is a Keyword object also when a keyword has no teardown but in that case its truth value
is False. If there is a need to just check does a keyword have a teardown, using the has_teardown
attribute avoids creating the Keyword object and is thus more memory efficient.

New in Robot Framework 4.0. Earlier teardown was accessed like keyword.keywords.teardown.
has_teardown is new in Robot Framework 4.1.2.

has_teardown
Check does a keyword have a teardown without creating a teardown object.

A difference between using if kw.has_teardown: and if kw.teardown: is that accessing the
teardown attribute creates a Keyword object representing a teardown even when the keyword actually
does not have one. This typically does not matter, but with bigger suite structures having lot of keywords
it can have a considerable effect on memory usage.

New in Robot Framework 4.1.2.

tags
Keyword tags as a Tags object.

visit(visitor)
Visitor interface entry-point.

BREAK = 'BREAK'

CONTINUE = 'CONTINUE'

ELSE = 'ELSE'

ELSE_IF = 'ELSE IF'

EXCEPT = 'EXCEPT'

FINALLY = 'FINALLY'

FOR = 'FOR'

IF = 'IF'

IF_ELSE_ROOT = 'IF/ELSE ROOT'

ITERATION = 'ITERATION'

KEYWORD = 'KEYWORD'

MESSAGE = 'MESSAGE'

RETURN = 'RETURN'

260 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

SETUP = 'SETUP'

TEARDOWN = 'TEARDOWN'

TRY = 'TRY'

TRY_EXCEPT_ROOT = 'TRY/EXCEPT ROOT'

WHILE = 'WHILE'

config(**attributes)
Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting obj.name =
'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

copy(**attributes)
Return shallow copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same as with the standard copy.copy
and copy.deepcopy functions that these methods also use internally.

deepcopy(**attributes)
Return deep copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same as with the standard copy.copy and
copy.deepcopy functions that these methods also use internally.

has_setup

id
Item id in format like s1-t3-k1.

See TestSuite.id for more information.

class robot.model.keyword.Keywords(parent=None, keywords=None)
Bases: robot.model.itemlist.ItemList

A list-like object representing keywords in a suite, a test or a keyword.

Read-only and deprecated since Robot Framework 4.0.

deprecation_message = "'keywords' attribute is read-only and deprecated since Robot Framework 4.0. Use 'body', 'setup' or 'teardown' instead."

setup

create_setup(*args, **kwargs)

teardown

create_teardown(*args, **kwargs)

all
Iterates over all keywords, including setup and teardown.

normal
Iterates over normal keywords, omitting setup and teardown.

create(*args, **kwargs)

3.1. robot package 261

Robot Framework Documentation, Release 6.0.2

append(item)
S.append(value) – append value to the end of the sequence

extend(items)
S.extend(iterable) – extend sequence by appending elements from the iterable

insert(index, item)
S.insert(index, value) – insert value before index

pop([index])→ item – remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.

remove(item)
S.remove(value) – remove first occurrence of value. Raise ValueError if the value is not present.

clear()→ None – remove all items from S

count(value)→ integer – return number of occurrences of value

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

Supporting start and stop arguments is optional, but recommended.

visit(visitor)

sort()

reverse()
S.reverse() – reverse IN PLACE

classmethod raise_deprecation_error()

robot.model.message module

class robot.model.message.Message(message=”, level=’INFO’, html=False, timestamp=None,
parent=None)

Bases: robot.model.body.BodyItem

A message created during the test execution.

Can be a log message triggered by a keyword, or a warning or an error that occurred during parsing or test
execution.

type = 'MESSAGE'

repr_args = ('message', 'level')

message
The message content as a string.

level
Severity of the message. Either TRACE, DEBUG, INFO, WARN, ERROR, FAIL or ‘‘SKIP‘. The last two
are only used with keyword failure messages.

html
True if the content is in HTML, False otherwise.

timestamp
Timestamp in format %Y%m%d %H:%M:%S.%f.

parent
The object this message was triggered by.

262 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

html_message
Returns the message content as HTML.

id
Item id in format like s1-t3-k1.

See TestSuite.id for more information.

visit(visitor)
Visitor interface entry-point.

BREAK = 'BREAK'

CONTINUE = 'CONTINUE'

ELSE = 'ELSE'

ELSE_IF = 'ELSE IF'

EXCEPT = 'EXCEPT'

FINALLY = 'FINALLY'

FOR = 'FOR'

IF = 'IF'

IF_ELSE_ROOT = 'IF/ELSE ROOT'

ITERATION = 'ITERATION'

KEYWORD = 'KEYWORD'

MESSAGE = 'MESSAGE'

RETURN = 'RETURN'

SETUP = 'SETUP'

TEARDOWN = 'TEARDOWN'

TRY = 'TRY'

TRY_EXCEPT_ROOT = 'TRY/EXCEPT ROOT'

WHILE = 'WHILE'

config(**attributes)
Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting obj.name =
'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

copy(**attributes)
Return shallow copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same as with the standard copy.copy
and copy.deepcopy functions that these methods also use internally.

deepcopy(**attributes)
Return deep copy of this object.

3.1. robot package 263

Robot Framework Documentation, Release 6.0.2

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same as with the standard copy.copy and
copy.deepcopy functions that these methods also use internally.

has_setup

has_teardown

class robot.model.message.Messages(message_class=<class ’robot.model.message.Message’>,
parent=None, messages=None)

Bases: robot.model.itemlist.ItemList

append(item)
S.append(value) – append value to the end of the sequence

clear()→ None – remove all items from S

count(value)→ integer – return number of occurrences of value

create(*args, **kwargs)

extend(items)
S.extend(iterable) – extend sequence by appending elements from the iterable

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

Supporting start and stop arguments is optional, but recommended.

insert(index, item)
S.insert(index, value) – insert value before index

pop([index])→ item – remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.

remove(value)
S.remove(value) – remove first occurrence of value. Raise ValueError if the value is not present.

reverse()
S.reverse() – reverse IN PLACE

sort()

visit(visitor)

robot.model.metadata module

class robot.model.metadata.Metadata(initial=None)
Bases: robot.utils.normalizing.NormalizedDict

clear()→ None. Remove all items from D.

copy()

get(k[, d])→ D[k] if k in D, else d. d defaults to None.

items()→ a set-like object providing a view on D’s items

keys()→ a set-like object providing a view on D’s keys

pop(k[, d])→ v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised.

264 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

popitem()→ (k, v), remove and return some (key, value) pair
as a 2-tuple; but raise KeyError if D is empty.

setdefault(k[, d])→ D.get(k,d), also set D[k]=d if k not in D

update([E], **F)→ None. Update D from mapping/iterable E and F.
If E present and has a .keys() method, does: for k in E: D[k] = E[k] If E present and lacks .keys() method,
does: for (k, v) in E: D[k] = v In either case, this is followed by: for k, v in F.items(): D[k] = v

values()→ an object providing a view on D’s values

robot.model.modelobject module

class robot.model.modelobject.ModelObject
Bases: object

repr_args = ()

config(**attributes)
Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting obj.name =
'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

copy(**attributes)
Return shallow copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same as with the standard copy.copy
and copy.deepcopy functions that these methods also use internally.

deepcopy(**attributes)
Return deep copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same as with the standard copy.copy and
copy.deepcopy functions that these methods also use internally.

robot.model.modelobject.full_name(obj)

robot.model.modifier module

class robot.model.modifier.ModelModifier(visitors, empty_suite_ok, logger)
Bases: robot.model.visitor.SuiteVisitor

visit_suite(suite)
Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without calling start_suite() or
end_suite() nor visiting child suites, tests or setup and teardown at all.

end_body_item(item)
Called, by default, when keywords, messages or control structures end.

3.1. robot package 265

Robot Framework Documentation, Release 6.0.2

More specific end_keyword(), end_message(), :meth:‘end_for, etc. can be implemented to visit
only keywords, messages or specific control structures.

Default implementation does nothing.

end_break(break_)
Called when a BREAK element ends.

By default, calls end_body_item() which, by default, does nothing.

end_continue(continue_)
Called when a CONTINUE element ends.

By default, calls end_body_item() which, by default, does nothing.

end_for(for_)
Called when a FOR loop ends.

By default, calls end_body_item() which, by default, does nothing.

end_for_iteration(iteration)
Called when a FOR loop iteration ends.

By default, calls end_body_item() which, by default, does nothing.

end_if(if_)
Called when an IF/ELSE structure ends.

By default, calls end_body_item() which, by default, does nothing.

end_if_branch(branch)
Called when an IF/ELSE branch ends.

By default, calls end_body_item() which, by default, does nothing.

end_keyword(keyword)
Called when a keyword ends.

By default, calls end_body_item() which, by default, does nothing.

end_message(msg)
Called when a message ends.

By default, calls end_body_item() which, by default, does nothing.

end_return(return_)
Called when a RETURN element ends.

By default, calls end_body_item() which, by default, does nothing.

end_suite(suite)
Called when a suite ends. Default implementation does nothing.

end_test(test)
Called when a test ends. Default implementation does nothing.

end_try(try_)
Called when a TRY/EXCEPT structure ends.

By default, calls end_body_item() which, by default, does nothing.

end_try_branch(branch)
Called when TRY, EXCEPT, ELSE and FINALLY branches end.

By default, calls end_body_item() which, by default, does nothing.

266 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

end_while(while_)
Called when a WHILE loop ends.

By default, calls end_body_item() which, by default, does nothing.

end_while_iteration(iteration)
Called when a WHILE loop iteration ends.

By default, calls end_body_item() which, by default, does nothing.

start_body_item(item)
Called, by default, when keywords, messages or control structures start.

More specific start_keyword(), start_message(), :meth:‘start_for, etc. can be implemented to
visit only keywords, messages or specific control structures.

Can return explicit False to stop visiting. Default implementation does nothing.

start_break(break_)
Called when a BREAK element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_continue(continue_)
Called when a CONTINUE element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_for(for_)
Called when a FOR loop starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_for_iteration(iteration)
Called when a FOR loop iteration starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_if(if_)
Called when an IF/ELSE structure starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_if_branch(branch)
Called when an IF/ELSE branch starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_keyword(keyword)
Called when a keyword starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

3.1. robot package 267

Robot Framework Documentation, Release 6.0.2

start_message(msg)
Called when a message starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_return(return_)
Called when a RETURN element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_suite(suite)
Called when a suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

start_test(test)
Called when a test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

start_try(try_)
Called when a TRY/EXCEPT structure starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_try_branch(branch)
Called when TRY, EXCEPT, ELSE or FINALLY branches start.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_while(while_)
Called when a WHILE loop starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_while_iteration(iteration)
Called when a WHILE loop iteration starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

visit_break(break_)
Visits BREAK elements.

visit_continue(continue_)
Visits CONTINUE elements.

visit_for(for_)
Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without calling start_for() or
end_for() nor visiting body.

visit_for_iteration(iteration)
Implements traversing through single FOR loop iteration.

268 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

This is only used with the result side model because on the running side there are no iterations.

Can be overridden to allow modifying the passed in iteration without calling
start_for_iteration() or end_for_iteration() nor visiting body.

visit_if(if_)
Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches are in its body and visited
using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without calling start_if() or end_if()
nor visiting branches.

visit_if_branch(branch)
Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without calling start_if_branch() or
end_if_branch() nor visiting body.

visit_keyword(kw)
Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without calling start_keyword() or
end_keyword() nor visiting the body of the keyword

visit_message(msg)
Implements visiting messages.

Can be overridden to allow modifying the passed in msg without calling start_message() or
end_message().

visit_return(return_)
Visits a RETURN elements.

visit_test(test)
Implements traversing through tests.

Can be overridden to allow modifying the passed in test without calling start_test() or
end_test() nor visiting the body of the test.

visit_try(try_)
Implements traversing through TRY/EXCEPT structures.

This method is used with the TRY/EXCEPT root element. Actual TRY, EXCEPT, ELSE and FINALLY
branches are visited separately using visit_try_branch().

visit_try_branch(branch)
Visits individual TRY, EXCEPT, ELSE and FINALLY branches.

visit_while(while_)
Implements traversing through WHILE loops.

Can be overridden to allow modifying the passed in while_ without calling start_while() or
end_while() nor visiting body.

visit_while_iteration(iteration)
Implements traversing through single WHILE loop iteration.

This is only used with the result side model because on the running side there are no iterations.

Can be overridden to allow modifying the passed in iteration without calling
start_while_iteration() or end_while_iteration() nor visiting body.

3.1. robot package 269

Robot Framework Documentation, Release 6.0.2

robot.model.namepatterns module

class robot.model.namepatterns.NamePatterns(patterns=None)
Bases: object

match(name, longname=None)

class robot.model.namepatterns.SuiteNamePatterns(patterns=None)
Bases: robot.model.namepatterns.NamePatterns

match(name, longname=None)

class robot.model.namepatterns.TestNamePatterns(patterns=None)
Bases: robot.model.namepatterns.NamePatterns

match(name, longname=None)

robot.model.statistics module

class robot.model.statistics.Statistics(suite, suite_stat_level=-1, tag_stat_include=None,
tag_stat_exclude=None, tag_stat_combine=None,
tag_doc=None, tag_stat_link=None, rpa=False)

Bases: object

Container for total, suite and tag statistics.

Accepted parameters have the same semantics as the matching command line options.

total = None
Instance of TotalStatistics.

suite = None
Instance of SuiteStatistics.

tags = None
Instance of TagStatistics.

visit(visitor)

class robot.model.statistics.StatisticsBuilder(total_builder, suite_builder,
tag_builder)

Bases: robot.model.visitor.SuiteVisitor

start_suite(suite)
Called when a suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

end_suite(suite)
Called when a suite ends. Default implementation does nothing.

visit_test(test)
Implements traversing through tests.

Can be overridden to allow modifying the passed in test without calling start_test() or
end_test() nor visiting the body of the test.

visit_keyword(kw)
Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without calling start_keyword() or
end_keyword() nor visiting the body of the keyword

270 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

end_body_item(item)
Called, by default, when keywords, messages or control structures end.

More specific end_keyword(), end_message(), :meth:‘end_for, etc. can be implemented to visit
only keywords, messages or specific control structures.

Default implementation does nothing.

end_break(break_)
Called when a BREAK element ends.

By default, calls end_body_item() which, by default, does nothing.

end_continue(continue_)
Called when a CONTINUE element ends.

By default, calls end_body_item() which, by default, does nothing.

end_for(for_)
Called when a FOR loop ends.

By default, calls end_body_item() which, by default, does nothing.

end_for_iteration(iteration)
Called when a FOR loop iteration ends.

By default, calls end_body_item() which, by default, does nothing.

end_if(if_)
Called when an IF/ELSE structure ends.

By default, calls end_body_item() which, by default, does nothing.

end_if_branch(branch)
Called when an IF/ELSE branch ends.

By default, calls end_body_item() which, by default, does nothing.

end_keyword(keyword)
Called when a keyword ends.

By default, calls end_body_item() which, by default, does nothing.

end_message(msg)
Called when a message ends.

By default, calls end_body_item() which, by default, does nothing.

end_return(return_)
Called when a RETURN element ends.

By default, calls end_body_item() which, by default, does nothing.

end_test(test)
Called when a test ends. Default implementation does nothing.

end_try(try_)
Called when a TRY/EXCEPT structure ends.

By default, calls end_body_item() which, by default, does nothing.

end_try_branch(branch)
Called when TRY, EXCEPT, ELSE and FINALLY branches end.

By default, calls end_body_item() which, by default, does nothing.

3.1. robot package 271

Robot Framework Documentation, Release 6.0.2

end_while(while_)
Called when a WHILE loop ends.

By default, calls end_body_item() which, by default, does nothing.

end_while_iteration(iteration)
Called when a WHILE loop iteration ends.

By default, calls end_body_item() which, by default, does nothing.

start_body_item(item)
Called, by default, when keywords, messages or control structures start.

More specific start_keyword(), start_message(), :meth:‘start_for, etc. can be implemented to
visit only keywords, messages or specific control structures.

Can return explicit False to stop visiting. Default implementation does nothing.

start_break(break_)
Called when a BREAK element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_continue(continue_)
Called when a CONTINUE element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_for(for_)
Called when a FOR loop starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_for_iteration(iteration)
Called when a FOR loop iteration starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_if(if_)
Called when an IF/ELSE structure starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_if_branch(branch)
Called when an IF/ELSE branch starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_keyword(keyword)
Called when a keyword starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

272 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

start_message(msg)
Called when a message starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_return(return_)
Called when a RETURN element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_test(test)
Called when a test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

start_try(try_)
Called when a TRY/EXCEPT structure starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_try_branch(branch)
Called when TRY, EXCEPT, ELSE or FINALLY branches start.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_while(while_)
Called when a WHILE loop starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_while_iteration(iteration)
Called when a WHILE loop iteration starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

visit_break(break_)
Visits BREAK elements.

visit_continue(continue_)
Visits CONTINUE elements.

visit_for(for_)
Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without calling start_for() or
end_for() nor visiting body.

visit_for_iteration(iteration)
Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side there are no iterations.

Can be overridden to allow modifying the passed in iteration without calling
start_for_iteration() or end_for_iteration() nor visiting body.

3.1. robot package 273

Robot Framework Documentation, Release 6.0.2

visit_if(if_)
Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches are in its body and visited
using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without calling start_if() or end_if()
nor visiting branches.

visit_if_branch(branch)
Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without calling start_if_branch() or
end_if_branch() nor visiting body.

visit_message(msg)
Implements visiting messages.

Can be overridden to allow modifying the passed in msg without calling start_message() or
end_message().

visit_return(return_)
Visits a RETURN elements.

visit_suite(suite)
Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without calling start_suite() or
end_suite() nor visiting child suites, tests or setup and teardown at all.

visit_try(try_)
Implements traversing through TRY/EXCEPT structures.

This method is used with the TRY/EXCEPT root element. Actual TRY, EXCEPT, ELSE and FINALLY
branches are visited separately using visit_try_branch().

visit_try_branch(branch)
Visits individual TRY, EXCEPT, ELSE and FINALLY branches.

visit_while(while_)
Implements traversing through WHILE loops.

Can be overridden to allow modifying the passed in while_ without calling start_while() or
end_while() nor visiting body.

visit_while_iteration(iteration)
Implements traversing through single WHILE loop iteration.

This is only used with the result side model because on the running side there are no iterations.

Can be overridden to allow modifying the passed in iteration without calling
start_while_iteration() or end_while_iteration() nor visiting body.

robot.model.stats module

class robot.model.stats.Stat(name)
Bases: robot.utils.sortable.Sortable

Generic statistic object used for storing all the statistic values.

274 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

name = None
Human readable identifier of the object these statistics belong to. All Tests for TotalStatistics, long
name of the suite for SuiteStatistics or name of the tag for TagStatistics

passed = None
Number of passed tests.

failed = None
Number of failed tests.

skipped = None
Number of skipped tests.

elapsed = None
Number of milliseconds it took to execute.

get_attributes(include_label=False, include_elapsed=False, exclude_empty=True, val-
ues_as_strings=False, html_escape=False)

total

add_test(test)

visit(visitor)

class robot.model.stats.TotalStat(name)
Bases: robot.model.stats.Stat

Stores statistic values for a test run.

type = 'total'

add_test(test)

get_attributes(include_label=False, include_elapsed=False, exclude_empty=True, val-
ues_as_strings=False, html_escape=False)

total

visit(visitor)

class robot.model.stats.SuiteStat(suite)
Bases: robot.model.stats.Stat

Stores statistics values for a single suite.

type = 'suite'

id = None
Identifier of the suite, e.g. s1-s2.

elapsed = None
Number of milliseconds it took to execute this suite, including sub-suites.

add_stat(other)

add_test(test)

get_attributes(include_label=False, include_elapsed=False, exclude_empty=True, val-
ues_as_strings=False, html_escape=False)

total

visit(visitor)

class robot.model.stats.TagStat(name, doc=”, links=None, combined=None)
Bases: robot.model.stats.Stat

3.1. robot package 275

Robot Framework Documentation, Release 6.0.2

Stores statistic values for a single tag.

type = 'tag'

doc = None
Documentation of tag as a string.

links = None
List of tuples in which the first value is the link URL and the second is the link title. An empty list by
default.

combined = None
Pattern as a string if the tag is combined, None otherwise.

info
Returns additional information of the tag statistics are about. Either combined or an empty string.

add_test(test)

get_attributes(include_label=False, include_elapsed=False, exclude_empty=True, val-
ues_as_strings=False, html_escape=False)

total

visit(visitor)

class robot.model.stats.CombinedTagStat(pattern, name=None, doc=”, links=None)
Bases: robot.model.stats.TagStat

match(tags)

add_test(test)

get_attributes(include_label=False, include_elapsed=False, exclude_empty=True, val-
ues_as_strings=False, html_escape=False)

info
Returns additional information of the tag statistics are about. Either combined or an empty string.

total

type = 'tag'

visit(visitor)

robot.model.suitestatistics module

class robot.model.suitestatistics.SuiteStatistics(suite)
Bases: object

Container for suite statistics.

stat = None
Instance of SuiteStat.

suites = None
List of TestSuite objects.

visit(visitor)

class robot.model.suitestatistics.SuiteStatisticsBuilder(suite_stat_level)
Bases: object

current

276 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

start_suite(suite)

add_test(test)

end_suite()

robot.model.tags module

class robot.model.tags.Tags(tags=None)
Bases: object

robot(name)
Check do tags contain a special tag in format robot:<name>.

This is same as ‘robot:<name>’ in tags but considerably faster.

add(tags)

remove(tags)

match(tags)

class robot.model.tags.TagPatterns(patterns)
Bases: object

match(tags)

robot.model.tags.TagPattern(pattern)

class robot.model.tags.SingleTagPattern(pattern)
Bases: object

match(tags)

class robot.model.tags.AndTagPattern(patterns)
Bases: object

match(tags)

class robot.model.tags.OrTagPattern(patterns)
Bases: object

match(tags)

class robot.model.tags.NotTagPattern(must_match, *must_not_match)
Bases: object

match(tags)

robot.model.tagsetter module

class robot.model.tagsetter.TagSetter(add=None, remove=None)
Bases: robot.model.visitor.SuiteVisitor

start_suite(suite)
Called when a suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

visit_test(test)
Implements traversing through tests.

3.1. robot package 277

Robot Framework Documentation, Release 6.0.2

Can be overridden to allow modifying the passed in test without calling start_test() or
end_test() nor visiting the body of the test.

visit_keyword(keyword)
Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without calling start_keyword() or
end_keyword() nor visiting the body of the keyword

end_body_item(item)
Called, by default, when keywords, messages or control structures end.

More specific end_keyword(), end_message(), :meth:‘end_for, etc. can be implemented to visit
only keywords, messages or specific control structures.

Default implementation does nothing.

end_break(break_)
Called when a BREAK element ends.

By default, calls end_body_item() which, by default, does nothing.

end_continue(continue_)
Called when a CONTINUE element ends.

By default, calls end_body_item() which, by default, does nothing.

end_for(for_)
Called when a FOR loop ends.

By default, calls end_body_item() which, by default, does nothing.

end_for_iteration(iteration)
Called when a FOR loop iteration ends.

By default, calls end_body_item() which, by default, does nothing.

end_if(if_)
Called when an IF/ELSE structure ends.

By default, calls end_body_item() which, by default, does nothing.

end_if_branch(branch)
Called when an IF/ELSE branch ends.

By default, calls end_body_item() which, by default, does nothing.

end_keyword(keyword)
Called when a keyword ends.

By default, calls end_body_item() which, by default, does nothing.

end_message(msg)
Called when a message ends.

By default, calls end_body_item() which, by default, does nothing.

end_return(return_)
Called when a RETURN element ends.

By default, calls end_body_item() which, by default, does nothing.

end_suite(suite)
Called when a suite ends. Default implementation does nothing.

278 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

end_test(test)
Called when a test ends. Default implementation does nothing.

end_try(try_)
Called when a TRY/EXCEPT structure ends.

By default, calls end_body_item() which, by default, does nothing.

end_try_branch(branch)
Called when TRY, EXCEPT, ELSE and FINALLY branches end.

By default, calls end_body_item() which, by default, does nothing.

end_while(while_)
Called when a WHILE loop ends.

By default, calls end_body_item() which, by default, does nothing.

end_while_iteration(iteration)
Called when a WHILE loop iteration ends.

By default, calls end_body_item() which, by default, does nothing.

start_body_item(item)
Called, by default, when keywords, messages or control structures start.

More specific start_keyword(), start_message(), :meth:‘start_for, etc. can be implemented to
visit only keywords, messages or specific control structures.

Can return explicit False to stop visiting. Default implementation does nothing.

start_break(break_)
Called when a BREAK element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_continue(continue_)
Called when a CONTINUE element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_for(for_)
Called when a FOR loop starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_for_iteration(iteration)
Called when a FOR loop iteration starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_if(if_)
Called when an IF/ELSE structure starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

3.1. robot package 279

Robot Framework Documentation, Release 6.0.2

start_if_branch(branch)
Called when an IF/ELSE branch starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_keyword(keyword)
Called when a keyword starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_message(msg)
Called when a message starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_return(return_)
Called when a RETURN element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_test(test)
Called when a test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

start_try(try_)
Called when a TRY/EXCEPT structure starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_try_branch(branch)
Called when TRY, EXCEPT, ELSE or FINALLY branches start.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_while(while_)
Called when a WHILE loop starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_while_iteration(iteration)
Called when a WHILE loop iteration starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

visit_break(break_)
Visits BREAK elements.

visit_continue(continue_)
Visits CONTINUE elements.

280 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

visit_for(for_)
Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without calling start_for() or
end_for() nor visiting body.

visit_for_iteration(iteration)
Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side there are no iterations.

Can be overridden to allow modifying the passed in iteration without calling
start_for_iteration() or end_for_iteration() nor visiting body.

visit_if(if_)
Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches are in its body and visited
using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without calling start_if() or end_if()
nor visiting branches.

visit_if_branch(branch)
Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without calling start_if_branch() or
end_if_branch() nor visiting body.

visit_message(msg)
Implements visiting messages.

Can be overridden to allow modifying the passed in msg without calling start_message() or
end_message().

visit_return(return_)
Visits a RETURN elements.

visit_suite(suite)
Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without calling start_suite() or
end_suite() nor visiting child suites, tests or setup and teardown at all.

visit_try(try_)
Implements traversing through TRY/EXCEPT structures.

This method is used with the TRY/EXCEPT root element. Actual TRY, EXCEPT, ELSE and FINALLY
branches are visited separately using visit_try_branch().

visit_try_branch(branch)
Visits individual TRY, EXCEPT, ELSE and FINALLY branches.

visit_while(while_)
Implements traversing through WHILE loops.

Can be overridden to allow modifying the passed in while_ without calling start_while() or
end_while() nor visiting body.

visit_while_iteration(iteration)
Implements traversing through single WHILE loop iteration.

This is only used with the result side model because on the running side there are no iterations.

3.1. robot package 281

Robot Framework Documentation, Release 6.0.2

Can be overridden to allow modifying the passed in iteration without calling
start_while_iteration() or end_while_iteration() nor visiting body.

robot.model.tagstatistics module

class robot.model.tagstatistics.TagStatistics(combined_stats)
Bases: object

Container for tag statistics.

tags = None
Dictionary, where key is the name of the tag as a string and value is an instance of TagStat.

combined = None
List of CombinedTagStat objects.

visit(visitor)

class robot.model.tagstatistics.TagStatisticsBuilder(included=None, ex-
cluded=None, com-
bined=None, docs=None,
links=None)

Bases: object

add_test(test)

class robot.model.tagstatistics.TagStatInfo(docs=None, links=None)
Bases: object

get_stat(tag)

get_combined_stats(combined=None)

get_doc(tag)

get_links(tag)

class robot.model.tagstatistics.TagStatDoc(pattern, doc)
Bases: object

match(tag)

class robot.model.tagstatistics.TagStatLink(pattern, link, title)
Bases: object

match(tag)

get_link(tag)

robot.model.testcase module

class robot.model.testcase.TestCase(name=”, doc=”, tags=None, timeout=None,
lineno=None, parent=None)

Bases: robot.model.modelobject.ModelObject

Base model for a single test case.

Extended by robot.running.model.TestCase and robot.result.model.TestCase.

body_class
alias of robot.model.body.Body

282 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

fixture_class
alias of robot.model.keyword.Keyword

repr_args = ('name',)

name

doc

timeout

lineno

parent

body
Test body as a Body object.

tags
Test tags as a Tags object.

setup
Test setup as a Keyword object.

This attribute is a Keyword object also when a test has no setup but in that case its truth value is False.

Setup can be modified by setting attributes directly:

test.setup.name = 'Example'
test.setup.args = ('First', 'Second')

Alternatively the config() method can be used to set multiple attributes in one call:

test.setup.config(name='Example', args=('First', 'Second'))

The easiest way to reset the whole setup is setting it to None. It will automatically recreate the underlying
Keyword object:

test.setup = None

New in Robot Framework 4.0. Earlier setup was accessed like test.keywords.setup.

has_setup
Check does a suite have a setup without creating a setup object.

A difference between using if test.has_setup: and if test.setup: is that accessing the
setup attribute creates a Keyword object representing the setup even when the test actually does not
have one. This typically does not matter, but with bigger suite structures containing a huge about of tests
it can have an effect on memory usage.

New in Robot Framework 5.0.

teardown
Test teardown as a Keyword object.

See setup for more information.

has_teardown
Check does a test have a teardown without creating a teardown object.

See has_setup for more information.

New in Robot Framework 5.0.

3.1. robot package 283

Robot Framework Documentation, Release 6.0.2

keywords
Deprecated since Robot Framework 4.0

Use body , setup or teardown instead.

id
Test case id in format like s1-t3.

See TestSuite.id for more information.

longname
Test name prefixed with the long name of the parent suite.

source

visit(visitor)
Visitor interface entry-point.

config(**attributes)
Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting obj.name =
'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

copy(**attributes)
Return shallow copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same as with the standard copy.copy
and copy.deepcopy functions that these methods also use internally.

deepcopy(**attributes)
Return deep copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same as with the standard copy.copy and
copy.deepcopy functions that these methods also use internally.

class robot.model.testcase.TestCases(test_class=<class ’robot.model.testcase.TestCase’>,
parent=None, tests=None)

Bases: robot.model.itemlist.ItemList

append(item)
S.append(value) – append value to the end of the sequence

clear()→ None – remove all items from S

count(value)→ integer – return number of occurrences of value

create(*args, **kwargs)

extend(items)
S.extend(iterable) – extend sequence by appending elements from the iterable

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

Supporting start and stop arguments is optional, but recommended.

284 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

insert(index, item)
S.insert(index, value) – insert value before index

pop([index])→ item – remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.

remove(value)
S.remove(value) – remove first occurrence of value. Raise ValueError if the value is not present.

reverse()
S.reverse() – reverse IN PLACE

sort()

visit(visitor)

robot.model.testsuite module

class robot.model.testsuite.TestSuite(name=”, doc=”, metadata=None, source=None,
rpa=False, parent=None)

Bases: robot.model.modelobject.ModelObject

Base model for single suite.

Extended by robot.running.model.TestSuite and robot.result.model.TestSuite.

test_class
alias of robot.model.testcase.TestCase

fixture_class
alias of robot.model.keyword.Keyword

repr_args = ('name',)

doc

source
Path to the source file or directory.

parent
Parent suite. None with the root suite.

rpa
True when RPA mode is enabled.

name
Test suite name. If not set, constructed from child suite names.

longname
Suite name prefixed with the long name of the parent suite.

metadata
Free test suite metadata as a dictionary.

suites
Child suites as a TestSuites object.

tests
Tests as a TestCases object.

setup
Suite setup as a Keyword object.

This attribute is a Keyword object also when a suite has no setup but in that case its truth value is False.

3.1. robot package 285

Robot Framework Documentation, Release 6.0.2

Setup can be modified by setting attributes directly:

suite.setup.name = 'Example'
suite.setup.args = ('First', 'Second')

Alternatively the config() method can be used to set multiple attributes in one call:

suite.setup.config(name='Example', args=('First', 'Second'))

The easiest way to reset the whole setup is setting it to None. It will automatically recreate the underlying
Keyword object:

suite.setup = None

New in Robot Framework 4.0. Earlier setup was accessed like suite.keywords.setup.

has_setup
Check does a suite have a setup without creating a setup object.

A difference between using if suite.has_setup: and if suite.setup: is that accessing the
setup attribute creates a Keyword object representing the setup even when the suite actually does not
have one. This typically does not matter, but with bigger suite structures containing a huge about of suites
it can have some effect on memory usage.

New in Robot Framework 5.0.

teardown
Suite teardown as a Keyword object.

See setup for more information.

has_teardown
Check does a suite have a teardown without creating a teardown object.

See has_setup for more information.

New in Robot Framework 5.0.

keywords
Deprecated since Robot Framework 4.0

Use setup or teardown instead.

id
An automatically generated unique id.

The root suite has id s1, its child suites have ids s1-s1, s1-s2, . . . , their child suites get ids s1-s1-s1,
s1-s1-s2, . . . , s1-s2-s1, . . . , and so on.

The first test in a suite has an id like s1-t1, the second has an id s1-t2, and so on. Similarly keywords
in suites (setup/teardown) and in tests get ids like s1-k1, s1-t1-k1, and s1-s4-t2-k5.

test_count
Number of the tests in this suite, recursively.

has_tests

set_tags(add=None, remove=None, persist=False)
Add and/or remove specified tags to the tests in this suite.

Parameters

• add – Tags to add as a list or, if adding only one, as a single string.

286 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

• remove – Tags to remove as a list or as a single string. Can be given as patterns where *
and ? work as wildcards.

• persist – Add/remove specified tags also to new tests added to this suite in the future.

filter(included_suites=None, included_tests=None, included_tags=None, excluded_tags=None)
Select test cases and remove others from this suite.

Parameters have the same semantics as --suite, --test, --include, and --exclude command
line options. All of them can be given as a list of strings, or when selecting only one, as a single string.

Child suites that contain no tests after filtering are automatically removed.

Example:

suite.filter(included_tests=['Test 1', '* Example'],
included_tags='priority-1')

config(**attributes)
Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting obj.name =
'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

configure(**options)
A shortcut to configure a suite using one method call.

Can only be used with the root test suite.

Parameters options – Passed to SuiteConfigurer that will then set suite attributes, call
filter(), etc. as needed.

Not to be confused with config() method that suites, tests, and keywords have to make it possible to
set multiple attributes in one call.

copy(**attributes)
Return shallow copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same as with the standard copy.copy
and copy.deepcopy functions that these methods also use internally.

deepcopy(**attributes)
Return deep copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same as with the standard copy.copy and
copy.deepcopy functions that these methods also use internally.

remove_empty_suites(preserve_direct_children=False)
Removes all child suites not containing any tests, recursively.

visit(visitor)
Visitor interface entry-point.

class robot.model.testsuite.TestSuites(suite_class=<class ’robot.model.testsuite.TestSuite’>,
parent=None, suites=None)

Bases: robot.model.itemlist.ItemList

3.1. robot package 287

Robot Framework Documentation, Release 6.0.2

append(item)
S.append(value) – append value to the end of the sequence

clear()→ None – remove all items from S

count(value)→ integer – return number of occurrences of value

create(*args, **kwargs)

extend(items)
S.extend(iterable) – extend sequence by appending elements from the iterable

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

Supporting start and stop arguments is optional, but recommended.

insert(index, item)
S.insert(index, value) – insert value before index

pop([index])→ item – remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.

remove(value)
S.remove(value) – remove first occurrence of value. Raise ValueError if the value is not present.

reverse()
S.reverse() – reverse IN PLACE

sort()

visit(visitor)

robot.model.totalstatistics module

class robot.model.totalstatistics.TotalStatistics(rpa=False)
Bases: object

Container for total statistics.

visit(visitor)

total

passed

skipped

failed

add_test(test)

message
String representation of the statistics.

For example:: 2 tests, 1 passed, 1 failed

class robot.model.totalstatistics.TotalStatisticsBuilder(suite=None, rpa=False)
Bases: robot.model.visitor.SuiteVisitor

add_test(test)

visit_test(test)
Implements traversing through tests.

288 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

Can be overridden to allow modifying the passed in test without calling start_test() or
end_test() nor visiting the body of the test.

visit_keyword(kw)
Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without calling start_keyword() or
end_keyword() nor visiting the body of the keyword

end_body_item(item)
Called, by default, when keywords, messages or control structures end.

More specific end_keyword(), end_message(), :meth:‘end_for, etc. can be implemented to visit
only keywords, messages or specific control structures.

Default implementation does nothing.

end_break(break_)
Called when a BREAK element ends.

By default, calls end_body_item() which, by default, does nothing.

end_continue(continue_)
Called when a CONTINUE element ends.

By default, calls end_body_item() which, by default, does nothing.

end_for(for_)
Called when a FOR loop ends.

By default, calls end_body_item() which, by default, does nothing.

end_for_iteration(iteration)
Called when a FOR loop iteration ends.

By default, calls end_body_item() which, by default, does nothing.

end_if(if_)
Called when an IF/ELSE structure ends.

By default, calls end_body_item() which, by default, does nothing.

end_if_branch(branch)
Called when an IF/ELSE branch ends.

By default, calls end_body_item() which, by default, does nothing.

end_keyword(keyword)
Called when a keyword ends.

By default, calls end_body_item() which, by default, does nothing.

end_message(msg)
Called when a message ends.

By default, calls end_body_item() which, by default, does nothing.

end_return(return_)
Called when a RETURN element ends.

By default, calls end_body_item() which, by default, does nothing.

end_suite(suite)
Called when a suite ends. Default implementation does nothing.

3.1. robot package 289

Robot Framework Documentation, Release 6.0.2

end_test(test)
Called when a test ends. Default implementation does nothing.

end_try(try_)
Called when a TRY/EXCEPT structure ends.

By default, calls end_body_item() which, by default, does nothing.

end_try_branch(branch)
Called when TRY, EXCEPT, ELSE and FINALLY branches end.

By default, calls end_body_item() which, by default, does nothing.

end_while(while_)
Called when a WHILE loop ends.

By default, calls end_body_item() which, by default, does nothing.

end_while_iteration(iteration)
Called when a WHILE loop iteration ends.

By default, calls end_body_item() which, by default, does nothing.

start_body_item(item)
Called, by default, when keywords, messages or control structures start.

More specific start_keyword(), start_message(), :meth:‘start_for, etc. can be implemented to
visit only keywords, messages or specific control structures.

Can return explicit False to stop visiting. Default implementation does nothing.

start_break(break_)
Called when a BREAK element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_continue(continue_)
Called when a CONTINUE element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_for(for_)
Called when a FOR loop starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_for_iteration(iteration)
Called when a FOR loop iteration starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_if(if_)
Called when an IF/ELSE structure starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

290 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

start_if_branch(branch)
Called when an IF/ELSE branch starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_keyword(keyword)
Called when a keyword starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_message(msg)
Called when a message starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_return(return_)
Called when a RETURN element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_suite(suite)
Called when a suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

start_test(test)
Called when a test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

start_try(try_)
Called when a TRY/EXCEPT structure starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_try_branch(branch)
Called when TRY, EXCEPT, ELSE or FINALLY branches start.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_while(while_)
Called when a WHILE loop starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_while_iteration(iteration)
Called when a WHILE loop iteration starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

visit_break(break_)
Visits BREAK elements.

3.1. robot package 291

Robot Framework Documentation, Release 6.0.2

visit_continue(continue_)
Visits CONTINUE elements.

visit_for(for_)
Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without calling start_for() or
end_for() nor visiting body.

visit_for_iteration(iteration)
Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side there are no iterations.

Can be overridden to allow modifying the passed in iteration without calling
start_for_iteration() or end_for_iteration() nor visiting body.

visit_if(if_)
Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches are in its body and visited
using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without calling start_if() or end_if()
nor visiting branches.

visit_if_branch(branch)
Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without calling start_if_branch() or
end_if_branch() nor visiting body.

visit_message(msg)
Implements visiting messages.

Can be overridden to allow modifying the passed in msg without calling start_message() or
end_message().

visit_return(return_)
Visits a RETURN elements.

visit_suite(suite)
Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without calling start_suite() or
end_suite() nor visiting child suites, tests or setup and teardown at all.

visit_try(try_)
Implements traversing through TRY/EXCEPT structures.

This method is used with the TRY/EXCEPT root element. Actual TRY, EXCEPT, ELSE and FINALLY
branches are visited separately using visit_try_branch().

visit_try_branch(branch)
Visits individual TRY, EXCEPT, ELSE and FINALLY branches.

visit_while(while_)
Implements traversing through WHILE loops.

Can be overridden to allow modifying the passed in while_ without calling start_while() or
end_while() nor visiting body.

visit_while_iteration(iteration)
Implements traversing through single WHILE loop iteration.

292 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

This is only used with the result side model because on the running side there are no iterations.

Can be overridden to allow modifying the passed in iteration without calling
start_while_iteration() or end_while_iteration() nor visiting body.

robot.model.visitor module

Interface to ease traversing through a test suite structure.

Visitors make it easy to modify test suite structures or to collect information from them. They work both with the
executable model and the result model, but the objects passed to the visitor methods are slightly different
depending on the model they are used with. The main differences are that on the execution side keywords do not
have child keywords nor messages, and that only the result objects have status related attributes like status and
starttime.

This module contains SuiteVisitor that implements the core logic to visit a test suite structure, and the result
package contains ResultVisitor that supports visiting the whole test execution result structure. Both of these
visitors should be imported via the robot.api package when used by external code.

Visitor algorithm

All suite, test, keyword and message objects have a visit() method that accepts a visitor instance. These
methods will then call the correct visitor method visit_suite(), visit_test(), visit_keyword() or
visit_message(), depending on the instance where the visit() method exists.

The recommended and definitely the easiest way to implement a visitor is extending the SuiteVisitor base class.
The default implementation of its visit_x() methods take care of traversing child elements of the object x re-
cursively. A visit_x() method first calls a corresponding start_x() method (e.g. visit_suite() calls
start_suite()), then calls visit() for all child objects of the x object, and finally calls the corresponding
end_x() method. The default implementations of start_x() and end_x() do nothing.

All items that can appear inside tests have their own visit methods. These include visit_keyword(),
visit_message() (only applicable with results, not with executable data), visit_for(), visit_if(), and
so on, as well as their appropriate start/end methods like start_keyword() and end_for(). If there is
a need to visit all these items, it is possible to implement only start_body_item() and end_body_item()
methods that are, by default, called by the appropriate start/end methods. These generic methods are new in
Robot Framework 5.0.

Visitors extending the SuiteVisitor can stop visiting at a certain level either by overriding suitable visit_x()
method or by returning an explicit False from any start_x() method.

Examples

The following example visitor modifies the test suite structure it visits. It could be used, for example, with Robot
Framework’s --prerunmodifier option to modify test data before execution.

"""Pre-run modifier that selects only every Xth test for execution.

Starts from the first test by default. Tests are selected per suite.
"""

from robot.api import SuiteVisitor

(continues on next page)

3.1. robot package 293

Robot Framework Documentation, Release 6.0.2

(continued from previous page)

class SelectEveryXthTest(SuiteVisitor):

def __init__(self, x: int, start: int = 0):
self.x = x
self.start = start

def start_suite(self, suite):
"""Modify suite's tests to contain only every Xth."""
suite.tests = suite.tests[self.start::self.x]

def end_suite(self, suite):
"""Remove suites that are empty after removing tests."""
suite.suites = [s for s in suite.suites if s.test_count > 0]

def visit_test(self, test):
"""Avoid visiting tests and their keywords to save a little time."""
pass

For more examples it is possible to look at the source code of visitors used internally by Robot Framework itself.
Some good examples are TagSetter and keyword removers.

class robot.model.visitor.SuiteVisitor
Bases: object

Abstract class to ease traversing through the suite structure.

See the module level documentation for more information and an example.

visit_suite(suite)
Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without calling start_suite() or
end_suite() nor visiting child suites, tests or setup and teardown at all.

start_suite(suite)
Called when a suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

end_suite(suite)
Called when a suite ends. Default implementation does nothing.

visit_test(test)
Implements traversing through tests.

Can be overridden to allow modifying the passed in test without calling start_test() or
end_test() nor visiting the body of the test.

start_test(test)
Called when a test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

end_test(test)
Called when a test ends. Default implementation does nothing.

visit_keyword(kw)
Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without calling start_keyword() or
end_keyword() nor visiting the body of the keyword

294 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

start_keyword(keyword)
Called when a keyword starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

end_keyword(keyword)
Called when a keyword ends.

By default, calls end_body_item() which, by default, does nothing.

visit_for(for_)
Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without calling start_for() or
end_for() nor visiting body.

start_for(for_)
Called when a FOR loop starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

end_for(for_)
Called when a FOR loop ends.

By default, calls end_body_item() which, by default, does nothing.

visit_for_iteration(iteration)
Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side there are no iterations.

Can be overridden to allow modifying the passed in iteration without calling
start_for_iteration() or end_for_iteration() nor visiting body.

start_for_iteration(iteration)
Called when a FOR loop iteration starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

end_for_iteration(iteration)
Called when a FOR loop iteration ends.

By default, calls end_body_item() which, by default, does nothing.

visit_if(if_)
Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches are in its body and visited
using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without calling start_if() or end_if()
nor visiting branches.

start_if(if_)
Called when an IF/ELSE structure starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

3.1. robot package 295

Robot Framework Documentation, Release 6.0.2

end_if(if_)
Called when an IF/ELSE structure ends.

By default, calls end_body_item() which, by default, does nothing.

visit_if_branch(branch)
Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without calling start_if_branch() or
end_if_branch() nor visiting body.

start_if_branch(branch)
Called when an IF/ELSE branch starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

end_if_branch(branch)
Called when an IF/ELSE branch ends.

By default, calls end_body_item() which, by default, does nothing.

visit_try(try_)
Implements traversing through TRY/EXCEPT structures.

This method is used with the TRY/EXCEPT root element. Actual TRY, EXCEPT, ELSE and FINALLY
branches are visited separately using visit_try_branch().

start_try(try_)
Called when a TRY/EXCEPT structure starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

end_try(try_)
Called when a TRY/EXCEPT structure ends.

By default, calls end_body_item() which, by default, does nothing.

visit_try_branch(branch)
Visits individual TRY, EXCEPT, ELSE and FINALLY branches.

start_try_branch(branch)
Called when TRY, EXCEPT, ELSE or FINALLY branches start.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

end_try_branch(branch)
Called when TRY, EXCEPT, ELSE and FINALLY branches end.

By default, calls end_body_item() which, by default, does nothing.

visit_while(while_)
Implements traversing through WHILE loops.

Can be overridden to allow modifying the passed in while_ without calling start_while() or
end_while() nor visiting body.

start_while(while_)
Called when a WHILE loop starts.

By default, calls start_body_item() which, by default, does nothing.

296 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

Can return explicit False to stop visiting.

end_while(while_)
Called when a WHILE loop ends.

By default, calls end_body_item() which, by default, does nothing.

visit_while_iteration(iteration)
Implements traversing through single WHILE loop iteration.

This is only used with the result side model because on the running side there are no iterations.

Can be overridden to allow modifying the passed in iteration without calling
start_while_iteration() or end_while_iteration() nor visiting body.

start_while_iteration(iteration)
Called when a WHILE loop iteration starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

end_while_iteration(iteration)
Called when a WHILE loop iteration ends.

By default, calls end_body_item() which, by default, does nothing.

visit_return(return_)
Visits a RETURN elements.

start_return(return_)
Called when a RETURN element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

end_return(return_)
Called when a RETURN element ends.

By default, calls end_body_item() which, by default, does nothing.

visit_continue(continue_)
Visits CONTINUE elements.

start_continue(continue_)
Called when a CONTINUE element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

end_continue(continue_)
Called when a CONTINUE element ends.

By default, calls end_body_item() which, by default, does nothing.

visit_break(break_)
Visits BREAK elements.

start_break(break_)
Called when a BREAK element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

3.1. robot package 297

Robot Framework Documentation, Release 6.0.2

end_break(break_)
Called when a BREAK element ends.

By default, calls end_body_item() which, by default, does nothing.

visit_message(msg)
Implements visiting messages.

Can be overridden to allow modifying the passed in msg without calling start_message() or
end_message().

start_message(msg)
Called when a message starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

end_message(msg)
Called when a message ends.

By default, calls end_body_item() which, by default, does nothing.

start_body_item(item)
Called, by default, when keywords, messages or control structures start.

More specific start_keyword(), start_message(), :meth:‘start_for, etc. can be implemented to
visit only keywords, messages or specific control structures.

Can return explicit False to stop visiting. Default implementation does nothing.

end_body_item(item)
Called, by default, when keywords, messages or control structures end.

More specific end_keyword(), end_message(), :meth:‘end_for, etc. can be implemented to visit
only keywords, messages or specific control structures.

Default implementation does nothing.

robot.output package

Package for internal logging and other output.

Not part of the public API, and also subject to change in the future when test execution is refactored.

Subpackages

robot.output.console package

robot.output.console.ConsoleOutput(type=’verbose’, width=78, colors=’AUTO’, mark-
ers=’AUTO’, stdout=None, stderr=None)

Submodules

robot.output.console.dotted module

class robot.output.console.dotted.DottedOutput(width=78, colors=’AUTO’, std-
out=None, stderr=None)

Bases: object

298 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

start_suite(suite)

end_test(test)

end_suite(suite)

message(msg)

output_file(name, path)

class robot.output.console.dotted.StatusReporter(stream, width)
Bases: robot.model.visitor.SuiteVisitor

report(suite)

visit_test(test)
Implements traversing through tests.

Can be overridden to allow modifying the passed in test without calling start_test() or
end_test() nor visiting the body of the test.

end_body_item(item)
Called, by default, when keywords, messages or control structures end.

More specific end_keyword(), end_message(), :meth:‘end_for, etc. can be implemented to visit
only keywords, messages or specific control structures.

Default implementation does nothing.

end_break(break_)
Called when a BREAK element ends.

By default, calls end_body_item() which, by default, does nothing.

end_continue(continue_)
Called when a CONTINUE element ends.

By default, calls end_body_item() which, by default, does nothing.

end_for(for_)
Called when a FOR loop ends.

By default, calls end_body_item() which, by default, does nothing.

end_for_iteration(iteration)
Called when a FOR loop iteration ends.

By default, calls end_body_item() which, by default, does nothing.

end_if(if_)
Called when an IF/ELSE structure ends.

By default, calls end_body_item() which, by default, does nothing.

end_if_branch(branch)
Called when an IF/ELSE branch ends.

By default, calls end_body_item() which, by default, does nothing.

end_keyword(keyword)
Called when a keyword ends.

By default, calls end_body_item() which, by default, does nothing.

end_message(msg)
Called when a message ends.

3.1. robot package 299

Robot Framework Documentation, Release 6.0.2

By default, calls end_body_item() which, by default, does nothing.

end_return(return_)
Called when a RETURN element ends.

By default, calls end_body_item() which, by default, does nothing.

end_suite(suite)
Called when a suite ends. Default implementation does nothing.

end_test(test)
Called when a test ends. Default implementation does nothing.

end_try(try_)
Called when a TRY/EXCEPT structure ends.

By default, calls end_body_item() which, by default, does nothing.

end_try_branch(branch)
Called when TRY, EXCEPT, ELSE and FINALLY branches end.

By default, calls end_body_item() which, by default, does nothing.

end_while(while_)
Called when a WHILE loop ends.

By default, calls end_body_item() which, by default, does nothing.

end_while_iteration(iteration)
Called when a WHILE loop iteration ends.

By default, calls end_body_item() which, by default, does nothing.

start_body_item(item)
Called, by default, when keywords, messages or control structures start.

More specific start_keyword(), start_message(), :meth:‘start_for, etc. can be implemented to
visit only keywords, messages or specific control structures.

Can return explicit False to stop visiting. Default implementation does nothing.

start_break(break_)
Called when a BREAK element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_continue(continue_)
Called when a CONTINUE element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_for(for_)
Called when a FOR loop starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_for_iteration(iteration)
Called when a FOR loop iteration starts.

By default, calls start_body_item() which, by default, does nothing.

300 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

Can return explicit False to stop visiting.

start_if(if_)
Called when an IF/ELSE structure starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_if_branch(branch)
Called when an IF/ELSE branch starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_keyword(keyword)
Called when a keyword starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_message(msg)
Called when a message starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_return(return_)
Called when a RETURN element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_suite(suite)
Called when a suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

start_test(test)
Called when a test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

start_try(try_)
Called when a TRY/EXCEPT structure starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_try_branch(branch)
Called when TRY, EXCEPT, ELSE or FINALLY branches start.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_while(while_)
Called when a WHILE loop starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

3.1. robot package 301

Robot Framework Documentation, Release 6.0.2

start_while_iteration(iteration)
Called when a WHILE loop iteration starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

visit_break(break_)
Visits BREAK elements.

visit_continue(continue_)
Visits CONTINUE elements.

visit_for(for_)
Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without calling start_for() or
end_for() nor visiting body.

visit_for_iteration(iteration)
Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side there are no iterations.

Can be overridden to allow modifying the passed in iteration without calling
start_for_iteration() or end_for_iteration() nor visiting body.

visit_if(if_)
Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches are in its body and visited
using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without calling start_if() or end_if()
nor visiting branches.

visit_if_branch(branch)
Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without calling start_if_branch() or
end_if_branch() nor visiting body.

visit_keyword(kw)
Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without calling start_keyword() or
end_keyword() nor visiting the body of the keyword

visit_message(msg)
Implements visiting messages.

Can be overridden to allow modifying the passed in msg without calling start_message() or
end_message().

visit_return(return_)
Visits a RETURN elements.

visit_suite(suite)
Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without calling start_suite() or
end_suite() nor visiting child suites, tests or setup and teardown at all.

302 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

visit_try(try_)
Implements traversing through TRY/EXCEPT structures.

This method is used with the TRY/EXCEPT root element. Actual TRY, EXCEPT, ELSE and FINALLY
branches are visited separately using visit_try_branch().

visit_try_branch(branch)
Visits individual TRY, EXCEPT, ELSE and FINALLY branches.

visit_while(while_)
Implements traversing through WHILE loops.

Can be overridden to allow modifying the passed in while_ without calling start_while() or
end_while() nor visiting body.

visit_while_iteration(iteration)
Implements traversing through single WHILE loop iteration.

This is only used with the result side model because on the running side there are no iterations.

Can be overridden to allow modifying the passed in iteration without calling
start_while_iteration() or end_while_iteration() nor visiting body.

robot.output.console.highlighting module

class robot.output.console.highlighting.HighlightingStream(stream, col-
ors=’AUTO’)

Bases: object

write(text, flush=True)

flush()

highlight(text, status=None, flush=True)

error(message, level)

robot.output.console.highlighting.Highlighter(stream)

class robot.output.console.highlighting.AnsiHighlighter(stream)
Bases: object

green()

red()

yellow()

reset()

class robot.output.console.highlighting.NoHighlighting(stream)
Bases: robot.output.console.highlighting.AnsiHighlighter

green()

red()

reset()

yellow()

class robot.output.console.highlighting.DosHighlighter(stream)
Bases: object

green()

3.1. robot package 303

Robot Framework Documentation, Release 6.0.2

red()

yellow()

reset()

robot.output.console.quiet module

class robot.output.console.quiet.QuietOutput(colors=’AUTO’, stderr=None)
Bases: object

message(msg)

class robot.output.console.quiet.NoOutput
Bases: object

robot.output.console.verbose module

class robot.output.console.verbose.VerboseOutput(width=78, colors=’AUTO’,
markers=’AUTO’, stdout=None,
stderr=None)

Bases: object

start_suite(suite)

end_suite(suite)

start_test(test)

end_test(test)

start_keyword(kw)

end_keyword(kw)

message(msg)

output_file(name, path)

class robot.output.console.verbose.VerboseWriter(width=78, colors=’AUTO’,
markers=’AUTO’, stdout=None,
stderr=None)

Bases: object

info(name, doc, start_suite=False)

suite_separator()

test_separator()

status(status, clear=False)

message(message)

keyword_marker(status)

error(message, level, clear=False)

output(name, path)

class robot.output.console.verbose.KeywordMarker(highlighter, markers)
Bases: object

mark(status)

304 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

reset_count()

Submodules

robot.output.debugfile module

robot.output.debugfile.DebugFile(path)

robot.output.filelogger module

class robot.output.filelogger.FileLogger(path, level)
Bases: robot.output.loggerhelper.AbstractLogger

message(msg)

start_suite(suite)

end_suite(suite)

start_test(test)

end_test(test)

start_keyword(kw)

end_keyword(kw)

output_file(name, path)

close()

debug(msg)

error(msg)

fail(msg)

info(msg)

set_level(level)

skip(msg)

trace(msg)

warn(msg)

write(message, level, html=False)

robot.output.librarylogger module

Implementation of the public logging API for libraries.

This is exposed via robot.api.logger. Implementation must reside here to avoid cyclic imports.

robot.output.librarylogger.write(msg, level, html=False)

robot.output.librarylogger.trace(msg, html=False)

robot.output.librarylogger.debug(msg, html=False)

robot.output.librarylogger.info(msg, html=False, also_console=False)

3.1. robot package 305

Robot Framework Documentation, Release 6.0.2

robot.output.librarylogger.warn(msg, html=False)

robot.output.librarylogger.error(msg, html=False)

robot.output.librarylogger.console(msg, newline=True, stream=’stdout’)

robot.output.listenerarguments module

class robot.output.listenerarguments.ListenerArguments(arguments)
Bases: object

get_arguments(version)

classmethod by_method_name(name, arguments)

class robot.output.listenerarguments.MessageArguments(arguments)
Bases: robot.output.listenerarguments.ListenerArguments

classmethod by_method_name(name, arguments)

get_arguments(version)

class robot.output.listenerarguments.StartSuiteArguments(arguments)
Bases: robot.output.listenerarguments._ListenerArgumentsFromItem

classmethod by_method_name(name, arguments)

get_arguments(version)

class robot.output.listenerarguments.EndSuiteArguments(arguments)
Bases: robot.output.listenerarguments.StartSuiteArguments

classmethod by_method_name(name, arguments)

get_arguments(version)

class robot.output.listenerarguments.StartTestArguments(arguments)
Bases: robot.output.listenerarguments._ListenerArgumentsFromItem

classmethod by_method_name(name, arguments)

get_arguments(version)

class robot.output.listenerarguments.EndTestArguments(arguments)
Bases: robot.output.listenerarguments.StartTestArguments

classmethod by_method_name(name, arguments)

get_arguments(version)

class robot.output.listenerarguments.StartKeywordArguments(arguments)
Bases: robot.output.listenerarguments._ListenerArgumentsFromItem

classmethod by_method_name(name, arguments)

get_arguments(version)

class robot.output.listenerarguments.EndKeywordArguments(arguments)
Bases: robot.output.listenerarguments.StartKeywordArguments

classmethod by_method_name(name, arguments)

get_arguments(version)

306 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

robot.output.listenermethods module

class robot.output.listenermethods.ListenerMethods(method_name, listeners)
Bases: object

class robot.output.listenermethods.LibraryListenerMethods(method_name)
Bases: object

new_suite_scope()

discard_suite_scope()

register(listeners, library)

unregister(library)

class robot.output.listenermethods.ListenerMethod(method, listener, library=None)
Bases: object

called = False

robot.output.listeners module

class robot.output.listeners.Listeners(listeners, log_level=’INFO’)
Bases: object

set_log_level(level)

start_keyword(kw)

end_keyword(kw)

log_message(msg)

imported(import_type, name, attrs)

output_file(file_type, path)

class robot.output.listeners.LibraryListeners(log_level=’INFO’)
Bases: object

register(listeners, library)

unregister(library, close=False)

new_suite_scope()

discard_suite_scope()

set_log_level(level)

log_message(msg)

imported(import_type, name, attrs)

output_file(file_type, path)

class robot.output.listeners.ListenerProxy(listener, method_names, prefix=None)
Bases: robot.output.loggerhelper.AbstractLoggerProxy

classmethod import_listeners(listeners, method_names, prefix=None,
raise_on_error=False)

3.1. robot package 307

Robot Framework Documentation, Release 6.0.2

robot.output.logger module

class robot.output.logger.Logger(register_console_logger=True)
Bases: robot.output.loggerhelper.AbstractLogger

A global logger proxy to delegating messages to registered loggers.

Whenever something is written to LOGGER in code, all registered loggers are notified. Messages are also
cached and cached messages written to new loggers when they are registered.

NOTE: This API is likely to change in future versions.

start_loggers

end_loggers

register_console_logger(type=’verbose’, width=78, colors=’AUTO’, markers=’AUTO’, std-
out=None, stderr=None)

unregister_console_logger()

register_syslog(path=None, level=’INFO’)

register_xml_logger(logger)

unregister_xml_logger()

register_listeners(listeners, library_listeners)

register_logger(*loggers)

unregister_logger(*loggers)

disable_message_cache()

register_error_listener(listener)

message(msg)
Messages about what the framework is doing, warnings, errors, . . .

cache_only

delayed_logging

log_message(msg)
Messages about what the framework is doing, warnings, errors, . . .

log_output(output)

enable_library_import_logging()

disable_library_import_logging()

start_suite(suite)

end_suite(suite)

start_test(test)

end_test(test)

start_keyword(keyword)

end_keyword(keyword)

imported(import_type, name, **attrs)

output_file(file_type, path)
Finished output, report, log, debug, or xunit file

308 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

close()

debug(msg)

error(msg)

fail(msg)

info(msg)

set_level(level)

skip(msg)

trace(msg)

warn(msg)

write(message, level, html=False)

class robot.output.logger.LoggerProxy(logger, method_names=None, prefix=None)
Bases: robot.output.loggerhelper.AbstractLoggerProxy

start_keyword(kw)

end_keyword(kw)

robot.output.loggerhelper module

class robot.output.loggerhelper.AbstractLogger(level=’TRACE’)
Bases: object

set_level(level)

trace(msg)

debug(msg)

info(msg)

warn(msg)

fail(msg)

skip(msg)

error(msg)

write(message, level, html=False)

message(msg)

class robot.output.loggerhelper.Message(message, level=’INFO’, html=False, times-
tamp=None)

Bases: robot.model.message.Message

message

resolve_delayed_message()

BREAK = 'BREAK'

CONTINUE = 'CONTINUE'

ELSE = 'ELSE'

ELSE_IF = 'ELSE IF'

3.1. robot package 309

Robot Framework Documentation, Release 6.0.2

EXCEPT = 'EXCEPT'

FINALLY = 'FINALLY'

FOR = 'FOR'

IF = 'IF'

IF_ELSE_ROOT = 'IF/ELSE ROOT'

ITERATION = 'ITERATION'

KEYWORD = 'KEYWORD'

MESSAGE = 'MESSAGE'

RETURN = 'RETURN'

SETUP = 'SETUP'

TEARDOWN = 'TEARDOWN'

TRY = 'TRY'

TRY_EXCEPT_ROOT = 'TRY/EXCEPT ROOT'

WHILE = 'WHILE'

config(**attributes)
Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting obj.name =
'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

copy(**attributes)
Return shallow copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same as with the standard copy.copy
and copy.deepcopy functions that these methods also use internally.

deepcopy(**attributes)
Return deep copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same as with the standard copy.copy and
copy.deepcopy functions that these methods also use internally.

has_setup

has_teardown

html

html_message
Returns the message content as HTML.

id
Item id in format like s1-t3-k1.

See TestSuite.id for more information.

310 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

level

parent

repr_args = ('message', 'level')

timestamp

type = 'MESSAGE'

visit(visitor)
Visitor interface entry-point.

class robot.output.loggerhelper.IsLogged(level)
Bases: object

set_level(level)

class robot.output.loggerhelper.AbstractLoggerProxy(logger, method_names=None,
prefix=None)

Bases: object

robot.output.output module

class robot.output.output.Output(settings)
Bases: robot.output.loggerhelper.AbstractLogger

register_error_listener(listener)

close(result)

start_suite(suite)

end_suite(suite)

start_test(test)

end_test(test)

start_keyword(kw)

end_keyword(kw)

message(msg)

set_log_level(level)

debug(msg)

error(msg)

fail(msg)

info(msg)

set_level(level)

skip(msg)

trace(msg)

warn(msg)

write(message, level, html=False)

3.1. robot package 311

Robot Framework Documentation, Release 6.0.2

robot.output.pyloggingconf module

robot.output.pyloggingconf.robot_handler_enabled(level)

robot.output.pyloggingconf.set_level(level)

class robot.output.pyloggingconf.RobotHandler(level=0, library_logger=<module
’robot.output.librarylogger’ from
’/home/docs/checkouts/readthedocs.org/user_builds/robot-
framework/checkouts/v6.0.2/src/robot/output/librarylogger.py’>)

Bases: logging.Handler

emit(record)
Do whatever it takes to actually log the specified logging record.

This version is intended to be implemented by subclasses and so raises a NotImplementedError.

acquire()
Acquire the I/O thread lock.

addFilter(filter)
Add the specified filter to this handler.

close()
Tidy up any resources used by the handler.

This version removes the handler from an internal map of handlers, _handlers, which is used for handler
lookup by name. Subclasses should ensure that this gets called from overridden close() methods.

createLock()
Acquire a thread lock for serializing access to the underlying I/O.

filter(record)
Determine if a record is loggable by consulting all the filters.

The default is to allow the record to be logged; any filter can veto this and the record is then dropped.
Returns a zero value if a record is to be dropped, else non-zero.

Changed in version 3.2: Allow filters to be just callables.

flush()
Ensure all logging output has been flushed.

This version does nothing and is intended to be implemented by subclasses.

format(record)
Format the specified record.

If a formatter is set, use it. Otherwise, use the default formatter for the module.

get_name()

handle(record)
Conditionally emit the specified logging record.

Emission depends on filters which may have been added to the handler. Wrap the actual emission of the
record with acquisition/release of the I/O thread lock. Returns whether the filter passed the record for
emission.

handleError(record)
Handle errors which occur during an emit() call.

This method should be called from handlers when an exception is encountered during an emit() call. If
raiseExceptions is false, exceptions get silently ignored. This is what is mostly wanted for a logging system

312 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

- most users will not care about errors in the logging system, they are more interested in application errors.
You could, however, replace this with a custom handler if you wish. The record which was being processed
is passed in to this method.

name

release()
Release the I/O thread lock.

removeFilter(filter)
Remove the specified filter from this handler.

setFormatter(fmt)
Set the formatter for this handler.

setLevel(level)
Set the logging level of this handler. level must be an int or a str.

set_name(name)

robot.output.stdoutlogsplitter module

class robot.output.stdoutlogsplitter.StdoutLogSplitter(output)
Bases: object

Splits messages logged through stdout (or stderr) into Message objects

robot.output.xmllogger module

class robot.output.xmllogger.XmlLogger(path, log_level=’TRACE’, rpa=False, genera-
tor=’Robot’)

Bases: robot.result.visitor.ResultVisitor

close()

set_log_level(level)

message(msg)

log_message(msg)

start_keyword(kw)
Called when a keyword starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

end_keyword(kw)
Called when a keyword ends.

By default, calls end_body_item() which, by default, does nothing.

start_if(if_)
Called when an IF/ELSE structure starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

3.1. robot package 313

Robot Framework Documentation, Release 6.0.2

end_if(if_)
Called when an IF/ELSE structure ends.

By default, calls end_body_item() which, by default, does nothing.

start_if_branch(branch)
Called when an IF/ELSE branch starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

end_if_branch(branch)
Called when an IF/ELSE branch ends.

By default, calls end_body_item() which, by default, does nothing.

start_for(for_)
Called when a FOR loop starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

end_for(for_)
Called when a FOR loop ends.

By default, calls end_body_item() which, by default, does nothing.

start_for_iteration(iteration)
Called when a FOR loop iteration starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

end_for_iteration(iteration)
Called when a FOR loop iteration ends.

By default, calls end_body_item() which, by default, does nothing.

start_try(root)
Called when a TRY/EXCEPT structure starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

end_try(root)
Called when a TRY/EXCEPT structure ends.

By default, calls end_body_item() which, by default, does nothing.

start_try_branch(branch)
Called when TRY, EXCEPT, ELSE or FINALLY branches start.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

end_try_branch(branch)
Called when TRY, EXCEPT, ELSE and FINALLY branches end.

By default, calls end_body_item() which, by default, does nothing.

314 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

start_while(while_)
Called when a WHILE loop starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

end_while(while_)
Called when a WHILE loop ends.

By default, calls end_body_item() which, by default, does nothing.

start_while_iteration(iteration)
Called when a WHILE loop iteration starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

end_while_iteration(iteration)
Called when a WHILE loop iteration ends.

By default, calls end_body_item() which, by default, does nothing.

start_return(return_)
Called when a RETURN element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

end_return(return_)
Called when a RETURN element ends.

By default, calls end_body_item() which, by default, does nothing.

start_continue(continue_)
Called when a CONTINUE element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

end_continue(continue_)
Called when a CONTINUE element ends.

By default, calls end_body_item() which, by default, does nothing.

start_break(break_)
Called when a BREAK element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

end_break(break_)
Called when a BREAK element ends.

By default, calls end_body_item() which, by default, does nothing.

start_test(test)
Called when a test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

end_test(test)
Called when a test ends. Default implementation does nothing.

3.1. robot package 315

Robot Framework Documentation, Release 6.0.2

start_suite(suite)
Called when a suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

end_suite(suite)
Called when a suite ends. Default implementation does nothing.

start_statistics(stats)

end_statistics(stats)

start_total_statistics(total_stats)

end_total_statistics(total_stats)

start_tag_statistics(tag_stats)

end_tag_statistics(tag_stats)

start_suite_statistics(tag_stats)

end_suite_statistics(tag_stats)

visit_stat(stat)

start_errors(errors=None)

end_errors(errors=None)

end_body_item(item)
Called, by default, when keywords, messages or control structures end.

More specific end_keyword(), end_message(), :meth:‘end_for, etc. can be implemented to visit
only keywords, messages or specific control structures.

Default implementation does nothing.

end_message(msg)
Called when a message ends.

By default, calls end_body_item() which, by default, does nothing.

end_result(result)

end_stat(stat)

start_body_item(item)
Called, by default, when keywords, messages or control structures start.

More specific start_keyword(), start_message(), :meth:‘start_for, etc. can be implemented to
visit only keywords, messages or specific control structures.

Can return explicit False to stop visiting. Default implementation does nothing.

start_message(msg)
Called when a message starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_result(result)

start_stat(stat)

visit_break(break_)
Visits BREAK elements.

316 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

visit_continue(continue_)
Visits CONTINUE elements.

visit_errors(errors)

visit_for(for_)
Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without calling start_for() or
end_for() nor visiting body.

visit_for_iteration(iteration)
Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side there are no iterations.

Can be overridden to allow modifying the passed in iteration without calling
start_for_iteration() or end_for_iteration() nor visiting body.

visit_if(if_)
Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches are in its body and visited
using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without calling start_if() or end_if()
nor visiting branches.

visit_if_branch(branch)
Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without calling start_if_branch() or
end_if_branch() nor visiting body.

visit_keyword(kw)
Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without calling start_keyword() or
end_keyword() nor visiting the body of the keyword

visit_message(msg)
Implements visiting messages.

Can be overridden to allow modifying the passed in msg without calling start_message() or
end_message().

visit_result(result)

visit_return(return_)
Visits a RETURN elements.

visit_statistics(stats)

visit_suite(suite)
Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without calling start_suite() or
end_suite() nor visiting child suites, tests or setup and teardown at all.

visit_suite_statistics(stats)

visit_tag_statistics(stats)

visit_test(test)
Implements traversing through tests.

3.1. robot package 317

Robot Framework Documentation, Release 6.0.2

Can be overridden to allow modifying the passed in test without calling start_test() or
end_test() nor visiting the body of the test.

visit_total_statistics(stats)

visit_try(try_)
Implements traversing through TRY/EXCEPT structures.

This method is used with the TRY/EXCEPT root element. Actual TRY, EXCEPT, ELSE and FINALLY
branches are visited separately using visit_try_branch().

visit_try_branch(branch)
Visits individual TRY, EXCEPT, ELSE and FINALLY branches.

visit_while(while_)
Implements traversing through WHILE loops.

Can be overridden to allow modifying the passed in while_ without calling start_while() or
end_while() nor visiting body.

visit_while_iteration(iteration)
Implements traversing through single WHILE loop iteration.

This is only used with the result side model because on the running side there are no iterations.

Can be overridden to allow modifying the passed in iteration without calling
start_while_iteration() or end_while_iteration() nor visiting body.

robot.parsing package

Module implementing test data parsing.

Public API is exposed via the robot.api.parsing module. See its documentation for more information and
examples. If external code needs to import something from this module directly, issue should be submitted about
exposing it explicitly via robot.api.parsing.

Subpackages

robot.parsing.lexer package

Submodules

robot.parsing.lexer.blocklexers module

class robot.parsing.lexer.blocklexers.BlockLexer(ctx)
Bases: robot.parsing.lexer.statementlexers.Lexer

accepts_more(statement)

input(statement)

lexer_for(statement)

lexer_classes()

lex()

classmethod handles(statement, ctx)

318 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

class robot.parsing.lexer.blocklexers.FileLexer(ctx)
Bases: robot.parsing.lexer.blocklexers.BlockLexer

lex()

lexer_classes()

accepts_more(statement)

classmethod handles(statement, ctx)

input(statement)

lexer_for(statement)

class robot.parsing.lexer.blocklexers.SectionLexer(ctx)
Bases: robot.parsing.lexer.blocklexers.BlockLexer

accepts_more(statement)

classmethod handles(statement, ctx)

input(statement)

lex()

lexer_classes()

lexer_for(statement)

class robot.parsing.lexer.blocklexers.SettingSectionLexer(ctx)
Bases: robot.parsing.lexer.blocklexers.SectionLexer

classmethod handles(statement, ctx)

lexer_classes()

accepts_more(statement)

input(statement)

lex()

lexer_for(statement)

class robot.parsing.lexer.blocklexers.VariableSectionLexer(ctx)
Bases: robot.parsing.lexer.blocklexers.SectionLexer

classmethod handles(statement, ctx)

lexer_classes()

accepts_more(statement)

input(statement)

lex()

lexer_for(statement)

class robot.parsing.lexer.blocklexers.TestCaseSectionLexer(ctx)
Bases: robot.parsing.lexer.blocklexers.SectionLexer

3.1. robot package 319

Robot Framework Documentation, Release 6.0.2

classmethod handles(statement, ctx)

lexer_classes()

accepts_more(statement)

input(statement)

lex()

lexer_for(statement)

class robot.parsing.lexer.blocklexers.TaskSectionLexer(ctx)
Bases: robot.parsing.lexer.blocklexers.SectionLexer

classmethod handles(statement, ctx)

lexer_classes()

accepts_more(statement)

input(statement)

lex()

lexer_for(statement)

class robot.parsing.lexer.blocklexers.KeywordSectionLexer(ctx)
Bases: robot.parsing.lexer.blocklexers.SettingSectionLexer

classmethod handles(statement, ctx)

lexer_classes()

accepts_more(statement)

input(statement)

lex()

lexer_for(statement)

class robot.parsing.lexer.blocklexers.CommentSectionLexer(ctx)
Bases: robot.parsing.lexer.blocklexers.SectionLexer

classmethod handles(statement, ctx)

lexer_classes()

accepts_more(statement)

input(statement)

lex()

lexer_for(statement)

class robot.parsing.lexer.blocklexers.ImplicitCommentSectionLexer(ctx)
Bases: robot.parsing.lexer.blocklexers.SectionLexer

320 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

classmethod handles(statement, ctx)

lexer_classes()

accepts_more(statement)

input(statement)

lex()

lexer_for(statement)

class robot.parsing.lexer.blocklexers.ErrorSectionLexer(ctx)
Bases: robot.parsing.lexer.blocklexers.SectionLexer

classmethod handles(statement, ctx)

lexer_classes()

accepts_more(statement)

input(statement)

lex()

lexer_for(statement)

class robot.parsing.lexer.blocklexers.TestOrKeywordLexer(ctx)
Bases: robot.parsing.lexer.blocklexers.BlockLexer

name_type = NotImplemented

accepts_more(statement)

input(statement)

lexer_classes()

classmethod handles(statement, ctx)

lex()

lexer_for(statement)

class robot.parsing.lexer.blocklexers.TestCaseLexer(ctx)
Bases: robot.parsing.lexer.blocklexers.TestOrKeywordLexer

name_type = 'TESTCASE NAME'

lex()

accepts_more(statement)

classmethod handles(statement, ctx)

input(statement)

lexer_classes()

lexer_for(statement)

class robot.parsing.lexer.blocklexers.KeywordLexer(ctx)
Bases: robot.parsing.lexer.blocklexers.TestOrKeywordLexer

3.1. robot package 321

Robot Framework Documentation, Release 6.0.2

name_type = 'KEYWORD NAME'

accepts_more(statement)

classmethod handles(statement, ctx)

input(statement)

lex()

lexer_classes()

lexer_for(statement)

class robot.parsing.lexer.blocklexers.NestedBlockLexer(ctx)
Bases: robot.parsing.lexer.blocklexers.BlockLexer

accepts_more(statement)

input(statement)

classmethod handles(statement, ctx)

lex()

lexer_classes()

lexer_for(statement)

class robot.parsing.lexer.blocklexers.ForLexer(ctx)
Bases: robot.parsing.lexer.blocklexers.NestedBlockLexer

classmethod handles(statement, ctx)

lexer_classes()

accepts_more(statement)

input(statement)

lex()

lexer_for(statement)

class robot.parsing.lexer.blocklexers.WhileLexer(ctx)
Bases: robot.parsing.lexer.blocklexers.NestedBlockLexer

classmethod handles(statement, ctx)

lexer_classes()

accepts_more(statement)

input(statement)

lex()

lexer_for(statement)

class robot.parsing.lexer.blocklexers.IfLexer(ctx)
Bases: robot.parsing.lexer.blocklexers.NestedBlockLexer

classmethod handles(statement, ctx)

lexer_classes()

accepts_more(statement)

input(statement)

322 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

lex()

lexer_for(statement)

class robot.parsing.lexer.blocklexers.InlineIfLexer(ctx)
Bases: robot.parsing.lexer.blocklexers.BlockLexer

classmethod handles(statement, ctx)

accepts_more(statement)

lexer_classes()

input(statement)

lex()

lexer_for(statement)

class robot.parsing.lexer.blocklexers.TryLexer(ctx)
Bases: robot.parsing.lexer.blocklexers.NestedBlockLexer

classmethod handles(statement, ctx)

lexer_classes()

accepts_more(statement)

input(statement)

lex()

lexer_for(statement)

robot.parsing.lexer.context module

class robot.parsing.lexer.context.LexingContext(settings=None, lang=None)
Bases: object

settings_class = None

lex_setting(statement)

class robot.parsing.lexer.context.FileContext(settings=None, lang=None)
Bases: robot.parsing.lexer.context.LexingContext

add_language(lang)

keyword_context()

setting_section(statement)

variable_section(statement)

test_case_section(statement)

task_section(statement)

keyword_section(statement)

comment_section(statement)

lex_invalid_section(statement)

lex_setting(statement)

3.1. robot package 323

Robot Framework Documentation, Release 6.0.2

settings_class = None

class robot.parsing.lexer.context.TestCaseFileContext(settings=None, lang=None)
Bases: robot.parsing.lexer.context.FileContext

settings_class
alias of robot.parsing.lexer.settings.TestCaseFileSettings

test_case_context()

test_case_section(statement)

task_section(statement)

add_language(lang)

comment_section(statement)

keyword_context()

keyword_section(statement)

lex_invalid_section(statement)

lex_setting(statement)

setting_section(statement)

variable_section(statement)

class robot.parsing.lexer.context.ResourceFileContext(settings=None, lang=None)
Bases: robot.parsing.lexer.context.FileContext

settings_class
alias of robot.parsing.lexer.settings.ResourceFileSettings

add_language(lang)

comment_section(statement)

keyword_context()

keyword_section(statement)

lex_invalid_section(statement)

lex_setting(statement)

setting_section(statement)

task_section(statement)

test_case_section(statement)

variable_section(statement)

class robot.parsing.lexer.context.InitFileContext(settings=None, lang=None)
Bases: robot.parsing.lexer.context.FileContext

settings_class
alias of robot.parsing.lexer.settings.InitFileSettings

add_language(lang)

comment_section(statement)

keyword_context()

keyword_section(statement)

324 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

lex_invalid_section(statement)

lex_setting(statement)

setting_section(statement)

task_section(statement)

test_case_section(statement)

variable_section(statement)

class robot.parsing.lexer.context.TestCaseContext(settings=None, lang=None)
Bases: robot.parsing.lexer.context.LexingContext

template_set

lex_setting(statement)

settings_class = None

class robot.parsing.lexer.context.KeywordContext(settings=None, lang=None)
Bases: robot.parsing.lexer.context.LexingContext

lex_setting(statement)

settings_class = None

template_set

robot.parsing.lexer.lexer module

robot.parsing.lexer.lexer.get_tokens(source, data_only=False, tokenize_variables=False,
lang=None)

Parses the given source to tokens.

Parameters

• source – The source where to read the data. Can be a path to a source file as a string or as
pathlib.Path object, an already opened file object, or Unicode text containing the date
directly. Source files must be UTF-8 encoded.

• data_only – When False (default), returns all tokens. When set to True, omits sepa-
rators, comments, continuation markers, and other non-data tokens.

• tokenize_variables – When True, possible variables in keyword arguments and
elsewhere are tokenized. See the tokenize_variables() method for details.

• lang – Additional languages to be supported during parsing. Can be a string matching
any of the supported language codes or names, an initialized Language subsclass, a list
containing such strings or instances, or a Languages instance.

Returns a generator that yields Token instances.

robot.parsing.lexer.lexer.get_resource_tokens(source, data_only=False, tok-
enize_variables=False, lang=None)

Parses the given source to resource file tokens.

Same as get_tokens() otherwise, but the source is considered to be a resource file. This affects, for example,
what settings are valid.

robot.parsing.lexer.lexer.get_init_tokens(source, data_only=False, tok-
enize_variables=False, lang=None)

Parses the given source to init file tokens.

3.1. robot package 325

Robot Framework Documentation, Release 6.0.2

Same as get_tokens() otherwise, but the source is considered to be a suite initialization file. This affects,
for example, what settings are valid.

class robot.parsing.lexer.lexer.Lexer(ctx, data_only=False, tokenize_variables=False)
Bases: object

input(source)

get_tokens()

robot.parsing.lexer.settings module

class robot.parsing.lexer.settings.Settings(languages)
Bases: object

names = ()

aliases = {}

multi_use = ('Metadata', 'Library', 'Resource', 'Variables')

single_value = ('Resource', 'Test Timeout', 'Test Template', 'Timeout', 'Template')

name_and_arguments = ('Metadata', 'Suite Setup', 'Suite Teardown', 'Test Setup', 'Test Teardown', 'Test Template', 'Setup', 'Teardown', 'Template', 'Resource', 'Variables')

name_arguments_and_with_name = ('Library',)

lex(statement)

class robot.parsing.lexer.settings.TestCaseFileSettings(languages)
Bases: robot.parsing.lexer.settings.Settings

names = ('Documentation', 'Metadata', 'Suite Setup', 'Suite Teardown', 'Test Setup', 'Test Teardown', 'Test Template', 'Test Timeout', 'Test Tags', 'Default Tags', 'Keyword Tags', 'Library', 'Resource', 'Variables')

aliases = {'Force Tags': 'Test Tags', 'Task Setup': 'Test Setup', 'Task Tags': 'Test Tags', 'Task Teardown': 'Test Teardown', 'Task Template': 'Test Template', 'Task Timeout': 'Test Timeout'}

lex(statement)

multi_use = ('Metadata', 'Library', 'Resource', 'Variables')

name_and_arguments = ('Metadata', 'Suite Setup', 'Suite Teardown', 'Test Setup', 'Test Teardown', 'Test Template', 'Setup', 'Teardown', 'Template', 'Resource', 'Variables')

name_arguments_and_with_name = ('Library',)

single_value = ('Resource', 'Test Timeout', 'Test Template', 'Timeout', 'Template')

class robot.parsing.lexer.settings.InitFileSettings(languages)
Bases: robot.parsing.lexer.settings.Settings

names = ('Documentation', 'Metadata', 'Suite Setup', 'Suite Teardown', 'Test Setup', 'Test Teardown', 'Test Timeout', 'Test Tags', 'Keyword Tags', 'Library', 'Resource', 'Variables')

aliases = {'Force Tags': 'Test Tags', 'Task Setup': 'Test Setup', 'Task Tags': 'Test Tags', 'Task Teardown': 'Test Teardown', 'Task Timeout': 'Test Timeout'}

lex(statement)

multi_use = ('Metadata', 'Library', 'Resource', 'Variables')

name_and_arguments = ('Metadata', 'Suite Setup', 'Suite Teardown', 'Test Setup', 'Test Teardown', 'Test Template', 'Setup', 'Teardown', 'Template', 'Resource', 'Variables')

name_arguments_and_with_name = ('Library',)

single_value = ('Resource', 'Test Timeout', 'Test Template', 'Timeout', 'Template')

class robot.parsing.lexer.settings.ResourceFileSettings(languages)
Bases: robot.parsing.lexer.settings.Settings

names = ('Documentation', 'Keyword Tags', 'Library', 'Resource', 'Variables')

326 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

aliases = {}

lex(statement)

multi_use = ('Metadata', 'Library', 'Resource', 'Variables')

name_and_arguments = ('Metadata', 'Suite Setup', 'Suite Teardown', 'Test Setup', 'Test Teardown', 'Test Template', 'Setup', 'Teardown', 'Template', 'Resource', 'Variables')

name_arguments_and_with_name = ('Library',)

single_value = ('Resource', 'Test Timeout', 'Test Template', 'Timeout', 'Template')

class robot.parsing.lexer.settings.TestCaseSettings(parent, languages)
Bases: robot.parsing.lexer.settings.Settings

names = ('Documentation', 'Tags', 'Setup', 'Teardown', 'Template', 'Timeout')

template_set

aliases = {}

lex(statement)

multi_use = ('Metadata', 'Library', 'Resource', 'Variables')

name_and_arguments = ('Metadata', 'Suite Setup', 'Suite Teardown', 'Test Setup', 'Test Teardown', 'Test Template', 'Setup', 'Teardown', 'Template', 'Resource', 'Variables')

name_arguments_and_with_name = ('Library',)

single_value = ('Resource', 'Test Timeout', 'Test Template', 'Timeout', 'Template')

class robot.parsing.lexer.settings.KeywordSettings(languages)
Bases: robot.parsing.lexer.settings.Settings

names = ('Documentation', 'Arguments', 'Teardown', 'Timeout', 'Tags', 'Return')

aliases = {}

lex(statement)

multi_use = ('Metadata', 'Library', 'Resource', 'Variables')

name_and_arguments = ('Metadata', 'Suite Setup', 'Suite Teardown', 'Test Setup', 'Test Teardown', 'Test Template', 'Setup', 'Teardown', 'Template', 'Resource', 'Variables')

name_arguments_and_with_name = ('Library',)

single_value = ('Resource', 'Test Timeout', 'Test Template', 'Timeout', 'Template')

robot.parsing.lexer.statementlexers module

class robot.parsing.lexer.statementlexers.Lexer(ctx)
Bases: object

Base class for lexers.

classmethod handles(statement, ctx)

accepts_more(statement)

input(statement)

lex()

class robot.parsing.lexer.statementlexers.StatementLexer(ctx)
Bases: robot.parsing.lexer.statementlexers.Lexer

token_type = None

3.1. robot package 327

Robot Framework Documentation, Release 6.0.2

accepts_more(statement)

input(statement)

lex()

classmethod handles(statement, ctx)

class robot.parsing.lexer.statementlexers.SingleType(ctx)
Bases: robot.parsing.lexer.statementlexers.StatementLexer

lex()

accepts_more(statement)

classmethod handles(statement, ctx)

input(statement)

token_type = None

class robot.parsing.lexer.statementlexers.TypeAndArguments(ctx)
Bases: robot.parsing.lexer.statementlexers.StatementLexer

lex()

accepts_more(statement)

classmethod handles(statement, ctx)

input(statement)

token_type = None

class robot.parsing.lexer.statementlexers.SectionHeaderLexer(ctx)
Bases: robot.parsing.lexer.statementlexers.SingleType

classmethod handles(statement, ctx)

accepts_more(statement)

input(statement)

lex()

token_type = None

class robot.parsing.lexer.statementlexers.SettingSectionHeaderLexer(ctx)
Bases: robot.parsing.lexer.statementlexers.SectionHeaderLexer

token_type = 'SETTING HEADER'

accepts_more(statement)

classmethod handles(statement, ctx)

input(statement)

lex()

class robot.parsing.lexer.statementlexers.VariableSectionHeaderLexer(ctx)
Bases: robot.parsing.lexer.statementlexers.SectionHeaderLexer

token_type = 'VARIABLE HEADER'

accepts_more(statement)

classmethod handles(statement, ctx)

input(statement)

328 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

lex()

class robot.parsing.lexer.statementlexers.TestCaseSectionHeaderLexer(ctx)
Bases: robot.parsing.lexer.statementlexers.SectionHeaderLexer

token_type = 'TESTCASE HEADER'

accepts_more(statement)

classmethod handles(statement, ctx)

input(statement)

lex()

class robot.parsing.lexer.statementlexers.TaskSectionHeaderLexer(ctx)
Bases: robot.parsing.lexer.statementlexers.SectionHeaderLexer

token_type = 'TASK HEADER'

accepts_more(statement)

classmethod handles(statement, ctx)

input(statement)

lex()

class robot.parsing.lexer.statementlexers.KeywordSectionHeaderLexer(ctx)
Bases: robot.parsing.lexer.statementlexers.SectionHeaderLexer

token_type = 'KEYWORD HEADER'

accepts_more(statement)

classmethod handles(statement, ctx)

input(statement)

lex()

class robot.parsing.lexer.statementlexers.CommentSectionHeaderLexer(ctx)
Bases: robot.parsing.lexer.statementlexers.SectionHeaderLexer

token_type = 'COMMENT HEADER'

accepts_more(statement)

classmethod handles(statement, ctx)

input(statement)

lex()

class robot.parsing.lexer.statementlexers.ErrorSectionHeaderLexer(ctx)
Bases: robot.parsing.lexer.statementlexers.SectionHeaderLexer

lex()

accepts_more(statement)

classmethod handles(statement, ctx)

input(statement)

token_type = None

class robot.parsing.lexer.statementlexers.CommentLexer(ctx)
Bases: robot.parsing.lexer.statementlexers.SingleType

3.1. robot package 329

Robot Framework Documentation, Release 6.0.2

token_type = 'COMMENT'

accepts_more(statement)

classmethod handles(statement, ctx)

input(statement)

lex()

class robot.parsing.lexer.statementlexers.ImplicitCommentLexer(ctx)
Bases: robot.parsing.lexer.statementlexers.CommentLexer

input(statement)

lex()

accepts_more(statement)

classmethod handles(statement, ctx)

token_type = 'COMMENT'

class robot.parsing.lexer.statementlexers.SettingLexer(ctx)
Bases: robot.parsing.lexer.statementlexers.StatementLexer

lex()

accepts_more(statement)

classmethod handles(statement, ctx)

input(statement)

token_type = None

class robot.parsing.lexer.statementlexers.TestOrKeywordSettingLexer(ctx)
Bases: robot.parsing.lexer.statementlexers.SettingLexer

classmethod handles(statement, ctx)

accepts_more(statement)

input(statement)

lex()

token_type = None

class robot.parsing.lexer.statementlexers.VariableLexer(ctx)
Bases: robot.parsing.lexer.statementlexers.TypeAndArguments

token_type = 'VARIABLE'

accepts_more(statement)

classmethod handles(statement, ctx)

input(statement)

lex()

class robot.parsing.lexer.statementlexers.KeywordCallLexer(ctx)
Bases: robot.parsing.lexer.statementlexers.StatementLexer

lex()

accepts_more(statement)

classmethod handles(statement, ctx)

330 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

input(statement)

token_type = None

class robot.parsing.lexer.statementlexers.ForHeaderLexer(ctx)
Bases: robot.parsing.lexer.statementlexers.StatementLexer

separators = ('IN', 'IN RANGE', 'IN ENUMERATE', 'IN ZIP')

classmethod handles(statement, ctx)

lex()

accepts_more(statement)

input(statement)

token_type = None

class robot.parsing.lexer.statementlexers.IfHeaderLexer(ctx)
Bases: robot.parsing.lexer.statementlexers.TypeAndArguments

token_type = 'IF'

classmethod handles(statement, ctx)

accepts_more(statement)

input(statement)

lex()

class robot.parsing.lexer.statementlexers.InlineIfHeaderLexer(ctx)
Bases: robot.parsing.lexer.statementlexers.StatementLexer

token_type = 'INLINE IF'

classmethod handles(statement, ctx)

lex()

accepts_more(statement)

input(statement)

class robot.parsing.lexer.statementlexers.ElseIfHeaderLexer(ctx)
Bases: robot.parsing.lexer.statementlexers.TypeAndArguments

token_type = 'ELSE IF'

classmethod handles(statement, ctx)

accepts_more(statement)

input(statement)

lex()

class robot.parsing.lexer.statementlexers.ElseHeaderLexer(ctx)
Bases: robot.parsing.lexer.statementlexers.TypeAndArguments

token_type = 'ELSE'

classmethod handles(statement, ctx)

accepts_more(statement)

input(statement)

lex()

3.1. robot package 331

Robot Framework Documentation, Release 6.0.2

class robot.parsing.lexer.statementlexers.TryHeaderLexer(ctx)
Bases: robot.parsing.lexer.statementlexers.TypeAndArguments

token_type = 'TRY'

classmethod handles(statement, ctx)

accepts_more(statement)

input(statement)

lex()

class robot.parsing.lexer.statementlexers.ExceptHeaderLexer(ctx)
Bases: robot.parsing.lexer.statementlexers.StatementLexer

token_type = 'EXCEPT'

classmethod handles(statement, ctx)

lex()

accepts_more(statement)

input(statement)

class robot.parsing.lexer.statementlexers.FinallyHeaderLexer(ctx)
Bases: robot.parsing.lexer.statementlexers.TypeAndArguments

token_type = 'FINALLY'

classmethod handles(statement, ctx)

accepts_more(statement)

input(statement)

lex()

class robot.parsing.lexer.statementlexers.WhileHeaderLexer(ctx)
Bases: robot.parsing.lexer.statementlexers.StatementLexer

token_type = 'WHILE'

classmethod handles(statement, ctx)

lex()

accepts_more(statement)

input(statement)

class robot.parsing.lexer.statementlexers.EndLexer(ctx)
Bases: robot.parsing.lexer.statementlexers.TypeAndArguments

token_type = 'END'

classmethod handles(statement, ctx)

accepts_more(statement)

input(statement)

lex()

class robot.parsing.lexer.statementlexers.ReturnLexer(ctx)
Bases: robot.parsing.lexer.statementlexers.TypeAndArguments

token_type = 'RETURN STATEMENT'

332 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

classmethod handles(statement, ctx)

accepts_more(statement)

input(statement)

lex()

class robot.parsing.lexer.statementlexers.ContinueLexer(ctx)
Bases: robot.parsing.lexer.statementlexers.TypeAndArguments

token_type = 'CONTINUE'

classmethod handles(statement, ctx)

accepts_more(statement)

input(statement)

lex()

class robot.parsing.lexer.statementlexers.BreakLexer(ctx)
Bases: robot.parsing.lexer.statementlexers.TypeAndArguments

token_type = 'BREAK'

classmethod handles(statement, ctx)

accepts_more(statement)

input(statement)

lex()

robot.parsing.lexer.tokenizer module

class robot.parsing.lexer.tokenizer.Tokenizer
Bases: object

tokenize(data, data_only=False)

robot.parsing.lexer.tokens module

class robot.parsing.lexer.tokens.Token(type=None, value=None, lineno=-1, col_offset=-1,
error=None)

Bases: object

Token representing piece of Robot Framework data.

Each token has type, value, line number, column offset and end column offset in type, value, lineno,
col_offset and end_col_offset attributes, respectively. Tokens representing error also have their error
message in error attribute.

Token types are declared as class attributes such as SETTING_HEADER and EOL. Values of these constants
have changed slightly in Robot Framework 4.0 and they may change again in the future. It is thus safer to use
the constants, not their values, when types are needed. For example, use Token(Token.EOL) instead of
Token('EOL') and token.type == Token.EOL instead of token.type == 'EOL'.

If value is not given when Token is initialized and type is IF, ELSE_IF, ELSE, FOR, END, WITH_NAME
or CONTINUATION , the value is automatically set to the correct marker value like 'IF' or 'ELSE IF'. If
type is EOL in this case, the value is set to '\n'.

SETTING_HEADER = 'SETTING HEADER'

3.1. robot package 333

Robot Framework Documentation, Release 6.0.2

VARIABLE_HEADER = 'VARIABLE HEADER'

TESTCASE_HEADER = 'TESTCASE HEADER'

TASK_HEADER = 'TASK HEADER'

KEYWORD_HEADER = 'KEYWORD HEADER'

COMMENT_HEADER = 'COMMENT HEADER'

TESTCASE_NAME = 'TESTCASE NAME'

KEYWORD_NAME = 'KEYWORD NAME'

DOCUMENTATION = 'DOCUMENTATION'

SUITE_SETUP = 'SUITE SETUP'

SUITE_TEARDOWN = 'SUITE TEARDOWN'

METADATA = 'METADATA'

TEST_SETUP = 'TEST SETUP'

TEST_TEARDOWN = 'TEST TEARDOWN'

TEST_TEMPLATE = 'TEST TEMPLATE'

TEST_TIMEOUT = 'TEST TIMEOUT'

FORCE_TAGS = 'FORCE TAGS'

DEFAULT_TAGS = 'DEFAULT TAGS'

KEYWORD_TAGS = 'KEYWORD TAGS'

LIBRARY = 'LIBRARY'

RESOURCE = 'RESOURCE'

VARIABLES = 'VARIABLES'

SETUP = 'SETUP'

TEARDOWN = 'TEARDOWN'

TEMPLATE = 'TEMPLATE'

TIMEOUT = 'TIMEOUT'

TAGS = 'TAGS'

ARGUMENTS = 'ARGUMENTS'

RETURN = 'RETURN'

RETURN_SETTING = 'RETURN'

NAME = 'NAME'

VARIABLE = 'VARIABLE'

ARGUMENT = 'ARGUMENT'

ASSIGN = 'ASSIGN'

KEYWORD = 'KEYWORD'

WITH_NAME = 'WITH NAME'

FOR = 'FOR'

334 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

FOR_SEPARATOR = 'FOR SEPARATOR'

END = 'END'

IF = 'IF'

INLINE_IF = 'INLINE IF'

ELSE_IF = 'ELSE IF'

ELSE = 'ELSE'

TRY = 'TRY'

EXCEPT = 'EXCEPT'

FINALLY = 'FINALLY'

AS = 'AS'

WHILE = 'WHILE'

RETURN_STATEMENT = 'RETURN STATEMENT'

CONTINUE = 'CONTINUE'

BREAK = 'BREAK'

OPTION = 'OPTION'

SEPARATOR = 'SEPARATOR'

COMMENT = 'COMMENT'

CONTINUATION = 'CONTINUATION'

CONFIG = 'CONFIG'

EOL = 'EOL'

EOS = 'EOS'

ERROR = 'ERROR'

FATAL_ERROR = 'FATAL ERROR'

NON_DATA_TOKENS = frozenset({'CONTINUATION', 'EOL', 'EOS', 'COMMENT', 'SEPARATOR'})

SETTING_TOKENS = frozenset({'RETURN', 'DOCUMENTATION', 'TEARDOWN', 'TEMPLATE', 'TEST TEMPLATE', 'TIMEOUT', 'SUITE TEARDOWN', 'SETUP', 'TAGS', 'FORCE TAGS', 'RESOURCE', 'ARGUMENTS', 'VARIABLES', 'TEST TEARDOWN', 'KEYWORD TAGS', 'SUITE SETUP', 'TEST TIMEOUT', 'TEST SETUP', 'DEFAULT TAGS', 'LIBRARY', 'METADATA'})

HEADER_TOKENS = frozenset({'TESTCASE HEADER', 'COMMENT HEADER', 'VARIABLE HEADER', 'SETTING HEADER', 'TASK HEADER', 'KEYWORD HEADER'})

ALLOW_VARIABLES = frozenset({'TESTCASE NAME', 'KEYWORD NAME', 'NAME', 'ARGUMENT'})

type

value

lineno

col_offset

error

end_col_offset

set_error(error, fatal=False)

3.1. robot package 335

Robot Framework Documentation, Release 6.0.2

tokenize_variables()
Tokenizes possible variables in token value.

Yields the token itself if the token does not allow variables (see Token.ALLOW_VARIABLES) or its
value does not contain variables. Otherwise yields variable tokens as well as tokens before, after, or
between variables so that they have the same type as the original token.

class robot.parsing.lexer.tokens.EOS(lineno=-1, col_offset=-1)
Bases: robot.parsing.lexer.tokens.Token

Token representing end of a statement.

classmethod from_token(token, before=False)

ALLOW_VARIABLES = frozenset({'TESTCASE NAME', 'KEYWORD NAME', 'NAME', 'ARGUMENT'})

ARGUMENT = 'ARGUMENT'

ARGUMENTS = 'ARGUMENTS'

AS = 'AS'

ASSIGN = 'ASSIGN'

BREAK = 'BREAK'

COMMENT = 'COMMENT'

COMMENT_HEADER = 'COMMENT HEADER'

CONFIG = 'CONFIG'

CONTINUATION = 'CONTINUATION'

CONTINUE = 'CONTINUE'

DEFAULT_TAGS = 'DEFAULT TAGS'

DOCUMENTATION = 'DOCUMENTATION'

ELSE = 'ELSE'

ELSE_IF = 'ELSE IF'

END = 'END'

EOL = 'EOL'

EOS = 'EOS'

ERROR = 'ERROR'

EXCEPT = 'EXCEPT'

FATAL_ERROR = 'FATAL ERROR'

FINALLY = 'FINALLY'

FOR = 'FOR'

FORCE_TAGS = 'FORCE TAGS'

FOR_SEPARATOR = 'FOR SEPARATOR'

HEADER_TOKENS = frozenset({'TESTCASE HEADER', 'COMMENT HEADER', 'VARIABLE HEADER', 'SETTING HEADER', 'TASK HEADER', 'KEYWORD HEADER'})

IF = 'IF'

INLINE_IF = 'INLINE IF'

336 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

KEYWORD = 'KEYWORD'

KEYWORD_HEADER = 'KEYWORD HEADER'

KEYWORD_NAME = 'KEYWORD NAME'

KEYWORD_TAGS = 'KEYWORD TAGS'

LIBRARY = 'LIBRARY'

METADATA = 'METADATA'

NAME = 'NAME'

NON_DATA_TOKENS = frozenset({'CONTINUATION', 'EOL', 'EOS', 'COMMENT', 'SEPARATOR'})

OPTION = 'OPTION'

RESOURCE = 'RESOURCE'

RETURN = 'RETURN'

RETURN_SETTING = 'RETURN'

RETURN_STATEMENT = 'RETURN STATEMENT'

SEPARATOR = 'SEPARATOR'

SETTING_HEADER = 'SETTING HEADER'

SETTING_TOKENS = frozenset({'RETURN', 'DOCUMENTATION', 'TEARDOWN', 'TEMPLATE', 'TEST TEMPLATE', 'TIMEOUT', 'SUITE TEARDOWN', 'SETUP', 'TAGS', 'FORCE TAGS', 'RESOURCE', 'ARGUMENTS', 'VARIABLES', 'TEST TEARDOWN', 'KEYWORD TAGS', 'SUITE SETUP', 'TEST TIMEOUT', 'TEST SETUP', 'DEFAULT TAGS', 'LIBRARY', 'METADATA'})

SETUP = 'SETUP'

SUITE_SETUP = 'SUITE SETUP'

SUITE_TEARDOWN = 'SUITE TEARDOWN'

TAGS = 'TAGS'

TASK_HEADER = 'TASK HEADER'

TEARDOWN = 'TEARDOWN'

TEMPLATE = 'TEMPLATE'

TESTCASE_HEADER = 'TESTCASE HEADER'

TESTCASE_NAME = 'TESTCASE NAME'

TEST_SETUP = 'TEST SETUP'

TEST_TEARDOWN = 'TEST TEARDOWN'

TEST_TEMPLATE = 'TEST TEMPLATE'

TEST_TIMEOUT = 'TEST TIMEOUT'

TIMEOUT = 'TIMEOUT'

TRY = 'TRY'

VARIABLE = 'VARIABLE'

VARIABLES = 'VARIABLES'

VARIABLE_HEADER = 'VARIABLE HEADER'

WHILE = 'WHILE'

WITH_NAME = 'WITH NAME'

3.1. robot package 337

Robot Framework Documentation, Release 6.0.2

col_offset

end_col_offset

error

lineno

set_error(error, fatal=False)

tokenize_variables()
Tokenizes possible variables in token value.

Yields the token itself if the token does not allow variables (see Token.ALLOW_VARIABLES) or its
value does not contain variables. Otherwise yields variable tokens as well as tokens before, after, or
between variables so that they have the same type as the original token.

type

value

class robot.parsing.lexer.tokens.END(lineno=-1, col_offset=-1, virtual=False)
Bases: robot.parsing.lexer.tokens.Token

Token representing END token used to signify block ending.

Virtual END tokens have ‘’ as their value, with “real” END tokens the value is ‘END’.

classmethod from_token(token, virtual=False)

ALLOW_VARIABLES = frozenset({'TESTCASE NAME', 'KEYWORD NAME', 'NAME', 'ARGUMENT'})

ARGUMENT = 'ARGUMENT'

ARGUMENTS = 'ARGUMENTS'

AS = 'AS'

ASSIGN = 'ASSIGN'

BREAK = 'BREAK'

COMMENT = 'COMMENT'

COMMENT_HEADER = 'COMMENT HEADER'

CONFIG = 'CONFIG'

CONTINUATION = 'CONTINUATION'

CONTINUE = 'CONTINUE'

DEFAULT_TAGS = 'DEFAULT TAGS'

DOCUMENTATION = 'DOCUMENTATION'

ELSE = 'ELSE'

ELSE_IF = 'ELSE IF'

END = 'END'

EOL = 'EOL'

EOS = 'EOS'

ERROR = 'ERROR'

EXCEPT = 'EXCEPT'

338 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

FATAL_ERROR = 'FATAL ERROR'

FINALLY = 'FINALLY'

FOR = 'FOR'

FORCE_TAGS = 'FORCE TAGS'

FOR_SEPARATOR = 'FOR SEPARATOR'

HEADER_TOKENS = frozenset({'TESTCASE HEADER', 'COMMENT HEADER', 'VARIABLE HEADER', 'SETTING HEADER', 'TASK HEADER', 'KEYWORD HEADER'})

IF = 'IF'

INLINE_IF = 'INLINE IF'

KEYWORD = 'KEYWORD'

KEYWORD_HEADER = 'KEYWORD HEADER'

KEYWORD_NAME = 'KEYWORD NAME'

KEYWORD_TAGS = 'KEYWORD TAGS'

LIBRARY = 'LIBRARY'

METADATA = 'METADATA'

NAME = 'NAME'

NON_DATA_TOKENS = frozenset({'CONTINUATION', 'EOL', 'EOS', 'COMMENT', 'SEPARATOR'})

OPTION = 'OPTION'

RESOURCE = 'RESOURCE'

RETURN = 'RETURN'

RETURN_SETTING = 'RETURN'

RETURN_STATEMENT = 'RETURN STATEMENT'

SEPARATOR = 'SEPARATOR'

SETTING_HEADER = 'SETTING HEADER'

SETTING_TOKENS = frozenset({'RETURN', 'DOCUMENTATION', 'TEARDOWN', 'TEMPLATE', 'TEST TEMPLATE', 'TIMEOUT', 'SUITE TEARDOWN', 'SETUP', 'TAGS', 'FORCE TAGS', 'RESOURCE', 'ARGUMENTS', 'VARIABLES', 'TEST TEARDOWN', 'KEYWORD TAGS', 'SUITE SETUP', 'TEST TIMEOUT', 'TEST SETUP', 'DEFAULT TAGS', 'LIBRARY', 'METADATA'})

SETUP = 'SETUP'

SUITE_SETUP = 'SUITE SETUP'

SUITE_TEARDOWN = 'SUITE TEARDOWN'

TAGS = 'TAGS'

TASK_HEADER = 'TASK HEADER'

TEARDOWN = 'TEARDOWN'

TEMPLATE = 'TEMPLATE'

TESTCASE_HEADER = 'TESTCASE HEADER'

TESTCASE_NAME = 'TESTCASE NAME'

TEST_SETUP = 'TEST SETUP'

TEST_TEARDOWN = 'TEST TEARDOWN'

TEST_TEMPLATE = 'TEST TEMPLATE'

3.1. robot package 339

Robot Framework Documentation, Release 6.0.2

TEST_TIMEOUT = 'TEST TIMEOUT'

TIMEOUT = 'TIMEOUT'

TRY = 'TRY'

VARIABLE = 'VARIABLE'

VARIABLES = 'VARIABLES'

VARIABLE_HEADER = 'VARIABLE HEADER'

WHILE = 'WHILE'

WITH_NAME = 'WITH NAME'

col_offset

end_col_offset

error

lineno

set_error(error, fatal=False)

tokenize_variables()
Tokenizes possible variables in token value.

Yields the token itself if the token does not allow variables (see Token.ALLOW_VARIABLES) or its
value does not contain variables. Otherwise yields variable tokens as well as tokens before, after, or
between variables so that they have the same type as the original token.

type

value

robot.parsing.model package

Submodules

robot.parsing.model.blocks module

class robot.parsing.model.blocks.Block
Bases: _ast.AST

errors = ()

lineno

col_offset

end_lineno

end_col_offset

validate_model()

validate(context)

class robot.parsing.model.blocks.HeaderAndBody(header, body=None, errors=())
Bases: robot.parsing.model.blocks.Block

errors = ()

340 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

col_offset

end_col_offset

end_lineno

lineno

validate(context)

validate_model()

class robot.parsing.model.blocks.File(sections=None, source=None, languages=())
Bases: robot.parsing.model.blocks.Block

save(output=None)
Save model to the given output or to the original source file.

The output can be a path to a file or an already opened file object. If output is not given, the original
source file will be overwritten.

col_offset

end_col_offset

end_lineno

errors = ()

lineno

validate(context)

validate_model()

class robot.parsing.model.blocks.Section(header=None, body=None)
Bases: robot.parsing.model.blocks.Block

col_offset

end_col_offset

end_lineno

errors = ()

lineno

validate(context)

validate_model()

class robot.parsing.model.blocks.SettingSection(header=None, body=None)
Bases: robot.parsing.model.blocks.Section

col_offset

end_col_offset

end_lineno

errors = ()

lineno

validate(context)

validate_model()

3.1. robot package 341

Robot Framework Documentation, Release 6.0.2

class robot.parsing.model.blocks.VariableSection(header=None, body=None)
Bases: robot.parsing.model.blocks.Section

col_offset

end_col_offset

end_lineno

errors = ()

lineno

validate(context)

validate_model()

class robot.parsing.model.blocks.TestCaseSection(header=None, body=None)
Bases: robot.parsing.model.blocks.Section

tasks

col_offset

end_col_offset

end_lineno

errors = ()

lineno

validate(context)

validate_model()

class robot.parsing.model.blocks.KeywordSection(header=None, body=None)
Bases: robot.parsing.model.blocks.Section

col_offset

end_col_offset

end_lineno

errors = ()

lineno

validate(context)

validate_model()

class robot.parsing.model.blocks.CommentSection(header=None, body=None)
Bases: robot.parsing.model.blocks.Section

col_offset

end_col_offset

end_lineno

errors = ()

lineno

validate(context)

validate_model()

342 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

class robot.parsing.model.blocks.TestCase(header, body=None)
Bases: robot.parsing.model.blocks.Block

name

col_offset

end_col_offset

end_lineno

errors = ()

lineno

validate(context)

validate_model()

class robot.parsing.model.blocks.Keyword(header, body=None)
Bases: robot.parsing.model.blocks.Block

name

col_offset

end_col_offset

end_lineno

errors = ()

lineno

validate(context)

validate_model()

class robot.parsing.model.blocks.If(header, body=None, orelse=None, end=None, er-
rors=())

Bases: robot.parsing.model.blocks.Block

Represents IF structures in the model.

Used with IF, Inline IF, ELSE IF and ELSE nodes. The type attribute specifies the type.

errors = ()

type

condition

assign

validate(context)

col_offset

end_col_offset

end_lineno

lineno

validate_model()

class robot.parsing.model.blocks.For(header, body=None, end=None, errors=())
Bases: robot.parsing.model.blocks.Block

errors = ()

3.1. robot package 343

Robot Framework Documentation, Release 6.0.2

variables

values

flavor

validate(context)

col_offset

end_col_offset

end_lineno

lineno

validate_model()

class robot.parsing.model.blocks.Try(header, body=None, next=None, end=None, er-
rors=())

Bases: robot.parsing.model.blocks.Block

errors = ()

type

patterns

pattern_type

variable

validate(context)

col_offset

end_col_offset

end_lineno

lineno

validate_model()

class robot.parsing.model.blocks.While(header, body=None, end=None, errors=())
Bases: robot.parsing.model.blocks.Block

errors = ()

condition

limit

validate(context)

col_offset

end_col_offset

end_lineno

lineno

validate_model()

class robot.parsing.model.blocks.ModelWriter(output)
Bases: robot.parsing.model.visitor.ModelVisitor

write(model)

visit_Statement(statement)

344 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

generic_visit(node)
Called if no explicit visitor function exists for a node.

visit(node)
Visit a node.

class robot.parsing.model.blocks.ModelValidator
Bases: robot.parsing.model.visitor.ModelVisitor

visit_Block(node)

visit_Try(node)

visit_Statement(node)

generic_visit(node)
Called if no explicit visitor function exists for a node.

visit(node)
Visit a node.

class robot.parsing.model.blocks.ValidationContext
Bases: object

start_block(node)

end_block()

in_keyword

in_for

in_while

class robot.parsing.model.blocks.FirstStatementFinder
Bases: robot.parsing.model.visitor.ModelVisitor

classmethod find_from(model)

visit_Statement(statement)

generic_visit(node)
Called if no explicit visitor function exists for a node.

visit(node)
Visit a node.

class robot.parsing.model.blocks.LastStatementFinder
Bases: robot.parsing.model.visitor.ModelVisitor

classmethod find_from(model)

generic_visit(node)
Called if no explicit visitor function exists for a node.

visit(node)
Visit a node.

visit_Statement(statement)

robot.parsing.model.statements module

class robot.parsing.model.statements.Statement(tokens, errors=())
Bases: _ast.AST

3.1. robot package 345

Robot Framework Documentation, Release 6.0.2

type = None

handles_types = ()

lineno

col_offset

end_lineno

end_col_offset

classmethod register(subcls)

classmethod from_tokens(tokens)

classmethod from_params(*args, **kwargs)
Create statement from passed parameters.

Required and optional arguments should match class properties. Values are used to create matching tokens.

There is one notable difference for Documentation statement where settings_header flag is used to
determine if statement belongs to settings header or test/keyword.

Most implementations support following general properties: - separator whitespace inserted between
each token. Default is four spaces. - indent whitespace inserted before first token. Default is four
spaces. - eol end of line sign. Default is '\n'.

data_tokens

get_token(*types)
Return a token with the given type.

If there are no matches, return None. If there are multiple matches, return the first match.

get_tokens(*types)
Return tokens having any of the given types.

get_value(type, default=None)
Return value of a token with the given type.

If there are no matches, return default. If there are multiple matches, return the value of the first match.

get_values(*types)
Return values of tokens having any of the given types.

lines

validate(context)

class robot.parsing.model.statements.DocumentationOrMetadata(tokens, errors=())
Bases: robot.parsing.model.statements.Statement

col_offset

data_tokens

end_col_offset

end_lineno

classmethod from_params(*args, **kwargs)
Create statement from passed parameters.

Required and optional arguments should match class properties. Values are used to create matching tokens.

There is one notable difference for Documentation statement where settings_header flag is used to
determine if statement belongs to settings header or test/keyword.

346 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

Most implementations support following general properties: - separator whitespace inserted between
each token. Default is four spaces. - indent whitespace inserted before first token. Default is four
spaces. - eol end of line sign. Default is '\n'.

classmethod from_tokens(tokens)

get_token(*types)
Return a token with the given type.

If there are no matches, return None. If there are multiple matches, return the first match.

get_tokens(*types)
Return tokens having any of the given types.

get_value(type, default=None)
Return value of a token with the given type.

If there are no matches, return default. If there are multiple matches, return the value of the first match.

get_values(*types)
Return values of tokens having any of the given types.

handles_types = ()

lineno

lines

classmethod register(subcls)

type = None

validate(context)

class robot.parsing.model.statements.SingleValue(tokens, errors=())
Bases: robot.parsing.model.statements.Statement

value

col_offset

data_tokens

end_col_offset

end_lineno

classmethod from_params(*args, **kwargs)
Create statement from passed parameters.

Required and optional arguments should match class properties. Values are used to create matching tokens.

There is one notable difference for Documentation statement where settings_header flag is used to
determine if statement belongs to settings header or test/keyword.

Most implementations support following general properties: - separator whitespace inserted between
each token. Default is four spaces. - indent whitespace inserted before first token. Default is four
spaces. - eol end of line sign. Default is '\n'.

classmethod from_tokens(tokens)

get_token(*types)
Return a token with the given type.

If there are no matches, return None. If there are multiple matches, return the first match.

3.1. robot package 347

Robot Framework Documentation, Release 6.0.2

get_tokens(*types)
Return tokens having any of the given types.

get_value(type, default=None)
Return value of a token with the given type.

If there are no matches, return default. If there are multiple matches, return the value of the first match.

get_values(*types)
Return values of tokens having any of the given types.

handles_types = ()

lineno

lines

classmethod register(subcls)

type = None

validate(context)

class robot.parsing.model.statements.MultiValue(tokens, errors=())
Bases: robot.parsing.model.statements.Statement

values

col_offset

data_tokens

end_col_offset

end_lineno

classmethod from_params(*args, **kwargs)
Create statement from passed parameters.

Required and optional arguments should match class properties. Values are used to create matching tokens.

There is one notable difference for Documentation statement where settings_header flag is used to
determine if statement belongs to settings header or test/keyword.

Most implementations support following general properties: - separator whitespace inserted between
each token. Default is four spaces. - indent whitespace inserted before first token. Default is four
spaces. - eol end of line sign. Default is '\n'.

classmethod from_tokens(tokens)

get_token(*types)
Return a token with the given type.

If there are no matches, return None. If there are multiple matches, return the first match.

get_tokens(*types)
Return tokens having any of the given types.

get_value(type, default=None)
Return value of a token with the given type.

If there are no matches, return default. If there are multiple matches, return the value of the first match.

get_values(*types)
Return values of tokens having any of the given types.

handles_types = ()

348 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

lineno

lines

classmethod register(subcls)

type = None

validate(context)

class robot.parsing.model.statements.Fixture(tokens, errors=())
Bases: robot.parsing.model.statements.Statement

name

args

col_offset

data_tokens

end_col_offset

end_lineno

classmethod from_params(*args, **kwargs)
Create statement from passed parameters.

Required and optional arguments should match class properties. Values are used to create matching tokens.

There is one notable difference for Documentation statement where settings_header flag is used to
determine if statement belongs to settings header or test/keyword.

Most implementations support following general properties: - separator whitespace inserted between
each token. Default is four spaces. - indent whitespace inserted before first token. Default is four
spaces. - eol end of line sign. Default is '\n'.

classmethod from_tokens(tokens)

get_token(*types)
Return a token with the given type.

If there are no matches, return None. If there are multiple matches, return the first match.

get_tokens(*types)
Return tokens having any of the given types.

get_value(type, default=None)
Return value of a token with the given type.

If there are no matches, return default. If there are multiple matches, return the value of the first match.

get_values(*types)
Return values of tokens having any of the given types.

handles_types = ()

lineno

lines

classmethod register(subcls)

type = None

validate(context)

3.1. robot package 349

Robot Framework Documentation, Release 6.0.2

class robot.parsing.model.statements.SectionHeader(tokens, errors=())
Bases: robot.parsing.model.statements.Statement

handles_types = ('SETTING HEADER', 'VARIABLE HEADER', 'TESTCASE HEADER', 'TASK HEADER', 'KEYWORD HEADER', 'COMMENT HEADER')

classmethod from_params(type, name=None, eol=’\n’)
Create statement from passed parameters.

Required and optional arguments should match class properties. Values are used to create matching tokens.

There is one notable difference for Documentation statement where settings_header flag is used to
determine if statement belongs to settings header or test/keyword.

Most implementations support following general properties: - separator whitespace inserted between
each token. Default is four spaces. - indent whitespace inserted before first token. Default is four
spaces. - eol end of line sign. Default is '\n'.

type

name

col_offset

data_tokens

end_col_offset

end_lineno

classmethod from_tokens(tokens)

get_token(*types)
Return a token with the given type.

If there are no matches, return None. If there are multiple matches, return the first match.

get_tokens(*types)
Return tokens having any of the given types.

get_value(type, default=None)
Return value of a token with the given type.

If there are no matches, return default. If there are multiple matches, return the value of the first match.

get_values(*types)
Return values of tokens having any of the given types.

lineno

lines

classmethod register(subcls)

validate(context)

class robot.parsing.model.statements.LibraryImport(tokens, errors=())
Bases: robot.parsing.model.statements.Statement

type = 'LIBRARY'

classmethod from_params(name, args=(), alias=None, separator=’ ’, eol=’\n’)
Create statement from passed parameters.

Required and optional arguments should match class properties. Values are used to create matching tokens.

There is one notable difference for Documentation statement where settings_header flag is used to
determine if statement belongs to settings header or test/keyword.

350 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

Most implementations support following general properties: - separator whitespace inserted between
each token. Default is four spaces. - indent whitespace inserted before first token. Default is four
spaces. - eol end of line sign. Default is '\n'.

name

args

alias

col_offset

data_tokens

end_col_offset

end_lineno

classmethod from_tokens(tokens)

get_token(*types)
Return a token with the given type.

If there are no matches, return None. If there are multiple matches, return the first match.

get_tokens(*types)
Return tokens having any of the given types.

get_value(type, default=None)
Return value of a token with the given type.

If there are no matches, return default. If there are multiple matches, return the value of the first match.

get_values(*types)
Return values of tokens having any of the given types.

handles_types = ()

lineno

lines

classmethod register(subcls)

validate(context)

class robot.parsing.model.statements.ResourceImport(tokens, errors=())
Bases: robot.parsing.model.statements.Statement

type = 'RESOURCE'

classmethod from_params(name, separator=’ ’, eol=’\n’)
Create statement from passed parameters.

Required and optional arguments should match class properties. Values are used to create matching tokens.

There is one notable difference for Documentation statement where settings_header flag is used to
determine if statement belongs to settings header or test/keyword.

Most implementations support following general properties: - separator whitespace inserted between
each token. Default is four spaces. - indent whitespace inserted before first token. Default is four
spaces. - eol end of line sign. Default is '\n'.

name

col_offset

data_tokens

3.1. robot package 351

Robot Framework Documentation, Release 6.0.2

end_col_offset

end_lineno

classmethod from_tokens(tokens)

get_token(*types)
Return a token with the given type.

If there are no matches, return None. If there are multiple matches, return the first match.

get_tokens(*types)
Return tokens having any of the given types.

get_value(type, default=None)
Return value of a token with the given type.

If there are no matches, return default. If there are multiple matches, return the value of the first match.

get_values(*types)
Return values of tokens having any of the given types.

handles_types = ()

lineno

lines

classmethod register(subcls)

validate(context)

class robot.parsing.model.statements.VariablesImport(tokens, errors=())
Bases: robot.parsing.model.statements.Statement

type = 'VARIABLES'

classmethod from_params(name, args=(), separator=’ ’, eol=’\n’)
Create statement from passed parameters.

Required and optional arguments should match class properties. Values are used to create matching tokens.

There is one notable difference for Documentation statement where settings_header flag is used to
determine if statement belongs to settings header or test/keyword.

Most implementations support following general properties: - separator whitespace inserted between
each token. Default is four spaces. - indent whitespace inserted before first token. Default is four
spaces. - eol end of line sign. Default is '\n'.

name

args

col_offset

data_tokens

end_col_offset

end_lineno

classmethod from_tokens(tokens)

get_token(*types)
Return a token with the given type.

If there are no matches, return None. If there are multiple matches, return the first match.

352 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

get_tokens(*types)
Return tokens having any of the given types.

get_value(type, default=None)
Return value of a token with the given type.

If there are no matches, return default. If there are multiple matches, return the value of the first match.

get_values(*types)
Return values of tokens having any of the given types.

handles_types = ()

lineno

lines

classmethod register(subcls)

validate(context)

class robot.parsing.model.statements.Documentation(tokens, errors=())
Bases: robot.parsing.model.statements.DocumentationOrMetadata

type = 'DOCUMENTATION'

classmethod from_params(value, indent=’ ’, separator=’ ’, eol=’\n’, settings_section=True)
Create statement from passed parameters.

Required and optional arguments should match class properties. Values are used to create matching tokens.

There is one notable difference for Documentation statement where settings_header flag is used to
determine if statement belongs to settings header or test/keyword.

Most implementations support following general properties: - separator whitespace inserted between
each token. Default is four spaces. - indent whitespace inserted before first token. Default is four
spaces. - eol end of line sign. Default is '\n'.

value

col_offset

data_tokens

end_col_offset

end_lineno

classmethod from_tokens(tokens)

get_token(*types)
Return a token with the given type.

If there are no matches, return None. If there are multiple matches, return the first match.

get_tokens(*types)
Return tokens having any of the given types.

get_value(type, default=None)
Return value of a token with the given type.

If there are no matches, return default. If there are multiple matches, return the value of the first match.

get_values(*types)
Return values of tokens having any of the given types.

handles_types = ()

3.1. robot package 353

Robot Framework Documentation, Release 6.0.2

lineno

lines

classmethod register(subcls)

validate(context)

class robot.parsing.model.statements.Metadata(tokens, errors=())
Bases: robot.parsing.model.statements.DocumentationOrMetadata

type = 'METADATA'

classmethod from_params(name, value, separator=’ ’, eol=’\n’)
Create statement from passed parameters.

Required and optional arguments should match class properties. Values are used to create matching tokens.

There is one notable difference for Documentation statement where settings_header flag is used to
determine if statement belongs to settings header or test/keyword.

Most implementations support following general properties: - separator whitespace inserted between
each token. Default is four spaces. - indent whitespace inserted before first token. Default is four
spaces. - eol end of line sign. Default is '\n'.

name

value

col_offset

data_tokens

end_col_offset

end_lineno

classmethod from_tokens(tokens)

get_token(*types)
Return a token with the given type.

If there are no matches, return None. If there are multiple matches, return the first match.

get_tokens(*types)
Return tokens having any of the given types.

get_value(type, default=None)
Return value of a token with the given type.

If there are no matches, return default. If there are multiple matches, return the value of the first match.

get_values(*types)
Return values of tokens having any of the given types.

handles_types = ()

lineno

lines

classmethod register(subcls)

validate(context)

class robot.parsing.model.statements.ForceTags(tokens, errors=())
Bases: robot.parsing.model.statements.MultiValue

354 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

type = 'FORCE TAGS'

classmethod from_params(values, separator=’ ’, eol=’\n’)
Create statement from passed parameters.

Required and optional arguments should match class properties. Values are used to create matching tokens.

There is one notable difference for Documentation statement where settings_header flag is used to
determine if statement belongs to settings header or test/keyword.

Most implementations support following general properties: - separator whitespace inserted between
each token. Default is four spaces. - indent whitespace inserted before first token. Default is four
spaces. - eol end of line sign. Default is '\n'.

col_offset

data_tokens

end_col_offset

end_lineno

classmethod from_tokens(tokens)

get_token(*types)
Return a token with the given type.

If there are no matches, return None. If there are multiple matches, return the first match.

get_tokens(*types)
Return tokens having any of the given types.

get_value(type, default=None)
Return value of a token with the given type.

If there are no matches, return default. If there are multiple matches, return the value of the first match.

get_values(*types)
Return values of tokens having any of the given types.

handles_types = ()

lineno

lines

classmethod register(subcls)

validate(context)

values

class robot.parsing.model.statements.DefaultTags(tokens, errors=())
Bases: robot.parsing.model.statements.MultiValue

type = 'DEFAULT TAGS'

classmethod from_params(values, separator=’ ’, eol=’\n’)
Create statement from passed parameters.

Required and optional arguments should match class properties. Values are used to create matching tokens.

There is one notable difference for Documentation statement where settings_header flag is used to
determine if statement belongs to settings header or test/keyword.

3.1. robot package 355

Robot Framework Documentation, Release 6.0.2

Most implementations support following general properties: - separator whitespace inserted between
each token. Default is four spaces. - indent whitespace inserted before first token. Default is four
spaces. - eol end of line sign. Default is '\n'.

col_offset

data_tokens

end_col_offset

end_lineno

classmethod from_tokens(tokens)

get_token(*types)
Return a token with the given type.

If there are no matches, return None. If there are multiple matches, return the first match.

get_tokens(*types)
Return tokens having any of the given types.

get_value(type, default=None)
Return value of a token with the given type.

If there are no matches, return default. If there are multiple matches, return the value of the first match.

get_values(*types)
Return values of tokens having any of the given types.

handles_types = ()

lineno

lines

classmethod register(subcls)

validate(context)

values

class robot.parsing.model.statements.KeywordTags(tokens, errors=())
Bases: robot.parsing.model.statements.MultiValue

type = 'KEYWORD TAGS'

classmethod from_params(values, separator=’ ’, eol=’\n’)
Create statement from passed parameters.

Required and optional arguments should match class properties. Values are used to create matching tokens.

There is one notable difference for Documentation statement where settings_header flag is used to
determine if statement belongs to settings header or test/keyword.

Most implementations support following general properties: - separator whitespace inserted between
each token. Default is four spaces. - indent whitespace inserted before first token. Default is four
spaces. - eol end of line sign. Default is '\n'.

col_offset

data_tokens

end_col_offset

end_lineno

classmethod from_tokens(tokens)

356 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

get_token(*types)
Return a token with the given type.

If there are no matches, return None. If there are multiple matches, return the first match.

get_tokens(*types)
Return tokens having any of the given types.

get_value(type, default=None)
Return value of a token with the given type.

If there are no matches, return default. If there are multiple matches, return the value of the first match.

get_values(*types)
Return values of tokens having any of the given types.

handles_types = ()

lineno

lines

classmethod register(subcls)

validate(context)

values

class robot.parsing.model.statements.SuiteSetup(tokens, errors=())
Bases: robot.parsing.model.statements.Fixture

type = 'SUITE SETUP'

classmethod from_params(name, args=(), separator=’ ’, eol=’\n’)
Create statement from passed parameters.

Required and optional arguments should match class properties. Values are used to create matching tokens.

There is one notable difference for Documentation statement where settings_header flag is used to
determine if statement belongs to settings header or test/keyword.

Most implementations support following general properties: - separator whitespace inserted between
each token. Default is four spaces. - indent whitespace inserted before first token. Default is four
spaces. - eol end of line sign. Default is '\n'.

args

col_offset

data_tokens

end_col_offset

end_lineno

classmethod from_tokens(tokens)

get_token(*types)
Return a token with the given type.

If there are no matches, return None. If there are multiple matches, return the first match.

get_tokens(*types)
Return tokens having any of the given types.

3.1. robot package 357

Robot Framework Documentation, Release 6.0.2

get_value(type, default=None)
Return value of a token with the given type.

If there are no matches, return default. If there are multiple matches, return the value of the first match.

get_values(*types)
Return values of tokens having any of the given types.

handles_types = ()

lineno

lines

name

classmethod register(subcls)

validate(context)

class robot.parsing.model.statements.SuiteTeardown(tokens, errors=())
Bases: robot.parsing.model.statements.Fixture

type = 'SUITE TEARDOWN'

classmethod from_params(name, args=(), separator=’ ’, eol=’\n’)
Create statement from passed parameters.

Required and optional arguments should match class properties. Values are used to create matching tokens.

There is one notable difference for Documentation statement where settings_header flag is used to
determine if statement belongs to settings header or test/keyword.

Most implementations support following general properties: - separator whitespace inserted between
each token. Default is four spaces. - indent whitespace inserted before first token. Default is four
spaces. - eol end of line sign. Default is '\n'.

args

col_offset

data_tokens

end_col_offset

end_lineno

classmethod from_tokens(tokens)

get_token(*types)
Return a token with the given type.

If there are no matches, return None. If there are multiple matches, return the first match.

get_tokens(*types)
Return tokens having any of the given types.

get_value(type, default=None)
Return value of a token with the given type.

If there are no matches, return default. If there are multiple matches, return the value of the first match.

get_values(*types)
Return values of tokens having any of the given types.

handles_types = ()

lineno

358 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

lines

name

classmethod register(subcls)

validate(context)

class robot.parsing.model.statements.TestSetup(tokens, errors=())
Bases: robot.parsing.model.statements.Fixture

type = 'TEST SETUP'

classmethod from_params(name, args=(), separator=’ ’, eol=’\n’)
Create statement from passed parameters.

Required and optional arguments should match class properties. Values are used to create matching tokens.

There is one notable difference for Documentation statement where settings_header flag is used to
determine if statement belongs to settings header or test/keyword.

Most implementations support following general properties: - separator whitespace inserted between
each token. Default is four spaces. - indent whitespace inserted before first token. Default is four
spaces. - eol end of line sign. Default is '\n'.

args

col_offset

data_tokens

end_col_offset

end_lineno

classmethod from_tokens(tokens)

get_token(*types)
Return a token with the given type.

If there are no matches, return None. If there are multiple matches, return the first match.

get_tokens(*types)
Return tokens having any of the given types.

get_value(type, default=None)
Return value of a token with the given type.

If there are no matches, return default. If there are multiple matches, return the value of the first match.

get_values(*types)
Return values of tokens having any of the given types.

handles_types = ()

lineno

lines

name

classmethod register(subcls)

validate(context)

class robot.parsing.model.statements.TestTeardown(tokens, errors=())
Bases: robot.parsing.model.statements.Fixture

3.1. robot package 359

Robot Framework Documentation, Release 6.0.2

type = 'TEST TEARDOWN'

classmethod from_params(name, args=(), separator=’ ’, eol=’\n’)
Create statement from passed parameters.

Required and optional arguments should match class properties. Values are used to create matching tokens.

There is one notable difference for Documentation statement where settings_header flag is used to
determine if statement belongs to settings header or test/keyword.

Most implementations support following general properties: - separator whitespace inserted between
each token. Default is four spaces. - indent whitespace inserted before first token. Default is four
spaces. - eol end of line sign. Default is '\n'.

args

col_offset

data_tokens

end_col_offset

end_lineno

classmethod from_tokens(tokens)

get_token(*types)
Return a token with the given type.

If there are no matches, return None. If there are multiple matches, return the first match.

get_tokens(*types)
Return tokens having any of the given types.

get_value(type, default=None)
Return value of a token with the given type.

If there are no matches, return default. If there are multiple matches, return the value of the first match.

get_values(*types)
Return values of tokens having any of the given types.

handles_types = ()

lineno

lines

name

classmethod register(subcls)

validate(context)

class robot.parsing.model.statements.TestTemplate(tokens, errors=())
Bases: robot.parsing.model.statements.SingleValue

type = 'TEST TEMPLATE'

classmethod from_params(value, separator=’ ’, eol=’\n’)
Create statement from passed parameters.

Required and optional arguments should match class properties. Values are used to create matching tokens.

There is one notable difference for Documentation statement where settings_header flag is used to
determine if statement belongs to settings header or test/keyword.

360 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

Most implementations support following general properties: - separator whitespace inserted between
each token. Default is four spaces. - indent whitespace inserted before first token. Default is four
spaces. - eol end of line sign. Default is '\n'.

col_offset

data_tokens

end_col_offset

end_lineno

classmethod from_tokens(tokens)

get_token(*types)
Return a token with the given type.

If there are no matches, return None. If there are multiple matches, return the first match.

get_tokens(*types)
Return tokens having any of the given types.

get_value(type, default=None)
Return value of a token with the given type.

If there are no matches, return default. If there are multiple matches, return the value of the first match.

get_values(*types)
Return values of tokens having any of the given types.

handles_types = ()

lineno

lines

classmethod register(subcls)

validate(context)

value

class robot.parsing.model.statements.TestTimeout(tokens, errors=())
Bases: robot.parsing.model.statements.SingleValue

type = 'TEST TIMEOUT'

classmethod from_params(value, separator=’ ’, eol=’\n’)
Create statement from passed parameters.

Required and optional arguments should match class properties. Values are used to create matching tokens.

There is one notable difference for Documentation statement where settings_header flag is used to
determine if statement belongs to settings header or test/keyword.

Most implementations support following general properties: - separator whitespace inserted between
each token. Default is four spaces. - indent whitespace inserted before first token. Default is four
spaces. - eol end of line sign. Default is '\n'.

col_offset

data_tokens

end_col_offset

end_lineno

classmethod from_tokens(tokens)

3.1. robot package 361

Robot Framework Documentation, Release 6.0.2

get_token(*types)
Return a token with the given type.

If there are no matches, return None. If there are multiple matches, return the first match.

get_tokens(*types)
Return tokens having any of the given types.

get_value(type, default=None)
Return value of a token with the given type.

If there are no matches, return default. If there are multiple matches, return the value of the first match.

get_values(*types)
Return values of tokens having any of the given types.

handles_types = ()

lineno

lines

classmethod register(subcls)

validate(context)

value

class robot.parsing.model.statements.Variable(tokens, errors=())
Bases: robot.parsing.model.statements.Statement

type = 'VARIABLE'

classmethod from_params(name, value, separator=’ ’, eol=’\n’)
value can be given either as a string or as a list of strings.

name

value

validate(context)

col_offset

data_tokens

end_col_offset

end_lineno

classmethod from_tokens(tokens)

get_token(*types)
Return a token with the given type.

If there are no matches, return None. If there are multiple matches, return the first match.

get_tokens(*types)
Return tokens having any of the given types.

get_value(type, default=None)
Return value of a token with the given type.

If there are no matches, return default. If there are multiple matches, return the value of the first match.

get_values(*types)
Return values of tokens having any of the given types.

362 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

handles_types = ()

lineno

lines

classmethod register(subcls)

class robot.parsing.model.statements.TestCaseName(tokens, errors=())
Bases: robot.parsing.model.statements.Statement

type = 'TESTCASE NAME'

classmethod from_params(name, eol=’\n’)
Create statement from passed parameters.

Required and optional arguments should match class properties. Values are used to create matching tokens.

There is one notable difference for Documentation statement where settings_header flag is used to
determine if statement belongs to settings header or test/keyword.

Most implementations support following general properties: - separator whitespace inserted between
each token. Default is four spaces. - indent whitespace inserted before first token. Default is four
spaces. - eol end of line sign. Default is '\n'.

name

col_offset

data_tokens

end_col_offset

end_lineno

classmethod from_tokens(tokens)

get_token(*types)
Return a token with the given type.

If there are no matches, return None. If there are multiple matches, return the first match.

get_tokens(*types)
Return tokens having any of the given types.

get_value(type, default=None)
Return value of a token with the given type.

If there are no matches, return default. If there are multiple matches, return the value of the first match.

get_values(*types)
Return values of tokens having any of the given types.

handles_types = ()

lineno

lines

classmethod register(subcls)

validate(context)

class robot.parsing.model.statements.KeywordName(tokens, errors=())
Bases: robot.parsing.model.statements.Statement

type = 'KEYWORD NAME'

3.1. robot package 363

Robot Framework Documentation, Release 6.0.2

classmethod from_params(name, eol=’\n’)
Create statement from passed parameters.

Required and optional arguments should match class properties. Values are used to create matching tokens.

There is one notable difference for Documentation statement where settings_header flag is used to
determine if statement belongs to settings header or test/keyword.

Most implementations support following general properties: - separator whitespace inserted between
each token. Default is four spaces. - indent whitespace inserted before first token. Default is four
spaces. - eol end of line sign. Default is '\n'.

name

col_offset

data_tokens

end_col_offset

end_lineno

classmethod from_tokens(tokens)

get_token(*types)
Return a token with the given type.

If there are no matches, return None. If there are multiple matches, return the first match.

get_tokens(*types)
Return tokens having any of the given types.

get_value(type, default=None)
Return value of a token with the given type.

If there are no matches, return default. If there are multiple matches, return the value of the first match.

get_values(*types)
Return values of tokens having any of the given types.

handles_types = ()

lineno

lines

classmethod register(subcls)

validate(context)

class robot.parsing.model.statements.Setup(tokens, errors=())
Bases: robot.parsing.model.statements.Fixture

type = 'SETUP'

classmethod from_params(name, args=(), indent=’ ’, separator=’ ’, eol=’\n’)
Create statement from passed parameters.

Required and optional arguments should match class properties. Values are used to create matching tokens.

There is one notable difference for Documentation statement where settings_header flag is used to
determine if statement belongs to settings header or test/keyword.

Most implementations support following general properties: - separator whitespace inserted between
each token. Default is four spaces. - indent whitespace inserted before first token. Default is four
spaces. - eol end of line sign. Default is '\n'.

364 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

args

col_offset

data_tokens

end_col_offset

end_lineno

classmethod from_tokens(tokens)

get_token(*types)
Return a token with the given type.

If there are no matches, return None. If there are multiple matches, return the first match.

get_tokens(*types)
Return tokens having any of the given types.

get_value(type, default=None)
Return value of a token with the given type.

If there are no matches, return default. If there are multiple matches, return the value of the first match.

get_values(*types)
Return values of tokens having any of the given types.

handles_types = ()

lineno

lines

name

classmethod register(subcls)

validate(context)

class robot.parsing.model.statements.Teardown(tokens, errors=())
Bases: robot.parsing.model.statements.Fixture

type = 'TEARDOWN'

classmethod from_params(name, args=(), indent=’ ’, separator=’ ’, eol=’\n’)
Create statement from passed parameters.

Required and optional arguments should match class properties. Values are used to create matching tokens.

There is one notable difference for Documentation statement where settings_header flag is used to
determine if statement belongs to settings header or test/keyword.

Most implementations support following general properties: - separator whitespace inserted between
each token. Default is four spaces. - indent whitespace inserted before first token. Default is four
spaces. - eol end of line sign. Default is '\n'.

args

col_offset

data_tokens

end_col_offset

end_lineno

classmethod from_tokens(tokens)

3.1. robot package 365

Robot Framework Documentation, Release 6.0.2

get_token(*types)
Return a token with the given type.

If there are no matches, return None. If there are multiple matches, return the first match.

get_tokens(*types)
Return tokens having any of the given types.

get_value(type, default=None)
Return value of a token with the given type.

If there are no matches, return default. If there are multiple matches, return the value of the first match.

get_values(*types)
Return values of tokens having any of the given types.

handles_types = ()

lineno

lines

name

classmethod register(subcls)

validate(context)

class robot.parsing.model.statements.Tags(tokens, errors=())
Bases: robot.parsing.model.statements.MultiValue

type = 'TAGS'

classmethod from_params(values, indent=’ ’, separator=’ ’, eol=’\n’)
Create statement from passed parameters.

Required and optional arguments should match class properties. Values are used to create matching tokens.

There is one notable difference for Documentation statement where settings_header flag is used to
determine if statement belongs to settings header or test/keyword.

Most implementations support following general properties: - separator whitespace inserted between
each token. Default is four spaces. - indent whitespace inserted before first token. Default is four
spaces. - eol end of line sign. Default is '\n'.

col_offset

data_tokens

end_col_offset

end_lineno

classmethod from_tokens(tokens)

get_token(*types)
Return a token with the given type.

If there are no matches, return None. If there are multiple matches, return the first match.

get_tokens(*types)
Return tokens having any of the given types.

get_value(type, default=None)
Return value of a token with the given type.

If there are no matches, return default. If there are multiple matches, return the value of the first match.

366 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

get_values(*types)
Return values of tokens having any of the given types.

handles_types = ()

lineno

lines

classmethod register(subcls)

validate(context)

values

class robot.parsing.model.statements.Template(tokens, errors=())
Bases: robot.parsing.model.statements.SingleValue

type = 'TEMPLATE'

classmethod from_params(value, indent=’ ’, separator=’ ’, eol=’\n’)
Create statement from passed parameters.

Required and optional arguments should match class properties. Values are used to create matching tokens.

There is one notable difference for Documentation statement where settings_header flag is used to
determine if statement belongs to settings header or test/keyword.

Most implementations support following general properties: - separator whitespace inserted between
each token. Default is four spaces. - indent whitespace inserted before first token. Default is four
spaces. - eol end of line sign. Default is '\n'.

col_offset

data_tokens

end_col_offset

end_lineno

classmethod from_tokens(tokens)

get_token(*types)
Return a token with the given type.

If there are no matches, return None. If there are multiple matches, return the first match.

get_tokens(*types)
Return tokens having any of the given types.

get_value(type, default=None)
Return value of a token with the given type.

If there are no matches, return default. If there are multiple matches, return the value of the first match.

get_values(*types)
Return values of tokens having any of the given types.

handles_types = ()

lineno

lines

classmethod register(subcls)

validate(context)

3.1. robot package 367

Robot Framework Documentation, Release 6.0.2

value

class robot.parsing.model.statements.Timeout(tokens, errors=())
Bases: robot.parsing.model.statements.SingleValue

type = 'TIMEOUT'

classmethod from_params(value, indent=’ ’, separator=’ ’, eol=’\n’)
Create statement from passed parameters.

Required and optional arguments should match class properties. Values are used to create matching tokens.

There is one notable difference for Documentation statement where settings_header flag is used to
determine if statement belongs to settings header or test/keyword.

Most implementations support following general properties: - separator whitespace inserted between
each token. Default is four spaces. - indent whitespace inserted before first token. Default is four
spaces. - eol end of line sign. Default is '\n'.

col_offset

data_tokens

end_col_offset

end_lineno

classmethod from_tokens(tokens)

get_token(*types)
Return a token with the given type.

If there are no matches, return None. If there are multiple matches, return the first match.

get_tokens(*types)
Return tokens having any of the given types.

get_value(type, default=None)
Return value of a token with the given type.

If there are no matches, return default. If there are multiple matches, return the value of the first match.

get_values(*types)
Return values of tokens having any of the given types.

handles_types = ()

lineno

lines

classmethod register(subcls)

validate(context)

value

class robot.parsing.model.statements.Arguments(tokens, errors=())
Bases: robot.parsing.model.statements.MultiValue

type = 'ARGUMENTS'

classmethod from_params(args, indent=’ ’, separator=’ ’, eol=’\n’)
Create statement from passed parameters.

Required and optional arguments should match class properties. Values are used to create matching tokens.

368 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

There is one notable difference for Documentation statement where settings_header flag is used to
determine if statement belongs to settings header or test/keyword.

Most implementations support following general properties: - separator whitespace inserted between
each token. Default is four spaces. - indent whitespace inserted before first token. Default is four
spaces. - eol end of line sign. Default is '\n'.

validate(context)

col_offset

data_tokens

end_col_offset

end_lineno

classmethod from_tokens(tokens)

get_token(*types)
Return a token with the given type.

If there are no matches, return None. If there are multiple matches, return the first match.

get_tokens(*types)
Return tokens having any of the given types.

get_value(type, default=None)
Return value of a token with the given type.

If there are no matches, return default. If there are multiple matches, return the value of the first match.

get_values(*types)
Return values of tokens having any of the given types.

handles_types = ()

lineno

lines

classmethod register(subcls)

values

class robot.parsing.model.statements.Return(tokens, errors=())
Bases: robot.parsing.model.statements.MultiValue

type = 'RETURN'

classmethod from_params(args, indent=’ ’, separator=’ ’, eol=’\n’)
Create statement from passed parameters.

Required and optional arguments should match class properties. Values are used to create matching tokens.

There is one notable difference for Documentation statement where settings_header flag is used to
determine if statement belongs to settings header or test/keyword.

Most implementations support following general properties: - separator whitespace inserted between
each token. Default is four spaces. - indent whitespace inserted before first token. Default is four
spaces. - eol end of line sign. Default is '\n'.

col_offset

data_tokens

end_col_offset

3.1. robot package 369

Robot Framework Documentation, Release 6.0.2

end_lineno

classmethod from_tokens(tokens)

get_token(*types)
Return a token with the given type.

If there are no matches, return None. If there are multiple matches, return the first match.

get_tokens(*types)
Return tokens having any of the given types.

get_value(type, default=None)
Return value of a token with the given type.

If there are no matches, return default. If there are multiple matches, return the value of the first match.

get_values(*types)
Return values of tokens having any of the given types.

handles_types = ()

lineno

lines

classmethod register(subcls)

validate(context)

values

class robot.parsing.model.statements.KeywordCall(tokens, errors=())
Bases: robot.parsing.model.statements.Statement

type = 'KEYWORD'

classmethod from_params(name, assign=(), args=(), indent=’ ’, separator=’ ’, eol=’\n’)
Create statement from passed parameters.

Required and optional arguments should match class properties. Values are used to create matching tokens.

There is one notable difference for Documentation statement where settings_header flag is used to
determine if statement belongs to settings header or test/keyword.

Most implementations support following general properties: - separator whitespace inserted between
each token. Default is four spaces. - indent whitespace inserted before first token. Default is four
spaces. - eol end of line sign. Default is '\n'.

keyword

args

assign

col_offset

data_tokens

end_col_offset

end_lineno

classmethod from_tokens(tokens)

get_token(*types)
Return a token with the given type.

370 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

If there are no matches, return None. If there are multiple matches, return the first match.

get_tokens(*types)
Return tokens having any of the given types.

get_value(type, default=None)
Return value of a token with the given type.

If there are no matches, return default. If there are multiple matches, return the value of the first match.

get_values(*types)
Return values of tokens having any of the given types.

handles_types = ()

lineno

lines

classmethod register(subcls)

validate(context)

class robot.parsing.model.statements.TemplateArguments(tokens, errors=())
Bases: robot.parsing.model.statements.Statement

type = 'ARGUMENT'

classmethod from_params(args, indent=’ ’, separator=’ ’, eol=’\n’)
Create statement from passed parameters.

Required and optional arguments should match class properties. Values are used to create matching tokens.

There is one notable difference for Documentation statement where settings_header flag is used to
determine if statement belongs to settings header or test/keyword.

Most implementations support following general properties: - separator whitespace inserted between
each token. Default is four spaces. - indent whitespace inserted before first token. Default is four
spaces. - eol end of line sign. Default is '\n'.

args

col_offset

data_tokens

end_col_offset

end_lineno

classmethod from_tokens(tokens)

get_token(*types)
Return a token with the given type.

If there are no matches, return None. If there are multiple matches, return the first match.

get_tokens(*types)
Return tokens having any of the given types.

get_value(type, default=None)
Return value of a token with the given type.

If there are no matches, return default. If there are multiple matches, return the value of the first match.

get_values(*types)
Return values of tokens having any of the given types.

3.1. robot package 371

Robot Framework Documentation, Release 6.0.2

handles_types = ()

lineno

lines

classmethod register(subcls)

validate(context)

class robot.parsing.model.statements.ForHeader(tokens, errors=())
Bases: robot.parsing.model.statements.Statement

type = 'FOR'

classmethod from_params(variables, values, flavor=’IN’, indent=’ ’, separator=’ ’, eol=’\n’)
Create statement from passed parameters.

Required and optional arguments should match class properties. Values are used to create matching tokens.

There is one notable difference for Documentation statement where settings_header flag is used to
determine if statement belongs to settings header or test/keyword.

Most implementations support following general properties: - separator whitespace inserted between
each token. Default is four spaces. - indent whitespace inserted before first token. Default is four
spaces. - eol end of line sign. Default is '\n'.

variables

values

flavor

validate(context)

col_offset

data_tokens

end_col_offset

end_lineno

classmethod from_tokens(tokens)

get_token(*types)
Return a token with the given type.

If there are no matches, return None. If there are multiple matches, return the first match.

get_tokens(*types)
Return tokens having any of the given types.

get_value(type, default=None)
Return value of a token with the given type.

If there are no matches, return default. If there are multiple matches, return the value of the first match.

get_values(*types)
Return values of tokens having any of the given types.

handles_types = ()

lineno

lines

classmethod register(subcls)

372 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

class robot.parsing.model.statements.IfElseHeader(tokens, errors=())
Bases: robot.parsing.model.statements.Statement

condition

assign

col_offset

data_tokens

end_col_offset

end_lineno

classmethod from_params(*args, **kwargs)
Create statement from passed parameters.

Required and optional arguments should match class properties. Values are used to create matching tokens.

There is one notable difference for Documentation statement where settings_header flag is used to
determine if statement belongs to settings header or test/keyword.

Most implementations support following general properties: - separator whitespace inserted between
each token. Default is four spaces. - indent whitespace inserted before first token. Default is four
spaces. - eol end of line sign. Default is '\n'.

classmethod from_tokens(tokens)

get_token(*types)
Return a token with the given type.

If there are no matches, return None. If there are multiple matches, return the first match.

get_tokens(*types)
Return tokens having any of the given types.

get_value(type, default=None)
Return value of a token with the given type.

If there are no matches, return default. If there are multiple matches, return the value of the first match.

get_values(*types)
Return values of tokens having any of the given types.

handles_types = ()

lineno

lines

classmethod register(subcls)

type = None

validate(context)

class robot.parsing.model.statements.IfHeader(tokens, errors=())
Bases: robot.parsing.model.statements.IfElseHeader

type = 'IF'

classmethod from_params(condition, indent=’ ’, separator=’ ’, eol=’\n’)
Create statement from passed parameters.

Required and optional arguments should match class properties. Values are used to create matching tokens.

3.1. robot package 373

Robot Framework Documentation, Release 6.0.2

There is one notable difference for Documentation statement where settings_header flag is used to
determine if statement belongs to settings header or test/keyword.

Most implementations support following general properties: - separator whitespace inserted between
each token. Default is four spaces. - indent whitespace inserted before first token. Default is four
spaces. - eol end of line sign. Default is '\n'.

condition

validate(context)

assign

col_offset

data_tokens

end_col_offset

end_lineno

classmethod from_tokens(tokens)

get_token(*types)
Return a token with the given type.

If there are no matches, return None. If there are multiple matches, return the first match.

get_tokens(*types)
Return tokens having any of the given types.

get_value(type, default=None)
Return value of a token with the given type.

If there are no matches, return default. If there are multiple matches, return the value of the first match.

get_values(*types)
Return values of tokens having any of the given types.

handles_types = ()

lineno

lines

classmethod register(subcls)

class robot.parsing.model.statements.InlineIfHeader(tokens, errors=())
Bases: robot.parsing.model.statements.IfHeader

type = 'INLINE IF'

assign

col_offset

condition

data_tokens

end_col_offset

end_lineno

classmethod from_params(condition, indent=’ ’, separator=’ ’, eol=’\n’)
Create statement from passed parameters.

Required and optional arguments should match class properties. Values are used to create matching tokens.

374 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

There is one notable difference for Documentation statement where settings_header flag is used to
determine if statement belongs to settings header or test/keyword.

Most implementations support following general properties: - separator whitespace inserted between
each token. Default is four spaces. - indent whitespace inserted before first token. Default is four
spaces. - eol end of line sign. Default is '\n'.

classmethod from_tokens(tokens)

get_token(*types)
Return a token with the given type.

If there are no matches, return None. If there are multiple matches, return the first match.

get_tokens(*types)
Return tokens having any of the given types.

get_value(type, default=None)
Return value of a token with the given type.

If there are no matches, return default. If there are multiple matches, return the value of the first match.

get_values(*types)
Return values of tokens having any of the given types.

handles_types = ()

lineno

lines

classmethod register(subcls)

validate(context)

class robot.parsing.model.statements.ElseIfHeader(tokens, errors=())
Bases: robot.parsing.model.statements.IfHeader

type = 'ELSE IF'

assign

col_offset

condition

data_tokens

end_col_offset

end_lineno

classmethod from_params(condition, indent=’ ’, separator=’ ’, eol=’\n’)
Create statement from passed parameters.

Required and optional arguments should match class properties. Values are used to create matching tokens.

There is one notable difference for Documentation statement where settings_header flag is used to
determine if statement belongs to settings header or test/keyword.

Most implementations support following general properties: - separator whitespace inserted between
each token. Default is four spaces. - indent whitespace inserted before first token. Default is four
spaces. - eol end of line sign. Default is '\n'.

classmethod from_tokens(tokens)

3.1. robot package 375

Robot Framework Documentation, Release 6.0.2

get_token(*types)
Return a token with the given type.

If there are no matches, return None. If there are multiple matches, return the first match.

get_tokens(*types)
Return tokens having any of the given types.

get_value(type, default=None)
Return value of a token with the given type.

If there are no matches, return default. If there are multiple matches, return the value of the first match.

get_values(*types)
Return values of tokens having any of the given types.

handles_types = ()

lineno

lines

classmethod register(subcls)

validate(context)

class robot.parsing.model.statements.ElseHeader(tokens, errors=())
Bases: robot.parsing.model.statements.IfElseHeader

type = 'ELSE'

classmethod from_params(indent=’ ’, eol=’\n’)
Create statement from passed parameters.

Required and optional arguments should match class properties. Values are used to create matching tokens.

There is one notable difference for Documentation statement where settings_header flag is used to
determine if statement belongs to settings header or test/keyword.

Most implementations support following general properties: - separator whitespace inserted between
each token. Default is four spaces. - indent whitespace inserted before first token. Default is four
spaces. - eol end of line sign. Default is '\n'.

validate(context)

assign

col_offset

condition

data_tokens

end_col_offset

end_lineno

classmethod from_tokens(tokens)

get_token(*types)
Return a token with the given type.

If there are no matches, return None. If there are multiple matches, return the first match.

get_tokens(*types)
Return tokens having any of the given types.

376 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

get_value(type, default=None)
Return value of a token with the given type.

If there are no matches, return default. If there are multiple matches, return the value of the first match.

get_values(*types)
Return values of tokens having any of the given types.

handles_types = ()

lineno

lines

classmethod register(subcls)

class robot.parsing.model.statements.NoArgumentHeader(tokens, errors=())
Bases: robot.parsing.model.statements.Statement

classmethod from_params(indent=’ ’, eol=’\n’)
Create statement from passed parameters.

Required and optional arguments should match class properties. Values are used to create matching tokens.

There is one notable difference for Documentation statement where settings_header flag is used to
determine if statement belongs to settings header or test/keyword.

Most implementations support following general properties: - separator whitespace inserted between
each token. Default is four spaces. - indent whitespace inserted before first token. Default is four
spaces. - eol end of line sign. Default is '\n'.

validate(context)

values

col_offset

data_tokens

end_col_offset

end_lineno

classmethod from_tokens(tokens)

get_token(*types)
Return a token with the given type.

If there are no matches, return None. If there are multiple matches, return the first match.

get_tokens(*types)
Return tokens having any of the given types.

get_value(type, default=None)
Return value of a token with the given type.

If there are no matches, return default. If there are multiple matches, return the value of the first match.

get_values(*types)
Return values of tokens having any of the given types.

handles_types = ()

lineno

lines

classmethod register(subcls)

3.1. robot package 377

Robot Framework Documentation, Release 6.0.2

type = None

class robot.parsing.model.statements.TryHeader(tokens, errors=())
Bases: robot.parsing.model.statements.NoArgumentHeader

type = 'TRY'

col_offset

data_tokens

end_col_offset

end_lineno

classmethod from_params(indent=’ ’, eol=’\n’)
Create statement from passed parameters.

Required and optional arguments should match class properties. Values are used to create matching tokens.

There is one notable difference for Documentation statement where settings_header flag is used to
determine if statement belongs to settings header or test/keyword.

Most implementations support following general properties: - separator whitespace inserted between
each token. Default is four spaces. - indent whitespace inserted before first token. Default is four
spaces. - eol end of line sign. Default is '\n'.

classmethod from_tokens(tokens)

get_token(*types)
Return a token with the given type.

If there are no matches, return None. If there are multiple matches, return the first match.

get_tokens(*types)
Return tokens having any of the given types.

get_value(type, default=None)
Return value of a token with the given type.

If there are no matches, return default. If there are multiple matches, return the value of the first match.

get_values(*types)
Return values of tokens having any of the given types.

handles_types = ()

lineno

lines

classmethod register(subcls)

validate(context)

values

class robot.parsing.model.statements.ExceptHeader(tokens, errors=())
Bases: robot.parsing.model.statements.Statement

type = 'EXCEPT'

classmethod from_params(patterns=(), type=None, variable=None, indent=’ ’, separator=’ ’,
eol=’\n’)

Create statement from passed parameters.

Required and optional arguments should match class properties. Values are used to create matching tokens.

378 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

There is one notable difference for Documentation statement where settings_header flag is used to
determine if statement belongs to settings header or test/keyword.

Most implementations support following general properties: - separator whitespace inserted between
each token. Default is four spaces. - indent whitespace inserted before first token. Default is four
spaces. - eol end of line sign. Default is '\n'.

patterns

pattern_type

variable

validate(context)

col_offset

data_tokens

end_col_offset

end_lineno

classmethod from_tokens(tokens)

get_token(*types)
Return a token with the given type.

If there are no matches, return None. If there are multiple matches, return the first match.

get_tokens(*types)
Return tokens having any of the given types.

get_value(type, default=None)
Return value of a token with the given type.

If there are no matches, return default. If there are multiple matches, return the value of the first match.

get_values(*types)
Return values of tokens having any of the given types.

handles_types = ()

lineno

lines

classmethod register(subcls)

class robot.parsing.model.statements.FinallyHeader(tokens, errors=())
Bases: robot.parsing.model.statements.NoArgumentHeader

type = 'FINALLY'

col_offset

data_tokens

end_col_offset

end_lineno

classmethod from_params(indent=’ ’, eol=’\n’)
Create statement from passed parameters.

Required and optional arguments should match class properties. Values are used to create matching tokens.

3.1. robot package 379

Robot Framework Documentation, Release 6.0.2

There is one notable difference for Documentation statement where settings_header flag is used to
determine if statement belongs to settings header or test/keyword.

Most implementations support following general properties: - separator whitespace inserted between
each token. Default is four spaces. - indent whitespace inserted before first token. Default is four
spaces. - eol end of line sign. Default is '\n'.

classmethod from_tokens(tokens)

get_token(*types)
Return a token with the given type.

If there are no matches, return None. If there are multiple matches, return the first match.

get_tokens(*types)
Return tokens having any of the given types.

get_value(type, default=None)
Return value of a token with the given type.

If there are no matches, return default. If there are multiple matches, return the value of the first match.

get_values(*types)
Return values of tokens having any of the given types.

handles_types = ()

lineno

lines

classmethod register(subcls)

validate(context)

values

class robot.parsing.model.statements.End(tokens, errors=())
Bases: robot.parsing.model.statements.NoArgumentHeader

type = 'END'

col_offset

data_tokens

end_col_offset

end_lineno

classmethod from_params(indent=’ ’, eol=’\n’)
Create statement from passed parameters.

Required and optional arguments should match class properties. Values are used to create matching tokens.

There is one notable difference for Documentation statement where settings_header flag is used to
determine if statement belongs to settings header or test/keyword.

Most implementations support following general properties: - separator whitespace inserted between
each token. Default is four spaces. - indent whitespace inserted before first token. Default is four
spaces. - eol end of line sign. Default is '\n'.

classmethod from_tokens(tokens)

get_token(*types)
Return a token with the given type.

380 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

If there are no matches, return None. If there are multiple matches, return the first match.

get_tokens(*types)
Return tokens having any of the given types.

get_value(type, default=None)
Return value of a token with the given type.

If there are no matches, return default. If there are multiple matches, return the value of the first match.

get_values(*types)
Return values of tokens having any of the given types.

handles_types = ()

lineno

lines

classmethod register(subcls)

validate(context)

values

class robot.parsing.model.statements.WhileHeader(tokens, errors=())
Bases: robot.parsing.model.statements.Statement

type = 'WHILE'

classmethod from_params(condition, limit=None, indent=’ ’, separator=’ ’, eol=’\n’)
Create statement from passed parameters.

Required and optional arguments should match class properties. Values are used to create matching tokens.

There is one notable difference for Documentation statement where settings_header flag is used to
determine if statement belongs to settings header or test/keyword.

Most implementations support following general properties: - separator whitespace inserted between
each token. Default is four spaces. - indent whitespace inserted before first token. Default is four
spaces. - eol end of line sign. Default is '\n'.

condition

limit

validate(context)

col_offset

data_tokens

end_col_offset

end_lineno

classmethod from_tokens(tokens)

get_token(*types)
Return a token with the given type.

If there are no matches, return None. If there are multiple matches, return the first match.

get_tokens(*types)
Return tokens having any of the given types.

3.1. robot package 381

Robot Framework Documentation, Release 6.0.2

get_value(type, default=None)
Return value of a token with the given type.

If there are no matches, return default. If there are multiple matches, return the value of the first match.

get_values(*types)
Return values of tokens having any of the given types.

handles_types = ()

lineno

lines

classmethod register(subcls)

class robot.parsing.model.statements.ReturnStatement(tokens, errors=())
Bases: robot.parsing.model.statements.Statement

type = 'RETURN STATEMENT'

values

classmethod from_params(values=(), indent=’ ’, separator=’ ’, eol=’\n’)
Create statement from passed parameters.

Required and optional arguments should match class properties. Values are used to create matching tokens.

There is one notable difference for Documentation statement where settings_header flag is used to
determine if statement belongs to settings header or test/keyword.

Most implementations support following general properties: - separator whitespace inserted between
each token. Default is four spaces. - indent whitespace inserted before first token. Default is four
spaces. - eol end of line sign. Default is '\n'.

validate(context)

col_offset

data_tokens

end_col_offset

end_lineno

classmethod from_tokens(tokens)

get_token(*types)
Return a token with the given type.

If there are no matches, return None. If there are multiple matches, return the first match.

get_tokens(*types)
Return tokens having any of the given types.

get_value(type, default=None)
Return value of a token with the given type.

If there are no matches, return default. If there are multiple matches, return the value of the first match.

get_values(*types)
Return values of tokens having any of the given types.

handles_types = ()

lineno

lines

382 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

classmethod register(subcls)

class robot.parsing.model.statements.LoopControl(tokens, errors=())
Bases: robot.parsing.model.statements.NoArgumentHeader

validate(context)

col_offset

data_tokens

end_col_offset

end_lineno

classmethod from_params(indent=’ ’, eol=’\n’)
Create statement from passed parameters.

Required and optional arguments should match class properties. Values are used to create matching tokens.

There is one notable difference for Documentation statement where settings_header flag is used to
determine if statement belongs to settings header or test/keyword.

Most implementations support following general properties: - separator whitespace inserted between
each token. Default is four spaces. - indent whitespace inserted before first token. Default is four
spaces. - eol end of line sign. Default is '\n'.

classmethod from_tokens(tokens)

get_token(*types)
Return a token with the given type.

If there are no matches, return None. If there are multiple matches, return the first match.

get_tokens(*types)
Return tokens having any of the given types.

get_value(type, default=None)
Return value of a token with the given type.

If there are no matches, return default. If there are multiple matches, return the value of the first match.

get_values(*types)
Return values of tokens having any of the given types.

handles_types = ()

lineno

lines

classmethod register(subcls)

type = None

values

class robot.parsing.model.statements.Continue(tokens, errors=())
Bases: robot.parsing.model.statements.LoopControl

type = 'CONTINUE'

col_offset

data_tokens

end_col_offset

3.1. robot package 383

Robot Framework Documentation, Release 6.0.2

end_lineno

classmethod from_params(indent=’ ’, eol=’\n’)
Create statement from passed parameters.

Required and optional arguments should match class properties. Values are used to create matching tokens.

There is one notable difference for Documentation statement where settings_header flag is used to
determine if statement belongs to settings header or test/keyword.

Most implementations support following general properties: - separator whitespace inserted between
each token. Default is four spaces. - indent whitespace inserted before first token. Default is four
spaces. - eol end of line sign. Default is '\n'.

classmethod from_tokens(tokens)

get_token(*types)
Return a token with the given type.

If there are no matches, return None. If there are multiple matches, return the first match.

get_tokens(*types)
Return tokens having any of the given types.

get_value(type, default=None)
Return value of a token with the given type.

If there are no matches, return default. If there are multiple matches, return the value of the first match.

get_values(*types)
Return values of tokens having any of the given types.

handles_types = ()

lineno

lines

classmethod register(subcls)

validate(context)

values

class robot.parsing.model.statements.Break(tokens, errors=())
Bases: robot.parsing.model.statements.LoopControl

type = 'BREAK'

col_offset

data_tokens

end_col_offset

end_lineno

classmethod from_params(indent=’ ’, eol=’\n’)
Create statement from passed parameters.

Required and optional arguments should match class properties. Values are used to create matching tokens.

There is one notable difference for Documentation statement where settings_header flag is used to
determine if statement belongs to settings header or test/keyword.

384 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

Most implementations support following general properties: - separator whitespace inserted between
each token. Default is four spaces. - indent whitespace inserted before first token. Default is four
spaces. - eol end of line sign. Default is '\n'.

classmethod from_tokens(tokens)

get_token(*types)
Return a token with the given type.

If there are no matches, return None. If there are multiple matches, return the first match.

get_tokens(*types)
Return tokens having any of the given types.

get_value(type, default=None)
Return value of a token with the given type.

If there are no matches, return default. If there are multiple matches, return the value of the first match.

get_values(*types)
Return values of tokens having any of the given types.

handles_types = ()

lineno

lines

classmethod register(subcls)

validate(context)

values

class robot.parsing.model.statements.Comment(tokens, errors=())
Bases: robot.parsing.model.statements.Statement

type = 'COMMENT'

classmethod from_params(comment, indent=’ ’, eol=’\n’)
Create statement from passed parameters.

Required and optional arguments should match class properties. Values are used to create matching tokens.

There is one notable difference for Documentation statement where settings_header flag is used to
determine if statement belongs to settings header or test/keyword.

Most implementations support following general properties: - separator whitespace inserted between
each token. Default is four spaces. - indent whitespace inserted before first token. Default is four
spaces. - eol end of line sign. Default is '\n'.

col_offset

data_tokens

end_col_offset

end_lineno

classmethod from_tokens(tokens)

get_token(*types)
Return a token with the given type.

If there are no matches, return None. If there are multiple matches, return the first match.

3.1. robot package 385

Robot Framework Documentation, Release 6.0.2

get_tokens(*types)
Return tokens having any of the given types.

get_value(type, default=None)
Return value of a token with the given type.

If there are no matches, return default. If there are multiple matches, return the value of the first match.

get_values(*types)
Return values of tokens having any of the given types.

handles_types = ()

lineno

lines

classmethod register(subcls)

validate(context)

class robot.parsing.model.statements.Config(tokens, errors=())
Bases: robot.parsing.model.statements.Statement

type = 'CONFIG'

classmethod from_params(config, eol=’\n’)
Create statement from passed parameters.

Required and optional arguments should match class properties. Values are used to create matching tokens.

There is one notable difference for Documentation statement where settings_header flag is used to
determine if statement belongs to settings header or test/keyword.

Most implementations support following general properties: - separator whitespace inserted between
each token. Default is four spaces. - indent whitespace inserted before first token. Default is four
spaces. - eol end of line sign. Default is '\n'.

language

col_offset

data_tokens

end_col_offset

end_lineno

classmethod from_tokens(tokens)

get_token(*types)
Return a token with the given type.

If there are no matches, return None. If there are multiple matches, return the first match.

get_tokens(*types)
Return tokens having any of the given types.

get_value(type, default=None)
Return value of a token with the given type.

If there are no matches, return default. If there are multiple matches, return the value of the first match.

get_values(*types)
Return values of tokens having any of the given types.

handles_types = ()

386 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

lineno

lines

classmethod register(subcls)

validate(context)

class robot.parsing.model.statements.Error(tokens, errors=())
Bases: robot.parsing.model.statements.Statement

type = 'ERROR'

handles_types = ('ERROR', 'FATAL ERROR')

errors
Errors got from the underlying ERROR and FATAL_ERROR tokens.

Errors can be set also explicitly. When accessing errors, they are returned along with errors got from
tokens.

col_offset

data_tokens

end_col_offset

end_lineno

classmethod from_params(*args, **kwargs)
Create statement from passed parameters.

Required and optional arguments should match class properties. Values are used to create matching tokens.

There is one notable difference for Documentation statement where settings_header flag is used to
determine if statement belongs to settings header or test/keyword.

Most implementations support following general properties: - separator whitespace inserted between
each token. Default is four spaces. - indent whitespace inserted before first token. Default is four
spaces. - eol end of line sign. Default is '\n'.

classmethod from_tokens(tokens)

get_token(*types)
Return a token with the given type.

If there are no matches, return None. If there are multiple matches, return the first match.

get_tokens(*types)
Return tokens having any of the given types.

get_value(type, default=None)
Return value of a token with the given type.

If there are no matches, return default. If there are multiple matches, return the value of the first match.

get_values(*types)
Return values of tokens having any of the given types.

lineno

lines

classmethod register(subcls)

validate(context)

3.1. robot package 387

Robot Framework Documentation, Release 6.0.2

class robot.parsing.model.statements.EmptyLine(tokens, errors=())
Bases: robot.parsing.model.statements.Statement

type = 'EOL'

col_offset

data_tokens

end_col_offset

end_lineno

classmethod from_params(eol=’\n’)
Create statement from passed parameters.

Required and optional arguments should match class properties. Values are used to create matching tokens.

There is one notable difference for Documentation statement where settings_header flag is used to
determine if statement belongs to settings header or test/keyword.

Most implementations support following general properties: - separator whitespace inserted between
each token. Default is four spaces. - indent whitespace inserted before first token. Default is four
spaces. - eol end of line sign. Default is '\n'.

classmethod from_tokens(tokens)

get_token(*types)
Return a token with the given type.

If there are no matches, return None. If there are multiple matches, return the first match.

get_tokens(*types)
Return tokens having any of the given types.

get_value(type, default=None)
Return value of a token with the given type.

If there are no matches, return default. If there are multiple matches, return the value of the first match.

get_values(*types)
Return values of tokens having any of the given types.

handles_types = ()

lineno

lines

classmethod register(subcls)

validate(context)

robot.parsing.model.visitor module

class robot.parsing.model.visitor.VisitorFinder
Bases: object

class robot.parsing.model.visitor.ModelVisitor
Bases: ast.NodeVisitor, robot.parsing.model.visitor.VisitorFinder

NodeVisitor that supports matching nodes based on their base classes.

Otherwise identical to the standard ast.NodeVisitor, but allows creating visit_ClassName methods so that
the ClassName is one of the base classes of the node. For example, this visitor method matches all statements:

388 Chapter 3. All packages

https://docs.python.org/library/ast.html#ast.NodeVisitor

Robot Framework Documentation, Release 6.0.2

def visit_Statement(self, node):
...

visit(node)
Visit a node.

generic_visit(node)
Called if no explicit visitor function exists for a node.

class robot.parsing.model.visitor.ModelTransformer
Bases: ast.NodeTransformer, robot.parsing.model.visitor.VisitorFinder

NodeTransformer that supports matching nodes based on their base classes.

See ModelVisitor for explanation how this is different compared to the standard ast.NodeTransformer.

visit(node)
Visit a node.

generic_visit(node)
Called if no explicit visitor function exists for a node.

robot.parsing.parser package

Submodules

robot.parsing.parser.blockparsers module

class robot.parsing.parser.blockparsers.Parser(model)
Bases: object

Base class for parsers.

handles(statement)

parse(statement)

class robot.parsing.parser.blockparsers.BlockParser(model)
Bases: robot.parsing.parser.blockparsers.Parser

unhandled_tokens = frozenset({'KEYWORD HEADER', 'COMMENT HEADER', 'VARIABLE HEADER', 'TESTCASE HEADER', 'TESTCASE NAME', 'KEYWORD NAME', 'TASK HEADER', 'SETTING HEADER'})

handles(statement)

parse(statement)

class robot.parsing.parser.blockparsers.TestCaseParser(header)
Bases: robot.parsing.parser.blockparsers.BlockParser

handles(statement)

parse(statement)

unhandled_tokens = frozenset({'KEYWORD HEADER', 'COMMENT HEADER', 'VARIABLE HEADER', 'TESTCASE HEADER', 'TESTCASE NAME', 'KEYWORD NAME', 'TASK HEADER', 'SETTING HEADER'})

class robot.parsing.parser.blockparsers.KeywordParser(header)
Bases: robot.parsing.parser.blockparsers.BlockParser

handles(statement)

parse(statement)

3.1. robot package 389

https://docs.python.org/library/ast.html#ast.NodeTransformer

Robot Framework Documentation, Release 6.0.2

unhandled_tokens = frozenset({'KEYWORD HEADER', 'COMMENT HEADER', 'VARIABLE HEADER', 'TESTCASE HEADER', 'TESTCASE NAME', 'KEYWORD NAME', 'TASK HEADER', 'SETTING HEADER'})

class robot.parsing.parser.blockparsers.NestedBlockParser(model)
Bases: robot.parsing.parser.blockparsers.BlockParser

handles(statement)

parse(statement)

unhandled_tokens = frozenset({'KEYWORD HEADER', 'COMMENT HEADER', 'VARIABLE HEADER', 'TESTCASE HEADER', 'TESTCASE NAME', 'KEYWORD NAME', 'TASK HEADER', 'SETTING HEADER'})

class robot.parsing.parser.blockparsers.ForParser(header)
Bases: robot.parsing.parser.blockparsers.NestedBlockParser

handles(statement)

parse(statement)

unhandled_tokens = frozenset({'KEYWORD HEADER', 'COMMENT HEADER', 'VARIABLE HEADER', 'TESTCASE HEADER', 'TESTCASE NAME', 'KEYWORD NAME', 'TASK HEADER', 'SETTING HEADER'})

class robot.parsing.parser.blockparsers.IfParser(header, handle_end=True)
Bases: robot.parsing.parser.blockparsers.NestedBlockParser

parse(statement)

handles(statement)

unhandled_tokens = frozenset({'KEYWORD HEADER', 'COMMENT HEADER', 'VARIABLE HEADER', 'TESTCASE HEADER', 'TESTCASE NAME', 'KEYWORD NAME', 'TASK HEADER', 'SETTING HEADER'})

class robot.parsing.parser.blockparsers.TryParser(header, handle_end=True)
Bases: robot.parsing.parser.blockparsers.NestedBlockParser

parse(statement)

handles(statement)

unhandled_tokens = frozenset({'KEYWORD HEADER', 'COMMENT HEADER', 'VARIABLE HEADER', 'TESTCASE HEADER', 'TESTCASE NAME', 'KEYWORD NAME', 'TASK HEADER', 'SETTING HEADER'})

class robot.parsing.parser.blockparsers.WhileParser(header)
Bases: robot.parsing.parser.blockparsers.NestedBlockParser

handles(statement)

parse(statement)

unhandled_tokens = frozenset({'KEYWORD HEADER', 'COMMENT HEADER', 'VARIABLE HEADER', 'TESTCASE HEADER', 'TESTCASE NAME', 'KEYWORD NAME', 'TASK HEADER', 'SETTING HEADER'})

robot.parsing.parser.fileparser module

class robot.parsing.parser.fileparser.FileParser(source=None)
Bases: robot.parsing.parser.blockparsers.Parser

handles(statement)

parse(statement)

class robot.parsing.parser.fileparser.SectionParser(header)
Bases: robot.parsing.parser.blockparsers.Parser

model_class = None

handles(statement)

parse(statement)

390 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

class robot.parsing.parser.fileparser.SettingSectionParser(header)
Bases: robot.parsing.parser.fileparser.SectionParser

model_class
alias of robot.parsing.model.blocks.SettingSection

handles(statement)

parse(statement)

class robot.parsing.parser.fileparser.VariableSectionParser(header)
Bases: robot.parsing.parser.fileparser.SectionParser

model_class
alias of robot.parsing.model.blocks.VariableSection

handles(statement)

parse(statement)

class robot.parsing.parser.fileparser.CommentSectionParser(header)
Bases: robot.parsing.parser.fileparser.SectionParser

model_class
alias of robot.parsing.model.blocks.CommentSection

handles(statement)

parse(statement)

class robot.parsing.parser.fileparser.ImplicitCommentSectionParser(header)
Bases: robot.parsing.parser.fileparser.SectionParser

model_class(statement)

handles(statement)

parse(statement)

class robot.parsing.parser.fileparser.TestCaseSectionParser(header)
Bases: robot.parsing.parser.fileparser.SectionParser

model_class
alias of robot.parsing.model.blocks.TestCaseSection

parse(statement)

handles(statement)

class robot.parsing.parser.fileparser.KeywordSectionParser(header)
Bases: robot.parsing.parser.fileparser.SectionParser

model_class
alias of robot.parsing.model.blocks.KeywordSection

parse(statement)

handles(statement)

robot.parsing.parser.parser module

robot.parsing.parser.parser.get_model(source, data_only=False, curdir=None, lang=None)
Parses the given source to a model represented as an AST.

3.1. robot package 391

Robot Framework Documentation, Release 6.0.2

How to use the model is explained more thoroughly in the general documentation of the robot.parsing
module.

Parameters

• source – The source where to read the data. Can be a path to a source file as a string or as
pathlib.Path object, an already opened file object, or Unicode text containing the date
directly. Source files must be UTF-8 encoded.

• data_only – When False (default), returns all tokens. When set to True, omits sepa-
rators, comments, continuation markers, and other non-data tokens. Model like this cannot
be saved back to file system.

• curdir – Directory where the source file exists. This path is used to set the value of the
built-in ${CURDIR} variable during parsing. When not given, the variable is left as-is.
Should only be given only if the model will be executed afterwards. If the model is saved
back to disk, resolving ${CURDIR} is typically not a good idea.

• lang – Additional languages to be supported during parsing. Can be a string matching
any of the supported language codes or names, an initialized Language subsclass, a list
containing such strings or instances, or a Languages instance.

Use get_resource_model() or get_init_model() when parsing resource or suite initialization files,
respectively.

robot.parsing.parser.parser.get_resource_model(source, data_only=False, curdir=None,
lang=None)

Parses the given source to a resource file model.

Otherwise same as get_model() but the source is considered to be a resource file. This affects, for example,
what settings are valid.

robot.parsing.parser.parser.get_init_model(source, data_only=False, curdir=None,
lang=None)

Parses the given source to a init file model.

Otherwise same as get_model() but the source is considered to be a suite initialization file. This affects, for
example, what settings are valid.

class robot.parsing.parser.parser.SetLanguages(file)
Bases: robot.parsing.model.visitor.ModelVisitor

visit_Config(node)

generic_visit(node)
Called if no explicit visitor function exists for a node.

visit(node)
Visit a node.

Submodules

robot.parsing.suitestructure module

class robot.parsing.suitestructure.SuiteStructure(source=None, init_file=None, chil-
dren=None)

Bases: object

is_directory

visit(visitor)

392 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

class robot.parsing.suitestructure.SuiteStructureBuilder(included_extensions=(’robot’,
), in-
cluded_suites=None)

Bases: object

ignored_prefixes = ('_', '.')

ignored_dirs = ('CVS',)

build(paths)

class robot.parsing.suitestructure.SuiteStructureVisitor
Bases: object

visit_file(structure)

visit_directory(structure)

start_directory(structure)

end_directory(structure)

robot.reporting package

Implements report, log, output XML, and xUnit file generation.

The public API of this package is the ResultWriter class. It can write result files based on XML output files on
the file system, as well as based on the result objects returned by the ExecutionResult() factory method or an
executed TestSuite.

It is highly recommended to use the public API via the robot.api package.

This package is considered stable.

Submodules

robot.reporting.expandkeywordmatcher module

class robot.reporting.expandkeywordmatcher.ExpandKeywordMatcher(expand_keywords)
Bases: object

match(kw)

robot.reporting.jsbuildingcontext module

class robot.reporting.jsbuildingcontext.JsBuildingContext(log_path=None,
split_log=False, ex-
pand_keywords=None,
prune_input=False)

Bases: object

string(string, escape=True, attr=False)

html(string)

relative_source(source)

timestamp(time)

message_level(level)

3.1. robot package 393

Robot Framework Documentation, Release 6.0.2

create_link_target(msg)

check_expansion(kw)

expand_keywords

link(msg)

strings

start_splitting_if_needed(split=False)

end_splitting(model)

prune_input(*items)

robot.reporting.jsexecutionresult module

class robot.reporting.jsexecutionresult.JsExecutionResult(suite, statistics,
errors, strings,
basemillis=None,
split_results=None,
min_level=None, ex-
pand_keywords=None)

Bases: object

remove_data_not_needed_in_report()

robot.reporting.jsmodelbuilders module

class robot.reporting.jsmodelbuilders.JsModelBuilder(log_path=None,
split_log=False, ex-
pand_keywords=None,
prune_input_to_save_memory=False)

Bases: object

build_from(result_from_xml)

class robot.reporting.jsmodelbuilders.SuiteBuilder(context)
Bases: robot.reporting.jsmodelbuilders._Builder

build(suite)

class robot.reporting.jsmodelbuilders.TestBuilder(context)
Bases: robot.reporting.jsmodelbuilders._Builder

build(test)

class robot.reporting.jsmodelbuilders.KeywordBuilder(context)
Bases: robot.reporting.jsmodelbuilders._Builder

build(item, split=False)

build_keyword(kw, split=False)

class robot.reporting.jsmodelbuilders.MessageBuilder(context)
Bases: robot.reporting.jsmodelbuilders._Builder

build(msg)

class robot.reporting.jsmodelbuilders.StatisticsBuilder
Bases: object

394 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

build(statistics)

class robot.reporting.jsmodelbuilders.ErrorsBuilder(context)
Bases: robot.reporting.jsmodelbuilders._Builder

build(errors)

class robot.reporting.jsmodelbuilders.ErrorMessageBuilder(context)
Bases: robot.reporting.jsmodelbuilders.MessageBuilder

build(msg)

robot.reporting.jswriter module

class robot.reporting.jswriter.JsResultWriter(output, start_block=’<script
type="text/javascript">n’,
end_block=’</script>n’,
split_threshold=9500)

Bases: object

write(result, settings)

class robot.reporting.jswriter.SuiteWriter(write_json, split_threshold)
Bases: object

write(suite, variable)

class robot.reporting.jswriter.SplitLogWriter(output)
Bases: object

write(keywords, strings, index, notify)

robot.reporting.logreportwriters module

class robot.reporting.logreportwriters.LogWriter(js_model)
Bases: robot.reporting.logreportwriters._LogReportWriter

usage = 'log'

write(path, config)

class robot.reporting.logreportwriters.ReportWriter(js_model)
Bases: robot.reporting.logreportwriters._LogReportWriter

usage = 'report'

write(path, config)

class robot.reporting.logreportwriters.RobotModelWriter(output, model, config)
Bases: robot.htmldata.htmlfilewriter.ModelWriter

write(line)

handles(line)

robot.reporting.outputwriter module

class robot.reporting.outputwriter.OutputWriter(output, rpa=False)
Bases: robot.output.xmllogger.XmlLogger

3.1. robot package 395

Robot Framework Documentation, Release 6.0.2

start_message(msg)
Called when a message starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

close()

end_result(result)

end_body_item(item)
Called, by default, when keywords, messages or control structures end.

More specific end_keyword(), end_message(), :meth:‘end_for, etc. can be implemented to visit
only keywords, messages or specific control structures.

Default implementation does nothing.

end_break(break_)
Called when a BREAK element ends.

By default, calls end_body_item() which, by default, does nothing.

end_continue(continue_)
Called when a CONTINUE element ends.

By default, calls end_body_item() which, by default, does nothing.

end_errors(errors=None)

end_for(for_)
Called when a FOR loop ends.

By default, calls end_body_item() which, by default, does nothing.

end_for_iteration(iteration)
Called when a FOR loop iteration ends.

By default, calls end_body_item() which, by default, does nothing.

end_if(if_)
Called when an IF/ELSE structure ends.

By default, calls end_body_item() which, by default, does nothing.

end_if_branch(branch)
Called when an IF/ELSE branch ends.

By default, calls end_body_item() which, by default, does nothing.

end_keyword(kw)
Called when a keyword ends.

By default, calls end_body_item() which, by default, does nothing.

end_message(msg)
Called when a message ends.

By default, calls end_body_item() which, by default, does nothing.

end_return(return_)
Called when a RETURN element ends.

By default, calls end_body_item() which, by default, does nothing.

end_stat(stat)

396 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

end_statistics(stats)

end_suite(suite)
Called when a suite ends. Default implementation does nothing.

end_suite_statistics(tag_stats)

end_tag_statistics(tag_stats)

end_test(test)
Called when a test ends. Default implementation does nothing.

end_total_statistics(total_stats)

end_try(root)
Called when a TRY/EXCEPT structure ends.

By default, calls end_body_item() which, by default, does nothing.

end_try_branch(branch)
Called when TRY, EXCEPT, ELSE and FINALLY branches end.

By default, calls end_body_item() which, by default, does nothing.

end_while(while_)
Called when a WHILE loop ends.

By default, calls end_body_item() which, by default, does nothing.

end_while_iteration(iteration)
Called when a WHILE loop iteration ends.

By default, calls end_body_item() which, by default, does nothing.

log_message(msg)

message(msg)

set_log_level(level)

start_body_item(item)
Called, by default, when keywords, messages or control structures start.

More specific start_keyword(), start_message(), :meth:‘start_for, etc. can be implemented to
visit only keywords, messages or specific control structures.

Can return explicit False to stop visiting. Default implementation does nothing.

start_break(break_)
Called when a BREAK element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_continue(continue_)
Called when a CONTINUE element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_errors(errors=None)

start_for(for_)
Called when a FOR loop starts.

By default, calls start_body_item() which, by default, does nothing.

3.1. robot package 397

Robot Framework Documentation, Release 6.0.2

Can return explicit False to stop visiting.

start_for_iteration(iteration)
Called when a FOR loop iteration starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_if(if_)
Called when an IF/ELSE structure starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_if_branch(branch)
Called when an IF/ELSE branch starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_keyword(kw)
Called when a keyword starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_result(result)

start_return(return_)
Called when a RETURN element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_stat(stat)

start_statistics(stats)

start_suite(suite)
Called when a suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

start_suite_statistics(tag_stats)

start_tag_statistics(tag_stats)

start_test(test)
Called when a test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

start_total_statistics(total_stats)

start_try(root)
Called when a TRY/EXCEPT structure starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

398 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

start_try_branch(branch)
Called when TRY, EXCEPT, ELSE or FINALLY branches start.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_while(while_)
Called when a WHILE loop starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_while_iteration(iteration)
Called when a WHILE loop iteration starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

visit_break(break_)
Visits BREAK elements.

visit_continue(continue_)
Visits CONTINUE elements.

visit_errors(errors)

visit_for(for_)
Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without calling start_for() or
end_for() nor visiting body.

visit_for_iteration(iteration)
Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side there are no iterations.

Can be overridden to allow modifying the passed in iteration without calling
start_for_iteration() or end_for_iteration() nor visiting body.

visit_if(if_)
Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches are in its body and visited
using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without calling start_if() or end_if()
nor visiting branches.

visit_if_branch(branch)
Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without calling start_if_branch() or
end_if_branch() nor visiting body.

visit_keyword(kw)
Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without calling start_keyword() or
end_keyword() nor visiting the body of the keyword

3.1. robot package 399

Robot Framework Documentation, Release 6.0.2

visit_message(msg)
Implements visiting messages.

Can be overridden to allow modifying the passed in msg without calling start_message() or
end_message().

visit_result(result)

visit_return(return_)
Visits a RETURN elements.

visit_stat(stat)

visit_statistics(stats)

visit_suite(suite)
Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without calling start_suite() or
end_suite() nor visiting child suites, tests or setup and teardown at all.

visit_suite_statistics(stats)

visit_tag_statistics(stats)

visit_test(test)
Implements traversing through tests.

Can be overridden to allow modifying the passed in test without calling start_test() or
end_test() nor visiting the body of the test.

visit_total_statistics(stats)

visit_try(try_)
Implements traversing through TRY/EXCEPT structures.

This method is used with the TRY/EXCEPT root element. Actual TRY, EXCEPT, ELSE and FINALLY
branches are visited separately using visit_try_branch().

visit_try_branch(branch)
Visits individual TRY, EXCEPT, ELSE and FINALLY branches.

visit_while(while_)
Implements traversing through WHILE loops.

Can be overridden to allow modifying the passed in while_ without calling start_while() or
end_while() nor visiting body.

visit_while_iteration(iteration)
Implements traversing through single WHILE loop iteration.

This is only used with the result side model because on the running side there are no iterations.

Can be overridden to allow modifying the passed in iteration without calling
start_while_iteration() or end_while_iteration() nor visiting body.

robot.reporting.resultwriter module

class robot.reporting.resultwriter.ResultWriter(*sources)
Bases: object

A class to create log, report, output XML and xUnit files.

400 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

Parameters sources – Either one Result object, or one or more paths to existing output XML
files.

By default writes report.html and log.html, but no output XML or xUnit files. Custom file names can
be given and results disabled or enabled using settings or options passed to the write_results()
method. The latter is typically more convenient:

writer = ResultWriter(result)
writer.write_results(report='custom.html', log=None, xunit='xunit.xml')

write_results(settings=None, **options)
Writes results based on the given settings or options.

Parameters

• settings – RebotSettings object to configure result writing.

• options – Used to construct new RebotSettings object if settings are not given.

class robot.reporting.resultwriter.Results(settings, *sources)
Bases: object

result

js_result

robot.reporting.stringcache module

class robot.reporting.stringcache.StringIndex
Bases: int

bit_length()
Number of bits necessary to represent self in binary.

>>> bin(37)
'0b100101'
>>> (37).bit_length()
6

conjugate()
Returns self, the complex conjugate of any int.

denominator
the denominator of a rational number in lowest terms

from_bytes()
Return the integer represented by the given array of bytes.

bytes Holds the array of bytes to convert. The argument must either support the buffer protocol or be an
iterable object producing bytes. Bytes and bytearray are examples of built-in objects that support the
buffer protocol.

byteorder The byte order used to represent the integer. If byteorder is ‘big’, the most significant byte is
at the beginning of the byte array. If byteorder is ‘little’, the most significant byte is at the end of the
byte array. To request the native byte order of the host system, use ‘sys.byteorder’ as the byte order
value.

signed Indicates whether two’s complement is used to represent the integer.

imag
the imaginary part of a complex number

3.1. robot package 401

Robot Framework Documentation, Release 6.0.2

numerator
the numerator of a rational number in lowest terms

real
the real part of a complex number

to_bytes()
Return an array of bytes representing an integer.

length Length of bytes object to use. An OverflowError is raised if the integer is not representable with
the given number of bytes.

byteorder The byte order used to represent the integer. If byteorder is ‘big’, the most significant byte is
at the beginning of the byte array. If byteorder is ‘little’, the most significant byte is at the end of the
byte array. To request the native byte order of the host system, use ‘sys.byteorder’ as the byte order
value.

signed Determines whether two’s complement is used to represent the integer. If signed is False and a
negative integer is given, an OverflowError is raised.

class robot.reporting.stringcache.StringCache
Bases: object

add(text, html=False)

dump()

robot.reporting.xunitwriter module

class robot.reporting.xunitwriter.XUnitWriter(execution_result)
Bases: object

write(output)

class robot.reporting.xunitwriter.XUnitFileWriter(xml_writer)
Bases: robot.result.visitor.ResultVisitor

Provides an xUnit-compatible result file.

Attempts to adhere to the de facto schema guessed by Peter Reilly, see: http://marc.info/?l=ant-dev&m=
123551933508682

start_suite(suite)
Called when a suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

end_suite(suite)
Called when a suite ends. Default implementation does nothing.

visit_test(test)
Implements traversing through tests.

Can be overridden to allow modifying the passed in test without calling start_test() or
end_test() nor visiting the body of the test.

visit_keyword(kw)
Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without calling start_keyword() or
end_keyword() nor visiting the body of the keyword

visit_statistics(stats)

402 Chapter 3. All packages

http://marc.info/?l=ant-dev&m=123551933508682
http://marc.info/?l=ant-dev&m=123551933508682

Robot Framework Documentation, Release 6.0.2

visit_errors(errors)

end_result(result)

end_body_item(item)
Called, by default, when keywords, messages or control structures end.

More specific end_keyword(), end_message(), :meth:‘end_for, etc. can be implemented to visit
only keywords, messages or specific control structures.

Default implementation does nothing.

end_break(break_)
Called when a BREAK element ends.

By default, calls end_body_item() which, by default, does nothing.

end_continue(continue_)
Called when a CONTINUE element ends.

By default, calls end_body_item() which, by default, does nothing.

end_errors(errors)

end_for(for_)
Called when a FOR loop ends.

By default, calls end_body_item() which, by default, does nothing.

end_for_iteration(iteration)
Called when a FOR loop iteration ends.

By default, calls end_body_item() which, by default, does nothing.

end_if(if_)
Called when an IF/ELSE structure ends.

By default, calls end_body_item() which, by default, does nothing.

end_if_branch(branch)
Called when an IF/ELSE branch ends.

By default, calls end_body_item() which, by default, does nothing.

end_keyword(keyword)
Called when a keyword ends.

By default, calls end_body_item() which, by default, does nothing.

end_message(msg)
Called when a message ends.

By default, calls end_body_item() which, by default, does nothing.

end_return(return_)
Called when a RETURN element ends.

By default, calls end_body_item() which, by default, does nothing.

end_stat(stat)

end_statistics(stats)

end_suite_statistics(suite_stats)

end_tag_statistics(stats)

3.1. robot package 403

Robot Framework Documentation, Release 6.0.2

end_test(test)
Called when a test ends. Default implementation does nothing.

end_total_statistics(stats)

end_try(try_)
Called when a TRY/EXCEPT structure ends.

By default, calls end_body_item() which, by default, does nothing.

end_try_branch(branch)
Called when TRY, EXCEPT, ELSE and FINALLY branches end.

By default, calls end_body_item() which, by default, does nothing.

end_while(while_)
Called when a WHILE loop ends.

By default, calls end_body_item() which, by default, does nothing.

end_while_iteration(iteration)
Called when a WHILE loop iteration ends.

By default, calls end_body_item() which, by default, does nothing.

start_body_item(item)
Called, by default, when keywords, messages or control structures start.

More specific start_keyword(), start_message(), :meth:‘start_for, etc. can be implemented to
visit only keywords, messages or specific control structures.

Can return explicit False to stop visiting. Default implementation does nothing.

start_break(break_)
Called when a BREAK element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_continue(continue_)
Called when a CONTINUE element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_errors(errors)

start_for(for_)
Called when a FOR loop starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_for_iteration(iteration)
Called when a FOR loop iteration starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_if(if_)
Called when an IF/ELSE structure starts.

By default, calls start_body_item() which, by default, does nothing.

404 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

Can return explicit False to stop visiting.

start_if_branch(branch)
Called when an IF/ELSE branch starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_keyword(keyword)
Called when a keyword starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_message(msg)
Called when a message starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_result(result)

start_return(return_)
Called when a RETURN element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_stat(stat)

start_statistics(stats)

start_suite_statistics(stats)

start_tag_statistics(stats)

start_test(test)
Called when a test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

start_total_statistics(stats)

start_try(try_)
Called when a TRY/EXCEPT structure starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_try_branch(branch)
Called when TRY, EXCEPT, ELSE or FINALLY branches start.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_while(while_)
Called when a WHILE loop starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

3.1. robot package 405

Robot Framework Documentation, Release 6.0.2

start_while_iteration(iteration)
Called when a WHILE loop iteration starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

visit_break(break_)
Visits BREAK elements.

visit_continue(continue_)
Visits CONTINUE elements.

visit_for(for_)
Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without calling start_for() or
end_for() nor visiting body.

visit_for_iteration(iteration)
Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side there are no iterations.

Can be overridden to allow modifying the passed in iteration without calling
start_for_iteration() or end_for_iteration() nor visiting body.

visit_if(if_)
Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches are in its body and visited
using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without calling start_if() or end_if()
nor visiting branches.

visit_if_branch(branch)
Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without calling start_if_branch() or
end_if_branch() nor visiting body.

visit_message(msg)
Implements visiting messages.

Can be overridden to allow modifying the passed in msg without calling start_message() or
end_message().

visit_result(result)

visit_return(return_)
Visits a RETURN elements.

visit_stat(stat)

visit_suite(suite)
Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without calling start_suite() or
end_suite() nor visiting child suites, tests or setup and teardown at all.

visit_suite_statistics(stats)

visit_tag_statistics(stats)

visit_total_statistics(stats)

406 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

visit_try(try_)
Implements traversing through TRY/EXCEPT structures.

This method is used with the TRY/EXCEPT root element. Actual TRY, EXCEPT, ELSE and FINALLY
branches are visited separately using visit_try_branch().

visit_try_branch(branch)
Visits individual TRY, EXCEPT, ELSE and FINALLY branches.

visit_while(while_)
Implements traversing through WHILE loops.

Can be overridden to allow modifying the passed in while_ without calling start_while() or
end_while() nor visiting body.

visit_while_iteration(iteration)
Implements traversing through single WHILE loop iteration.

This is only used with the result side model because on the running side there are no iterations.

Can be overridden to allow modifying the passed in iteration without calling
start_while_iteration() or end_while_iteration() nor visiting body.

robot.result package

Implements parsing execution results from XML output files.

The main public API of this package consists of the ExecutionResult() factory method, that returns Result
objects, and of the ResultVisitor abstract class, that eases further processing the results.

The model objects in the model module can also be considered to be part of the public API, because they can be
found inside the Result object. They can also be inspected and modified as part of the normal test execution by
pre-Rebot modifiers and listeners.

It is highly recommended to import the public entry-points via the robot.api package like in the example below. In
those rare cases where the aforementioned model objects are needed directly, they can be imported from this package.

This package is considered stable.

Example

#!/usr/bin/env python

"""Usage: check_test_times.py seconds inpath [outpath]

Reads test execution result from an output XML file and checks that no test
took longer than given amount of seconds to execute.

Optional `outpath` specifies where to write processed results. If not given,
results are written over the original file.
"""

import sys
from robot.api import ExecutionResult, ResultVisitor

class ExecutionTimeChecker(ResultVisitor):

(continues on next page)

3.1. robot package 407

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#programmatic-modification-of-results
http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#listener-interface

Robot Framework Documentation, Release 6.0.2

(continued from previous page)

def __init__(self, max_seconds):
self.max_milliseconds = max_seconds * 1000

def visit_test(self, test):
if test.status == 'PASS' and test.elapsedtime > self.max_milliseconds:

test.status = 'FAIL'
test.message = 'Test execution took too long.'

def check_tests(seconds, inpath, outpath=None):
result = ExecutionResult(inpath)
result.visit(ExecutionTimeChecker(float(seconds)))
result.save(outpath)

if __name__ == '__main__':
try:

check_tests(*sys.argv[1:])
except TypeError:

print(__doc__)

Submodules

robot.result.configurer module

class robot.result.configurer.SuiteConfigurer(remove_keywords=None,
log_level=None, start_time=None,
end_time=None, **base_config)

Bases: robot.model.configurer.SuiteConfigurer

Result suite configured.

Calls suite’s remove_keywords() and filter_messages() methods and sets its start and end time
based on the given named parameters.

base_config is forwarded to robot.model.SuiteConfigurer that will do further configuration
based on them.

visit_suite(suite)
Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without calling start_suite() or
end_suite() nor visiting child suites, tests or setup and teardown at all.

add_tags

end_body_item(item)
Called, by default, when keywords, messages or control structures end.

More specific end_keyword(), end_message(), :meth:‘end_for, etc. can be implemented to visit
only keywords, messages or specific control structures.

Default implementation does nothing.

end_break(break_)
Called when a BREAK element ends.

By default, calls end_body_item() which, by default, does nothing.

408 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

end_continue(continue_)
Called when a CONTINUE element ends.

By default, calls end_body_item() which, by default, does nothing.

end_for(for_)
Called when a FOR loop ends.

By default, calls end_body_item() which, by default, does nothing.

end_for_iteration(iteration)
Called when a FOR loop iteration ends.

By default, calls end_body_item() which, by default, does nothing.

end_if(if_)
Called when an IF/ELSE structure ends.

By default, calls end_body_item() which, by default, does nothing.

end_if_branch(branch)
Called when an IF/ELSE branch ends.

By default, calls end_body_item() which, by default, does nothing.

end_keyword(keyword)
Called when a keyword ends.

By default, calls end_body_item() which, by default, does nothing.

end_message(msg)
Called when a message ends.

By default, calls end_body_item() which, by default, does nothing.

end_return(return_)
Called when a RETURN element ends.

By default, calls end_body_item() which, by default, does nothing.

end_suite(suite)
Called when a suite ends. Default implementation does nothing.

end_test(test)
Called when a test ends. Default implementation does nothing.

end_try(try_)
Called when a TRY/EXCEPT structure ends.

By default, calls end_body_item() which, by default, does nothing.

end_try_branch(branch)
Called when TRY, EXCEPT, ELSE and FINALLY branches end.

By default, calls end_body_item() which, by default, does nothing.

end_while(while_)
Called when a WHILE loop ends.

By default, calls end_body_item() which, by default, does nothing.

end_while_iteration(iteration)
Called when a WHILE loop iteration ends.

By default, calls end_body_item() which, by default, does nothing.

remove_tags

3.1. robot package 409

Robot Framework Documentation, Release 6.0.2

start_body_item(item)
Called, by default, when keywords, messages or control structures start.

More specific start_keyword(), start_message(), :meth:‘start_for, etc. can be implemented to
visit only keywords, messages or specific control structures.

Can return explicit False to stop visiting. Default implementation does nothing.

start_break(break_)
Called when a BREAK element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_continue(continue_)
Called when a CONTINUE element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_for(for_)
Called when a FOR loop starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_for_iteration(iteration)
Called when a FOR loop iteration starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_if(if_)
Called when an IF/ELSE structure starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_if_branch(branch)
Called when an IF/ELSE branch starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_keyword(keyword)
Called when a keyword starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_message(msg)
Called when a message starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_return(return_)
Called when a RETURN element starts.

By default, calls start_body_item() which, by default, does nothing.

410 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

Can return explicit False to stop visiting.

start_suite(suite)
Called when a suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

start_test(test)
Called when a test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

start_try(try_)
Called when a TRY/EXCEPT structure starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_try_branch(branch)
Called when TRY, EXCEPT, ELSE or FINALLY branches start.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_while(while_)
Called when a WHILE loop starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_while_iteration(iteration)
Called when a WHILE loop iteration starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

visit_break(break_)
Visits BREAK elements.

visit_continue(continue_)
Visits CONTINUE elements.

visit_for(for_)
Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without calling start_for() or
end_for() nor visiting body.

visit_for_iteration(iteration)
Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side there are no iterations.

Can be overridden to allow modifying the passed in iteration without calling
start_for_iteration() or end_for_iteration() nor visiting body.

visit_if(if_)
Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches are in its body and visited
using visit_if_branch().

3.1. robot package 411

Robot Framework Documentation, Release 6.0.2

Can be overridden to allow modifying the passed in if_ without calling start_if() or end_if()
nor visiting branches.

visit_if_branch(branch)
Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without calling start_if_branch() or
end_if_branch() nor visiting body.

visit_keyword(kw)
Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without calling start_keyword() or
end_keyword() nor visiting the body of the keyword

visit_message(msg)
Implements visiting messages.

Can be overridden to allow modifying the passed in msg without calling start_message() or
end_message().

visit_return(return_)
Visits a RETURN elements.

visit_test(test)
Implements traversing through tests.

Can be overridden to allow modifying the passed in test without calling start_test() or
end_test() nor visiting the body of the test.

visit_try(try_)
Implements traversing through TRY/EXCEPT structures.

This method is used with the TRY/EXCEPT root element. Actual TRY, EXCEPT, ELSE and FINALLY
branches are visited separately using visit_try_branch().

visit_try_branch(branch)
Visits individual TRY, EXCEPT, ELSE and FINALLY branches.

visit_while(while_)
Implements traversing through WHILE loops.

Can be overridden to allow modifying the passed in while_ without calling start_while() or
end_while() nor visiting body.

visit_while_iteration(iteration)
Implements traversing through single WHILE loop iteration.

This is only used with the result side model because on the running side there are no iterations.

Can be overridden to allow modifying the passed in iteration without calling
start_while_iteration() or end_while_iteration() nor visiting body.

robot.result.executionerrors module

class robot.result.executionerrors.ExecutionErrors(messages=None)
Bases: object

Represents errors occurred during the execution of tests.

An error might be, for example, that importing a library has failed.

id = 'errors'

412 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

messages
A list-like object of Message instances.

add(other)

visit(visitor)

robot.result.executionresult module

class robot.result.executionresult.Result(source=None, root_suite=None, errors=None,
rpa=None)

Bases: object

Test execution results.

Can be created based on XML output files using the ExecutionResult() factory method. Also returned
by the robot.running.TestSuite.run method.

source = None
Path to the XML file where results are read from.

suite = None
Hierarchical execution results as a TestSuite object.

errors = None
Execution errors as an ExecutionErrors object.

statistics
Test execution statistics.

Statistics are an instance of Statistics that is created based on the contained suite and possible
configuration.

Statistics are created every time this property is accessed. Saving them to a variable is thus often a good
idea to avoid re-creating them unnecessarily:

from robot.api import ExecutionResult

result = ExecutionResult('output.xml')
result.configure(stat_config={'suite_stat_level': 2,

'tag_stat_combine': 'tagANDanother'})
stats = result.statistics
print(stats.total.failed)
print(stats.total.passed)
print(stats.tags.combined[0].total)

return_code
Return code (integer) of test execution.

By default returns the number of failed tests (max 250), but can be configured to always return 0.

configure(status_rc=True, suite_config=None, stat_config=None)
Configures the result object and objects it contains.

Parameters

• status_rc – If set to False, return_code always returns 0.

• suite_config – A dictionary of configuration options passed to configure()
method of the contained suite.

3.1. robot package 413

Robot Framework Documentation, Release 6.0.2

• stat_config – A dictionary of configuration options used when creating
statistics.

save(path=None)
Save results as a new output XML file.

Parameters path – Path to save results to. If omitted, overwrites the original file.

visit(visitor)
An entry point to visit the whole result object.

Parameters visitor – An instance of ResultVisitor.

Visitors can gather information, modify results, etc. See result package for a simple usage example.

Notice that it is also possible to call result.suite.visit if there is no need to visit the contained
statistics or errors.

handle_suite_teardown_failures()
Internal usage only.

set_execution_mode(other)
Set execution mode based on other result. Internal usage only.

class robot.result.executionresult.CombinedResult(results=None)
Bases: robot.result.executionresult.Result

Combined results of multiple test executions.

add_result(other)

configure(status_rc=True, suite_config=None, stat_config=None)
Configures the result object and objects it contains.

Parameters

• status_rc – If set to False, return_code always returns 0.

• suite_config – A dictionary of configuration options passed to configure()
method of the contained suite.

• stat_config – A dictionary of configuration options used when creating
statistics.

handle_suite_teardown_failures()
Internal usage only.

return_code
Return code (integer) of test execution.

By default returns the number of failed tests (max 250), but can be configured to always return 0.

save(path=None)
Save results as a new output XML file.

Parameters path – Path to save results to. If omitted, overwrites the original file.

set_execution_mode(other)
Set execution mode based on other result. Internal usage only.

statistics
Test execution statistics.

Statistics are an instance of Statistics that is created based on the contained suite and possible
configuration.

414 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

Statistics are created every time this property is accessed. Saving them to a variable is thus often a good
idea to avoid re-creating them unnecessarily:

from robot.api import ExecutionResult

result = ExecutionResult('output.xml')
result.configure(stat_config={'suite_stat_level': 2,

'tag_stat_combine': 'tagANDanother'})
stats = result.statistics
print(stats.total.failed)
print(stats.total.passed)
print(stats.tags.combined[0].total)

visit(visitor)
An entry point to visit the whole result object.

Parameters visitor – An instance of ResultVisitor.

Visitors can gather information, modify results, etc. See result package for a simple usage example.

Notice that it is also possible to call result.suite.visit if there is no need to visit the contained
statistics or errors.

robot.result.flattenkeywordmatcher module

robot.result.flattenkeywordmatcher.validate_flatten_keyword(options)

class robot.result.flattenkeywordmatcher.FlattenByTypeMatcher(flatten)
Bases: object

match(tag)

class robot.result.flattenkeywordmatcher.FlattenByNameMatcher(flatten)
Bases: object

match(kwname, libname=None)

class robot.result.flattenkeywordmatcher.FlattenByTagMatcher(flatten)
Bases: object

match(kwtags)

robot.result.keywordremover module

robot.result.keywordremover.KeywordRemover(how)

class robot.result.keywordremover.AllKeywordsRemover
Bases: robot.result.keywordremover._KeywordRemover

visit_keyword(keyword)
Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without calling start_keyword() or
end_keyword() nor visiting the body of the keyword

visit_for(for_)
Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without calling start_for() or
end_for() nor visiting body.

3.1. robot package 415

Robot Framework Documentation, Release 6.0.2

visit_if_branch(branch)
Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without calling start_if_branch() or
end_if_branch() nor visiting body.

end_body_item(item)
Called, by default, when keywords, messages or control structures end.

More specific end_keyword(), end_message(), :meth:‘end_for, etc. can be implemented to visit
only keywords, messages or specific control structures.

Default implementation does nothing.

end_break(break_)
Called when a BREAK element ends.

By default, calls end_body_item() which, by default, does nothing.

end_continue(continue_)
Called when a CONTINUE element ends.

By default, calls end_body_item() which, by default, does nothing.

end_for(for_)
Called when a FOR loop ends.

By default, calls end_body_item() which, by default, does nothing.

end_for_iteration(iteration)
Called when a FOR loop iteration ends.

By default, calls end_body_item() which, by default, does nothing.

end_if(if_)
Called when an IF/ELSE structure ends.

By default, calls end_body_item() which, by default, does nothing.

end_if_branch(branch)
Called when an IF/ELSE branch ends.

By default, calls end_body_item() which, by default, does nothing.

end_keyword(keyword)
Called when a keyword ends.

By default, calls end_body_item() which, by default, does nothing.

end_message(msg)
Called when a message ends.

By default, calls end_body_item() which, by default, does nothing.

end_return(return_)
Called when a RETURN element ends.

By default, calls end_body_item() which, by default, does nothing.

end_suite(suite)
Called when a suite ends. Default implementation does nothing.

end_test(test)
Called when a test ends. Default implementation does nothing.

416 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

end_try(try_)
Called when a TRY/EXCEPT structure ends.

By default, calls end_body_item() which, by default, does nothing.

end_try_branch(branch)
Called when TRY, EXCEPT, ELSE and FINALLY branches end.

By default, calls end_body_item() which, by default, does nothing.

end_while(while_)
Called when a WHILE loop ends.

By default, calls end_body_item() which, by default, does nothing.

end_while_iteration(iteration)
Called when a WHILE loop iteration ends.

By default, calls end_body_item() which, by default, does nothing.

start_body_item(item)
Called, by default, when keywords, messages or control structures start.

More specific start_keyword(), start_message(), :meth:‘start_for, etc. can be implemented to
visit only keywords, messages or specific control structures.

Can return explicit False to stop visiting. Default implementation does nothing.

start_break(break_)
Called when a BREAK element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_continue(continue_)
Called when a CONTINUE element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_for(for_)
Called when a FOR loop starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_for_iteration(iteration)
Called when a FOR loop iteration starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_if(if_)
Called when an IF/ELSE structure starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_if_branch(branch)
Called when an IF/ELSE branch starts.

By default, calls start_body_item() which, by default, does nothing.

3.1. robot package 417

Robot Framework Documentation, Release 6.0.2

Can return explicit False to stop visiting.

start_keyword(keyword)
Called when a keyword starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_message(msg)
Called when a message starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_return(return_)
Called when a RETURN element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_suite(suite)
Called when a suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

start_test(test)
Called when a test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

start_try(try_)
Called when a TRY/EXCEPT structure starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_try_branch(branch)
Called when TRY, EXCEPT, ELSE or FINALLY branches start.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_while(while_)
Called when a WHILE loop starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_while_iteration(iteration)
Called when a WHILE loop iteration starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

visit_break(break_)
Visits BREAK elements.

visit_continue(continue_)
Visits CONTINUE elements.

418 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

visit_for_iteration(iteration)
Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side there are no iterations.

Can be overridden to allow modifying the passed in iteration without calling
start_for_iteration() or end_for_iteration() nor visiting body.

visit_if(if_)
Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches are in its body and visited
using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without calling start_if() or end_if()
nor visiting branches.

visit_message(msg)
Implements visiting messages.

Can be overridden to allow modifying the passed in msg without calling start_message() or
end_message().

visit_return(return_)
Visits a RETURN elements.

visit_suite(suite)
Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without calling start_suite() or
end_suite() nor visiting child suites, tests or setup and teardown at all.

visit_test(test)
Implements traversing through tests.

Can be overridden to allow modifying the passed in test without calling start_test() or
end_test() nor visiting the body of the test.

visit_try(try_)
Implements traversing through TRY/EXCEPT structures.

This method is used with the TRY/EXCEPT root element. Actual TRY, EXCEPT, ELSE and FINALLY
branches are visited separately using visit_try_branch().

visit_try_branch(branch)
Visits individual TRY, EXCEPT, ELSE and FINALLY branches.

visit_while(while_)
Implements traversing through WHILE loops.

Can be overridden to allow modifying the passed in while_ without calling start_while() or
end_while() nor visiting body.

visit_while_iteration(iteration)
Implements traversing through single WHILE loop iteration.

This is only used with the result side model because on the running side there are no iterations.

Can be overridden to allow modifying the passed in iteration without calling
start_while_iteration() or end_while_iteration() nor visiting body.

class robot.result.keywordremover.PassedKeywordRemover
Bases: robot.result.keywordremover._KeywordRemover

3.1. robot package 419

Robot Framework Documentation, Release 6.0.2

start_suite(suite)
Called when a suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

visit_test(test)
Implements traversing through tests.

Can be overridden to allow modifying the passed in test without calling start_test() or
end_test() nor visiting the body of the test.

visit_keyword(keyword)
Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without calling start_keyword() or
end_keyword() nor visiting the body of the keyword

end_body_item(item)
Called, by default, when keywords, messages or control structures end.

More specific end_keyword(), end_message(), :meth:‘end_for, etc. can be implemented to visit
only keywords, messages or specific control structures.

Default implementation does nothing.

end_break(break_)
Called when a BREAK element ends.

By default, calls end_body_item() which, by default, does nothing.

end_continue(continue_)
Called when a CONTINUE element ends.

By default, calls end_body_item() which, by default, does nothing.

end_for(for_)
Called when a FOR loop ends.

By default, calls end_body_item() which, by default, does nothing.

end_for_iteration(iteration)
Called when a FOR loop iteration ends.

By default, calls end_body_item() which, by default, does nothing.

end_if(if_)
Called when an IF/ELSE structure ends.

By default, calls end_body_item() which, by default, does nothing.

end_if_branch(branch)
Called when an IF/ELSE branch ends.

By default, calls end_body_item() which, by default, does nothing.

end_keyword(keyword)
Called when a keyword ends.

By default, calls end_body_item() which, by default, does nothing.

end_message(msg)
Called when a message ends.

By default, calls end_body_item() which, by default, does nothing.

420 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

end_return(return_)
Called when a RETURN element ends.

By default, calls end_body_item() which, by default, does nothing.

end_suite(suite)
Called when a suite ends. Default implementation does nothing.

end_test(test)
Called when a test ends. Default implementation does nothing.

end_try(try_)
Called when a TRY/EXCEPT structure ends.

By default, calls end_body_item() which, by default, does nothing.

end_try_branch(branch)
Called when TRY, EXCEPT, ELSE and FINALLY branches end.

By default, calls end_body_item() which, by default, does nothing.

end_while(while_)
Called when a WHILE loop ends.

By default, calls end_body_item() which, by default, does nothing.

end_while_iteration(iteration)
Called when a WHILE loop iteration ends.

By default, calls end_body_item() which, by default, does nothing.

start_body_item(item)
Called, by default, when keywords, messages or control structures start.

More specific start_keyword(), start_message(), :meth:‘start_for, etc. can be implemented to
visit only keywords, messages or specific control structures.

Can return explicit False to stop visiting. Default implementation does nothing.

start_break(break_)
Called when a BREAK element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_continue(continue_)
Called when a CONTINUE element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_for(for_)
Called when a FOR loop starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_for_iteration(iteration)
Called when a FOR loop iteration starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

3.1. robot package 421

Robot Framework Documentation, Release 6.0.2

start_if(if_)
Called when an IF/ELSE structure starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_if_branch(branch)
Called when an IF/ELSE branch starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_keyword(keyword)
Called when a keyword starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_message(msg)
Called when a message starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_return(return_)
Called when a RETURN element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_test(test)
Called when a test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

start_try(try_)
Called when a TRY/EXCEPT structure starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_try_branch(branch)
Called when TRY, EXCEPT, ELSE or FINALLY branches start.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_while(while_)
Called when a WHILE loop starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_while_iteration(iteration)
Called when a WHILE loop iteration starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

422 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

visit_break(break_)
Visits BREAK elements.

visit_continue(continue_)
Visits CONTINUE elements.

visit_for(for_)
Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without calling start_for() or
end_for() nor visiting body.

visit_for_iteration(iteration)
Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side there are no iterations.

Can be overridden to allow modifying the passed in iteration without calling
start_for_iteration() or end_for_iteration() nor visiting body.

visit_if(if_)
Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches are in its body and visited
using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without calling start_if() or end_if()
nor visiting branches.

visit_if_branch(branch)
Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without calling start_if_branch() or
end_if_branch() nor visiting body.

visit_message(msg)
Implements visiting messages.

Can be overridden to allow modifying the passed in msg without calling start_message() or
end_message().

visit_return(return_)
Visits a RETURN elements.

visit_suite(suite)
Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without calling start_suite() or
end_suite() nor visiting child suites, tests or setup and teardown at all.

visit_try(try_)
Implements traversing through TRY/EXCEPT structures.

This method is used with the TRY/EXCEPT root element. Actual TRY, EXCEPT, ELSE and FINALLY
branches are visited separately using visit_try_branch().

visit_try_branch(branch)
Visits individual TRY, EXCEPT, ELSE and FINALLY branches.

visit_while(while_)
Implements traversing through WHILE loops.

Can be overridden to allow modifying the passed in while_ without calling start_while() or
end_while() nor visiting body.

3.1. robot package 423

Robot Framework Documentation, Release 6.0.2

visit_while_iteration(iteration)
Implements traversing through single WHILE loop iteration.

This is only used with the result side model because on the running side there are no iterations.

Can be overridden to allow modifying the passed in iteration without calling
start_while_iteration() or end_while_iteration() nor visiting body.

class robot.result.keywordremover.ByNameKeywordRemover(pattern)
Bases: robot.result.keywordremover._KeywordRemover

start_keyword(kw)
Called when a keyword starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

end_body_item(item)
Called, by default, when keywords, messages or control structures end.

More specific end_keyword(), end_message(), :meth:‘end_for, etc. can be implemented to visit
only keywords, messages or specific control structures.

Default implementation does nothing.

end_break(break_)
Called when a BREAK element ends.

By default, calls end_body_item() which, by default, does nothing.

end_continue(continue_)
Called when a CONTINUE element ends.

By default, calls end_body_item() which, by default, does nothing.

end_for(for_)
Called when a FOR loop ends.

By default, calls end_body_item() which, by default, does nothing.

end_for_iteration(iteration)
Called when a FOR loop iteration ends.

By default, calls end_body_item() which, by default, does nothing.

end_if(if_)
Called when an IF/ELSE structure ends.

By default, calls end_body_item() which, by default, does nothing.

end_if_branch(branch)
Called when an IF/ELSE branch ends.

By default, calls end_body_item() which, by default, does nothing.

end_keyword(keyword)
Called when a keyword ends.

By default, calls end_body_item() which, by default, does nothing.

end_message(msg)
Called when a message ends.

By default, calls end_body_item() which, by default, does nothing.

424 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

end_return(return_)
Called when a RETURN element ends.

By default, calls end_body_item() which, by default, does nothing.

end_suite(suite)
Called when a suite ends. Default implementation does nothing.

end_test(test)
Called when a test ends. Default implementation does nothing.

end_try(try_)
Called when a TRY/EXCEPT structure ends.

By default, calls end_body_item() which, by default, does nothing.

end_try_branch(branch)
Called when TRY, EXCEPT, ELSE and FINALLY branches end.

By default, calls end_body_item() which, by default, does nothing.

end_while(while_)
Called when a WHILE loop ends.

By default, calls end_body_item() which, by default, does nothing.

end_while_iteration(iteration)
Called when a WHILE loop iteration ends.

By default, calls end_body_item() which, by default, does nothing.

start_body_item(item)
Called, by default, when keywords, messages or control structures start.

More specific start_keyword(), start_message(), :meth:‘start_for, etc. can be implemented to
visit only keywords, messages or specific control structures.

Can return explicit False to stop visiting. Default implementation does nothing.

start_break(break_)
Called when a BREAK element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_continue(continue_)
Called when a CONTINUE element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_for(for_)
Called when a FOR loop starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_for_iteration(iteration)
Called when a FOR loop iteration starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

3.1. robot package 425

Robot Framework Documentation, Release 6.0.2

start_if(if_)
Called when an IF/ELSE structure starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_if_branch(branch)
Called when an IF/ELSE branch starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_message(msg)
Called when a message starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_return(return_)
Called when a RETURN element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_suite(suite)
Called when a suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

start_test(test)
Called when a test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

start_try(try_)
Called when a TRY/EXCEPT structure starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_try_branch(branch)
Called when TRY, EXCEPT, ELSE or FINALLY branches start.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_while(while_)
Called when a WHILE loop starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_while_iteration(iteration)
Called when a WHILE loop iteration starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

visit_break(break_)
Visits BREAK elements.

426 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

visit_continue(continue_)
Visits CONTINUE elements.

visit_for(for_)
Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without calling start_for() or
end_for() nor visiting body.

visit_for_iteration(iteration)
Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side there are no iterations.

Can be overridden to allow modifying the passed in iteration without calling
start_for_iteration() or end_for_iteration() nor visiting body.

visit_if(if_)
Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches are in its body and visited
using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without calling start_if() or end_if()
nor visiting branches.

visit_if_branch(branch)
Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without calling start_if_branch() or
end_if_branch() nor visiting body.

visit_keyword(kw)
Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without calling start_keyword() or
end_keyword() nor visiting the body of the keyword

visit_message(msg)
Implements visiting messages.

Can be overridden to allow modifying the passed in msg without calling start_message() or
end_message().

visit_return(return_)
Visits a RETURN elements.

visit_suite(suite)
Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without calling start_suite() or
end_suite() nor visiting child suites, tests or setup and teardown at all.

visit_test(test)
Implements traversing through tests.

Can be overridden to allow modifying the passed in test without calling start_test() or
end_test() nor visiting the body of the test.

visit_try(try_)
Implements traversing through TRY/EXCEPT structures.

This method is used with the TRY/EXCEPT root element. Actual TRY, EXCEPT, ELSE and FINALLY
branches are visited separately using visit_try_branch().

3.1. robot package 427

Robot Framework Documentation, Release 6.0.2

visit_try_branch(branch)
Visits individual TRY, EXCEPT, ELSE and FINALLY branches.

visit_while(while_)
Implements traversing through WHILE loops.

Can be overridden to allow modifying the passed in while_ without calling start_while() or
end_while() nor visiting body.

visit_while_iteration(iteration)
Implements traversing through single WHILE loop iteration.

This is only used with the result side model because on the running side there are no iterations.

Can be overridden to allow modifying the passed in iteration without calling
start_while_iteration() or end_while_iteration() nor visiting body.

class robot.result.keywordremover.ByTagKeywordRemover(pattern)
Bases: robot.result.keywordremover._KeywordRemover

start_keyword(kw)
Called when a keyword starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

end_body_item(item)
Called, by default, when keywords, messages or control structures end.

More specific end_keyword(), end_message(), :meth:‘end_for, etc. can be implemented to visit
only keywords, messages or specific control structures.

Default implementation does nothing.

end_break(break_)
Called when a BREAK element ends.

By default, calls end_body_item() which, by default, does nothing.

end_continue(continue_)
Called when a CONTINUE element ends.

By default, calls end_body_item() which, by default, does nothing.

end_for(for_)
Called when a FOR loop ends.

By default, calls end_body_item() which, by default, does nothing.

end_for_iteration(iteration)
Called when a FOR loop iteration ends.

By default, calls end_body_item() which, by default, does nothing.

end_if(if_)
Called when an IF/ELSE structure ends.

By default, calls end_body_item() which, by default, does nothing.

end_if_branch(branch)
Called when an IF/ELSE branch ends.

By default, calls end_body_item() which, by default, does nothing.

428 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

end_keyword(keyword)
Called when a keyword ends.

By default, calls end_body_item() which, by default, does nothing.

end_message(msg)
Called when a message ends.

By default, calls end_body_item() which, by default, does nothing.

end_return(return_)
Called when a RETURN element ends.

By default, calls end_body_item() which, by default, does nothing.

end_suite(suite)
Called when a suite ends. Default implementation does nothing.

end_test(test)
Called when a test ends. Default implementation does nothing.

end_try(try_)
Called when a TRY/EXCEPT structure ends.

By default, calls end_body_item() which, by default, does nothing.

end_try_branch(branch)
Called when TRY, EXCEPT, ELSE and FINALLY branches end.

By default, calls end_body_item() which, by default, does nothing.

end_while(while_)
Called when a WHILE loop ends.

By default, calls end_body_item() which, by default, does nothing.

end_while_iteration(iteration)
Called when a WHILE loop iteration ends.

By default, calls end_body_item() which, by default, does nothing.

start_body_item(item)
Called, by default, when keywords, messages or control structures start.

More specific start_keyword(), start_message(), :meth:‘start_for, etc. can be implemented to
visit only keywords, messages or specific control structures.

Can return explicit False to stop visiting. Default implementation does nothing.

start_break(break_)
Called when a BREAK element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_continue(continue_)
Called when a CONTINUE element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_for(for_)
Called when a FOR loop starts.

By default, calls start_body_item() which, by default, does nothing.

3.1. robot package 429

Robot Framework Documentation, Release 6.0.2

Can return explicit False to stop visiting.

start_for_iteration(iteration)
Called when a FOR loop iteration starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_if(if_)
Called when an IF/ELSE structure starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_if_branch(branch)
Called when an IF/ELSE branch starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_message(msg)
Called when a message starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_return(return_)
Called when a RETURN element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_suite(suite)
Called when a suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

start_test(test)
Called when a test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

start_try(try_)
Called when a TRY/EXCEPT structure starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_try_branch(branch)
Called when TRY, EXCEPT, ELSE or FINALLY branches start.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_while(while_)
Called when a WHILE loop starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

430 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

start_while_iteration(iteration)
Called when a WHILE loop iteration starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

visit_break(break_)
Visits BREAK elements.

visit_continue(continue_)
Visits CONTINUE elements.

visit_for(for_)
Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without calling start_for() or
end_for() nor visiting body.

visit_for_iteration(iteration)
Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side there are no iterations.

Can be overridden to allow modifying the passed in iteration without calling
start_for_iteration() or end_for_iteration() nor visiting body.

visit_if(if_)
Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches are in its body and visited
using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without calling start_if() or end_if()
nor visiting branches.

visit_if_branch(branch)
Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without calling start_if_branch() or
end_if_branch() nor visiting body.

visit_keyword(kw)
Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without calling start_keyword() or
end_keyword() nor visiting the body of the keyword

visit_message(msg)
Implements visiting messages.

Can be overridden to allow modifying the passed in msg without calling start_message() or
end_message().

visit_return(return_)
Visits a RETURN elements.

visit_suite(suite)
Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without calling start_suite() or
end_suite() nor visiting child suites, tests or setup and teardown at all.

3.1. robot package 431

Robot Framework Documentation, Release 6.0.2

visit_test(test)
Implements traversing through tests.

Can be overridden to allow modifying the passed in test without calling start_test() or
end_test() nor visiting the body of the test.

visit_try(try_)
Implements traversing through TRY/EXCEPT structures.

This method is used with the TRY/EXCEPT root element. Actual TRY, EXCEPT, ELSE and FINALLY
branches are visited separately using visit_try_branch().

visit_try_branch(branch)
Visits individual TRY, EXCEPT, ELSE and FINALLY branches.

visit_while(while_)
Implements traversing through WHILE loops.

Can be overridden to allow modifying the passed in while_ without calling start_while() or
end_while() nor visiting body.

visit_while_iteration(iteration)
Implements traversing through single WHILE loop iteration.

This is only used with the result side model because on the running side there are no iterations.

Can be overridden to allow modifying the passed in iteration without calling
start_while_iteration() or end_while_iteration() nor visiting body.

class robot.result.keywordremover.ForLoopItemsRemover
Bases: robot.result.keywordremover._LoopItemsRemover

start_for(for_)
Called when a FOR loop starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

end_body_item(item)
Called, by default, when keywords, messages or control structures end.

More specific end_keyword(), end_message(), :meth:‘end_for, etc. can be implemented to visit
only keywords, messages or specific control structures.

Default implementation does nothing.

end_break(break_)
Called when a BREAK element ends.

By default, calls end_body_item() which, by default, does nothing.

end_continue(continue_)
Called when a CONTINUE element ends.

By default, calls end_body_item() which, by default, does nothing.

end_for(for_)
Called when a FOR loop ends.

By default, calls end_body_item() which, by default, does nothing.

end_for_iteration(iteration)
Called when a FOR loop iteration ends.

By default, calls end_body_item() which, by default, does nothing.

432 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

end_if(if_)
Called when an IF/ELSE structure ends.

By default, calls end_body_item() which, by default, does nothing.

end_if_branch(branch)
Called when an IF/ELSE branch ends.

By default, calls end_body_item() which, by default, does nothing.

end_keyword(keyword)
Called when a keyword ends.

By default, calls end_body_item() which, by default, does nothing.

end_message(msg)
Called when a message ends.

By default, calls end_body_item() which, by default, does nothing.

end_return(return_)
Called when a RETURN element ends.

By default, calls end_body_item() which, by default, does nothing.

end_suite(suite)
Called when a suite ends. Default implementation does nothing.

end_test(test)
Called when a test ends. Default implementation does nothing.

end_try(try_)
Called when a TRY/EXCEPT structure ends.

By default, calls end_body_item() which, by default, does nothing.

end_try_branch(branch)
Called when TRY, EXCEPT, ELSE and FINALLY branches end.

By default, calls end_body_item() which, by default, does nothing.

end_while(while_)
Called when a WHILE loop ends.

By default, calls end_body_item() which, by default, does nothing.

end_while_iteration(iteration)
Called when a WHILE loop iteration ends.

By default, calls end_body_item() which, by default, does nothing.

start_body_item(item)
Called, by default, when keywords, messages or control structures start.

More specific start_keyword(), start_message(), :meth:‘start_for, etc. can be implemented to
visit only keywords, messages or specific control structures.

Can return explicit False to stop visiting. Default implementation does nothing.

start_break(break_)
Called when a BREAK element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

3.1. robot package 433

Robot Framework Documentation, Release 6.0.2

start_continue(continue_)
Called when a CONTINUE element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_for_iteration(iteration)
Called when a FOR loop iteration starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_if(if_)
Called when an IF/ELSE structure starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_if_branch(branch)
Called when an IF/ELSE branch starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_keyword(keyword)
Called when a keyword starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_message(msg)
Called when a message starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_return(return_)
Called when a RETURN element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_suite(suite)
Called when a suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

start_test(test)
Called when a test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

start_try(try_)
Called when a TRY/EXCEPT structure starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

434 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

start_try_branch(branch)
Called when TRY, EXCEPT, ELSE or FINALLY branches start.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_while(while_)
Called when a WHILE loop starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_while_iteration(iteration)
Called when a WHILE loop iteration starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

visit_break(break_)
Visits BREAK elements.

visit_continue(continue_)
Visits CONTINUE elements.

visit_for(for_)
Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without calling start_for() or
end_for() nor visiting body.

visit_for_iteration(iteration)
Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side there are no iterations.

Can be overridden to allow modifying the passed in iteration without calling
start_for_iteration() or end_for_iteration() nor visiting body.

visit_if(if_)
Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches are in its body and visited
using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without calling start_if() or end_if()
nor visiting branches.

visit_if_branch(branch)
Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without calling start_if_branch() or
end_if_branch() nor visiting body.

visit_keyword(kw)
Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without calling start_keyword() or
end_keyword() nor visiting the body of the keyword

visit_message(msg)
Implements visiting messages.

3.1. robot package 435

Robot Framework Documentation, Release 6.0.2

Can be overridden to allow modifying the passed in msg without calling start_message() or
end_message().

visit_return(return_)
Visits a RETURN elements.

visit_suite(suite)
Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without calling start_suite() or
end_suite() nor visiting child suites, tests or setup and teardown at all.

visit_test(test)
Implements traversing through tests.

Can be overridden to allow modifying the passed in test without calling start_test() or
end_test() nor visiting the body of the test.

visit_try(try_)
Implements traversing through TRY/EXCEPT structures.

This method is used with the TRY/EXCEPT root element. Actual TRY, EXCEPT, ELSE and FINALLY
branches are visited separately using visit_try_branch().

visit_try_branch(branch)
Visits individual TRY, EXCEPT, ELSE and FINALLY branches.

visit_while(while_)
Implements traversing through WHILE loops.

Can be overridden to allow modifying the passed in while_ without calling start_while() or
end_while() nor visiting body.

visit_while_iteration(iteration)
Implements traversing through single WHILE loop iteration.

This is only used with the result side model because on the running side there are no iterations.

Can be overridden to allow modifying the passed in iteration without calling
start_while_iteration() or end_while_iteration() nor visiting body.

class robot.result.keywordremover.WhileLoopItemsRemover
Bases: robot.result.keywordremover._LoopItemsRemover

start_while(while_)
Called when a WHILE loop starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

end_body_item(item)
Called, by default, when keywords, messages or control structures end.

More specific end_keyword(), end_message(), :meth:‘end_for, etc. can be implemented to visit
only keywords, messages or specific control structures.

Default implementation does nothing.

end_break(break_)
Called when a BREAK element ends.

By default, calls end_body_item() which, by default, does nothing.

436 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

end_continue(continue_)
Called when a CONTINUE element ends.

By default, calls end_body_item() which, by default, does nothing.

end_for(for_)
Called when a FOR loop ends.

By default, calls end_body_item() which, by default, does nothing.

end_for_iteration(iteration)
Called when a FOR loop iteration ends.

By default, calls end_body_item() which, by default, does nothing.

end_if(if_)
Called when an IF/ELSE structure ends.

By default, calls end_body_item() which, by default, does nothing.

end_if_branch(branch)
Called when an IF/ELSE branch ends.

By default, calls end_body_item() which, by default, does nothing.

end_keyword(keyword)
Called when a keyword ends.

By default, calls end_body_item() which, by default, does nothing.

end_message(msg)
Called when a message ends.

By default, calls end_body_item() which, by default, does nothing.

end_return(return_)
Called when a RETURN element ends.

By default, calls end_body_item() which, by default, does nothing.

end_suite(suite)
Called when a suite ends. Default implementation does nothing.

end_test(test)
Called when a test ends. Default implementation does nothing.

end_try(try_)
Called when a TRY/EXCEPT structure ends.

By default, calls end_body_item() which, by default, does nothing.

end_try_branch(branch)
Called when TRY, EXCEPT, ELSE and FINALLY branches end.

By default, calls end_body_item() which, by default, does nothing.

end_while(while_)
Called when a WHILE loop ends.

By default, calls end_body_item() which, by default, does nothing.

end_while_iteration(iteration)
Called when a WHILE loop iteration ends.

By default, calls end_body_item() which, by default, does nothing.

3.1. robot package 437

Robot Framework Documentation, Release 6.0.2

start_body_item(item)
Called, by default, when keywords, messages or control structures start.

More specific start_keyword(), start_message(), :meth:‘start_for, etc. can be implemented to
visit only keywords, messages or specific control structures.

Can return explicit False to stop visiting. Default implementation does nothing.

start_break(break_)
Called when a BREAK element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_continue(continue_)
Called when a CONTINUE element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_for(for_)
Called when a FOR loop starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_for_iteration(iteration)
Called when a FOR loop iteration starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_if(if_)
Called when an IF/ELSE structure starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_if_branch(branch)
Called when an IF/ELSE branch starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_keyword(keyword)
Called when a keyword starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_message(msg)
Called when a message starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_return(return_)
Called when a RETURN element starts.

By default, calls start_body_item() which, by default, does nothing.

438 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

Can return explicit False to stop visiting.

start_suite(suite)
Called when a suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

start_test(test)
Called when a test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

start_try(try_)
Called when a TRY/EXCEPT structure starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_try_branch(branch)
Called when TRY, EXCEPT, ELSE or FINALLY branches start.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_while_iteration(iteration)
Called when a WHILE loop iteration starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

visit_break(break_)
Visits BREAK elements.

visit_continue(continue_)
Visits CONTINUE elements.

visit_for(for_)
Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without calling start_for() or
end_for() nor visiting body.

visit_for_iteration(iteration)
Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side there are no iterations.

Can be overridden to allow modifying the passed in iteration without calling
start_for_iteration() or end_for_iteration() nor visiting body.

visit_if(if_)
Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches are in its body and visited
using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without calling start_if() or end_if()
nor visiting branches.

visit_if_branch(branch)
Implements traversing through single IF/ELSE branch.

3.1. robot package 439

Robot Framework Documentation, Release 6.0.2

Can be overridden to allow modifying the passed in branch without calling start_if_branch() or
end_if_branch() nor visiting body.

visit_keyword(kw)
Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without calling start_keyword() or
end_keyword() nor visiting the body of the keyword

visit_message(msg)
Implements visiting messages.

Can be overridden to allow modifying the passed in msg without calling start_message() or
end_message().

visit_return(return_)
Visits a RETURN elements.

visit_suite(suite)
Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without calling start_suite() or
end_suite() nor visiting child suites, tests or setup and teardown at all.

visit_test(test)
Implements traversing through tests.

Can be overridden to allow modifying the passed in test without calling start_test() or
end_test() nor visiting the body of the test.

visit_try(try_)
Implements traversing through TRY/EXCEPT structures.

This method is used with the TRY/EXCEPT root element. Actual TRY, EXCEPT, ELSE and FINALLY
branches are visited separately using visit_try_branch().

visit_try_branch(branch)
Visits individual TRY, EXCEPT, ELSE and FINALLY branches.

visit_while(while_)
Implements traversing through WHILE loops.

Can be overridden to allow modifying the passed in while_ without calling start_while() or
end_while() nor visiting body.

visit_while_iteration(iteration)
Implements traversing through single WHILE loop iteration.

This is only used with the result side model because on the running side there are no iterations.

Can be overridden to allow modifying the passed in iteration without calling
start_while_iteration() or end_while_iteration() nor visiting body.

class robot.result.keywordremover.WaitUntilKeywordSucceedsRemover
Bases: robot.result.keywordremover._KeywordRemover

start_keyword(kw)
Called when a keyword starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

440 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

end_body_item(item)
Called, by default, when keywords, messages or control structures end.

More specific end_keyword(), end_message(), :meth:‘end_for, etc. can be implemented to visit
only keywords, messages or specific control structures.

Default implementation does nothing.

end_break(break_)
Called when a BREAK element ends.

By default, calls end_body_item() which, by default, does nothing.

end_continue(continue_)
Called when a CONTINUE element ends.

By default, calls end_body_item() which, by default, does nothing.

end_for(for_)
Called when a FOR loop ends.

By default, calls end_body_item() which, by default, does nothing.

end_for_iteration(iteration)
Called when a FOR loop iteration ends.

By default, calls end_body_item() which, by default, does nothing.

end_if(if_)
Called when an IF/ELSE structure ends.

By default, calls end_body_item() which, by default, does nothing.

end_if_branch(branch)
Called when an IF/ELSE branch ends.

By default, calls end_body_item() which, by default, does nothing.

end_keyword(keyword)
Called when a keyword ends.

By default, calls end_body_item() which, by default, does nothing.

end_message(msg)
Called when a message ends.

By default, calls end_body_item() which, by default, does nothing.

end_return(return_)
Called when a RETURN element ends.

By default, calls end_body_item() which, by default, does nothing.

end_suite(suite)
Called when a suite ends. Default implementation does nothing.

end_test(test)
Called when a test ends. Default implementation does nothing.

end_try(try_)
Called when a TRY/EXCEPT structure ends.

By default, calls end_body_item() which, by default, does nothing.

3.1. robot package 441

Robot Framework Documentation, Release 6.0.2

end_try_branch(branch)
Called when TRY, EXCEPT, ELSE and FINALLY branches end.

By default, calls end_body_item() which, by default, does nothing.

end_while(while_)
Called when a WHILE loop ends.

By default, calls end_body_item() which, by default, does nothing.

end_while_iteration(iteration)
Called when a WHILE loop iteration ends.

By default, calls end_body_item() which, by default, does nothing.

start_body_item(item)
Called, by default, when keywords, messages or control structures start.

More specific start_keyword(), start_message(), :meth:‘start_for, etc. can be implemented to
visit only keywords, messages or specific control structures.

Can return explicit False to stop visiting. Default implementation does nothing.

start_break(break_)
Called when a BREAK element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_continue(continue_)
Called when a CONTINUE element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_for(for_)
Called when a FOR loop starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_for_iteration(iteration)
Called when a FOR loop iteration starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_if(if_)
Called when an IF/ELSE structure starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_if_branch(branch)
Called when an IF/ELSE branch starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

442 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

start_message(msg)
Called when a message starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_return(return_)
Called when a RETURN element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_suite(suite)
Called when a suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

start_test(test)
Called when a test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

start_try(try_)
Called when a TRY/EXCEPT structure starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_try_branch(branch)
Called when TRY, EXCEPT, ELSE or FINALLY branches start.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_while(while_)
Called when a WHILE loop starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_while_iteration(iteration)
Called when a WHILE loop iteration starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

visit_break(break_)
Visits BREAK elements.

visit_continue(continue_)
Visits CONTINUE elements.

visit_for(for_)
Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without calling start_for() or
end_for() nor visiting body.

visit_for_iteration(iteration)
Implements traversing through single FOR loop iteration.

3.1. robot package 443

Robot Framework Documentation, Release 6.0.2

This is only used with the result side model because on the running side there are no iterations.

Can be overridden to allow modifying the passed in iteration without calling
start_for_iteration() or end_for_iteration() nor visiting body.

visit_if(if_)
Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches are in its body and visited
using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without calling start_if() or end_if()
nor visiting branches.

visit_if_branch(branch)
Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without calling start_if_branch() or
end_if_branch() nor visiting body.

visit_keyword(kw)
Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without calling start_keyword() or
end_keyword() nor visiting the body of the keyword

visit_message(msg)
Implements visiting messages.

Can be overridden to allow modifying the passed in msg without calling start_message() or
end_message().

visit_return(return_)
Visits a RETURN elements.

visit_suite(suite)
Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without calling start_suite() or
end_suite() nor visiting child suites, tests or setup and teardown at all.

visit_test(test)
Implements traversing through tests.

Can be overridden to allow modifying the passed in test without calling start_test() or
end_test() nor visiting the body of the test.

visit_try(try_)
Implements traversing through TRY/EXCEPT structures.

This method is used with the TRY/EXCEPT root element. Actual TRY, EXCEPT, ELSE and FINALLY
branches are visited separately using visit_try_branch().

visit_try_branch(branch)
Visits individual TRY, EXCEPT, ELSE and FINALLY branches.

visit_while(while_)
Implements traversing through WHILE loops.

Can be overridden to allow modifying the passed in while_ without calling start_while() or
end_while() nor visiting body.

visit_while_iteration(iteration)
Implements traversing through single WHILE loop iteration.

444 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

This is only used with the result side model because on the running side there are no iterations.

Can be overridden to allow modifying the passed in iteration without calling
start_while_iteration() or end_while_iteration() nor visiting body.

class robot.result.keywordremover.WarningAndErrorFinder
Bases: robot.model.visitor.SuiteVisitor

start_suite(suite)
Called when a suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

start_test(test)
Called when a test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

start_keyword(keyword)
Called when a keyword starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

visit_message(msg)
Implements visiting messages.

Can be overridden to allow modifying the passed in msg without calling start_message() or
end_message().

end_body_item(item)
Called, by default, when keywords, messages or control structures end.

More specific end_keyword(), end_message(), :meth:‘end_for, etc. can be implemented to visit
only keywords, messages or specific control structures.

Default implementation does nothing.

end_break(break_)
Called when a BREAK element ends.

By default, calls end_body_item() which, by default, does nothing.

end_continue(continue_)
Called when a CONTINUE element ends.

By default, calls end_body_item() which, by default, does nothing.

end_for(for_)
Called when a FOR loop ends.

By default, calls end_body_item() which, by default, does nothing.

end_for_iteration(iteration)
Called when a FOR loop iteration ends.

By default, calls end_body_item() which, by default, does nothing.

end_if(if_)
Called when an IF/ELSE structure ends.

By default, calls end_body_item() which, by default, does nothing.

3.1. robot package 445

Robot Framework Documentation, Release 6.0.2

end_if_branch(branch)
Called when an IF/ELSE branch ends.

By default, calls end_body_item() which, by default, does nothing.

end_keyword(keyword)
Called when a keyword ends.

By default, calls end_body_item() which, by default, does nothing.

end_message(msg)
Called when a message ends.

By default, calls end_body_item() which, by default, does nothing.

end_return(return_)
Called when a RETURN element ends.

By default, calls end_body_item() which, by default, does nothing.

end_suite(suite)
Called when a suite ends. Default implementation does nothing.

end_test(test)
Called when a test ends. Default implementation does nothing.

end_try(try_)
Called when a TRY/EXCEPT structure ends.

By default, calls end_body_item() which, by default, does nothing.

end_try_branch(branch)
Called when TRY, EXCEPT, ELSE and FINALLY branches end.

By default, calls end_body_item() which, by default, does nothing.

end_while(while_)
Called when a WHILE loop ends.

By default, calls end_body_item() which, by default, does nothing.

end_while_iteration(iteration)
Called when a WHILE loop iteration ends.

By default, calls end_body_item() which, by default, does nothing.

start_body_item(item)
Called, by default, when keywords, messages or control structures start.

More specific start_keyword(), start_message(), :meth:‘start_for, etc. can be implemented to
visit only keywords, messages or specific control structures.

Can return explicit False to stop visiting. Default implementation does nothing.

start_break(break_)
Called when a BREAK element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_continue(continue_)
Called when a CONTINUE element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

446 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

start_for(for_)
Called when a FOR loop starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_for_iteration(iteration)
Called when a FOR loop iteration starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_if(if_)
Called when an IF/ELSE structure starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_if_branch(branch)
Called when an IF/ELSE branch starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_message(msg)
Called when a message starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_return(return_)
Called when a RETURN element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_try(try_)
Called when a TRY/EXCEPT structure starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_try_branch(branch)
Called when TRY, EXCEPT, ELSE or FINALLY branches start.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_while(while_)
Called when a WHILE loop starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_while_iteration(iteration)
Called when a WHILE loop iteration starts.

By default, calls start_body_item() which, by default, does nothing.

3.1. robot package 447

Robot Framework Documentation, Release 6.0.2

Can return explicit False to stop visiting.

visit_break(break_)
Visits BREAK elements.

visit_continue(continue_)
Visits CONTINUE elements.

visit_for(for_)
Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without calling start_for() or
end_for() nor visiting body.

visit_for_iteration(iteration)
Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side there are no iterations.

Can be overridden to allow modifying the passed in iteration without calling
start_for_iteration() or end_for_iteration() nor visiting body.

visit_if(if_)
Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches are in its body and visited
using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without calling start_if() or end_if()
nor visiting branches.

visit_if_branch(branch)
Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without calling start_if_branch() or
end_if_branch() nor visiting body.

visit_keyword(kw)
Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without calling start_keyword() or
end_keyword() nor visiting the body of the keyword

visit_return(return_)
Visits a RETURN elements.

visit_suite(suite)
Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without calling start_suite() or
end_suite() nor visiting child suites, tests or setup and teardown at all.

visit_test(test)
Implements traversing through tests.

Can be overridden to allow modifying the passed in test without calling start_test() or
end_test() nor visiting the body of the test.

visit_try(try_)
Implements traversing through TRY/EXCEPT structures.

This method is used with the TRY/EXCEPT root element. Actual TRY, EXCEPT, ELSE and FINALLY
branches are visited separately using visit_try_branch().

448 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

visit_try_branch(branch)
Visits individual TRY, EXCEPT, ELSE and FINALLY branches.

visit_while(while_)
Implements traversing through WHILE loops.

Can be overridden to allow modifying the passed in while_ without calling start_while() or
end_while() nor visiting body.

visit_while_iteration(iteration)
Implements traversing through single WHILE loop iteration.

This is only used with the result side model because on the running side there are no iterations.

Can be overridden to allow modifying the passed in iteration without calling
start_while_iteration() or end_while_iteration() nor visiting body.

class robot.result.keywordremover.RemovalMessage(message)
Bases: object

set_if_removed(kw, len_before)

set(kw, message=None)

robot.result.merger module

class robot.result.merger.Merger(result, rpa=False)
Bases: robot.model.visitor.SuiteVisitor

merge(merged)

start_suite(suite)
Called when a suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

end_suite(suite)
Called when a suite ends. Default implementation does nothing.

visit_test(test)
Implements traversing through tests.

Can be overridden to allow modifying the passed in test without calling start_test() or
end_test() nor visiting the body of the test.

end_body_item(item)
Called, by default, when keywords, messages or control structures end.

More specific end_keyword(), end_message(), :meth:‘end_for, etc. can be implemented to visit
only keywords, messages or specific control structures.

Default implementation does nothing.

end_break(break_)
Called when a BREAK element ends.

By default, calls end_body_item() which, by default, does nothing.

end_continue(continue_)
Called when a CONTINUE element ends.

By default, calls end_body_item() which, by default, does nothing.

3.1. robot package 449

Robot Framework Documentation, Release 6.0.2

end_for(for_)
Called when a FOR loop ends.

By default, calls end_body_item() which, by default, does nothing.

end_for_iteration(iteration)
Called when a FOR loop iteration ends.

By default, calls end_body_item() which, by default, does nothing.

end_if(if_)
Called when an IF/ELSE structure ends.

By default, calls end_body_item() which, by default, does nothing.

end_if_branch(branch)
Called when an IF/ELSE branch ends.

By default, calls end_body_item() which, by default, does nothing.

end_keyword(keyword)
Called when a keyword ends.

By default, calls end_body_item() which, by default, does nothing.

end_message(msg)
Called when a message ends.

By default, calls end_body_item() which, by default, does nothing.

end_return(return_)
Called when a RETURN element ends.

By default, calls end_body_item() which, by default, does nothing.

end_test(test)
Called when a test ends. Default implementation does nothing.

end_try(try_)
Called when a TRY/EXCEPT structure ends.

By default, calls end_body_item() which, by default, does nothing.

end_try_branch(branch)
Called when TRY, EXCEPT, ELSE and FINALLY branches end.

By default, calls end_body_item() which, by default, does nothing.

end_while(while_)
Called when a WHILE loop ends.

By default, calls end_body_item() which, by default, does nothing.

end_while_iteration(iteration)
Called when a WHILE loop iteration ends.

By default, calls end_body_item() which, by default, does nothing.

start_body_item(item)
Called, by default, when keywords, messages or control structures start.

More specific start_keyword(), start_message(), :meth:‘start_for, etc. can be implemented to
visit only keywords, messages or specific control structures.

Can return explicit False to stop visiting. Default implementation does nothing.

450 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

start_break(break_)
Called when a BREAK element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_continue(continue_)
Called when a CONTINUE element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_for(for_)
Called when a FOR loop starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_for_iteration(iteration)
Called when a FOR loop iteration starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_if(if_)
Called when an IF/ELSE structure starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_if_branch(branch)
Called when an IF/ELSE branch starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_keyword(keyword)
Called when a keyword starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_message(msg)
Called when a message starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_return(return_)
Called when a RETURN element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_test(test)
Called when a test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

3.1. robot package 451

Robot Framework Documentation, Release 6.0.2

start_try(try_)
Called when a TRY/EXCEPT structure starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_try_branch(branch)
Called when TRY, EXCEPT, ELSE or FINALLY branches start.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_while(while_)
Called when a WHILE loop starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_while_iteration(iteration)
Called when a WHILE loop iteration starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

visit_break(break_)
Visits BREAK elements.

visit_continue(continue_)
Visits CONTINUE elements.

visit_for(for_)
Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without calling start_for() or
end_for() nor visiting body.

visit_for_iteration(iteration)
Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side there are no iterations.

Can be overridden to allow modifying the passed in iteration without calling
start_for_iteration() or end_for_iteration() nor visiting body.

visit_if(if_)
Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches are in its body and visited
using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without calling start_if() or end_if()
nor visiting branches.

visit_if_branch(branch)
Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without calling start_if_branch() or
end_if_branch() nor visiting body.

visit_keyword(kw)
Implements traversing through keywords.

452 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

Can be overridden to allow modifying the passed in kw without calling start_keyword() or
end_keyword() nor visiting the body of the keyword

visit_message(msg)
Implements visiting messages.

Can be overridden to allow modifying the passed in msg without calling start_message() or
end_message().

visit_return(return_)
Visits a RETURN elements.

visit_suite(suite)
Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without calling start_suite() or
end_suite() nor visiting child suites, tests or setup and teardown at all.

visit_try(try_)
Implements traversing through TRY/EXCEPT structures.

This method is used with the TRY/EXCEPT root element. Actual TRY, EXCEPT, ELSE and FINALLY
branches are visited separately using visit_try_branch().

visit_try_branch(branch)
Visits individual TRY, EXCEPT, ELSE and FINALLY branches.

visit_while(while_)
Implements traversing through WHILE loops.

Can be overridden to allow modifying the passed in while_ without calling start_while() or
end_while() nor visiting body.

visit_while_iteration(iteration)
Implements traversing through single WHILE loop iteration.

This is only used with the result side model because on the running side there are no iterations.

Can be overridden to allow modifying the passed in iteration without calling
start_while_iteration() or end_while_iteration() nor visiting body.

robot.result.messagefilter module

class robot.result.messagefilter.MessageFilter(log_level=None)
Bases: robot.model.visitor.SuiteVisitor

start_suite(suite)
Called when a suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

start_keyword(keyword)
Called when a keyword starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

end_body_item(item)
Called, by default, when keywords, messages or control structures end.

More specific end_keyword(), end_message(), :meth:‘end_for, etc. can be implemented to visit
only keywords, messages or specific control structures.

3.1. robot package 453

Robot Framework Documentation, Release 6.0.2

Default implementation does nothing.

end_break(break_)
Called when a BREAK element ends.

By default, calls end_body_item() which, by default, does nothing.

end_continue(continue_)
Called when a CONTINUE element ends.

By default, calls end_body_item() which, by default, does nothing.

end_for(for_)
Called when a FOR loop ends.

By default, calls end_body_item() which, by default, does nothing.

end_for_iteration(iteration)
Called when a FOR loop iteration ends.

By default, calls end_body_item() which, by default, does nothing.

end_if(if_)
Called when an IF/ELSE structure ends.

By default, calls end_body_item() which, by default, does nothing.

end_if_branch(branch)
Called when an IF/ELSE branch ends.

By default, calls end_body_item() which, by default, does nothing.

end_keyword(keyword)
Called when a keyword ends.

By default, calls end_body_item() which, by default, does nothing.

end_message(msg)
Called when a message ends.

By default, calls end_body_item() which, by default, does nothing.

end_return(return_)
Called when a RETURN element ends.

By default, calls end_body_item() which, by default, does nothing.

end_suite(suite)
Called when a suite ends. Default implementation does nothing.

end_test(test)
Called when a test ends. Default implementation does nothing.

end_try(try_)
Called when a TRY/EXCEPT structure ends.

By default, calls end_body_item() which, by default, does nothing.

end_try_branch(branch)
Called when TRY, EXCEPT, ELSE and FINALLY branches end.

By default, calls end_body_item() which, by default, does nothing.

end_while(while_)
Called when a WHILE loop ends.

By default, calls end_body_item() which, by default, does nothing.

454 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

end_while_iteration(iteration)
Called when a WHILE loop iteration ends.

By default, calls end_body_item() which, by default, does nothing.

start_body_item(item)
Called, by default, when keywords, messages or control structures start.

More specific start_keyword(), start_message(), :meth:‘start_for, etc. can be implemented to
visit only keywords, messages or specific control structures.

Can return explicit False to stop visiting. Default implementation does nothing.

start_break(break_)
Called when a BREAK element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_continue(continue_)
Called when a CONTINUE element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_for(for_)
Called when a FOR loop starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_for_iteration(iteration)
Called when a FOR loop iteration starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_if(if_)
Called when an IF/ELSE structure starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_if_branch(branch)
Called when an IF/ELSE branch starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_message(msg)
Called when a message starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_return(return_)
Called when a RETURN element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

3.1. robot package 455

Robot Framework Documentation, Release 6.0.2

start_test(test)
Called when a test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

start_try(try_)
Called when a TRY/EXCEPT structure starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_try_branch(branch)
Called when TRY, EXCEPT, ELSE or FINALLY branches start.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_while(while_)
Called when a WHILE loop starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_while_iteration(iteration)
Called when a WHILE loop iteration starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

visit_break(break_)
Visits BREAK elements.

visit_continue(continue_)
Visits CONTINUE elements.

visit_for(for_)
Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without calling start_for() or
end_for() nor visiting body.

visit_for_iteration(iteration)
Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side there are no iterations.

Can be overridden to allow modifying the passed in iteration without calling
start_for_iteration() or end_for_iteration() nor visiting body.

visit_if(if_)
Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches are in its body and visited
using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without calling start_if() or end_if()
nor visiting branches.

visit_if_branch(branch)
Implements traversing through single IF/ELSE branch.

456 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

Can be overridden to allow modifying the passed in branch without calling start_if_branch() or
end_if_branch() nor visiting body.

visit_keyword(kw)
Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without calling start_keyword() or
end_keyword() nor visiting the body of the keyword

visit_message(msg)
Implements visiting messages.

Can be overridden to allow modifying the passed in msg without calling start_message() or
end_message().

visit_return(return_)
Visits a RETURN elements.

visit_suite(suite)
Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without calling start_suite() or
end_suite() nor visiting child suites, tests or setup and teardown at all.

visit_test(test)
Implements traversing through tests.

Can be overridden to allow modifying the passed in test without calling start_test() or
end_test() nor visiting the body of the test.

visit_try(try_)
Implements traversing through TRY/EXCEPT structures.

This method is used with the TRY/EXCEPT root element. Actual TRY, EXCEPT, ELSE and FINALLY
branches are visited separately using visit_try_branch().

visit_try_branch(branch)
Visits individual TRY, EXCEPT, ELSE and FINALLY branches.

visit_while(while_)
Implements traversing through WHILE loops.

Can be overridden to allow modifying the passed in while_ without calling start_while() or
end_while() nor visiting body.

visit_while_iteration(iteration)
Implements traversing through single WHILE loop iteration.

This is only used with the result side model because on the running side there are no iterations.

Can be overridden to allow modifying the passed in iteration without calling
start_while_iteration() or end_while_iteration() nor visiting body.

robot.result.model module

Module implementing result related model objects.

During test execution these objects are created internally by various runners. At that time they can inspected and
modified by listeners.

3.1. robot package 457

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#listener-interface

Robot Framework Documentation, Release 6.0.2

When results are parsed from XML output files after execution to be able to create logs and reports, these objects
are created by the ExecutionResult() factory method. At that point they can be inspected and modified by
pre-Rebot modifiers.

The ExecutionResult() factory method can also be used by custom scripts and tools. In such usage it is often
easiest to inspect and modify these objects using the visitor interface.

class robot.result.model.Body(parent=None, items=None)
Bases: robot.model.body.Body

append(item)
S.append(value) – append value to the end of the sequence

break_class
alias of Break

clear()→ None – remove all items from S

continue_class
alias of Continue

count(value)→ integer – return number of occurrences of value

create

create_break(*args, **kwargs)

create_continue(*args, **kwargs)

create_for(*args, **kwargs)

create_if(*args, **kwargs)

create_keyword(*args, **kwargs)

create_message(*args, **kwargs)

create_return(*args, **kwargs)

create_try(*args, **kwargs)

create_while(*args, **kwargs)

extend(items)
S.extend(iterable) – extend sequence by appending elements from the iterable

filter(keywords=None, messages=None, predicate=None)
Filter body items based on type and/or custom predicate.

To include or exclude items based on types, give matching arguments True or False values. For ex-
ample, to include only keywords, use body.filter(keywords=True) and to exclude messages use
body.filter(messages=False). Including and excluding by types at the same time is not sup-
ported and filtering my messages is supported only if the Body object actually supports messages.

Custom predicate is a callable getting each body item as an argument that must return True/False
depending on should the item be included or not.

Selected items are returned as a list and the original body is not modified.

It was earlier possible to filter also based on FOR and IF types. That support was removed
in RF 5.0 because it was not considered useful in general and because adding support for all
new control structures would have required extra work. To exclude all control structures, use
body.filter(keywords=True, messages=True) and to only include them use body.
filter(keywords=False, messages=False)‘‘. For more detailed filtering it is possible to use
predicate.

458 Chapter 3. All packages

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#programmatic-modification-of-results

Robot Framework Documentation, Release 6.0.2

flatten()
Return steps so that IF and TRY structures are flattened.

Basically the IF/ELSE and TRY/EXCEPT root elements are replaced with their branches. This is how they
are shown in log files.

for_class
alias of For

if_class
alias of If

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

Supporting start and stop arguments is optional, but recommended.

insert(index, item)
S.insert(index, value) – insert value before index

keyword_class
alias of Keyword

message_class
alias of Message

pop([index])→ item – remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.

classmethod register(item_class)
Register a virtual subclass of an ABC.

Returns the subclass, to allow usage as a class decorator.

remove(value)
S.remove(value) – remove first occurrence of value. Raise ValueError if the value is not present.

return_class
alias of Return

reverse()
S.reverse() – reverse IN PLACE

sort()

try_class
alias of Try

visit(visitor)

while_class
alias of While

class robot.result.model.Branches(branch_class, parent=None, items=None)
Bases: robot.model.body.Branches

append(item)
S.append(value) – append value to the end of the sequence

branch_class

break_class = None

clear()→ None – remove all items from S

continue_class = None

3.1. robot package 459

Robot Framework Documentation, Release 6.0.2

count(value)→ integer – return number of occurrences of value

create

create_branch(*args, **kwargs)

create_break(*args, **kwargs)

create_continue(*args, **kwargs)

create_for(*args, **kwargs)

create_if(*args, **kwargs)

create_keyword(*args, **kwargs)

create_message(*args, **kwargs)

create_return(*args, **kwargs)

create_try(*args, **kwargs)

create_while(*args, **kwargs)

extend(items)
S.extend(iterable) – extend sequence by appending elements from the iterable

filter(keywords=None, messages=None, predicate=None)
Filter body items based on type and/or custom predicate.

To include or exclude items based on types, give matching arguments True or False values. For ex-
ample, to include only keywords, use body.filter(keywords=True) and to exclude messages use
body.filter(messages=False). Including and excluding by types at the same time is not sup-
ported and filtering my messages is supported only if the Body object actually supports messages.

Custom predicate is a callable getting each body item as an argument that must return True/False
depending on should the item be included or not.

Selected items are returned as a list and the original body is not modified.

It was earlier possible to filter also based on FOR and IF types. That support was removed
in RF 5.0 because it was not considered useful in general and because adding support for all
new control structures would have required extra work. To exclude all control structures, use
body.filter(keywords=True, messages=True) and to only include them use body.
filter(keywords=False, messages=False)‘‘. For more detailed filtering it is possible to use
predicate.

flatten()
Return steps so that IF and TRY structures are flattened.

Basically the IF/ELSE and TRY/EXCEPT root elements are replaced with their branches. This is how they
are shown in log files.

for_class = None

if_class = None

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

Supporting start and stop arguments is optional, but recommended.

insert(index, item)
S.insert(index, value) – insert value before index

460 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

keyword_class
alias of Keyword

message_class
alias of Message

pop([index])→ item – remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.

classmethod register(item_class)
Register a virtual subclass of an ABC.

Returns the subclass, to allow usage as a class decorator.

remove(value)
S.remove(value) – remove first occurrence of value. Raise ValueError if the value is not present.

return_class = None

reverse()
S.reverse() – reverse IN PLACE

sort()

try_class = None

visit(visitor)

while_class = None

class robot.result.model.Iterations(iteration_class, parent=None, items=None)
Bases: robot.model.body.BaseBody

iteration_class

create_iteration(*args, **kwargs)

append(item)
S.append(value) – append value to the end of the sequence

break_class = None

clear()→ None – remove all items from S

continue_class = None

count(value)→ integer – return number of occurrences of value

create

create_break(*args, **kwargs)

create_continue(*args, **kwargs)

create_for(*args, **kwargs)

create_if(*args, **kwargs)

create_keyword(*args, **kwargs)

create_message(*args, **kwargs)

create_return(*args, **kwargs)

create_try(*args, **kwargs)

create_while(*args, **kwargs)

3.1. robot package 461

Robot Framework Documentation, Release 6.0.2

extend(items)
S.extend(iterable) – extend sequence by appending elements from the iterable

filter(keywords=None, messages=None, predicate=None)
Filter body items based on type and/or custom predicate.

To include or exclude items based on types, give matching arguments True or False values. For ex-
ample, to include only keywords, use body.filter(keywords=True) and to exclude messages use
body.filter(messages=False). Including and excluding by types at the same time is not sup-
ported and filtering my messages is supported only if the Body object actually supports messages.

Custom predicate is a callable getting each body item as an argument that must return True/False
depending on should the item be included or not.

Selected items are returned as a list and the original body is not modified.

It was earlier possible to filter also based on FOR and IF types. That support was removed
in RF 5.0 because it was not considered useful in general and because adding support for all
new control structures would have required extra work. To exclude all control structures, use
body.filter(keywords=True, messages=True) and to only include them use body.
filter(keywords=False, messages=False)‘‘. For more detailed filtering it is possible to use
predicate.

flatten()
Return steps so that IF and TRY structures are flattened.

Basically the IF/ELSE and TRY/EXCEPT root elements are replaced with their branches. This is how they
are shown in log files.

for_class = None

if_class = None

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

Supporting start and stop arguments is optional, but recommended.

insert(index, item)
S.insert(index, value) – insert value before index

keyword_class
alias of Keyword

message_class
alias of Message

pop([index])→ item – remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.

classmethod register(item_class)
Register a virtual subclass of an ABC.

Returns the subclass, to allow usage as a class decorator.

remove(value)
S.remove(value) – remove first occurrence of value. Raise ValueError if the value is not present.

return_class = None

reverse()
S.reverse() – reverse IN PLACE

sort()

462 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

try_class = None

visit(visitor)

while_class = None

class robot.result.model.Message(message=”, level=’INFO’, html=False, timestamp=None,
parent=None)

Bases: robot.model.message.Message

BREAK = 'BREAK'

CONTINUE = 'CONTINUE'

ELSE = 'ELSE'

ELSE_IF = 'ELSE IF'

EXCEPT = 'EXCEPT'

FINALLY = 'FINALLY'

FOR = 'FOR'

IF = 'IF'

IF_ELSE_ROOT = 'IF/ELSE ROOT'

ITERATION = 'ITERATION'

KEYWORD = 'KEYWORD'

MESSAGE = 'MESSAGE'

RETURN = 'RETURN'

SETUP = 'SETUP'

TEARDOWN = 'TEARDOWN'

TRY = 'TRY'

TRY_EXCEPT_ROOT = 'TRY/EXCEPT ROOT'

WHILE = 'WHILE'

config(**attributes)
Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting obj.name =
'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

copy(**attributes)
Return shallow copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same as with the standard copy.copy
and copy.deepcopy functions that these methods also use internally.

deepcopy(**attributes)
Return deep copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.deepcopy(name='New name').

3.1. robot package 463

Robot Framework Documentation, Release 6.0.2

See also copy(). The difference between these two is the same as with the standard copy.copy and
copy.deepcopy functions that these methods also use internally.

has_setup

has_teardown

html

html_message
Returns the message content as HTML.

id
Item id in format like s1-t3-k1.

See TestSuite.id for more information.

level

message

parent

repr_args = ('message', 'level')

timestamp

type = 'MESSAGE'

visit(visitor)
Visitor interface entry-point.

class robot.result.model.StatusMixin
Bases: object

PASS = 'PASS'

FAIL = 'FAIL'

SKIP = 'SKIP'

NOT_RUN = 'NOT RUN'

NOT_SET = 'NOT SET'

elapsedtime
Total execution time in milliseconds.

passed
True when status is ‘PASS’, False otherwise.

failed
True when status is ‘FAIL’, False otherwise.

skipped
True when status is ‘SKIP’, False otherwise.

Setting to False value is ambiguous and raises an exception.

not_run
True when status is ‘NOT RUN’, False otherwise.

Setting to False value is ambiguous and raises an exception.

class robot.result.model.ForIteration(variables=None, status=’FAIL’, starttime=None, end-
time=None, doc=”, parent=None)

Bases: robot.model.body.BodyItem, robot.result.model.StatusMixin, robot.
result.modeldeprecation.DeprecatedAttributesMixin

464 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

Represents one FOR loop iteration.

type = 'ITERATION'

body_class
alias of Body

repr_args = ('variables',)

variables

parent

status

starttime

endtime

doc

body

visit(visitor)

name
Deprecated.

BREAK = 'BREAK'

CONTINUE = 'CONTINUE'

ELSE = 'ELSE'

ELSE_IF = 'ELSE IF'

EXCEPT = 'EXCEPT'

FAIL = 'FAIL'

FINALLY = 'FINALLY'

FOR = 'FOR'

IF = 'IF'

IF_ELSE_ROOT = 'IF/ELSE ROOT'

ITERATION = 'ITERATION'

KEYWORD = 'KEYWORD'

MESSAGE = 'MESSAGE'

NOT_RUN = 'NOT RUN'

NOT_SET = 'NOT SET'

PASS = 'PASS'

RETURN = 'RETURN'

SETUP = 'SETUP'

SKIP = 'SKIP'

TEARDOWN = 'TEARDOWN'

TRY = 'TRY'

TRY_EXCEPT_ROOT = 'TRY/EXCEPT ROOT'

3.1. robot package 465

Robot Framework Documentation, Release 6.0.2

WHILE = 'WHILE'

args
Deprecated.

assign
Deprecated.

config(**attributes)
Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting obj.name =
'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

copy(**attributes)
Return shallow copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same as with the standard copy.copy
and copy.deepcopy functions that these methods also use internally.

deepcopy(**attributes)
Return deep copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same as with the standard copy.copy and
copy.deepcopy functions that these methods also use internally.

elapsedtime
Total execution time in milliseconds.

failed
True when status is ‘FAIL’, False otherwise.

has_setup

has_teardown

id
Item id in format like s1-t3-k1.

See TestSuite.id for more information.

kwname
Deprecated.

libname
Deprecated.

message
Deprecated.

not_run
True when status is ‘NOT RUN’, False otherwise.

Setting to False value is ambiguous and raises an exception.

passed
True when status is ‘PASS’, False otherwise.

466 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

skipped
True when status is ‘SKIP’, False otherwise.

Setting to False value is ambiguous and raises an exception.

tags
Deprecated.

timeout
Deprecated.

class robot.result.model.For(variables=(), flavor=’IN’, values=(), status=’FAIL’, start-
time=None, endtime=None, doc=”, parent=None)

Bases: robot.model.control.For, robot.result.model.StatusMixin, robot.result.
modeldeprecation.DeprecatedAttributesMixin

iterations_class
alias of Iterations

iteration_class
alias of ForIteration

status

starttime

endtime

doc

body

name
Deprecated.

BREAK = 'BREAK'

CONTINUE = 'CONTINUE'

ELSE = 'ELSE'

ELSE_IF = 'ELSE IF'

EXCEPT = 'EXCEPT'

FAIL = 'FAIL'

FINALLY = 'FINALLY'

FOR = 'FOR'

IF = 'IF'

IF_ELSE_ROOT = 'IF/ELSE ROOT'

ITERATION = 'ITERATION'

KEYWORD = 'KEYWORD'

MESSAGE = 'MESSAGE'

NOT_RUN = 'NOT RUN'

NOT_SET = 'NOT SET'

PASS = 'PASS'

RETURN = 'RETURN'

3.1. robot package 467

Robot Framework Documentation, Release 6.0.2

SETUP = 'SETUP'

SKIP = 'SKIP'

TEARDOWN = 'TEARDOWN'

TRY = 'TRY'

TRY_EXCEPT_ROOT = 'TRY/EXCEPT ROOT'

WHILE = 'WHILE'

args
Deprecated.

assign
Deprecated.

body_class
alias of robot.model.body.Body

config(**attributes)
Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting obj.name =
'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

copy(**attributes)
Return shallow copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same as with the standard copy.copy
and copy.deepcopy functions that these methods also use internally.

deepcopy(**attributes)
Return deep copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same as with the standard copy.copy and
copy.deepcopy functions that these methods also use internally.

elapsedtime
Total execution time in milliseconds.

failed
True when status is ‘FAIL’, False otherwise.

flavor

has_setup

has_teardown

id
Item id in format like s1-t3-k1.

See TestSuite.id for more information.

keywords
Deprecated since Robot Framework 4.0. Use body instead.

468 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

kwname
Deprecated.

libname
Deprecated.

message
Deprecated.

not_run
True when status is ‘NOT RUN’, False otherwise.

Setting to False value is ambiguous and raises an exception.

parent

passed
True when status is ‘PASS’, False otherwise.

repr_args = ('variables', 'flavor', 'values')

skipped
True when status is ‘SKIP’, False otherwise.

Setting to False value is ambiguous and raises an exception.

tags
Deprecated.

timeout
Deprecated.

type = 'FOR'

values

variables

visit(visitor)

class robot.result.model.WhileIteration(status=’FAIL’, starttime=None, endtime=None,
doc=”, parent=None)

Bases: robot.model.body.BodyItem, robot.result.model.StatusMixin, robot.
result.modeldeprecation.DeprecatedAttributesMixin

Represents one WHILE loop iteration.

type = 'ITERATION'

body_class
alias of Body

parent

status

starttime

endtime

doc

body

visit(visitor)

name
Deprecated.

3.1. robot package 469

Robot Framework Documentation, Release 6.0.2

BREAK = 'BREAK'

CONTINUE = 'CONTINUE'

ELSE = 'ELSE'

ELSE_IF = 'ELSE IF'

EXCEPT = 'EXCEPT'

FAIL = 'FAIL'

FINALLY = 'FINALLY'

FOR = 'FOR'

IF = 'IF'

IF_ELSE_ROOT = 'IF/ELSE ROOT'

ITERATION = 'ITERATION'

KEYWORD = 'KEYWORD'

MESSAGE = 'MESSAGE'

NOT_RUN = 'NOT RUN'

NOT_SET = 'NOT SET'

PASS = 'PASS'

RETURN = 'RETURN'

SETUP = 'SETUP'

SKIP = 'SKIP'

TEARDOWN = 'TEARDOWN'

TRY = 'TRY'

TRY_EXCEPT_ROOT = 'TRY/EXCEPT ROOT'

WHILE = 'WHILE'

args
Deprecated.

assign
Deprecated.

config(**attributes)
Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting obj.name =
'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

copy(**attributes)
Return shallow copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same as with the standard copy.copy
and copy.deepcopy functions that these methods also use internally.

470 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

deepcopy(**attributes)
Return deep copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same as with the standard copy.copy and
copy.deepcopy functions that these methods also use internally.

elapsedtime
Total execution time in milliseconds.

failed
True when status is ‘FAIL’, False otherwise.

has_setup

has_teardown

id
Item id in format like s1-t3-k1.

See TestSuite.id for more information.

kwname
Deprecated.

libname
Deprecated.

message
Deprecated.

not_run
True when status is ‘NOT RUN’, False otherwise.

Setting to False value is ambiguous and raises an exception.

passed
True when status is ‘PASS’, False otherwise.

repr_args = ()

skipped
True when status is ‘SKIP’, False otherwise.

Setting to False value is ambiguous and raises an exception.

tags
Deprecated.

timeout
Deprecated.

class robot.result.model.While(condition=None, limit=None, parent=None, status=’FAIL’,
starttime=None, endtime=None, doc=”)

Bases: robot.model.control.While, robot.result.model.StatusMixin, robot.
result.modeldeprecation.DeprecatedAttributesMixin

iterations_class
alias of Iterations

iteration_class
alias of WhileIteration

status

3.1. robot package 471

Robot Framework Documentation, Release 6.0.2

starttime

endtime

doc

body

name
Deprecated.

BREAK = 'BREAK'

CONTINUE = 'CONTINUE'

ELSE = 'ELSE'

ELSE_IF = 'ELSE IF'

EXCEPT = 'EXCEPT'

FAIL = 'FAIL'

FINALLY = 'FINALLY'

FOR = 'FOR'

IF = 'IF'

IF_ELSE_ROOT = 'IF/ELSE ROOT'

ITERATION = 'ITERATION'

KEYWORD = 'KEYWORD'

MESSAGE = 'MESSAGE'

NOT_RUN = 'NOT RUN'

NOT_SET = 'NOT SET'

PASS = 'PASS'

RETURN = 'RETURN'

SETUP = 'SETUP'

SKIP = 'SKIP'

TEARDOWN = 'TEARDOWN'

TRY = 'TRY'

TRY_EXCEPT_ROOT = 'TRY/EXCEPT ROOT'

WHILE = 'WHILE'

args
Deprecated.

assign
Deprecated.

body_class
alias of robot.model.body.Body

condition

472 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

config(**attributes)
Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting obj.name =
'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

copy(**attributes)
Return shallow copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same as with the standard copy.copy
and copy.deepcopy functions that these methods also use internally.

deepcopy(**attributes)
Return deep copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same as with the standard copy.copy and
copy.deepcopy functions that these methods also use internally.

elapsedtime
Total execution time in milliseconds.

failed
True when status is ‘FAIL’, False otherwise.

has_setup

has_teardown

id
Item id in format like s1-t3-k1.

See TestSuite.id for more information.

kwname
Deprecated.

libname
Deprecated.

limit

message
Deprecated.

not_run
True when status is ‘NOT RUN’, False otherwise.

Setting to False value is ambiguous and raises an exception.

parent

passed
True when status is ‘PASS’, False otherwise.

repr_args = ('condition', 'limit')

3.1. robot package 473

Robot Framework Documentation, Release 6.0.2

skipped
True when status is ‘SKIP’, False otherwise.

Setting to False value is ambiguous and raises an exception.

tags
Deprecated.

timeout
Deprecated.

type = 'WHILE'

visit(visitor)

class robot.result.model.IfBranch(type=’IF’, condition=None, status=’FAIL’, starttime=None,
endtime=None, doc=”, parent=None)

Bases: robot.model.control.IfBranch, robot.result.model.StatusMixin, robot.
result.modeldeprecation.DeprecatedAttributesMixin

body_class
alias of Body

status

starttime

endtime

doc

name
Deprecated.

BREAK = 'BREAK'

CONTINUE = 'CONTINUE'

ELSE = 'ELSE'

ELSE_IF = 'ELSE IF'

EXCEPT = 'EXCEPT'

FAIL = 'FAIL'

FINALLY = 'FINALLY'

FOR = 'FOR'

IF = 'IF'

IF_ELSE_ROOT = 'IF/ELSE ROOT'

ITERATION = 'ITERATION'

KEYWORD = 'KEYWORD'

MESSAGE = 'MESSAGE'

NOT_RUN = 'NOT RUN'

NOT_SET = 'NOT SET'

PASS = 'PASS'

RETURN = 'RETURN'

SETUP = 'SETUP'

474 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

SKIP = 'SKIP'

TEARDOWN = 'TEARDOWN'

TRY = 'TRY'

TRY_EXCEPT_ROOT = 'TRY/EXCEPT ROOT'

WHILE = 'WHILE'

args
Deprecated.

assign
Deprecated.

body

condition

config(**attributes)
Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting obj.name =
'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

copy(**attributes)
Return shallow copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same as with the standard copy.copy
and copy.deepcopy functions that these methods also use internally.

deepcopy(**attributes)
Return deep copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same as with the standard copy.copy and
copy.deepcopy functions that these methods also use internally.

elapsedtime
Total execution time in milliseconds.

failed
True when status is ‘FAIL’, False otherwise.

has_setup

has_teardown

id
Branch id omits IF/ELSE root from the parent id part.

kwname
Deprecated.

libname
Deprecated.

3.1. robot package 475

Robot Framework Documentation, Release 6.0.2

message
Deprecated.

not_run
True when status is ‘NOT RUN’, False otherwise.

Setting to False value is ambiguous and raises an exception.

parent

passed
True when status is ‘PASS’, False otherwise.

repr_args = ('type', 'condition')

skipped
True when status is ‘SKIP’, False otherwise.

Setting to False value is ambiguous and raises an exception.

tags
Deprecated.

timeout
Deprecated.

type

visit(visitor)

class robot.result.model.If(status=’FAIL’, starttime=None, endtime=None, doc=”, par-
ent=None)

Bases: robot.model.control.If, robot.result.model.StatusMixin, robot.result.
modeldeprecation.DeprecatedAttributesMixin

branch_class
alias of IfBranch

branches_class
alias of Branches

status

starttime

endtime

doc

BREAK = 'BREAK'

CONTINUE = 'CONTINUE'

ELSE = 'ELSE'

ELSE_IF = 'ELSE IF'

EXCEPT = 'EXCEPT'

FAIL = 'FAIL'

FINALLY = 'FINALLY'

FOR = 'FOR'

IF = 'IF'

IF_ELSE_ROOT = 'IF/ELSE ROOT'

476 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

ITERATION = 'ITERATION'

KEYWORD = 'KEYWORD'

MESSAGE = 'MESSAGE'

NOT_RUN = 'NOT RUN'

NOT_SET = 'NOT SET'

PASS = 'PASS'

RETURN = 'RETURN'

SETUP = 'SETUP'

SKIP = 'SKIP'

TEARDOWN = 'TEARDOWN'

TRY = 'TRY'

TRY_EXCEPT_ROOT = 'TRY/EXCEPT ROOT'

WHILE = 'WHILE'

args
Deprecated.

assign
Deprecated.

body

config(**attributes)
Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting obj.name =
'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

copy(**attributes)
Return shallow copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same as with the standard copy.copy
and copy.deepcopy functions that these methods also use internally.

deepcopy(**attributes)
Return deep copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same as with the standard copy.copy and
copy.deepcopy functions that these methods also use internally.

elapsedtime
Total execution time in milliseconds.

failed
True when status is ‘FAIL’, False otherwise.

has_setup

3.1. robot package 477

Robot Framework Documentation, Release 6.0.2

has_teardown

id
Root IF/ELSE id is always None.

kwname
Deprecated.

libname
Deprecated.

message
Deprecated.

name
Deprecated.

not_run
True when status is ‘NOT RUN’, False otherwise.

Setting to False value is ambiguous and raises an exception.

parent

passed
True when status is ‘PASS’, False otherwise.

repr_args = ()

skipped
True when status is ‘SKIP’, False otherwise.

Setting to False value is ambiguous and raises an exception.

tags
Deprecated.

timeout
Deprecated.

type = 'IF/ELSE ROOT'

visit(visitor)

class robot.result.model.TryBranch(type=’TRY’, patterns=(), pattern_type=None, vari-
able=None, status=’FAIL’, starttime=None, end-
time=None, doc=”, parent=None)

Bases: robot.model.control.TryBranch, robot.result.model.StatusMixin, robot.
result.modeldeprecation.DeprecatedAttributesMixin

body_class
alias of Body

status

starttime

endtime

doc

name
Deprecated.

BREAK = 'BREAK'

CONTINUE = 'CONTINUE'

478 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

ELSE = 'ELSE'

ELSE_IF = 'ELSE IF'

EXCEPT = 'EXCEPT'

FAIL = 'FAIL'

FINALLY = 'FINALLY'

FOR = 'FOR'

IF = 'IF'

IF_ELSE_ROOT = 'IF/ELSE ROOT'

ITERATION = 'ITERATION'

KEYWORD = 'KEYWORD'

MESSAGE = 'MESSAGE'

NOT_RUN = 'NOT RUN'

NOT_SET = 'NOT SET'

PASS = 'PASS'

RETURN = 'RETURN'

SETUP = 'SETUP'

SKIP = 'SKIP'

TEARDOWN = 'TEARDOWN'

TRY = 'TRY'

TRY_EXCEPT_ROOT = 'TRY/EXCEPT ROOT'

WHILE = 'WHILE'

args
Deprecated.

assign
Deprecated.

body

config(**attributes)
Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting obj.name =
'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

copy(**attributes)
Return shallow copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same as with the standard copy.copy
and copy.deepcopy functions that these methods also use internally.

deepcopy(**attributes)
Return deep copy of this object.

3.1. robot package 479

Robot Framework Documentation, Release 6.0.2

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same as with the standard copy.copy and
copy.deepcopy functions that these methods also use internally.

elapsedtime
Total execution time in milliseconds.

failed
True when status is ‘FAIL’, False otherwise.

has_setup

has_teardown

id
Branch id omits TRY/EXCEPT root from the parent id part.

kwname
Deprecated.

libname
Deprecated.

message
Deprecated.

not_run
True when status is ‘NOT RUN’, False otherwise.

Setting to False value is ambiguous and raises an exception.

parent

passed
True when status is ‘PASS’, False otherwise.

pattern_type

patterns

repr_args = ('type', 'patterns', 'pattern_type', 'variable')

skipped
True when status is ‘SKIP’, False otherwise.

Setting to False value is ambiguous and raises an exception.

tags
Deprecated.

timeout
Deprecated.

type

variable

visit(visitor)

class robot.result.model.Try(status=’FAIL’, starttime=None, endtime=None, doc=”, par-
ent=None)

Bases: robot.model.control.Try , robot.result.model.StatusMixin, robot.result.
modeldeprecation.DeprecatedAttributesMixin

480 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

branch_class
alias of TryBranch

branches_class
alias of Branches

status

starttime

endtime

doc

BREAK = 'BREAK'

CONTINUE = 'CONTINUE'

ELSE = 'ELSE'

ELSE_IF = 'ELSE IF'

EXCEPT = 'EXCEPT'

FAIL = 'FAIL'

FINALLY = 'FINALLY'

FOR = 'FOR'

IF = 'IF'

IF_ELSE_ROOT = 'IF/ELSE ROOT'

ITERATION = 'ITERATION'

KEYWORD = 'KEYWORD'

MESSAGE = 'MESSAGE'

NOT_RUN = 'NOT RUN'

NOT_SET = 'NOT SET'

PASS = 'PASS'

RETURN = 'RETURN'

SETUP = 'SETUP'

SKIP = 'SKIP'

TEARDOWN = 'TEARDOWN'

TRY = 'TRY'

TRY_EXCEPT_ROOT = 'TRY/EXCEPT ROOT'

WHILE = 'WHILE'

args
Deprecated.

assign
Deprecated.

body

3.1. robot package 481

Robot Framework Documentation, Release 6.0.2

config(**attributes)
Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting obj.name =
'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

copy(**attributes)
Return shallow copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same as with the standard copy.copy
and copy.deepcopy functions that these methods also use internally.

deepcopy(**attributes)
Return deep copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same as with the standard copy.copy and
copy.deepcopy functions that these methods also use internally.

elapsedtime
Total execution time in milliseconds.

else_branch

except_branches

failed
True when status is ‘FAIL’, False otherwise.

finally_branch

has_setup

has_teardown

id
Root TRY/EXCEPT id is always None.

kwname
Deprecated.

libname
Deprecated.

message
Deprecated.

name
Deprecated.

not_run
True when status is ‘NOT RUN’, False otherwise.

Setting to False value is ambiguous and raises an exception.

parent

passed
True when status is ‘PASS’, False otherwise.

482 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

repr_args = ()

skipped
True when status is ‘SKIP’, False otherwise.

Setting to False value is ambiguous and raises an exception.

tags
Deprecated.

timeout
Deprecated.

try_branch

type = 'TRY/EXCEPT ROOT'

visit(visitor)

class robot.result.model.Return(values=(), status=’FAIL’, starttime=None, endtime=None,
parent=None)

Bases: robot.model.control.Return, robot.result.model.StatusMixin, robot.
result.modeldeprecation.DeprecatedAttributesMixin

body_class
alias of Body

status

starttime

endtime

body
Child keywords and messages as a Body object.

Typically empty. Only contains something if running RETURN has failed due to a syntax error or listeners
have logged messages or executed keywords.

args
Deprecated.

doc
Deprecated.

BREAK = 'BREAK'

CONTINUE = 'CONTINUE'

ELSE = 'ELSE'

ELSE_IF = 'ELSE IF'

EXCEPT = 'EXCEPT'

FAIL = 'FAIL'

FINALLY = 'FINALLY'

FOR = 'FOR'

IF = 'IF'

IF_ELSE_ROOT = 'IF/ELSE ROOT'

ITERATION = 'ITERATION'

KEYWORD = 'KEYWORD'

3.1. robot package 483

Robot Framework Documentation, Release 6.0.2

MESSAGE = 'MESSAGE'

NOT_RUN = 'NOT RUN'

NOT_SET = 'NOT SET'

PASS = 'PASS'

RETURN = 'RETURN'

SETUP = 'SETUP'

SKIP = 'SKIP'

TEARDOWN = 'TEARDOWN'

TRY = 'TRY'

TRY_EXCEPT_ROOT = 'TRY/EXCEPT ROOT'

WHILE = 'WHILE'

assign
Deprecated.

config(**attributes)
Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting obj.name =
'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

copy(**attributes)
Return shallow copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same as with the standard copy.copy
and copy.deepcopy functions that these methods also use internally.

deepcopy(**attributes)
Return deep copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same as with the standard copy.copy and
copy.deepcopy functions that these methods also use internally.

elapsedtime
Total execution time in milliseconds.

failed
True when status is ‘FAIL’, False otherwise.

has_setup

has_teardown

id
Item id in format like s1-t3-k1.

See TestSuite.id for more information.

484 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

kwname
Deprecated.

libname
Deprecated.

message
Deprecated.

name
Deprecated.

not_run
True when status is ‘NOT RUN’, False otherwise.

Setting to False value is ambiguous and raises an exception.

parent

passed
True when status is ‘PASS’, False otherwise.

repr_args = ('values',)

skipped
True when status is ‘SKIP’, False otherwise.

Setting to False value is ambiguous and raises an exception.

tags
Deprecated.

timeout
Deprecated.

type = 'RETURN'

values

visit(visitor)

class robot.result.model.Continue(status=’FAIL’, starttime=None, endtime=None, par-
ent=None)

Bases: robot.model.control.Continue, robot.result.model.StatusMixin, robot.
result.modeldeprecation.DeprecatedAttributesMixin

body_class
alias of Body

status

starttime

endtime

body
Child keywords and messages as a Body object.

Typically empty. Only contains something if running CONTINUE has failed due to a syntax error or
listeners have logged messages or executed keywords.

args
Deprecated.

doc
Deprecated.

3.1. robot package 485

Robot Framework Documentation, Release 6.0.2

BREAK = 'BREAK'

CONTINUE = 'CONTINUE'

ELSE = 'ELSE'

ELSE_IF = 'ELSE IF'

EXCEPT = 'EXCEPT'

FAIL = 'FAIL'

FINALLY = 'FINALLY'

FOR = 'FOR'

IF = 'IF'

IF_ELSE_ROOT = 'IF/ELSE ROOT'

ITERATION = 'ITERATION'

KEYWORD = 'KEYWORD'

MESSAGE = 'MESSAGE'

NOT_RUN = 'NOT RUN'

NOT_SET = 'NOT SET'

PASS = 'PASS'

RETURN = 'RETURN'

SETUP = 'SETUP'

SKIP = 'SKIP'

TEARDOWN = 'TEARDOWN'

TRY = 'TRY'

TRY_EXCEPT_ROOT = 'TRY/EXCEPT ROOT'

WHILE = 'WHILE'

assign
Deprecated.

config(**attributes)
Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting obj.name =
'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

copy(**attributes)
Return shallow copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same as with the standard copy.copy
and copy.deepcopy functions that these methods also use internally.

deepcopy(**attributes)
Return deep copy of this object.

486 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same as with the standard copy.copy and
copy.deepcopy functions that these methods also use internally.

elapsedtime
Total execution time in milliseconds.

failed
True when status is ‘FAIL’, False otherwise.

has_setup

has_teardown

id
Item id in format like s1-t3-k1.

See TestSuite.id for more information.

kwname
Deprecated.

libname
Deprecated.

message
Deprecated.

name
Deprecated.

not_run
True when status is ‘NOT RUN’, False otherwise.

Setting to False value is ambiguous and raises an exception.

parent

passed
True when status is ‘PASS’, False otherwise.

repr_args = ()

skipped
True when status is ‘SKIP’, False otherwise.

Setting to False value is ambiguous and raises an exception.

tags
Deprecated.

timeout
Deprecated.

type = 'CONTINUE'

visit(visitor)

class robot.result.model.Break(status=’FAIL’, starttime=None, endtime=None, parent=None)
Bases: robot.model.control.Break, robot.result.model.StatusMixin, robot.
result.modeldeprecation.DeprecatedAttributesMixin

body_class
alias of Body

3.1. robot package 487

Robot Framework Documentation, Release 6.0.2

status

starttime

endtime

body
Child keywords and messages as a Body object.

Typically empty. Only contains something if running BREAK has failed due to a syntax error or listeners
have logged messages or executed keywords.

args
Deprecated.

doc
Deprecated.

BREAK = 'BREAK'

CONTINUE = 'CONTINUE'

ELSE = 'ELSE'

ELSE_IF = 'ELSE IF'

EXCEPT = 'EXCEPT'

FAIL = 'FAIL'

FINALLY = 'FINALLY'

FOR = 'FOR'

IF = 'IF'

IF_ELSE_ROOT = 'IF/ELSE ROOT'

ITERATION = 'ITERATION'

KEYWORD = 'KEYWORD'

MESSAGE = 'MESSAGE'

NOT_RUN = 'NOT RUN'

NOT_SET = 'NOT SET'

PASS = 'PASS'

RETURN = 'RETURN'

SETUP = 'SETUP'

SKIP = 'SKIP'

TEARDOWN = 'TEARDOWN'

TRY = 'TRY'

TRY_EXCEPT_ROOT = 'TRY/EXCEPT ROOT'

WHILE = 'WHILE'

assign
Deprecated.

488 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

config(**attributes)
Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting obj.name =
'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

copy(**attributes)
Return shallow copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same as with the standard copy.copy
and copy.deepcopy functions that these methods also use internally.

deepcopy(**attributes)
Return deep copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same as with the standard copy.copy and
copy.deepcopy functions that these methods also use internally.

elapsedtime
Total execution time in milliseconds.

failed
True when status is ‘FAIL’, False otherwise.

has_setup

has_teardown

id
Item id in format like s1-t3-k1.

See TestSuite.id for more information.

kwname
Deprecated.

libname
Deprecated.

message
Deprecated.

name
Deprecated.

not_run
True when status is ‘NOT RUN’, False otherwise.

Setting to False value is ambiguous and raises an exception.

parent

passed
True when status is ‘PASS’, False otherwise.

repr_args = ()

3.1. robot package 489

Robot Framework Documentation, Release 6.0.2

skipped
True when status is ‘SKIP’, False otherwise.

Setting to False value is ambiguous and raises an exception.

tags
Deprecated.

timeout
Deprecated.

type = 'BREAK'

visit(visitor)

class robot.result.model.Keyword(kwname=”, libname=”, doc=”, args=(), assign=(),
tags=(), timeout=None, type=’KEYWORD’, status=’FAIL’,
starttime=None, endtime=None, parent=None, source-
name=None)

Bases: robot.model.keyword.Keyword, robot.result.model.StatusMixin

Represents results of a single keyword.

See the base class for documentation of attributes not documented here.

body_class
alias of Body

kwname
Name of the keyword without library or resource name.

libname
Name of the library or resource containing this keyword.

status
Execution status as a string. PASS, FAIL, SKIP or NOT RUN.

starttime
Keyword execution start time in format %Y%m%d %H:%M:%S.%f.

endtime
Keyword execution end time in format %Y%m%d %H:%M:%S.%f.

message
Keyword status message. Used only if suite teardowns fails.

sourcename
Original name of keyword with embedded arguments.

body
Child keywords and messages as a Body object.

keywords
Deprecated since Robot Framework 4.0.

Use body or teardown instead.

messages
Keyword’s messages.

Starting from Robot Framework 4.0 this is a list generated from messages in body .

children
List of child keywords and messages in creation order.

Deprecated since Robot Framework 4.0. Use :att:‘body‘ instead.

490 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

name
Keyword name in format libname.kwname.

Just kwname if libname is empty. In practice that is the case only with user keywords in the same file
as the executed test case or test suite.

Cannot be set directly. Set libname and kwname separately instead.

BREAK = 'BREAK'

CONTINUE = 'CONTINUE'

ELSE = 'ELSE'

ELSE_IF = 'ELSE IF'

EXCEPT = 'EXCEPT'

FAIL = 'FAIL'

FINALLY = 'FINALLY'

FOR = 'FOR'

IF = 'IF'

IF_ELSE_ROOT = 'IF/ELSE ROOT'

ITERATION = 'ITERATION'

KEYWORD = 'KEYWORD'

MESSAGE = 'MESSAGE'

NOT_RUN = 'NOT RUN'

NOT_SET = 'NOT SET'

PASS = 'PASS'

RETURN = 'RETURN'

SETUP = 'SETUP'

SKIP = 'SKIP'

TEARDOWN = 'TEARDOWN'

TRY = 'TRY'

TRY_EXCEPT_ROOT = 'TRY/EXCEPT ROOT'

WHILE = 'WHILE'

args

assign

config(**attributes)
Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting obj.name =
'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

copy(**attributes)
Return shallow copy of this object.

3.1. robot package 491

Robot Framework Documentation, Release 6.0.2

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same as with the standard copy.copy
and copy.deepcopy functions that these methods also use internally.

deepcopy(**attributes)
Return deep copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same as with the standard copy.copy and
copy.deepcopy functions that these methods also use internally.

doc

elapsedtime
Total execution time in milliseconds.

failed
True when status is ‘FAIL’, False otherwise.

has_setup

has_teardown
Check does a keyword have a teardown without creating a teardown object.

A difference between using if kw.has_teardown: and if kw.teardown: is that accessing the
teardown attribute creates a Keyword object representing a teardown even when the keyword actually
does not have one. This typically does not matter, but with bigger suite structures having lot of keywords
it can have a considerable effect on memory usage.

New in Robot Framework 4.1.2.

id
Item id in format like s1-t3-k1.

See TestSuite.id for more information.

not_run
True when status is ‘NOT RUN’, False otherwise.

Setting to False value is ambiguous and raises an exception.

parent

passed
True when status is ‘PASS’, False otherwise.

repr_args = ('name', 'args', 'assign')

skipped
True when status is ‘SKIP’, False otherwise.

Setting to False value is ambiguous and raises an exception.

tags
Keyword tags as a Tags object.

teardown
Keyword teardown as a Keyword object.

Teardown can be modified by setting attributes directly:

492 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

keyword.teardown.name = 'Example'
keyword.teardown.args = ('First', 'Second')

Alternatively the config() method can be used to set multiple attributes in one call:

keyword.teardown.config(name='Example', args=('First', 'Second'))

The easiest way to reset the whole teardown is setting it to None. It will automatically recreate the
underlying Keyword object:

keyword.teardown = None

This attribute is a Keyword object also when a keyword has no teardown but in that case its truth value
is False. If there is a need to just check does a keyword have a teardown, using the has_teardown
attribute avoids creating the Keyword object and is thus more memory efficient.

New in Robot Framework 4.0. Earlier teardown was accessed like keyword.keywords.teardown.
has_teardown is new in Robot Framework 4.1.2.

timeout

type

visit(visitor)
Visitor interface entry-point.

class robot.result.model.TestCase(name=”, doc=”, tags=None, timeout=None, lineno=None,
status=’FAIL’, message=”, starttime=None, end-
time=None, parent=None)

Bases: robot.model.testcase.TestCase, robot.result.model.StatusMixin

Represents results of a single test case.

See the base class for documentation of attributes not documented here.

body_class
alias of Body

fixture_class
alias of Keyword

status
Status as a string PASS or FAIL. See also passed.

message
Test message. Typically a failure message but can be set also when test passes.

starttime
Test case execution start time in format %Y%m%d %H:%M:%S.%f.

endtime
Test case execution end time in format %Y%m%d %H:%M:%S.%f.

not_run
True when status is ‘NOT RUN’, False otherwise.

Setting to False value is ambiguous and raises an exception.

critical

FAIL = 'FAIL'

NOT_RUN = 'NOT RUN'

3.1. robot package 493

Robot Framework Documentation, Release 6.0.2

NOT_SET = 'NOT SET'

PASS = 'PASS'

SKIP = 'SKIP'

body
Test body as a Body object.

config(**attributes)
Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting obj.name =
'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

copy(**attributes)
Return shallow copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same as with the standard copy.copy
and copy.deepcopy functions that these methods also use internally.

deepcopy(**attributes)
Return deep copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same as with the standard copy.copy and
copy.deepcopy functions that these methods also use internally.

doc

elapsedtime
Total execution time in milliseconds.

failed
True when status is ‘FAIL’, False otherwise.

has_setup
Check does a suite have a setup without creating a setup object.

A difference between using if test.has_setup: and if test.setup: is that accessing the
setup attribute creates a Keyword object representing the setup even when the test actually does not
have one. This typically does not matter, but with bigger suite structures containing a huge about of tests
it can have an effect on memory usage.

New in Robot Framework 5.0.

has_teardown
Check does a test have a teardown without creating a teardown object.

See has_setup for more information.

New in Robot Framework 5.0.

id
Test case id in format like s1-t3.

See TestSuite.id for more information.

494 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

keywords
Deprecated since Robot Framework 4.0

Use body , setup or teardown instead.

lineno

longname
Test name prefixed with the long name of the parent suite.

name

parent

passed
True when status is ‘PASS’, False otherwise.

repr_args = ('name',)

setup
Test setup as a Keyword object.

This attribute is a Keyword object also when a test has no setup but in that case its truth value is False.

Setup can be modified by setting attributes directly:

test.setup.name = 'Example'
test.setup.args = ('First', 'Second')

Alternatively the config() method can be used to set multiple attributes in one call:

test.setup.config(name='Example', args=('First', 'Second'))

The easiest way to reset the whole setup is setting it to None. It will automatically recreate the underlying
Keyword object:

test.setup = None

New in Robot Framework 4.0. Earlier setup was accessed like test.keywords.setup.

skipped
True when status is ‘SKIP’, False otherwise.

Setting to False value is ambiguous and raises an exception.

source

tags
Test tags as a Tags object.

teardown
Test teardown as a Keyword object.

See setup for more information.

timeout

visit(visitor)
Visitor interface entry-point.

class robot.result.model.TestSuite(name=”, doc=”, metadata=None, source=None, mes-
sage=”, starttime=None, endtime=None, rpa=False, par-
ent=None)

Bases: robot.model.testsuite.TestSuite, robot.result.model.StatusMixin

3.1. robot package 495

Robot Framework Documentation, Release 6.0.2

Represents results of a single test suite.

See the base class for documentation of attributes not documented here.

test_class
alias of TestCase

fixture_class
alias of Keyword

message
Possible suite setup or teardown error message.

starttime
Suite execution start time in format %Y%m%d %H:%M:%S.%f.

endtime
Suite execution end time in format %Y%m%d %H:%M:%S.%f.

passed
True if no test has failed but some have passed, False otherwise.

failed
True if any test has failed, False otherwise.

skipped
True if there are no passed or failed tests, False otherwise.

FAIL = 'FAIL'

NOT_RUN = 'NOT RUN'

NOT_SET = 'NOT SET'

PASS = 'PASS'

SKIP = 'SKIP'

config(**attributes)
Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting obj.name =
'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

copy(**attributes)
Return shallow copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same as with the standard copy.copy
and copy.deepcopy functions that these methods also use internally.

deepcopy(**attributes)
Return deep copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same as with the standard copy.copy and
copy.deepcopy functions that these methods also use internally.

doc

496 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

filter(included_suites=None, included_tests=None, included_tags=None, excluded_tags=None)
Select test cases and remove others from this suite.

Parameters have the same semantics as --suite, --test, --include, and --exclude command
line options. All of them can be given as a list of strings, or when selecting only one, as a single string.

Child suites that contain no tests after filtering are automatically removed.

Example:

suite.filter(included_tests=['Test 1', '* Example'],
included_tags='priority-1')

has_setup
Check does a suite have a setup without creating a setup object.

A difference between using if suite.has_setup: and if suite.setup: is that accessing the
setup attribute creates a Keyword object representing the setup even when the suite actually does not
have one. This typically does not matter, but with bigger suite structures containing a huge about of suites
it can have some effect on memory usage.

New in Robot Framework 5.0.

has_teardown
Check does a suite have a teardown without creating a teardown object.

See has_setup for more information.

New in Robot Framework 5.0.

has_tests

id
An automatically generated unique id.

The root suite has id s1, its child suites have ids s1-s1, s1-s2, . . . , their child suites get ids s1-s1-s1,
s1-s1-s2, . . . , s1-s2-s1, . . . , and so on.

The first test in a suite has an id like s1-t1, the second has an id s1-t2, and so on. Similarly keywords
in suites (setup/teardown) and in tests get ids like s1-k1, s1-t1-k1, and s1-s4-t2-k5.

keywords
Deprecated since Robot Framework 4.0

Use setup or teardown instead.

longname
Suite name prefixed with the long name of the parent suite.

metadata
Free test suite metadata as a dictionary.

name
Test suite name. If not set, constructed from child suite names.

not_run
True when status is ‘NOT RUN’, False otherwise.

Setting to False value is ambiguous and raises an exception.

parent

remove_empty_suites(preserve_direct_children=False)
Removes all child suites not containing any tests, recursively.

3.1. robot package 497

Robot Framework Documentation, Release 6.0.2

repr_args = ('name',)

rpa

set_tags(add=None, remove=None, persist=False)
Add and/or remove specified tags to the tests in this suite.

Parameters

• add – Tags to add as a list or, if adding only one, as a single string.

• remove – Tags to remove as a list or as a single string. Can be given as patterns where *
and ? work as wildcards.

• persist – Add/remove specified tags also to new tests added to this suite in the future.

setup
Suite setup as a Keyword object.

This attribute is a Keyword object also when a suite has no setup but in that case its truth value is False.

Setup can be modified by setting attributes directly:

suite.setup.name = 'Example'
suite.setup.args = ('First', 'Second')

Alternatively the config() method can be used to set multiple attributes in one call:

suite.setup.config(name='Example', args=('First', 'Second'))

The easiest way to reset the whole setup is setting it to None. It will automatically recreate the underlying
Keyword object:

suite.setup = None

New in Robot Framework 4.0. Earlier setup was accessed like suite.keywords.setup.

source

suites
Child suites as a TestSuites object.

teardown
Suite teardown as a Keyword object.

See setup for more information.

test_count
Number of the tests in this suite, recursively.

tests
Tests as a TestCases object.

visit(visitor)
Visitor interface entry-point.

status
‘PASS’, ‘FAIL’ or ‘SKIP’ depending on test statuses.

• If any test has failed, status is ‘FAIL’.

• If no test has failed but at least some test has passed, status is ‘PASS’.

• If there are no failed or passed tests, status is ‘SKIP’. This covers both the case when all tests have
been skipped and when there are no tests.

498 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

statistics
Suite statistics as a TotalStatistics object.

Recreated every time this property is accessed, so saving the results to a variable and inspecting it is often
a good idea:

stats = suite.statistics
print(stats.failed)
print(stats.total)
print(stats.message)

full_message
Combination of message and stat_message.

stat_message
String representation of the statistics.

elapsedtime
Total execution time in milliseconds.

remove_keywords(how)
Remove keywords based on the given condition.

Parameters how – What approach to use when removing keywords. Either ALL, PASSED,
FOR, WUKS, or NAME:<pattern>.

For more information about the possible values see the documentation of the --removekeywords
command line option.

filter_messages(log_level=’TRACE’)
Remove log messages below the specified log_level.

configure(**options)
A shortcut to configure a suite using one method call.

Can only be used with the root test suite.

Parameters options – Passed to SuiteConfigurer that will then set suite attributes, call
filter(), etc. as needed.

Example:

suite.configure(remove_keywords='PASSED',
doc='Smoke test results.')

Not to be confused with config() method that suites, tests, and keywords have to make it possible to
set multiple attributes in one call.

handle_suite_teardown_failures()
Internal usage only.

suite_teardown_failed(error)
Internal usage only.

suite_teardown_skipped(message)
Internal usage only.

robot.result.modeldeprecation module

robot.result.modeldeprecation.deprecated(method)

3.1. robot package 499

Robot Framework Documentation, Release 6.0.2

class robot.result.modeldeprecation.DeprecatedAttributesMixin
Bases: object

name
Deprecated.

kwname
Deprecated.

libname
Deprecated.

args
Deprecated.

assign
Deprecated.

tags
Deprecated.

timeout
Deprecated.

message
Deprecated.

robot.result.resultbuilder module

robot.result.resultbuilder.ExecutionResult(*sources, **options)
Factory method to constructs Result objects.

Parameters

• sources – XML source(s) containing execution results. Can be specified as paths, opened
file objects, or strings/bytes containing XML directly. Support for bytes is new in RF 3.2.

• options – Configuration options. Using merge=True causes multiple results to be com-
bined so that tests in the latter results replace the ones in the original. Setting rpa either to
True (RPA mode) or False (test automation) sets execution mode explicitly. By default
it is got from processed output files and conflicting modes cause an error. Other options are
passed directly to the ExecutionResultBuilder object used internally.

Returns Result instance.

Should be imported by external code via the robot.api package. See the robot.result package for a
usage example.

class robot.result.resultbuilder.ExecutionResultBuilder(source, in-
clude_keywords=True,
flat-
tened_keywords=None)

Bases: object

Builds Result objects based on output files.

Instead of using this builder directly, it is recommended to use the ExecutionResult() factory method.

Parameters

• source – Path to the XML output file to build Result objects from.

500 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

• include_keywords – Boolean controlling whether to include keyword information in
the result or not. Keywords are not needed when generating only report. Although the the
option name has word “keyword”, it controls also including FOR and IF structures.

• flatten_keywords – List of patterns controlling what keywords to flatten. See the
documentation of --flattenkeywords option for more details.

build(result)

class robot.result.resultbuilder.RemoveKeywords
Bases: robot.model.visitor.SuiteVisitor

start_suite(suite)
Called when a suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

visit_test(test)
Implements traversing through tests.

Can be overridden to allow modifying the passed in test without calling start_test() or
end_test() nor visiting the body of the test.

end_body_item(item)
Called, by default, when keywords, messages or control structures end.

More specific end_keyword(), end_message(), :meth:‘end_for, etc. can be implemented to visit
only keywords, messages or specific control structures.

Default implementation does nothing.

end_break(break_)
Called when a BREAK element ends.

By default, calls end_body_item() which, by default, does nothing.

end_continue(continue_)
Called when a CONTINUE element ends.

By default, calls end_body_item() which, by default, does nothing.

end_for(for_)
Called when a FOR loop ends.

By default, calls end_body_item() which, by default, does nothing.

end_for_iteration(iteration)
Called when a FOR loop iteration ends.

By default, calls end_body_item() which, by default, does nothing.

end_if(if_)
Called when an IF/ELSE structure ends.

By default, calls end_body_item() which, by default, does nothing.

end_if_branch(branch)
Called when an IF/ELSE branch ends.

By default, calls end_body_item() which, by default, does nothing.

end_keyword(keyword)
Called when a keyword ends.

By default, calls end_body_item() which, by default, does nothing.

3.1. robot package 501

Robot Framework Documentation, Release 6.0.2

end_message(msg)
Called when a message ends.

By default, calls end_body_item() which, by default, does nothing.

end_return(return_)
Called when a RETURN element ends.

By default, calls end_body_item() which, by default, does nothing.

end_suite(suite)
Called when a suite ends. Default implementation does nothing.

end_test(test)
Called when a test ends. Default implementation does nothing.

end_try(try_)
Called when a TRY/EXCEPT structure ends.

By default, calls end_body_item() which, by default, does nothing.

end_try_branch(branch)
Called when TRY, EXCEPT, ELSE and FINALLY branches end.

By default, calls end_body_item() which, by default, does nothing.

end_while(while_)
Called when a WHILE loop ends.

By default, calls end_body_item() which, by default, does nothing.

end_while_iteration(iteration)
Called when a WHILE loop iteration ends.

By default, calls end_body_item() which, by default, does nothing.

start_body_item(item)
Called, by default, when keywords, messages or control structures start.

More specific start_keyword(), start_message(), :meth:‘start_for, etc. can be implemented to
visit only keywords, messages or specific control structures.

Can return explicit False to stop visiting. Default implementation does nothing.

start_break(break_)
Called when a BREAK element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_continue(continue_)
Called when a CONTINUE element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_for(for_)
Called when a FOR loop starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

502 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

start_for_iteration(iteration)
Called when a FOR loop iteration starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_if(if_)
Called when an IF/ELSE structure starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_if_branch(branch)
Called when an IF/ELSE branch starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_keyword(keyword)
Called when a keyword starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_message(msg)
Called when a message starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_return(return_)
Called when a RETURN element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_test(test)
Called when a test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

start_try(try_)
Called when a TRY/EXCEPT structure starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_try_branch(branch)
Called when TRY, EXCEPT, ELSE or FINALLY branches start.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_while(while_)
Called when a WHILE loop starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

3.1. robot package 503

Robot Framework Documentation, Release 6.0.2

start_while_iteration(iteration)
Called when a WHILE loop iteration starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

visit_break(break_)
Visits BREAK elements.

visit_continue(continue_)
Visits CONTINUE elements.

visit_for(for_)
Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without calling start_for() or
end_for() nor visiting body.

visit_for_iteration(iteration)
Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side there are no iterations.

Can be overridden to allow modifying the passed in iteration without calling
start_for_iteration() or end_for_iteration() nor visiting body.

visit_if(if_)
Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches are in its body and visited
using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without calling start_if() or end_if()
nor visiting branches.

visit_if_branch(branch)
Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without calling start_if_branch() or
end_if_branch() nor visiting body.

visit_keyword(kw)
Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without calling start_keyword() or
end_keyword() nor visiting the body of the keyword

visit_message(msg)
Implements visiting messages.

Can be overridden to allow modifying the passed in msg without calling start_message() or
end_message().

visit_return(return_)
Visits a RETURN elements.

visit_suite(suite)
Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without calling start_suite() or
end_suite() nor visiting child suites, tests or setup and teardown at all.

504 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

visit_try(try_)
Implements traversing through TRY/EXCEPT structures.

This method is used with the TRY/EXCEPT root element. Actual TRY, EXCEPT, ELSE and FINALLY
branches are visited separately using visit_try_branch().

visit_try_branch(branch)
Visits individual TRY, EXCEPT, ELSE and FINALLY branches.

visit_while(while_)
Implements traversing through WHILE loops.

Can be overridden to allow modifying the passed in while_ without calling start_while() or
end_while() nor visiting body.

visit_while_iteration(iteration)
Implements traversing through single WHILE loop iteration.

This is only used with the result side model because on the running side there are no iterations.

Can be overridden to allow modifying the passed in iteration without calling
start_while_iteration() or end_while_iteration() nor visiting body.

robot.result.suiteteardownfailed module

class robot.result.suiteteardownfailed.SuiteTeardownFailureHandler
Bases: robot.model.visitor.SuiteVisitor

end_suite(suite)
Called when a suite ends. Default implementation does nothing.

visit_test(test)
Implements traversing through tests.

Can be overridden to allow modifying the passed in test without calling start_test() or
end_test() nor visiting the body of the test.

visit_keyword(keyword)
Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without calling start_keyword() or
end_keyword() nor visiting the body of the keyword

end_body_item(item)
Called, by default, when keywords, messages or control structures end.

More specific end_keyword(), end_message(), :meth:‘end_for, etc. can be implemented to visit
only keywords, messages or specific control structures.

Default implementation does nothing.

end_break(break_)
Called when a BREAK element ends.

By default, calls end_body_item() which, by default, does nothing.

end_continue(continue_)
Called when a CONTINUE element ends.

By default, calls end_body_item() which, by default, does nothing.

3.1. robot package 505

Robot Framework Documentation, Release 6.0.2

end_for(for_)
Called when a FOR loop ends.

By default, calls end_body_item() which, by default, does nothing.

end_for_iteration(iteration)
Called when a FOR loop iteration ends.

By default, calls end_body_item() which, by default, does nothing.

end_if(if_)
Called when an IF/ELSE structure ends.

By default, calls end_body_item() which, by default, does nothing.

end_if_branch(branch)
Called when an IF/ELSE branch ends.

By default, calls end_body_item() which, by default, does nothing.

end_keyword(keyword)
Called when a keyword ends.

By default, calls end_body_item() which, by default, does nothing.

end_message(msg)
Called when a message ends.

By default, calls end_body_item() which, by default, does nothing.

end_return(return_)
Called when a RETURN element ends.

By default, calls end_body_item() which, by default, does nothing.

end_test(test)
Called when a test ends. Default implementation does nothing.

end_try(try_)
Called when a TRY/EXCEPT structure ends.

By default, calls end_body_item() which, by default, does nothing.

end_try_branch(branch)
Called when TRY, EXCEPT, ELSE and FINALLY branches end.

By default, calls end_body_item() which, by default, does nothing.

end_while(while_)
Called when a WHILE loop ends.

By default, calls end_body_item() which, by default, does nothing.

end_while_iteration(iteration)
Called when a WHILE loop iteration ends.

By default, calls end_body_item() which, by default, does nothing.

start_body_item(item)
Called, by default, when keywords, messages or control structures start.

More specific start_keyword(), start_message(), :meth:‘start_for, etc. can be implemented to
visit only keywords, messages or specific control structures.

Can return explicit False to stop visiting. Default implementation does nothing.

506 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

start_break(break_)
Called when a BREAK element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_continue(continue_)
Called when a CONTINUE element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_for(for_)
Called when a FOR loop starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_for_iteration(iteration)
Called when a FOR loop iteration starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_if(if_)
Called when an IF/ELSE structure starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_if_branch(branch)
Called when an IF/ELSE branch starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_keyword(keyword)
Called when a keyword starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_message(msg)
Called when a message starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_return(return_)
Called when a RETURN element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_suite(suite)
Called when a suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

3.1. robot package 507

Robot Framework Documentation, Release 6.0.2

start_test(test)
Called when a test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

start_try(try_)
Called when a TRY/EXCEPT structure starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_try_branch(branch)
Called when TRY, EXCEPT, ELSE or FINALLY branches start.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_while(while_)
Called when a WHILE loop starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_while_iteration(iteration)
Called when a WHILE loop iteration starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

visit_break(break_)
Visits BREAK elements.

visit_continue(continue_)
Visits CONTINUE elements.

visit_for(for_)
Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without calling start_for() or
end_for() nor visiting body.

visit_for_iteration(iteration)
Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side there are no iterations.

Can be overridden to allow modifying the passed in iteration without calling
start_for_iteration() or end_for_iteration() nor visiting body.

visit_if(if_)
Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches are in its body and visited
using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without calling start_if() or end_if()
nor visiting branches.

visit_if_branch(branch)
Implements traversing through single IF/ELSE branch.

508 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

Can be overridden to allow modifying the passed in branch without calling start_if_branch() or
end_if_branch() nor visiting body.

visit_message(msg)
Implements visiting messages.

Can be overridden to allow modifying the passed in msg without calling start_message() or
end_message().

visit_return(return_)
Visits a RETURN elements.

visit_suite(suite)
Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without calling start_suite() or
end_suite() nor visiting child suites, tests or setup and teardown at all.

visit_try(try_)
Implements traversing through TRY/EXCEPT structures.

This method is used with the TRY/EXCEPT root element. Actual TRY, EXCEPT, ELSE and FINALLY
branches are visited separately using visit_try_branch().

visit_try_branch(branch)
Visits individual TRY, EXCEPT, ELSE and FINALLY branches.

visit_while(while_)
Implements traversing through WHILE loops.

Can be overridden to allow modifying the passed in while_ without calling start_while() or
end_while() nor visiting body.

visit_while_iteration(iteration)
Implements traversing through single WHILE loop iteration.

This is only used with the result side model because on the running side there are no iterations.

Can be overridden to allow modifying the passed in iteration without calling
start_while_iteration() or end_while_iteration() nor visiting body.

class robot.result.suiteteardownfailed.SuiteTeardownFailed(message,
skipped=False)

Bases: robot.model.visitor.SuiteVisitor

visit_test(test)
Implements traversing through tests.

Can be overridden to allow modifying the passed in test without calling start_test() or
end_test() nor visiting the body of the test.

visit_keyword(keyword)
Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without calling start_keyword() or
end_keyword() nor visiting the body of the keyword

end_body_item(item)
Called, by default, when keywords, messages or control structures end.

More specific end_keyword(), end_message(), :meth:‘end_for, etc. can be implemented to visit
only keywords, messages or specific control structures.

Default implementation does nothing.

3.1. robot package 509

Robot Framework Documentation, Release 6.0.2

end_break(break_)
Called when a BREAK element ends.

By default, calls end_body_item() which, by default, does nothing.

end_continue(continue_)
Called when a CONTINUE element ends.

By default, calls end_body_item() which, by default, does nothing.

end_for(for_)
Called when a FOR loop ends.

By default, calls end_body_item() which, by default, does nothing.

end_for_iteration(iteration)
Called when a FOR loop iteration ends.

By default, calls end_body_item() which, by default, does nothing.

end_if(if_)
Called when an IF/ELSE structure ends.

By default, calls end_body_item() which, by default, does nothing.

end_if_branch(branch)
Called when an IF/ELSE branch ends.

By default, calls end_body_item() which, by default, does nothing.

end_keyword(keyword)
Called when a keyword ends.

By default, calls end_body_item() which, by default, does nothing.

end_message(msg)
Called when a message ends.

By default, calls end_body_item() which, by default, does nothing.

end_return(return_)
Called when a RETURN element ends.

By default, calls end_body_item() which, by default, does nothing.

end_suite(suite)
Called when a suite ends. Default implementation does nothing.

end_test(test)
Called when a test ends. Default implementation does nothing.

end_try(try_)
Called when a TRY/EXCEPT structure ends.

By default, calls end_body_item() which, by default, does nothing.

end_try_branch(branch)
Called when TRY, EXCEPT, ELSE and FINALLY branches end.

By default, calls end_body_item() which, by default, does nothing.

end_while(while_)
Called when a WHILE loop ends.

By default, calls end_body_item() which, by default, does nothing.

510 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

end_while_iteration(iteration)
Called when a WHILE loop iteration ends.

By default, calls end_body_item() which, by default, does nothing.

start_body_item(item)
Called, by default, when keywords, messages or control structures start.

More specific start_keyword(), start_message(), :meth:‘start_for, etc. can be implemented to
visit only keywords, messages or specific control structures.

Can return explicit False to stop visiting. Default implementation does nothing.

start_break(break_)
Called when a BREAK element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_continue(continue_)
Called when a CONTINUE element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_for(for_)
Called when a FOR loop starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_for_iteration(iteration)
Called when a FOR loop iteration starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_if(if_)
Called when an IF/ELSE structure starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_if_branch(branch)
Called when an IF/ELSE branch starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_keyword(keyword)
Called when a keyword starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_message(msg)
Called when a message starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

3.1. robot package 511

Robot Framework Documentation, Release 6.0.2

start_return(return_)
Called when a RETURN element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_suite(suite)
Called when a suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

start_test(test)
Called when a test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

start_try(try_)
Called when a TRY/EXCEPT structure starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_try_branch(branch)
Called when TRY, EXCEPT, ELSE or FINALLY branches start.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_while(while_)
Called when a WHILE loop starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_while_iteration(iteration)
Called when a WHILE loop iteration starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

visit_break(break_)
Visits BREAK elements.

visit_continue(continue_)
Visits CONTINUE elements.

visit_for(for_)
Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without calling start_for() or
end_for() nor visiting body.

visit_for_iteration(iteration)
Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side there are no iterations.

Can be overridden to allow modifying the passed in iteration without calling
start_for_iteration() or end_for_iteration() nor visiting body.

512 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

visit_if(if_)
Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches are in its body and visited
using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without calling start_if() or end_if()
nor visiting branches.

visit_if_branch(branch)
Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without calling start_if_branch() or
end_if_branch() nor visiting body.

visit_message(msg)
Implements visiting messages.

Can be overridden to allow modifying the passed in msg without calling start_message() or
end_message().

visit_return(return_)
Visits a RETURN elements.

visit_suite(suite)
Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without calling start_suite() or
end_suite() nor visiting child suites, tests or setup and teardown at all.

visit_try(try_)
Implements traversing through TRY/EXCEPT structures.

This method is used with the TRY/EXCEPT root element. Actual TRY, EXCEPT, ELSE and FINALLY
branches are visited separately using visit_try_branch().

visit_try_branch(branch)
Visits individual TRY, EXCEPT, ELSE and FINALLY branches.

visit_while(while_)
Implements traversing through WHILE loops.

Can be overridden to allow modifying the passed in while_ without calling start_while() or
end_while() nor visiting body.

visit_while_iteration(iteration)
Implements traversing through single WHILE loop iteration.

This is only used with the result side model because on the running side there are no iterations.

Can be overridden to allow modifying the passed in iteration without calling
start_while_iteration() or end_while_iteration() nor visiting body.

robot.result.visitor module

Visitors can be used to easily traverse result structures.

This module contains ResultVisitor for traversing the whole Result object. It extends SuiteVisitor that
contains visiting logic for the test suite structure.

class robot.result.visitor.ResultVisitor
Bases: robot.model.visitor.SuiteVisitor

3.1. robot package 513

Robot Framework Documentation, Release 6.0.2

Abstract class to conveniently travel Result objects.

A visitor implementation can be given to the visit() method of a result object. This will cause the result
object to be traversed and the visitor’s visit_x(), start_x(), and end_x() methods to be called for
each suite, test, keyword and message, as well as for errors, statistics, and other information in the result object.
See methods below for a full list of available visitor methods.

See the result package level documentation for more information about handling results and a concrete
visitor example. For more information about the visitor algorithm see documentation in robot.model.
visitor module.

visit_result(result)

start_result(result)

end_result(result)

visit_statistics(stats)

start_statistics(stats)

end_statistics(stats)

visit_total_statistics(stats)

start_total_statistics(stats)

end_total_statistics(stats)

visit_tag_statistics(stats)

start_tag_statistics(stats)

end_tag_statistics(stats)

visit_suite_statistics(stats)

start_suite_statistics(stats)

end_suite_statistics(suite_stats)

visit_stat(stat)

start_stat(stat)

end_stat(stat)

visit_errors(errors)

start_errors(errors)

end_errors(errors)

end_body_item(item)
Called, by default, when keywords, messages or control structures end.

More specific end_keyword(), end_message(), :meth:‘end_for, etc. can be implemented to visit
only keywords, messages or specific control structures.

Default implementation does nothing.

end_break(break_)
Called when a BREAK element ends.

By default, calls end_body_item() which, by default, does nothing.

514 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

end_continue(continue_)
Called when a CONTINUE element ends.

By default, calls end_body_item() which, by default, does nothing.

end_for(for_)
Called when a FOR loop ends.

By default, calls end_body_item() which, by default, does nothing.

end_for_iteration(iteration)
Called when a FOR loop iteration ends.

By default, calls end_body_item() which, by default, does nothing.

end_if(if_)
Called when an IF/ELSE structure ends.

By default, calls end_body_item() which, by default, does nothing.

end_if_branch(branch)
Called when an IF/ELSE branch ends.

By default, calls end_body_item() which, by default, does nothing.

end_keyword(keyword)
Called when a keyword ends.

By default, calls end_body_item() which, by default, does nothing.

end_message(msg)
Called when a message ends.

By default, calls end_body_item() which, by default, does nothing.

end_return(return_)
Called when a RETURN element ends.

By default, calls end_body_item() which, by default, does nothing.

end_suite(suite)
Called when a suite ends. Default implementation does nothing.

end_test(test)
Called when a test ends. Default implementation does nothing.

end_try(try_)
Called when a TRY/EXCEPT structure ends.

By default, calls end_body_item() which, by default, does nothing.

end_try_branch(branch)
Called when TRY, EXCEPT, ELSE and FINALLY branches end.

By default, calls end_body_item() which, by default, does nothing.

end_while(while_)
Called when a WHILE loop ends.

By default, calls end_body_item() which, by default, does nothing.

end_while_iteration(iteration)
Called when a WHILE loop iteration ends.

By default, calls end_body_item() which, by default, does nothing.

3.1. robot package 515

Robot Framework Documentation, Release 6.0.2

start_body_item(item)
Called, by default, when keywords, messages or control structures start.

More specific start_keyword(), start_message(), :meth:‘start_for, etc. can be implemented to
visit only keywords, messages or specific control structures.

Can return explicit False to stop visiting. Default implementation does nothing.

start_break(break_)
Called when a BREAK element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_continue(continue_)
Called when a CONTINUE element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_for(for_)
Called when a FOR loop starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_for_iteration(iteration)
Called when a FOR loop iteration starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_if(if_)
Called when an IF/ELSE structure starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_if_branch(branch)
Called when an IF/ELSE branch starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_keyword(keyword)
Called when a keyword starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_message(msg)
Called when a message starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_return(return_)
Called when a RETURN element starts.

By default, calls start_body_item() which, by default, does nothing.

516 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

Can return explicit False to stop visiting.

start_suite(suite)
Called when a suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

start_test(test)
Called when a test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

start_try(try_)
Called when a TRY/EXCEPT structure starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_try_branch(branch)
Called when TRY, EXCEPT, ELSE or FINALLY branches start.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_while(while_)
Called when a WHILE loop starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_while_iteration(iteration)
Called when a WHILE loop iteration starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

visit_break(break_)
Visits BREAK elements.

visit_continue(continue_)
Visits CONTINUE elements.

visit_for(for_)
Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without calling start_for() or
end_for() nor visiting body.

visit_for_iteration(iteration)
Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side there are no iterations.

Can be overridden to allow modifying the passed in iteration without calling
start_for_iteration() or end_for_iteration() nor visiting body.

visit_if(if_)
Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches are in its body and visited
using visit_if_branch().

3.1. robot package 517

Robot Framework Documentation, Release 6.0.2

Can be overridden to allow modifying the passed in if_ without calling start_if() or end_if()
nor visiting branches.

visit_if_branch(branch)
Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without calling start_if_branch() or
end_if_branch() nor visiting body.

visit_keyword(kw)
Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without calling start_keyword() or
end_keyword() nor visiting the body of the keyword

visit_message(msg)
Implements visiting messages.

Can be overridden to allow modifying the passed in msg without calling start_message() or
end_message().

visit_return(return_)
Visits a RETURN elements.

visit_suite(suite)
Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without calling start_suite() or
end_suite() nor visiting child suites, tests or setup and teardown at all.

visit_test(test)
Implements traversing through tests.

Can be overridden to allow modifying the passed in test without calling start_test() or
end_test() nor visiting the body of the test.

visit_try(try_)
Implements traversing through TRY/EXCEPT structures.

This method is used with the TRY/EXCEPT root element. Actual TRY, EXCEPT, ELSE and FINALLY
branches are visited separately using visit_try_branch().

visit_try_branch(branch)
Visits individual TRY, EXCEPT, ELSE and FINALLY branches.

visit_while(while_)
Implements traversing through WHILE loops.

Can be overridden to allow modifying the passed in while_ without calling start_while() or
end_while() nor visiting body.

visit_while_iteration(iteration)
Implements traversing through single WHILE loop iteration.

This is only used with the result side model because on the running side there are no iterations.

Can be overridden to allow modifying the passed in iteration without calling
start_while_iteration() or end_while_iteration() nor visiting body.

518 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

robot.result.xmlelementhandlers module

class robot.result.xmlelementhandlers.XmlElementHandler(execution_result,
root_handler=None)

Bases: object

start(elem)

end(elem)

class robot.result.xmlelementhandlers.ElementHandler
Bases: object

element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.BranchHandler object>, 'break': <robot.result.xmlelementhandlers.BreakHandler object>, 'continue': <robot.result.xmlelementhandlers.ContinueHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.IterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'pattern': <robot.result.xmlelementhandlers.PatternHandler object>, 'return': <robot.result.xmlelementhandlers.ReturnHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'try': <robot.result.xmlelementhandlers.TryHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>, 'while': <robot.result.xmlelementhandlers.WhileHandler object>}

tag = None

children = frozenset()

classmethod register(handler)

get_child_handler(tag)

start(elem, result)

end(elem, result)

class robot.result.xmlelementhandlers.RootHandler
Bases: robot.result.xmlelementhandlers.ElementHandler

children = frozenset({'robot'})

element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.BranchHandler object>, 'break': <robot.result.xmlelementhandlers.BreakHandler object>, 'continue': <robot.result.xmlelementhandlers.ContinueHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.IterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'pattern': <robot.result.xmlelementhandlers.PatternHandler object>, 'return': <robot.result.xmlelementhandlers.ReturnHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'try': <robot.result.xmlelementhandlers.TryHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>, 'while': <robot.result.xmlelementhandlers.WhileHandler object>}

end(elem, result)

get_child_handler(tag)

classmethod register(handler)

start(elem, result)

tag = None

class robot.result.xmlelementhandlers.RobotHandler
Bases: robot.result.xmlelementhandlers.ElementHandler

tag = 'robot'

children = frozenset({'errors', 'suite', 'statistics'})

start(elem, result)

element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.BranchHandler object>, 'break': <robot.result.xmlelementhandlers.BreakHandler object>, 'continue': <robot.result.xmlelementhandlers.ContinueHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.IterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'pattern': <robot.result.xmlelementhandlers.PatternHandler object>, 'return': <robot.result.xmlelementhandlers.ReturnHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'try': <robot.result.xmlelementhandlers.TryHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>, 'while': <robot.result.xmlelementhandlers.WhileHandler object>}

end(elem, result)

get_child_handler(tag)

classmethod register(handler)

class robot.result.xmlelementhandlers.SuiteHandler
Bases: robot.result.xmlelementhandlers.ElementHandler

tag = 'suite'

children = frozenset({'doc', 'suite', 'test', 'metadata', 'status', 'meta', 'kw'})

start(elem, result)

3.1. robot package 519

Robot Framework Documentation, Release 6.0.2

get_child_handler(tag)

element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.BranchHandler object>, 'break': <robot.result.xmlelementhandlers.BreakHandler object>, 'continue': <robot.result.xmlelementhandlers.ContinueHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.IterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'pattern': <robot.result.xmlelementhandlers.PatternHandler object>, 'return': <robot.result.xmlelementhandlers.ReturnHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'try': <robot.result.xmlelementhandlers.TryHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>, 'while': <robot.result.xmlelementhandlers.WhileHandler object>}

end(elem, result)

classmethod register(handler)

class robot.result.xmlelementhandlers.TestHandler
Bases: robot.result.xmlelementhandlers.ElementHandler

tag = 'test'

children = frozenset({'doc', 'timeout', 'if', 'continue', 'return', 'msg', 'tag', 'tags', 'break', 'status', 'while', 'try', 'for', 'kw'})

start(elem, result)

element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.BranchHandler object>, 'break': <robot.result.xmlelementhandlers.BreakHandler object>, 'continue': <robot.result.xmlelementhandlers.ContinueHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.IterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'pattern': <robot.result.xmlelementhandlers.PatternHandler object>, 'return': <robot.result.xmlelementhandlers.ReturnHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'try': <robot.result.xmlelementhandlers.TryHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>, 'while': <robot.result.xmlelementhandlers.WhileHandler object>}

end(elem, result)

get_child_handler(tag)

classmethod register(handler)

class robot.result.xmlelementhandlers.KeywordHandler
Bases: robot.result.xmlelementhandlers.ElementHandler

tag = 'kw'

children = frozenset({'arg', 'doc', 'timeout', 'if', 'continue', 'return', 'msg', 'tag', 'arguments', 'tags', 'var', 'try', 'status', 'while', 'break', 'assign', 'for', 'kw'})

start(elem, result)

element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.BranchHandler object>, 'break': <robot.result.xmlelementhandlers.BreakHandler object>, 'continue': <robot.result.xmlelementhandlers.ContinueHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.IterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'pattern': <robot.result.xmlelementhandlers.PatternHandler object>, 'return': <robot.result.xmlelementhandlers.ReturnHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'try': <robot.result.xmlelementhandlers.TryHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>, 'while': <robot.result.xmlelementhandlers.WhileHandler object>}

end(elem, result)

get_child_handler(tag)

classmethod register(handler)

class robot.result.xmlelementhandlers.ForHandler
Bases: robot.result.xmlelementhandlers.ElementHandler

tag = 'for'

children = frozenset({'value', 'doc', 'iter', 'msg', 'var', 'status', 'kw'})

start(elem, result)

element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.BranchHandler object>, 'break': <robot.result.xmlelementhandlers.BreakHandler object>, 'continue': <robot.result.xmlelementhandlers.ContinueHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.IterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'pattern': <robot.result.xmlelementhandlers.PatternHandler object>, 'return': <robot.result.xmlelementhandlers.ReturnHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'try': <robot.result.xmlelementhandlers.TryHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>, 'while': <robot.result.xmlelementhandlers.WhileHandler object>}

end(elem, result)

get_child_handler(tag)

classmethod register(handler)

class robot.result.xmlelementhandlers.WhileHandler
Bases: robot.result.xmlelementhandlers.ElementHandler

tag = 'while'

children = frozenset({'doc', 'msg', 'iter', 'status', 'kw'})

start(elem, result)

element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.BranchHandler object>, 'break': <robot.result.xmlelementhandlers.BreakHandler object>, 'continue': <robot.result.xmlelementhandlers.ContinueHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.IterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'pattern': <robot.result.xmlelementhandlers.PatternHandler object>, 'return': <robot.result.xmlelementhandlers.ReturnHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'try': <robot.result.xmlelementhandlers.TryHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>, 'while': <robot.result.xmlelementhandlers.WhileHandler object>}

520 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

end(elem, result)

get_child_handler(tag)

classmethod register(handler)

class robot.result.xmlelementhandlers.IterationHandler
Bases: robot.result.xmlelementhandlers.ElementHandler

tag = 'iter'

children = frozenset({'doc', 'if', 'continue', 'return', 'msg', 'break', 'var', 'status', 'while', 'try', 'for', 'kw'})

start(elem, result)

element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.BranchHandler object>, 'break': <robot.result.xmlelementhandlers.BreakHandler object>, 'continue': <robot.result.xmlelementhandlers.ContinueHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.IterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'pattern': <robot.result.xmlelementhandlers.PatternHandler object>, 'return': <robot.result.xmlelementhandlers.ReturnHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'try': <robot.result.xmlelementhandlers.TryHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>, 'while': <robot.result.xmlelementhandlers.WhileHandler object>}

end(elem, result)

get_child_handler(tag)

classmethod register(handler)

class robot.result.xmlelementhandlers.IfHandler
Bases: robot.result.xmlelementhandlers.ElementHandler

tag = 'if'

children = frozenset({'doc', 'msg', 'status', 'branch', 'kw'})

start(elem, result)

element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.BranchHandler object>, 'break': <robot.result.xmlelementhandlers.BreakHandler object>, 'continue': <robot.result.xmlelementhandlers.ContinueHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.IterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'pattern': <robot.result.xmlelementhandlers.PatternHandler object>, 'return': <robot.result.xmlelementhandlers.ReturnHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'try': <robot.result.xmlelementhandlers.TryHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>, 'while': <robot.result.xmlelementhandlers.WhileHandler object>}

end(elem, result)

get_child_handler(tag)

classmethod register(handler)

class robot.result.xmlelementhandlers.BranchHandler
Bases: robot.result.xmlelementhandlers.ElementHandler

tag = 'branch'

children = frozenset({'doc', 'if', 'continue', 'return', 'msg', 'pattern', 'break', 'status', 'while', 'try', 'for', 'kw'})

start(elem, result)

element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.BranchHandler object>, 'break': <robot.result.xmlelementhandlers.BreakHandler object>, 'continue': <robot.result.xmlelementhandlers.ContinueHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.IterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'pattern': <robot.result.xmlelementhandlers.PatternHandler object>, 'return': <robot.result.xmlelementhandlers.ReturnHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'try': <robot.result.xmlelementhandlers.TryHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>, 'while': <robot.result.xmlelementhandlers.WhileHandler object>}

end(elem, result)

get_child_handler(tag)

classmethod register(handler)

class robot.result.xmlelementhandlers.TryHandler
Bases: robot.result.xmlelementhandlers.ElementHandler

tag = 'try'

children = frozenset({'doc', 'msg', 'status', 'branch', 'kw'})

start(elem, result)

element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.BranchHandler object>, 'break': <robot.result.xmlelementhandlers.BreakHandler object>, 'continue': <robot.result.xmlelementhandlers.ContinueHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.IterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'pattern': <robot.result.xmlelementhandlers.PatternHandler object>, 'return': <robot.result.xmlelementhandlers.ReturnHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'try': <robot.result.xmlelementhandlers.TryHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>, 'while': <robot.result.xmlelementhandlers.WhileHandler object>}

end(elem, result)

3.1. robot package 521

Robot Framework Documentation, Release 6.0.2

get_child_handler(tag)

classmethod register(handler)

class robot.result.xmlelementhandlers.PatternHandler
Bases: robot.result.xmlelementhandlers.ElementHandler

tag = 'pattern'

children = frozenset()

end(elem, result)

element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.BranchHandler object>, 'break': <robot.result.xmlelementhandlers.BreakHandler object>, 'continue': <robot.result.xmlelementhandlers.ContinueHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.IterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'pattern': <robot.result.xmlelementhandlers.PatternHandler object>, 'return': <robot.result.xmlelementhandlers.ReturnHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'try': <robot.result.xmlelementhandlers.TryHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>, 'while': <robot.result.xmlelementhandlers.WhileHandler object>}

get_child_handler(tag)

classmethod register(handler)

start(elem, result)

class robot.result.xmlelementhandlers.ReturnHandler
Bases: robot.result.xmlelementhandlers.ElementHandler

tag = 'return'

children = frozenset({'value', 'msg', 'kw', 'status'})

start(elem, result)

element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.BranchHandler object>, 'break': <robot.result.xmlelementhandlers.BreakHandler object>, 'continue': <robot.result.xmlelementhandlers.ContinueHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.IterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'pattern': <robot.result.xmlelementhandlers.PatternHandler object>, 'return': <robot.result.xmlelementhandlers.ReturnHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'try': <robot.result.xmlelementhandlers.TryHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>, 'while': <robot.result.xmlelementhandlers.WhileHandler object>}

end(elem, result)

get_child_handler(tag)

classmethod register(handler)

class robot.result.xmlelementhandlers.ContinueHandler
Bases: robot.result.xmlelementhandlers.ElementHandler

tag = 'continue'

children = frozenset({'msg', 'kw', 'status'})

start(elem, result)

element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.BranchHandler object>, 'break': <robot.result.xmlelementhandlers.BreakHandler object>, 'continue': <robot.result.xmlelementhandlers.ContinueHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.IterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'pattern': <robot.result.xmlelementhandlers.PatternHandler object>, 'return': <robot.result.xmlelementhandlers.ReturnHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'try': <robot.result.xmlelementhandlers.TryHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>, 'while': <robot.result.xmlelementhandlers.WhileHandler object>}

end(elem, result)

get_child_handler(tag)

classmethod register(handler)

class robot.result.xmlelementhandlers.BreakHandler
Bases: robot.result.xmlelementhandlers.ElementHandler

tag = 'break'

children = frozenset({'msg', 'kw', 'status'})

start(elem, result)

element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.BranchHandler object>, 'break': <robot.result.xmlelementhandlers.BreakHandler object>, 'continue': <robot.result.xmlelementhandlers.ContinueHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.IterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'pattern': <robot.result.xmlelementhandlers.PatternHandler object>, 'return': <robot.result.xmlelementhandlers.ReturnHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'try': <robot.result.xmlelementhandlers.TryHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>, 'while': <robot.result.xmlelementhandlers.WhileHandler object>}

end(elem, result)

get_child_handler(tag)

522 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

classmethod register(handler)

class robot.result.xmlelementhandlers.MessageHandler
Bases: robot.result.xmlelementhandlers.ElementHandler

tag = 'msg'

end(elem, result)

children = frozenset()

element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.BranchHandler object>, 'break': <robot.result.xmlelementhandlers.BreakHandler object>, 'continue': <robot.result.xmlelementhandlers.ContinueHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.IterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'pattern': <robot.result.xmlelementhandlers.PatternHandler object>, 'return': <robot.result.xmlelementhandlers.ReturnHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'try': <robot.result.xmlelementhandlers.TryHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>, 'while': <robot.result.xmlelementhandlers.WhileHandler object>}

get_child_handler(tag)

classmethod register(handler)

start(elem, result)

class robot.result.xmlelementhandlers.StatusHandler(set_status=True)
Bases: robot.result.xmlelementhandlers.ElementHandler

tag = 'status'

end(elem, result)

children = frozenset()

element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.BranchHandler object>, 'break': <robot.result.xmlelementhandlers.BreakHandler object>, 'continue': <robot.result.xmlelementhandlers.ContinueHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.IterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'pattern': <robot.result.xmlelementhandlers.PatternHandler object>, 'return': <robot.result.xmlelementhandlers.ReturnHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'try': <robot.result.xmlelementhandlers.TryHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>, 'while': <robot.result.xmlelementhandlers.WhileHandler object>}

get_child_handler(tag)

classmethod register(handler)

start(elem, result)

class robot.result.xmlelementhandlers.DocHandler
Bases: robot.result.xmlelementhandlers.ElementHandler

tag = 'doc'

end(elem, result)

children = frozenset()

element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.BranchHandler object>, 'break': <robot.result.xmlelementhandlers.BreakHandler object>, 'continue': <robot.result.xmlelementhandlers.ContinueHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.IterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'pattern': <robot.result.xmlelementhandlers.PatternHandler object>, 'return': <robot.result.xmlelementhandlers.ReturnHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'try': <robot.result.xmlelementhandlers.TryHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>, 'while': <robot.result.xmlelementhandlers.WhileHandler object>}

get_child_handler(tag)

classmethod register(handler)

start(elem, result)

class robot.result.xmlelementhandlers.MetadataHandler
Bases: robot.result.xmlelementhandlers.ElementHandler

tag = 'metadata'

children = frozenset({'item'})

element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.BranchHandler object>, 'break': <robot.result.xmlelementhandlers.BreakHandler object>, 'continue': <robot.result.xmlelementhandlers.ContinueHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.IterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'pattern': <robot.result.xmlelementhandlers.PatternHandler object>, 'return': <robot.result.xmlelementhandlers.ReturnHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'try': <robot.result.xmlelementhandlers.TryHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>, 'while': <robot.result.xmlelementhandlers.WhileHandler object>}

end(elem, result)

get_child_handler(tag)

classmethod register(handler)

start(elem, result)

3.1. robot package 523

Robot Framework Documentation, Release 6.0.2

class robot.result.xmlelementhandlers.MetadataItemHandler
Bases: robot.result.xmlelementhandlers.ElementHandler

tag = 'item'

end(elem, result)

children = frozenset()

element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.BranchHandler object>, 'break': <robot.result.xmlelementhandlers.BreakHandler object>, 'continue': <robot.result.xmlelementhandlers.ContinueHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.IterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'pattern': <robot.result.xmlelementhandlers.PatternHandler object>, 'return': <robot.result.xmlelementhandlers.ReturnHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'try': <robot.result.xmlelementhandlers.TryHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>, 'while': <robot.result.xmlelementhandlers.WhileHandler object>}

get_child_handler(tag)

classmethod register(handler)

start(elem, result)

class robot.result.xmlelementhandlers.MetaHandler
Bases: robot.result.xmlelementhandlers.ElementHandler

tag = 'meta'

end(elem, result)

children = frozenset()

element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.BranchHandler object>, 'break': <robot.result.xmlelementhandlers.BreakHandler object>, 'continue': <robot.result.xmlelementhandlers.ContinueHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.IterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'pattern': <robot.result.xmlelementhandlers.PatternHandler object>, 'return': <robot.result.xmlelementhandlers.ReturnHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'try': <robot.result.xmlelementhandlers.TryHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>, 'while': <robot.result.xmlelementhandlers.WhileHandler object>}

get_child_handler(tag)

classmethod register(handler)

start(elem, result)

class robot.result.xmlelementhandlers.TagsHandler
Bases: robot.result.xmlelementhandlers.ElementHandler

tag = 'tags'

children = frozenset({'tag'})

element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.BranchHandler object>, 'break': <robot.result.xmlelementhandlers.BreakHandler object>, 'continue': <robot.result.xmlelementhandlers.ContinueHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.IterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'pattern': <robot.result.xmlelementhandlers.PatternHandler object>, 'return': <robot.result.xmlelementhandlers.ReturnHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'try': <robot.result.xmlelementhandlers.TryHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>, 'while': <robot.result.xmlelementhandlers.WhileHandler object>}

end(elem, result)

get_child_handler(tag)

classmethod register(handler)

start(elem, result)

class robot.result.xmlelementhandlers.TagHandler
Bases: robot.result.xmlelementhandlers.ElementHandler

tag = 'tag'

end(elem, result)

children = frozenset()

element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.BranchHandler object>, 'break': <robot.result.xmlelementhandlers.BreakHandler object>, 'continue': <robot.result.xmlelementhandlers.ContinueHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.IterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'pattern': <robot.result.xmlelementhandlers.PatternHandler object>, 'return': <robot.result.xmlelementhandlers.ReturnHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'try': <robot.result.xmlelementhandlers.TryHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>, 'while': <robot.result.xmlelementhandlers.WhileHandler object>}

get_child_handler(tag)

classmethod register(handler)

start(elem, result)

class robot.result.xmlelementhandlers.TimeoutHandler
Bases: robot.result.xmlelementhandlers.ElementHandler

524 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

tag = 'timeout'

end(elem, result)

children = frozenset()

element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.BranchHandler object>, 'break': <robot.result.xmlelementhandlers.BreakHandler object>, 'continue': <robot.result.xmlelementhandlers.ContinueHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.IterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'pattern': <robot.result.xmlelementhandlers.PatternHandler object>, 'return': <robot.result.xmlelementhandlers.ReturnHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'try': <robot.result.xmlelementhandlers.TryHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>, 'while': <robot.result.xmlelementhandlers.WhileHandler object>}

get_child_handler(tag)

classmethod register(handler)

start(elem, result)

class robot.result.xmlelementhandlers.AssignHandler
Bases: robot.result.xmlelementhandlers.ElementHandler

tag = 'assign'

children = frozenset({'var'})

element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.BranchHandler object>, 'break': <robot.result.xmlelementhandlers.BreakHandler object>, 'continue': <robot.result.xmlelementhandlers.ContinueHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.IterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'pattern': <robot.result.xmlelementhandlers.PatternHandler object>, 'return': <robot.result.xmlelementhandlers.ReturnHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'try': <robot.result.xmlelementhandlers.TryHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>, 'while': <robot.result.xmlelementhandlers.WhileHandler object>}

end(elem, result)

get_child_handler(tag)

classmethod register(handler)

start(elem, result)

class robot.result.xmlelementhandlers.VarHandler
Bases: robot.result.xmlelementhandlers.ElementHandler

tag = 'var'

end(elem, result)

children = frozenset()

element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.BranchHandler object>, 'break': <robot.result.xmlelementhandlers.BreakHandler object>, 'continue': <robot.result.xmlelementhandlers.ContinueHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.IterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'pattern': <robot.result.xmlelementhandlers.PatternHandler object>, 'return': <robot.result.xmlelementhandlers.ReturnHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'try': <robot.result.xmlelementhandlers.TryHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>, 'while': <robot.result.xmlelementhandlers.WhileHandler object>}

get_child_handler(tag)

classmethod register(handler)

start(elem, result)

class robot.result.xmlelementhandlers.ArgumentsHandler
Bases: robot.result.xmlelementhandlers.ElementHandler

tag = 'arguments'

children = frozenset({'arg'})

element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.BranchHandler object>, 'break': <robot.result.xmlelementhandlers.BreakHandler object>, 'continue': <robot.result.xmlelementhandlers.ContinueHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.IterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'pattern': <robot.result.xmlelementhandlers.PatternHandler object>, 'return': <robot.result.xmlelementhandlers.ReturnHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'try': <robot.result.xmlelementhandlers.TryHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>, 'while': <robot.result.xmlelementhandlers.WhileHandler object>}

end(elem, result)

get_child_handler(tag)

classmethod register(handler)

start(elem, result)

class robot.result.xmlelementhandlers.ArgumentHandler
Bases: robot.result.xmlelementhandlers.ElementHandler

tag = 'arg'

3.1. robot package 525

Robot Framework Documentation, Release 6.0.2

end(elem, result)

children = frozenset()

element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.BranchHandler object>, 'break': <robot.result.xmlelementhandlers.BreakHandler object>, 'continue': <robot.result.xmlelementhandlers.ContinueHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.IterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'pattern': <robot.result.xmlelementhandlers.PatternHandler object>, 'return': <robot.result.xmlelementhandlers.ReturnHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'try': <robot.result.xmlelementhandlers.TryHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>, 'while': <robot.result.xmlelementhandlers.WhileHandler object>}

get_child_handler(tag)

classmethod register(handler)

start(elem, result)

class robot.result.xmlelementhandlers.ValueHandler
Bases: robot.result.xmlelementhandlers.ElementHandler

tag = 'value'

end(elem, result)

children = frozenset()

element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.BranchHandler object>, 'break': <robot.result.xmlelementhandlers.BreakHandler object>, 'continue': <robot.result.xmlelementhandlers.ContinueHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.IterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'pattern': <robot.result.xmlelementhandlers.PatternHandler object>, 'return': <robot.result.xmlelementhandlers.ReturnHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'try': <robot.result.xmlelementhandlers.TryHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>, 'while': <robot.result.xmlelementhandlers.WhileHandler object>}

get_child_handler(tag)

classmethod register(handler)

start(elem, result)

class robot.result.xmlelementhandlers.ErrorsHandler
Bases: robot.result.xmlelementhandlers.ElementHandler

tag = 'errors'

start(elem, result)

get_child_handler(tag)

children = frozenset()

element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.BranchHandler object>, 'break': <robot.result.xmlelementhandlers.BreakHandler object>, 'continue': <robot.result.xmlelementhandlers.ContinueHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.IterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'pattern': <robot.result.xmlelementhandlers.PatternHandler object>, 'return': <robot.result.xmlelementhandlers.ReturnHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'try': <robot.result.xmlelementhandlers.TryHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>, 'while': <robot.result.xmlelementhandlers.WhileHandler object>}

end(elem, result)

classmethod register(handler)

class robot.result.xmlelementhandlers.ErrorMessageHandler
Bases: robot.result.xmlelementhandlers.ElementHandler

end(elem, result)

children = frozenset()

element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.BranchHandler object>, 'break': <robot.result.xmlelementhandlers.BreakHandler object>, 'continue': <robot.result.xmlelementhandlers.ContinueHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.IterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'pattern': <robot.result.xmlelementhandlers.PatternHandler object>, 'return': <robot.result.xmlelementhandlers.ReturnHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'try': <robot.result.xmlelementhandlers.TryHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>, 'while': <robot.result.xmlelementhandlers.WhileHandler object>}

get_child_handler(tag)

classmethod register(handler)

start(elem, result)

tag = None

class robot.result.xmlelementhandlers.StatisticsHandler
Bases: robot.result.xmlelementhandlers.ElementHandler

tag = 'statistics'

get_child_handler(tag)

526 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

children = frozenset()

element_handlers = {'arg': <robot.result.xmlelementhandlers.ArgumentHandler object>, 'arguments': <robot.result.xmlelementhandlers.ArgumentsHandler object>, 'assign': <robot.result.xmlelementhandlers.AssignHandler object>, 'branch': <robot.result.xmlelementhandlers.BranchHandler object>, 'break': <robot.result.xmlelementhandlers.BreakHandler object>, 'continue': <robot.result.xmlelementhandlers.ContinueHandler object>, 'doc': <robot.result.xmlelementhandlers.DocHandler object>, 'errors': <robot.result.xmlelementhandlers.ErrorsHandler object>, 'for': <robot.result.xmlelementhandlers.ForHandler object>, 'if': <robot.result.xmlelementhandlers.IfHandler object>, 'item': <robot.result.xmlelementhandlers.MetadataItemHandler object>, 'iter': <robot.result.xmlelementhandlers.IterationHandler object>, 'kw': <robot.result.xmlelementhandlers.KeywordHandler object>, 'meta': <robot.result.xmlelementhandlers.MetaHandler object>, 'metadata': <robot.result.xmlelementhandlers.MetadataHandler object>, 'msg': <robot.result.xmlelementhandlers.MessageHandler object>, 'pattern': <robot.result.xmlelementhandlers.PatternHandler object>, 'return': <robot.result.xmlelementhandlers.ReturnHandler object>, 'robot': <robot.result.xmlelementhandlers.RobotHandler object>, 'statistics': <robot.result.xmlelementhandlers.StatisticsHandler object>, 'status': <robot.result.xmlelementhandlers.StatusHandler object>, 'suite': <robot.result.xmlelementhandlers.SuiteHandler object>, 'tag': <robot.result.xmlelementhandlers.TagHandler object>, 'tags': <robot.result.xmlelementhandlers.TagsHandler object>, 'test': <robot.result.xmlelementhandlers.TestHandler object>, 'timeout': <robot.result.xmlelementhandlers.TimeoutHandler object>, 'try': <robot.result.xmlelementhandlers.TryHandler object>, 'value': <robot.result.xmlelementhandlers.ValueHandler object>, 'var': <robot.result.xmlelementhandlers.VarHandler object>, 'while': <robot.result.xmlelementhandlers.WhileHandler object>}

end(elem, result)

classmethod register(handler)

start(elem, result)

robot.running package

Implements the core test execution logic.

The main public entry points of this package are of the following two classes:

• TestSuiteBuilder for creating executable test suites based on existing test case files and directories.

• TestSuite for creating an executable test suite structure programmatically.

It is recommended to import both of these classes via the robot.api package like in the examples below. Also
TestCase and Keyword classes used internally by the TestSuite class are part of the public API. In those rare
cases where these classes are needed directly, they can be imported from this package.

Examples

First, let’s assume we have the following test suite in file activate_skynet.robot:

*** Settings ***
Library OperatingSystem

*** Test Cases ***
Should Activate Skynet

[Tags] smoke
[Setup] Set Environment Variable SKYNET activated
Environment Variable Should Be Set SKYNET

We can easily parse and create an executable test suite based on the above file using the TestSuiteBuilder class
as follows:

from robot.api import TestSuiteBuilder

suite = TestSuiteBuilder().build('path/to/activate_skynet.robot')

That was easy. Let’s next generate the same test suite from scratch using the TestSuite class:

from robot.api import TestSuite

suite = TestSuite('Activate Skynet')
suite.resource.imports.library('OperatingSystem')
test = suite.tests.create('Should Activate Skynet', tags=['smoke'])
test.setup.config(name='Set Environment Variable', args=['SKYNET', 'activated'])
test.body.create_keyword('Environment Variable Should Be Set', args=['SKYNET'])

Not that complicated either, especially considering the flexibility. Notice that the suite created based on the file could
also be edited further using the same API.

Now that we have a test suite ready, let’s execute it and verify that the returned Result object contains correct
information:

3.1. robot package 527

Robot Framework Documentation, Release 6.0.2

result = suite.run(output='skynet.xml')

assert result.return_code == 0
assert result.suite.name == 'Activate Skynet'
test = result.suite.tests[0]
assert test.name == 'Should Activate Skynet'
assert test.passed
stats = result.suite.statistics
assert stats.total == 1 and stats.passed == 1 and stats.failed == 0

Running the suite generates a normal output XML file, unless it is disabled by using output=None. Generating log,
report, and xUnit files based on the results is possible using the ResultWriter class:

from robot.api import ResultWriter

Report and xUnit files can be generated based on the result object.
ResultWriter(result).write_results(report='skynet.html', log=None)
Generating log files requires processing the earlier generated output XML.
ResultWriter('skynet.xml').write_results()

Subpackages

robot.running.arguments package

Submodules

robot.running.arguments.argumentconverter module

class robot.running.arguments.argumentconverter.ArgumentConverter(argspec,
converters,
dry_run=False,
lan-
guages=None)

Bases: object

convert(positional, named)

robot.running.arguments.argumentmapper module

class robot.running.arguments.argumentmapper.ArgumentMapper(argspec)
Bases: object

map(positional, named, replace_defaults=True)

class robot.running.arguments.argumentmapper.KeywordCallTemplate(argspec)
Bases: object

fill_positional(positional)

fill_named(named)

528 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

replace_defaults()

class robot.running.arguments.argumentmapper.DefaultValue(value)
Bases: object

resolve(variables)

robot.running.arguments.argumentparser module

class robot.running.arguments.argumentparser.PythonArgumentParser(type=’Keyword’,
er-
ror_reporter=None)

Bases: robot.running.arguments.argumentparser._ArgumentParser

parse(handler, name=None)

class robot.running.arguments.argumentparser.DynamicArgumentParser(type=’Keyword’,
er-
ror_reporter=None)

Bases: robot.running.arguments.argumentparser._ArgumentSpecParser

parse(argspec, name=None)

class robot.running.arguments.argumentparser.UserKeywordArgumentParser(type=’Keyword’,
er-
ror_reporter=None)

Bases: robot.running.arguments.argumentparser._ArgumentSpecParser

parse(argspec, name=None)

robot.running.arguments.argumentresolver module

class robot.running.arguments.argumentresolver.ArgumentResolver(argspec, re-
solve_named=True,
re-
solve_variables_until=None,
dict_to_kwargs=False)

Bases: object

resolve(arguments, variables=None)

class robot.running.arguments.argumentresolver.NamedArgumentResolver(argspec)
Bases: object

resolve(arguments, variables=None)

class robot.running.arguments.argumentresolver.NullNamedArgumentResolver
Bases: object

resolve(arguments, variables=None)

class robot.running.arguments.argumentresolver.DictToKwargs(argspec, en-
abled=False)

Bases: object

handle(positional, named)

class robot.running.arguments.argumentresolver.VariableReplacer(resolve_until=None)
Bases: object

3.1. robot package 529

Robot Framework Documentation, Release 6.0.2

replace(positional, named, variables=None)

robot.running.arguments.argumentspec module

class robot.running.arguments.argumentspec.ArgumentSpec(name=None,
type=’Keyword’, posi-
tional_only=None, posi-
tional_or_named=None,
var_positional=None,
named_only=None,
var_named=None,
defaults=None,
types=None)

Bases: object

types

positional

minargs

maxargs

argument_names

resolve(arguments, variables=None, converters=None, resolve_named=True, re-
solve_variables_until=None, dict_to_kwargs=False, languages=None)

convert(positional, named, converters=None, dry_run=False, languages=None)

map(positional, named, replace_defaults=True)

class robot.running.arguments.argumentspec.ArgInfo(kind, name=”, types=<object ob-
ject>, default=<object object>)

Bases: object

NOTSET = <object object>

POSITIONAL_ONLY = 'POSITIONAL_ONLY'

POSITIONAL_ONLY_MARKER = 'POSITIONAL_ONLY_MARKER'

POSITIONAL_OR_NAMED = 'POSITIONAL_OR_NAMED'

VAR_POSITIONAL = 'VAR_POSITIONAL'

NAMED_ONLY_MARKER = 'NAMED_ONLY_MARKER'

NAMED_ONLY = 'NAMED_ONLY'

VAR_NAMED = 'VAR_NAMED'

types

required

types_reprs

default_repr

530 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

robot.running.arguments.argumentvalidator module

class robot.running.arguments.argumentvalidator.ArgumentValidator(argspec)
Bases: object

validate(positional, named, dryrun=False)

robot.running.arguments.customconverters module

class robot.running.arguments.customconverters.CustomArgumentConverters(converters)
Bases: object

classmethod from_dict(converters, error_reporter)

get_converter_info(type_)

class robot.running.arguments.customconverters.ConverterInfo(type, converter,
value_types)

Bases: object

name

doc

classmethod for_converter(type_, converter)

robot.running.arguments.embedded module

class robot.running.arguments.embedded.EmbeddedArguments(name=None, args=(),
custom_patterns=None)

Bases: object

classmethod from_name(name)

match(name)

map(values)

validate(values)

class robot.running.arguments.embedded.EmbeddedArgumentParser
Bases: object

parse(string)

robot.running.arguments.typeconverters module

class robot.running.arguments.typeconverters.TypeConverter(used_type, cus-
tom_converters=None,
languages=None)

Bases: object

type = None

type_name = None

abc = None

3.1. robot package 531

Robot Framework Documentation, Release 6.0.2

aliases = ()

value_types = (<class 'str'>,)

doc = None

classmethod register(converter)

classmethod converter_for(type_, custom_converters=None, languages=None)

classmethod handles(type_)

convert(name, value, explicit_type=True, strict=True, kind=’Argument’)

no_conversion_needed(value)

class robot.running.arguments.typeconverters.EnumConverter(used_type, cus-
tom_converters=None,
languages=None)

Bases: robot.running.arguments.typeconverters.TypeConverter

type
alias of enum.Enum

type_name

value_types
Built-in immutable sequence.

If no argument is given, the constructor returns an empty tuple. If iterable is specified the tuple is initialized
from iterable’s items.

If the argument is a tuple, the return value is the same object.

abc = None

aliases = ()

convert(name, value, explicit_type=True, strict=True, kind=’Argument’)

classmethod converter_for(type_, custom_converters=None, languages=None)

doc = None

classmethod handles(type_)

no_conversion_needed(value)

classmethod register(converter)

class robot.running.arguments.typeconverters.StringConverter(used_type, cus-
tom_converters=None,
languages=None)

Bases: robot.running.arguments.typeconverters.TypeConverter

type
alias of builtins.str

type_name = 'string'

aliases = ('string', 'str', 'unicode')

value_types = (typing.Any,)

abc = None

convert(name, value, explicit_type=True, strict=True, kind=’Argument’)

classmethod converter_for(type_, custom_converters=None, languages=None)

532 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

doc = None

classmethod handles(type_)

no_conversion_needed(value)

classmethod register(converter)

class robot.running.arguments.typeconverters.BooleanConverter(used_type, cus-
tom_converters=None,
lan-
guages=None)

Bases: robot.running.arguments.typeconverters.TypeConverter

type
alias of builtins.bool

type_name = 'boolean'

aliases = ('bool',)

value_types = (<class 'str'>, <class 'int'>, <class 'float'>, <class 'NoneType'>)

abc = None

convert(name, value, explicit_type=True, strict=True, kind=’Argument’)

classmethod converter_for(type_, custom_converters=None, languages=None)

doc = None

classmethod handles(type_)

no_conversion_needed(value)

classmethod register(converter)

class robot.running.arguments.typeconverters.IntegerConverter(used_type, cus-
tom_converters=None,
lan-
guages=None)

Bases: robot.running.arguments.typeconverters.TypeConverter

type
alias of builtins.int

abc
alias of numbers.Integral

type_name = 'integer'

aliases = ('int', 'long')

value_types = (<class 'str'>, <class 'float'>)

convert(name, value, explicit_type=True, strict=True, kind=’Argument’)

classmethod converter_for(type_, custom_converters=None, languages=None)

doc = None

classmethod handles(type_)

no_conversion_needed(value)

classmethod register(converter)

3.1. robot package 533

Robot Framework Documentation, Release 6.0.2

class robot.running.arguments.typeconverters.FloatConverter(used_type, cus-
tom_converters=None,
languages=None)

Bases: robot.running.arguments.typeconverters.TypeConverter

type
alias of builtins.float

abc
alias of numbers.Real

type_name = 'float'

aliases = ('double',)

value_types = (<class 'str'>, <class 'numbers.Real'>)

convert(name, value, explicit_type=True, strict=True, kind=’Argument’)

classmethod converter_for(type_, custom_converters=None, languages=None)

doc = None

classmethod handles(type_)

no_conversion_needed(value)

classmethod register(converter)

class robot.running.arguments.typeconverters.DecimalConverter(used_type, cus-
tom_converters=None,
lan-
guages=None)

Bases: robot.running.arguments.typeconverters.TypeConverter

type
alias of decimal.Decimal

type_name = 'decimal'

value_types = (<class 'str'>, <class 'int'>, <class 'float'>)

abc = None

aliases = ()

convert(name, value, explicit_type=True, strict=True, kind=’Argument’)

classmethod converter_for(type_, custom_converters=None, languages=None)

doc = None

classmethod handles(type_)

no_conversion_needed(value)

classmethod register(converter)

class robot.running.arguments.typeconverters.BytesConverter(used_type, cus-
tom_converters=None,
languages=None)

Bases: robot.running.arguments.typeconverters.TypeConverter

type
alias of builtins.bytes

534 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

abc
alias of collections.abc.ByteString

type_name = 'bytes'

value_types = (<class 'str'>, <class 'bytearray'>)

aliases = ()

convert(name, value, explicit_type=True, strict=True, kind=’Argument’)

classmethod converter_for(type_, custom_converters=None, languages=None)

doc = None

classmethod handles(type_)

no_conversion_needed(value)

classmethod register(converter)

class robot.running.arguments.typeconverters.ByteArrayConverter(used_type,
cus-
tom_converters=None,
lan-
guages=None)

Bases: robot.running.arguments.typeconverters.TypeConverter

type
alias of builtins.bytearray

type_name = 'bytearray'

value_types = (<class 'str'>, <class 'bytes'>)

abc = None

aliases = ()

convert(name, value, explicit_type=True, strict=True, kind=’Argument’)

classmethod converter_for(type_, custom_converters=None, languages=None)

doc = None

classmethod handles(type_)

no_conversion_needed(value)

classmethod register(converter)

class robot.running.arguments.typeconverters.DateTimeConverter(used_type, cus-
tom_converters=None,
lan-
guages=None)

Bases: robot.running.arguments.typeconverters.TypeConverter

type
alias of datetime.datetime

type_name = 'datetime'

value_types = (<class 'str'>, <class 'int'>, <class 'float'>)

abc = None

aliases = ()

3.1. robot package 535

Robot Framework Documentation, Release 6.0.2

convert(name, value, explicit_type=True, strict=True, kind=’Argument’)

classmethod converter_for(type_, custom_converters=None, languages=None)

doc = None

classmethod handles(type_)

no_conversion_needed(value)

classmethod register(converter)

class robot.running.arguments.typeconverters.DateConverter(used_type, cus-
tom_converters=None,
languages=None)

Bases: robot.running.arguments.typeconverters.TypeConverter

type
alias of datetime.date

type_name = 'date'

abc = None

aliases = ()

convert(name, value, explicit_type=True, strict=True, kind=’Argument’)

classmethod converter_for(type_, custom_converters=None, languages=None)

doc = None

classmethod handles(type_)

no_conversion_needed(value)

classmethod register(converter)

value_types = (<class 'str'>,)

class robot.running.arguments.typeconverters.TimeDeltaConverter(used_type,
cus-
tom_converters=None,
lan-
guages=None)

Bases: robot.running.arguments.typeconverters.TypeConverter

type
alias of datetime.timedelta

type_name = 'timedelta'

value_types = (<class 'str'>, <class 'int'>, <class 'float'>)

abc = None

aliases = ()

convert(name, value, explicit_type=True, strict=True, kind=’Argument’)

classmethod converter_for(type_, custom_converters=None, languages=None)

doc = None

classmethod handles(type_)

no_conversion_needed(value)

classmethod register(converter)

536 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

class robot.running.arguments.typeconverters.PathConverter(used_type, cus-
tom_converters=None,
languages=None)

Bases: robot.running.arguments.typeconverters.TypeConverter

type
alias of pathlib.Path

abc
alias of os.PathLike

type_name = 'Path'

value_types = (<class 'str'>, <class 'pathlib.PurePath'>)

aliases = ()

convert(name, value, explicit_type=True, strict=True, kind=’Argument’)

classmethod converter_for(type_, custom_converters=None, languages=None)

doc = None

classmethod handles(type_)

no_conversion_needed(value)

classmethod register(converter)

class robot.running.arguments.typeconverters.NoneConverter(used_type, cus-
tom_converters=None,
languages=None)

Bases: robot.running.arguments.typeconverters.TypeConverter

type
alias of builtins.NoneType

type_name = 'None'

classmethod handles(type_)

abc = None

aliases = ()

convert(name, value, explicit_type=True, strict=True, kind=’Argument’)

classmethod converter_for(type_, custom_converters=None, languages=None)

doc = None

no_conversion_needed(value)

classmethod register(converter)

value_types = (<class 'str'>,)

class robot.running.arguments.typeconverters.ListConverter(used_type, cus-
tom_converters=None,
languages=None)

Bases: robot.running.arguments.typeconverters.TypeConverter

type
alias of builtins.list

abc
alias of collections.abc.Sequence

3.1. robot package 537

Robot Framework Documentation, Release 6.0.2

value_types = (<class 'str'>, <class 'collections.abc.Sequence'>)

type_name = 'list'

classmethod handles(type_)

no_conversion_needed(value)

aliases = ()

convert(name, value, explicit_type=True, strict=True, kind=’Argument’)

classmethod converter_for(type_, custom_converters=None, languages=None)

doc = None

classmethod register(converter)

class robot.running.arguments.typeconverters.TupleConverter(used_type, cus-
tom_converters=None,
languages=None)

Bases: robot.running.arguments.typeconverters.TypeConverter

type
alias of builtins.tuple

value_types = (<class 'str'>, <class 'collections.abc.Sequence'>)

type_name = 'tuple'

abc = None

aliases = ()

convert(name, value, explicit_type=True, strict=True, kind=’Argument’)

classmethod converter_for(type_, custom_converters=None, languages=None)

doc = None

classmethod handles(type_)

no_conversion_needed(value)

classmethod register(converter)

class robot.running.arguments.typeconverters.TypedDictConverter(used_type,
cus-
tom_converters,
lan-
guages=None)

Bases: robot.running.arguments.typeconverters.TypeConverter

type = 'TypedDict'

value_types = (<class 'str'>, <class 'collections.abc.Mapping'>)

type_name = None

classmethod handles(type_)

no_conversion_needed(value)

abc = None

aliases = ()

convert(name, value, explicit_type=True, strict=True, kind=’Argument’)

538 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

classmethod converter_for(type_, custom_converters=None, languages=None)

doc = None

classmethod register(converter)

class robot.running.arguments.typeconverters.DictionaryConverter(used_type,
cus-
tom_converters=None,
lan-
guages=None)

Bases: robot.running.arguments.typeconverters.TypeConverter

type
alias of builtins.dict

abc
alias of collections.abc.Mapping

aliases = ('dict', 'map')

value_types = (<class 'str'>, <class 'collections.abc.Mapping'>)

type_name = 'dictionary'

convert(name, value, explicit_type=True, strict=True, kind=’Argument’)

classmethod converter_for(type_, custom_converters=None, languages=None)

doc = None

classmethod handles(type_)

no_conversion_needed(value)

classmethod register(converter)

class robot.running.arguments.typeconverters.SetConverter(used_type, cus-
tom_converters=None,
languages=None)

Bases: robot.running.arguments.typeconverters.TypeConverter

type
alias of builtins.set

abc
alias of collections.abc.Set

value_types = (<class 'str'>, <class 'collections.abc.Container'>)

type_name = 'set'

aliases = ()

convert(name, value, explicit_type=True, strict=True, kind=’Argument’)

classmethod converter_for(type_, custom_converters=None, languages=None)

doc = None

classmethod handles(type_)

no_conversion_needed(value)

classmethod register(converter)

3.1. robot package 539

Robot Framework Documentation, Release 6.0.2

class robot.running.arguments.typeconverters.FrozenSetConverter(used_type,
cus-
tom_converters=None,
lan-
guages=None)

Bases: robot.running.arguments.typeconverters.SetConverter

type
alias of builtins.frozenset

type_name = 'frozenset'

abc
alias of collections.abc.Set

aliases = ()

convert(name, value, explicit_type=True, strict=True, kind=’Argument’)

classmethod converter_for(type_, custom_converters=None, languages=None)

doc = None

classmethod handles(type_)

no_conversion_needed(value)

classmethod register(converter)

value_types = (<class 'str'>, <class 'collections.abc.Container'>)

class robot.running.arguments.typeconverters.CombinedConverter(union, cus-
tom_converters,
lan-
guages=None)

Bases: robot.running.arguments.typeconverters.TypeConverter

type = typing.Union

type_name

classmethod handles(type_)

no_conversion_needed(value)

abc = None

aliases = ()

convert(name, value, explicit_type=True, strict=True, kind=’Argument’)

classmethod converter_for(type_, custom_converters=None, languages=None)

doc = None

classmethod register(converter)

value_types = (<class 'str'>,)

class robot.running.arguments.typeconverters.CustomConverter(used_type, con-
verter_info, lan-
guages=None)

Bases: robot.running.arguments.typeconverters.TypeConverter

abc = None

aliases = ()

540 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

convert(name, value, explicit_type=True, strict=True, kind=’Argument’)

classmethod converter_for(type_, custom_converters=None, languages=None)

classmethod handles(type_)

no_conversion_needed(value)

classmethod register(converter)

type = None

type_name

doc

value_types
Built-in immutable sequence.

If no argument is given, the constructor returns an empty tuple. If iterable is specified the tuple is initialized
from iterable’s items.

If the argument is a tuple, the return value is the same object.

robot.running.arguments.typevalidator module

class robot.running.arguments.typevalidator.TypeValidator(argspec)
Bases: object

validate(types)

validate_type_dict(types)

convert_type_list_to_dict(types)

robot.running.builder package

Submodules

robot.running.builder.builders module

class robot.running.builder.builders.TestSuiteBuilder(included_suites=None, in-
cluded_extensions=(’robot’,
), rpa=None, lang=None,
allow_empty_suite=False,
process_curdir=True)

Bases: object

Builder to construct TestSuite objects based on data on the disk.

The build() method constructs executable TestSuite objects based on test data files or directories. There
are two main use cases for this API:

• Execute the created suite by using its run() method. The suite can be modified before execution if
needed.

• Inspect the suite to see, for example, what tests it has or what tags tests have. This can be more convenient
than using the lower level parsing APIs but does not allow saving modified data back to the disk.

3.1. robot package 541

Robot Framework Documentation, Release 6.0.2

Both modifying the suite and inspecting what data it contains are easiest done by using the visitor interface.

This class is part of the public API and should be imported via the robot.api package.

Parameters

• include_suites – List of suite names to include. If None or an empty list, all suites
are included. Same as using –suite on the command line.

• included_extensions – List of extensions of files to parse. Same as –extension.

• rpa – Explicit test execution mode. True for RPA and False for test automation. By
default, mode is got from data file headers and possible conflicting headers cause an error.
Same as –rpa or –norpa.

• lang – Additional languages to be supported during parsing. Can be a string matching
any of the supported language codes or names, an initialized Language subsclass, a list
containing such strings or instances, or a Languages instance.

• allow_empty_suite – Specify is it an error if the built suite contains no tests. Same as
–runemptysuite.

• process_curdir – Control processing the special ${CURDIR} variable. It is resolved
already at parsing time by default, but that can be changed by giving this argument False
value.

build(*paths)

Parameters paths – Paths to test data files or directories.

Returns TestSuite instance.

class robot.running.builder.builders.SuiteStructureParser(included_extensions,
rpa=None, lang=None,
process_curdir=True)

Bases: robot.parsing.suitestructure.SuiteStructureVisitor

parse(structure)

visit_file(structure)

start_directory(structure)

end_directory(structure)

visit_directory(structure)

class robot.running.builder.builders.ResourceFileBuilder(lang=None, pro-
cess_curdir=True)

Bases: object

build(source)

robot.running.builder.parsers module

class robot.running.builder.parsers.BaseParser
Bases: object

parse_init_file(source, defaults=None)

parse_suite_file(source, defaults=None)

parse_resource_file(source)

542 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

class robot.running.builder.parsers.RobotParser(lang=None, process_curdir=True)
Bases: robot.running.builder.parsers.BaseParser

parse_init_file(source, defaults=None)

parse_suite_file(source, defaults=None)

build_suite(model, name=None, defaults=None)

parse_resource_file(source)

class robot.running.builder.parsers.RestParser(lang=None, process_curdir=True)
Bases: robot.running.builder.parsers.RobotParser

build_suite(model, name=None, defaults=None)

parse_init_file(source, defaults=None)

parse_resource_file(source)

parse_suite_file(source, defaults=None)

class robot.running.builder.parsers.NoInitFileDirectoryParser
Bases: robot.running.builder.parsers.BaseParser

parse_init_file(source, defaults=None)

parse_resource_file(source)

parse_suite_file(source, defaults=None)

robot.running.builder.parsers.format_name(source)

class robot.running.builder.parsers.ErrorReporter(source)
Bases: ast.NodeVisitor

visit_Error(node)

generic_visit(node)
Called if no explicit visitor function exists for a node.

visit(node)
Visit a node.

robot.running.builder.settings module

class robot.running.builder.settings.Defaults(parent=None)
Bases: object

setup

teardown

force_tags

timeout

class robot.running.builder.settings.TestSettings(defaults)
Bases: object

setup

teardown

timeout

3.1. robot package 543

Robot Framework Documentation, Release 6.0.2

template

tags

robot.running.builder.transformers module

class robot.running.builder.transformers.SettingsBuilder(suite, defaults)
Bases: ast.NodeVisitor

visit_Documentation(node)

visit_Metadata(node)

visit_SuiteSetup(node)

visit_SuiteTeardown(node)

visit_TestSetup(node)

visit_TestTeardown(node)

visit_TestTimeout(node)

visit_DefaultTags(node)

visit_ForceTags(node)

visit_KeywordTags(node)

visit_TestTemplate(node)

visit_ResourceImport(node)

visit_LibraryImport(node)

visit_VariablesImport(node)

visit_VariableSection(node)

visit_TestCaseSection(node)

visit_KeywordSection(node)

generic_visit(node)
Called if no explicit visitor function exists for a node.

visit(node)
Visit a node.

class robot.running.builder.transformers.SuiteBuilder(suite, defaults)
Bases: ast.NodeVisitor

visit_SettingSection(node)

visit_Variable(node)

visit_TestCase(node)

visit_Keyword(node)

generic_visit(node)
Called if no explicit visitor function exists for a node.

visit(node)
Visit a node.

544 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

class robot.running.builder.transformers.ResourceBuilder(resource)
Bases: ast.NodeVisitor

visit_Documentation(node)

visit_KeywordTags(node)

visit_LibraryImport(node)

visit_ResourceImport(node)

visit_VariablesImport(node)

visit_Variable(node)

visit_Keyword(node)

generic_visit(node)
Called if no explicit visitor function exists for a node.

visit(node)
Visit a node.

class robot.running.builder.transformers.TestCaseBuilder(suite, defaults)
Bases: ast.NodeVisitor

visit_TestCase(node)

visit_For(node)

visit_While(node)

visit_If(node)

visit_Try(node)

visit_TemplateArguments(node)

visit_Documentation(node)

visit_Setup(node)

visit_Teardown(node)

visit_Timeout(node)

visit_Tags(node)

visit_Template(node)

visit_KeywordCall(node)

visit_ReturnStatement(node)

visit_Continue(node)

visit_Break(node)

generic_visit(node)
Called if no explicit visitor function exists for a node.

visit(node)
Visit a node.

class robot.running.builder.transformers.KeywordBuilder(resource, defaults)
Bases: ast.NodeVisitor

visit_Keyword(node)

3.1. robot package 545

Robot Framework Documentation, Release 6.0.2

visit_Documentation(node)

visit_Arguments(node)

visit_Tags(node)

visit_Return(node)

visit_Timeout(node)

visit_Teardown(node)

visit_KeywordCall(node)

visit_ReturnStatement(node)

visit_Continue(node)

visit_Break(node)

visit_For(node)

visit_While(node)

visit_If(node)

visit_Try(node)

generic_visit(node)
Called if no explicit visitor function exists for a node.

visit(node)
Visit a node.

class robot.running.builder.transformers.ForBuilder(parent)
Bases: ast.NodeVisitor

build(node)

visit_KeywordCall(node)

visit_TemplateArguments(node)

visit_For(node)

visit_While(node)

visit_If(node)

visit_Try(node)

visit_ReturnStatement(node)

visit_Continue(node)

visit_Break(node)

generic_visit(node)
Called if no explicit visitor function exists for a node.

visit(node)
Visit a node.

class robot.running.builder.transformers.IfBuilder(parent)
Bases: ast.NodeVisitor

build(node)

visit_KeywordCall(node)

546 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

visit_TemplateArguments(node)

visit_For(node)

visit_While(node)

visit_If(node)

visit_Try(node)

visit_ReturnStatement(node)

visit_Continue(node)

visit_Break(node)

generic_visit(node)
Called if no explicit visitor function exists for a node.

visit(node)
Visit a node.

class robot.running.builder.transformers.TryBuilder(parent)
Bases: ast.NodeVisitor

build(node)

visit_For(node)

visit_While(node)

visit_If(node)

visit_Try(node)

visit_ReturnStatement(node)

visit_Continue(node)

visit_Break(node)

visit_KeywordCall(node)

visit_TemplateArguments(node)

generic_visit(node)
Called if no explicit visitor function exists for a node.

visit(node)
Visit a node.

class robot.running.builder.transformers.WhileBuilder(parent)
Bases: ast.NodeVisitor

build(node)

visit_KeywordCall(node)

visit_TemplateArguments(node)

visit_For(node)

visit_While(node)

visit_If(node)

visit_Try(node)

visit_ReturnStatement(node)

3.1. robot package 547

Robot Framework Documentation, Release 6.0.2

visit_Break(node)

visit_Continue(node)

generic_visit(node)
Called if no explicit visitor function exists for a node.

visit(node)
Visit a node.

robot.running.builder.transformers.format_error(errors)

robot.running.builder.transformers.deprecate_tags_starting_with_hyphen(node,
source)

robot.running.timeouts package

class robot.running.timeouts.TestTimeout(timeout=None, variables=None, rpa=False)
Bases: robot.running.timeouts._Timeout

type = 'Test'

set_keyword_timeout(timeout_occurred)

any_timeout_occurred()

active

get_message()

replace_variables(variables)

run(runnable, args=None, kwargs=None)

start()

time_left()

timed_out()

class robot.running.timeouts.KeywordTimeout(timeout=None, variables=None)
Bases: robot.running.timeouts._Timeout

active

get_message()

replace_variables(variables)

run(runnable, args=None, kwargs=None)

start()

time_left()

timed_out()

type = 'Keyword'

Submodules

548 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

robot.running.timeouts.posix module

class robot.running.timeouts.posix.Timeout(timeout, error)
Bases: object

execute(runnable)

robot.running.timeouts.windows module

class robot.running.timeouts.windows.Timeout(timeout, error)
Bases: object

execute(runnable)

Submodules

robot.running.bodyrunner module

class robot.running.bodyrunner.BodyRunner(context, run=True, templated=False)
Bases: object

run(body)

class robot.running.bodyrunner.KeywordRunner(context, run=True)
Bases: object

run(step, name=None)

robot.running.bodyrunner.ForRunner(context, flavor=’IN’, run=True, templated=False)

class robot.running.bodyrunner.ForInRunner(context, run=True, templated=False)
Bases: object

flavor = 'IN'

run(data)

class robot.running.bodyrunner.ForInRangeRunner(context, run=True, templated=False)
Bases: robot.running.bodyrunner.ForInRunner

flavor = 'IN RANGE'

run(data)

class robot.running.bodyrunner.ForInZipRunner(context, run=True, templated=False)
Bases: robot.running.bodyrunner.ForInRunner

flavor = 'IN ZIP'

run(data)

class robot.running.bodyrunner.ForInEnumerateRunner(context, run=True, tem-
plated=False)

Bases: robot.running.bodyrunner.ForInRunner

flavor = 'IN ENUMERATE'

run(data)

class robot.running.bodyrunner.WhileRunner(context, run=True, templated=False)
Bases: object

3.1. robot package 549

Robot Framework Documentation, Release 6.0.2

run(data)

class robot.running.bodyrunner.IfRunner(context, run=True, templated=False)
Bases: object

run(data)

class robot.running.bodyrunner.TryRunner(context, run=True, templated=False)
Bases: object

run(data)

class robot.running.bodyrunner.WhileLimit
Bases: object

classmethod create(limit, variables)

limit_exceeded()

class robot.running.bodyrunner.DurationLimit(max_time)
Bases: robot.running.bodyrunner.WhileLimit

classmethod create(limit, variables)

limit_exceeded()

class robot.running.bodyrunner.IterationCountLimit(max_iterations)
Bases: robot.running.bodyrunner.WhileLimit

classmethod create(limit, variables)

limit_exceeded()

class robot.running.bodyrunner.NoLimit
Bases: robot.running.bodyrunner.WhileLimit

classmethod create(limit, variables)

limit_exceeded()

robot.running.context module

class robot.running.context.ExecutionContexts
Bases: object

current

top

namespaces

start_suite(suite, namespace, output, dry_run=False)

end_suite()

robot.running.dynamicmethods module

robot.running.dynamicmethods.no_dynamic_method(*args)

class robot.running.dynamicmethods.GetKeywordNames(lib)
Bases: robot.running.dynamicmethods._DynamicMethod

name

550 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

class robot.running.dynamicmethods.RunKeyword(lib)
Bases: robot.running.dynamicmethods._DynamicMethod

supports_kwargs

name

class robot.running.dynamicmethods.GetKeywordDocumentation(lib)
Bases: robot.running.dynamicmethods._DynamicMethod

name

class robot.running.dynamicmethods.GetKeywordArguments(lib)
Bases: robot.running.dynamicmethods._DynamicMethod

name

class robot.running.dynamicmethods.GetKeywordTypes(lib)
Bases: robot.running.dynamicmethods._DynamicMethod

name

class robot.running.dynamicmethods.GetKeywordTags(lib)
Bases: robot.running.dynamicmethods._DynamicMethod

name

class robot.running.dynamicmethods.GetKeywordSource(lib)
Bases: robot.running.dynamicmethods._DynamicMethod

name

robot.running.handlers module

robot.running.handlers.Handler(library, name, method)

robot.running.handlers.DynamicHandler(library, name, method, doc, argspec, tags=None)

robot.running.handlers.InitHandler(library, method=None, docgetter=None)

class robot.running.handlers.EmbeddedArgumentsHandler(embedded, orig_handler)
Bases: object

supports_embedded_args = True

library

matches(name)

create_runner(name, languages=None)

resolve_arguments(args, variables=None, languages=None)

robot.running.handlerstore module

class robot.running.handlerstore.HandlerStore
Bases: object

add(handler, embedded=False)

get_handlers(name)

3.1. robot package 551

Robot Framework Documentation, Release 6.0.2

robot.running.importer module

class robot.running.importer.Importer
Bases: object

reset()

close_global_library_listeners()

import_library(name, args, alias, variables)

import_resource(path, lang=None)

class robot.running.importer.ImportCache
Bases: object

Keeps track on and optionally caches imported items.

Handles paths in keys case-insensitively on case-insensitive OSes. Unlike dicts, this storage accepts mutable
values in keys.

add(key, item=None)

values()

robot.running.librarykeywordrunner module

class robot.running.librarykeywordrunner.LibraryKeywordRunner(handler,
name=None, lan-
guages=None)

Bases: object

library

libname

longname

run(kw, context, run=True)

dry_run(kw, context)

class robot.running.librarykeywordrunner.EmbeddedArgumentsRunner(handler,
name)

Bases: robot.running.librarykeywordrunner.LibraryKeywordRunner

dry_run(kw, context)

libname

library

longname

run(kw, context, run=True)

class robot.running.librarykeywordrunner.RunKeywordRunner(handler, exe-
cute_in_dry_run=False)

Bases: robot.running.librarykeywordrunner.LibraryKeywordRunner

dry_run(kw, context)

libname

library

552 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

longname

run(kw, context, run=True)

robot.running.libraryscopes module

robot.running.libraryscopes.LibraryScope(libcode, library)

class robot.running.libraryscopes.GlobalScope(library)
Bases: object

is_global = True

start_suite()

end_suite()

start_test()

end_test()

class robot.running.libraryscopes.TestSuiteScope(library)
Bases: robot.running.libraryscopes.GlobalScope

is_global = False

start_suite()

end_suite()

end_test()

start_test()

class robot.running.libraryscopes.TestCaseScope(library)
Bases: robot.running.libraryscopes.TestSuiteScope

start_test()

end_test()

end_suite()

is_global = False

start_suite()

robot.running.model module

Module implementing test execution related model objects.

When tests are executed normally, these objects are created based on the test data on the file system by
TestSuiteBuilder, but external tools can also create an executable test suite model structure directly. Regardless
the approach to create it, the model is executed by calling run() method of the root test suite. See the robot.
running package level documentation for more information and examples.

The most important classes defined in this module are TestSuite, TestCase and Keyword. When tests are
executed, these objects can be inspected and modified by pre-run modifiers and listeners. The aforementioned objects
are considered stable, but other objects in this module may still be changed in the future major releases.

class robot.running.model.Body(parent=None, items=None)
Bases: robot.model.body.Body

3.1. robot package 553

http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#programmatic-modification-of-results
http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#listener-interface

Robot Framework Documentation, Release 6.0.2

append(item)
S.append(value) – append value to the end of the sequence

break_class
alias of Break

clear()→ None – remove all items from S

continue_class
alias of Continue

count(value)→ integer – return number of occurrences of value

create

create_break(*args, **kwargs)

create_continue(*args, **kwargs)

create_for(*args, **kwargs)

create_if(*args, **kwargs)

create_keyword(*args, **kwargs)

create_message(*args, **kwargs)

create_return(*args, **kwargs)

create_try(*args, **kwargs)

create_while(*args, **kwargs)

extend(items)
S.extend(iterable) – extend sequence by appending elements from the iterable

filter(keywords=None, messages=None, predicate=None)
Filter body items based on type and/or custom predicate.

To include or exclude items based on types, give matching arguments True or False values. For ex-
ample, to include only keywords, use body.filter(keywords=True) and to exclude messages use
body.filter(messages=False). Including and excluding by types at the same time is not sup-
ported and filtering my messages is supported only if the Body object actually supports messages.

Custom predicate is a callable getting each body item as an argument that must return True/False
depending on should the item be included or not.

Selected items are returned as a list and the original body is not modified.

It was earlier possible to filter also based on FOR and IF types. That support was removed
in RF 5.0 because it was not considered useful in general and because adding support for all
new control structures would have required extra work. To exclude all control structures, use
body.filter(keywords=True, messages=True) and to only include them use body.
filter(keywords=False, messages=False)‘‘. For more detailed filtering it is possible to use
predicate.

flatten()
Return steps so that IF and TRY structures are flattened.

Basically the IF/ELSE and TRY/EXCEPT root elements are replaced with their branches. This is how they
are shown in log files.

for_class
alias of For

554 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

if_class
alias of If

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

Supporting start and stop arguments is optional, but recommended.

insert(index, item)
S.insert(index, value) – insert value before index

keyword_class
alias of Keyword

message_class = None

pop([index])→ item – remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.

classmethod register(item_class)
Register a virtual subclass of an ABC.

Returns the subclass, to allow usage as a class decorator.

remove(value)
S.remove(value) – remove first occurrence of value. Raise ValueError if the value is not present.

return_class
alias of Return

reverse()
S.reverse() – reverse IN PLACE

sort()

try_class
alias of Try

visit(visitor)

while_class
alias of While

class robot.running.model.Keyword(name=”, doc=”, args=(), assign=(), tags=(),
timeout=None, type=’KEYWORD’, parent=None,
lineno=None)

Bases: robot.model.keyword.Keyword

Represents a single executable keyword.

These keywords never have child keywords or messages. The actual keyword that is executed depends on the
context where this model is executed.

See the base class for documentation of attributes not documented here.

lineno

source

run(context, run=True, templated=None)

BREAK = 'BREAK'

CONTINUE = 'CONTINUE'

ELSE = 'ELSE'

3.1. robot package 555

Robot Framework Documentation, Release 6.0.2

ELSE_IF = 'ELSE IF'

EXCEPT = 'EXCEPT'

FINALLY = 'FINALLY'

FOR = 'FOR'

IF = 'IF'

IF_ELSE_ROOT = 'IF/ELSE ROOT'

ITERATION = 'ITERATION'

KEYWORD = 'KEYWORD'

MESSAGE = 'MESSAGE'

RETURN = 'RETURN'

SETUP = 'SETUP'

TEARDOWN = 'TEARDOWN'

TRY = 'TRY'

TRY_EXCEPT_ROOT = 'TRY/EXCEPT ROOT'

WHILE = 'WHILE'

args

assign

config(**attributes)
Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting obj.name =
'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

copy(**attributes)
Return shallow copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same as with the standard copy.copy
and copy.deepcopy functions that these methods also use internally.

deepcopy(**attributes)
Return deep copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same as with the standard copy.copy and
copy.deepcopy functions that these methods also use internally.

doc

has_setup

has_teardown
Check does a keyword have a teardown without creating a teardown object.

556 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

A difference between using if kw.has_teardown: and if kw.teardown: is that accessing the
teardown attribute creates a Keyword object representing a teardown even when the keyword actually
does not have one. This typically does not matter, but with bigger suite structures having lot of keywords
it can have a considerable effect on memory usage.

New in Robot Framework 4.1.2.

id
Item id in format like s1-t3-k1.

See TestSuite.id for more information.

name

parent

repr_args = ('name', 'args', 'assign')

tags
Keyword tags as a Tags object.

teardown
Keyword teardown as a Keyword object.

Teardown can be modified by setting attributes directly:

keyword.teardown.name = 'Example'
keyword.teardown.args = ('First', 'Second')

Alternatively the config() method can be used to set multiple attributes in one call:

keyword.teardown.config(name='Example', args=('First', 'Second'))

The easiest way to reset the whole teardown is setting it to None. It will automatically recreate the
underlying Keyword object:

keyword.teardown = None

This attribute is a Keyword object also when a keyword has no teardown but in that case its truth value
is False. If there is a need to just check does a keyword have a teardown, using the has_teardown
attribute avoids creating the Keyword object and is thus more memory efficient.

New in Robot Framework 4.0. Earlier teardown was accessed like keyword.keywords.teardown.
has_teardown is new in Robot Framework 4.1.2.

timeout

type

visit(visitor)
Visitor interface entry-point.

class robot.running.model.For(variables, flavor, values, parent=None, lineno=None, er-
ror=None)

Bases: robot.model.control.For

body_class
alias of Body

lineno

error

source

3.1. robot package 557

Robot Framework Documentation, Release 6.0.2

run(context, run=True, templated=False)

BREAK = 'BREAK'

CONTINUE = 'CONTINUE'

ELSE = 'ELSE'

ELSE_IF = 'ELSE IF'

EXCEPT = 'EXCEPT'

FINALLY = 'FINALLY'

FOR = 'FOR'

IF = 'IF'

IF_ELSE_ROOT = 'IF/ELSE ROOT'

ITERATION = 'ITERATION'

KEYWORD = 'KEYWORD'

MESSAGE = 'MESSAGE'

RETURN = 'RETURN'

SETUP = 'SETUP'

TEARDOWN = 'TEARDOWN'

TRY = 'TRY'

TRY_EXCEPT_ROOT = 'TRY/EXCEPT ROOT'

WHILE = 'WHILE'

body

config(**attributes)
Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting obj.name =
'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

copy(**attributes)
Return shallow copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same as with the standard copy.copy
and copy.deepcopy functions that these methods also use internally.

deepcopy(**attributes)
Return deep copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same as with the standard copy.copy and
copy.deepcopy functions that these methods also use internally.

flavor

has_setup

558 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

has_teardown

id
Item id in format like s1-t3-k1.

See TestSuite.id for more information.

keywords
Deprecated since Robot Framework 4.0. Use body instead.

parent

repr_args = ('variables', 'flavor', 'values')

type = 'FOR'

values

variables

visit(visitor)

class robot.running.model.While(condition=None, limit=None, parent=None, lineno=None, er-
ror=None)

Bases: robot.model.control.While

body_class
alias of Body

lineno

error

source

run(context, run=True, templated=False)

BREAK = 'BREAK'

CONTINUE = 'CONTINUE'

ELSE = 'ELSE'

ELSE_IF = 'ELSE IF'

EXCEPT = 'EXCEPT'

FINALLY = 'FINALLY'

FOR = 'FOR'

IF = 'IF'

IF_ELSE_ROOT = 'IF/ELSE ROOT'

ITERATION = 'ITERATION'

KEYWORD = 'KEYWORD'

MESSAGE = 'MESSAGE'

RETURN = 'RETURN'

SETUP = 'SETUP'

TEARDOWN = 'TEARDOWN'

TRY = 'TRY'

TRY_EXCEPT_ROOT = 'TRY/EXCEPT ROOT'

3.1. robot package 559

Robot Framework Documentation, Release 6.0.2

WHILE = 'WHILE'

body

condition

config(**attributes)
Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting obj.name =
'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

copy(**attributes)
Return shallow copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same as with the standard copy.copy
and copy.deepcopy functions that these methods also use internally.

deepcopy(**attributes)
Return deep copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same as with the standard copy.copy and
copy.deepcopy functions that these methods also use internally.

has_setup

has_teardown

id
Item id in format like s1-t3-k1.

See TestSuite.id for more information.

limit

parent

repr_args = ('condition', 'limit')

type = 'WHILE'

visit(visitor)

class robot.running.model.IfBranch(type=’IF’, condition=None, parent=None, lineno=None)
Bases: robot.model.control.IfBranch

body_class
alias of Body

lineno

source

BREAK = 'BREAK'

CONTINUE = 'CONTINUE'

ELSE = 'ELSE'

ELSE_IF = 'ELSE IF'

560 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

EXCEPT = 'EXCEPT'

FINALLY = 'FINALLY'

FOR = 'FOR'

IF = 'IF'

IF_ELSE_ROOT = 'IF/ELSE ROOT'

ITERATION = 'ITERATION'

KEYWORD = 'KEYWORD'

MESSAGE = 'MESSAGE'

RETURN = 'RETURN'

SETUP = 'SETUP'

TEARDOWN = 'TEARDOWN'

TRY = 'TRY'

TRY_EXCEPT_ROOT = 'TRY/EXCEPT ROOT'

WHILE = 'WHILE'

body

condition

config(**attributes)
Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting obj.name =
'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

copy(**attributes)
Return shallow copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same as with the standard copy.copy
and copy.deepcopy functions that these methods also use internally.

deepcopy(**attributes)
Return deep copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same as with the standard copy.copy and
copy.deepcopy functions that these methods also use internally.

has_setup

has_teardown

id
Branch id omits IF/ELSE root from the parent id part.

parent

repr_args = ('type', 'condition')

3.1. robot package 561

Robot Framework Documentation, Release 6.0.2

type

visit(visitor)

class robot.running.model.If(parent=None, lineno=None, error=None)
Bases: robot.model.control.If

branch_class
alias of IfBranch

lineno

error

source

run(context, run=True, templated=False)

BREAK = 'BREAK'

CONTINUE = 'CONTINUE'

ELSE = 'ELSE'

ELSE_IF = 'ELSE IF'

EXCEPT = 'EXCEPT'

FINALLY = 'FINALLY'

FOR = 'FOR'

IF = 'IF'

IF_ELSE_ROOT = 'IF/ELSE ROOT'

ITERATION = 'ITERATION'

KEYWORD = 'KEYWORD'

MESSAGE = 'MESSAGE'

RETURN = 'RETURN'

SETUP = 'SETUP'

TEARDOWN = 'TEARDOWN'

TRY = 'TRY'

TRY_EXCEPT_ROOT = 'TRY/EXCEPT ROOT'

WHILE = 'WHILE'

body

branches_class
alias of robot.model.body.Branches

config(**attributes)
Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting obj.name =
'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

copy(**attributes)
Return shallow copy of this object.

562 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same as with the standard copy.copy
and copy.deepcopy functions that these methods also use internally.

deepcopy(**attributes)
Return deep copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same as with the standard copy.copy and
copy.deepcopy functions that these methods also use internally.

has_setup

has_teardown

id
Root IF/ELSE id is always None.

parent

repr_args = ()

type = 'IF/ELSE ROOT'

visit(visitor)

class robot.running.model.TryBranch(type=’TRY’, patterns=(), pattern_type=None, vari-
able=None, parent=None, lineno=None)

Bases: robot.model.control.TryBranch

body_class
alias of Body

lineno

source

BREAK = 'BREAK'

CONTINUE = 'CONTINUE'

ELSE = 'ELSE'

ELSE_IF = 'ELSE IF'

EXCEPT = 'EXCEPT'

FINALLY = 'FINALLY'

FOR = 'FOR'

IF = 'IF'

IF_ELSE_ROOT = 'IF/ELSE ROOT'

ITERATION = 'ITERATION'

KEYWORD = 'KEYWORD'

MESSAGE = 'MESSAGE'

RETURN = 'RETURN'

SETUP = 'SETUP'

3.1. robot package 563

Robot Framework Documentation, Release 6.0.2

TEARDOWN = 'TEARDOWN'

TRY = 'TRY'

TRY_EXCEPT_ROOT = 'TRY/EXCEPT ROOT'

WHILE = 'WHILE'

body

config(**attributes)
Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting obj.name =
'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

copy(**attributes)
Return shallow copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same as with the standard copy.copy
and copy.deepcopy functions that these methods also use internally.

deepcopy(**attributes)
Return deep copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same as with the standard copy.copy and
copy.deepcopy functions that these methods also use internally.

has_setup

has_teardown

id
Branch id omits TRY/EXCEPT root from the parent id part.

parent

pattern_type

patterns

repr_args = ('type', 'patterns', 'pattern_type', 'variable')

type

variable

visit(visitor)

class robot.running.model.Try(parent=None, lineno=None, error=None)
Bases: robot.model.control.Try

branch_class
alias of TryBranch

lineno

error

source

564 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

run(context, run=True, templated=False)

BREAK = 'BREAK'

CONTINUE = 'CONTINUE'

ELSE = 'ELSE'

ELSE_IF = 'ELSE IF'

EXCEPT = 'EXCEPT'

FINALLY = 'FINALLY'

FOR = 'FOR'

IF = 'IF'

IF_ELSE_ROOT = 'IF/ELSE ROOT'

ITERATION = 'ITERATION'

KEYWORD = 'KEYWORD'

MESSAGE = 'MESSAGE'

RETURN = 'RETURN'

SETUP = 'SETUP'

TEARDOWN = 'TEARDOWN'

TRY = 'TRY'

TRY_EXCEPT_ROOT = 'TRY/EXCEPT ROOT'

WHILE = 'WHILE'

body

branches_class
alias of robot.model.body.Branches

config(**attributes)
Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting obj.name =
'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

copy(**attributes)
Return shallow copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same as with the standard copy.copy
and copy.deepcopy functions that these methods also use internally.

deepcopy(**attributes)
Return deep copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same as with the standard copy.copy and
copy.deepcopy functions that these methods also use internally.

3.1. robot package 565

Robot Framework Documentation, Release 6.0.2

else_branch

except_branches

finally_branch

has_setup

has_teardown

id
Root TRY/EXCEPT id is always None.

parent

repr_args = ()

try_branch

type = 'TRY/EXCEPT ROOT'

visit(visitor)

class robot.running.model.Return(values=(), parent=None, lineno=None, error=None)
Bases: robot.model.control.Return

lineno

error

source

run(context, run=True, templated=False)

BREAK = 'BREAK'

CONTINUE = 'CONTINUE'

ELSE = 'ELSE'

ELSE_IF = 'ELSE IF'

EXCEPT = 'EXCEPT'

FINALLY = 'FINALLY'

FOR = 'FOR'

IF = 'IF'

IF_ELSE_ROOT = 'IF/ELSE ROOT'

ITERATION = 'ITERATION'

KEYWORD = 'KEYWORD'

MESSAGE = 'MESSAGE'

RETURN = 'RETURN'

SETUP = 'SETUP'

TEARDOWN = 'TEARDOWN'

TRY = 'TRY'

TRY_EXCEPT_ROOT = 'TRY/EXCEPT ROOT'

WHILE = 'WHILE'

566 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

config(**attributes)
Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting obj.name =
'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

copy(**attributes)
Return shallow copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same as with the standard copy.copy
and copy.deepcopy functions that these methods also use internally.

deepcopy(**attributes)
Return deep copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same as with the standard copy.copy and
copy.deepcopy functions that these methods also use internally.

has_setup

has_teardown

id
Item id in format like s1-t3-k1.

See TestSuite.id for more information.

parent

repr_args = ('values',)

type = 'RETURN'

values

visit(visitor)

class robot.running.model.Continue(parent=None, lineno=None, error=None)
Bases: robot.model.control.Continue

lineno

error

source

run(context, run=True, templated=False)

BREAK = 'BREAK'

CONTINUE = 'CONTINUE'

ELSE = 'ELSE'

ELSE_IF = 'ELSE IF'

EXCEPT = 'EXCEPT'

FINALLY = 'FINALLY'

3.1. robot package 567

Robot Framework Documentation, Release 6.0.2

FOR = 'FOR'

IF = 'IF'

IF_ELSE_ROOT = 'IF/ELSE ROOT'

ITERATION = 'ITERATION'

KEYWORD = 'KEYWORD'

MESSAGE = 'MESSAGE'

RETURN = 'RETURN'

SETUP = 'SETUP'

TEARDOWN = 'TEARDOWN'

TRY = 'TRY'

TRY_EXCEPT_ROOT = 'TRY/EXCEPT ROOT'

WHILE = 'WHILE'

config(**attributes)
Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting obj.name =
'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

copy(**attributes)
Return shallow copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same as with the standard copy.copy
and copy.deepcopy functions that these methods also use internally.

deepcopy(**attributes)
Return deep copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same as with the standard copy.copy and
copy.deepcopy functions that these methods also use internally.

has_setup

has_teardown

id
Item id in format like s1-t3-k1.

See TestSuite.id for more information.

parent

repr_args = ()

type = 'CONTINUE'

visit(visitor)

568 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

class robot.running.model.Break(parent=None, lineno=None, error=None)
Bases: robot.model.control.Break

lineno

error

source

run(context, run=True, templated=False)

BREAK = 'BREAK'

CONTINUE = 'CONTINUE'

ELSE = 'ELSE'

ELSE_IF = 'ELSE IF'

EXCEPT = 'EXCEPT'

FINALLY = 'FINALLY'

FOR = 'FOR'

IF = 'IF'

IF_ELSE_ROOT = 'IF/ELSE ROOT'

ITERATION = 'ITERATION'

KEYWORD = 'KEYWORD'

MESSAGE = 'MESSAGE'

RETURN = 'RETURN'

SETUP = 'SETUP'

TEARDOWN = 'TEARDOWN'

TRY = 'TRY'

TRY_EXCEPT_ROOT = 'TRY/EXCEPT ROOT'

WHILE = 'WHILE'

config(**attributes)
Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting obj.name =
'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

copy(**attributes)
Return shallow copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same as with the standard copy.copy
and copy.deepcopy functions that these methods also use internally.

deepcopy(**attributes)
Return deep copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.deepcopy(name='New name').

3.1. robot package 569

Robot Framework Documentation, Release 6.0.2

See also copy(). The difference between these two is the same as with the standard copy.copy and
copy.deepcopy functions that these methods also use internally.

has_setup

has_teardown

id
Item id in format like s1-t3-k1.

See TestSuite.id for more information.

parent

repr_args = ()

type = 'BREAK'

visit(visitor)

class robot.running.model.TestCase(name=”, doc=”, tags=None, timeout=None, tem-
plate=None, lineno=None)

Bases: robot.model.testcase.TestCase

Represents a single executable test case.

See the base class for documentation of attributes not documented here.

body_class
Internal usage only.

alias of Body

fixture_class
Internal usage only.

alias of Keyword

template

source

body
Test body as a Body object.

config(**attributes)
Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting obj.name =
'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

copy(**attributes)
Return shallow copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same as with the standard copy.copy
and copy.deepcopy functions that these methods also use internally.

deepcopy(**attributes)
Return deep copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.deepcopy(name='New name').

570 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

See also copy(). The difference between these two is the same as with the standard copy.copy and
copy.deepcopy functions that these methods also use internally.

doc

has_setup
Check does a suite have a setup without creating a setup object.

A difference between using if test.has_setup: and if test.setup: is that accessing the
setup attribute creates a Keyword object representing the setup even when the test actually does not
have one. This typically does not matter, but with bigger suite structures containing a huge about of tests
it can have an effect on memory usage.

New in Robot Framework 5.0.

has_teardown
Check does a test have a teardown without creating a teardown object.

See has_setup for more information.

New in Robot Framework 5.0.

id
Test case id in format like s1-t3.

See TestSuite.id for more information.

keywords
Deprecated since Robot Framework 4.0

Use body , setup or teardown instead.

lineno

longname
Test name prefixed with the long name of the parent suite.

name

parent

repr_args = ('name',)

setup
Test setup as a Keyword object.

This attribute is a Keyword object also when a test has no setup but in that case its truth value is False.

Setup can be modified by setting attributes directly:

test.setup.name = 'Example'
test.setup.args = ('First', 'Second')

Alternatively the config() method can be used to set multiple attributes in one call:

test.setup.config(name='Example', args=('First', 'Second'))

The easiest way to reset the whole setup is setting it to None. It will automatically recreate the underlying
Keyword object:

test.setup = None

New in Robot Framework 4.0. Earlier setup was accessed like test.keywords.setup.

3.1. robot package 571

Robot Framework Documentation, Release 6.0.2

tags
Test tags as a Tags object.

teardown
Test teardown as a Keyword object.

See setup for more information.

timeout

visit(visitor)
Visitor interface entry-point.

class robot.running.model.TestSuite(name=”, doc=”, metadata=None, source=None,
rpa=None)

Bases: robot.model.testsuite.TestSuite

Represents a single executable test suite.

See the base class for documentation of attributes not documented here.

test_class
Internal usage only.

alias of TestCase

fixture_class
Internal usage only.

alias of Keyword

resource
ResourceFile instance containing imports, variables and keywords the suite owns. When data is parsed
from the file system, this data comes from the same test case file that creates the suite.

classmethod from_file_system(*paths, **config)
Create a TestSuite object based on the given paths.

paths are file or directory paths where to read the data from.

Internally utilizes the TestSuiteBuilder class and config can be used to configure how it is ini-
tialized.

New in Robot Framework 3.2.

classmethod from_model(model, name=None)
Create a TestSuite object based on the given model.

The model can be created by using the get_model() function and possibly modified by other tooling
in the robot.parsing module.

New in Robot Framework 3.2.

configure(randomize_suites=False, randomize_tests=False, randomize_seed=None, **options)
A shortcut to configure a suite using one method call.

Can only be used with the root test suite.

Parameters

• randomize_xxx – Passed to randomize().

• options – Passed to SuiteConfigurer that will then set suite attributes, call
filter(), etc. as needed.

Example:

572 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

suite.configure(included_tags=['smoke'],
doc='Smoke test results.')

Not to be confused with config() method that suites, tests, and keywords have to make it possible to
set multiple attributes in one call.

randomize(suites=True, tests=True, seed=None)
Randomizes the order of suites and/or tests, recursively.

Parameters

• suites – Boolean controlling should suites be randomized.

• tests – Boolean controlling should tests be randomized.

• seed – Random seed. Can be given if previous random order needs to be re-created. Seed
value is always shown in logs and reports.

run(settings=None, **options)
Executes the suite based based the given settings or options.

Parameters

• settings – RobotSettings object to configure test execution.

• options – Used to construct new RobotSettings object if settings are not given.

Returns Result object with information about executed suites and tests.

If options are used, their names are the same as long command line options except without hyphens.
Some options are ignored (see below), but otherwise they have the same semantics as on the com-
mand line. Options that can be given on the command line multiple times can be passed as lists like
variable=['VAR1:value1', 'VAR2:value2']. If such an option is used only once, it can be
given also as a single string like variable='VAR:value'.

Additionally listener option allows passing object directly instead of listener name, e.g. run('tests.
robot', listener=Listener()).

To capture stdout and/or stderr streams, pass open file objects in as special keyword arguments stdout
and stderr, respectively.

Only options related to the actual test execution have an effect. For example, options related to selecting
or modifying test cases or suites (e.g. --include, --name, --prerunmodifier) or creating logs
and reports are silently ignored. The output XML generated as part of the execution can be configured,
though. This includes disabling it with output=None.

Example:

stdout = StringIO()
result = suite.run(variable='EXAMPLE:value',

output='example.xml',
exitonfailure=True,
stdout=stdout)

print(result.return_code)

To save memory, the returned Result object does not have any information about the executed keywords.
If that information is needed, the created output XML file needs to be read using the ExecutionResult
factory method.

See the package level documentation for more examples, including how to construct executable test
suites and how to create logs and reports based on the execution results.

See the robot.run function for a higher-level API for executing tests in files or directories.

3.1. robot package 573

Robot Framework Documentation, Release 6.0.2

config(**attributes)
Configure model object with given attributes.

obj.config(name='Example', doc='Something') is equivalent to setting obj.name =
'Example' and obj.doc = 'Something'.

New in Robot Framework 4.0.

copy(**attributes)
Return shallow copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.copy(name='New name').

See also deepcopy(). The difference between these two is the same as with the standard copy.copy
and copy.deepcopy functions that these methods also use internally.

deepcopy(**attributes)
Return deep copy of this object.

Parameters attributes – Attributes to be set for the returned copy automatically. For ex-
ample, test.deepcopy(name='New name').

See also copy(). The difference between these two is the same as with the standard copy.copy and
copy.deepcopy functions that these methods also use internally.

doc

filter(included_suites=None, included_tests=None, included_tags=None, excluded_tags=None)
Select test cases and remove others from this suite.

Parameters have the same semantics as --suite, --test, --include, and --exclude command
line options. All of them can be given as a list of strings, or when selecting only one, as a single string.

Child suites that contain no tests after filtering are automatically removed.

Example:

suite.filter(included_tests=['Test 1', '* Example'],
included_tags='priority-1')

has_setup
Check does a suite have a setup without creating a setup object.

A difference between using if suite.has_setup: and if suite.setup: is that accessing the
setup attribute creates a Keyword object representing the setup even when the suite actually does not
have one. This typically does not matter, but with bigger suite structures containing a huge about of suites
it can have some effect on memory usage.

New in Robot Framework 5.0.

has_teardown
Check does a suite have a teardown without creating a teardown object.

See has_setup for more information.

New in Robot Framework 5.0.

has_tests

id
An automatically generated unique id.

The root suite has id s1, its child suites have ids s1-s1, s1-s2, . . . , their child suites get ids s1-s1-s1,
s1-s1-s2, . . . , s1-s2-s1, . . . , and so on.

574 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

The first test in a suite has an id like s1-t1, the second has an id s1-t2, and so on. Similarly keywords
in suites (setup/teardown) and in tests get ids like s1-k1, s1-t1-k1, and s1-s4-t2-k5.

keywords
Deprecated since Robot Framework 4.0

Use setup or teardown instead.

longname
Suite name prefixed with the long name of the parent suite.

metadata
Free test suite metadata as a dictionary.

name
Test suite name. If not set, constructed from child suite names.

parent

remove_empty_suites(preserve_direct_children=False)
Removes all child suites not containing any tests, recursively.

repr_args = ('name',)

rpa

set_tags(add=None, remove=None, persist=False)
Add and/or remove specified tags to the tests in this suite.

Parameters

• add – Tags to add as a list or, if adding only one, as a single string.

• remove – Tags to remove as a list or as a single string. Can be given as patterns where *
and ? work as wildcards.

• persist – Add/remove specified tags also to new tests added to this suite in the future.

setup
Suite setup as a Keyword object.

This attribute is a Keyword object also when a suite has no setup but in that case its truth value is False.

Setup can be modified by setting attributes directly:

suite.setup.name = 'Example'
suite.setup.args = ('First', 'Second')

Alternatively the config() method can be used to set multiple attributes in one call:

suite.setup.config(name='Example', args=('First', 'Second'))

The easiest way to reset the whole setup is setting it to None. It will automatically recreate the underlying
Keyword object:

suite.setup = None

New in Robot Framework 4.0. Earlier setup was accessed like suite.keywords.setup.

source

suites
Child suites as a TestSuites object.

3.1. robot package 575

Robot Framework Documentation, Release 6.0.2

teardown
Suite teardown as a Keyword object.

See setup for more information.

test_count
Number of the tests in this suite, recursively.

tests
Tests as a TestCases object.

visit(visitor)
Visitor interface entry-point.

class robot.running.model.Variable(name, value, source=None, lineno=None, error=None)
Bases: object

report_invalid_syntax(message, level=’ERROR’)

class robot.running.model.ResourceFile(doc=”, source=None)
Bases: object

imports

keywords

variables

class robot.running.model.UserKeyword(name, args=(), doc=”, tags=(), return_=None, time-
out=None, lineno=None, parent=None, error=None)

Bases: object

body
Child keywords as a Body object.

keywords
Deprecated since Robot Framework 4.0.

Use body or teardown instead.

teardown

tags

source

class robot.running.model.Import(type, name, args=(), alias=None, source=None,
lineno=None)

Bases: object

ALLOWED_TYPES = ('Library', 'Resource', 'Variables')

directory

report_invalid_syntax(message, level=’ERROR’)

class robot.running.model.Imports(source, imports=None)
Bases: robot.model.itemlist.ItemList

append(item)
S.append(value) – append value to the end of the sequence

clear()→ None – remove all items from S

count(value)→ integer – return number of occurrences of value

create(*args, **kwargs)

576 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

extend(items)
S.extend(iterable) – extend sequence by appending elements from the iterable

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

Supporting start and stop arguments is optional, but recommended.

insert(index, item)
S.insert(index, value) – insert value before index

pop([index])→ item – remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.

remove(value)
S.remove(value) – remove first occurrence of value. Raise ValueError if the value is not present.

reverse()
S.reverse() – reverse IN PLACE

sort()

visit(visitor)

library(name, args=(), alias=None, lineno=None)

resource(path, lineno=None)

variables(path, args=(), lineno=None)

robot.running.modelcombiner module

class robot.running.modelcombiner.ModelCombiner(data, result, **priority)
Bases: object

data

result

priority

robot.running.namespace module

class robot.running.namespace.Namespace(variables, suite, resource, languages)
Bases: object

libraries

handle_imports()

import_resource(name, overwrite=True)

import_variables(name, args, overwrite=False)

import_library(name, args=(), alias=None, notify=True)

set_search_order(new_order)

start_test()

end_test()

start_suite()

3.1. robot package 577

Robot Framework Documentation, Release 6.0.2

end_suite(suite)

start_user_keyword()

end_user_keyword()

get_library_instance(libname)

get_library_instances()

reload_library(libname_or_instance)

get_runner(name, recommend_on_failure=True)

class robot.running.namespace.KeywordStore(resource, languages)
Bases: object

get_library(name_or_instance)

get_runner(name, recommend=True)

class robot.running.namespace.KeywordRecommendationFinder(user_keywords, li-
braries, resources)

Bases: object

recommend_similar_keywords(name, message)
Return keyword names similar to name.

static format_recommendations(message, recommendations)

robot.running.outputcapture module

class robot.running.outputcapture.OutputCapturer(library_import=False)
Bases: object

class robot.running.outputcapture.PythonCapturer(stdout=True)
Bases: object

release()

robot.running.randomizer module

class robot.running.randomizer.Randomizer(randomize_suites=True, randomize_tests=True,
seed=None)

Bases: robot.model.visitor.SuiteVisitor

start_suite(suite)
Called when a suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

visit_test(test)
Implements traversing through tests.

Can be overridden to allow modifying the passed in test without calling start_test() or
end_test() nor visiting the body of the test.

visit_keyword(kw)
Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without calling start_keyword() or
end_keyword() nor visiting the body of the keyword

578 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

end_body_item(item)
Called, by default, when keywords, messages or control structures end.

More specific end_keyword(), end_message(), :meth:‘end_for, etc. can be implemented to visit
only keywords, messages or specific control structures.

Default implementation does nothing.

end_break(break_)
Called when a BREAK element ends.

By default, calls end_body_item() which, by default, does nothing.

end_continue(continue_)
Called when a CONTINUE element ends.

By default, calls end_body_item() which, by default, does nothing.

end_for(for_)
Called when a FOR loop ends.

By default, calls end_body_item() which, by default, does nothing.

end_for_iteration(iteration)
Called when a FOR loop iteration ends.

By default, calls end_body_item() which, by default, does nothing.

end_if(if_)
Called when an IF/ELSE structure ends.

By default, calls end_body_item() which, by default, does nothing.

end_if_branch(branch)
Called when an IF/ELSE branch ends.

By default, calls end_body_item() which, by default, does nothing.

end_keyword(keyword)
Called when a keyword ends.

By default, calls end_body_item() which, by default, does nothing.

end_message(msg)
Called when a message ends.

By default, calls end_body_item() which, by default, does nothing.

end_return(return_)
Called when a RETURN element ends.

By default, calls end_body_item() which, by default, does nothing.

end_suite(suite)
Called when a suite ends. Default implementation does nothing.

end_test(test)
Called when a test ends. Default implementation does nothing.

end_try(try_)
Called when a TRY/EXCEPT structure ends.

By default, calls end_body_item() which, by default, does nothing.

3.1. robot package 579

Robot Framework Documentation, Release 6.0.2

end_try_branch(branch)
Called when TRY, EXCEPT, ELSE and FINALLY branches end.

By default, calls end_body_item() which, by default, does nothing.

end_while(while_)
Called when a WHILE loop ends.

By default, calls end_body_item() which, by default, does nothing.

end_while_iteration(iteration)
Called when a WHILE loop iteration ends.

By default, calls end_body_item() which, by default, does nothing.

start_body_item(item)
Called, by default, when keywords, messages or control structures start.

More specific start_keyword(), start_message(), :meth:‘start_for, etc. can be implemented to
visit only keywords, messages or specific control structures.

Can return explicit False to stop visiting. Default implementation does nothing.

start_break(break_)
Called when a BREAK element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_continue(continue_)
Called when a CONTINUE element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_for(for_)
Called when a FOR loop starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_for_iteration(iteration)
Called when a FOR loop iteration starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_if(if_)
Called when an IF/ELSE structure starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_if_branch(branch)
Called when an IF/ELSE branch starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

580 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

start_keyword(keyword)
Called when a keyword starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_message(msg)
Called when a message starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_return(return_)
Called when a RETURN element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_test(test)
Called when a test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

start_try(try_)
Called when a TRY/EXCEPT structure starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_try_branch(branch)
Called when TRY, EXCEPT, ELSE or FINALLY branches start.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_while(while_)
Called when a WHILE loop starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_while_iteration(iteration)
Called when a WHILE loop iteration starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

visit_break(break_)
Visits BREAK elements.

visit_continue(continue_)
Visits CONTINUE elements.

visit_for(for_)
Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without calling start_for() or
end_for() nor visiting body.

3.1. robot package 581

Robot Framework Documentation, Release 6.0.2

visit_for_iteration(iteration)
Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side there are no iterations.

Can be overridden to allow modifying the passed in iteration without calling
start_for_iteration() or end_for_iteration() nor visiting body.

visit_if(if_)
Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches are in its body and visited
using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without calling start_if() or end_if()
nor visiting branches.

visit_if_branch(branch)
Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without calling start_if_branch() or
end_if_branch() nor visiting body.

visit_message(msg)
Implements visiting messages.

Can be overridden to allow modifying the passed in msg without calling start_message() or
end_message().

visit_return(return_)
Visits a RETURN elements.

visit_suite(suite)
Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without calling start_suite() or
end_suite() nor visiting child suites, tests or setup and teardown at all.

visit_try(try_)
Implements traversing through TRY/EXCEPT structures.

This method is used with the TRY/EXCEPT root element. Actual TRY, EXCEPT, ELSE and FINALLY
branches are visited separately using visit_try_branch().

visit_try_branch(branch)
Visits individual TRY, EXCEPT, ELSE and FINALLY branches.

visit_while(while_)
Implements traversing through WHILE loops.

Can be overridden to allow modifying the passed in while_ without calling start_while() or
end_while() nor visiting body.

visit_while_iteration(iteration)
Implements traversing through single WHILE loop iteration.

This is only used with the result side model because on the running side there are no iterations.

Can be overridden to allow modifying the passed in iteration without calling
start_while_iteration() or end_while_iteration() nor visiting body.

582 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

robot.running.runkwregister module

robot.running.signalhandler module

robot.running.status module

class robot.running.status.Failure
Bases: object

class robot.running.status.Exit(failure_mode=False, error_mode=False,
skip_teardown_mode=False)

Bases: object

failure_occurred(fatal=False)

error_occurred()

teardown_allowed

class robot.running.status.SuiteStatus(parent=None, exit_on_failure=False,
exit_on_error=False,
skip_teardown_on_exit=False)

Bases: robot.running.status._ExecutionStatus

error_occurred()

failed

failure_occurred()

message

passed

setup_executed(error=None)

status

teardown_allowed

teardown_executed(error=None)

class robot.running.status.TestStatus(parent, test, skip_on_failure=None, rpa=False)
Bases: robot.running.status._ExecutionStatus

test_failed(message=None, error=None)

test_skipped(message)

skip_on_failure_after_tag_changes

error_occurred()

failed

failure_occurred()

message

passed

setup_executed(error=None)

status

teardown_allowed

3.1. robot package 583

Robot Framework Documentation, Release 6.0.2

teardown_executed(error=None)

class robot.running.status.TestMessage(status)
Bases: robot.running.status._Message

setup_message = 'Setup failed:\n%s'

teardown_message = 'Teardown failed:\n%s'

setup_skipped_message = '%s'

teardown_skipped_message = '%s'

also_teardown_message = '%s\n\nAlso teardown failed:\n%s'

also_teardown_skip_message = 'Skipped in teardown:\n%s\n\nEarlier message:\n%s'

exit_on_fatal_message = 'Test execution stopped due to a fatal error.'

exit_on_failure_message = 'Failure occurred and exit-on-failure mode is in use.'

exit_on_error_message = 'Error occurred and exit-on-error mode is in use.'

message

class robot.running.status.SuiteMessage(status)
Bases: robot.running.status._Message

setup_message = 'Suite setup failed:\n%s'

setup_skipped_message = 'Skipped in suite setup:\n%s'

teardown_skipped_message = 'Skipped in suite teardown:\n%s'

teardown_message = 'Suite teardown failed:\n%s'

also_teardown_message = '%s\n\nAlso suite teardown failed:\n%s'

also_teardown_skip_message = 'Skipped in suite teardown:\n%s\n\nEarlier message:\n%s'

message

class robot.running.status.ParentMessage(status)
Bases: robot.running.status.SuiteMessage

setup_message = 'Parent suite setup failed:\n%s'

setup_skipped_message = 'Skipped in parent suite setup:\n%s'

teardown_skipped_message = 'Skipped in parent suite teardown:\n%s'

teardown_message = 'Parent suite teardown failed:\n%s'

also_teardown_message = '%s\n\nAlso parent suite teardown failed:\n%s'

also_teardown_skip_message = 'Skipped in suite teardown:\n%s\n\nEarlier message:\n%s'

message

robot.running.statusreporter module

class robot.running.statusreporter.StatusReporter(data, result, context, run=True, sup-
press=False)

Bases: object

584 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

robot.running.suiterunner module

class robot.running.suiterunner.SuiteRunner(output, settings)
Bases: robot.model.visitor.SuiteVisitor

start_suite(suite)
Called when a suite starts. Default implementation does nothing.

Can return explicit False to stop visiting.

end_suite(suite)
Called when a suite ends. Default implementation does nothing.

visit_test(test)
Implements traversing through tests.

Can be overridden to allow modifying the passed in test without calling start_test() or
end_test() nor visiting the body of the test.

end_body_item(item)
Called, by default, when keywords, messages or control structures end.

More specific end_keyword(), end_message(), :meth:‘end_for, etc. can be implemented to visit
only keywords, messages or specific control structures.

Default implementation does nothing.

end_break(break_)
Called when a BREAK element ends.

By default, calls end_body_item() which, by default, does nothing.

end_continue(continue_)
Called when a CONTINUE element ends.

By default, calls end_body_item() which, by default, does nothing.

end_for(for_)
Called when a FOR loop ends.

By default, calls end_body_item() which, by default, does nothing.

end_for_iteration(iteration)
Called when a FOR loop iteration ends.

By default, calls end_body_item() which, by default, does nothing.

end_if(if_)
Called when an IF/ELSE structure ends.

By default, calls end_body_item() which, by default, does nothing.

end_if_branch(branch)
Called when an IF/ELSE branch ends.

By default, calls end_body_item() which, by default, does nothing.

end_keyword(keyword)
Called when a keyword ends.

By default, calls end_body_item() which, by default, does nothing.

end_message(msg)
Called when a message ends.

By default, calls end_body_item() which, by default, does nothing.

3.1. robot package 585

Robot Framework Documentation, Release 6.0.2

end_return(return_)
Called when a RETURN element ends.

By default, calls end_body_item() which, by default, does nothing.

end_test(test)
Called when a test ends. Default implementation does nothing.

end_try(try_)
Called when a TRY/EXCEPT structure ends.

By default, calls end_body_item() which, by default, does nothing.

end_try_branch(branch)
Called when TRY, EXCEPT, ELSE and FINALLY branches end.

By default, calls end_body_item() which, by default, does nothing.

end_while(while_)
Called when a WHILE loop ends.

By default, calls end_body_item() which, by default, does nothing.

end_while_iteration(iteration)
Called when a WHILE loop iteration ends.

By default, calls end_body_item() which, by default, does nothing.

start_body_item(item)
Called, by default, when keywords, messages or control structures start.

More specific start_keyword(), start_message(), :meth:‘start_for, etc. can be implemented to
visit only keywords, messages or specific control structures.

Can return explicit False to stop visiting. Default implementation does nothing.

start_break(break_)
Called when a BREAK element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_continue(continue_)
Called when a CONTINUE element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_for(for_)
Called when a FOR loop starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_for_iteration(iteration)
Called when a FOR loop iteration starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_if(if_)
Called when an IF/ELSE structure starts.

586 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_if_branch(branch)
Called when an IF/ELSE branch starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_keyword(keyword)
Called when a keyword starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_message(msg)
Called when a message starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_return(return_)
Called when a RETURN element starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_test(test)
Called when a test starts. Default implementation does nothing.

Can return explicit False to stop visiting.

start_try(try_)
Called when a TRY/EXCEPT structure starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_try_branch(branch)
Called when TRY, EXCEPT, ELSE or FINALLY branches start.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_while(while_)
Called when a WHILE loop starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

start_while_iteration(iteration)
Called when a WHILE loop iteration starts.

By default, calls start_body_item() which, by default, does nothing.

Can return explicit False to stop visiting.

visit_break(break_)
Visits BREAK elements.

3.1. robot package 587

Robot Framework Documentation, Release 6.0.2

visit_continue(continue_)
Visits CONTINUE elements.

visit_for(for_)
Implements traversing through FOR loops.

Can be overridden to allow modifying the passed in for_ without calling start_for() or
end_for() nor visiting body.

visit_for_iteration(iteration)
Implements traversing through single FOR loop iteration.

This is only used with the result side model because on the running side there are no iterations.

Can be overridden to allow modifying the passed in iteration without calling
start_for_iteration() or end_for_iteration() nor visiting body.

visit_if(if_)
Implements traversing through IF/ELSE structures.

Notice that if_ does not have any data directly. Actual IF/ELSE branches are in its body and visited
using visit_if_branch().

Can be overridden to allow modifying the passed in if_ without calling start_if() or end_if()
nor visiting branches.

visit_if_branch(branch)
Implements traversing through single IF/ELSE branch.

Can be overridden to allow modifying the passed in branch without calling start_if_branch() or
end_if_branch() nor visiting body.

visit_keyword(kw)
Implements traversing through keywords.

Can be overridden to allow modifying the passed in kw without calling start_keyword() or
end_keyword() nor visiting the body of the keyword

visit_message(msg)
Implements visiting messages.

Can be overridden to allow modifying the passed in msg without calling start_message() or
end_message().

visit_return(return_)
Visits a RETURN elements.

visit_suite(suite)
Implements traversing through suites.

Can be overridden to allow modifying the passed in suite without calling start_suite() or
end_suite() nor visiting child suites, tests or setup and teardown at all.

visit_try(try_)
Implements traversing through TRY/EXCEPT structures.

This method is used with the TRY/EXCEPT root element. Actual TRY, EXCEPT, ELSE and FINALLY
branches are visited separately using visit_try_branch().

visit_try_branch(branch)
Visits individual TRY, EXCEPT, ELSE and FINALLY branches.

visit_while(while_)
Implements traversing through WHILE loops.

588 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

Can be overridden to allow modifying the passed in while_ without calling start_while() or
end_while() nor visiting body.

visit_while_iteration(iteration)
Implements traversing through single WHILE loop iteration.

This is only used with the result side model because on the running side there are no iterations.

Can be overridden to allow modifying the passed in iteration without calling
start_while_iteration() or end_while_iteration() nor visiting body.

robot.running.testlibraries module

robot.running.testlibraries.TestLibrary(name, args=None, variables=None,
create_handlers=True, log-
ger=<robot.output.logger.Logger object>)

robot.running.usererrorhandler module

class robot.running.usererrorhandler.UserErrorHandler(error, name, libname=None,
source=None, lineno=None)

Bases: object

Created if creating handlers fail – running raises DataError.

The idea is not to raise DataError at processing time and prevent all tests in affected test case file from executing.
Instead UserErrorHandler is created and if it is ever run DataError is raised then.

Parameters

• error (robot.errors.DataError) – Occurred error.

• name (str) – Name of the affected keyword.

• libname (str) – Name of the affected library or resource.

• source (str) – Path to the source file.

• lineno (int) – Line number of the failing keyword.

supports_embedded_arguments = False

longname

doc

shortdoc

create_runner(name, languages=None)

run(kw, context, run=True)

dry_run(kw, context, run=True)

robot.running.userkeyword module

class robot.running.userkeyword.UserLibrary(resource, resource_file=True)
Bases: object

handlers_for(name)

3.1. robot package 589

Robot Framework Documentation, Release 6.0.2

class robot.running.userkeyword.UserKeywordHandler(keyword, libname)
Bases: object

supports_embedded_args = False

longname

shortdoc

private

create_runner(name, languages=None)

class robot.running.userkeyword.EmbeddedArgumentsHandler(keyword, libname, em-
bedded)

Bases: robot.running.userkeyword.UserKeywordHandler

supports_embedded_args = True

matches(name)

create_runner(name, languages=None)

longname

private

shortdoc

robot.running.userkeywordrunner module

class robot.running.userkeywordrunner.UserKeywordRunner(handler, name=None)
Bases: object

longname

libname

tags

source

arguments

Return type robot.running.arguments.ArgumentSpec

run(kw, context, run=True)

dry_run(kw, context)

class robot.running.userkeywordrunner.EmbeddedArgumentsRunner(handler, name)
Bases: robot.running.userkeywordrunner.UserKeywordRunner

arguments

Return type robot.running.arguments.ArgumentSpec

dry_run(kw, context)

libname

longname

run(kw, context, run=True)

source

tags

590 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

robot.utils package

Various generic utility functions and classes.

Utilities are mainly for internal usage, but external libraries and tools may find some of them useful. Utilities are
generally stable, but absolute backwards compatibility between major versions is not guaranteed.

All utilities are exposed via the robot.utils package, and should be used either like:

from robot import utils

assert utils.Matcher('H?llo').match('Hillo')

or:

from robot.utils import Matcher

assert Matcher('H?llo').match('Hillo')

robot.utils.read_rest_data(rstfile)

robot.utils.py2to3(cls)
Deprecated since RF 5.0. Use Python 3 features directly instead.

robot.utils.py3to2(cls)
Deprecated since RF 5.0. Never done anything when used on Python 3.

Submodules

robot.utils.application module

class robot.utils.application.Application(usage, name=None, version=None,
arg_limits=None, env_options=None, log-
ger=None, **auto_options)

Bases: object

main(arguments, **options)

validate(options, arguments)

execute_cli(cli_arguments, exit=True)

console(msg)

parse_arguments(cli_args)
Public interface for parsing command line arguments.

Parameters cli_args – Command line arguments as a list

Returns options (dict), arguments (list)

Raises Information when –help or –version used

Raises DataError when parsing fails

execute(*arguments, **options)

class robot.utils.application.DefaultLogger
Bases: object

info(message)

3.1. robot package 591

Robot Framework Documentation, Release 6.0.2

error(message)

close()

robot.utils.argumentparser module

robot.utils.argumentparser.cmdline2list(args, escaping=False)

class robot.utils.argumentparser.ArgumentParser(usage, name=None, ver-
sion=None, arg_limits=None, val-
idator=None, env_options=None,
auto_help=True, auto_version=True,
auto_pythonpath=’DEPRECATED’,
auto_argumentfile=True)

Bases: object

Available options and tool name are read from the usage.

Tool name is got from the first row of the usage. It is either the whole row or anything before first ‘ – ‘.

parse_args(args)
Parse given arguments and return options and positional arguments.

Arguments must be given as a list and are typically sys.argv[1:].

Options are returned as a dictionary where long options are keys. Value is a string for those options that
can be given only one time (if they are given multiple times the last value is used) or None if the option is
not used at all. Value for options that can be given multiple times (denoted with ‘*’ in the usage) is a list
which contains all the given values and is empty if options are not used. Options not taken arguments have
value False when they are not set and True otherwise.

Positional arguments are returned as a list in the order they are given.

If ‘check_args’ is True, this method will automatically check that correct number of arguments, as parsed
from the usage line, are given. If the last argument in the usage line ends with the character ‘s’, the
maximum number of arguments is infinite.

Possible errors in processing arguments are reported using DataError.

Some options have a special meaning and are handled automatically if defined in the usage and given from
the command line:

–argumentfile can be used to automatically read arguments from a specified file. When –argumentfile is
used, the parser always allows using it multiple times. Adding ‘*’ to denote that is thus recommend. A
special value ‘stdin’ can be used to read arguments from stdin instead of a file.

–pythonpath can be used to add extra path(s) to sys.path. This functionality was deprecated in Robot
Framework 5.0.

–help and –version automatically generate help and version messages. Version is generated based on the
tool name and version – see __init__ for information how to set them. Help contains the whole usage
given to __init__. Possible <VERSION> text in the usage is replaced with the given version. Both help
and version are wrapped to Information exception.

class robot.utils.argumentparser.ArgLimitValidator(arg_limits)
Bases: object

class robot.utils.argumentparser.ArgFileParser(options)
Bases: object

process(args)

592 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

robot.utils.asserts module

Convenience functions for testing both in unit and higher levels.

Benefits:

• Integrates 100% with unittest (see example below)

• Can be easily used without unittest (using unittest.TestCase when you only need convenient asserts is not
so nice)

• Saved typing and shorter lines because no need to have ‘self.’ before asserts. These are static functions
after all so that is OK.

• All ‘equals’ methods (by default) report given values even if optional message given. This behavior can
be controlled with the optional values argument.

Drawbacks:

• unittest is not able to filter as much non-interesting traceback away as with its own methods because
AssertionErrors occur outside.

Most of the functions are copied more or less directly from unittest.TestCase which comes with the following license.
Further information about unittest in general can be found from http://pyunit.sourceforge.net/. This module can be
used freely in same terms as unittest.

unittest license:

Copyright (c) 1999-2003 Steve Purcell
This module is free software, and you may redistribute it and/or modify
it under the same terms as Python itself, so long as this copyright message
and disclaimer are retained in their original form.

IN NO EVENT SHALL THE AUTHOR BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF
THIS CODE, EVEN IF THE AUTHOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

THE AUTHOR SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE CODE PROVIDED HEREUNDER IS ON AN "AS IS" BASIS,
AND THERE IS NO OBLIGATION WHATSOEVER TO PROVIDE MAINTENANCE,
SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Examples:

import unittest
from robot.utils.asserts import assert_equal

class MyTests(unittest.TestCase):

def test_old_style(self):
self.assertEqual(1, 2, 'my msg')

def test_new_style(self):
assert_equal(1, 2, 'my msg')

Example output:

3.1. robot package 593

http://pyunit.sourceforge.net/

Robot Framework Documentation, Release 6.0.2

FF
==
FAIL: test_old_style (example.MyTests)
--
Traceback (most recent call last):

File "example.py", line 7, in test_old_style
self.assertEqual(1, 2, 'my msg')

AssertionError: my msg

==
FAIL: test_new_style (example.MyTests)
--
Traceback (most recent call last):

File "example.py", line 10, in test_new_style
assert_equal(1, 2, 'my msg')

File "/path/to/robot/utils/asserts.py", line 181, in assert_equal
_report_inequality_failure(first, second, msg, values, '!=')

File "/path/to/robot/utils/asserts.py", line 229, in _report_inequality_failure
raise AssertionError(msg)

AssertionError: my msg: 1 != 2

--
Ran 2 tests in 0.000s

FAILED (failures=2)

robot.utils.asserts.fail(msg=None)
Fail test immediately with the given message.

robot.utils.asserts.assert_false(expr, msg=None)
Fail the test if the expression is True.

robot.utils.asserts.assert_true(expr, msg=None)
Fail the test unless the expression is True.

robot.utils.asserts.assert_not_none(obj, msg=None, values=True)
Fail the test if given object is None.

robot.utils.asserts.assert_none(obj, msg=None, values=True)
Fail the test if given object is not None.

robot.utils.asserts.assert_raises(exc_class, callable_obj, *args, **kwargs)
Fail unless an exception of class exc_class is thrown by callable_obj.

callable_obj is invoked with arguments args and keyword arguments kwargs. If a different type of exception
is thrown, it will not be caught, and the test case will be deemed to have suffered an error, exactly as for an
unexpected exception.

If a correct exception is raised, the exception instance is returned by this method.

robot.utils.asserts.assert_raises_with_msg(exc_class, expected_msg, callable_obj, *args,
**kwargs)

Similar to fail_unless_raises but also checks the exception message.

robot.utils.asserts.assert_equal(first, second, msg=None, values=True, formatter=<function
safe_str>)

Fail if given objects are unequal as determined by the ‘==’ operator.

robot.utils.asserts.assert_not_equal(first, second, msg=None, values=True, format-
ter=<function safe_str>)

Fail if given objects are equal as determined by the ‘==’ operator.

594 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

robot.utils.asserts.assert_almost_equal(first, second, places=7, msg=None, values=True)
Fail if the two objects are unequal after rounded to given places.

inequality is determined by object’s difference rounded to the given number of decimal places (default 7) and
comparing to zero. Note that decimal places (from zero) are usually not the same as significant digits (measured
from the most significant digit).

robot.utils.asserts.assert_not_almost_equal(first, second, places=7, msg=None, val-
ues=True)

Fail if the two objects are unequal after rounded to given places.

Equality is determined by object’s difference rounded to to the given number of decimal places (default 7) and
comparing to zero. Note that decimal places (from zero) are usually not the same as significant digits (measured
from the most significant digit).

robot.utils.charwidth module

A module to handle different character widths on the console.

Some East Asian characters have width of two on console, and combining characters themselves take no extra space.

See issue 604 [1] for more details about East Asian characters. The issue also contains generate_wild_chars.py script
that was originally used to create _EAST_ASIAN_WILD_CHARS mapping. An updated version of the script is attached
to issue 1096. Big thanks for xieyanbo for the script and the original patch.

Python’s unicodedata module was not used here because importing it took several seconds on Jython. That could
possibly be changed now.

[1] https://github.com/robotframework/robotframework/issues/604 [2] https://github.com/robotframework/
robotframework/issues/1096

robot.utils.charwidth.get_char_width(char)

robot.utils.compress module

robot.utils.compress.compress_text(text)

robot.utils.connectioncache module

class robot.utils.connectioncache.ConnectionCache(no_current_msg=’No open connec-
tion.’)

Bases: object

Cache for libraries to use with concurrent connections, processes, etc.

The cache stores the registered connections (or other objects) and allows switching between them using gen-
erated indices or user given aliases. This is useful with any library where there’s need for multiple concurrent
connections, processes, etc.

This class is used also outside the core framework by SeleniumLibrary, SSHLibrary, etc. Backwards compati-
bility is thus important when doing changes.

current = None
Current active connection.

current_index

3.1. robot package 595

https://github.com/robotframework/robotframework/issues/604
https://github.com/robotframework/robotframework/issues/1096
https://github.com/robotframework/robotframework/issues/1096

Robot Framework Documentation, Release 6.0.2

register(connection, alias=None)
Registers given connection with optional alias and returns its index.

Given connection is set to be the current connection.

If alias is given, it must be a string. Aliases are case and space insensitive.

The index of the first connection after initialization, and after close_all() or empty_cache(), is
1, second is 2, etc.

switch(alias_or_index)
Switches to the connection specified by the given alias or index.

Updates current and also returns its new value.

Alias is whatever was given to register() method and indices are returned by it. Index can be given
either as an integer or as a string that can be converted to an integer. Raises an error if no connection with
the given index or alias found.

get_connection(alias_or_index=None)
Get the connection specified by the given alias or index..

If alias_or_index is None, returns the current connection if it is active, or raises an error if it is not.

Alias is whatever was given to register() method and indices are returned by it. Index can be given
either as an integer or as a string that can be converted to an integer. Raises an error if no connection with
the given index or alias found.

close_all(closer_method=’close’)
Closes connections using given closer method and empties cache.

If simply calling the closer method is not adequate for closing connections, clients should close connections
themselves and use empty_cache() afterwards.

empty_cache()
Empties the connection cache.

Indexes of the new connections starts from 1 after this.

resolve_alias_or_index(alias_or_index)

class robot.utils.connectioncache.NoConnection(message)
Bases: object

raise_error()

robot.utils.dotdict module

class robot.utils.dotdict.DotDict(*args, **kwds)
Bases: collections.OrderedDict

clear()→ None. Remove all items from od.

copy()→ a shallow copy of od

fromkeys()
Create a new ordered dictionary with keys from iterable and values set to value.

get()
Return the value for key if key is in the dictionary, else default.

items()→ a set-like object providing a view on D’s items

keys()→ a set-like object providing a view on D’s keys

596 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

move_to_end()
Move an existing element to the end (or beginning if last is false).

Raise KeyError if the element does not exist.

pop(k[, d])→ v, remove specified key and return the corresponding
value. If key is not found, d is returned if given, otherwise KeyError is raised.

popitem()
Remove and return a (key, value) pair from the dictionary.

Pairs are returned in LIFO order if last is true or FIFO order if false.

setdefault()
Insert key with a value of default if key is not in the dictionary.

Return the value for key if key is in the dictionary, else default.

update([E], **F)→ None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a
.keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

values()→ an object providing a view on D’s values

robot.utils.encoding module

robot.utils.encoding.console_decode(string, encoding=’UTF-8’)
Decodes bytes from console encoding to Unicode.

By default uses the system console encoding, but that can be configured using the encoding argument. In
addition to the normal encodings, it is possible to use case-insensitive values CONSOLE and SYSTEM to use
the system console and system encoding, respectively.

If string is already Unicode, it is returned as-is.

robot.utils.encoding.console_encode(string, encoding=None, errors=’replace’,
stream=<_io.TextIOWrapper name=’<stdout>’
mode=’w’ encoding=’UTF-8’>, force=False)

Encodes the given string so that it can be used in the console.

If encoding is not given, determines it based on the given stream and system configuration. In addition to the
normal encodings, it is possible to use case-insensitive values CONSOLE and SYSTEM to use the system console
and system encoding, respectively.

By default decodes bytes back to Unicode because Python 3 APIs in general work with strings. Use force=True
if that is not desired.

robot.utils.encoding.system_decode(string)

robot.utils.encoding.system_encode(string)

robot.utils.encodingsniffer module

robot.utils.encodingsniffer.get_system_encoding()

robot.utils.encodingsniffer.get_console_encoding()

3.1. robot package 597

Robot Framework Documentation, Release 6.0.2

robot.utils.error module

robot.utils.error.get_error_message()
Returns error message of the last occurred exception.

This method handles also exceptions containing unicode messages. Thus it MUST be used to get messages from
all exceptions originating outside the framework.

robot.utils.error.get_error_details(full_traceback=True, exclude_robot_traces=True)
Returns error message and details of the last occurred exception.

class robot.utils.error.ErrorDetails(error=None, full_traceback=True, ex-
clude_robot_traces=True)

Bases: object

Object wrapping the last occurred exception.

It has attributes message, traceback, and error, where message contains the message with possible generic
exception name removed, traceback contains the traceback and error contains the original error instance.

message

traceback

robot.utils.escaping module

robot.utils.escaping.escape(item)

robot.utils.escaping.glob_escape(item)

class robot.utils.escaping.Unescaper
Bases: object

unescape(item)

robot.utils.escaping.split_from_equals(string)

robot.utils.etreewrapper module

class robot.utils.etreewrapper.ETSource(source)
Bases: object

robot.utils.filereader module

class robot.utils.filereader.FileReader(source, accept_text=False)
Bases: object

Utility to ease reading different kind of files.

Supports different sources where to read the data:

• The source can be a path to a file, either as a string or as a pathlib.Path instance in Python 3. The file
itself must be UTF-8 encoded.

• Alternatively the source can be an already opened file object, including a StringIO or BytesIO object. The
file can contain either Unicode text or UTF-8 encoded bytes.

• The third options is giving the source as Unicode text directly. This requires setting
accept_text=True when creating the reader.

598 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

In all cases bytes are automatically decoded to Unicode and possible BOM removed.

read()

readlines()

robot.utils.frange module

robot.utils.frange.frange(*args)
Like range() but accepts float arguments.

robot.utils.htmlformatters module

class robot.utils.htmlformatters.LinkFormatter
Bases: object

format_url(text)

format_link(text)

class robot.utils.htmlformatters.LineFormatter
Bases: object

handles(line)

newline = '\n'

format(line)

class robot.utils.htmlformatters.HtmlFormatter
Bases: object

format(text)

class robot.utils.htmlformatters.RulerFormatter
Bases: robot.utils.htmlformatters._SingleLineFormatter

match()
Matches zero or more characters at the beginning of the string.

format_line(line)

add(line)

end()

format(lines)

handles(line)

class robot.utils.htmlformatters.HeaderFormatter
Bases: robot.utils.htmlformatters._SingleLineFormatter

match()
Matches zero or more characters at the beginning of the string.

format_line(line)

add(line)

end()

format(lines)

3.1. robot package 599

Robot Framework Documentation, Release 6.0.2

handles(line)

class robot.utils.htmlformatters.ParagraphFormatter(other_formatters)
Bases: robot.utils.htmlformatters._Formatter

format(lines)

add(line)

end()

handles(line)

class robot.utils.htmlformatters.TableFormatter
Bases: robot.utils.htmlformatters._Formatter

format(lines)

add(line)

end()

handles(line)

class robot.utils.htmlformatters.PreformattedFormatter
Bases: robot.utils.htmlformatters._Formatter

format(lines)

add(line)

end()

handles(line)

class robot.utils.htmlformatters.ListFormatter
Bases: robot.utils.htmlformatters._Formatter

format(lines)

add(line)

end()

handles(line)

robot.utils.importer module

class robot.utils.importer.Importer(type=None, logger=None)
Bases: object

Utility that can import modules and classes based on names and paths.

Imported classes can optionally be instantiated automatically.

Parameters

• type – Type of the thing being imported. Used in error and log messages.

• logger – Logger to be notified about successful imports and other events. Currently only
needs the info method, but other level specific methods may be needed in the future. If
not given, logging is disabled.

import_class_or_module(name_or_path, instantiate_with_args=None, return_source=False)
Imports Python class or module based on the given name or path.

600 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

Parameters

• name_or_path – Name or path of the module or class to import.

• instantiate_with_args – When arguments are given, imported classes are auto-
matically initialized using them.

• return_source – When true, returns a tuple containing the imported module or class
and a path to it. By default, returns only the imported module or class.

The class or module to import can be specified either as a name, in which case it must be in
the module search path, or as a path to the file or directory implementing the module. See
import_class_or_module_by_path() for more information about importing classes and mod-
ules by path.

Classes can be imported from the module search path using name like modulename.ClassName. If
the class name and module name are same, using just CommonName is enough. When importing a class
by a path, the class name and the module name must match.

Optional arguments to use when creating an instance are given as a list. Starting from Robot Framework
4.0, both positional and named arguments are supported (e.g. ['positional', 'name=value'])
and arguments are converted automatically based on type hints and default values.

If arguments needed when creating an instance are initially embedded into the name or path like
Example:arg1:arg2, separate split_args_from_name_or_path() function can be used to
split them before calling this method.

Use import_module() if only a module needs to be imported.

import_module(name_or_path)
Imports Python module based on the given name or path.

Parameters name_or_path – Name or path of the module to import.

The module to import can be specified either as a name, in which case it must be in the
module search path, or as a path to the file or directory implementing the module. See
import_class_or_module_by_path() for more information about importing modules by path.

Use import_class_or_module() if it is desired to get a class from the imported module automati-
cally.

New in Robot Framework 6.0.

import_class_or_module_by_path(path, instantiate_with_args=None)
Import a Python module or class using a file system path.

Parameters

• path – Path to the module or class to import.

• instantiate_with_args – When arguments are given, imported classes are auto-
matically initialized using them.

When importing a Python file, the path must end with .py and the actual file must also exist.

Use import_class_or_module() to support importing also using name, not only path. See the
documentation of that function for more information about creating instances automatically.

class robot.utils.importer.ByPathImporter(logger)
Bases: robot.utils.importer._Importer

handles(path)

import_(path, get_class=True)

3.1. robot package 601

Robot Framework Documentation, Release 6.0.2

class robot.utils.importer.NonDottedImporter(logger)
Bases: robot.utils.importer._Importer

handles(name)

import_(name, get_class=True)

class robot.utils.importer.DottedImporter(logger)
Bases: robot.utils.importer._Importer

handles(name)

import_(name, get_class=True)

class robot.utils.importer.NoLogger
Bases: object

error(*args, **kws)

warn(*args, **kws)

info(*args, **kws)

debug(*args, **kws)

trace(*args, **kws)

robot.utils.markuputils module

robot.utils.markuputils.html_escape(text, linkify=True)

robot.utils.markuputils.xml_escape(text)

robot.utils.markuputils.html_format(text)

robot.utils.markuputils.attribute_escape(attr)

robot.utils.markupwriters module

class robot.utils.markupwriters.HtmlWriter(output, write_empty=True, usage=None)
Bases: robot.utils.markupwriters._MarkupWriter

Parameters

• output – Either an opened, file like object, or a path to the desired output file. In the latter
case, the file is created and clients should use close() method to close it.

• write_empty – Whether to write empty elements and attributes.

close()
Closes the underlying output file.

content(content=None, escape=True, newline=False)

element(name, content=None, attrs=None, escape=True, newline=True)

end(name, newline=True)

start(name, attrs=None, newline=True)

class robot.utils.markupwriters.XmlWriter(output, write_empty=True, usage=None)
Bases: robot.utils.markupwriters._MarkupWriter

Parameters

602 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

• output – Either an opened, file like object, or a path to the desired output file. In the latter
case, the file is created and clients should use close() method to close it.

• write_empty – Whether to write empty elements and attributes.

element(name, content=None, attrs=None, escape=True, newline=True)

close()
Closes the underlying output file.

content(content=None, escape=True, newline=False)

end(name, newline=True)

start(name, attrs=None, newline=True)

class robot.utils.markupwriters.NullMarkupWriter(**kwargs)
Bases: object

Null implementation of the _MarkupWriter interface.

start(**kwargs)

content(**kwargs)

element(**kwargs)

end(**kwargs)

close(**kwargs)

robot.utils.match module

robot.utils.match.eq(str1, str2, ignore=(), caseless=True, spaceless=True)

class robot.utils.match.Matcher(pattern, ignore=(), caseless=True, spaceless=True, reg-
exp=False)

Bases: object

match(string)

match_any(strings)

class robot.utils.match.MultiMatcher(patterns=None, ignore=(), caseless=True, space-
less=True, match_if_no_patterns=False, reg-
exp=False)

Bases: object

match(string)

match_any(strings)

robot.utils.misc module

robot.utils.misc.printable_name(string, code_style=False)
Generates and returns printable name from the given string.

Examples: ‘simple’ -> ‘Simple’ ‘name with spaces’ -> ‘Name With Spaces’ ‘more spaces’ -> ‘More Spaces’
‘Cases AND spaces’ -> ‘Cases AND Spaces’ ‘’ -> ‘’

If ‘code_style’ is True:

3.1. robot package 603

Robot Framework Documentation, Release 6.0.2

‘mixedCAPSCamel’ -> ‘Mixed CAPS Camel’ ‘camelCaseName’ -> ‘Camel Case Name’ ‘under_score_name’
-> ‘Under Score Name’ ‘under_and space’ -> ‘Under And Space’ ‘miXed_CAPS_nAMe’ -> ‘MiXed CAPS
NAMe’ ‘’ -> ‘’

robot.utils.misc.plural_or_not(item)

robot.utils.misc.seq2str(sequence, quote="’", sep=’, ’, lastsep=’ and ’)
Returns sequence in format ‘item 1’, ‘item 2’ and ‘item 3’.

robot.utils.misc.seq2str2(sequence)
Returns sequence in format [item 1 | item 2 | . . .].

robot.utils.misc.test_or_task(text: str, rpa: bool)
Replace ‘test’ with ‘task’ in the given text depending on rpa.

If given text is test, test or task is returned directly. Otherwise, pattern {test} is searched from the text and
occurrences replaced with test or task.

In both cases matching the word test is case-insensitive and the returned test or task has exactly same case as
the original.

robot.utils.misc.isatty(stream)

robot.utils.misc.parse_re_flags(flags=None)

class robot.utils.misc.classproperty(fget, fset=None, fdel=None, doc=None)
Bases: property

Property that works with classes in addition to instances.

Only supports getters. Setters and deleters cannot work with classes due to how the descriptor protocol works,
and they are thus explicitly disabled. Metaclasses must be used if they are needed.

setter(fset)
Descriptor to change the setter on a property.

deleter(fset)
Descriptor to change the deleter on a property.

fdel

fget

fset

getter()
Descriptor to change the getter on a property.

robot.utils.normalizing module

robot.utils.normalizing.normalize(string, ignore=(), caseless=True, spaceless=True)
Normalizes given string according to given spec.

By default string is turned to lower case and all whitespace is removed. Additional characters can be removed
by giving them in ignore list.

robot.utils.normalizing.normalize_whitespace(string)

class robot.utils.normalizing.NormalizedDict(initial=None, ignore=(), caseless=True,
spaceless=True)

Bases: collections.abc.MutableMapping

Custom dictionary implementation automatically normalizing keys.

604 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

Initialized with possible initial value and normalizing spec.

Initial values can be either a dictionary or an iterable of name/value pairs. In the latter case items are added in
the given order.

Normalizing spec has exact same semantics as with the normalize() function.

copy()

clear()→ None. Remove all items from D.

get(k[, d])→ D[k] if k in D, else d. d defaults to None.

items()→ a set-like object providing a view on D’s items

keys()→ a set-like object providing a view on D’s keys

pop(k[, d])→ v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised.

popitem()→ (k, v), remove and return some (key, value) pair
as a 2-tuple; but raise KeyError if D is empty.

setdefault(k[, d])→ D.get(k,d), also set D[k]=d if k not in D

update([E], **F)→ None. Update D from mapping/iterable E and F.
If E present and has a .keys() method, does: for k in E: D[k] = E[k] If E present and lacks .keys() method,
does: for (k, v) in E: D[k] = v In either case, this is followed by: for k, v in F.items(): D[k] = v

values()→ an object providing a view on D’s values

robot.utils.platform module

robot.utils.platform.isatty(stream)

robot.utils.recommendations module

class robot.utils.recommendations.RecommendationFinder(normalizer=None)
Bases: object

find_and_format(name, candidates, message, max_matches=10,
check_missing_argument_separator=False)

find(name, candidates, max_matches=10)
Return a list of close matches to name from candidates.

format(message, recommendations)
Add recommendations to the given message.

The recommendation string looks like:

<message> Did you mean:
<recommendations[0]>
<recommendations[1]>
<recommendations[2]>

3.1. robot package 605

Robot Framework Documentation, Release 6.0.2

robot.utils.restreader module

robot.utils.robotenv module

robot.utils.robotinspect module

robot.utils.robotio module

robot.utils.robotpath module

robot.utils.robottime module

robot.utils.robottypes module

robot.utils.setter module

robot.utils.sortable module

robot.utils.text module

robot.utils.unic module

robot.variables package

Implements storing and resolving variables.

This package is mainly for internal usage, but utilities for finding variables can be used externally as well.

Submodules

robot.variables.assigner module

class robot.variables.assigner.VariableAssignment(assignment)
Bases: object

validate_assignment()

assigner(context)

class robot.variables.assigner.AssignmentValidator
Bases: object

validate(variable)

class robot.variables.assigner.VariableAssigner(assignment, context)
Bases: object

assign(return_value)

robot.variables.assigner.ReturnValueResolver(assignment)

class robot.variables.assigner.NoReturnValueResolver
Bases: object

606 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

resolve(return_value)

class robot.variables.assigner.OneReturnValueResolver(variable)
Bases: object

resolve(return_value)

class robot.variables.assigner.ScalarsOnlyReturnValueResolver(variables)
Bases: robot.variables.assigner._MultiReturnValueResolver

resolve(return_value)

class robot.variables.assigner.ScalarsAndListReturnValueResolver(variables)
Bases: robot.variables.assigner._MultiReturnValueResolver

resolve(return_value)

robot.variables.evaluation module

robot.variables.evaluation.evaluate_expression(expression, variable_store, mod-
ules=None, namespace=None)

class robot.variables.evaluation.EvaluationNamespace(variable_store, namespace)
Bases: collections.abc.MutableMapping

clear()→ None. Remove all items from D.

get(k[, d])→ D[k] if k in D, else d. d defaults to None.

items()→ a set-like object providing a view on D’s items

keys()→ a set-like object providing a view on D’s keys

pop(k[, d])→ v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised.

popitem()→ (k, v), remove and return some (key, value) pair
as a 2-tuple; but raise KeyError if D is empty.

setdefault(k[, d])→ D.get(k,d), also set D[k]=d if k not in D

update([E], **F)→ None. Update D from mapping/iterable E and F.
If E present and has a .keys() method, does: for k in E: D[k] = E[k] If E present and lacks .keys() method,
does: for (k, v) in E: D[k] = v In either case, this is followed by: for k, v in F.items(): D[k] = v

values()→ an object providing a view on D’s values

robot.variables.filesetter module

class robot.variables.filesetter.VariableFileSetter(store)
Bases: object

set(path_or_variables, args=None, overwrite=False)

class robot.variables.filesetter.YamlImporter
Bases: object

import_variables(path, args=None)

class robot.variables.filesetter.PythonImporter
Bases: object

import_variables(path, args=None)

3.1. robot package 607

Robot Framework Documentation, Release 6.0.2

robot.variables.finders module

class robot.variables.finders.VariableFinder(variable_store)
Bases: object

find(variable)

class robot.variables.finders.StoredFinder(store)
Bases: object

identifiers = '$@&'

find(name)

class robot.variables.finders.NumberFinder
Bases: object

identifiers = '$'

find(name)

class robot.variables.finders.EmptyFinder
Bases: object

identifiers = '$@&'

empty = <robot.utils.normalizing.NormalizedDict object>

find(name)

class robot.variables.finders.InlinePythonFinder(variables)
Bases: object

identifiers = '$@&'

find(name)

class robot.variables.finders.ExtendedFinder(finder)
Bases: object

identifiers = '$@&'

find(name)

class robot.variables.finders.EnvironmentFinder
Bases: object

identifiers = '%'

find(name)

robot.variables.notfound module

robot.variables.notfound.variable_not_found(name, candidates, message=None,
deco_braces=True)

Raise DataError for missing variable name.

Return recommendations for similar variable names if any are found.

608 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

robot.variables.replacer module

class robot.variables.replacer.VariableReplacer(variable_store)
Bases: object

replace_list(items, replace_until=None, ignore_errors=False)
Replaces variables from a list of items.

If an item in a list is a @{list} variable its value is returned. Possible variables from other items are
replaced using ‘replace_scalar’. Result is always a list.

‘replace_until’ can be used to limit replacing arguments to certain index from the beginning. Used with
Run Keyword variants that only want to resolve some of the arguments in the beginning and pass others to
called keywords unmodified.

replace_scalar(item, ignore_errors=False)
Replaces variables from a scalar item.

If the item is not a string it is returned as is. If it is a variable, its value is returned. Otherwise possible
variables are replaced with ‘replace_string’. Result may be any object.

replace_string(item, custom_unescaper=None, ignore_errors=False)
Replaces variables from a string. Result is always a string.

Input can also be an already found VariableMatch.

robot.variables.resolvable module

class robot.variables.resolvable.Resolvable
Bases: object

resolve(variables)

report_error(error)

class robot.variables.resolvable.GlobalVariableValue(value)
Bases: robot.variables.resolvable.Resolvable

resolve(variables)

report_error(error)

robot.variables.scopes module

class robot.variables.scopes.VariableScopes(settings)
Bases: object

current

start_suite()

end_suite()

start_test()

end_test()

start_keyword()

end_keyword()

replace_list(items, replace_until=None, ignore_errors=False)

3.1. robot package 609

Robot Framework Documentation, Release 6.0.2

replace_scalar(items, ignore_errors=False)

replace_string(string, custom_unescaper=None, ignore_errors=False)

set_from_file(path, args, overwrite=False)

set_from_variable_table(variables, overwrite=False)

resolve_delayed()

set_global(name, value)

set_suite(name, value, top=False, children=False)

set_test(name, value)

set_keyword(name, value)

set_local_variable(name, value)

as_dict(decoration=True)

class robot.variables.scopes.GlobalVariables(settings)
Bases: robot.variables.variables.Variables

as_dict(decoration=True)

clear()

copy()

replace_list(items, replace_until=None, ignore_errors=False)

replace_scalar(item, ignore_errors=False)

replace_string(item, custom_unescaper=None, ignore_errors=False)

resolve_delayed()

set_from_file(path_or_variables, args=None, overwrite=False)

set_from_variable_table(variables, overwrite=False)

update(variables)

class robot.variables.scopes.SetVariables
Bases: object

start_suite()

end_suite()

start_test()

end_test()

start_keyword()

end_keyword()

set_global(name, value)

set_suite(name, value)

set_test(name, value)

set_keyword(name, value)

update(variables)

610 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

robot.variables.search module

robot.variables.search.search_variable(string, identifiers=’$@&%*’, ignore_errors=False)

robot.variables.search.contains_variable(string, identifiers=’$@&’)

robot.variables.search.is_variable(string, identifiers=’$@&’)

robot.variables.search.is_scalar_variable(string)

robot.variables.search.is_list_variable(string)

robot.variables.search.is_dict_variable(string)

robot.variables.search.is_assign(string, identifiers=’$@&’, allow_assign_mark=False)

robot.variables.search.is_scalar_assign(string, allow_assign_mark=False)

robot.variables.search.is_list_assign(string, allow_assign_mark=False)

robot.variables.search.is_dict_assign(string, allow_assign_mark=False)

class robot.variables.search.VariableMatch(string, identifier=None, base=None, items=(),
start=-1, end=-1)

Bases: object

resolve_base(variables, ignore_errors=False)

name

before

match

after

is_variable()

is_scalar_variable()

is_list_variable()

is_dict_variable()

is_assign(allow_assign_mark=False)

is_scalar_assign(allow_assign_mark=False)

is_list_assign(allow_assign_mark=False)

is_dict_assign(allow_assign_mark=False)

robot.variables.search.unescape_variable_syntax(item)

class robot.variables.search.VariableIterator(string, identifiers=’$@&%’, ig-
nore_errors=False)

Bases: object

robot.variables.store module

class robot.variables.store.VariableStore(variables)
Bases: object

resolve_delayed(item=None)

get(name, default=<object object>, decorated=True)

3.1. robot package 611

Robot Framework Documentation, Release 6.0.2

update(store)

clear()

add(name, value, overwrite=True, decorated=True)

as_dict(decoration=True)

robot.variables.tablesetter module

class robot.variables.tablesetter.VariableTableSetter(store)
Bases: object

set(variables, overwrite=False)

robot.variables.tablesetter.VariableTableValue(value, name, error_reporter=None)

class robot.variables.tablesetter.VariableTableValueBase(values, er-
ror_reporter=None)

Bases: robot.variables.resolvable.Resolvable

resolve(variables)

report_error(error)

class robot.variables.tablesetter.ScalarVariableTableValue(values, er-
ror_reporter=None)

Bases: robot.variables.tablesetter.VariableTableValueBase

report_error(error)

resolve(variables)

class robot.variables.tablesetter.ListVariableTableValue(values, er-
ror_reporter=None)

Bases: robot.variables.tablesetter.VariableTableValueBase

report_error(error)

resolve(variables)

class robot.variables.tablesetter.DictVariableTableValue(values, er-
ror_reporter=None)

Bases: robot.variables.tablesetter.VariableTableValueBase

report_error(error)

resolve(variables)

robot.variables.variables module

class robot.variables.variables.Variables
Bases: object

Represents a set of variables.

Contains methods for replacing variables from list, scalars, and strings. On top of ${scalar}, @{list} and
&{dict} variables, these methods handle also %{environment} variables.

resolve_delayed()

replace_list(items, replace_until=None, ignore_errors=False)

replace_scalar(item, ignore_errors=False)

612 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

replace_string(item, custom_unescaper=None, ignore_errors=False)

set_from_file(path_or_variables, args=None, overwrite=False)

set_from_variable_table(variables, overwrite=False)

clear()

copy()

update(variables)

as_dict(decoration=True)

3.1.2 Submodules

3.1.3 robot.errors module

Exceptions and return codes used internally.

External libraries should not used exceptions defined here.

exception robot.errors.RobotError(message=”, details=”)
Bases: Exception

Base class for Robot Framework errors.

Do not raise this method but use more specific errors instead.

message

args

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception robot.errors.FrameworkError(message=”, details=”)
Bases: robot.errors.RobotError

Can be used when the core framework goes to unexpected state.

It is good to explicitly raise a FrameworkError if some framework component is used incorrectly. This is pretty
much same as ‘Internal Error’ and should of course never happen.

args

message

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception robot.errors.DataError(message=”, details=”, syntax=False)
Bases: robot.errors.RobotError

Used when the provided test data is invalid.

DataErrors are not caught by keywords that run other keywords (e.g. Run Keyword And Expect Error).

args

message

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

3.1. robot package 613

Robot Framework Documentation, Release 6.0.2

exception robot.errors.VariableError(message=”, details=”)
Bases: robot.errors.DataError

Used when variable does not exist.

VariableErrors are caught by keywords that run other keywords (e.g. Run Keyword And Expect Error).

args

message

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception robot.errors.KeywordError(message=”, details=”)
Bases: robot.errors.DataError

Used when no keyword is found or there is more than one match.

KeywordErrors are caught by keywords that run other keywords (e.g. Run Keyword And Expect Error).

args

message

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception robot.errors.TimeoutError(message=”, test_timeout=True)
Bases: robot.errors.RobotError

Used when a test or keyword timeout occurs.

This exception is handled specially so that execution of the current test is always stopped immediately and it is
not caught by keywords executing other keywords (e.g. Run Keyword And Expect Error).

keyword_timeout

args

message

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception robot.errors.Information(message=”, details=”)
Bases: robot.errors.RobotError

Used by argument parser with –help or –version.

args

message

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception robot.errors.ExecutionStatus(message, test_timeout=False, key-
word_timeout=False, syntax=False, exit=False,
continue_on_failure=False, skip=False, re-
turn_value=None)

Bases: robot.errors.RobotError

Base class for exceptions communicating status in test execution.

timeout

dont_continue

614 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

continue_on_failure

can_continue(context, templated=False)

get_errors()

status

args

message

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception robot.errors.ExecutionFailed(message, test_timeout=False, key-
word_timeout=False, syntax=False, exit=False,
continue_on_failure=False, skip=False, re-
turn_value=None)

Bases: robot.errors.ExecutionStatus

Used for communicating failures in test execution.

args

can_continue(context, templated=False)

continue_on_failure

dont_continue

get_errors()

message

status

timeout

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception robot.errors.HandlerExecutionFailed(details)
Bases: robot.errors.ExecutionFailed

args

can_continue(context, templated=False)

continue_on_failure

dont_continue

get_errors()

message

status

timeout

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception robot.errors.ExecutionFailures(errors, message=None)
Bases: robot.errors.ExecutionFailed

get_errors()

3.1. robot package 615

Robot Framework Documentation, Release 6.0.2

args

can_continue(context, templated=False)

continue_on_failure

dont_continue

message

status

timeout

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception robot.errors.UserKeywordExecutionFailed(run_errors=None, tear-
down_errors=None)

Bases: robot.errors.ExecutionFailures

args

can_continue(context, templated=False)

continue_on_failure

dont_continue

get_errors()

message

status

timeout

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception robot.errors.ExecutionPassed(message=None, **kwargs)
Bases: robot.errors.ExecutionStatus

Base class for all exceptions communicating that execution passed.

Should not be raised directly, but more detailed exceptions used instead.

set_earlier_failures(failures)

earlier_failures

status

args

can_continue(context, templated=False)

continue_on_failure

dont_continue

get_errors()

message

timeout

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

616 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

exception robot.errors.PassExecution(message)
Bases: robot.errors.ExecutionPassed

Used by ‘Pass Execution’ keyword.

args

can_continue(context, templated=False)

continue_on_failure

dont_continue

earlier_failures

get_errors()

message

set_earlier_failures(failures)

status

timeout

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception robot.errors.ContinueLoop
Bases: robot.errors.ExecutionPassed

Used by CONTINUE statement.

args

can_continue(context, templated=False)

continue_on_failure

dont_continue

earlier_failures

get_errors()

message

set_earlier_failures(failures)

status

timeout

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception robot.errors.BreakLoop
Bases: robot.errors.ExecutionPassed

Used by BREAK statement.

args

can_continue(context, templated=False)

continue_on_failure

dont_continue

earlier_failures

3.1. robot package 617

Robot Framework Documentation, Release 6.0.2

get_errors()

message

set_earlier_failures(failures)

status

timeout

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception robot.errors.ReturnFromKeyword(return_value=None, failures=None)
Bases: robot.errors.ExecutionPassed

Used by ‘RETURN’ statement.

args

can_continue(context, templated=False)

continue_on_failure

dont_continue

earlier_failures

get_errors()

message

set_earlier_failures(failures)

status

timeout

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception robot.errors.RemoteError(message=”, details=”, fatal=False, continuable=False)
Bases: robot.errors.RobotError

Used by Remote library to report remote errors.

args

message

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

3.1.4 robot.libdoc module

Module implementing the command line entry point for the Libdoc tool.

This module can be executed from the command line using the following approaches:

python -m robot.libdoc
python path/to/robot/libdoc.py

This module also exposes the following public API:

• libdoc_cli() function for simple command line tools.

618 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

• libdoc() function as a high level programmatic API.

• LibraryDocumentation() as the API to generate LibraryDoc instances.

Libdoc itself is implemented in the libdocpkg package.

class robot.libdoc.LibDoc
Bases: robot.utils.application.Application

validate(options, arguments)

main(args, name=”, version=”, format=None, docformat=None, specdocformat=None, theme=None,
pythonpath=None, quiet=False)

console(msg)

execute(*arguments, **options)

execute_cli(cli_arguments, exit=True)

parse_arguments(cli_args)
Public interface for parsing command line arguments.

Parameters cli_args – Command line arguments as a list

Returns options (dict), arguments (list)

Raises Information when –help or –version used

Raises DataError when parsing fails

robot.libdoc.libdoc_cli(arguments=None, exit=True)
Executes Libdoc similarly as from the command line.

Parameters

• arguments – Command line options and arguments as a list of strings. Starting from RF
4.0, defaults to sys.argv[1:] if not given.

• exit – If True, call sys.exit automatically. New in RF 4.0.

The libdoc() function may work better in programmatic usage.

Example:

from robot.libdoc import libdoc_cli

libdoc_cli(['--version', '1.0', 'MyLibrary.py', 'MyLibrary.html'])

robot.libdoc.libdoc(library_or_resource, outfile, name=”, version=”, format=None, docfor-
mat=None, specdocformat=None, quiet=False)

Executes Libdoc.

Parameters

• library_or_resource – Name or path of the library or resource file to be documented.

• outfile – Path to the file where to write outputs.

• name – Custom name to give to the documented library or resource.

• version – Version to give to the documented library or resource.

• format – Specifies whether to generate HTML, XML or JSON output. If this options is not
used, the format is got from the extension of the output file. Possible values are 'HTML',
'XML', 'JSON' and 'LIBSPEC'.

3.1. robot package 619

Robot Framework Documentation, Release 6.0.2

• docformat – Documentation source format. Possible values are 'ROBOT', 'reST',
'HTML' and 'TEXT'. The default value can be specified in library source code and the
initial default is 'ROBOT'.

• specdocformat – Specifies whether the keyword documentation in spec files is con-
verted to HTML regardless of the original documentation format. Possible values are
'HTML' (convert to HTML) and 'RAW' (use original format). The default depends on
the output format. New in Robot Framework 4.0.

• quiet – When true, the path of the generated output file is not printed the console. New in
Robot Framework 4.0.

Arguments have same semantics as Libdoc command line options with same names. Run libdoc --help
or consult the Libdoc section in the Robot Framework User Guide for more details.

Example:

from robot.libdoc import libdoc

libdoc('MyLibrary.py', 'MyLibrary.html', version='1.0')

3.1.5 robot.pythonpathsetter module

Module that adds directories needed by Robot to sys.path when imported.

robot.pythonpathsetter.add_path(path, end=False)

robot.pythonpathsetter.remove_path(path)

3.1.6 robot.rebot module

Module implementing the command line entry point for post-processing outputs.

This module can be executed from the command line using the following approaches:

python -m robot.rebot
python path/to/robot/rebot.py

Instead of python it is possible to use also other Python interpreters. This module is also used by the installed rebot
start-up script.

This module also provides rebot() and rebot_cli() functions that can be used programmatically. Other code
is for internal usage.

class robot.rebot.Rebot
Bases: robot.run.RobotFramework

main(datasources, **options)

console(msg)

execute(*arguments, **options)

execute_cli(cli_arguments, exit=True)

parse_arguments(cli_args)
Public interface for parsing command line arguments.

Parameters cli_args – Command line arguments as a list

Returns options (dict), arguments (list)

620 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

Raises Information when –help or –version used

Raises DataError when parsing fails

validate(options, arguments)

robot.rebot.rebot_cli(arguments=None, exit=True)
Command line execution entry point for post-processing outputs.

Parameters

• arguments – Command line options and arguments as a list of strings. Defaults to sys.
argv[1:] if not given.

• exit – If True, call sys.exit with the return code denoting execution status, otherwise
just return the rc.

Entry point used when post-processing outputs from the command line, but can also be used by custom scripts.
Especially useful if the script itself needs to accept same arguments as accepted by Rebot, because the script can
just pass them forward directly along with the possible default values it sets itself.

Example:

from robot import rebot_cli

rebot_cli(['--name', 'Example', '--log', 'NONE', 'o1.xml', 'o2.xml'])

See also the rebot() function that allows setting options as keyword arguments like name="Example" and
generally has a richer API for programmatic Rebot execution.

robot.rebot.rebot(*outputs, **options)
Programmatic entry point for post-processing outputs.

Parameters

• outputs – Paths to Robot Framework output files similarly as when running the rebot
command on the command line.

• options – Options to configure processing outputs. Accepted options are mostly same as
normal command line options to the rebot command. Option names match command line
option long names without hyphens so that, for example, --name becomes name.

The semantics related to passing options are exactly the same as with the run() function. See its documentation
for more details.

Examples:

from robot import rebot

rebot('path/to/output.xml')
with open('stdout.txt', 'w') as stdout:

rebot('o1.xml', 'o2.xml', name='Example', log=None, stdout=stdout)

Equivalent command line usage:

rebot path/to/output.xml
rebot --name Example --log NONE o1.xml o2.xml > stdout.txt

3.1.7 robot.run module

Module implementing the command line entry point for executing tests.

3.1. robot package 621

Robot Framework Documentation, Release 6.0.2

This module can be executed from the command line using the following approaches:

python -m robot.run
python path/to/robot/run.py

Instead of python it is possible to use also other Python interpreters. This module is also used by the installed robot
start-up script.

This module also provides run() and run_cli() functions that can be used programmatically. Other code is for
internal usage.

class robot.run.RobotFramework
Bases: robot.utils.application.Application

main(datasources, **options)

validate(options, arguments)

console(msg)

execute(*arguments, **options)

execute_cli(cli_arguments, exit=True)

parse_arguments(cli_args)
Public interface for parsing command line arguments.

Parameters cli_args – Command line arguments as a list

Returns options (dict), arguments (list)

Raises Information when –help or –version used

Raises DataError when parsing fails

robot.run.run_cli(arguments=None, exit=True)
Command line execution entry point for running tests.

Parameters

• arguments – Command line options and arguments as a list of strings. Defaults to sys.
argv[1:] if not given.

• exit – If True, call sys.exit with the return code denoting execution status, otherwise
just return the rc.

Entry point used when running tests from the command line, but can also be used by custom scripts that execute
tests. Especially useful if the script itself needs to accept same arguments as accepted by Robot Framework,
because the script can just pass them forward directly along with the possible default values it sets itself.

Example:

from robot import run_cli

Run tests and return the return code.
rc = run_cli(['--name', 'Example', 'tests.robot'], exit=False)

Run tests and exit to the system automatically.
run_cli(['--name', 'Example', 'tests.robot'])

See also the run() function that allows setting options as keyword arguments like name="Example" and
generally has a richer API for programmatic test execution.

robot.run.run(*tests, **options)
Programmatic entry point for running tests.

622 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

Parameters

• tests – Paths to test case files/directories to be executed similarly as when running the
robot command on the command line.

• options – Options to configure and control execution. Accepted options are mostly same
as normal command line options to the robot command. Option names match command
line option long names without hyphens so that, for example, --name becomes name.

Most options that can be given from the command line work. An exception is that options --pythonpath,
--argumentfile, --help and --version are not supported.

Options that can be given on the command line multiple times can be passed as lists. For example,
include=['tag1', 'tag2'] is equivalent to --include tag1 --include tag2. If such op-
tions are used only once, they can be given also as a single string like include='tag'.

Options that accept no value can be given as Booleans. For example, dryrun=True is same as using the
--dryrun option.

Options that accept string NONE as a special value can also be used with Python None. For example, using
log=None is equivalent to --log NONE.

listener, prerunmodifier and prerebotmodifier options allow passing values as Python ob-
jects in addition to module names these command line options support. For example, run('tests',
listener=MyListener()).

To capture the standard output and error streams, pass an open file or file-like object as special keyword argu-
ments stdout and stderr, respectively.

A return code is returned similarly as when running on the command line. Zero means that tests were executed
and no test failed, values up to 250 denote the number of failed tests, and values between 251-255 are for other
statuses documented in the Robot Framework User Guide.

Example:

from robot import run

run('path/to/tests.robot')
run('tests.robot', include=['tag1', 'tag2'], splitlog=True)
with open('stdout.txt', 'w') as stdout:

run('t1.robot', 't2.robot', name='Example', log=None, stdout=stdout)

Equivalent command line usage:

robot path/to/tests.robot
robot --include tag1 --include tag2 --splitlog tests.robot
robot --name Example --log NONE t1.robot t2.robot > stdout.txt

3.1.8 robot.testdoc module

Module implementing the command line entry point for the Testdoc tool.

This module can be executed from the command line using the following approaches:

python -m robot.testdoc
python path/to/robot/testdoc.py

Instead of python it is possible to use also other Python interpreters.

3.1. robot package 623

Robot Framework Documentation, Release 6.0.2

This module also provides testdoc() and testdoc_cli() functions that can be used programmatically. Other
code is for internal usage.

class robot.testdoc.TestDoc
Bases: robot.utils.application.Application

main(datasources, title=None, **options)

console(msg)

execute(*arguments, **options)

execute_cli(cli_arguments, exit=True)

parse_arguments(cli_args)
Public interface for parsing command line arguments.

Parameters cli_args – Command line arguments as a list

Returns options (dict), arguments (list)

Raises Information when –help or –version used

Raises DataError when parsing fails

validate(options, arguments)

robot.testdoc.TestSuiteFactory(datasources, **options)

class robot.testdoc.TestdocModelWriter(output, suite, title=None)
Bases: robot.htmldata.htmlfilewriter.ModelWriter

write(line)

write_data()

handles(line)

class robot.testdoc.JsonConverter(output_path=None)
Bases: object

convert(suite)

robot.testdoc.testdoc_cli(arguments)
Executes Testdoc similarly as from the command line.

Parameters arguments – command line arguments as a list of strings.

For programmatic usage the testdoc() function is typically better. It has a better API for that and does not
call sys.exit() like this function.

Example:

from robot.testdoc import testdoc_cli

testdoc_cli(['--title', 'Test Plan', 'mytests', 'plan.html'])

robot.testdoc.testdoc(*arguments, **options)
Executes Testdoc programmatically.

Arguments and options have same semantics, and options have same names, as arguments and options to Test-
doc.

Example:

624 Chapter 3. All packages

Robot Framework Documentation, Release 6.0.2

from robot.testdoc import testdoc

testdoc('mytests', 'plan.html', title='Test Plan')

3.1.9 robot.version module

robot.version.get_version(naked=False)

robot.version.get_full_version(program=None, naked=False)

robot.version.get_interpreter()

3.1. robot package 625

Robot Framework Documentation, Release 6.0.2

626 Chapter 3. All packages

CHAPTER 4

Indices

• genindex

• modindex

• search

627

Robot Framework Documentation, Release 6.0.2

628 Chapter 4. Indices

Python Module Index

r
robot, 7
robot.api, 5
robot.api.deco, 11
robot.api.exceptions, 12
robot.api.logger, 14
robot.api.parsing, 15
robot.conf, 23
robot.conf.gatherfailed, 23
robot.conf.languages, 32
robot.conf.settings, 65
robot.errors, 613
robot.htmldata, 67
robot.htmldata.htmlfilewriter, 67
robot.htmldata.jsonwriter, 68
robot.htmldata.template, 68
robot.libdoc, 618
robot.libdocpkg, 69
robot.libdocpkg.builder, 69
robot.libdocpkg.consoleviewer, 69
robot.libdocpkg.datatypes, 70
robot.libdocpkg.htmlutils, 70
robot.libdocpkg.htmlwriter, 71
robot.libdocpkg.jsonbuilder, 71
robot.libdocpkg.jsonwriter, 71
robot.libdocpkg.model, 71
robot.libdocpkg.output, 72
robot.libdocpkg.robotbuilder, 72
robot.libdocpkg.standardtypes, 72
robot.libdocpkg.writer, 72
robot.libdocpkg.xmlbuilder, 73
robot.libdocpkg.xmlwriter, 73
robot.libraries, 73
robot.libraries.BuiltIn, 73
robot.libraries.Collections, 100
robot.libraries.DateTime, 106
robot.libraries.Dialogs, 111
robot.libraries.dialogs_py, 157
robot.libraries.Easter, 112

robot.libraries.OperatingSystem, 112
robot.libraries.Process, 122
robot.libraries.Remote, 128
robot.libraries.Reserved, 130
robot.libraries.Screenshot, 130
robot.libraries.String, 131
robot.libraries.Telnet, 137
robot.libraries.XML, 147
robot.model, 227
robot.model.body, 228
robot.model.configurer, 234
robot.model.control, 238
robot.model.filter, 250
robot.model.fixture, 258
robot.model.itemlist, 259
robot.model.keyword, 259
robot.model.message, 262
robot.model.metadata, 264
robot.model.modelobject, 265
robot.model.modifier, 265
robot.model.namepatterns, 270
robot.model.statistics, 270
robot.model.stats, 274
robot.model.suitestatistics, 276
robot.model.tags, 277
robot.model.tagsetter, 277
robot.model.tagstatistics, 282
robot.model.testcase, 282
robot.model.testsuite, 285
robot.model.totalstatistics, 288
robot.model.visitor, 293
robot.output, 298
robot.output.console, 298
robot.output.console.dotted, 298
robot.output.console.highlighting, 303
robot.output.console.quiet, 304
robot.output.console.verbose, 304
robot.output.debugfile, 305
robot.output.filelogger, 305
robot.output.librarylogger, 305

629

Robot Framework Documentation, Release 6.0.2

robot.output.listenerarguments, 306
robot.output.listenermethods, 307
robot.output.listeners, 307
robot.output.logger, 308
robot.output.loggerhelper, 309
robot.output.output, 311
robot.output.pyloggingconf, 312
robot.output.stdoutlogsplitter, 313
robot.output.xmllogger, 313
robot.parsing, 318
robot.parsing.lexer, 318
robot.parsing.lexer.blocklexers, 318
robot.parsing.lexer.context, 323
robot.parsing.lexer.lexer, 325
robot.parsing.lexer.settings, 326
robot.parsing.lexer.statementlexers, 327
robot.parsing.lexer.tokenizer, 333
robot.parsing.lexer.tokens, 333
robot.parsing.model, 340
robot.parsing.model.blocks, 340
robot.parsing.model.statements, 345
robot.parsing.model.visitor, 388
robot.parsing.parser, 389
robot.parsing.parser.blockparsers, 389
robot.parsing.parser.fileparser, 390
robot.parsing.parser.parser, 391
robot.parsing.suitestructure, 392
robot.pythonpathsetter, 620
robot.rebot, 620
robot.reporting, 393
robot.reporting.expandkeywordmatcher,

393
robot.reporting.jsbuildingcontext, 393
robot.reporting.jsexecutionresult, 394
robot.reporting.jsmodelbuilders, 394
robot.reporting.jswriter, 395
robot.reporting.logreportwriters, 395
robot.reporting.outputwriter, 395
robot.reporting.resultwriter, 400
robot.reporting.stringcache, 401
robot.reporting.xunitwriter, 402
robot.result, 407
robot.result.configurer, 408
robot.result.executionerrors, 412
robot.result.executionresult, 413
robot.result.flattenkeywordmatcher, 415
robot.result.keywordremover, 415
robot.result.merger, 449
robot.result.messagefilter, 453
robot.result.model, 457
robot.result.modeldeprecation, 499
robot.result.resultbuilder, 500
robot.result.suiteteardownfailed, 505
robot.result.visitor, 513

robot.result.xmlelementhandlers, 519
robot.run, 621
robot.running, 527
robot.running.arguments, 528
robot.running.arguments.argumentconverter,

528
robot.running.arguments.argumentmapper,

528
robot.running.arguments.argumentparser,

529
robot.running.arguments.argumentresolver,

529
robot.running.arguments.argumentspec,

530
robot.running.arguments.argumentvalidator,

531
robot.running.arguments.customconverters,

531
robot.running.arguments.embedded, 531
robot.running.arguments.typeconverters,

531
robot.running.arguments.typevalidator,

541
robot.running.bodyrunner, 549
robot.running.builder, 541
robot.running.builder.builders, 541
robot.running.builder.parsers, 542
robot.running.builder.settings, 543
robot.running.builder.transformers, 544
robot.running.context, 550
robot.running.dynamicmethods, 550
robot.running.handlers, 551
robot.running.handlerstore, 551
robot.running.importer, 552
robot.running.librarykeywordrunner, 552
robot.running.libraryscopes, 553
robot.running.model, 553
robot.running.modelcombiner, 577
robot.running.namespace, 577
robot.running.outputcapture, 578
robot.running.randomizer, 578
robot.running.runkwregister, 583
robot.running.signalhandler, 583
robot.running.status, 583
robot.running.statusreporter, 584
robot.running.suiterunner, 585
robot.running.testlibraries, 589
robot.running.timeouts, 548
robot.running.timeouts.posix, 549
robot.running.timeouts.windows, 549
robot.running.usererrorhandler, 589
robot.running.userkeyword, 589
robot.running.userkeywordrunner, 590
robot.testdoc, 623

630 Python Module Index

Robot Framework Documentation, Release 6.0.2

robot.utils, 591
robot.utils.application, 591
robot.utils.argumentparser, 592
robot.utils.asserts, 593
robot.utils.charwidth, 595
robot.utils.compress, 595
robot.utils.connectioncache, 595
robot.utils.dotdict, 596
robot.utils.encoding, 597
robot.utils.encodingsniffer, 597
robot.utils.error, 598
robot.utils.escaping, 598
robot.utils.etreewrapper, 598
robot.utils.filereader, 598
robot.utils.frange, 599
robot.utils.htmlformatters, 599
robot.utils.importer, 600
robot.utils.markuputils, 602
robot.utils.markupwriters, 602
robot.utils.match, 603
robot.utils.misc, 603
robot.utils.normalizing, 604
robot.utils.platform, 605
robot.utils.recommendations, 605
robot.variables, 606
robot.variables.assigner, 606
robot.variables.evaluation, 607
robot.variables.filesetter, 607
robot.variables.finders, 608
robot.variables.notfound, 608
robot.variables.replacer, 609
robot.variables.resolvable, 609
robot.variables.scopes, 609
robot.variables.search, 611
robot.variables.store, 611
robot.variables.tablesetter, 612
robot.variables.variables, 612
robot.version, 625

Python Module Index 631

Robot Framework Documentation, Release 6.0.2

632 Python Module Index

Index

A
abc (robot.running.arguments.typeconverters.BooleanConverter

attribute), 533
abc (robot.running.arguments.typeconverters.ByteArrayConverter

attribute), 535
abc (robot.running.arguments.typeconverters.BytesConverter

attribute), 534
abc (robot.running.arguments.typeconverters.CombinedConverter

attribute), 540
abc (robot.running.arguments.typeconverters.CustomConverter

attribute), 540
abc (robot.running.arguments.typeconverters.DateConverter

attribute), 536
abc (robot.running.arguments.typeconverters.DateTimeConverter

attribute), 535
abc (robot.running.arguments.typeconverters.DecimalConverter

attribute), 534
abc (robot.running.arguments.typeconverters.DictionaryConverter

attribute), 539
abc (robot.running.arguments.typeconverters.EnumConverter

attribute), 532
abc (robot.running.arguments.typeconverters.FloatConverter

attribute), 534
abc (robot.running.arguments.typeconverters.FrozenSetConverter

attribute), 540
abc (robot.running.arguments.typeconverters.IntegerConverter

attribute), 533
abc (robot.running.arguments.typeconverters.ListConverter

attribute), 537
abc (robot.running.arguments.typeconverters.NoneConverter

attribute), 537
abc (robot.running.arguments.typeconverters.PathConverter

attribute), 537
abc (robot.running.arguments.typeconverters.SetConverter

attribute), 539
abc (robot.running.arguments.typeconverters.StringConverter

attribute), 532
abc (robot.running.arguments.typeconverters.TimeDeltaConverter

attribute), 536

abc (robot.running.arguments.typeconverters.TupleConverter
attribute), 538

abc (robot.running.arguments.typeconverters.TypeConverter
attribute), 531

abc (robot.running.arguments.typeconverters.TypedDictConverter
attribute), 538

AbstractLogger (class in
robot.output.loggerhelper), 309

AbstractLoggerProxy (class in
robot.output.loggerhelper), 311

accept_gzip_encoding
(robot.libraries.Remote.TimeoutHTTPSTransport
attribute), 129

accept_gzip_encoding
(robot.libraries.Remote.TimeoutHTTPTransport
attribute), 129

accepts_more() (robot.parsing.lexer.blocklexers.BlockLexer
method), 318

accepts_more() (robot.parsing.lexer.blocklexers.CommentSectionLexer
method), 320

accepts_more() (robot.parsing.lexer.blocklexers.ErrorSectionLexer
method), 321

accepts_more() (robot.parsing.lexer.blocklexers.FileLexer
method), 319

accepts_more() (robot.parsing.lexer.blocklexers.ForLexer
method), 322

accepts_more() (robot.parsing.lexer.blocklexers.IfLexer
method), 322

accepts_more() (robot.parsing.lexer.blocklexers.ImplicitCommentSectionLexer
method), 321

accepts_more() (robot.parsing.lexer.blocklexers.InlineIfLexer
method), 323

accepts_more() (robot.parsing.lexer.blocklexers.KeywordLexer
method), 322

accepts_more() (robot.parsing.lexer.blocklexers.KeywordSectionLexer
method), 320

accepts_more() (robot.parsing.lexer.blocklexers.NestedBlockLexer
method), 322

accepts_more() (robot.parsing.lexer.blocklexers.SectionLexer
method), 319

633

Robot Framework Documentation, Release 6.0.2

accepts_more() (robot.parsing.lexer.blocklexers.SettingSectionLexer
method), 319

accepts_more() (robot.parsing.lexer.blocklexers.TaskSectionLexer
method), 320

accepts_more() (robot.parsing.lexer.blocklexers.TestCaseLexer
method), 321

accepts_more() (robot.parsing.lexer.blocklexers.TestCaseSectionLexer
method), 320

accepts_more() (robot.parsing.lexer.blocklexers.TestOrKeywordLexer
method), 321

accepts_more() (robot.parsing.lexer.blocklexers.TryLexer
method), 323

accepts_more() (robot.parsing.lexer.blocklexers.VariableSectionLexer
method), 319

accepts_more() (robot.parsing.lexer.blocklexers.WhileLexer
method), 322

accepts_more() (robot.parsing.lexer.statementlexers.BreakLexer
method), 333

accepts_more() (robot.parsing.lexer.statementlexers.CommentLexer
method), 330

accepts_more() (robot.parsing.lexer.statementlexers.CommentSectionHeaderLexer
method), 329

accepts_more() (robot.parsing.lexer.statementlexers.ContinueLexer
method), 333

accepts_more() (robot.parsing.lexer.statementlexers.ElseHeaderLexer
method), 331

accepts_more() (robot.parsing.lexer.statementlexers.ElseIfHeaderLexer
method), 331

accepts_more() (robot.parsing.lexer.statementlexers.EndLexer
method), 332

accepts_more() (robot.parsing.lexer.statementlexers.ErrorSectionHeaderLexer
method), 329

accepts_more() (robot.parsing.lexer.statementlexers.ExceptHeaderLexer
method), 332

accepts_more() (robot.parsing.lexer.statementlexers.FinallyHeaderLexer
method), 332

accepts_more() (robot.parsing.lexer.statementlexers.ForHeaderLexer
method), 331

accepts_more() (robot.parsing.lexer.statementlexers.IfHeaderLexer
method), 331

accepts_more() (robot.parsing.lexer.statementlexers.ImplicitCommentLexer
method), 330

accepts_more() (robot.parsing.lexer.statementlexers.InlineIfHeaderLexer
method), 331

accepts_more() (robot.parsing.lexer.statementlexers.KeywordCallLexer
method), 330

accepts_more() (robot.parsing.lexer.statementlexers.KeywordSectionHeaderLexer
method), 329

accepts_more() (robot.parsing.lexer.statementlexers.Lexer
method), 327

accepts_more() (robot.parsing.lexer.statementlexers.ReturnLexer
method), 333

accepts_more() (robot.parsing.lexer.statementlexers.SectionHeaderLexer
method), 328

accepts_more() (robot.parsing.lexer.statementlexers.SettingLexer
method), 330

accepts_more() (robot.parsing.lexer.statementlexers.SettingSectionHeaderLexer
method), 328

accepts_more() (robot.parsing.lexer.statementlexers.SingleType
method), 328

accepts_more() (robot.parsing.lexer.statementlexers.StatementLexer
method), 327

accepts_more() (robot.parsing.lexer.statementlexers.TaskSectionHeaderLexer
method), 329

accepts_more() (robot.parsing.lexer.statementlexers.TestCaseSectionHeaderLexer
method), 329

accepts_more() (robot.parsing.lexer.statementlexers.TestOrKeywordSettingLexer
method), 330

accepts_more() (robot.parsing.lexer.statementlexers.TryHeaderLexer
method), 332

accepts_more() (robot.parsing.lexer.statementlexers.TypeAndArguments
method), 328

accepts_more() (robot.parsing.lexer.statementlexers.VariableLexer
method), 330

accepts_more() (robot.parsing.lexer.statementlexers.VariableSectionHeaderLexer
method), 328

accepts_more() (robot.parsing.lexer.statementlexers.WhileHeaderLexer
method), 332

acquire() (robot.output.pyloggingconf.RobotHandler
method), 312

active (robot.running.timeouts.KeywordTimeout at-
tribute), 548

active (robot.running.timeouts.TestTimeout attribute),
548

add() (robot.model.tags.Tags method), 277
add() (robot.reporting.stringcache.StringCache

method), 402
add() (robot.result.executionerrors.ExecutionErrors

method), 413
add() (robot.running.handlerstore.HandlerStore

method), 551
add() (robot.running.importer.ImportCache method),

552
add() (robot.utils.htmlformatters.HeaderFormatter

method), 599
add() (robot.utils.htmlformatters.ListFormatter

method), 600
add() (robot.utils.htmlformatters.ParagraphFormatter

method), 600
add() (robot.utils.htmlformatters.PreformattedFormatter

method), 600
add() (robot.utils.htmlformatters.RulerFormatter

method), 599
add() (robot.utils.htmlformatters.TableFormatter

method), 600
add() (robot.variables.store.VariableStore method), 612
add_element() (robot.libraries.XML.XML method),

155

634 Index

Robot Framework Documentation, Release 6.0.2

add_language() (robot.conf.languages.Languages
method), 32

add_language() (robot.parsing.lexer.context.FileContext
method), 323

add_language() (robot.parsing.lexer.context.InitFileContext
method), 324

add_language() (robot.parsing.lexer.context.ResourceFileContext
method), 324

add_language() (robot.parsing.lexer.context.TestCaseFileContext
method), 324

add_path() (in module robot.pythonpathsetter), 620
add_result() (robot.result.executionresult.CombinedResult

method), 414
add_stat() (robot.model.stats.SuiteStat method), 275
add_tags (robot.model.configurer.SuiteConfigurer at-

tribute), 234
add_tags (robot.result.configurer.SuiteConfigurer at-

tribute), 408
add_test() (robot.model.stats.CombinedTagStat

method), 276
add_test() (robot.model.stats.Stat method), 275
add_test() (robot.model.stats.SuiteStat method), 275
add_test() (robot.model.stats.TagStat method), 276
add_test() (robot.model.stats.TotalStat method), 275
add_test() (robot.model.suitestatistics.SuiteStatisticsBuilder

method), 277
add_test() (robot.model.tagstatistics.TagStatisticsBuilder

method), 282
add_test() (robot.model.totalstatistics.TotalStatistics

method), 288
add_test() (robot.model.totalstatistics.TotalStatisticsBuilder

method), 288
add_time_to_date() (in module

robot.libraries.DateTime), 110
add_time_to_time() (in module

robot.libraries.DateTime), 111
addFilter() (robot.output.pyloggingconf.RobotHandler

method), 312
after (robot.variables.search.VariableMatch attribute),

611
after() (robot.libraries.dialogs_py.InputDialog

method), 171
after() (robot.libraries.dialogs_py.MessageDialog

method), 157
after() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 199
after() (robot.libraries.dialogs_py.PassFailDialog

method), 213
after() (robot.libraries.dialogs_py.SelectionDialog

method), 185
after_cancel() (robot.libraries.dialogs_py.InputDialog

method), 172
after_cancel() (robot.libraries.dialogs_py.MessageDialog

method), 158

after_cancel() (robot.libraries.dialogs_py.MultipleSelectionDialog
method), 200

after_cancel() (robot.libraries.dialogs_py.PassFailDialog
method), 214

after_cancel() (robot.libraries.dialogs_py.SelectionDialog
method), 186

after_idle() (robot.libraries.dialogs_py.InputDialog
method), 172

after_idle() (robot.libraries.dialogs_py.MessageDialog
method), 158

after_idle() (robot.libraries.dialogs_py.MultipleSelectionDialog
method), 200

after_idle() (robot.libraries.dialogs_py.PassFailDialog
method), 214

after_idle() (robot.libraries.dialogs_py.SelectionDialog
method), 186

alias (robot.parsing.model.statements.LibraryImport
attribute), 351

aliases (robot.parsing.lexer.settings.InitFileSettings
attribute), 326

aliases (robot.parsing.lexer.settings.KeywordSettings
attribute), 327

aliases (robot.parsing.lexer.settings.ResourceFileSettings
attribute), 326

aliases (robot.parsing.lexer.settings.Settings at-
tribute), 326

aliases (robot.parsing.lexer.settings.TestCaseFileSettings
attribute), 326

aliases (robot.parsing.lexer.settings.TestCaseSettings
attribute), 327

aliases (robot.running.arguments.typeconverters.BooleanConverter
attribute), 533

aliases (robot.running.arguments.typeconverters.ByteArrayConverter
attribute), 535

aliases (robot.running.arguments.typeconverters.BytesConverter
attribute), 535

aliases (robot.running.arguments.typeconverters.CombinedConverter
attribute), 540

aliases (robot.running.arguments.typeconverters.CustomConverter
attribute), 540

aliases (robot.running.arguments.typeconverters.DateConverter
attribute), 536

aliases (robot.running.arguments.typeconverters.DateTimeConverter
attribute), 535

aliases (robot.running.arguments.typeconverters.DecimalConverter
attribute), 534

aliases (robot.running.arguments.typeconverters.DictionaryConverter
attribute), 539

aliases (robot.running.arguments.typeconverters.EnumConverter
attribute), 532

aliases (robot.running.arguments.typeconverters.FloatConverter
attribute), 534

aliases (robot.running.arguments.typeconverters.FrozenSetConverter
attribute), 540

Index 635

Robot Framework Documentation, Release 6.0.2

aliases (robot.running.arguments.typeconverters.IntegerConverter
attribute), 533

aliases (robot.running.arguments.typeconverters.ListConverter
attribute), 538

aliases (robot.running.arguments.typeconverters.NoneConverter
attribute), 537

aliases (robot.running.arguments.typeconverters.PathConverter
attribute), 537

aliases (robot.running.arguments.typeconverters.SetConverter
attribute), 539

aliases (robot.running.arguments.typeconverters.StringConverter
attribute), 532

aliases (robot.running.arguments.typeconverters.TimeDeltaConverter
attribute), 536

aliases (robot.running.arguments.typeconverters.TupleConverter
attribute), 538

aliases (robot.running.arguments.typeconverters.TypeConverter
attribute), 531

aliases (robot.running.arguments.typeconverters.TypedDictConverter
attribute), 538

all (robot.model.keyword.Keywords attribute), 261
all_tags (robot.libdocpkg.model.LibraryDoc at-

tribute), 71
AllKeywordsRemover (class in

robot.result.keywordremover), 415
ALLOW_VARIABLES (robot.parsing.lexer.tokens.END

attribute), 338
ALLOW_VARIABLES (robot.parsing.lexer.tokens.EOS

attribute), 336
ALLOW_VARIABLES (robot.parsing.lexer.tokens.Token

attribute), 335
ALLOWED_TYPES (robot.running.model.Import at-

tribute), 576
also_teardown_message

(robot.running.status.ParentMessage attribute),
584

also_teardown_message
(robot.running.status.SuiteMessage attribute),
584

also_teardown_message
(robot.running.status.TestMessage attribute),
584

also_teardown_skip_message
(robot.running.status.ParentMessage attribute),
584

also_teardown_skip_message
(robot.running.status.SuiteMessage attribute),
584

also_teardown_skip_message
(robot.running.status.TestMessage attribute),
584

anchor() (robot.libraries.dialogs_py.InputDialog
method), 172

anchor() (robot.libraries.dialogs_py.MessageDialog

method), 158
anchor() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 200
anchor() (robot.libraries.dialogs_py.PassFailDialog

method), 214
anchor() (robot.libraries.dialogs_py.SelectionDialog

method), 186
and_prefixes (robot.conf.languages.Bg attribute), 60
and_prefixes (robot.conf.languages.Bs attribute), 39
and_prefixes (robot.conf.languages.Cs attribute), 36
and_prefixes (robot.conf.languages.De attribute), 43
and_prefixes (robot.conf.languages.En attribute), 35
and_prefixes (robot.conf.languages.Es attribute), 52
and_prefixes (robot.conf.languages.Fi attribute), 40
and_prefixes (robot.conf.languages.Fr attribute), 42
and_prefixes (robot.conf.languages.Hi attribute), 64
and_prefixes (robot.conf.languages.It attribute), 63
and_prefixes (robot.conf.languages.Language at-

tribute), 33
and_prefixes (robot.conf.languages.Nl attribute), 38
and_prefixes (robot.conf.languages.Pl attribute), 49
and_prefixes (robot.conf.languages.Pt attribute), 46
and_prefixes (robot.conf.languages.PtBr attribute),

45
and_prefixes (robot.conf.languages.Ro attribute), 61
and_prefixes (robot.conf.languages.Ru attribute), 53
and_prefixes (robot.conf.languages.Sv attribute), 58
and_prefixes (robot.conf.languages.Th attribute), 47
and_prefixes (robot.conf.languages.Tr attribute), 57
and_prefixes (robot.conf.languages.Uk attribute), 50
and_prefixes (robot.conf.languages.ZhCn attribute),

54
and_prefixes (robot.conf.languages.ZhTw attribute),

56
AndTagPattern (class in robot.model.tags), 277
AnsiHighlighter (class in

robot.output.console.highlighting), 303
any_timeout_occurred()

(robot.running.timeouts.TestTimeout method),
548

append() (robot.model.body.BaseBody method), 230
append() (robot.model.body.Body method), 230
append() (robot.model.body.Branches method), 232
append() (robot.model.itemlist.ItemList method), 259
append() (robot.model.keyword.Keywords method),

261
append() (robot.model.message.Messages method),

264
append() (robot.model.testcase.TestCases method),

284
append() (robot.model.testsuite.TestSuites method),

287
append() (robot.result.model.Body method), 458
append() (robot.result.model.Branches method), 459

636 Index

Robot Framework Documentation, Release 6.0.2

append() (robot.result.model.Iterations method), 461
append() (robot.running.model.Body method), 553
append() (robot.running.model.Imports method), 576
append_to_environment_variable()

(robot.libraries.OperatingSystem.OperatingSystem
method), 119

append_to_file() (robot.libraries.OperatingSystem.OperatingSystem
method), 117

append_to_list() (robot.libraries.Collections.Collections
method), 102

Application (class in robot.utils.application), 591
ArgFileParser (class in robot.utils.argumentparser),

592
ArgInfo (class in robot.running.arguments.argumentspec),

530
ArgLimitValidator (class in

robot.utils.argumentparser), 592
args (robot.api.exceptions.ContinuableFailure at-

tribute), 13
args (robot.api.exceptions.Error attribute), 13
args (robot.api.exceptions.Failure attribute), 12
args (robot.api.exceptions.FatalError attribute), 13
args (robot.api.exceptions.SkipExecution attribute), 14
args (robot.errors.BreakLoop attribute), 617
args (robot.errors.ContinueLoop attribute), 617
args (robot.errors.DataError attribute), 613
args (robot.errors.ExecutionFailed attribute), 615
args (robot.errors.ExecutionFailures attribute), 615
args (robot.errors.ExecutionPassed attribute), 616
args (robot.errors.ExecutionStatus attribute), 615
args (robot.errors.FrameworkError attribute), 613
args (robot.errors.HandlerExecutionFailed attribute),

615
args (robot.errors.Information attribute), 614
args (robot.errors.KeywordError attribute), 614
args (robot.errors.PassExecution attribute), 617
args (robot.errors.RemoteError attribute), 618
args (robot.errors.ReturnFromKeyword attribute), 618
args (robot.errors.RobotError attribute), 613
args (robot.errors.TimeoutError attribute), 614
args (robot.errors.UserKeywordExecutionFailed at-

tribute), 616
args (robot.errors.VariableError attribute), 614
args (robot.libraries.BuiltIn.RobotNotRunningError at-

tribute), 99
args (robot.libraries.Telnet.NoMatchError attribute),

146
args (robot.model.keyword.Keyword attribute), 259
args (robot.parsing.model.statements.Fixture attribute),

349
args (robot.parsing.model.statements.KeywordCall at-

tribute), 370
args (robot.parsing.model.statements.LibraryImport at-

tribute), 351

args (robot.parsing.model.statements.Setup attribute),
364

args (robot.parsing.model.statements.SuiteSetup at-
tribute), 357

args (robot.parsing.model.statements.SuiteTeardown at-
tribute), 358

args (robot.parsing.model.statements.Teardown at-
tribute), 365

args (robot.parsing.model.statements.TemplateArguments
attribute), 371

args (robot.parsing.model.statements.TestSetup at-
tribute), 359

args (robot.parsing.model.statements.TestTeardown at-
tribute), 360

args (robot.parsing.model.statements.VariablesImport
attribute), 352

args (robot.result.model.Break attribute), 488
args (robot.result.model.Continue attribute), 485
args (robot.result.model.For attribute), 468
args (robot.result.model.ForIteration attribute), 466
args (robot.result.model.If attribute), 477
args (robot.result.model.IfBranch attribute), 475
args (robot.result.model.Keyword attribute), 491
args (robot.result.model.Return attribute), 483
args (robot.result.model.Try attribute), 481
args (robot.result.model.TryBranch attribute), 479
args (robot.result.model.While attribute), 472
args (robot.result.model.WhileIteration attribute), 470
args (robot.result.modeldeprecation.DeprecatedAttributesMixin

attribute), 500
args (robot.running.model.Keyword attribute), 556
ARGUMENT (robot.parsing.lexer.tokens.END attribute),

338
ARGUMENT (robot.parsing.lexer.tokens.EOS attribute),

336
ARGUMENT (robot.parsing.lexer.tokens.Token attribute),

334
argument_names (robot.running.arguments.argumentspec.ArgumentSpec

attribute), 530
ArgumentCoercer (class in robot.libraries.Remote),

128
ArgumentConverter (class in

robot.running.arguments.argumentconverter),
528

ArgumentHandler (class in
robot.result.xmlelementhandlers), 525

ArgumentMapper (class in
robot.running.arguments.argumentmapper),
528

ArgumentParser (class in
robot.utils.argumentparser), 592

ArgumentResolver (class in
robot.running.arguments.argumentresolver),
529

Index 637

Robot Framework Documentation, Release 6.0.2

Arguments (class in robot.parsing.model.statements),
368

ARGUMENTS (robot.parsing.lexer.tokens.END attribute),
338

ARGUMENTS (robot.parsing.lexer.tokens.EOS attribute),
336

ARGUMENTS (robot.parsing.lexer.tokens.Token at-
tribute), 334

arguments (robot.running.userkeywordrunner.EmbeddedArgumentsRunner
attribute), 590

arguments (robot.running.userkeywordrunner.UserKeywordRunner
attribute), 590

arguments_setting (robot.conf.languages.Bg at-
tribute), 60

arguments_setting (robot.conf.languages.Bs at-
tribute), 39

arguments_setting (robot.conf.languages.Cs at-
tribute), 36

arguments_setting (robot.conf.languages.De at-
tribute), 43

arguments_setting (robot.conf.languages.En at-
tribute), 35

arguments_setting (robot.conf.languages.Es at-
tribute), 51

arguments_setting (robot.conf.languages.Fi
attribute), 40

arguments_setting (robot.conf.languages.Fr at-
tribute), 42

arguments_setting (robot.conf.languages.Hi at-
tribute), 64

arguments_setting (robot.conf.languages.It at-
tribute), 63

arguments_setting
(robot.conf.languages.Language attribute),
33

arguments_setting (robot.conf.languages.Nl at-
tribute), 37

arguments_setting (robot.conf.languages.Pl at-
tribute), 49

arguments_setting (robot.conf.languages.Pt at-
tribute), 46

arguments_setting (robot.conf.languages.PtBr at-
tribute), 44

arguments_setting (robot.conf.languages.Ro at-
tribute), 61

arguments_setting (robot.conf.languages.Ru at-
tribute), 53

arguments_setting (robot.conf.languages.Sv at-
tribute), 58

arguments_setting (robot.conf.languages.Th at-
tribute), 47

arguments_setting (robot.conf.languages.Tr at-
tribute), 57

arguments_setting (robot.conf.languages.Uk at-

tribute), 50
arguments_setting (robot.conf.languages.ZhCn at-

tribute), 54
arguments_setting (robot.conf.languages.ZhTw at-

tribute), 56
ArgumentsHandler (class in

robot.result.xmlelementhandlers), 525
ArgumentSpec (class in

robot.running.arguments.argumentspec),
530

ArgumentValidator (class in
robot.running.arguments.argumentvalidator),
531

AS (robot.parsing.lexer.tokens.END attribute), 338
AS (robot.parsing.lexer.tokens.EOS attribute), 336
AS (robot.parsing.lexer.tokens.Token attribute), 335
as_dict() (robot.variables.scopes.GlobalVariables

method), 610
as_dict() (robot.variables.scopes.VariableScopes

method), 610
as_dict() (robot.variables.store.VariableStore

method), 612
as_dict() (robot.variables.variables.Variables

method), 613
aspect() (robot.libraries.dialogs_py.InputDialog

method), 172
aspect() (robot.libraries.dialogs_py.MessageDialog

method), 158
aspect() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 200
aspect() (robot.libraries.dialogs_py.PassFailDialog

method), 214
aspect() (robot.libraries.dialogs_py.SelectionDialog

method), 186
assert_almost_equal() (in module

robot.utils.asserts), 594
assert_equal() (in module robot.utils.asserts), 594
assert_false() (in module robot.utils.asserts), 594
assert_none() (in module robot.utils.asserts), 594
assert_not_almost_equal() (in module

robot.utils.asserts), 595
assert_not_equal() (in module

robot.utils.asserts), 594
assert_not_none() (in module robot.utils.asserts),

594
assert_raises() (in module robot.utils.asserts),

594
assert_raises_with_msg() (in module

robot.utils.asserts), 594
assert_true() (in module robot.utils.asserts), 594
assign (robot.model.keyword.Keyword attribute), 259
ASSIGN (robot.parsing.lexer.tokens.END attribute), 338
ASSIGN (robot.parsing.lexer.tokens.EOS attribute), 336
ASSIGN (robot.parsing.lexer.tokens.Token attribute), 334

638 Index

Robot Framework Documentation, Release 6.0.2

assign (robot.parsing.model.blocks.If attribute), 343
assign (robot.parsing.model.statements.ElseHeader at-

tribute), 376
assign (robot.parsing.model.statements.ElseIfHeader

attribute), 375
assign (robot.parsing.model.statements.IfElseHeader

attribute), 373
assign (robot.parsing.model.statements.IfHeader at-

tribute), 374
assign (robot.parsing.model.statements.InlineIfHeader

attribute), 374
assign (robot.parsing.model.statements.KeywordCall

attribute), 370
assign (robot.result.model.Break attribute), 488
assign (robot.result.model.Continue attribute), 486
assign (robot.result.model.For attribute), 468
assign (robot.result.model.ForIteration attribute), 466
assign (robot.result.model.If attribute), 477
assign (robot.result.model.IfBranch attribute), 475
assign (robot.result.model.Keyword attribute), 491
assign (robot.result.model.Return attribute), 484
assign (robot.result.model.Try attribute), 481
assign (robot.result.model.TryBranch attribute), 479
assign (robot.result.model.While attribute), 472
assign (robot.result.model.WhileIteration attribute),

470
assign (robot.result.modeldeprecation.DeprecatedAttributesMixin

attribute), 500
assign (robot.running.model.Keyword attribute), 556
assign() (robot.variables.assigner.VariableAssigner

method), 606
assigner() (robot.variables.assigner.VariableAssignment

method), 606
AssignHandler (class in

robot.result.xmlelementhandlers), 525
AssignmentValidator (class in

robot.variables.assigner), 606
attribute_escape() (in module

robot.utils.markuputils), 602
attributes() (robot.libraries.dialogs_py.InputDialog

method), 172
attributes() (robot.libraries.dialogs_py.MessageDialog

method), 158
attributes() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 200
attributes() (robot.libraries.dialogs_py.PassFailDialog

method), 214
attributes() (robot.libraries.dialogs_py.SelectionDialog

method), 186

B
BaseBody (class in robot.model.body), 229
BaseParser (class in robot.running.builder.parsers),

542

bbox() (robot.libraries.dialogs_py.InputDialog
method), 172

bbox() (robot.libraries.dialogs_py.MessageDialog
method), 158

bbox() (robot.libraries.dialogs_py.MultipleSelectionDialog
method), 200

bbox() (robot.libraries.dialogs_py.PassFailDialog
method), 214

bbox() (robot.libraries.dialogs_py.SelectionDialog
method), 186

bdd_prefixes (robot.conf.languages.Bg attribute), 60
bdd_prefixes (robot.conf.languages.Bs attribute), 39
bdd_prefixes (robot.conf.languages.Cs attribute), 36
bdd_prefixes (robot.conf.languages.De attribute), 43
bdd_prefixes (robot.conf.languages.En attribute), 35
bdd_prefixes (robot.conf.languages.Es attribute), 52
bdd_prefixes (robot.conf.languages.Fi attribute), 40
bdd_prefixes (robot.conf.languages.Fr attribute), 42
bdd_prefixes (robot.conf.languages.Hi attribute), 64
bdd_prefixes (robot.conf.languages.It attribute), 63
bdd_prefixes (robot.conf.languages.Language at-

tribute), 34
bdd_prefixes (robot.conf.languages.Nl attribute), 38
bdd_prefixes (robot.conf.languages.Pl attribute), 49
bdd_prefixes (robot.conf.languages.Pt attribute), 46
bdd_prefixes (robot.conf.languages.PtBr attribute),

45
bdd_prefixes (robot.conf.languages.Ro attribute), 61
bdd_prefixes (robot.conf.languages.Ru attribute), 53
bdd_prefixes (robot.conf.languages.Sv attribute), 59
bdd_prefixes (robot.conf.languages.Th attribute), 47
bdd_prefixes (robot.conf.languages.Tr attribute), 57
bdd_prefixes (robot.conf.languages.Uk attribute), 50
bdd_prefixes (robot.conf.languages.ZhCn attribute),

54
bdd_prefixes (robot.conf.languages.ZhTw attribute),

56
before (robot.variables.search.VariableMatch at-

tribute), 611
bell() (robot.libraries.dialogs_py.InputDialog

method), 172
bell() (robot.libraries.dialogs_py.MessageDialog

method), 158
bell() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 200
bell() (robot.libraries.dialogs_py.PassFailDialog

method), 214
bell() (robot.libraries.dialogs_py.SelectionDialog

method), 186
Bg (class in robot.conf.languages), 59
binary (robot.libraries.Remote.ArgumentCoercer at-

tribute), 129
bind() (robot.libraries.dialogs_py.InputDialog

method), 172

Index 639

Robot Framework Documentation, Release 6.0.2

bind() (robot.libraries.dialogs_py.MessageDialog
method), 158

bind() (robot.libraries.dialogs_py.MultipleSelectionDialog
method), 200

bind() (robot.libraries.dialogs_py.PassFailDialog
method), 214

bind() (robot.libraries.dialogs_py.SelectionDialog
method), 186

bind_all() (robot.libraries.dialogs_py.InputDialog
method), 173

bind_all() (robot.libraries.dialogs_py.MessageDialog
method), 159

bind_all() (robot.libraries.dialogs_py.MultipleSelectionDialog
method), 201

bind_all() (robot.libraries.dialogs_py.PassFailDialog
method), 215

bind_all() (robot.libraries.dialogs_py.SelectionDialog
method), 187

bind_class() (robot.libraries.dialogs_py.InputDialog
method), 173

bind_class() (robot.libraries.dialogs_py.MessageDialog
method), 159

bind_class() (robot.libraries.dialogs_py.MultipleSelectionDialog
method), 201

bind_class() (robot.libraries.dialogs_py.PassFailDialog
method), 215

bind_class() (robot.libraries.dialogs_py.SelectionDialog
method), 187

bindtags() (robot.libraries.dialogs_py.InputDialog
method), 173

bindtags() (robot.libraries.dialogs_py.MessageDialog
method), 159

bindtags() (robot.libraries.dialogs_py.MultipleSelectionDialog
method), 201

bindtags() (robot.libraries.dialogs_py.PassFailDialog
method), 215

bindtags() (robot.libraries.dialogs_py.SelectionDialog
method), 187

bit_length() (robot.reporting.stringcache.StringIndex
method), 401

Block (class in robot.parsing.model.blocks), 340
BlockLexer (class in robot.parsing.lexer.blocklexers),

318
BlockParser (class in

robot.parsing.parser.blockparsers), 389
Body (class in robot.model.body), 230
Body (class in robot.result.model), 458
Body (class in robot.running.model), 553
body (robot.model.control.For attribute), 239
body (robot.model.control.If attribute), 242
body (robot.model.control.IfBranch attribute), 241
body (robot.model.control.Try attribute), 245
body (robot.model.control.TryBranch attribute), 244
body (robot.model.control.While attribute), 240

body (robot.model.testcase.TestCase attribute), 283
body (robot.result.model.Break attribute), 488
body (robot.result.model.Continue attribute), 485
body (robot.result.model.For attribute), 467
body (robot.result.model.ForIteration attribute), 465
body (robot.result.model.If attribute), 477
body (robot.result.model.IfBranch attribute), 475
body (robot.result.model.Keyword attribute), 490
body (robot.result.model.Return attribute), 483
body (robot.result.model.TestCase attribute), 494
body (robot.result.model.Try attribute), 481
body (robot.result.model.TryBranch attribute), 479
body (robot.result.model.While attribute), 472
body (robot.result.model.WhileIteration attribute), 469
body (robot.running.model.For attribute), 558
body (robot.running.model.If attribute), 562
body (robot.running.model.IfBranch attribute), 561
body (robot.running.model.TestCase attribute), 570
body (robot.running.model.Try attribute), 565
body (robot.running.model.TryBranch attribute), 564
body (robot.running.model.UserKeyword attribute), 576
body (robot.running.model.While attribute), 560
body_class (robot.model.control.For attribute), 238
body_class (robot.model.control.IfBranch attribute),

241
body_class (robot.model.control.TryBranch at-

tribute), 244
body_class (robot.model.control.While attribute), 240
body_class (robot.model.testcase.TestCase attribute),

282
body_class (robot.result.model.Break attribute), 487
body_class (robot.result.model.Continue attribute),

485
body_class (robot.result.model.For attribute), 468
body_class (robot.result.model.ForIteration at-

tribute), 465
body_class (robot.result.model.IfBranch attribute),

474
body_class (robot.result.model.Keyword attribute),

490
body_class (robot.result.model.Return attribute), 483
body_class (robot.result.model.TestCase attribute),

493
body_class (robot.result.model.TryBranch attribute),

478
body_class (robot.result.model.While attribute), 472
body_class (robot.result.model.WhileIteration at-

tribute), 469
body_class (robot.running.model.For attribute), 557
body_class (robot.running.model.IfBranch attribute),

560
body_class (robot.running.model.TestCase attribute),

570

640 Index

Robot Framework Documentation, Release 6.0.2

body_class (robot.running.model.TryBranch at-
tribute), 563

body_class (robot.running.model.While attribute),
559

BodyItem (class in robot.model.body), 228
BodyRunner (class in robot.running.bodyrunner), 549
BooleanConverter (class in

robot.running.arguments.typeconverters),
533

branch_class (robot.model.body.Branches attribute),
232

branch_class (robot.model.control.If attribute), 242
branch_class (robot.model.control.Try attribute),

245
branch_class (robot.result.model.Branches at-

tribute), 459
branch_class (robot.result.model.If attribute), 476
branch_class (robot.result.model.Try attribute), 480
branch_class (robot.running.model.If attribute), 562
branch_class (robot.running.model.Try attribute),

564
Branches (class in robot.model.body), 232
Branches (class in robot.result.model), 459
branches_class (robot.model.control.If attribute),

242
branches_class (robot.model.control.Try attribute),

245
branches_class (robot.result.model.If attribute),

476
branches_class (robot.result.model.Try attribute),

481
branches_class (robot.running.model.If attribute),

562
branches_class (robot.running.model.Try attribute),

565
BranchHandler (class in

robot.result.xmlelementhandlers), 521
Break (class in robot.model.control), 249
Break (class in robot.parsing.model.statements), 384
Break (class in robot.result.model), 487
Break (class in robot.running.model), 568
BREAK (robot.model.body.BodyItem attribute), 228
BREAK (robot.model.control.Break attribute), 249
BREAK (robot.model.control.Continue attribute), 248
BREAK (robot.model.control.For attribute), 239
BREAK (robot.model.control.If attribute), 243
BREAK (robot.model.control.IfBranch attribute), 241
BREAK (robot.model.control.Return attribute), 247
BREAK (robot.model.control.Try attribute), 245
BREAK (robot.model.control.TryBranch attribute), 244
BREAK (robot.model.control.While attribute), 240
BREAK (robot.model.keyword.Keyword attribute), 260
BREAK (robot.model.message.Message attribute), 263
BREAK (robot.output.loggerhelper.Message attribute),

309
BREAK (robot.parsing.lexer.tokens.END attribute), 338
BREAK (robot.parsing.lexer.tokens.EOS attribute), 336
BREAK (robot.parsing.lexer.tokens.Token attribute), 335
BREAK (robot.result.model.Break attribute), 488
BREAK (robot.result.model.Continue attribute), 485
BREAK (robot.result.model.For attribute), 467
BREAK (robot.result.model.ForIteration attribute), 465
BREAK (robot.result.model.If attribute), 476
BREAK (robot.result.model.IfBranch attribute), 474
BREAK (robot.result.model.Keyword attribute), 491
BREAK (robot.result.model.Message attribute), 463
BREAK (robot.result.model.Return attribute), 483
BREAK (robot.result.model.Try attribute), 481
BREAK (robot.result.model.TryBranch attribute), 478
BREAK (robot.result.model.While attribute), 472
BREAK (robot.result.model.WhileIteration attribute), 470
BREAK (robot.running.model.Break attribute), 569
BREAK (robot.running.model.Continue attribute), 567
BREAK (robot.running.model.For attribute), 558
BREAK (robot.running.model.If attribute), 562
BREAK (robot.running.model.IfBranch attribute), 560
BREAK (robot.running.model.Keyword attribute), 555
BREAK (robot.running.model.Return attribute), 566
BREAK (robot.running.model.Try attribute), 565
BREAK (robot.running.model.TryBranch attribute), 563
BREAK (robot.running.model.While attribute), 559
break_class (robot.model.body.BaseBody attribute),

229
break_class (robot.model.body.Body attribute), 231
break_class (robot.model.body.Branches attribute),

232
break_class (robot.result.model.Body attribute), 458
break_class (robot.result.model.Branches attribute),

459
break_class (robot.result.model.Iterations attribute),

461
break_class (robot.running.model.Body attribute),

554
BreakHandler (class in

robot.result.xmlelementhandlers), 522
BreakLexer (class in

robot.parsing.lexer.statementlexers), 333
BreakLoop, 617
Bs (class in robot.conf.languages), 38
build() (robot.libdocpkg.builder.DocumentationBuilder

method), 69
build() (robot.libdocpkg.jsonbuilder.JsonDocBuilder

method), 71
build() (robot.libdocpkg.robotbuilder.LibraryDocBuilder

method), 72
build() (robot.libdocpkg.robotbuilder.ResourceDocBuilder

method), 72

Index 641

Robot Framework Documentation, Release 6.0.2

build() (robot.libdocpkg.robotbuilder.SuiteDocBuilder
method), 72

build() (robot.libdocpkg.xmlbuilder.XmlDocBuilder
method), 73

build() (robot.parsing.suitestructure.SuiteStructureBuilder
method), 393

build() (robot.reporting.jsmodelbuilders.ErrorMessageBuilder
method), 395

build() (robot.reporting.jsmodelbuilders.ErrorsBuilder
method), 395

build() (robot.reporting.jsmodelbuilders.KeywordBuilder
method), 394

build() (robot.reporting.jsmodelbuilders.MessageBuilder
method), 394

build() (robot.reporting.jsmodelbuilders.StatisticsBuilder
method), 394

build() (robot.reporting.jsmodelbuilders.SuiteBuilder
method), 394

build() (robot.reporting.jsmodelbuilders.TestBuilder
method), 394

build() (robot.result.resultbuilder.ExecutionResultBuilder
method), 501

build() (robot.running.builder.builders.ResourceFileBuilder
method), 542

build() (robot.running.builder.builders.TestSuiteBuilder
method), 542

build() (robot.running.builder.transformers.ForBuilder
method), 546

build() (robot.running.builder.transformers.IfBuilder
method), 546

build() (robot.running.builder.transformers.TryBuilder
method), 547

build() (robot.running.builder.transformers.WhileBuilder
method), 547

build_from() (robot.reporting.jsmodelbuilders.JsModelBuilder
method), 394

build_from_dict()
(robot.libdocpkg.jsonbuilder.JsonDocBuilder
method), 71

build_keyword() (robot.libdocpkg.robotbuilder.KeywordDocBuilder
method), 72

build_keyword() (robot.reporting.jsmodelbuilders.KeywordBuilder
method), 394

build_keywords() (robot.libdocpkg.robotbuilder.KeywordDocBuilder
method), 72

build_suite() (robot.running.builder.parsers.RestParser
method), 543

build_suite() (robot.running.builder.parsers.RobotParser
method), 543

BuiltIn (class in robot.libraries.BuiltIn), 73
but_prefixes (robot.conf.languages.Bg attribute), 60
but_prefixes (robot.conf.languages.Bs attribute), 39
but_prefixes (robot.conf.languages.Cs attribute), 36
but_prefixes (robot.conf.languages.De attribute), 43

but_prefixes (robot.conf.languages.En attribute), 35
but_prefixes (robot.conf.languages.Es attribute), 52
but_prefixes (robot.conf.languages.Fi attribute), 40
but_prefixes (robot.conf.languages.Fr attribute), 42
but_prefixes (robot.conf.languages.Hi attribute), 64
but_prefixes (robot.conf.languages.It attribute), 63
but_prefixes (robot.conf.languages.Language at-

tribute), 33
but_prefixes (robot.conf.languages.Nl attribute), 38
but_prefixes (robot.conf.languages.Pl attribute), 49
but_prefixes (robot.conf.languages.Pt attribute), 46
but_prefixes (robot.conf.languages.PtBr attribute),

45
but_prefixes (robot.conf.languages.Ro attribute), 61
but_prefixes (robot.conf.languages.Ru attribute), 53
but_prefixes (robot.conf.languages.Sv attribute), 59
but_prefixes (robot.conf.languages.Th attribute), 47
but_prefixes (robot.conf.languages.Tr attribute), 57
but_prefixes (robot.conf.languages.Uk attribute), 50
but_prefixes (robot.conf.languages.ZhCn attribute),

54
but_prefixes (robot.conf.languages.ZhTw attribute),

56
by_method_name() (robot.output.listenerarguments.EndKeywordArguments

class method), 306
by_method_name() (robot.output.listenerarguments.EndSuiteArguments

class method), 306
by_method_name() (robot.output.listenerarguments.EndTestArguments

class method), 306
by_method_name() (robot.output.listenerarguments.ListenerArguments

class method), 306
by_method_name() (robot.output.listenerarguments.MessageArguments

class method), 306
by_method_name() (robot.output.listenerarguments.StartKeywordArguments

class method), 306
by_method_name() (robot.output.listenerarguments.StartSuiteArguments

class method), 306
by_method_name() (robot.output.listenerarguments.StartTestArguments

class method), 306
ByNameKeywordRemover (class in

robot.result.keywordremover), 424
ByPathImporter (class in robot.utils.importer), 601
ByTagKeywordRemover (class in

robot.result.keywordremover), 428
ByteArrayConverter (class in

robot.running.arguments.typeconverters),
535

BytesConverter (class in
robot.running.arguments.typeconverters),
534

C
cache_only (robot.output.logger.Logger attribute),

308

642 Index

Robot Framework Documentation, Release 6.0.2

call_method() (robot.libraries.BuiltIn.BuiltIn
method), 76

called (robot.output.listenermethods.ListenerMethod
attribute), 307

can_continue() (robot.errors.BreakLoop method),
617

can_continue() (robot.errors.ContinueLoop
method), 617

can_continue() (robot.errors.ExecutionFailed
method), 615

can_continue() (robot.errors.ExecutionFailures
method), 616

can_continue() (robot.errors.ExecutionPassed
method), 616

can_continue() (robot.errors.ExecutionStatus
method), 615

can_continue() (robot.errors.HandlerExecutionFailed
method), 615

can_continue() (robot.errors.PassExecution
method), 617

can_continue() (robot.errors.ReturnFromKeyword
method), 618

can_continue() (robot.errors.UserKeywordExecutionFailed
method), 616

catenate() (robot.libraries.BuiltIn.BuiltIn method),
76

cget() (robot.libraries.dialogs_py.InputDialog
method), 173

cget() (robot.libraries.dialogs_py.MessageDialog
method), 159

cget() (robot.libraries.dialogs_py.MultipleSelectionDialog
method), 201

cget() (robot.libraries.dialogs_py.PassFailDialog
method), 215

cget() (robot.libraries.dialogs_py.SelectionDialog
method), 187

check_expansion()
(robot.reporting.jsbuildingcontext.JsBuildingContext
method), 394

child() (robot.libraries.XML.Location method), 157
children (robot.result.model.Keyword attribute), 490
children (robot.result.xmlelementhandlers.ArgumentHandler

attribute), 526
children (robot.result.xmlelementhandlers.ArgumentsHandler

attribute), 525
children (robot.result.xmlelementhandlers.AssignHandler

attribute), 525
children (robot.result.xmlelementhandlers.BranchHandler

attribute), 521
children (robot.result.xmlelementhandlers.BreakHandler

attribute), 522
children (robot.result.xmlelementhandlers.ContinueHandler

attribute), 522
children (robot.result.xmlelementhandlers.DocHandler

attribute), 523
children (robot.result.xmlelementhandlers.ElementHandler

attribute), 519
children (robot.result.xmlelementhandlers.ErrorMessageHandler

attribute), 526
children (robot.result.xmlelementhandlers.ErrorsHandler

attribute), 526
children (robot.result.xmlelementhandlers.ForHandler

attribute), 520
children (robot.result.xmlelementhandlers.IfHandler

attribute), 521
children (robot.result.xmlelementhandlers.IterationHandler

attribute), 521
children (robot.result.xmlelementhandlers.KeywordHandler

attribute), 520
children (robot.result.xmlelementhandlers.MessageHandler

attribute), 523
children (robot.result.xmlelementhandlers.MetadataHandler

attribute), 523
children (robot.result.xmlelementhandlers.MetadataItemHandler

attribute), 524
children (robot.result.xmlelementhandlers.MetaHandler

attribute), 524
children (robot.result.xmlelementhandlers.PatternHandler

attribute), 522
children (robot.result.xmlelementhandlers.ReturnHandler

attribute), 522
children (robot.result.xmlelementhandlers.RobotHandler

attribute), 519
children (robot.result.xmlelementhandlers.RootHandler

attribute), 519
children (robot.result.xmlelementhandlers.StatisticsHandler

attribute), 526
children (robot.result.xmlelementhandlers.StatusHandler

attribute), 523
children (robot.result.xmlelementhandlers.SuiteHandler

attribute), 519
children (robot.result.xmlelementhandlers.TagHandler

attribute), 524
children (robot.result.xmlelementhandlers.TagsHandler

attribute), 524
children (robot.result.xmlelementhandlers.TestHandler

attribute), 520
children (robot.result.xmlelementhandlers.TimeoutHandler

attribute), 525
children (robot.result.xmlelementhandlers.TryHandler

attribute), 521
children (robot.result.xmlelementhandlers.ValueHandler

attribute), 526
children (robot.result.xmlelementhandlers.VarHandler

attribute), 525
children (robot.result.xmlelementhandlers.WhileHandler

attribute), 520
classproperty (class in robot.utils.misc), 604

Index 643

Robot Framework Documentation, Release 6.0.2

clear() (robot.model.body.BaseBody method), 230
clear() (robot.model.body.Body method), 231
clear() (robot.model.body.Branches method), 232
clear() (robot.model.itemlist.ItemList method), 259
clear() (robot.model.keyword.Keywords method), 262
clear() (robot.model.message.Messages method), 264
clear() (robot.model.metadata.Metadata method),

264
clear() (robot.model.testcase.TestCases method), 284
clear() (robot.model.testsuite.TestSuites method), 288
clear() (robot.result.model.Body method), 458
clear() (robot.result.model.Branches method), 459
clear() (robot.result.model.Iterations method), 461
clear() (robot.running.model.Body method), 554
clear() (robot.running.model.Imports method), 576
clear() (robot.utils.dotdict.DotDict method), 596
clear() (robot.utils.normalizing.NormalizedDict

method), 605
clear() (robot.variables.evaluation.EvaluationNamespace

method), 607
clear() (robot.variables.scopes.GlobalVariables

method), 610
clear() (robot.variables.store.VariableStore method),

612
clear() (robot.variables.variables.Variables method),

613
clear_element() (robot.libraries.XML.XML

method), 156
client() (robot.libraries.dialogs_py.InputDialog

method), 173
client() (robot.libraries.dialogs_py.MessageDialog

method), 159
client() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 201
client() (robot.libraries.dialogs_py.PassFailDialog

method), 215
client() (robot.libraries.dialogs_py.SelectionDialog

method), 187
clipboard_append()

(robot.libraries.dialogs_py.InputDialog
method), 173

clipboard_append()
(robot.libraries.dialogs_py.MessageDialog
method), 159

clipboard_append()
(robot.libraries.dialogs_py.MultipleSelectionDialog
method), 201

clipboard_append()
(robot.libraries.dialogs_py.PassFailDialog
method), 215

clipboard_append()
(robot.libraries.dialogs_py.SelectionDialog
method), 187

clipboard_clear()

(robot.libraries.dialogs_py.InputDialog
method), 173

clipboard_clear()
(robot.libraries.dialogs_py.MessageDialog
method), 159

clipboard_clear()
(robot.libraries.dialogs_py.MultipleSelectionDialog
method), 201

clipboard_clear()
(robot.libraries.dialogs_py.PassFailDialog
method), 215

clipboard_clear()
(robot.libraries.dialogs_py.SelectionDialog
method), 187

clipboard_get() (robot.libraries.dialogs_py.InputDialog
method), 173

clipboard_get() (robot.libraries.dialogs_py.MessageDialog
method), 159

clipboard_get() (robot.libraries.dialogs_py.MultipleSelectionDialog
method), 201

clipboard_get() (robot.libraries.dialogs_py.PassFailDialog
method), 215

clipboard_get() (robot.libraries.dialogs_py.SelectionDialog
method), 187

close() (robot.libraries.Remote.TimeoutHTTPSTransport
method), 129

close() (robot.libraries.Remote.TimeoutHTTPTransport
method), 129

close() (robot.libraries.Telnet.TelnetConnection
method), 145

close() (robot.output.filelogger.FileLogger method),
305

close() (robot.output.logger.Logger method), 308
close() (robot.output.output.Output method), 311
close() (robot.output.pyloggingconf.RobotHandler

method), 312
close() (robot.output.xmllogger.XmlLogger method),

313
close() (robot.reporting.outputwriter.OutputWriter

method), 396
close() (robot.utils.application.DefaultLogger

method), 592
close() (robot.utils.markupwriters.HtmlWriter

method), 602
close() (robot.utils.markupwriters.NullMarkupWriter

method), 603
close() (robot.utils.markupwriters.XmlWriter

method), 603
close_all() (robot.utils.connectioncache.ConnectionCache

method), 596
close_all_connections()

(robot.libraries.Telnet.Telnet method), 141
close_connection()

(robot.libraries.Telnet.TelnetConnection

644 Index

Robot Framework Documentation, Release 6.0.2

method), 142
close_global_library_listeners()

(robot.running.importer.Importer method),
552

close_streams() (robot.libraries.Process.ExecutionResult
method), 128

cmdline2list() (in module
robot.utils.argumentparser), 592

code (robot.conf.languages.Bg attribute), 60
code (robot.conf.languages.Bs attribute), 39
code (robot.conf.languages.Cs attribute), 36
code (robot.conf.languages.De attribute), 43
code (robot.conf.languages.En attribute), 35
code (robot.conf.languages.Es attribute), 52
code (robot.conf.languages.Fi attribute), 40
code (robot.conf.languages.Fr attribute), 42
code (robot.conf.languages.Hi attribute), 64
code (robot.conf.languages.It attribute), 63
code (robot.conf.languages.Language attribute), 33
code (robot.conf.languages.Nl attribute), 38
code (robot.conf.languages.Pl attribute), 49
code (robot.conf.languages.Pt attribute), 46
code (robot.conf.languages.PtBr attribute), 45
code (robot.conf.languages.Ro attribute), 61
code (robot.conf.languages.Ru attribute), 53
code (robot.conf.languages.Sv attribute), 59
code (robot.conf.languages.Th attribute), 47
code (robot.conf.languages.Tr attribute), 57
code (robot.conf.languages.Uk attribute), 50
code (robot.conf.languages.ZhCn attribute), 54
code (robot.conf.languages.ZhTw attribute), 56
coerce() (robot.libraries.Remote.ArgumentCoercer

method), 129
col_offset (robot.parsing.lexer.tokens.END at-

tribute), 340
col_offset (robot.parsing.lexer.tokens.EOS at-

tribute), 337
col_offset (robot.parsing.lexer.tokens.Token at-

tribute), 335
col_offset (robot.parsing.model.blocks.Block at-

tribute), 340
col_offset (robot.parsing.model.blocks.CommentSection

attribute), 342
col_offset (robot.parsing.model.blocks.File at-

tribute), 341
col_offset (robot.parsing.model.blocks.For at-

tribute), 344
col_offset (robot.parsing.model.blocks.HeaderAndBody

attribute), 340
col_offset (robot.parsing.model.blocks.If attribute),

343
col_offset (robot.parsing.model.blocks.Keyword at-

tribute), 343
col_offset (robot.parsing.model.blocks.KeywordSection

attribute), 342
col_offset (robot.parsing.model.blocks.Section at-

tribute), 341
col_offset (robot.parsing.model.blocks.SettingSection

attribute), 341
col_offset (robot.parsing.model.blocks.TestCase at-

tribute), 343
col_offset (robot.parsing.model.blocks.TestCaseSection

attribute), 342
col_offset (robot.parsing.model.blocks.Try at-

tribute), 344
col_offset (robot.parsing.model.blocks.VariableSection

attribute), 342
col_offset (robot.parsing.model.blocks.While at-

tribute), 344
col_offset (robot.parsing.model.statements.Arguments

attribute), 369
col_offset (robot.parsing.model.statements.Break

attribute), 384
col_offset (robot.parsing.model.statements.Comment

attribute), 385
col_offset (robot.parsing.model.statements.Config

attribute), 386
col_offset (robot.parsing.model.statements.Continue

attribute), 383
col_offset (robot.parsing.model.statements.DefaultTags

attribute), 356
col_offset (robot.parsing.model.statements.Documentation

attribute), 353
col_offset (robot.parsing.model.statements.DocumentationOrMetadata

attribute), 346
col_offset (robot.parsing.model.statements.ElseHeader

attribute), 376
col_offset (robot.parsing.model.statements.ElseIfHeader

attribute), 375
col_offset (robot.parsing.model.statements.EmptyLine

attribute), 388
col_offset (robot.parsing.model.statements.End at-

tribute), 380
col_offset (robot.parsing.model.statements.Error at-

tribute), 387
col_offset (robot.parsing.model.statements.ExceptHeader

attribute), 379
col_offset (robot.parsing.model.statements.FinallyHeader

attribute), 379
col_offset (robot.parsing.model.statements.Fixture

attribute), 349
col_offset (robot.parsing.model.statements.ForceTags

attribute), 355
col_offset (robot.parsing.model.statements.ForHeader

attribute), 372
col_offset (robot.parsing.model.statements.IfElseHeader

attribute), 373
col_offset (robot.parsing.model.statements.IfHeader

Index 645

Robot Framework Documentation, Release 6.0.2

attribute), 374
col_offset (robot.parsing.model.statements.InlineIfHeader

attribute), 374
col_offset (robot.parsing.model.statements.KeywordCall

attribute), 370
col_offset (robot.parsing.model.statements.KeywordName

attribute), 364
col_offset (robot.parsing.model.statements.KeywordTags

attribute), 356
col_offset (robot.parsing.model.statements.LibraryImport

attribute), 351
col_offset (robot.parsing.model.statements.LoopControl

attribute), 383
col_offset (robot.parsing.model.statements.Metadata

attribute), 354
col_offset (robot.parsing.model.statements.MultiValue

attribute), 348
col_offset (robot.parsing.model.statements.NoArgumentHeader

attribute), 377
col_offset (robot.parsing.model.statements.ResourceImport

attribute), 351
col_offset (robot.parsing.model.statements.Return

attribute), 369
col_offset (robot.parsing.model.statements.ReturnStatement

attribute), 382
col_offset (robot.parsing.model.statements.SectionHeader

attribute), 350
col_offset (robot.parsing.model.statements.Setup at-

tribute), 365
col_offset (robot.parsing.model.statements.SingleValue

attribute), 347
col_offset (robot.parsing.model.statements.Statement

attribute), 346
col_offset (robot.parsing.model.statements.SuiteSetup

attribute), 357
col_offset (robot.parsing.model.statements.SuiteTeardown

attribute), 358
col_offset (robot.parsing.model.statements.Tags at-

tribute), 366
col_offset (robot.parsing.model.statements.Teardown

attribute), 365
col_offset (robot.parsing.model.statements.Template

attribute), 367
col_offset (robot.parsing.model.statements.TemplateArguments

attribute), 371
col_offset (robot.parsing.model.statements.TestCaseName

attribute), 363
col_offset (robot.parsing.model.statements.TestSetup

attribute), 359
col_offset (robot.parsing.model.statements.TestTeardown

attribute), 360
col_offset (robot.parsing.model.statements.TestTemplate

attribute), 361
col_offset (robot.parsing.model.statements.TestTimeout

attribute), 361
col_offset (robot.parsing.model.statements.Timeout

attribute), 368
col_offset (robot.parsing.model.statements.TryHeader

attribute), 378
col_offset (robot.parsing.model.statements.Variable

attribute), 362
col_offset (robot.parsing.model.statements.VariablesImport

attribute), 352
col_offset (robot.parsing.model.statements.WhileHeader

attribute), 381
Collections (class in robot.libraries.Collections),

100
colormapwindows()

(robot.libraries.dialogs_py.InputDialog
method), 173

colormapwindows()
(robot.libraries.dialogs_py.MessageDialog
method), 159

colormapwindows()
(robot.libraries.dialogs_py.MultipleSelectionDialog
method), 201

colormapwindows()
(robot.libraries.dialogs_py.PassFailDialog
method), 215

colormapwindows()
(robot.libraries.dialogs_py.SelectionDialog
method), 187

columnconfigure()
(robot.libraries.dialogs_py.InputDialog
method), 174

columnconfigure()
(robot.libraries.dialogs_py.MessageDialog
method), 160

columnconfigure()
(robot.libraries.dialogs_py.MultipleSelectionDialog
method), 202

columnconfigure()
(robot.libraries.dialogs_py.PassFailDialog
method), 216

columnconfigure()
(robot.libraries.dialogs_py.SelectionDialog
method), 188

combine_lists() (robot.libraries.Collections.Collections
method), 102

combined (robot.model.stats.TagStat attribute), 276
combined (robot.model.tagstatistics.TagStatistics at-

tribute), 282
CombinedConverter (class in

robot.running.arguments.typeconverters),
540

CombinedResult (class in
robot.result.executionresult), 414

CombinedTagStat (class in robot.model.stats), 276

646 Index

Robot Framework Documentation, Release 6.0.2

command() (robot.libraries.dialogs_py.InputDialog
method), 174

command() (robot.libraries.dialogs_py.MessageDialog
method), 160

command() (robot.libraries.dialogs_py.MultipleSelectionDialog
method), 202

command() (robot.libraries.dialogs_py.PassFailDialog
method), 216

command() (robot.libraries.dialogs_py.SelectionDialog
method), 188

Comment (class in robot.parsing.model.statements), 385
COMMENT (robot.parsing.lexer.tokens.END attribute),

338
COMMENT (robot.parsing.lexer.tokens.EOS attribute),

336
COMMENT (robot.parsing.lexer.tokens.Token attribute),

335
comment() (robot.libraries.BuiltIn.BuiltIn method), 76
COMMENT_HEADER (robot.parsing.lexer.tokens.END at-

tribute), 338
COMMENT_HEADER (robot.parsing.lexer.tokens.EOS at-

tribute), 336
COMMENT_HEADER (robot.parsing.lexer.tokens.Token

attribute), 334
comment_section()

(robot.parsing.lexer.context.FileContext
method), 323

comment_section()
(robot.parsing.lexer.context.InitFileContext
method), 324

comment_section()
(robot.parsing.lexer.context.ResourceFileContext
method), 324

comment_section()
(robot.parsing.lexer.context.TestCaseFileContext
method), 324

CommentLexer (class in
robot.parsing.lexer.statementlexers), 329

comments_header (robot.conf.languages.Bg at-
tribute), 59

comments_header (robot.conf.languages.Bs at-
tribute), 38

comments_header (robot.conf.languages.Cs at-
tribute), 35

comments_header (robot.conf.languages.De at-
tribute), 42

comments_header (robot.conf.languages.En at-
tribute), 34

comments_header (robot.conf.languages.Es at-
tribute), 51

comments_header (robot.conf.languages.Fi at-
tribute), 40

comments_header (robot.conf.languages.Fr at-
tribute), 41

comments_header (robot.conf.languages.Hi at-
tribute), 63

comments_header (robot.conf.languages.It at-
tribute), 62

comments_header (robot.conf.languages.Language
attribute), 32

comments_header (robot.conf.languages.Nl at-
tribute), 37

comments_header (robot.conf.languages.Pl at-
tribute), 48

comments_header (robot.conf.languages.Pt at-
tribute), 45

comments_header (robot.conf.languages.PtBr
attribute), 44

comments_header (robot.conf.languages.Ro at-
tribute), 60

comments_header (robot.conf.languages.Ru at-
tribute), 52

comments_header (robot.conf.languages.Sv at-
tribute), 58

comments_header (robot.conf.languages.Th at-
tribute), 47

comments_header (robot.conf.languages.Tr at-
tribute), 56

comments_header (robot.conf.languages.Uk at-
tribute), 49

comments_header (robot.conf.languages.ZhCn at-
tribute), 54

comments_header (robot.conf.languages.ZhTw at-
tribute), 55

CommentSection (class in
robot.parsing.model.blocks), 342

CommentSectionHeaderLexer (class in
robot.parsing.lexer.statementlexers), 329

CommentSectionLexer (class in
robot.parsing.lexer.blocklexers), 320

CommentSectionParser (class in
robot.parsing.parser.fileparser), 391

compare() (robot.libraries.XML.ElementComparator
method), 157

compress_text() (in module robot.utils.compress),
595

condition (robot.model.control.IfBranch attribute),
241

condition (robot.model.control.While attribute), 240
condition (robot.parsing.model.blocks.If attribute),

343
condition (robot.parsing.model.blocks.While at-

tribute), 344
condition (robot.parsing.model.statements.ElseHeader

attribute), 376
condition (robot.parsing.model.statements.ElseIfHeader

attribute), 375
condition (robot.parsing.model.statements.IfElseHeader

Index 647

Robot Framework Documentation, Release 6.0.2

attribute), 373
condition (robot.parsing.model.statements.IfHeader

attribute), 374
condition (robot.parsing.model.statements.InlineIfHeader

attribute), 374
condition (robot.parsing.model.statements.WhileHeader

attribute), 381
condition (robot.result.model.IfBranch attribute), 475
condition (robot.result.model.While attribute), 472
condition (robot.running.model.IfBranch attribute),

561
condition (robot.running.model.While attribute), 560
Config (class in robot.parsing.model.statements), 386
CONFIG (robot.parsing.lexer.tokens.END attribute), 338
CONFIG (robot.parsing.lexer.tokens.EOS attribute), 336
CONFIG (robot.parsing.lexer.tokens.Token attribute), 335
config() (robot.libraries.dialogs_py.InputDialog

method), 174
config() (robot.libraries.dialogs_py.MessageDialog

method), 160
config() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 202
config() (robot.libraries.dialogs_py.PassFailDialog

method), 216
config() (robot.libraries.dialogs_py.SelectionDialog

method), 188
config() (robot.model.body.BodyItem method), 228
config() (robot.model.control.Break method), 249
config() (robot.model.control.Continue method), 248
config() (robot.model.control.For method), 239
config() (robot.model.control.If method), 243
config() (robot.model.control.IfBranch method), 242
config() (robot.model.control.Return method), 247
config() (robot.model.control.Try method), 246
config() (robot.model.control.TryBranch method),

244
config() (robot.model.control.While method), 240
config() (robot.model.keyword.Keyword method), 261
config() (robot.model.message.Message method), 263
config() (robot.model.modelobject.ModelObject

method), 265
config() (robot.model.testcase.TestCase method), 284
config() (robot.model.testsuite.TestSuite method), 287
config() (robot.output.loggerhelper.Message

method), 310
config() (robot.result.model.Break method), 488
config() (robot.result.model.Continue method), 486
config() (robot.result.model.For method), 468
config() (robot.result.model.ForIteration method),

466
config() (robot.result.model.If method), 477
config() (robot.result.model.IfBranch method), 475
config() (robot.result.model.Keyword method), 491
config() (robot.result.model.Message method), 463

config() (robot.result.model.Return method), 484
config() (robot.result.model.TestCase method), 494
config() (robot.result.model.TestSuite method), 496
config() (robot.result.model.Try method), 481
config() (robot.result.model.TryBranch method), 479
config() (robot.result.model.While method), 472
config() (robot.result.model.WhileIteration method),

470
config() (robot.running.model.Break method), 569
config() (robot.running.model.Continue method), 568
config() (robot.running.model.For method), 558
config() (robot.running.model.If method), 562
config() (robot.running.model.IfBranch method), 561
config() (robot.running.model.Keyword method), 556
config() (robot.running.model.Return method), 566
config() (robot.running.model.TestCase method), 570
config() (robot.running.model.TestSuite method), 574
config() (robot.running.model.Try method), 565
config() (robot.running.model.TryBranch method),

564
config() (robot.running.model.While method), 560
configure() (robot.libraries.dialogs_py.InputDialog

method), 174
configure() (robot.libraries.dialogs_py.MessageDialog

method), 160
configure() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 202
configure() (robot.libraries.dialogs_py.PassFailDialog

method), 216
configure() (robot.libraries.dialogs_py.SelectionDialog

method), 188
configure() (robot.model.testsuite.TestSuite

method), 287
configure() (robot.result.executionresult.CombinedResult

method), 414
configure() (robot.result.executionresult.Result

method), 413
configure() (robot.result.model.TestSuite method),

499
configure() (robot.running.model.TestSuite method),

572
conjugate() (robot.reporting.stringcache.StringIndex

method), 401
ConnectionCache (class in

robot.utils.connectioncache), 595
console() (in module robot.api.logger), 15
console() (in module robot.output.librarylogger), 306
console() (robot.libdoc.LibDoc method), 619
console() (robot.rebot.Rebot method), 620
console() (robot.run.RobotFramework method), 622
console() (robot.testdoc.TestDoc method), 624
console() (robot.utils.application.Application

method), 591
console_colors (robot.conf.settings.RebotSettings

648 Index

Robot Framework Documentation, Release 6.0.2

attribute), 66
console_colors (robot.conf.settings.RobotSettings

attribute), 65
console_decode() (in module robot.utils.encoding),

597
console_encode() (in module robot.utils.encoding),

597
console_markers (robot.conf.settings.RobotSettings

attribute), 65
console_output_config

(robot.conf.settings.RebotSettings attribute), 66
console_output_config

(robot.conf.settings.RobotSettings attribute), 65
console_type (robot.conf.settings.RobotSettings at-

tribute), 65
console_width (robot.conf.settings.RobotSettings at-

tribute), 65
ConsoleOutput() (in module robot.output.console),

298
ConsoleViewer (class in

robot.libdocpkg.consoleviewer), 69
contains_variable() (in module

robot.variables.search), 611
content() (robot.utils.markupwriters.HtmlWriter

method), 602
content() (robot.utils.markupwriters.NullMarkupWriter

method), 603
content() (robot.utils.markupwriters.XmlWriter

method), 603
ContinuableFailure, 12
CONTINUATION (robot.parsing.lexer.tokens.END at-

tribute), 338
CONTINUATION (robot.parsing.lexer.tokens.EOS

attribute), 336
CONTINUATION (robot.parsing.lexer.tokens.Token at-

tribute), 335
Continue (class in robot.model.control), 248
Continue (class in robot.parsing.model.statements),

383
Continue (class in robot.result.model), 485
Continue (class in robot.running.model), 567
CONTINUE (robot.model.body.BodyItem attribute), 228
CONTINUE (robot.model.control.Break attribute), 249
CONTINUE (robot.model.control.Continue attribute),

248
CONTINUE (robot.model.control.For attribute), 239
CONTINUE (robot.model.control.If attribute), 243
CONTINUE (robot.model.control.IfBranch attribute), 241
CONTINUE (robot.model.control.Return attribute), 247
CONTINUE (robot.model.control.Try attribute), 245
CONTINUE (robot.model.control.TryBranch attribute),

244
CONTINUE (robot.model.control.While attribute), 240
CONTINUE (robot.model.keyword.Keyword attribute),

260
CONTINUE (robot.model.message.Message attribute),

263
CONTINUE (robot.output.loggerhelper.Message at-

tribute), 309
CONTINUE (robot.parsing.lexer.tokens.END attribute),

338
CONTINUE (robot.parsing.lexer.tokens.EOS attribute),

336
CONTINUE (robot.parsing.lexer.tokens.Token attribute),

335
CONTINUE (robot.result.model.Break attribute), 488
CONTINUE (robot.result.model.Continue attribute), 486
CONTINUE (robot.result.model.For attribute), 467
CONTINUE (robot.result.model.ForIteration attribute),

465
CONTINUE (robot.result.model.If attribute), 476
CONTINUE (robot.result.model.IfBranch attribute), 474
CONTINUE (robot.result.model.Keyword attribute), 491
CONTINUE (robot.result.model.Message attribute), 463
CONTINUE (robot.result.model.Return attribute), 483
CONTINUE (robot.result.model.Try attribute), 481
CONTINUE (robot.result.model.TryBranch attribute),

478
CONTINUE (robot.result.model.While attribute), 472
CONTINUE (robot.result.model.WhileIteration attribute),

470
CONTINUE (robot.running.model.Break attribute), 569
CONTINUE (robot.running.model.Continue attribute),

567
CONTINUE (robot.running.model.For attribute), 558
CONTINUE (robot.running.model.If attribute), 562
CONTINUE (robot.running.model.IfBranch attribute),

560
CONTINUE (robot.running.model.Keyword attribute),

555
CONTINUE (robot.running.model.Return attribute), 566
CONTINUE (robot.running.model.Try attribute), 565
CONTINUE (robot.running.model.TryBranch attribute),

563
CONTINUE (robot.running.model.While attribute), 559
continue_class (robot.model.body.BaseBody

attribute), 229
continue_class (robot.model.body.Body attribute),

231
continue_class (robot.model.body.Branches at-

tribute), 232
continue_class (robot.result.model.Body attribute),

458
continue_class (robot.result.model.Branches

attribute), 459
continue_class (robot.result.model.Iterations at-

tribute), 461
continue_class (robot.running.model.Body at-

Index 649

Robot Framework Documentation, Release 6.0.2

tribute), 554
continue_for_loop()

(robot.libraries.BuiltIn.BuiltIn method),
76

continue_for_loop_if()
(robot.libraries.BuiltIn.BuiltIn method),
77

continue_on_failure (robot.errors.BreakLoop at-
tribute), 617

continue_on_failure (robot.errors.ContinueLoop
attribute), 617

continue_on_failure
(robot.errors.ExecutionFailed attribute),
615

continue_on_failure
(robot.errors.ExecutionFailures attribute),
616

continue_on_failure
(robot.errors.ExecutionPassed attribute),
616

continue_on_failure
(robot.errors.ExecutionStatus attribute),
614

continue_on_failure
(robot.errors.HandlerExecutionFailed at-
tribute), 615

continue_on_failure (robot.errors.PassExecution
attribute), 617

continue_on_failure
(robot.errors.ReturnFromKeyword attribute),
618

continue_on_failure
(robot.errors.UserKeywordExecutionFailed
attribute), 616

ContinueHandler (class in
robot.result.xmlelementhandlers), 522

ContinueLexer (class in
robot.parsing.lexer.statementlexers), 333

ContinueLoop, 617
convert() (robot.running.arguments.argumentconverter.ArgumentConverter

method), 528
convert() (robot.running.arguments.argumentspec.ArgumentSpec

method), 530
convert() (robot.running.arguments.typeconverters.BooleanConverter

method), 533
convert() (robot.running.arguments.typeconverters.ByteArrayConverter

method), 535
convert() (robot.running.arguments.typeconverters.BytesConverter

method), 535
convert() (robot.running.arguments.typeconverters.CombinedConverter

method), 540
convert() (robot.running.arguments.typeconverters.CustomConverter

method), 540
convert() (robot.running.arguments.typeconverters.DateConverter

method), 536
convert() (robot.running.arguments.typeconverters.DateTimeConverter

method), 535
convert() (robot.running.arguments.typeconverters.DecimalConverter

method), 534
convert() (robot.running.arguments.typeconverters.DictionaryConverter

method), 539
convert() (robot.running.arguments.typeconverters.EnumConverter

method), 532
convert() (robot.running.arguments.typeconverters.FloatConverter

method), 534
convert() (robot.running.arguments.typeconverters.FrozenSetConverter

method), 540
convert() (robot.running.arguments.typeconverters.IntegerConverter

method), 533
convert() (robot.running.arguments.typeconverters.ListConverter

method), 538
convert() (robot.running.arguments.typeconverters.NoneConverter

method), 537
convert() (robot.running.arguments.typeconverters.PathConverter

method), 537
convert() (robot.running.arguments.typeconverters.SetConverter

method), 539
convert() (robot.running.arguments.typeconverters.StringConverter

method), 532
convert() (robot.running.arguments.typeconverters.TimeDeltaConverter

method), 536
convert() (robot.running.arguments.typeconverters.TupleConverter

method), 538
convert() (robot.running.arguments.typeconverters.TypeConverter

method), 532
convert() (robot.running.arguments.typeconverters.TypedDictConverter

method), 538
convert() (robot.testdoc.JsonConverter method), 624
convert_date() (in module

robot.libraries.DateTime), 109
convert_docs_to_html()

(robot.libdocpkg.model.LibraryDoc method),
71

convert_time() (in module
robot.libraries.DateTime), 110

convert_to_binary()
(robot.libraries.BuiltIn.BuiltIn method),
77

convert_to_boolean()
(robot.libraries.BuiltIn.BuiltIn method),
77

convert_to_bytes()
(robot.libraries.BuiltIn.BuiltIn method),
77

convert_to_dictionary()
(robot.libraries.Collections.Collections
method), 102

convert_to_hex() (robot.libraries.BuiltIn.BuiltIn

650 Index

Robot Framework Documentation, Release 6.0.2

method), 77
convert_to_integer()

(robot.libraries.BuiltIn.BuiltIn method),
78

convert_to_list()
(robot.libraries.Collections.Collections
method), 102

convert_to_lower_case()
(robot.libraries.String.String method), 132

convert_to_number()
(robot.libraries.BuiltIn.BuiltIn method),
78

convert_to_octal()
(robot.libraries.BuiltIn.BuiltIn method),
78

convert_to_string()
(robot.libraries.BuiltIn.BuiltIn method),
78

convert_to_title_case()
(robot.libraries.String.String method), 132

convert_to_upper_case()
(robot.libraries.String.String method), 132

convert_type_list_to_dict()
(robot.running.arguments.typevalidator.TypeValidator
method), 541

converter_for() (robot.running.arguments.typeconverters.BooleanConverter
class method), 533

converter_for() (robot.running.arguments.typeconverters.ByteArrayConverter
class method), 535

converter_for() (robot.running.arguments.typeconverters.BytesConverter
class method), 535

converter_for() (robot.running.arguments.typeconverters.CombinedConverter
class method), 540

converter_for() (robot.running.arguments.typeconverters.CustomConverter
class method), 541

converter_for() (robot.running.arguments.typeconverters.DateConverter
class method), 536

converter_for() (robot.running.arguments.typeconverters.DateTimeConverter
class method), 536

converter_for() (robot.running.arguments.typeconverters.DecimalConverter
class method), 534

converter_for() (robot.running.arguments.typeconverters.DictionaryConverter
class method), 539

converter_for() (robot.running.arguments.typeconverters.EnumConverter
class method), 532

converter_for() (robot.running.arguments.typeconverters.FloatConverter
class method), 534

converter_for() (robot.running.arguments.typeconverters.FrozenSetConverter
class method), 540

converter_for() (robot.running.arguments.typeconverters.IntegerConverter
class method), 533

converter_for() (robot.running.arguments.typeconverters.ListConverter
class method), 538

converter_for() (robot.running.arguments.typeconverters.NoneConverter

class method), 537
converter_for() (robot.running.arguments.typeconverters.PathConverter

class method), 537
converter_for() (robot.running.arguments.typeconverters.SetConverter

class method), 539
converter_for() (robot.running.arguments.typeconverters.StringConverter

class method), 532
converter_for() (robot.running.arguments.typeconverters.TimeDeltaConverter

class method), 536
converter_for() (robot.running.arguments.typeconverters.TupleConverter

class method), 538
converter_for() (robot.running.arguments.typeconverters.TypeConverter

class method), 532
converter_for() (robot.running.arguments.typeconverters.TypedDictConverter

class method), 538
ConverterInfo (class in

robot.running.arguments.customconverters),
531

copy() (robot.model.body.BodyItem method), 228
copy() (robot.model.control.Break method), 249
copy() (robot.model.control.Continue method), 248
copy() (robot.model.control.For method), 239
copy() (robot.model.control.If method), 243
copy() (robot.model.control.IfBranch method), 242
copy() (robot.model.control.Return method), 247
copy() (robot.model.control.Try method), 246
copy() (robot.model.control.TryBranch method), 245
copy() (robot.model.control.While method), 241
copy() (robot.model.keyword.Keyword method), 261
copy() (robot.model.message.Message method), 263
copy() (robot.model.metadata.Metadata method), 264
copy() (robot.model.modelobject.ModelObject

method), 265
copy() (robot.model.testcase.TestCase method), 284
copy() (robot.model.testsuite.TestSuite method), 287
copy() (robot.output.loggerhelper.Message method),

310
copy() (robot.result.model.Break method), 489
copy() (robot.result.model.Continue method), 486
copy() (robot.result.model.For method), 468
copy() (robot.result.model.ForIteration method), 466
copy() (robot.result.model.If method), 477
copy() (robot.result.model.IfBranch method), 475
copy() (robot.result.model.Keyword method), 491
copy() (robot.result.model.Message method), 463
copy() (robot.result.model.Return method), 484
copy() (robot.result.model.TestCase method), 494
copy() (robot.result.model.TestSuite method), 496
copy() (robot.result.model.Try method), 482
copy() (robot.result.model.TryBranch method), 479
copy() (robot.result.model.While method), 473
copy() (robot.result.model.WhileIteration method), 470
copy() (robot.running.model.Break method), 569
copy() (robot.running.model.Continue method), 568

Index 651

Robot Framework Documentation, Release 6.0.2

copy() (robot.running.model.For method), 558
copy() (robot.running.model.If method), 562
copy() (robot.running.model.IfBranch method), 561
copy() (robot.running.model.Keyword method), 556
copy() (robot.running.model.Return method), 567
copy() (robot.running.model.TestCase method), 570
copy() (robot.running.model.TestSuite method), 574
copy() (robot.running.model.Try method), 565
copy() (robot.running.model.TryBranch method), 564
copy() (robot.running.model.While method), 560
copy() (robot.utils.dotdict.DotDict method), 596
copy() (robot.utils.normalizing.NormalizedDict

method), 605
copy() (robot.variables.scopes.GlobalVariables

method), 610
copy() (robot.variables.variables.Variables method),

613
copy_dictionary()

(robot.libraries.Collections.Collections
method), 102

copy_directory() (robot.libraries.OperatingSystem.OperatingSystem
method), 118

copy_element() (robot.libraries.XML.XML method),
156

copy_file() (robot.libraries.OperatingSystem.OperatingSystem
method), 118

copy_files() (robot.libraries.OperatingSystem.OperatingSystem
method), 118

copy_list() (robot.libraries.Collections.Collections
method), 102

count() (robot.model.body.BaseBody method), 230
count() (robot.model.body.Body method), 231
count() (robot.model.body.Branches method), 232
count() (robot.model.itemlist.ItemList method), 259
count() (robot.model.keyword.Keywords method), 262
count() (robot.model.message.Messages method), 264
count() (robot.model.testcase.TestCases method), 284
count() (robot.model.testsuite.TestSuites method), 288
count() (robot.result.model.Body method), 458
count() (robot.result.model.Branches method), 459
count() (robot.result.model.Iterations method), 461
count() (robot.running.model.Body method), 554
count() (robot.running.model.Imports method), 576
count_directories_in_directory()

(robot.libraries.OperatingSystem.OperatingSystem
method), 122

count_files_in_directory()
(robot.libraries.OperatingSystem.OperatingSystem
method), 122

count_items_in_directory()
(robot.libraries.OperatingSystem.OperatingSystem
method), 122

count_values_in_list()
(robot.libraries.Collections.Collections

method), 102
create (robot.model.body.BaseBody attribute), 229
create (robot.model.body.Body attribute), 231
create (robot.model.body.Branches attribute), 232
create (robot.result.model.Body attribute), 458
create (robot.result.model.Branches attribute), 460
create (robot.result.model.Iterations attribute), 461
create (robot.running.model.Body attribute), 554
create() (robot.model.itemlist.ItemList method), 259
create() (robot.model.keyword.Keywords method),

261
create() (robot.model.message.Messages method),

264
create() (robot.model.testcase.TestCases method),

284
create() (robot.model.testsuite.TestSuites method),

288
create() (robot.running.bodyrunner.DurationLimit

class method), 550
create() (robot.running.bodyrunner.IterationCountLimit

class method), 550
create() (robot.running.bodyrunner.NoLimit class

method), 550
create() (robot.running.bodyrunner.WhileLimit class

method), 550
create() (robot.running.model.Imports method), 576
create_binary_file()

(robot.libraries.OperatingSystem.OperatingSystem
method), 117

create_branch() (robot.model.body.Branches
method), 232

create_branch() (robot.result.model.Branches
method), 460

create_break() (robot.model.body.BaseBody
method), 229

create_break() (robot.model.body.Body method),
231

create_break() (robot.model.body.Branches
method), 232

create_break() (robot.result.model.Body method),
458

create_break() (robot.result.model.Branches
method), 460

create_break() (robot.result.model.Iterations
method), 461

create_break() (robot.running.model.Body
method), 554

create_continue() (robot.model.body.BaseBody
method), 229

create_continue() (robot.model.body.Body
method), 231

create_continue() (robot.model.body.Branches
method), 232

create_continue() (robot.result.model.Body

652 Index

Robot Framework Documentation, Release 6.0.2

method), 458
create_continue() (robot.result.model.Branches

method), 460
create_continue() (robot.result.model.Iterations

method), 461
create_continue() (robot.running.model.Body

method), 554
create_dictionary()

(robot.libraries.BuiltIn.BuiltIn method),
79

create_directory()
(robot.libraries.OperatingSystem.OperatingSystem
method), 117

create_file() (robot.libraries.OperatingSystem.OperatingSystem
method), 116

create_fixture() (in module robot.model.fixture),
258

create_for() (robot.model.body.BaseBody method),
229

create_for() (robot.model.body.Body method), 231
create_for() (robot.model.body.Branches method),

233
create_for() (robot.result.model.Body method), 458
create_for() (robot.result.model.Branches method),

460
create_for() (robot.result.model.Iterations method),

461
create_for() (robot.running.model.Body method),

554
create_if() (robot.model.body.BaseBody method),

229
create_if() (robot.model.body.Body method), 231
create_if() (robot.model.body.Branches method),

233
create_if() (robot.result.model.Body method), 458
create_if() (robot.result.model.Branches method),

460
create_if() (robot.result.model.Iterations method),

461
create_if() (robot.running.model.Body method),

554
create_iteration() (robot.result.model.Iterations

method), 461
create_keyword() (robot.model.body.BaseBody

method), 229
create_keyword() (robot.model.body.Body

method), 231
create_keyword() (robot.model.body.Branches

method), 233
create_keyword() (robot.result.model.Body

method), 458
create_keyword() (robot.result.model.Branches

method), 460
create_keyword() (robot.result.model.Iterations

method), 461
create_keyword() (robot.running.model.Body

method), 554
create_link_target()

(robot.reporting.jsbuildingcontext.JsBuildingContext
method), 393

create_list() (robot.libraries.BuiltIn.BuiltIn
method), 79

create_message() (robot.model.body.BaseBody
method), 229

create_message() (robot.model.body.Body
method), 231

create_message() (robot.model.body.Branches
method), 233

create_message() (robot.result.model.Body
method), 458

create_message() (robot.result.model.Branches
method), 460

create_message() (robot.result.model.Iterations
method), 461

create_message() (robot.running.model.Body
method), 554

create_return() (robot.model.body.BaseBody
method), 229

create_return() (robot.model.body.Body method),
231

create_return() (robot.model.body.Branches
method), 233

create_return() (robot.result.model.Body method),
458

create_return() (robot.result.model.Branches
method), 460

create_return() (robot.result.model.Iterations
method), 461

create_return() (robot.running.model.Body
method), 554

create_runner() (robot.running.handlers.EmbeddedArgumentsHandler
method), 551

create_runner() (robot.running.usererrorhandler.UserErrorHandler
method), 589

create_runner() (robot.running.userkeyword.EmbeddedArgumentsHandler
method), 590

create_runner() (robot.running.userkeyword.UserKeywordHandler
method), 590

create_setup() (robot.model.keyword.Keywords
method), 261

create_teardown()
(robot.model.keyword.Keywords method),
261

create_try() (robot.model.body.BaseBody method),
229

create_try() (robot.model.body.Body method), 231
create_try() (robot.model.body.Branches method),

233

Index 653

Robot Framework Documentation, Release 6.0.2

create_try() (robot.result.model.Body method), 458
create_try() (robot.result.model.Branches method),

460
create_try() (robot.result.model.Iterations method),

461
create_try() (robot.running.model.Body method),

554
create_while() (robot.model.body.BaseBody

method), 229
create_while() (robot.model.body.Body method),

231
create_while() (robot.model.body.Branches

method), 233
create_while() (robot.result.model.Body method),

458
create_while() (robot.result.model.Branches

method), 460
create_while() (robot.result.model.Iterations

method), 461
create_while() (robot.running.model.Body

method), 554
createLock() (robot.output.pyloggingconf.RobotHandler

method), 312
critical (robot.result.model.TestCase attribute), 493
Cs (class in robot.conf.languages), 35
CssFileWriter (class in

robot.htmldata.htmlfilewriter), 67
current (robot.model.suitestatistics.SuiteStatisticsBuilder

attribute), 276
current (robot.running.context.ExecutionContexts at-

tribute), 550
current (robot.utils.connectioncache.ConnectionCache

attribute), 595
current (robot.variables.scopes.VariableScopes

attribute), 609
current_index (robot.utils.connectioncache.ConnectionCache

attribute), 595
current_output (robot.libraries.Telnet.TerminalEmulator

attribute), 146
CUSTOM (robot.libdocpkg.datatypes.TypeDoc attribute),

70
CustomArgumentConverters (class in

robot.running.arguments.customconverters),
531

CustomConverter (class in
robot.running.arguments.typeconverters),
540

D
data (robot.running.modelcombiner.ModelCombiner at-

tribute), 577
data_tokens (robot.parsing.model.statements.Arguments

attribute), 369

data_tokens (robot.parsing.model.statements.Break
attribute), 384

data_tokens (robot.parsing.model.statements.Comment
attribute), 385

data_tokens (robot.parsing.model.statements.Config
attribute), 386

data_tokens (robot.parsing.model.statements.Continue
attribute), 383

data_tokens (robot.parsing.model.statements.DefaultTags
attribute), 356

data_tokens (robot.parsing.model.statements.Documentation
attribute), 353

data_tokens (robot.parsing.model.statements.DocumentationOrMetadata
attribute), 346

data_tokens (robot.parsing.model.statements.ElseHeader
attribute), 376

data_tokens (robot.parsing.model.statements.ElseIfHeader
attribute), 375

data_tokens (robot.parsing.model.statements.EmptyLine
attribute), 388

data_tokens (robot.parsing.model.statements.End at-
tribute), 380

data_tokens (robot.parsing.model.statements.Error
attribute), 387

data_tokens (robot.parsing.model.statements.ExceptHeader
attribute), 379

data_tokens (robot.parsing.model.statements.FinallyHeader
attribute), 379

data_tokens (robot.parsing.model.statements.Fixture
attribute), 349

data_tokens (robot.parsing.model.statements.ForceTags
attribute), 355

data_tokens (robot.parsing.model.statements.ForHeader
attribute), 372

data_tokens (robot.parsing.model.statements.IfElseHeader
attribute), 373

data_tokens (robot.parsing.model.statements.IfHeader
attribute), 374

data_tokens (robot.parsing.model.statements.InlineIfHeader
attribute), 374

data_tokens (robot.parsing.model.statements.KeywordCall
attribute), 370

data_tokens (robot.parsing.model.statements.KeywordName
attribute), 364

data_tokens (robot.parsing.model.statements.KeywordTags
attribute), 356

data_tokens (robot.parsing.model.statements.LibraryImport
attribute), 351

data_tokens (robot.parsing.model.statements.LoopControl
attribute), 383

data_tokens (robot.parsing.model.statements.Metadata
attribute), 354

data_tokens (robot.parsing.model.statements.MultiValue
attribute), 348

654 Index

Robot Framework Documentation, Release 6.0.2

data_tokens (robot.parsing.model.statements.NoArgumentHeader
attribute), 377

data_tokens (robot.parsing.model.statements.ResourceImport
attribute), 351

data_tokens (robot.parsing.model.statements.Return
attribute), 369

data_tokens (robot.parsing.model.statements.ReturnStatement
attribute), 382

data_tokens (robot.parsing.model.statements.SectionHeader
attribute), 350

data_tokens (robot.parsing.model.statements.Setup
attribute), 365

data_tokens (robot.parsing.model.statements.SingleValue
attribute), 347

data_tokens (robot.parsing.model.statements.Statement
attribute), 346

data_tokens (robot.parsing.model.statements.SuiteSetup
attribute), 357

data_tokens (robot.parsing.model.statements.SuiteTeardown
attribute), 358

data_tokens (robot.parsing.model.statements.Tags
attribute), 366

data_tokens (robot.parsing.model.statements.Teardown
attribute), 365

data_tokens (robot.parsing.model.statements.Template
attribute), 367

data_tokens (robot.parsing.model.statements.TemplateArguments
attribute), 371

data_tokens (robot.parsing.model.statements.TestCaseName
attribute), 363

data_tokens (robot.parsing.model.statements.TestSetup
attribute), 359

data_tokens (robot.parsing.model.statements.TestTeardown
attribute), 360

data_tokens (robot.parsing.model.statements.TestTemplate
attribute), 361

data_tokens (robot.parsing.model.statements.TestTimeout
attribute), 361

data_tokens (robot.parsing.model.statements.Timeout
attribute), 368

data_tokens (robot.parsing.model.statements.TryHeader
attribute), 378

data_tokens (robot.parsing.model.statements.Variable
attribute), 362

data_tokens (robot.parsing.model.statements.VariablesImport
attribute), 352

data_tokens (robot.parsing.model.statements.WhileHeader
attribute), 381

DataError, 613
DateConverter (class in

robot.running.arguments.typeconverters),
536

DateTimeConverter (class in
robot.running.arguments.typeconverters),

535
De (class in robot.conf.languages), 42
debug() (in module robot.api.logger), 15
debug() (in module robot.output.librarylogger), 305
debug() (robot.output.filelogger.FileLogger method),

305
debug() (robot.output.logger.Logger method), 309
debug() (robot.output.loggerhelper.AbstractLogger

method), 309
debug() (robot.output.output.Output method), 311
debug() (robot.utils.importer.NoLogger method), 602
debug_file (robot.conf.settings.RobotSettings at-

tribute), 65
DebugFile() (in module robot.output.debugfile), 305
DecimalConverter (class in

robot.running.arguments.typeconverters),
534

decode_bytes_to_string()
(robot.libraries.String.String method), 133

deepcopy() (robot.model.body.BodyItem method),
229

deepcopy() (robot.model.control.Break method), 250
deepcopy() (robot.model.control.Continue method),

248
deepcopy() (robot.model.control.For method), 239
deepcopy() (robot.model.control.If method), 243
deepcopy() (robot.model.control.IfBranch method),

242
deepcopy() (robot.model.control.Return method), 247
deepcopy() (robot.model.control.Try method), 246
deepcopy() (robot.model.control.TryBranch method),

245
deepcopy() (robot.model.control.While method), 241
deepcopy() (robot.model.keyword.Keyword method),

261
deepcopy() (robot.model.message.Message method),

263
deepcopy() (robot.model.modelobject.ModelObject

method), 265
deepcopy() (robot.model.testcase.TestCase method),

284
deepcopy() (robot.model.testsuite.TestSuite method),

287
deepcopy() (robot.output.loggerhelper.Message

method), 310
deepcopy() (robot.result.model.Break method), 489
deepcopy() (robot.result.model.Continue method),

486
deepcopy() (robot.result.model.For method), 468
deepcopy() (robot.result.model.ForIteration method),

466
deepcopy() (robot.result.model.If method), 477
deepcopy() (robot.result.model.IfBranch method),

475

Index 655

Robot Framework Documentation, Release 6.0.2

deepcopy() (robot.result.model.Keyword method),
492

deepcopy() (robot.result.model.Message method),
463

deepcopy() (robot.result.model.Return method), 484
deepcopy() (robot.result.model.TestCase method),

494
deepcopy() (robot.result.model.TestSuite method),

496
deepcopy() (robot.result.model.Try method), 482
deepcopy() (robot.result.model.TryBranch method),

479
deepcopy() (robot.result.model.While method), 473
deepcopy() (robot.result.model.WhileIteration

method), 470
deepcopy() (robot.running.model.Break method), 569
deepcopy() (robot.running.model.Continue method),

568
deepcopy() (robot.running.model.For method), 558
deepcopy() (robot.running.model.If method), 563
deepcopy() (robot.running.model.IfBranch method),

561
deepcopy() (robot.running.model.Keyword method),

556
deepcopy() (robot.running.model.Return method),

567
deepcopy() (robot.running.model.TestCase method),

570
deepcopy() (robot.running.model.TestSuite method),

574
deepcopy() (robot.running.model.Try method), 565
deepcopy() (robot.running.model.TryBranch method),

564
deepcopy() (robot.running.model.While method), 560
default_repr (robot.running.arguments.argumentspec.ArgInfo

attribute), 530
DEFAULT_TAGS (robot.parsing.lexer.tokens.END at-

tribute), 338
DEFAULT_TAGS (robot.parsing.lexer.tokens.EOS

attribute), 336
DEFAULT_TAGS (robot.parsing.lexer.tokens.Token at-

tribute), 334
DefaultLogger (class in robot.utils.application), 591
Defaults (class in robot.running.builder.settings), 543
DefaultTags (class in

robot.parsing.model.statements), 355
DefaultValue (class in

robot.running.arguments.argumentmapper),
529

deiconify() (robot.libraries.dialogs_py.InputDialog
method), 174

deiconify() (robot.libraries.dialogs_py.MessageDialog
method), 160

deiconify() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 202
deiconify() (robot.libraries.dialogs_py.PassFailDialog

method), 216
deiconify() (robot.libraries.dialogs_py.SelectionDialog

method), 188
delayed_logging (robot.output.logger.Logger at-

tribute), 308
deletecommand() (robot.libraries.dialogs_py.InputDialog

method), 174
deletecommand() (robot.libraries.dialogs_py.MessageDialog

method), 160
deletecommand() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 202
deletecommand() (robot.libraries.dialogs_py.PassFailDialog

method), 216
deletecommand() (robot.libraries.dialogs_py.SelectionDialog

method), 188
deleter() (robot.utils.misc.classproperty method),

604
denominator (robot.reporting.stringcache.StringIndex

attribute), 401
deprecate_tags_starting_with_hyphen()

(in module robot.running.builder.transformers),
548

deprecated() (in module
robot.result.modeldeprecation), 499

DeprecatedAttributesMixin (class in
robot.result.modeldeprecation), 499

deprecation_message
(robot.model.keyword.Keywords attribute),
261

destroy() (robot.libraries.dialogs_py.InputDialog
method), 174

destroy() (robot.libraries.dialogs_py.MessageDialog
method), 160

destroy() (robot.libraries.dialogs_py.MultipleSelectionDialog
method), 202

destroy() (robot.libraries.dialogs_py.PassFailDialog
method), 216

destroy() (robot.libraries.dialogs_py.SelectionDialog
method), 188

DictDumper (class in robot.htmldata.jsonwriter), 68
dictionaries_should_be_equal()

(robot.libraries.Collections.Collections
method), 102

dictionary_should_contain_item()
(robot.libraries.Collections.Collections
method), 102

dictionary_should_contain_key()
(robot.libraries.Collections.Collections
method), 102

dictionary_should_contain_sub_dictionary()
(robot.libraries.Collections.Collections
method), 103

656 Index

Robot Framework Documentation, Release 6.0.2

dictionary_should_contain_value()
(robot.libraries.Collections.Collections
method), 103

dictionary_should_not_contain_key()
(robot.libraries.Collections.Collections
method), 103

dictionary_should_not_contain_value()
(robot.libraries.Collections.Collections
method), 103

DictionaryConverter (class in
robot.running.arguments.typeconverters),
539

DictToKwargs (class in
robot.running.arguments.argumentresolver),
529

DictVariableTableValue (class in
robot.variables.tablesetter), 612

directory (robot.running.model.Import attribute),
576

directory_should_be_empty()
(robot.libraries.OperatingSystem.OperatingSystem
method), 116

directory_should_exist()
(robot.libraries.OperatingSystem.OperatingSystem
method), 116

directory_should_not_be_empty()
(robot.libraries.OperatingSystem.OperatingSystem
method), 116

directory_should_not_exist()
(robot.libraries.OperatingSystem.OperatingSystem
method), 116

disable_library_import_logging()
(robot.output.logger.Logger method), 308

disable_message_cache()
(robot.output.logger.Logger method), 308

discard_suite_scope()
(robot.output.listenermethods.LibraryListenerMethods
method), 307

discard_suite_scope()
(robot.output.listeners.LibraryListeners
method), 307

doc (robot.libdocpkg.model.LibraryDoc attribute), 71
doc (robot.model.keyword.Keyword attribute), 259
doc (robot.model.stats.TagStat attribute), 276
doc (robot.model.testcase.TestCase attribute), 283
doc (robot.model.testsuite.TestSuite attribute), 285
doc (robot.result.model.Break attribute), 488
doc (robot.result.model.Continue attribute), 485
doc (robot.result.model.For attribute), 467
doc (robot.result.model.ForIteration attribute), 465
doc (robot.result.model.If attribute), 476
doc (robot.result.model.IfBranch attribute), 474
doc (robot.result.model.Keyword attribute), 492
doc (robot.result.model.Return attribute), 483

doc (robot.result.model.TestCase attribute), 494
doc (robot.result.model.TestSuite attribute), 496
doc (robot.result.model.Try attribute), 481
doc (robot.result.model.TryBranch attribute), 478
doc (robot.result.model.While attribute), 472
doc (robot.result.model.WhileIteration attribute), 469
doc (robot.running.arguments.customconverters.ConverterInfo

attribute), 531
doc (robot.running.arguments.typeconverters.BooleanConverter

attribute), 533
doc (robot.running.arguments.typeconverters.ByteArrayConverter

attribute), 535
doc (robot.running.arguments.typeconverters.BytesConverter

attribute), 535
doc (robot.running.arguments.typeconverters.CombinedConverter

attribute), 540
doc (robot.running.arguments.typeconverters.CustomConverter

attribute), 541
doc (robot.running.arguments.typeconverters.DateConverter

attribute), 536
doc (robot.running.arguments.typeconverters.DateTimeConverter

attribute), 536
doc (robot.running.arguments.typeconverters.DecimalConverter

attribute), 534
doc (robot.running.arguments.typeconverters.DictionaryConverter

attribute), 539
doc (robot.running.arguments.typeconverters.EnumConverter

attribute), 532
doc (robot.running.arguments.typeconverters.FloatConverter

attribute), 534
doc (robot.running.arguments.typeconverters.FrozenSetConverter

attribute), 540
doc (robot.running.arguments.typeconverters.IntegerConverter

attribute), 533
doc (robot.running.arguments.typeconverters.ListConverter

attribute), 538
doc (robot.running.arguments.typeconverters.NoneConverter

attribute), 537
doc (robot.running.arguments.typeconverters.PathConverter

attribute), 537
doc (robot.running.arguments.typeconverters.SetConverter

attribute), 539
doc (robot.running.arguments.typeconverters.StringConverter

attribute), 532
doc (robot.running.arguments.typeconverters.TimeDeltaConverter

attribute), 536
doc (robot.running.arguments.typeconverters.TupleConverter

attribute), 538
doc (robot.running.arguments.typeconverters.TypeConverter

attribute), 532
doc (robot.running.arguments.typeconverters.TypedDictConverter

attribute), 539
doc (robot.running.model.Keyword attribute), 556
doc (robot.running.model.TestCase attribute), 571

Index 657

Robot Framework Documentation, Release 6.0.2

doc (robot.running.model.TestSuite attribute), 574
doc (robot.running.usererrorhandler.UserErrorHandler

attribute), 589
doc_format (robot.libdocpkg.model.LibraryDoc at-

tribute), 71
DocFormatter (class in robot.libdocpkg.htmlutils), 70
DocHandler (class in

robot.result.xmlelementhandlers), 523
DocToHtml (class in robot.libdocpkg.htmlutils), 70
Documentation (class in

robot.parsing.model.statements), 353
DOCUMENTATION (robot.parsing.lexer.tokens.END at-

tribute), 338
DOCUMENTATION (robot.parsing.lexer.tokens.EOS at-

tribute), 336
DOCUMENTATION (robot.parsing.lexer.tokens.Token at-

tribute), 334
documentation_setting (robot.conf.languages.Bg

attribute), 59
documentation_setting (robot.conf.languages.Bs

attribute), 38
documentation_setting (robot.conf.languages.Cs

attribute), 36
documentation_setting (robot.conf.languages.De

attribute), 42
documentation_setting (robot.conf.languages.En

attribute), 34
documentation_setting (robot.conf.languages.Es

attribute), 51
documentation_setting (robot.conf.languages.Fi

attribute), 40
documentation_setting (robot.conf.languages.Fr

attribute), 41
documentation_setting (robot.conf.languages.Hi

attribute), 63
documentation_setting (robot.conf.languages.It

attribute), 62
documentation_setting

(robot.conf.languages.Language attribute),
33

documentation_setting (robot.conf.languages.Nl
attribute), 37

documentation_setting (robot.conf.languages.Pl
attribute), 48

documentation_setting (robot.conf.languages.Pt
attribute), 45

documentation_setting
(robot.conf.languages.PtBr attribute), 44

documentation_setting (robot.conf.languages.Ro
attribute), 61

documentation_setting (robot.conf.languages.Ru
attribute), 52

documentation_setting (robot.conf.languages.Sv
attribute), 58

documentation_setting (robot.conf.languages.Th
attribute), 47

documentation_setting (robot.conf.languages.Tr
attribute), 56

documentation_setting (robot.conf.languages.Uk
attribute), 49

documentation_setting
(robot.conf.languages.ZhCn attribute), 54

documentation_setting
(robot.conf.languages.ZhTw attribute), 55

DocumentationBuilder (class in
robot.libdocpkg.builder), 69

DocumentationOrMetadata (class in
robot.parsing.model.statements), 346

dont_continue (robot.errors.BreakLoop attribute),
617

dont_continue (robot.errors.ContinueLoop at-
tribute), 617

dont_continue (robot.errors.ExecutionFailed at-
tribute), 615

dont_continue (robot.errors.ExecutionFailures at-
tribute), 616

dont_continue (robot.errors.ExecutionPassed
attribute), 616

dont_continue (robot.errors.ExecutionStatus at-
tribute), 614

dont_continue (robot.errors.HandlerExecutionFailed
attribute), 615

dont_continue (robot.errors.PassExecution at-
tribute), 617

dont_continue (robot.errors.ReturnFromKeyword
attribute), 618

dont_continue (robot.errors.UserKeywordExecutionFailed
attribute), 616

DosHighlighter (class in
robot.output.console.highlighting), 303

DotDict (class in robot.utils.dotdict), 596
DottedImporter (class in robot.utils.importer), 602
DottedOutput (class in robot.output.console.dotted),

298
dry_run (robot.conf.settings.RobotSettings attribute),

65
dry_run() (robot.running.librarykeywordrunner.EmbeddedArgumentsRunner

method), 552
dry_run() (robot.running.librarykeywordrunner.LibraryKeywordRunner

method), 552
dry_run() (robot.running.librarykeywordrunner.RunKeywordRunner

method), 552
dry_run() (robot.running.usererrorhandler.UserErrorHandler

method), 589
dry_run() (robot.running.userkeywordrunner.EmbeddedArgumentsRunner

method), 590
dry_run() (robot.running.userkeywordrunner.UserKeywordRunner

method), 590

658 Index

Robot Framework Documentation, Release 6.0.2

dump() (robot.htmldata.jsonwriter.DictDumper
method), 68

dump() (robot.htmldata.jsonwriter.IntegerDumper
method), 68

dump() (robot.htmldata.jsonwriter.JsonDumper
method), 68

dump() (robot.htmldata.jsonwriter.MappingDumper
method), 68

dump() (robot.htmldata.jsonwriter.NoneDumper
method), 68

dump() (robot.htmldata.jsonwriter.StringDumper
method), 68

dump() (robot.htmldata.jsonwriter.TupleListDumper
method), 68

dump() (robot.reporting.stringcache.StringCache
method), 402

DurationLimit (class in robot.running.bodyrunner),
550

DynamicArgumentParser (class in
robot.running.arguments.argumentparser),
529

DynamicHandler() (in module
robot.running.handlers), 551

E
earlier_failures (robot.errors.BreakLoop at-

tribute), 617
earlier_failures (robot.errors.ContinueLoop at-

tribute), 617
earlier_failures (robot.errors.ExecutionPassed

attribute), 616
earlier_failures (robot.errors.PassExecution at-

tribute), 617
earlier_failures (robot.errors.ReturnFromKeyword

attribute), 618
elapsed (robot.model.stats.Stat attribute), 275
elapsed (robot.model.stats.SuiteStat attribute), 275
elapsedtime (robot.result.model.Break attribute), 489
elapsedtime (robot.result.model.Continue attribute),

487
elapsedtime (robot.result.model.For attribute), 468
elapsedtime (robot.result.model.ForIteration at-

tribute), 466
elapsedtime (robot.result.model.If attribute), 477
elapsedtime (robot.result.model.IfBranch attribute),

475
elapsedtime (robot.result.model.Keyword attribute),

492
elapsedtime (robot.result.model.Return attribute),

484
elapsedtime (robot.result.model.StatusMixin at-

tribute), 464
elapsedtime (robot.result.model.TestCase attribute),

494

elapsedtime (robot.result.model.TestSuite attribute),
499

elapsedtime (robot.result.model.Try attribute), 482
elapsedtime (robot.result.model.TryBranch at-

tribute), 480
elapsedtime (robot.result.model.While attribute), 473
elapsedtime (robot.result.model.WhileIteration at-

tribute), 471
element() (robot.utils.markupwriters.HtmlWriter

method), 602
element() (robot.utils.markupwriters.NullMarkupWriter

method), 603
element() (robot.utils.markupwriters.XmlWriter

method), 603
element_attribute_should_be()

(robot.libraries.XML.XML method), 153
element_attribute_should_match()

(robot.libraries.XML.XML method), 153
element_handlers (robot.result.xmlelementhandlers.ArgumentHandler

attribute), 526
element_handlers (robot.result.xmlelementhandlers.ArgumentsHandler

attribute), 525
element_handlers (robot.result.xmlelementhandlers.AssignHandler

attribute), 525
element_handlers (robot.result.xmlelementhandlers.BranchHandler

attribute), 521
element_handlers (robot.result.xmlelementhandlers.BreakHandler

attribute), 522
element_handlers (robot.result.xmlelementhandlers.ContinueHandler

attribute), 522
element_handlers (robot.result.xmlelementhandlers.DocHandler

attribute), 523
element_handlers (robot.result.xmlelementhandlers.ElementHandler

attribute), 519
element_handlers (robot.result.xmlelementhandlers.ErrorMessageHandler

attribute), 526
element_handlers (robot.result.xmlelementhandlers.ErrorsHandler

attribute), 526
element_handlers (robot.result.xmlelementhandlers.ForHandler

attribute), 520
element_handlers (robot.result.xmlelementhandlers.IfHandler

attribute), 521
element_handlers (robot.result.xmlelementhandlers.IterationHandler

attribute), 521
element_handlers (robot.result.xmlelementhandlers.KeywordHandler

attribute), 520
element_handlers (robot.result.xmlelementhandlers.MessageHandler

attribute), 523
element_handlers (robot.result.xmlelementhandlers.MetadataHandler

attribute), 523
element_handlers (robot.result.xmlelementhandlers.MetadataItemHandler

attribute), 524
element_handlers (robot.result.xmlelementhandlers.MetaHandler

attribute), 524

Index 659

Robot Framework Documentation, Release 6.0.2

element_handlers (robot.result.xmlelementhandlers.PatternHandler
attribute), 522

element_handlers (robot.result.xmlelementhandlers.ReturnHandler
attribute), 522

element_handlers (robot.result.xmlelementhandlers.RobotHandler
attribute), 519

element_handlers (robot.result.xmlelementhandlers.RootHandler
attribute), 519

element_handlers (robot.result.xmlelementhandlers.StatisticsHandler
attribute), 527

element_handlers (robot.result.xmlelementhandlers.StatusHandler
attribute), 523

element_handlers (robot.result.xmlelementhandlers.SuiteHandler
attribute), 520

element_handlers (robot.result.xmlelementhandlers.TagHandler
attribute), 524

element_handlers (robot.result.xmlelementhandlers.TagsHandler
attribute), 524

element_handlers (robot.result.xmlelementhandlers.TestHandler
attribute), 520

element_handlers (robot.result.xmlelementhandlers.TimeoutHandler
attribute), 525

element_handlers (robot.result.xmlelementhandlers.TryHandler
attribute), 521

element_handlers (robot.result.xmlelementhandlers.ValueHandler
attribute), 526

element_handlers (robot.result.xmlelementhandlers.VarHandler
attribute), 525

element_handlers (robot.result.xmlelementhandlers.WhileHandler
attribute), 520

element_should_exist()
(robot.libraries.XML.XML method), 151

element_should_not_exist()
(robot.libraries.XML.XML method), 152

element_should_not_have_attribute()
(robot.libraries.XML.XML method), 153

element_text_should_be()
(robot.libraries.XML.XML method), 152

element_text_should_match()
(robot.libraries.XML.XML method), 152

element_to_string() (robot.libraries.XML.XML
method), 156

ElementComparator (class in robot.libraries.XML),
157

ElementFinder (class in robot.libraries.XML), 157
ElementHandler (class in

robot.result.xmlelementhandlers), 519
elements_should_be_equal()

(robot.libraries.XML.XML method), 153
elements_should_match()

(robot.libraries.XML.XML method), 154
ELSE (robot.model.body.BodyItem attribute), 228
ELSE (robot.model.control.Break attribute), 249
ELSE (robot.model.control.Continue attribute), 248

ELSE (robot.model.control.For attribute), 239
ELSE (robot.model.control.If attribute), 243
ELSE (robot.model.control.IfBranch attribute), 241
ELSE (robot.model.control.Return attribute), 247
ELSE (robot.model.control.Try attribute), 245
ELSE (robot.model.control.TryBranch attribute), 244
ELSE (robot.model.control.While attribute), 240
ELSE (robot.model.keyword.Keyword attribute), 260
ELSE (robot.model.message.Message attribute), 263
ELSE (robot.output.loggerhelper.Message attribute), 309
ELSE (robot.parsing.lexer.tokens.END attribute), 338
ELSE (robot.parsing.lexer.tokens.EOS attribute), 336
ELSE (robot.parsing.lexer.tokens.Token attribute), 335
ELSE (robot.result.model.Break attribute), 488
ELSE (robot.result.model.Continue attribute), 486
ELSE (robot.result.model.For attribute), 467
ELSE (robot.result.model.ForIteration attribute), 465
ELSE (robot.result.model.If attribute), 476
ELSE (robot.result.model.IfBranch attribute), 474
ELSE (robot.result.model.Keyword attribute), 491
ELSE (robot.result.model.Message attribute), 463
ELSE (robot.result.model.Return attribute), 483
ELSE (robot.result.model.Try attribute), 481
ELSE (robot.result.model.TryBranch attribute), 478
ELSE (robot.result.model.While attribute), 472
ELSE (robot.result.model.WhileIteration attribute), 470
ELSE (robot.running.model.Break attribute), 569
ELSE (robot.running.model.Continue attribute), 567
ELSE (robot.running.model.For attribute), 558
ELSE (robot.running.model.If attribute), 562
ELSE (robot.running.model.IfBranch attribute), 560
ELSE (robot.running.model.Keyword attribute), 555
ELSE (robot.running.model.Return attribute), 566
ELSE (robot.running.model.Try attribute), 565
ELSE (robot.running.model.TryBranch attribute), 563
ELSE (robot.running.model.While attribute), 559
else_branch (robot.model.control.Try attribute), 245
else_branch (robot.result.model.Try attribute), 482
else_branch (robot.running.model.Try attribute), 565
ELSE_IF (robot.model.body.BodyItem attribute), 228
ELSE_IF (robot.model.control.Break attribute), 249
ELSE_IF (robot.model.control.Continue attribute), 248
ELSE_IF (robot.model.control.For attribute), 239
ELSE_IF (robot.model.control.If attribute), 243
ELSE_IF (robot.model.control.IfBranch attribute), 241
ELSE_IF (robot.model.control.Return attribute), 247
ELSE_IF (robot.model.control.Try attribute), 245
ELSE_IF (robot.model.control.TryBranch attribute),

244
ELSE_IF (robot.model.control.While attribute), 240
ELSE_IF (robot.model.keyword.Keyword attribute), 260
ELSE_IF (robot.model.message.Message attribute), 263
ELSE_IF (robot.output.loggerhelper.Message attribute),

309

660 Index

Robot Framework Documentation, Release 6.0.2

ELSE_IF (robot.parsing.lexer.tokens.END attribute),
338

ELSE_IF (robot.parsing.lexer.tokens.EOS attribute),
336

ELSE_IF (robot.parsing.lexer.tokens.Token attribute),
335

ELSE_IF (robot.result.model.Break attribute), 488
ELSE_IF (robot.result.model.Continue attribute), 486
ELSE_IF (robot.result.model.For attribute), 467
ELSE_IF (robot.result.model.ForIteration attribute),

465
ELSE_IF (robot.result.model.If attribute), 476
ELSE_IF (robot.result.model.IfBranch attribute), 474
ELSE_IF (robot.result.model.Keyword attribute), 491
ELSE_IF (robot.result.model.Message attribute), 463
ELSE_IF (robot.result.model.Return attribute), 483
ELSE_IF (robot.result.model.Try attribute), 481
ELSE_IF (robot.result.model.TryBranch attribute), 479
ELSE_IF (robot.result.model.While attribute), 472
ELSE_IF (robot.result.model.WhileIteration attribute),

470
ELSE_IF (robot.running.model.Break attribute), 569
ELSE_IF (robot.running.model.Continue attribute), 567
ELSE_IF (robot.running.model.For attribute), 558
ELSE_IF (robot.running.model.If attribute), 562
ELSE_IF (robot.running.model.IfBranch attribute), 560
ELSE_IF (robot.running.model.Keyword attribute), 555
ELSE_IF (robot.running.model.Return attribute), 566
ELSE_IF (robot.running.model.Try attribute), 565
ELSE_IF (robot.running.model.TryBranch attribute),

563
ELSE_IF (robot.running.model.While attribute), 559
ElseHeader (class in robot.parsing.model.statements),

376
ElseHeaderLexer (class in

robot.parsing.lexer.statementlexers), 331
ElseIfHeader (class in

robot.parsing.model.statements), 375
ElseIfHeaderLexer (class in

robot.parsing.lexer.statementlexers), 331
EmbeddedArgumentParser (class in

robot.running.arguments.embedded), 531
EmbeddedArguments (class in

robot.running.arguments.embedded), 531
EmbeddedArgumentsHandler (class in

robot.running.handlers), 551
EmbeddedArgumentsHandler (class in

robot.running.userkeyword), 590
EmbeddedArgumentsRunner (class in

robot.running.librarykeywordrunner), 552
EmbeddedArgumentsRunner (class in

robot.running.userkeywordrunner), 590
emit() (robot.output.pyloggingconf.RobotHandler

method), 312

empty (robot.variables.finders.EmptyFinder attribute),
608

empty_cache() (robot.utils.connectioncache.ConnectionCache
method), 596

empty_directory()
(robot.libraries.OperatingSystem.OperatingSystem
method), 117

EmptyFinder (class in robot.variables.finders), 608
EmptyLine (class in robot.parsing.model.statements),

387
EmptySuiteRemover (class in robot.model.filter),

250
En (class in robot.conf.languages), 34
enable_library_import_logging()

(robot.output.logger.Logger method), 308
encode_string_to_bytes()

(robot.libraries.String.String method), 132
encode_threshold (robot.libraries.Remote.TimeoutHTTPSTransport

attribute), 129
encode_threshold (robot.libraries.Remote.TimeoutHTTPTransport

attribute), 129
END (class in robot.parsing.lexer.tokens), 338
End (class in robot.parsing.model.statements), 380
END (robot.parsing.lexer.tokens.END attribute), 338
END (robot.parsing.lexer.tokens.EOS attribute), 336
END (robot.parsing.lexer.tokens.Token attribute), 335
end() (robot.result.xmlelementhandlers.ArgumentHandler

method), 525
end() (robot.result.xmlelementhandlers.ArgumentsHandler

method), 525
end() (robot.result.xmlelementhandlers.AssignHandler

method), 525
end() (robot.result.xmlelementhandlers.BranchHandler

method), 521
end() (robot.result.xmlelementhandlers.BreakHandler

method), 522
end() (robot.result.xmlelementhandlers.ContinueHandler

method), 522
end() (robot.result.xmlelementhandlers.DocHandler

method), 523
end() (robot.result.xmlelementhandlers.ElementHandler

method), 519
end() (robot.result.xmlelementhandlers.ErrorMessageHandler

method), 526
end() (robot.result.xmlelementhandlers.ErrorsHandler

method), 526
end() (robot.result.xmlelementhandlers.ForHandler

method), 520
end() (robot.result.xmlelementhandlers.IfHandler

method), 521
end() (robot.result.xmlelementhandlers.IterationHandler

method), 521
end() (robot.result.xmlelementhandlers.KeywordHandler

method), 520

Index 661

Robot Framework Documentation, Release 6.0.2

end() (robot.result.xmlelementhandlers.MessageHandler
method), 523

end() (robot.result.xmlelementhandlers.MetadataHandler
method), 523

end() (robot.result.xmlelementhandlers.MetadataItemHandler
method), 524

end() (robot.result.xmlelementhandlers.MetaHandler
method), 524

end() (robot.result.xmlelementhandlers.PatternHandler
method), 522

end() (robot.result.xmlelementhandlers.ReturnHandler
method), 522

end() (robot.result.xmlelementhandlers.RobotHandler
method), 519

end() (robot.result.xmlelementhandlers.RootHandler
method), 519

end() (robot.result.xmlelementhandlers.StatisticsHandler
method), 527

end() (robot.result.xmlelementhandlers.StatusHandler
method), 523

end() (robot.result.xmlelementhandlers.SuiteHandler
method), 520

end() (robot.result.xmlelementhandlers.TagHandler
method), 524

end() (robot.result.xmlelementhandlers.TagsHandler
method), 524

end() (robot.result.xmlelementhandlers.TestHandler
method), 520

end() (robot.result.xmlelementhandlers.TimeoutHandler
method), 525

end() (robot.result.xmlelementhandlers.TryHandler
method), 521

end() (robot.result.xmlelementhandlers.ValueHandler
method), 526

end() (robot.result.xmlelementhandlers.VarHandler
method), 525

end() (robot.result.xmlelementhandlers.WhileHandler
method), 520

end() (robot.result.xmlelementhandlers.XmlElementHandler
method), 519

end() (robot.utils.htmlformatters.HeaderFormatter
method), 599

end() (robot.utils.htmlformatters.ListFormatter
method), 600

end() (robot.utils.htmlformatters.ParagraphFormatter
method), 600

end() (robot.utils.htmlformatters.PreformattedFormatter
method), 600

end() (robot.utils.htmlformatters.RulerFormatter
method), 599

end() (robot.utils.htmlformatters.TableFormatter
method), 600

end() (robot.utils.markupwriters.HtmlWriter method),
602

end() (robot.utils.markupwriters.NullMarkupWriter
method), 603

end() (robot.utils.markupwriters.XmlWriter method),
603

end_block() (robot.parsing.model.blocks.ValidationContext
method), 345

end_body_item() (robot.conf.gatherfailed.GatherFailedSuites
method), 27

end_body_item() (robot.conf.gatherfailed.GatherFailedTests
method), 23

end_body_item() (robot.model.configurer.SuiteConfigurer
method), 234

end_body_item() (robot.model.filter.EmptySuiteRemover
method), 250

end_body_item() (robot.model.filter.Filter method),
254

end_body_item() (robot.model.modifier.ModelModifier
method), 265

end_body_item() (robot.model.statistics.StatisticsBuilder
method), 270

end_body_item() (robot.model.tagsetter.TagSetter
method), 278

end_body_item() (robot.model.totalstatistics.TotalStatisticsBuilder
method), 289

end_body_item() (robot.model.visitor.SuiteVisitor
method), 298

end_body_item() (robot.output.console.dotted.StatusReporter
method), 299

end_body_item() (robot.output.xmllogger.XmlLogger
method), 316

end_body_item() (robot.reporting.outputwriter.OutputWriter
method), 396

end_body_item() (robot.reporting.xunitwriter.XUnitFileWriter
method), 403

end_body_item() (robot.result.configurer.SuiteConfigurer
method), 408

end_body_item() (robot.result.keywordremover.AllKeywordsRemover
method), 416

end_body_item() (robot.result.keywordremover.ByNameKeywordRemover
method), 424

end_body_item() (robot.result.keywordremover.ByTagKeywordRemover
method), 428

end_body_item() (robot.result.keywordremover.ForLoopItemsRemover
method), 432

end_body_item() (robot.result.keywordremover.PassedKeywordRemover
method), 420

end_body_item() (robot.result.keywordremover.WaitUntilKeywordSucceedsRemover
method), 440

end_body_item() (robot.result.keywordremover.WarningAndErrorFinder
method), 445

end_body_item() (robot.result.keywordremover.WhileLoopItemsRemover
method), 436

end_body_item() (robot.result.merger.Merger
method), 449

662 Index

Robot Framework Documentation, Release 6.0.2

end_body_item() (robot.result.messagefilter.MessageFilter
method), 453

end_body_item() (robot.result.resultbuilder.RemoveKeywords
method), 501

end_body_item() (robot.result.suiteteardownfailed.SuiteTeardownFailed
method), 509

end_body_item() (robot.result.suiteteardownfailed.SuiteTeardownFailureHandler
method), 505

end_body_item() (robot.result.visitor.ResultVisitor
method), 514

end_body_item() (robot.running.randomizer.Randomizer
method), 578

end_body_item() (robot.running.suiterunner.SuiteRunner
method), 585

end_break() (robot.conf.gatherfailed.GatherFailedSuites
method), 28

end_break() (robot.conf.gatherfailed.GatherFailedTests
method), 23

end_break() (robot.model.configurer.SuiteConfigurer
method), 234

end_break() (robot.model.filter.EmptySuiteRemover
method), 250

end_break() (robot.model.filter.Filter method), 255
end_break() (robot.model.modifier.ModelModifier

method), 266
end_break() (robot.model.statistics.StatisticsBuilder

method), 271
end_break() (robot.model.tagsetter.TagSetter

method), 278
end_break() (robot.model.totalstatistics.TotalStatisticsBuilder

method), 289
end_break() (robot.model.visitor.SuiteVisitor

method), 297
end_break() (robot.output.console.dotted.StatusReporter

method), 299
end_break() (robot.output.xmllogger.XmlLogger

method), 315
end_break() (robot.reporting.outputwriter.OutputWriter

method), 396
end_break() (robot.reporting.xunitwriter.XUnitFileWriter

method), 403
end_break() (robot.result.configurer.SuiteConfigurer

method), 408
end_break() (robot.result.keywordremover.AllKeywordsRemover

method), 416
end_break() (robot.result.keywordremover.ByNameKeywordRemover

method), 424
end_break() (robot.result.keywordremover.ByTagKeywordRemover

method), 428
end_break() (robot.result.keywordremover.ForLoopItemsRemover

method), 432
end_break() (robot.result.keywordremover.PassedKeywordRemover

method), 420
end_break() (robot.result.keywordremover.WaitUntilKeywordSucceedsRemover

method), 441
end_break() (robot.result.keywordremover.WarningAndErrorFinder

method), 445
end_break() (robot.result.keywordremover.WhileLoopItemsRemover

method), 436
end_break() (robot.result.merger.Merger method),

449
end_break() (robot.result.messagefilter.MessageFilter

method), 454
end_break() (robot.result.resultbuilder.RemoveKeywords

method), 501
end_break() (robot.result.suiteteardownfailed.SuiteTeardownFailed

method), 509
end_break() (robot.result.suiteteardownfailed.SuiteTeardownFailureHandler

method), 505
end_break() (robot.result.visitor.ResultVisitor

method), 514
end_break() (robot.running.randomizer.Randomizer

method), 579
end_break() (robot.running.suiterunner.SuiteRunner

method), 585
end_col_offset (robot.parsing.lexer.tokens.END at-

tribute), 340
end_col_offset (robot.parsing.lexer.tokens.EOS at-

tribute), 338
end_col_offset (robot.parsing.lexer.tokens.Token

attribute), 335
end_col_offset (robot.parsing.model.blocks.Block

attribute), 340
end_col_offset (robot.parsing.model.blocks.CommentSection

attribute), 342
end_col_offset (robot.parsing.model.blocks.File at-

tribute), 341
end_col_offset (robot.parsing.model.blocks.For at-

tribute), 344
end_col_offset (robot.parsing.model.blocks.HeaderAndBody

attribute), 341
end_col_offset (robot.parsing.model.blocks.If at-

tribute), 343
end_col_offset (robot.parsing.model.blocks.Keyword

attribute), 343
end_col_offset (robot.parsing.model.blocks.KeywordSection

attribute), 342
end_col_offset (robot.parsing.model.blocks.Section

attribute), 341
end_col_offset (robot.parsing.model.blocks.SettingSection

attribute), 341
end_col_offset (robot.parsing.model.blocks.TestCase

attribute), 343
end_col_offset (robot.parsing.model.blocks.TestCaseSection

attribute), 342
end_col_offset (robot.parsing.model.blocks.Try at-

tribute), 344
end_col_offset (robot.parsing.model.blocks.VariableSection

Index 663

Robot Framework Documentation, Release 6.0.2

attribute), 342
end_col_offset (robot.parsing.model.blocks.While

attribute), 344
end_col_offset (robot.parsing.model.statements.Arguments

attribute), 369
end_col_offset (robot.parsing.model.statements.Break

attribute), 384
end_col_offset (robot.parsing.model.statements.Comment

attribute), 385
end_col_offset (robot.parsing.model.statements.Config

attribute), 386
end_col_offset (robot.parsing.model.statements.Continue

attribute), 383
end_col_offset (robot.parsing.model.statements.DefaultTags

attribute), 356
end_col_offset (robot.parsing.model.statements.Documentation

attribute), 353
end_col_offset (robot.parsing.model.statements.DocumentationOrMetadata

attribute), 346
end_col_offset (robot.parsing.model.statements.ElseHeader

attribute), 376
end_col_offset (robot.parsing.model.statements.ElseIfHeader

attribute), 375
end_col_offset (robot.parsing.model.statements.EmptyLine

attribute), 388
end_col_offset (robot.parsing.model.statements.End

attribute), 380
end_col_offset (robot.parsing.model.statements.Error

attribute), 387
end_col_offset (robot.parsing.model.statements.ExceptHeader

attribute), 379
end_col_offset (robot.parsing.model.statements.FinallyHeader

attribute), 379
end_col_offset (robot.parsing.model.statements.Fixture

attribute), 349
end_col_offset (robot.parsing.model.statements.ForceTags

attribute), 355
end_col_offset (robot.parsing.model.statements.ForHeader

attribute), 372
end_col_offset (robot.parsing.model.statements.IfElseHeader

attribute), 373
end_col_offset (robot.parsing.model.statements.IfHeader

attribute), 374
end_col_offset (robot.parsing.model.statements.InlineIfHeader

attribute), 374
end_col_offset (robot.parsing.model.statements.KeywordCall

attribute), 370
end_col_offset (robot.parsing.model.statements.KeywordName

attribute), 364
end_col_offset (robot.parsing.model.statements.KeywordTags

attribute), 356
end_col_offset (robot.parsing.model.statements.LibraryImport

attribute), 351
end_col_offset (robot.parsing.model.statements.LoopControl

attribute), 383
end_col_offset (robot.parsing.model.statements.Metadata

attribute), 354
end_col_offset (robot.parsing.model.statements.MultiValue

attribute), 348
end_col_offset (robot.parsing.model.statements.NoArgumentHeader

attribute), 377
end_col_offset (robot.parsing.model.statements.ResourceImport

attribute), 351
end_col_offset (robot.parsing.model.statements.Return

attribute), 369
end_col_offset (robot.parsing.model.statements.ReturnStatement

attribute), 382
end_col_offset (robot.parsing.model.statements.SectionHeader

attribute), 350
end_col_offset (robot.parsing.model.statements.Setup

attribute), 365
end_col_offset (robot.parsing.model.statements.SingleValue

attribute), 347
end_col_offset (robot.parsing.model.statements.Statement

attribute), 346
end_col_offset (robot.parsing.model.statements.SuiteSetup

attribute), 357
end_col_offset (robot.parsing.model.statements.SuiteTeardown

attribute), 358
end_col_offset (robot.parsing.model.statements.Tags

attribute), 366
end_col_offset (robot.parsing.model.statements.Teardown

attribute), 365
end_col_offset (robot.parsing.model.statements.Template

attribute), 367
end_col_offset (robot.parsing.model.statements.TemplateArguments

attribute), 371
end_col_offset (robot.parsing.model.statements.TestCaseName

attribute), 363
end_col_offset (robot.parsing.model.statements.TestSetup

attribute), 359
end_col_offset (robot.parsing.model.statements.TestTeardown

attribute), 360
end_col_offset (robot.parsing.model.statements.TestTemplate

attribute), 361
end_col_offset (robot.parsing.model.statements.TestTimeout

attribute), 361
end_col_offset (robot.parsing.model.statements.Timeout

attribute), 368
end_col_offset (robot.parsing.model.statements.TryHeader

attribute), 378
end_col_offset (robot.parsing.model.statements.Variable

attribute), 362
end_col_offset (robot.parsing.model.statements.VariablesImport

attribute), 352
end_col_offset (robot.parsing.model.statements.WhileHeader

attribute), 381
end_continue() (robot.conf.gatherfailed.GatherFailedSuites

664 Index

Robot Framework Documentation, Release 6.0.2

method), 28
end_continue() (robot.conf.gatherfailed.GatherFailedTests

method), 23
end_continue() (robot.model.configurer.SuiteConfigurer

method), 234
end_continue() (robot.model.filter.EmptySuiteRemover

method), 250
end_continue() (robot.model.filter.Filter method),

255
end_continue() (robot.model.modifier.ModelModifier

method), 266
end_continue() (robot.model.statistics.StatisticsBuilder

method), 271
end_continue() (robot.model.tagsetter.TagSetter

method), 278
end_continue() (robot.model.totalstatistics.TotalStatisticsBuilder

method), 289
end_continue() (robot.model.visitor.SuiteVisitor

method), 297
end_continue() (robot.output.console.dotted.StatusReporter

method), 299
end_continue() (robot.output.xmllogger.XmlLogger

method), 315
end_continue() (robot.reporting.outputwriter.OutputWriter

method), 396
end_continue() (robot.reporting.xunitwriter.XUnitFileWriter

method), 403
end_continue() (robot.result.configurer.SuiteConfigurer

method), 408
end_continue() (robot.result.keywordremover.AllKeywordsRemover

method), 416
end_continue() (robot.result.keywordremover.ByNameKeywordRemover

method), 424
end_continue() (robot.result.keywordremover.ByTagKeywordRemover

method), 428
end_continue() (robot.result.keywordremover.ForLoopItemsRemover

method), 432
end_continue() (robot.result.keywordremover.PassedKeywordRemover

method), 420
end_continue() (robot.result.keywordremover.WaitUntilKeywordSucceedsRemover

method), 441
end_continue() (robot.result.keywordremover.WarningAndErrorFinder

method), 445
end_continue() (robot.result.keywordremover.WhileLoopItemsRemover

method), 436
end_continue() (robot.result.merger.Merger

method), 449
end_continue() (robot.result.messagefilter.MessageFilter

method), 454
end_continue() (robot.result.resultbuilder.RemoveKeywords

method), 501
end_continue() (robot.result.suiteteardownfailed.SuiteTeardownFailed

method), 510
end_continue() (robot.result.suiteteardownfailed.SuiteTeardownFailureHandler

method), 505
end_continue() (robot.result.visitor.ResultVisitor

method), 514
end_continue() (robot.running.randomizer.Randomizer

method), 579
end_continue() (robot.running.suiterunner.SuiteRunner

method), 585
end_directory() (robot.parsing.suitestructure.SuiteStructureVisitor

method), 393
end_directory() (robot.running.builder.builders.SuiteStructureParser

method), 542
end_errors() (robot.output.xmllogger.XmlLogger

method), 316
end_errors() (robot.reporting.outputwriter.OutputWriter

method), 396
end_errors() (robot.reporting.xunitwriter.XUnitFileWriter

method), 403
end_errors() (robot.result.visitor.ResultVisitor

method), 514
end_for() (robot.conf.gatherfailed.GatherFailedSuites

method), 28
end_for() (robot.conf.gatherfailed.GatherFailedTests

method), 23
end_for() (robot.model.configurer.SuiteConfigurer

method), 234
end_for() (robot.model.filter.EmptySuiteRemover

method), 251
end_for() (robot.model.filter.Filter method), 255
end_for() (robot.model.modifier.ModelModifier

method), 266
end_for() (robot.model.statistics.StatisticsBuilder

method), 271
end_for() (robot.model.tagsetter.TagSetter method),

278
end_for() (robot.model.totalstatistics.TotalStatisticsBuilder

method), 289
end_for() (robot.model.visitor.SuiteVisitor method),

295
end_for() (robot.output.console.dotted.StatusReporter

method), 299
end_for() (robot.output.xmllogger.XmlLogger

method), 314
end_for() (robot.reporting.outputwriter.OutputWriter

method), 396
end_for() (robot.reporting.xunitwriter.XUnitFileWriter

method), 403
end_for() (robot.result.configurer.SuiteConfigurer

method), 409
end_for() (robot.result.keywordremover.AllKeywordsRemover

method), 416
end_for() (robot.result.keywordremover.ByNameKeywordRemover

method), 424
end_for() (robot.result.keywordremover.ByTagKeywordRemover

method), 428

Index 665

Robot Framework Documentation, Release 6.0.2

end_for() (robot.result.keywordremover.ForLoopItemsRemover
method), 432

end_for() (robot.result.keywordremover.PassedKeywordRemover
method), 420

end_for() (robot.result.keywordremover.WaitUntilKeywordSucceedsRemover
method), 441

end_for() (robot.result.keywordremover.WarningAndErrorFinder
method), 445

end_for() (robot.result.keywordremover.WhileLoopItemsRemover
method), 437

end_for() (robot.result.merger.Merger method), 449
end_for() (robot.result.messagefilter.MessageFilter

method), 454
end_for() (robot.result.resultbuilder.RemoveKeywords

method), 501
end_for() (robot.result.suiteteardownfailed.SuiteTeardownFailed

method), 510
end_for() (robot.result.suiteteardownfailed.SuiteTeardownFailureHandler

method), 505
end_for() (robot.result.visitor.ResultVisitor method),

515
end_for() (robot.running.randomizer.Randomizer

method), 579
end_for() (robot.running.suiterunner.SuiteRunner

method), 585
end_for_iteration()

(robot.conf.gatherfailed.GatherFailedSuites
method), 28

end_for_iteration()
(robot.conf.gatherfailed.GatherFailedTests
method), 24

end_for_iteration()
(robot.model.configurer.SuiteConfigurer
method), 234

end_for_iteration()
(robot.model.filter.EmptySuiteRemover
method), 251

end_for_iteration() (robot.model.filter.Filter
method), 255

end_for_iteration()
(robot.model.modifier.ModelModifier method),
266

end_for_iteration()
(robot.model.statistics.StatisticsBuilder
method), 271

end_for_iteration()
(robot.model.tagsetter.TagSetter method),
278

end_for_iteration()
(robot.model.totalstatistics.TotalStatisticsBuilder
method), 289

end_for_iteration()
(robot.model.visitor.SuiteVisitor method),
295

end_for_iteration()
(robot.output.console.dotted.StatusReporter
method), 299

end_for_iteration()
(robot.output.xmllogger.XmlLogger method),
314

end_for_iteration()
(robot.reporting.outputwriter.OutputWriter
method), 396

end_for_iteration()
(robot.reporting.xunitwriter.XUnitFileWriter
method), 403

end_for_iteration()
(robot.result.configurer.SuiteConfigurer
method), 409

end_for_iteration()
(robot.result.keywordremover.AllKeywordsRemover
method), 416

end_for_iteration()
(robot.result.keywordremover.ByNameKeywordRemover
method), 424

end_for_iteration()
(robot.result.keywordremover.ByTagKeywordRemover
method), 428

end_for_iteration()
(robot.result.keywordremover.ForLoopItemsRemover
method), 432

end_for_iteration()
(robot.result.keywordremover.PassedKeywordRemover
method), 420

end_for_iteration()
(robot.result.keywordremover.WaitUntilKeywordSucceedsRemover
method), 441

end_for_iteration()
(robot.result.keywordremover.WarningAndErrorFinder
method), 445

end_for_iteration()
(robot.result.keywordremover.WhileLoopItemsRemover
method), 437

end_for_iteration() (robot.result.merger.Merger
method), 450

end_for_iteration()
(robot.result.messagefilter.MessageFilter
method), 454

end_for_iteration()
(robot.result.resultbuilder.RemoveKeywords
method), 501

end_for_iteration()
(robot.result.suiteteardownfailed.SuiteTeardownFailed
method), 510

end_for_iteration()
(robot.result.suiteteardownfailed.SuiteTeardownFailureHandler
method), 506

end_for_iteration()

666 Index

Robot Framework Documentation, Release 6.0.2

(robot.result.visitor.ResultVisitor method),
515

end_for_iteration()
(robot.running.randomizer.Randomizer
method), 579

end_for_iteration()
(robot.running.suiterunner.SuiteRunner
method), 585

end_if() (robot.conf.gatherfailed.GatherFailedSuites
method), 28

end_if() (robot.conf.gatherfailed.GatherFailedTests
method), 24

end_if() (robot.model.configurer.SuiteConfigurer
method), 235

end_if() (robot.model.filter.EmptySuiteRemover
method), 251

end_if() (robot.model.filter.Filter method), 255
end_if() (robot.model.modifier.ModelModifier

method), 266
end_if() (robot.model.statistics.StatisticsBuilder

method), 271
end_if() (robot.model.tagsetter.TagSetter method),

278
end_if() (robot.model.totalstatistics.TotalStatisticsBuilder

method), 289
end_if() (robot.model.visitor.SuiteVisitor method),

295
end_if() (robot.output.console.dotted.StatusReporter

method), 299
end_if() (robot.output.xmllogger.XmlLogger method),

313
end_if() (robot.reporting.outputwriter.OutputWriter

method), 396
end_if() (robot.reporting.xunitwriter.XUnitFileWriter

method), 403
end_if() (robot.result.configurer.SuiteConfigurer

method), 409
end_if() (robot.result.keywordremover.AllKeywordsRemover

method), 416
end_if() (robot.result.keywordremover.ByNameKeywordRemover

method), 424
end_if() (robot.result.keywordremover.ByTagKeywordRemover

method), 428
end_if() (robot.result.keywordremover.ForLoopItemsRemover

method), 432
end_if() (robot.result.keywordremover.PassedKeywordRemover

method), 420
end_if() (robot.result.keywordremover.WaitUntilKeywordSucceedsRemover

method), 441
end_if() (robot.result.keywordremover.WarningAndErrorFinder

method), 445
end_if() (robot.result.keywordremover.WhileLoopItemsRemover

method), 437
end_if() (robot.result.merger.Merger method), 450

end_if() (robot.result.messagefilter.MessageFilter
method), 454

end_if() (robot.result.resultbuilder.RemoveKeywords
method), 501

end_if() (robot.result.suiteteardownfailed.SuiteTeardownFailed
method), 510

end_if() (robot.result.suiteteardownfailed.SuiteTeardownFailureHandler
method), 506

end_if() (robot.result.visitor.ResultVisitor method),
515

end_if() (robot.running.randomizer.Randomizer
method), 579

end_if() (robot.running.suiterunner.SuiteRunner
method), 585

end_if_branch() (robot.conf.gatherfailed.GatherFailedSuites
method), 28

end_if_branch() (robot.conf.gatherfailed.GatherFailedTests
method), 24

end_if_branch() (robot.model.configurer.SuiteConfigurer
method), 235

end_if_branch() (robot.model.filter.EmptySuiteRemover
method), 251

end_if_branch() (robot.model.filter.Filter method),
255

end_if_branch() (robot.model.modifier.ModelModifier
method), 266

end_if_branch() (robot.model.statistics.StatisticsBuilder
method), 271

end_if_branch() (robot.model.tagsetter.TagSetter
method), 278

end_if_branch() (robot.model.totalstatistics.TotalStatisticsBuilder
method), 289

end_if_branch() (robot.model.visitor.SuiteVisitor
method), 296

end_if_branch() (robot.output.console.dotted.StatusReporter
method), 299

end_if_branch() (robot.output.xmllogger.XmlLogger
method), 314

end_if_branch() (robot.reporting.outputwriter.OutputWriter
method), 396

end_if_branch() (robot.reporting.xunitwriter.XUnitFileWriter
method), 403

end_if_branch() (robot.result.configurer.SuiteConfigurer
method), 409

end_if_branch() (robot.result.keywordremover.AllKeywordsRemover
method), 416

end_if_branch() (robot.result.keywordremover.ByNameKeywordRemover
method), 424

end_if_branch() (robot.result.keywordremover.ByTagKeywordRemover
method), 428

end_if_branch() (robot.result.keywordremover.ForLoopItemsRemover
method), 433

end_if_branch() (robot.result.keywordremover.PassedKeywordRemover
method), 420

Index 667

Robot Framework Documentation, Release 6.0.2

end_if_branch() (robot.result.keywordremover.WaitUntilKeywordSucceedsRemover
method), 441

end_if_branch() (robot.result.keywordremover.WarningAndErrorFinder
method), 445

end_if_branch() (robot.result.keywordremover.WhileLoopItemsRemover
method), 437

end_if_branch() (robot.result.merger.Merger
method), 450

end_if_branch() (robot.result.messagefilter.MessageFilter
method), 454

end_if_branch() (robot.result.resultbuilder.RemoveKeywords
method), 501

end_if_branch() (robot.result.suiteteardownfailed.SuiteTeardownFailed
method), 510

end_if_branch() (robot.result.suiteteardownfailed.SuiteTeardownFailureHandler
method), 506

end_if_branch() (robot.result.visitor.ResultVisitor
method), 515

end_if_branch() (robot.running.randomizer.Randomizer
method), 579

end_if_branch() (robot.running.suiterunner.SuiteRunner
method), 585

end_keyword() (robot.conf.gatherfailed.GatherFailedSuites
method), 28

end_keyword() (robot.conf.gatherfailed.GatherFailedTests
method), 24

end_keyword() (robot.model.configurer.SuiteConfigurer
method), 235

end_keyword() (robot.model.filter.EmptySuiteRemover
method), 251

end_keyword() (robot.model.filter.Filter method),
255

end_keyword() (robot.model.modifier.ModelModifier
method), 266

end_keyword() (robot.model.statistics.StatisticsBuilder
method), 271

end_keyword() (robot.model.tagsetter.TagSetter
method), 278

end_keyword() (robot.model.totalstatistics.TotalStatisticsBuilder
method), 289

end_keyword() (robot.model.visitor.SuiteVisitor
method), 295

end_keyword() (robot.output.console.dotted.StatusReporter
method), 299

end_keyword() (robot.output.console.verbose.VerboseOutput
method), 304

end_keyword() (robot.output.filelogger.FileLogger
method), 305

end_keyword() (robot.output.listeners.Listeners
method), 307

end_keyword() (robot.output.logger.Logger method),
308

end_keyword() (robot.output.logger.LoggerProxy
method), 309

end_keyword() (robot.output.output.Output method),
311

end_keyword() (robot.output.xmllogger.XmlLogger
method), 313

end_keyword() (robot.reporting.outputwriter.OutputWriter
method), 396

end_keyword() (robot.reporting.xunitwriter.XUnitFileWriter
method), 403

end_keyword() (robot.result.configurer.SuiteConfigurer
method), 409

end_keyword() (robot.result.keywordremover.AllKeywordsRemover
method), 416

end_keyword() (robot.result.keywordremover.ByNameKeywordRemover
method), 424

end_keyword() (robot.result.keywordremover.ByTagKeywordRemover
method), 428

end_keyword() (robot.result.keywordremover.ForLoopItemsRemover
method), 433

end_keyword() (robot.result.keywordremover.PassedKeywordRemover
method), 420

end_keyword() (robot.result.keywordremover.WaitUntilKeywordSucceedsRemover
method), 441

end_keyword() (robot.result.keywordremover.WarningAndErrorFinder
method), 446

end_keyword() (robot.result.keywordremover.WhileLoopItemsRemover
method), 437

end_keyword() (robot.result.merger.Merger method),
450

end_keyword() (robot.result.messagefilter.MessageFilter
method), 454

end_keyword() (robot.result.resultbuilder.RemoveKeywords
method), 501

end_keyword() (robot.result.suiteteardownfailed.SuiteTeardownFailed
method), 510

end_keyword() (robot.result.suiteteardownfailed.SuiteTeardownFailureHandler
method), 506

end_keyword() (robot.result.visitor.ResultVisitor
method), 515

end_keyword() (robot.running.randomizer.Randomizer
method), 579

end_keyword() (robot.running.suiterunner.SuiteRunner
method), 585

end_keyword() (robot.variables.scopes.SetVariables
method), 610

end_keyword() (robot.variables.scopes.VariableScopes
method), 609

end_lineno (robot.parsing.model.blocks.Block at-
tribute), 340

end_lineno (robot.parsing.model.blocks.CommentSection
attribute), 342

end_lineno (robot.parsing.model.blocks.File at-
tribute), 341

end_lineno (robot.parsing.model.blocks.For at-
tribute), 344

668 Index

Robot Framework Documentation, Release 6.0.2

end_lineno (robot.parsing.model.blocks.HeaderAndBody
attribute), 341

end_lineno (robot.parsing.model.blocks.If attribute),
343

end_lineno (robot.parsing.model.blocks.Keyword at-
tribute), 343

end_lineno (robot.parsing.model.blocks.KeywordSection
attribute), 342

end_lineno (robot.parsing.model.blocks.Section at-
tribute), 341

end_lineno (robot.parsing.model.blocks.SettingSection
attribute), 341

end_lineno (robot.parsing.model.blocks.TestCase at-
tribute), 343

end_lineno (robot.parsing.model.blocks.TestCaseSection
attribute), 342

end_lineno (robot.parsing.model.blocks.Try at-
tribute), 344

end_lineno (robot.parsing.model.blocks.VariableSection
attribute), 342

end_lineno (robot.parsing.model.blocks.While at-
tribute), 344

end_lineno (robot.parsing.model.statements.Arguments
attribute), 369

end_lineno (robot.parsing.model.statements.Break
attribute), 384

end_lineno (robot.parsing.model.statements.Comment
attribute), 385

end_lineno (robot.parsing.model.statements.Config
attribute), 386

end_lineno (robot.parsing.model.statements.Continue
attribute), 383

end_lineno (robot.parsing.model.statements.DefaultTags
attribute), 356

end_lineno (robot.parsing.model.statements.Documentation
attribute), 353

end_lineno (robot.parsing.model.statements.DocumentationOrMetadata
attribute), 346

end_lineno (robot.parsing.model.statements.ElseHeader
attribute), 376

end_lineno (robot.parsing.model.statements.ElseIfHeader
attribute), 375

end_lineno (robot.parsing.model.statements.EmptyLine
attribute), 388

end_lineno (robot.parsing.model.statements.End at-
tribute), 380

end_lineno (robot.parsing.model.statements.Error at-
tribute), 387

end_lineno (robot.parsing.model.statements.ExceptHeader
attribute), 379

end_lineno (robot.parsing.model.statements.FinallyHeader
attribute), 379

end_lineno (robot.parsing.model.statements.Fixture
attribute), 349

end_lineno (robot.parsing.model.statements.ForceTags
attribute), 355

end_lineno (robot.parsing.model.statements.ForHeader
attribute), 372

end_lineno (robot.parsing.model.statements.IfElseHeader
attribute), 373

end_lineno (robot.parsing.model.statements.IfHeader
attribute), 374

end_lineno (robot.parsing.model.statements.InlineIfHeader
attribute), 374

end_lineno (robot.parsing.model.statements.KeywordCall
attribute), 370

end_lineno (robot.parsing.model.statements.KeywordName
attribute), 364

end_lineno (robot.parsing.model.statements.KeywordTags
attribute), 356

end_lineno (robot.parsing.model.statements.LibraryImport
attribute), 351

end_lineno (robot.parsing.model.statements.LoopControl
attribute), 383

end_lineno (robot.parsing.model.statements.Metadata
attribute), 354

end_lineno (robot.parsing.model.statements.MultiValue
attribute), 348

end_lineno (robot.parsing.model.statements.NoArgumentHeader
attribute), 377

end_lineno (robot.parsing.model.statements.ResourceImport
attribute), 352

end_lineno (robot.parsing.model.statements.Return
attribute), 369

end_lineno (robot.parsing.model.statements.ReturnStatement
attribute), 382

end_lineno (robot.parsing.model.statements.SectionHeader
attribute), 350

end_lineno (robot.parsing.model.statements.Setup at-
tribute), 365

end_lineno (robot.parsing.model.statements.SingleValue
attribute), 347

end_lineno (robot.parsing.model.statements.Statement
attribute), 346

end_lineno (robot.parsing.model.statements.SuiteSetup
attribute), 357

end_lineno (robot.parsing.model.statements.SuiteTeardown
attribute), 358

end_lineno (robot.parsing.model.statements.Tags at-
tribute), 366

end_lineno (robot.parsing.model.statements.Teardown
attribute), 365

end_lineno (robot.parsing.model.statements.Template
attribute), 367

end_lineno (robot.parsing.model.statements.TemplateArguments
attribute), 371

end_lineno (robot.parsing.model.statements.TestCaseName
attribute), 363

Index 669

Robot Framework Documentation, Release 6.0.2

end_lineno (robot.parsing.model.statements.TestSetup
attribute), 359

end_lineno (robot.parsing.model.statements.TestTeardown
attribute), 360

end_lineno (robot.parsing.model.statements.TestTemplate
attribute), 361

end_lineno (robot.parsing.model.statements.TestTimeout
attribute), 361

end_lineno (robot.parsing.model.statements.Timeout
attribute), 368

end_lineno (robot.parsing.model.statements.TryHeader
attribute), 378

end_lineno (robot.parsing.model.statements.Variable
attribute), 362

end_lineno (robot.parsing.model.statements.VariablesImport
attribute), 352

end_lineno (robot.parsing.model.statements.WhileHeader
attribute), 381

end_loggers (robot.output.logger.Logger attribute),
308

end_message() (robot.conf.gatherfailed.GatherFailedSuites
method), 28

end_message() (robot.conf.gatherfailed.GatherFailedTests
method), 24

end_message() (robot.model.configurer.SuiteConfigurer
method), 235

end_message() (robot.model.filter.EmptySuiteRemover
method), 251

end_message() (robot.model.filter.Filter method),
255

end_message() (robot.model.modifier.ModelModifier
method), 266

end_message() (robot.model.statistics.StatisticsBuilder
method), 271

end_message() (robot.model.tagsetter.TagSetter
method), 278

end_message() (robot.model.totalstatistics.TotalStatisticsBuilder
method), 289

end_message() (robot.model.visitor.SuiteVisitor
method), 298

end_message() (robot.output.console.dotted.StatusReporter
method), 299

end_message() (robot.output.xmllogger.XmlLogger
method), 316

end_message() (robot.reporting.outputwriter.OutputWriter
method), 396

end_message() (robot.reporting.xunitwriter.XUnitFileWriter
method), 403

end_message() (robot.result.configurer.SuiteConfigurer
method), 409

end_message() (robot.result.keywordremover.AllKeywordsRemover
method), 416

end_message() (robot.result.keywordremover.ByNameKeywordRemover
method), 424

end_message() (robot.result.keywordremover.ByTagKeywordRemover
method), 429

end_message() (robot.result.keywordremover.ForLoopItemsRemover
method), 433

end_message() (robot.result.keywordremover.PassedKeywordRemover
method), 420

end_message() (robot.result.keywordremover.WaitUntilKeywordSucceedsRemover
method), 441

end_message() (robot.result.keywordremover.WarningAndErrorFinder
method), 446

end_message() (robot.result.keywordremover.WhileLoopItemsRemover
method), 437

end_message() (robot.result.merger.Merger method),
450

end_message() (robot.result.messagefilter.MessageFilter
method), 454

end_message() (robot.result.resultbuilder.RemoveKeywords
method), 501

end_message() (robot.result.suiteteardownfailed.SuiteTeardownFailed
method), 510

end_message() (robot.result.suiteteardownfailed.SuiteTeardownFailureHandler
method), 506

end_message() (robot.result.visitor.ResultVisitor
method), 515

end_message() (robot.running.randomizer.Randomizer
method), 579

end_message() (robot.running.suiterunner.SuiteRunner
method), 585

end_result() (robot.output.xmllogger.XmlLogger
method), 316

end_result() (robot.reporting.outputwriter.OutputWriter
method), 396

end_result() (robot.reporting.xunitwriter.XUnitFileWriter
method), 403

end_result() (robot.result.visitor.ResultVisitor
method), 514

end_return() (robot.conf.gatherfailed.GatherFailedSuites
method), 28

end_return() (robot.conf.gatherfailed.GatherFailedTests
method), 24

end_return() (robot.model.configurer.SuiteConfigurer
method), 235

end_return() (robot.model.filter.EmptySuiteRemover
method), 251

end_return() (robot.model.filter.Filter method), 255
end_return() (robot.model.modifier.ModelModifier

method), 266
end_return() (robot.model.statistics.StatisticsBuilder

method), 271
end_return() (robot.model.tagsetter.TagSetter

method), 278
end_return() (robot.model.totalstatistics.TotalStatisticsBuilder

method), 289
end_return() (robot.model.visitor.SuiteVisitor

670 Index

Robot Framework Documentation, Release 6.0.2

method), 297
end_return() (robot.output.console.dotted.StatusReporter

method), 300
end_return() (robot.output.xmllogger.XmlLogger

method), 315
end_return() (robot.reporting.outputwriter.OutputWriter

method), 396
end_return() (robot.reporting.xunitwriter.XUnitFileWriter

method), 403
end_return() (robot.result.configurer.SuiteConfigurer

method), 409
end_return() (robot.result.keywordremover.AllKeywordsRemover

method), 416
end_return() (robot.result.keywordremover.ByNameKeywordRemover

method), 424
end_return() (robot.result.keywordremover.ByTagKeywordRemover

method), 429
end_return() (robot.result.keywordremover.ForLoopItemsRemover

method), 433
end_return() (robot.result.keywordremover.PassedKeywordRemover

method), 420
end_return() (robot.result.keywordremover.WaitUntilKeywordSucceedsRemover

method), 441
end_return() (robot.result.keywordremover.WarningAndErrorFinder

method), 446
end_return() (robot.result.keywordremover.WhileLoopItemsRemover

method), 437
end_return() (robot.result.merger.Merger method),

450
end_return() (robot.result.messagefilter.MessageFilter

method), 454
end_return() (robot.result.resultbuilder.RemoveKeywords

method), 502
end_return() (robot.result.suiteteardownfailed.SuiteTeardownFailed

method), 510
end_return() (robot.result.suiteteardownfailed.SuiteTeardownFailureHandler

method), 506
end_return() (robot.result.visitor.ResultVisitor

method), 515
end_return() (robot.running.randomizer.Randomizer

method), 579
end_return() (robot.running.suiterunner.SuiteRunner

method), 586
end_splitting() (robot.reporting.jsbuildingcontext.JsBuildingContext

method), 394
end_stat() (robot.output.xmllogger.XmlLogger

method), 316
end_stat() (robot.reporting.outputwriter.OutputWriter

method), 396
end_stat() (robot.reporting.xunitwriter.XUnitFileWriter

method), 403
end_stat() (robot.result.visitor.ResultVisitor method),

514
end_statistics() (robot.output.xmllogger.XmlLogger

method), 316
end_statistics() (robot.reporting.outputwriter.OutputWriter

method), 396
end_statistics() (robot.reporting.xunitwriter.XUnitFileWriter

method), 403
end_statistics() (robot.result.visitor.ResultVisitor

method), 514
end_suite() (robot.conf.gatherfailed.GatherFailedSuites

method), 28
end_suite() (robot.conf.gatherfailed.GatherFailedTests

method), 24
end_suite() (robot.model.configurer.SuiteConfigurer

method), 235
end_suite() (robot.model.filter.EmptySuiteRemover

method), 250
end_suite() (robot.model.filter.Filter method), 255
end_suite() (robot.model.modifier.ModelModifier

method), 266
end_suite() (robot.model.statistics.StatisticsBuilder

method), 270
end_suite() (robot.model.suitestatistics.SuiteStatisticsBuilder

method), 277
end_suite() (robot.model.tagsetter.TagSetter

method), 278
end_suite() (robot.model.totalstatistics.TotalStatisticsBuilder

method), 289
end_suite() (robot.model.visitor.SuiteVisitor

method), 294
end_suite() (robot.output.console.dotted.DottedOutput

method), 299
end_suite() (robot.output.console.dotted.StatusReporter

method), 300
end_suite() (robot.output.console.verbose.VerboseOutput

method), 304
end_suite() (robot.output.filelogger.FileLogger

method), 305
end_suite() (robot.output.logger.Logger method),

308
end_suite() (robot.output.output.Output method),

311
end_suite() (robot.output.xmllogger.XmlLogger

method), 316
end_suite() (robot.reporting.outputwriter.OutputWriter

method), 397
end_suite() (robot.reporting.xunitwriter.XUnitFileWriter

method), 402
end_suite() (robot.result.configurer.SuiteConfigurer

method), 409
end_suite() (robot.result.keywordremover.AllKeywordsRemover

method), 416
end_suite() (robot.result.keywordremover.ByNameKeywordRemover

method), 425
end_suite() (robot.result.keywordremover.ByTagKeywordRemover

method), 429

Index 671

Robot Framework Documentation, Release 6.0.2

end_suite() (robot.result.keywordremover.ForLoopItemsRemover
method), 433

end_suite() (robot.result.keywordremover.PassedKeywordRemover
method), 421

end_suite() (robot.result.keywordremover.WaitUntilKeywordSucceedsRemover
method), 441

end_suite() (robot.result.keywordremover.WarningAndErrorFinder
method), 446

end_suite() (robot.result.keywordremover.WhileLoopItemsRemover
method), 437

end_suite() (robot.result.merger.Merger method),
449

end_suite() (robot.result.messagefilter.MessageFilter
method), 454

end_suite() (robot.result.resultbuilder.RemoveKeywords
method), 502

end_suite() (robot.result.suiteteardownfailed.SuiteTeardownFailed
method), 510

end_suite() (robot.result.suiteteardownfailed.SuiteTeardownFailureHandler
method), 505

end_suite() (robot.result.visitor.ResultVisitor
method), 515

end_suite() (robot.running.context.ExecutionContexts
method), 550

end_suite() (robot.running.libraryscopes.GlobalScope
method), 553

end_suite() (robot.running.libraryscopes.TestCaseScope
method), 553

end_suite() (robot.running.libraryscopes.TestSuiteScope
method), 553

end_suite() (robot.running.namespace.Namespace
method), 577

end_suite() (robot.running.randomizer.Randomizer
method), 579

end_suite() (robot.running.suiterunner.SuiteRunner
method), 585

end_suite() (robot.variables.scopes.SetVariables
method), 610

end_suite() (robot.variables.scopes.VariableScopes
method), 609

end_suite_statistics()
(robot.output.xmllogger.XmlLogger method),
316

end_suite_statistics()
(robot.reporting.outputwriter.OutputWriter
method), 397

end_suite_statistics()
(robot.reporting.xunitwriter.XUnitFileWriter
method), 403

end_suite_statistics()
(robot.result.visitor.ResultVisitor method),
514

end_tag_statistics()
(robot.output.xmllogger.XmlLogger method),

316
end_tag_statistics()

(robot.reporting.outputwriter.OutputWriter
method), 397

end_tag_statistics()
(robot.reporting.xunitwriter.XUnitFileWriter
method), 403

end_tag_statistics()
(robot.result.visitor.ResultVisitor method),
514

end_test() (robot.conf.gatherfailed.GatherFailedSuites
method), 28

end_test() (robot.conf.gatherfailed.GatherFailedTests
method), 24

end_test() (robot.model.configurer.SuiteConfigurer
method), 235

end_test() (robot.model.filter.EmptySuiteRemover
method), 251

end_test() (robot.model.filter.Filter method), 255
end_test() (robot.model.modifier.ModelModifier

method), 266
end_test() (robot.model.statistics.StatisticsBuilder

method), 271
end_test() (robot.model.tagsetter.TagSetter method),

278
end_test() (robot.model.totalstatistics.TotalStatisticsBuilder

method), 289
end_test() (robot.model.visitor.SuiteVisitor method),

294
end_test() (robot.output.console.dotted.DottedOutput

method), 299
end_test() (robot.output.console.dotted.StatusReporter

method), 300
end_test() (robot.output.console.verbose.VerboseOutput

method), 304
end_test() (robot.output.filelogger.FileLogger

method), 305
end_test() (robot.output.logger.Logger method), 308
end_test() (robot.output.output.Output method), 311
end_test() (robot.output.xmllogger.XmlLogger

method), 315
end_test() (robot.reporting.outputwriter.OutputWriter

method), 397
end_test() (robot.reporting.xunitwriter.XUnitFileWriter

method), 403
end_test() (robot.result.configurer.SuiteConfigurer

method), 409
end_test() (robot.result.keywordremover.AllKeywordsRemover

method), 416
end_test() (robot.result.keywordremover.ByNameKeywordRemover

method), 425
end_test() (robot.result.keywordremover.ByTagKeywordRemover

method), 429
end_test() (robot.result.keywordremover.ForLoopItemsRemover

672 Index

Robot Framework Documentation, Release 6.0.2

method), 433
end_test() (robot.result.keywordremover.PassedKeywordRemover

method), 421
end_test() (robot.result.keywordremover.WaitUntilKeywordSucceedsRemover

method), 441
end_test() (robot.result.keywordremover.WarningAndErrorFinder

method), 446
end_test() (robot.result.keywordremover.WhileLoopItemsRemover

method), 437
end_test() (robot.result.merger.Merger method), 450
end_test() (robot.result.messagefilter.MessageFilter

method), 454
end_test() (robot.result.resultbuilder.RemoveKeywords

method), 502
end_test() (robot.result.suiteteardownfailed.SuiteTeardownFailed

method), 510
end_test() (robot.result.suiteteardownfailed.SuiteTeardownFailureHandler

method), 506
end_test() (robot.result.visitor.ResultVisitor method),

515
end_test() (robot.running.libraryscopes.GlobalScope

method), 553
end_test() (robot.running.libraryscopes.TestCaseScope

method), 553
end_test() (robot.running.libraryscopes.TestSuiteScope

method), 553
end_test() (robot.running.namespace.Namespace

method), 577
end_test() (robot.running.randomizer.Randomizer

method), 579
end_test() (robot.running.suiterunner.SuiteRunner

method), 586
end_test() (robot.variables.scopes.SetVariables

method), 610
end_test() (robot.variables.scopes.VariableScopes

method), 609
end_total_statistics()

(robot.output.xmllogger.XmlLogger method),
316

end_total_statistics()
(robot.reporting.outputwriter.OutputWriter
method), 397

end_total_statistics()
(robot.reporting.xunitwriter.XUnitFileWriter
method), 404

end_total_statistics()
(robot.result.visitor.ResultVisitor method),
514

end_try() (robot.conf.gatherfailed.GatherFailedSuites
method), 28

end_try() (robot.conf.gatherfailed.GatherFailedTests
method), 24

end_try() (robot.model.configurer.SuiteConfigurer
method), 235

end_try() (robot.model.filter.EmptySuiteRemover
method), 251

end_try() (robot.model.filter.Filter method), 255
end_try() (robot.model.modifier.ModelModifier

method), 266
end_try() (robot.model.statistics.StatisticsBuilder

method), 271
end_try() (robot.model.tagsetter.TagSetter method),

279
end_try() (robot.model.totalstatistics.TotalStatisticsBuilder

method), 290
end_try() (robot.model.visitor.SuiteVisitor method),

296
end_try() (robot.output.console.dotted.StatusReporter

method), 300
end_try() (robot.output.xmllogger.XmlLogger

method), 314
end_try() (robot.reporting.outputwriter.OutputWriter

method), 397
end_try() (robot.reporting.xunitwriter.XUnitFileWriter

method), 404
end_try() (robot.result.configurer.SuiteConfigurer

method), 409
end_try() (robot.result.keywordremover.AllKeywordsRemover

method), 416
end_try() (robot.result.keywordremover.ByNameKeywordRemover

method), 425
end_try() (robot.result.keywordremover.ByTagKeywordRemover

method), 429
end_try() (robot.result.keywordremover.ForLoopItemsRemover

method), 433
end_try() (robot.result.keywordremover.PassedKeywordRemover

method), 421
end_try() (robot.result.keywordremover.WaitUntilKeywordSucceedsRemover

method), 441
end_try() (robot.result.keywordremover.WarningAndErrorFinder

method), 446
end_try() (robot.result.keywordremover.WhileLoopItemsRemover

method), 437
end_try() (robot.result.merger.Merger method), 450
end_try() (robot.result.messagefilter.MessageFilter

method), 454
end_try() (robot.result.resultbuilder.RemoveKeywords

method), 502
end_try() (robot.result.suiteteardownfailed.SuiteTeardownFailed

method), 510
end_try() (robot.result.suiteteardownfailed.SuiteTeardownFailureHandler

method), 506
end_try() (robot.result.visitor.ResultVisitor method),

515
end_try() (robot.running.randomizer.Randomizer

method), 579
end_try() (robot.running.suiterunner.SuiteRunner

method), 586

Index 673

Robot Framework Documentation, Release 6.0.2

end_try_branch() (robot.conf.gatherfailed.GatherFailedSuites
method), 28

end_try_branch() (robot.conf.gatherfailed.GatherFailedTests
method), 24

end_try_branch() (robot.model.configurer.SuiteConfigurer
method), 235

end_try_branch() (robot.model.filter.EmptySuiteRemover
method), 251

end_try_branch() (robot.model.filter.Filter
method), 255

end_try_branch() (robot.model.modifier.ModelModifier
method), 266

end_try_branch() (robot.model.statistics.StatisticsBuilder
method), 271

end_try_branch() (robot.model.tagsetter.TagSetter
method), 279

end_try_branch() (robot.model.totalstatistics.TotalStatisticsBuilder
method), 290

end_try_branch() (robot.model.visitor.SuiteVisitor
method), 296

end_try_branch() (robot.output.console.dotted.StatusReporter
method), 300

end_try_branch() (robot.output.xmllogger.XmlLogger
method), 314

end_try_branch() (robot.reporting.outputwriter.OutputWriter
method), 397

end_try_branch() (robot.reporting.xunitwriter.XUnitFileWriter
method), 404

end_try_branch() (robot.result.configurer.SuiteConfigurer
method), 409

end_try_branch() (robot.result.keywordremover.AllKeywordsRemover
method), 417

end_try_branch() (robot.result.keywordremover.ByNameKeywordRemover
method), 425

end_try_branch() (robot.result.keywordremover.ByTagKeywordRemover
method), 429

end_try_branch() (robot.result.keywordremover.ForLoopItemsRemover
method), 433

end_try_branch() (robot.result.keywordremover.PassedKeywordRemover
method), 421

end_try_branch() (robot.result.keywordremover.WaitUntilKeywordSucceedsRemover
method), 441

end_try_branch() (robot.result.keywordremover.WarningAndErrorFinder
method), 446

end_try_branch() (robot.result.keywordremover.WhileLoopItemsRemover
method), 437

end_try_branch() (robot.result.merger.Merger
method), 450

end_try_branch() (robot.result.messagefilter.MessageFilter
method), 454

end_try_branch() (robot.result.resultbuilder.RemoveKeywords
method), 502

end_try_branch() (robot.result.suiteteardownfailed.SuiteTeardownFailed
method), 510

end_try_branch() (robot.result.suiteteardownfailed.SuiteTeardownFailureHandler
method), 506

end_try_branch() (robot.result.visitor.ResultVisitor
method), 515

end_try_branch() (robot.running.randomizer.Randomizer
method), 579

end_try_branch() (robot.running.suiterunner.SuiteRunner
method), 586

end_user_keyword()
(robot.running.namespace.Namespace
method), 578

end_while() (robot.conf.gatherfailed.GatherFailedSuites
method), 29

end_while() (robot.conf.gatherfailed.GatherFailedTests
method), 24

end_while() (robot.model.configurer.SuiteConfigurer
method), 235

end_while() (robot.model.filter.EmptySuiteRemover
method), 251

end_while() (robot.model.filter.Filter method), 255
end_while() (robot.model.modifier.ModelModifier

method), 266
end_while() (robot.model.statistics.StatisticsBuilder

method), 271
end_while() (robot.model.tagsetter.TagSetter

method), 279
end_while() (robot.model.totalstatistics.TotalStatisticsBuilder

method), 290
end_while() (robot.model.visitor.SuiteVisitor

method), 297
end_while() (robot.output.console.dotted.StatusReporter

method), 300
end_while() (robot.output.xmllogger.XmlLogger

method), 315
end_while() (robot.reporting.outputwriter.OutputWriter

method), 397
end_while() (robot.reporting.xunitwriter.XUnitFileWriter

method), 404
end_while() (robot.result.configurer.SuiteConfigurer

method), 409
end_while() (robot.result.keywordremover.AllKeywordsRemover

method), 417
end_while() (robot.result.keywordremover.ByNameKeywordRemover

method), 425
end_while() (robot.result.keywordremover.ByTagKeywordRemover

method), 429
end_while() (robot.result.keywordremover.ForLoopItemsRemover

method), 433
end_while() (robot.result.keywordremover.PassedKeywordRemover

method), 421
end_while() (robot.result.keywordremover.WaitUntilKeywordSucceedsRemover

method), 442
end_while() (robot.result.keywordremover.WarningAndErrorFinder

method), 446

674 Index

Robot Framework Documentation, Release 6.0.2

end_while() (robot.result.keywordremover.WhileLoopItemsRemover
method), 437

end_while() (robot.result.merger.Merger method),
450

end_while() (robot.result.messagefilter.MessageFilter
method), 454

end_while() (robot.result.resultbuilder.RemoveKeywords
method), 502

end_while() (robot.result.suiteteardownfailed.SuiteTeardownFailed
method), 510

end_while() (robot.result.suiteteardownfailed.SuiteTeardownFailureHandler
method), 506

end_while() (robot.result.visitor.ResultVisitor
method), 515

end_while() (robot.running.randomizer.Randomizer
method), 580

end_while() (robot.running.suiterunner.SuiteRunner
method), 586

end_while_iteration()
(robot.conf.gatherfailed.GatherFailedSuites
method), 29

end_while_iteration()
(robot.conf.gatherfailed.GatherFailedTests
method), 24

end_while_iteration()
(robot.model.configurer.SuiteConfigurer
method), 235

end_while_iteration()
(robot.model.filter.EmptySuiteRemover
method), 251

end_while_iteration() (robot.model.filter.Filter
method), 255

end_while_iteration()
(robot.model.modifier.ModelModifier method),
267

end_while_iteration()
(robot.model.statistics.StatisticsBuilder
method), 272

end_while_iteration()
(robot.model.tagsetter.TagSetter method),
279

end_while_iteration()
(robot.model.totalstatistics.TotalStatisticsBuilder
method), 290

end_while_iteration()
(robot.model.visitor.SuiteVisitor method),
297

end_while_iteration()
(robot.output.console.dotted.StatusReporter
method), 300

end_while_iteration()
(robot.output.xmllogger.XmlLogger method),
315

end_while_iteration()

(robot.reporting.outputwriter.OutputWriter
method), 397

end_while_iteration()
(robot.reporting.xunitwriter.XUnitFileWriter
method), 404

end_while_iteration()
(robot.result.configurer.SuiteConfigurer
method), 409

end_while_iteration()
(robot.result.keywordremover.AllKeywordsRemover
method), 417

end_while_iteration()
(robot.result.keywordremover.ByNameKeywordRemover
method), 425

end_while_iteration()
(robot.result.keywordremover.ByTagKeywordRemover
method), 429

end_while_iteration()
(robot.result.keywordremover.ForLoopItemsRemover
method), 433

end_while_iteration()
(robot.result.keywordremover.PassedKeywordRemover
method), 421

end_while_iteration()
(robot.result.keywordremover.WaitUntilKeywordSucceedsRemover
method), 442

end_while_iteration()
(robot.result.keywordremover.WarningAndErrorFinder
method), 446

end_while_iteration()
(robot.result.keywordremover.WhileLoopItemsRemover
method), 437

end_while_iteration()
(robot.result.merger.Merger method), 450

end_while_iteration()
(robot.result.messagefilter.MessageFilter
method), 454

end_while_iteration()
(robot.result.resultbuilder.RemoveKeywords
method), 502

end_while_iteration()
(robot.result.suiteteardownfailed.SuiteTeardownFailed
method), 510

end_while_iteration()
(robot.result.suiteteardownfailed.SuiteTeardownFailureHandler
method), 506

end_while_iteration()
(robot.result.visitor.ResultVisitor method),
515

end_while_iteration()
(robot.running.randomizer.Randomizer
method), 580

end_while_iteration()
(robot.running.suiterunner.SuiteRunner

Index 675

Robot Framework Documentation, Release 6.0.2

method), 586
EndKeywordArguments (class in

robot.output.listenerarguments), 306
EndLexer (class in robot.parsing.lexer.statementlexers),

332
EndSuiteArguments (class in

robot.output.listenerarguments), 306
EndTestArguments (class in

robot.output.listenerarguments), 306
endtime (robot.result.model.Break attribute), 488
endtime (robot.result.model.Continue attribute), 485
endtime (robot.result.model.For attribute), 467
endtime (robot.result.model.ForIteration attribute),

465
endtime (robot.result.model.If attribute), 476
endtime (robot.result.model.IfBranch attribute), 474
endtime (robot.result.model.Keyword attribute), 490
endtime (robot.result.model.Return attribute), 483
endtime (robot.result.model.TestCase attribute), 493
endtime (robot.result.model.TestSuite attribute), 496
endtime (robot.result.model.Try attribute), 481
endtime (robot.result.model.TryBranch attribute), 478
endtime (robot.result.model.While attribute), 472
endtime (robot.result.model.WhileIteration attribute),

469
ENUM (robot.libdocpkg.datatypes.TypeDoc attribute), 70
EnumConverter (class in

robot.running.arguments.typeconverters),
532

EnumMember (class in robot.libdocpkg.datatypes), 70
environment_variable_should_be_set()

(robot.libraries.OperatingSystem.OperatingSystem
method), 119

environment_variable_should_not_be_set()
(robot.libraries.OperatingSystem.OperatingSystem
method), 119

EnvironmentFinder (class in
robot.variables.finders), 608

EOL (robot.parsing.lexer.tokens.END attribute), 338
EOL (robot.parsing.lexer.tokens.EOS attribute), 336
EOL (robot.parsing.lexer.tokens.Token attribute), 335
EOS (class in robot.parsing.lexer.tokens), 336
EOS (robot.parsing.lexer.tokens.END attribute), 338
EOS (robot.parsing.lexer.tokens.EOS attribute), 336
EOS (robot.parsing.lexer.tokens.Token attribute), 335
eq() (in module robot.utils.match), 603
Error, 13
Error (class in robot.parsing.model.statements), 387
ERROR (robot.parsing.lexer.tokens.END attribute), 338
error (robot.parsing.lexer.tokens.END attribute), 340
ERROR (robot.parsing.lexer.tokens.EOS attribute), 336
error (robot.parsing.lexer.tokens.EOS attribute), 338
ERROR (robot.parsing.lexer.tokens.Token attribute), 335
error (robot.parsing.lexer.tokens.Token attribute), 335

error (robot.running.model.Break attribute), 569
error (robot.running.model.Continue attribute), 567
error (robot.running.model.For attribute), 557
error (robot.running.model.If attribute), 562
error (robot.running.model.Return attribute), 566
error (robot.running.model.Try attribute), 564
error (robot.running.model.While attribute), 559
error() (in module robot.api.logger), 15
error() (in module robot.output.librarylogger), 306
error() (robot.output.console.highlighting.HighlightingStream

method), 303
error() (robot.output.console.verbose.VerboseWriter

method), 304
error() (robot.output.filelogger.FileLogger method),

305
error() (robot.output.logger.Logger method), 309
error() (robot.output.loggerhelper.AbstractLogger

method), 309
error() (robot.output.output.Output method), 311
error() (robot.utils.application.DefaultLogger

method), 591
error() (robot.utils.importer.NoLogger method), 602
error_occurred() (robot.running.status.Exit

method), 583
error_occurred() (robot.running.status.SuiteStatus

method), 583
error_occurred() (robot.running.status.TestStatus

method), 583
ErrorDetails (class in robot.utils.error), 598
ErrorMessageBuilder (class in

robot.reporting.jsmodelbuilders), 395
ErrorMessageHandler (class in

robot.result.xmlelementhandlers), 526
ErrorReporter (class in

robot.running.builder.parsers), 543
errors (robot.parsing.model.blocks.Block attribute),

340
errors (robot.parsing.model.blocks.CommentSection

attribute), 342
errors (robot.parsing.model.blocks.File attribute), 341
errors (robot.parsing.model.blocks.For attribute), 343
errors (robot.parsing.model.blocks.HeaderAndBody

attribute), 340
errors (robot.parsing.model.blocks.If attribute), 343
errors (robot.parsing.model.blocks.Keyword attribute),

343
errors (robot.parsing.model.blocks.KeywordSection

attribute), 342
errors (robot.parsing.model.blocks.Section attribute),

341
errors (robot.parsing.model.blocks.SettingSection at-

tribute), 341
errors (robot.parsing.model.blocks.TestCase at-

tribute), 343

676 Index

Robot Framework Documentation, Release 6.0.2

errors (robot.parsing.model.blocks.TestCaseSection
attribute), 342

errors (robot.parsing.model.blocks.Try attribute), 344
errors (robot.parsing.model.blocks.VariableSection at-

tribute), 342
errors (robot.parsing.model.blocks.While attribute),

344
errors (robot.parsing.model.statements.Error at-

tribute), 387
errors (robot.result.executionresult.Result attribute),

413
ErrorsBuilder (class in

robot.reporting.jsmodelbuilders), 395
ErrorSectionHeaderLexer (class in

robot.parsing.lexer.statementlexers), 329
ErrorSectionLexer (class in

robot.parsing.lexer.blocklexers), 321
ErrorsHandler (class in

robot.result.xmlelementhandlers), 526
Es (class in robot.conf.languages), 51
escape() (in module robot.utils.escaping), 598
ETSource (class in robot.utils.etreewrapper), 598
evaluate() (robot.libraries.BuiltIn.BuiltIn method),

79
evaluate_expression() (in module

robot.variables.evaluation), 607
evaluate_xpath() (robot.libraries.XML.XML

method), 157
EvaluationNamespace (class in

robot.variables.evaluation), 607
event_add() (robot.libraries.dialogs_py.InputDialog

method), 174
event_add() (robot.libraries.dialogs_py.MessageDialog

method), 160
event_add() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 202
event_add() (robot.libraries.dialogs_py.PassFailDialog

method), 216
event_add() (robot.libraries.dialogs_py.SelectionDialog

method), 188
event_delete() (robot.libraries.dialogs_py.InputDialog

method), 174
event_delete() (robot.libraries.dialogs_py.MessageDialog

method), 160
event_delete() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 202
event_delete() (robot.libraries.dialogs_py.PassFailDialog

method), 216
event_delete() (robot.libraries.dialogs_py.SelectionDialog

method), 188
event_generate() (robot.libraries.dialogs_py.InputDialog

method), 174
event_generate() (robot.libraries.dialogs_py.MessageDialog

method), 160

event_generate() (robot.libraries.dialogs_py.MultipleSelectionDialog
method), 202

event_generate() (robot.libraries.dialogs_py.PassFailDialog
method), 216

event_generate() (robot.libraries.dialogs_py.SelectionDialog
method), 188

event_info() (robot.libraries.dialogs_py.InputDialog
method), 174

event_info() (robot.libraries.dialogs_py.MessageDialog
method), 160

event_info() (robot.libraries.dialogs_py.MultipleSelectionDialog
method), 202

event_info() (robot.libraries.dialogs_py.PassFailDialog
method), 216

event_info() (robot.libraries.dialogs_py.SelectionDialog
method), 188

EXCEPT (robot.model.body.BodyItem attribute), 228
EXCEPT (robot.model.control.Break attribute), 249
EXCEPT (robot.model.control.Continue attribute), 248
EXCEPT (robot.model.control.For attribute), 239
EXCEPT (robot.model.control.If attribute), 243
EXCEPT (robot.model.control.IfBranch attribute), 241
EXCEPT (robot.model.control.Return attribute), 247
EXCEPT (robot.model.control.Try attribute), 245
EXCEPT (robot.model.control.TryBranch attribute), 244
EXCEPT (robot.model.control.While attribute), 240
EXCEPT (robot.model.keyword.Keyword attribute), 260
EXCEPT (robot.model.message.Message attribute), 263
EXCEPT (robot.output.loggerhelper.Message attribute),

309
EXCEPT (robot.parsing.lexer.tokens.END attribute), 338
EXCEPT (robot.parsing.lexer.tokens.EOS attribute), 336
EXCEPT (robot.parsing.lexer.tokens.Token attribute), 335
EXCEPT (robot.result.model.Break attribute), 488
EXCEPT (robot.result.model.Continue attribute), 486
EXCEPT (robot.result.model.For attribute), 467
EXCEPT (robot.result.model.ForIteration attribute), 465
EXCEPT (robot.result.model.If attribute), 476
EXCEPT (robot.result.model.IfBranch attribute), 474
EXCEPT (robot.result.model.Keyword attribute), 491
EXCEPT (robot.result.model.Message attribute), 463
EXCEPT (robot.result.model.Return attribute), 483
EXCEPT (robot.result.model.Try attribute), 481
EXCEPT (robot.result.model.TryBranch attribute), 479
EXCEPT (robot.result.model.While attribute), 472
EXCEPT (robot.result.model.WhileIteration attribute),

470
EXCEPT (robot.running.model.Break attribute), 569
EXCEPT (robot.running.model.Continue attribute), 567
EXCEPT (robot.running.model.For attribute), 558
EXCEPT (robot.running.model.If attribute), 562
EXCEPT (robot.running.model.IfBranch attribute), 560
EXCEPT (robot.running.model.Keyword attribute), 556
EXCEPT (robot.running.model.Return attribute), 566

Index 677

Robot Framework Documentation, Release 6.0.2

EXCEPT (robot.running.model.Try attribute), 565
EXCEPT (robot.running.model.TryBranch attribute), 563
EXCEPT (robot.running.model.While attribute), 559
except_branches (robot.model.control.Try at-

tribute), 245
except_branches (robot.result.model.Try attribute),

482
except_branches (robot.running.model.Try at-

tribute), 566
ExceptHeader (class in

robot.parsing.model.statements), 378
ExceptHeaderLexer (class in

robot.parsing.lexer.statementlexers), 332
exclude (robot.conf.settings.RebotSettings attribute),

66
exclude (robot.conf.settings.RobotSettings attribute),

65
exclude_tags (robot.model.filter.Filter attribute), 254
execute() (robot.libdoc.LibDoc method), 619
execute() (robot.rebot.Rebot method), 620
execute() (robot.run.RobotFramework method), 622
execute() (robot.running.timeouts.posix.Timeout

method), 549
execute() (robot.running.timeouts.windows.Timeout

method), 549
execute() (robot.testdoc.TestDoc method), 624
execute() (robot.utils.application.Application

method), 591
execute_cli() (robot.libdoc.LibDoc method), 619
execute_cli() (robot.rebot.Rebot method), 620
execute_cli() (robot.run.RobotFramework

method), 622
execute_cli() (robot.testdoc.TestDoc method), 624
execute_cli() (robot.utils.application.Application

method), 591
execute_command()

(robot.libraries.Telnet.TelnetConnection
method), 144

execute_manual_step() (in module
robot.libraries.Dialogs), 111

ExecutionContexts (class in
robot.running.context), 550

ExecutionErrors (class in
robot.result.executionerrors), 412

ExecutionFailed, 615
ExecutionFailures, 615
ExecutionPassed, 616
ExecutionResult (class in robot.libraries.Process),

128
ExecutionResult() (in module

robot.result.resultbuilder), 500
ExecutionResultBuilder (class in

robot.result.resultbuilder), 500
ExecutionStatus, 614

Exit (class in robot.running.status), 583
exit_for_loop() (robot.libraries.BuiltIn.BuiltIn

method), 79
exit_for_loop_if()

(robot.libraries.BuiltIn.BuiltIn method),
80

exit_on_error (robot.conf.settings.RobotSettings at-
tribute), 65

exit_on_error_message
(robot.running.status.TestMessage attribute),
584

exit_on_failure (robot.conf.settings.RobotSettings
attribute), 65

exit_on_failure_message
(robot.running.status.TestMessage attribute),
584

exit_on_fatal_message
(robot.running.status.TestMessage attribute),
584

expand_keywords (robot.conf.settings.RebotSettings
attribute), 67

expand_keywords (robot.reporting.jsbuildingcontext.JsBuildingContext
attribute), 394

ExpandKeywordMatcher (class in
robot.reporting.expandkeywordmatcher),
393

expect() (robot.libraries.Telnet.TelnetConnection
method), 145

extend() (robot.model.body.BaseBody method), 230
extend() (robot.model.body.Body method), 231
extend() (robot.model.body.Branches method), 233
extend() (robot.model.itemlist.ItemList method), 259
extend() (robot.model.keyword.Keywords method),

262
extend() (robot.model.message.Messages method),

264
extend() (robot.model.testcase.TestCases method),

284
extend() (robot.model.testsuite.TestSuites method),

288
extend() (robot.result.model.Body method), 458
extend() (robot.result.model.Branches method), 460
extend() (robot.result.model.Iterations method), 461
extend() (robot.running.model.Body method), 554
extend() (robot.running.model.Imports method), 576
ExtendedFinder (class in robot.variables.finders),

608
extension (robot.conf.settings.RobotSettings at-

tribute), 65

F
FAIL (robot.result.model.Break attribute), 488
FAIL (robot.result.model.Continue attribute), 486
FAIL (robot.result.model.For attribute), 467

678 Index

Robot Framework Documentation, Release 6.0.2

FAIL (robot.result.model.ForIteration attribute), 465
FAIL (robot.result.model.If attribute), 476
FAIL (robot.result.model.IfBranch attribute), 474
FAIL (robot.result.model.Keyword attribute), 491
FAIL (robot.result.model.Return attribute), 483
FAIL (robot.result.model.StatusMixin attribute), 464
FAIL (robot.result.model.TestCase attribute), 493
FAIL (robot.result.model.TestSuite attribute), 496
FAIL (robot.result.model.Try attribute), 481
FAIL (robot.result.model.TryBranch attribute), 479
FAIL (robot.result.model.While attribute), 472
FAIL (robot.result.model.WhileIteration attribute), 470
fail() (in module robot.utils.asserts), 594
fail() (robot.libraries.BuiltIn.BuiltIn method), 80
fail() (robot.output.filelogger.FileLogger method),

305
fail() (robot.output.logger.Logger method), 309
fail() (robot.output.loggerhelper.AbstractLogger

method), 309
fail() (robot.output.output.Output method), 311
failed (robot.model.stats.Stat attribute), 275
failed (robot.model.totalstatistics.TotalStatistics at-

tribute), 288
failed (robot.result.model.Break attribute), 489
failed (robot.result.model.Continue attribute), 487
failed (robot.result.model.For attribute), 468
failed (robot.result.model.ForIteration attribute), 466
failed (robot.result.model.If attribute), 477
failed (robot.result.model.IfBranch attribute), 475
failed (robot.result.model.Keyword attribute), 492
failed (robot.result.model.Return attribute), 484
failed (robot.result.model.StatusMixin attribute), 464
failed (robot.result.model.TestCase attribute), 494
failed (robot.result.model.TestSuite attribute), 496
failed (robot.result.model.Try attribute), 482
failed (robot.result.model.TryBranch attribute), 480
failed (robot.result.model.While attribute), 473
failed (robot.result.model.WhileIteration attribute),

471
failed (robot.running.status.SuiteStatus attribute), 583
failed (robot.running.status.TestStatus attribute), 583
Failure, 12
Failure (class in robot.running.status), 583
failure_occurred() (robot.running.status.Exit

method), 583
failure_occurred()

(robot.running.status.SuiteStatus method),
583

failure_occurred()
(robot.running.status.TestStatus method),
583

false_strings (robot.conf.languages.Bg attribute),
60

false_strings (robot.conf.languages.Bs attribute),
39

false_strings (robot.conf.languages.Cs attribute),
36

false_strings (robot.conf.languages.De attribute),
43

false_strings (robot.conf.languages.En attribute),
35

false_strings (robot.conf.languages.Es attribute),
52

false_strings (robot.conf.languages.Fi attribute),
40

false_strings (robot.conf.languages.Fr attribute),
42

false_strings (robot.conf.languages.Hi attribute),
64

false_strings (robot.conf.languages.It attribute),
63

false_strings (robot.conf.languages.Language at-
tribute), 33

false_strings (robot.conf.languages.Nl attribute),
38

false_strings (robot.conf.languages.Pl attribute),
49

false_strings (robot.conf.languages.Pt attribute),
46

false_strings (robot.conf.languages.PtBr at-
tribute), 45

false_strings (robot.conf.languages.Ro attribute),
61

false_strings (robot.conf.languages.Ru attribute),
53

false_strings (robot.conf.languages.Sv attribute),
59

false_strings (robot.conf.languages.Th attribute),
47

false_strings (robot.conf.languages.Tr attribute),
57

false_strings (robot.conf.languages.Uk attribute),
50

false_strings (robot.conf.languages.ZhCn at-
tribute), 54

false_strings (robot.conf.languages.ZhTw at-
tribute), 56

FATAL_ERROR (robot.parsing.lexer.tokens.END at-
tribute), 338

FATAL_ERROR (robot.parsing.lexer.tokens.EOS at-
tribute), 336

FATAL_ERROR (robot.parsing.lexer.tokens.Token
attribute), 335

fatal_error() (robot.libraries.BuiltIn.BuiltIn
method), 80

FatalError, 13
fdel (robot.utils.misc.classproperty attribute), 604

Index 679

Robot Framework Documentation, Release 6.0.2

feed() (robot.libraries.Telnet.TerminalEmulator
method), 146

fetch_from_left() (robot.libraries.String.String
method), 136

fetch_from_right() (robot.libraries.String.String
method), 136

fget (robot.utils.misc.classproperty attribute), 604
Fi (class in robot.conf.languages), 39
File (class in robot.parsing.model.blocks), 341
file_should_be_empty()

(robot.libraries.OperatingSystem.OperatingSystem
method), 116

file_should_exist()
(robot.libraries.OperatingSystem.OperatingSystem
method), 115

file_should_not_be_empty()
(robot.libraries.OperatingSystem.OperatingSystem
method), 116

file_should_not_exist()
(robot.libraries.OperatingSystem.OperatingSystem
method), 115

FileContext (class in robot.parsing.lexer.context),
323

FileLexer (class in robot.parsing.lexer.blocklexers),
318

FileLogger (class in robot.output.filelogger), 305
fileno() (robot.libraries.Telnet.TelnetConnection

method), 145
FileParser (class in robot.parsing.parser.fileparser),

390
FileReader (class in robot.utils.filereader), 598
fill_named() (robot.running.arguments.argumentmapper.KeywordCallTemplate

method), 528
fill_positional()

(robot.running.arguments.argumentmapper.KeywordCallTemplate
method), 528

fill_rawq() (robot.libraries.Telnet.TelnetConnection
method), 145

Filter (class in robot.model.filter), 254
filter() (robot.model.body.BaseBody method), 229
filter() (robot.model.body.Body method), 231
filter() (robot.model.body.Branches method), 233
filter() (robot.model.testsuite.TestSuite method), 287
filter() (robot.output.pyloggingconf.RobotHandler

method), 312
filter() (robot.result.model.Body method), 458
filter() (robot.result.model.Branches method), 460
filter() (robot.result.model.Iterations method), 462
filter() (robot.result.model.TestSuite method), 496
filter() (robot.running.model.Body method), 554
filter() (robot.running.model.TestSuite method), 574
filter_messages() (robot.result.model.TestSuite

method), 499
FINALLY (robot.model.body.BodyItem attribute), 228

FINALLY (robot.model.control.Break attribute), 249
FINALLY (robot.model.control.Continue attribute), 248
FINALLY (robot.model.control.For attribute), 239
FINALLY (robot.model.control.If attribute), 243
FINALLY (robot.model.control.IfBranch attribute), 241
FINALLY (robot.model.control.Return attribute), 247
FINALLY (robot.model.control.Try attribute), 246
FINALLY (robot.model.control.TryBranch attribute),

244
FINALLY (robot.model.control.While attribute), 240
FINALLY (robot.model.keyword.Keyword attribute), 260
FINALLY (robot.model.message.Message attribute), 263
FINALLY (robot.output.loggerhelper.Message attribute),

310
FINALLY (robot.parsing.lexer.tokens.END attribute),

339
FINALLY (robot.parsing.lexer.tokens.EOS attribute),

336
FINALLY (robot.parsing.lexer.tokens.Token attribute),

335
FINALLY (robot.result.model.Break attribute), 488
FINALLY (robot.result.model.Continue attribute), 486
FINALLY (robot.result.model.For attribute), 467
FINALLY (robot.result.model.ForIteration attribute),

465
FINALLY (robot.result.model.If attribute), 476
FINALLY (robot.result.model.IfBranch attribute), 474
FINALLY (robot.result.model.Keyword attribute), 491
FINALLY (robot.result.model.Message attribute), 463
FINALLY (robot.result.model.Return attribute), 483
FINALLY (robot.result.model.Try attribute), 481
FINALLY (robot.result.model.TryBranch attribute), 479
FINALLY (robot.result.model.While attribute), 472
FINALLY (robot.result.model.WhileIteration attribute),

470
FINALLY (robot.running.model.Break attribute), 569
FINALLY (robot.running.model.Continue attribute), 567
FINALLY (robot.running.model.For attribute), 558
FINALLY (robot.running.model.If attribute), 562
FINALLY (robot.running.model.IfBranch attribute), 561
FINALLY (robot.running.model.Keyword attribute), 556
FINALLY (robot.running.model.Return attribute), 566
FINALLY (robot.running.model.Try attribute), 565
FINALLY (robot.running.model.TryBranch attribute),

563
FINALLY (robot.running.model.While attribute), 559
finally_branch (robot.model.control.Try attribute),

245
finally_branch (robot.result.model.Try attribute),

482
finally_branch (robot.running.model.Try attribute),

566
FinallyHeader (class in

robot.parsing.model.statements), 379

680 Index

Robot Framework Documentation, Release 6.0.2

FinallyHeaderLexer (class in
robot.parsing.lexer.statementlexers), 332

find() (robot.utils.recommendations.RecommendationFinder
method), 605

find() (robot.variables.finders.EmptyFinder method),
608

find() (robot.variables.finders.EnvironmentFinder
method), 608

find() (robot.variables.finders.ExtendedFinder
method), 608

find() (robot.variables.finders.InlinePythonFinder
method), 608

find() (robot.variables.finders.NumberFinder
method), 608

find() (robot.variables.finders.StoredFinder method),
608

find() (robot.variables.finders.VariableFinder
method), 608

find_all() (robot.libraries.XML.ElementFinder
method), 157

find_and_format()
(robot.utils.recommendations.RecommendationFinder
method), 605

find_from() (robot.parsing.model.blocks.FirstStatementFinder
class method), 345

find_from() (robot.parsing.model.blocks.LastStatementFinder
class method), 345

FirstStatementFinder (class in
robot.parsing.model.blocks), 345

Fixture (class in robot.parsing.model.statements), 349
fixture_class (robot.model.testcase.TestCase at-

tribute), 282
fixture_class (robot.model.testsuite.TestSuite at-

tribute), 285
fixture_class (robot.result.model.TestCase at-

tribute), 493
fixture_class (robot.result.model.TestSuite at-

tribute), 496
fixture_class (robot.running.model.TestCase at-

tribute), 570
fixture_class (robot.running.model.TestSuite at-

tribute), 572
flatten() (robot.model.body.BaseBody method), 230
flatten() (robot.model.body.Body method), 231
flatten() (robot.model.body.Branches method), 233
flatten() (robot.result.model.Body method), 458
flatten() (robot.result.model.Branches method), 460
flatten() (robot.result.model.Iterations method), 462
flatten() (robot.running.model.Body method), 554
flatten_keywords (robot.conf.settings.RebotSettings

attribute), 66
flatten_keywords (robot.conf.settings.RobotSettings

attribute), 65
FlattenByNameMatcher (class in

robot.result.flattenkeywordmatcher), 415
FlattenByTagMatcher (class in

robot.result.flattenkeywordmatcher), 415
FlattenByTypeMatcher (class in

robot.result.flattenkeywordmatcher), 415
flavor (robot.model.control.For attribute), 238
flavor (robot.parsing.model.blocks.For attribute), 344
flavor (robot.parsing.model.statements.ForHeader at-

tribute), 372
flavor (robot.result.model.For attribute), 468
flavor (robot.running.bodyrunner.ForInEnumerateRunner

attribute), 549
flavor (robot.running.bodyrunner.ForInRangeRunner

attribute), 549
flavor (robot.running.bodyrunner.ForInRunner at-

tribute), 549
flavor (robot.running.bodyrunner.ForInZipRunner at-

tribute), 549
flavor (robot.running.model.For attribute), 558
FloatConverter (class in

robot.running.arguments.typeconverters),
533

flush() (robot.output.console.highlighting.HighlightingStream
method), 303

flush() (robot.output.pyloggingconf.RobotHandler
method), 312

focus() (robot.libraries.dialogs_py.InputDialog
method), 174

focus() (robot.libraries.dialogs_py.MessageDialog
method), 160

focus() (robot.libraries.dialogs_py.MultipleSelectionDialog
method), 202

focus() (robot.libraries.dialogs_py.PassFailDialog
method), 216

focus() (robot.libraries.dialogs_py.SelectionDialog
method), 188

focus_displayof()
(robot.libraries.dialogs_py.InputDialog
method), 174

focus_displayof()
(robot.libraries.dialogs_py.MessageDialog
method), 160

focus_displayof()
(robot.libraries.dialogs_py.MultipleSelectionDialog
method), 202

focus_displayof()
(robot.libraries.dialogs_py.PassFailDialog
method), 216

focus_displayof()
(robot.libraries.dialogs_py.SelectionDialog
method), 188

focus_force() (robot.libraries.dialogs_py.InputDialog
method), 174

focus_force() (robot.libraries.dialogs_py.MessageDialog

Index 681

Robot Framework Documentation, Release 6.0.2

method), 160
focus_force() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 202
focus_force() (robot.libraries.dialogs_py.PassFailDialog

method), 216
focus_force() (robot.libraries.dialogs_py.SelectionDialog

method), 188
focus_get() (robot.libraries.dialogs_py.InputDialog

method), 175
focus_get() (robot.libraries.dialogs_py.MessageDialog

method), 161
focus_get() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 203
focus_get() (robot.libraries.dialogs_py.PassFailDialog

method), 217
focus_get() (robot.libraries.dialogs_py.SelectionDialog

method), 189
focus_lastfor() (robot.libraries.dialogs_py.InputDialog

method), 175
focus_lastfor() (robot.libraries.dialogs_py.MessageDialog

method), 161
focus_lastfor() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 203
focus_lastfor() (robot.libraries.dialogs_py.PassFailDialog

method), 217
focus_lastfor() (robot.libraries.dialogs_py.SelectionDialog

method), 189
focus_set() (robot.libraries.dialogs_py.InputDialog

method), 175
focus_set() (robot.libraries.dialogs_py.MessageDialog

method), 161
focus_set() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 203
focus_set() (robot.libraries.dialogs_py.PassFailDialog

method), 217
focus_set() (robot.libraries.dialogs_py.SelectionDialog

method), 189
focusmodel() (robot.libraries.dialogs_py.InputDialog

method), 175
focusmodel() (robot.libraries.dialogs_py.MessageDialog

method), 161
focusmodel() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 203
focusmodel() (robot.libraries.dialogs_py.PassFailDialog

method), 217
focusmodel() (robot.libraries.dialogs_py.SelectionDialog

method), 189
For (class in robot.model.control), 238
For (class in robot.parsing.model.blocks), 343
For (class in robot.result.model), 467
For (class in robot.running.model), 557
FOR (robot.model.body.BodyItem attribute), 228
FOR (robot.model.control.Break attribute), 249
FOR (robot.model.control.Continue attribute), 248

FOR (robot.model.control.For attribute), 239
FOR (robot.model.control.If attribute), 243
FOR (robot.model.control.IfBranch attribute), 241
FOR (robot.model.control.Return attribute), 247
FOR (robot.model.control.Try attribute), 246
FOR (robot.model.control.TryBranch attribute), 244
FOR (robot.model.control.While attribute), 240
FOR (robot.model.keyword.Keyword attribute), 260
FOR (robot.model.message.Message attribute), 263
FOR (robot.output.loggerhelper.Message attribute), 310
FOR (robot.parsing.lexer.tokens.END attribute), 339
FOR (robot.parsing.lexer.tokens.EOS attribute), 336
FOR (robot.parsing.lexer.tokens.Token attribute), 334
FOR (robot.result.model.Break attribute), 488
FOR (robot.result.model.Continue attribute), 486
FOR (robot.result.model.For attribute), 467
FOR (robot.result.model.ForIteration attribute), 465
FOR (robot.result.model.If attribute), 476
FOR (robot.result.model.IfBranch attribute), 474
FOR (robot.result.model.Keyword attribute), 491
FOR (robot.result.model.Message attribute), 463
FOR (robot.result.model.Return attribute), 483
FOR (robot.result.model.Try attribute), 481
FOR (robot.result.model.TryBranch attribute), 479
FOR (robot.result.model.While attribute), 472
FOR (robot.result.model.WhileIteration attribute), 470
FOR (robot.running.model.Break attribute), 569
FOR (robot.running.model.Continue attribute), 567
FOR (robot.running.model.For attribute), 558
FOR (robot.running.model.If attribute), 562
FOR (robot.running.model.IfBranch attribute), 561
FOR (robot.running.model.Keyword attribute), 556
FOR (robot.running.model.Return attribute), 566
FOR (robot.running.model.Try attribute), 565
FOR (robot.running.model.TryBranch attribute), 563
FOR (robot.running.model.While attribute), 559
for_class (robot.model.body.BaseBody attribute),

229
for_class (robot.model.body.Body attribute), 231
for_class (robot.model.body.Branches attribute), 233
for_class (robot.result.model.Body attribute), 459
for_class (robot.result.model.Branches attribute),

460
for_class (robot.result.model.Iterations attribute),

462
for_class (robot.running.model.Body attribute), 554
for_converter() (robot.running.arguments.customconverters.ConverterInfo

class method), 531
for_enum() (robot.libdocpkg.datatypes.TypeDoc class

method), 70
FOR_SEPARATOR (robot.parsing.lexer.tokens.END at-

tribute), 339
FOR_SEPARATOR (robot.parsing.lexer.tokens.EOS at-

tribute), 336

682 Index

Robot Framework Documentation, Release 6.0.2

FOR_SEPARATOR (robot.parsing.lexer.tokens.Token at-
tribute), 334

for_type() (robot.libdocpkg.datatypes.TypeDoc class
method), 70

for_typed_dict() (robot.libdocpkg.datatypes.TypeDoc
class method), 70

ForBuilder (class in
robot.running.builder.transformers), 546

FORCE_TAGS (robot.parsing.lexer.tokens.END at-
tribute), 339

FORCE_TAGS (robot.parsing.lexer.tokens.EOS at-
tribute), 336

FORCE_TAGS (robot.parsing.lexer.tokens.Token at-
tribute), 334

force_tags (robot.running.builder.settings.Defaults
attribute), 543

ForceTags (class in robot.parsing.model.statements),
354

forget() (robot.libraries.dialogs_py.InputDialog
method), 175

forget() (robot.libraries.dialogs_py.MessageDialog
method), 161

forget() (robot.libraries.dialogs_py.MultipleSelectionDialog
method), 203

forget() (robot.libraries.dialogs_py.PassFailDialog
method), 217

forget() (robot.libraries.dialogs_py.SelectionDialog
method), 189

ForHandler (class in
robot.result.xmlelementhandlers), 520

ForHeader (class in robot.parsing.model.statements),
372

ForHeaderLexer (class in
robot.parsing.lexer.statementlexers), 331

ForInEnumerateRunner (class in
robot.running.bodyrunner), 549

ForInRangeRunner (class in
robot.running.bodyrunner), 549

ForInRunner (class in robot.running.bodyrunner),
549

ForInZipRunner (class in
robot.running.bodyrunner), 549

ForIteration (class in robot.result.model), 464
ForLexer (class in robot.parsing.lexer.blocklexers),

322
ForLoopItemsRemover (class in

robot.result.keywordremover), 432
format() (robot.output.pyloggingconf.RobotHandler

method), 312
format() (robot.utils.htmlformatters.HeaderFormatter

method), 599
format() (robot.utils.htmlformatters.HtmlFormatter

method), 599
format() (robot.utils.htmlformatters.LineFormatter

method), 599
format() (robot.utils.htmlformatters.ListFormatter

method), 600
format() (robot.utils.htmlformatters.ParagraphFormatter

method), 600
format() (robot.utils.htmlformatters.PreformattedFormatter

method), 600
format() (robot.utils.htmlformatters.RulerFormatter

method), 599
format() (robot.utils.htmlformatters.TableFormatter

method), 600
format() (robot.utils.recommendations.RecommendationFinder

method), 605
format_error() (in module

robot.running.builder.transformers), 548
format_line() (robot.utils.htmlformatters.HeaderFormatter

method), 599
format_line() (robot.utils.htmlformatters.RulerFormatter

method), 599
format_link() (robot.utils.htmlformatters.LinkFormatter

method), 599
format_name() (in module

robot.running.builder.parsers), 543
format_recommendations()

(robot.running.namespace.KeywordRecommendationFinder
static method), 578

format_string() (robot.libraries.String.String
method), 133

format_url() (robot.utils.htmlformatters.LinkFormatter
method), 599

ForParser (class in
robot.parsing.parser.blockparsers), 390

ForRunner() (in module robot.running.bodyrunner),
549

Fr (class in robot.conf.languages), 41
frame() (robot.libraries.dialogs_py.InputDialog

method), 175
frame() (robot.libraries.dialogs_py.MessageDialog

method), 161
frame() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 203
frame() (robot.libraries.dialogs_py.PassFailDialog

method), 217
frame() (robot.libraries.dialogs_py.SelectionDialog

method), 189
FrameworkError, 613
frange() (in module robot.utils.frange), 599
from_bytes() (robot.reporting.stringcache.StringIndex

method), 401
from_dict() (robot.running.arguments.customconverters.CustomArgumentConverters

class method), 531
from_file_system()

(robot.running.model.TestSuite class method),
572

Index 683

Robot Framework Documentation, Release 6.0.2

from_model() (robot.running.model.TestSuite class
method), 572

from_name() (robot.conf.languages.Bg class method),
60

from_name() (robot.conf.languages.Bs class method),
39

from_name() (robot.conf.languages.Cs class method),
36

from_name() (robot.conf.languages.De class method),
43

from_name() (robot.conf.languages.En class method),
35

from_name() (robot.conf.languages.Es class method),
52

from_name() (robot.conf.languages.Fi class method),
41

from_name() (robot.conf.languages.Fr class method),
42

from_name() (robot.conf.languages.Hi class method),
64

from_name() (robot.conf.languages.It class method),
63

from_name() (robot.conf.languages.Language class
method), 33

from_name() (robot.conf.languages.Nl class method),
38

from_name() (robot.conf.languages.Pl class method),
49

from_name() (robot.conf.languages.Pt class method),
46

from_name() (robot.conf.languages.PtBr class
method), 45

from_name() (robot.conf.languages.Ro class method),
61

from_name() (robot.conf.languages.Ru class method),
53

from_name() (robot.conf.languages.Sv class method),
59

from_name() (robot.conf.languages.Th class method),
47

from_name() (robot.conf.languages.Tr class method),
57

from_name() (robot.conf.languages.Uk class method),
50

from_name() (robot.conf.languages.ZhCn class
method), 54

from_name() (robot.conf.languages.ZhTw class
method), 56

from_name() (robot.running.arguments.embedded.EmbeddedArguments
class method), 531

from_params() (robot.parsing.model.statements.Arguments
class method), 368

from_params() (robot.parsing.model.statements.Break
class method), 384

from_params() (robot.parsing.model.statements.Comment
class method), 385

from_params() (robot.parsing.model.statements.Config
class method), 386

from_params() (robot.parsing.model.statements.Continue
class method), 384

from_params() (robot.parsing.model.statements.DefaultTags
class method), 355

from_params() (robot.parsing.model.statements.Documentation
class method), 353

from_params() (robot.parsing.model.statements.DocumentationOrMetadata
class method), 346

from_params() (robot.parsing.model.statements.ElseHeader
class method), 376

from_params() (robot.parsing.model.statements.ElseIfHeader
class method), 375

from_params() (robot.parsing.model.statements.EmptyLine
class method), 388

from_params() (robot.parsing.model.statements.End
class method), 380

from_params() (robot.parsing.model.statements.Error
class method), 387

from_params() (robot.parsing.model.statements.ExceptHeader
class method), 378

from_params() (robot.parsing.model.statements.FinallyHeader
class method), 379

from_params() (robot.parsing.model.statements.Fixture
class method), 349

from_params() (robot.parsing.model.statements.ForceTags
class method), 355

from_params() (robot.parsing.model.statements.ForHeader
class method), 372

from_params() (robot.parsing.model.statements.IfElseHeader
class method), 373

from_params() (robot.parsing.model.statements.IfHeader
class method), 373

from_params() (robot.parsing.model.statements.InlineIfHeader
class method), 374

from_params() (robot.parsing.model.statements.KeywordCall
class method), 370

from_params() (robot.parsing.model.statements.KeywordName
class method), 363

from_params() (robot.parsing.model.statements.KeywordTags
class method), 356

from_params() (robot.parsing.model.statements.LibraryImport
class method), 350

from_params() (robot.parsing.model.statements.LoopControl
class method), 383

from_params() (robot.parsing.model.statements.Metadata
class method), 354

from_params() (robot.parsing.model.statements.MultiValue
class method), 348

from_params() (robot.parsing.model.statements.NoArgumentHeader
class method), 377

684 Index

Robot Framework Documentation, Release 6.0.2

from_params() (robot.parsing.model.statements.ResourceImport
class method), 351

from_params() (robot.parsing.model.statements.Return
class method), 369

from_params() (robot.parsing.model.statements.ReturnStatement
class method), 382

from_params() (robot.parsing.model.statements.SectionHeader
class method), 350

from_params() (robot.parsing.model.statements.Setup
class method), 364

from_params() (robot.parsing.model.statements.SingleValue
class method), 347

from_params() (robot.parsing.model.statements.Statement
class method), 346

from_params() (robot.parsing.model.statements.SuiteSetup
class method), 357

from_params() (robot.parsing.model.statements.SuiteTeardown
class method), 358

from_params() (robot.parsing.model.statements.Tags
class method), 366

from_params() (robot.parsing.model.statements.Teardown
class method), 365

from_params() (robot.parsing.model.statements.Template
class method), 367

from_params() (robot.parsing.model.statements.TemplateArguments
class method), 371

from_params() (robot.parsing.model.statements.TestCaseName
class method), 363

from_params() (robot.parsing.model.statements.TestSetup
class method), 359

from_params() (robot.parsing.model.statements.TestTeardown
class method), 360

from_params() (robot.parsing.model.statements.TestTemplate
class method), 360

from_params() (robot.parsing.model.statements.TestTimeout
class method), 361

from_params() (robot.parsing.model.statements.Timeout
class method), 368

from_params() (robot.parsing.model.statements.TryHeader
class method), 378

from_params() (robot.parsing.model.statements.Variable
class method), 362

from_params() (robot.parsing.model.statements.VariablesImport
class method), 352

from_params() (robot.parsing.model.statements.WhileHeader
class method), 381

from_token() (robot.parsing.lexer.tokens.END class
method), 338

from_token() (robot.parsing.lexer.tokens.EOS class
method), 336

from_tokens() (robot.parsing.model.statements.Arguments
class method), 369

from_tokens() (robot.parsing.model.statements.Break
class method), 385

from_tokens() (robot.parsing.model.statements.Comment
class method), 385

from_tokens() (robot.parsing.model.statements.Config
class method), 386

from_tokens() (robot.parsing.model.statements.Continue
class method), 384

from_tokens() (robot.parsing.model.statements.DefaultTags
class method), 356

from_tokens() (robot.parsing.model.statements.Documentation
class method), 353

from_tokens() (robot.parsing.model.statements.DocumentationOrMetadata
class method), 347

from_tokens() (robot.parsing.model.statements.ElseHeader
class method), 376

from_tokens() (robot.parsing.model.statements.ElseIfHeader
class method), 375

from_tokens() (robot.parsing.model.statements.EmptyLine
class method), 388

from_tokens() (robot.parsing.model.statements.End
class method), 380

from_tokens() (robot.parsing.model.statements.Error
class method), 387

from_tokens() (robot.parsing.model.statements.ExceptHeader
class method), 379

from_tokens() (robot.parsing.model.statements.FinallyHeader
class method), 380

from_tokens() (robot.parsing.model.statements.Fixture
class method), 349

from_tokens() (robot.parsing.model.statements.ForceTags
class method), 355

from_tokens() (robot.parsing.model.statements.ForHeader
class method), 372

from_tokens() (robot.parsing.model.statements.IfElseHeader
class method), 373

from_tokens() (robot.parsing.model.statements.IfHeader
class method), 374

from_tokens() (robot.parsing.model.statements.InlineIfHeader
class method), 375

from_tokens() (robot.parsing.model.statements.KeywordCall
class method), 370

from_tokens() (robot.parsing.model.statements.KeywordName
class method), 364

from_tokens() (robot.parsing.model.statements.KeywordTags
class method), 356

from_tokens() (robot.parsing.model.statements.LibraryImport
class method), 351

from_tokens() (robot.parsing.model.statements.LoopControl
class method), 383

from_tokens() (robot.parsing.model.statements.Metadata
class method), 354

from_tokens() (robot.parsing.model.statements.MultiValue
class method), 348

from_tokens() (robot.parsing.model.statements.NoArgumentHeader
class method), 377

Index 685

Robot Framework Documentation, Release 6.0.2

from_tokens() (robot.parsing.model.statements.ResourceImport
class method), 352

from_tokens() (robot.parsing.model.statements.Return
class method), 370

from_tokens() (robot.parsing.model.statements.ReturnStatement
class method), 382

from_tokens() (robot.parsing.model.statements.SectionHeader
class method), 350

from_tokens() (robot.parsing.model.statements.Setup
class method), 365

from_tokens() (robot.parsing.model.statements.SingleValue
class method), 347

from_tokens() (robot.parsing.model.statements.Statement
class method), 346

from_tokens() (robot.parsing.model.statements.SuiteSetup
class method), 357

from_tokens() (robot.parsing.model.statements.SuiteTeardown
class method), 358

from_tokens() (robot.parsing.model.statements.Tags
class method), 366

from_tokens() (robot.parsing.model.statements.Teardown
class method), 365

from_tokens() (robot.parsing.model.statements.Template
class method), 367

from_tokens() (robot.parsing.model.statements.TemplateArguments
class method), 371

from_tokens() (robot.parsing.model.statements.TestCaseName
class method), 363

from_tokens() (robot.parsing.model.statements.TestSetup
class method), 359

from_tokens() (robot.parsing.model.statements.TestTeardown
class method), 360

from_tokens() (robot.parsing.model.statements.TestTemplate
class method), 361

from_tokens() (robot.parsing.model.statements.TestTimeout
class method), 361

from_tokens() (robot.parsing.model.statements.Timeout
class method), 368

from_tokens() (robot.parsing.model.statements.TryHeader
class method), 378

from_tokens() (robot.parsing.model.statements.Variable
class method), 362

from_tokens() (robot.parsing.model.statements.VariablesImport
class method), 352

from_tokens() (robot.parsing.model.statements.WhileHeader
class method), 381

fromkeys() (robot.utils.dotdict.DotDict method), 596
FrozenSetConverter (class in

robot.running.arguments.typeconverters),
539

fset (robot.utils.misc.classproperty attribute), 604
full_message (robot.result.model.TestSuite at-

tribute), 499
full_name() (in module robot.model.modelobject),

265

G
gather_failed_suites() (in module

robot.conf.gatherfailed), 31
gather_failed_tests() (in module

robot.conf.gatherfailed), 31
GatherFailedSuites (class in

robot.conf.gatherfailed), 27
GatherFailedTests (class in

robot.conf.gatherfailed), 23
generate_random_string()

(robot.libraries.String.String method), 136
GeneratorWriter (class in

robot.htmldata.htmlfilewriter), 67
generic_visit() (robot.parsing.model.blocks.FirstStatementFinder

method), 345
generic_visit() (robot.parsing.model.blocks.LastStatementFinder

method), 345
generic_visit() (robot.parsing.model.blocks.ModelValidator

method), 345
generic_visit() (robot.parsing.model.blocks.ModelWriter

method), 345
generic_visit() (robot.parsing.model.visitor.ModelTransformer

method), 389
generic_visit() (robot.parsing.model.visitor.ModelVisitor

method), 389
generic_visit() (robot.parsing.parser.parser.SetLanguages

method), 392
generic_visit() (robot.running.builder.parsers.ErrorReporter

method), 543
generic_visit() (robot.running.builder.transformers.ForBuilder

method), 546
generic_visit() (robot.running.builder.transformers.IfBuilder

method), 547
generic_visit() (robot.running.builder.transformers.KeywordBuilder

method), 546
generic_visit() (robot.running.builder.transformers.ResourceBuilder

method), 545
generic_visit() (robot.running.builder.transformers.SettingsBuilder

method), 544
generic_visit() (robot.running.builder.transformers.SuiteBuilder

method), 544
generic_visit() (robot.running.builder.transformers.TestCaseBuilder

method), 545
generic_visit() (robot.running.builder.transformers.TryBuilder

method), 547
generic_visit() (robot.running.builder.transformers.WhileBuilder

method), 548
geometry() (robot.libraries.dialogs_py.InputDialog

method), 175
geometry() (robot.libraries.dialogs_py.MessageDialog

method), 161

686 Index

Robot Framework Documentation, Release 6.0.2

geometry() (robot.libraries.dialogs_py.MultipleSelectionDialog
method), 203

geometry() (robot.libraries.dialogs_py.PassFailDialog
method), 217

geometry() (robot.libraries.dialogs_py.SelectionDialog
method), 189

get() (robot.model.metadata.Metadata method), 264
get() (robot.utils.dotdict.DotDict method), 596
get() (robot.utils.normalizing.NormalizedDict

method), 605
get() (robot.variables.evaluation.EvaluationNamespace

method), 607
get() (robot.variables.store.VariableStore method), 611
get_arguments() (robot.output.listenerarguments.EndKeywordArguments

method), 306
get_arguments() (robot.output.listenerarguments.EndSuiteArguments

method), 306
get_arguments() (robot.output.listenerarguments.EndTestArguments

method), 306
get_arguments() (robot.output.listenerarguments.ListenerArguments

method), 306
get_arguments() (robot.output.listenerarguments.MessageArguments

method), 306
get_arguments() (robot.output.listenerarguments.StartKeywordArguments

method), 306
get_arguments() (robot.output.listenerarguments.StartSuiteArguments

method), 306
get_arguments() (robot.output.listenerarguments.StartTestArguments

method), 306
get_attributes() (robot.model.stats.CombinedTagStat

method), 276
get_attributes() (robot.model.stats.Stat method),

275
get_attributes() (robot.model.stats.SuiteStat

method), 275
get_attributes() (robot.model.stats.TagStat

method), 276
get_attributes() (robot.model.stats.TotalStat

method), 275
get_binary_file()

(robot.libraries.OperatingSystem.OperatingSystem
method), 114

get_char_width() (in module
robot.utils.charwidth), 595

get_child_elements() (robot.libraries.XML.XML
method), 151

get_child_handler()
(robot.result.xmlelementhandlers.ArgumentHandler
method), 526

get_child_handler()
(robot.result.xmlelementhandlers.ArgumentsHandler
method), 525

get_child_handler()
(robot.result.xmlelementhandlers.AssignHandler

method), 525
get_child_handler()

(robot.result.xmlelementhandlers.BranchHandler
method), 521

get_child_handler()
(robot.result.xmlelementhandlers.BreakHandler
method), 522

get_child_handler()
(robot.result.xmlelementhandlers.ContinueHandler
method), 522

get_child_handler()
(robot.result.xmlelementhandlers.DocHandler
method), 523

get_child_handler()
(robot.result.xmlelementhandlers.ElementHandler
method), 519

get_child_handler()
(robot.result.xmlelementhandlers.ErrorMessageHandler
method), 526

get_child_handler()
(robot.result.xmlelementhandlers.ErrorsHandler
method), 526

get_child_handler()
(robot.result.xmlelementhandlers.ForHandler
method), 520

get_child_handler()
(robot.result.xmlelementhandlers.IfHandler
method), 521

get_child_handler()
(robot.result.xmlelementhandlers.IterationHandler
method), 521

get_child_handler()
(robot.result.xmlelementhandlers.KeywordHandler
method), 520

get_child_handler()
(robot.result.xmlelementhandlers.MessageHandler
method), 523

get_child_handler()
(robot.result.xmlelementhandlers.MetadataHandler
method), 523

get_child_handler()
(robot.result.xmlelementhandlers.MetadataItemHandler
method), 524

get_child_handler()
(robot.result.xmlelementhandlers.MetaHandler
method), 524

get_child_handler()
(robot.result.xmlelementhandlers.PatternHandler
method), 522

get_child_handler()
(robot.result.xmlelementhandlers.ReturnHandler
method), 522

get_child_handler()
(robot.result.xmlelementhandlers.RobotHandler

Index 687

Robot Framework Documentation, Release 6.0.2

method), 519
get_child_handler()

(robot.result.xmlelementhandlers.RootHandler
method), 519

get_child_handler()
(robot.result.xmlelementhandlers.StatisticsHandler
method), 526

get_child_handler()
(robot.result.xmlelementhandlers.StatusHandler
method), 523

get_child_handler()
(robot.result.xmlelementhandlers.SuiteHandler
method), 519

get_child_handler()
(robot.result.xmlelementhandlers.TagHandler
method), 524

get_child_handler()
(robot.result.xmlelementhandlers.TagsHandler
method), 524

get_child_handler()
(robot.result.xmlelementhandlers.TestHandler
method), 520

get_child_handler()
(robot.result.xmlelementhandlers.TimeoutHandler
method), 525

get_child_handler()
(robot.result.xmlelementhandlers.TryHandler
method), 521

get_child_handler()
(robot.result.xmlelementhandlers.ValueHandler
method), 526

get_child_handler()
(robot.result.xmlelementhandlers.VarHandler
method), 525

get_child_handler()
(robot.result.xmlelementhandlers.WhileHandler
method), 521

get_combined_stats()
(robot.model.tagstatistics.TagStatInfo method),
282

get_command() (robot.libraries.Process.ProcessConfiguration
method), 128

get_connection() (robot.utils.connectioncache.ConnectionCache
method), 596

get_console_encoding() (in module
robot.utils.encodingsniffer), 597

get_converter_info()
(robot.running.arguments.customconverters.CustomArgumentConverters
method), 531

get_count() (robot.libraries.BuiltIn.BuiltIn method),
80

get_current_date() (in module
robot.libraries.DateTime), 109

get_dictionary_items()

(robot.libraries.Collections.Collections
method), 103

get_dictionary_keys()
(robot.libraries.Collections.Collections
method), 103

get_dictionary_values()
(robot.libraries.Collections.Collections
method), 103

get_doc() (robot.model.tagstatistics.TagStatInfo
method), 282

get_element() (robot.libraries.XML.XML method),
151

get_element_attribute()
(robot.libraries.XML.XML method), 153

get_element_attributes()
(robot.libraries.XML.XML method), 153

get_element_count() (robot.libraries.XML.XML
method), 151

get_element_text() (robot.libraries.XML.XML
method), 152

get_elements() (robot.libraries.XML.XML method),
151

get_elements_texts() (robot.libraries.XML.XML
method), 152

get_environment_variable()
(robot.libraries.OperatingSystem.OperatingSystem
method), 118

get_environment_variables()
(robot.libraries.OperatingSystem.OperatingSystem
method), 119

get_error_details() (in module
robot.utils.error), 598

get_error_message() (in module
robot.utils.error), 598

get_errors() (robot.errors.BreakLoop method), 617
get_errors() (robot.errors.ContinueLoop method),

617
get_errors() (robot.errors.ExecutionFailed

method), 615
get_errors() (robot.errors.ExecutionFailures

method), 615
get_errors() (robot.errors.ExecutionPassed

method), 616
get_errors() (robot.errors.ExecutionStatus method),

615
get_errors() (robot.errors.HandlerExecutionFailed

method), 615
get_errors() (robot.errors.PassExecution method),

617
get_errors() (robot.errors.ReturnFromKeyword

method), 618
get_errors() (robot.errors.UserKeywordExecutionFailed

method), 616
get_file() (robot.libraries.OperatingSystem.OperatingSystem

688 Index

Robot Framework Documentation, Release 6.0.2

method), 114
get_file_size() (robot.libraries.OperatingSystem.OperatingSystem

method), 121
get_from_dictionary()

(robot.libraries.Collections.Collections
method), 103

get_from_list() (robot.libraries.Collections.Collections
method), 104

get_full_version() (in module robot.version),
625

get_generation_time() (in module
robot.libdocpkg.output), 72

get_handlers() (robot.running.handlerstore.HandlerStore
method), 551

get_host_info() (robot.libraries.Remote.TimeoutHTTPSTransport
method), 129

get_host_info() (robot.libraries.Remote.TimeoutHTTPTransport
method), 129

get_index_from_list()
(robot.libraries.Collections.Collections
method), 104

get_init_model() (in module
robot.parsing.parser.parser), 392

get_init_tokens() (in module
robot.parsing.lexer.lexer), 325

get_interpreter() (in module robot.version), 625
get_keyword_arguments()

(robot.libraries.Remote.Remote method),
128

get_keyword_arguments()
(robot.libraries.Remote.XmlRpcRemoteClient
method), 129

get_keyword_documentation()
(robot.libraries.Remote.Remote method),
128

get_keyword_documentation()
(robot.libraries.Remote.XmlRpcRemoteClient
method), 129

get_keyword_names()
(robot.libraries.Remote.Remote method),
128

get_keyword_names()
(robot.libraries.Remote.XmlRpcRemoteClient
method), 129

get_keyword_names()
(robot.libraries.Telnet.Telnet method), 140

get_keyword_tags()
(robot.libraries.Remote.Remote method),
128

get_keyword_tags()
(robot.libraries.Remote.XmlRpcRemoteClient
method), 129

get_keyword_types()
(robot.libraries.Remote.Remote method),

128
get_keyword_types()

(robot.libraries.Remote.XmlRpcRemoteClient
method), 129

get_length() (robot.libraries.BuiltIn.BuiltIn
method), 80

get_library() (robot.running.namespace.KeywordStore
method), 578

get_library_information()
(robot.libraries.Remote.XmlRpcRemoteClient
method), 129

get_library_instance()
(robot.libraries.BuiltIn.BuiltIn method),
81

get_library_instance()
(robot.running.namespace.Namespace
method), 578

get_library_instances()
(robot.running.namespace.Namespace
method), 578

get_line() (robot.libraries.String.String method),
133

get_line_count() (robot.libraries.String.String
method), 133

get_lines_containing_string()
(robot.libraries.String.String method), 133

get_lines_matching_pattern()
(robot.libraries.String.String method), 134

get_lines_matching_regexp()
(robot.libraries.String.String method), 134

get_link() (robot.model.tagstatistics.TagStatLink
method), 282

get_links() (robot.model.tagstatistics.TagStatInfo
method), 282

get_match_count()
(robot.libraries.Collections.Collections
method), 101

get_matches() (robot.libraries.Collections.Collections
method), 101

get_message() (robot.running.timeouts.KeywordTimeout
method), 548

get_message() (robot.running.timeouts.TestTimeout
method), 548

get_model() (in module robot.parsing.parser.parser),
391

get_modified_time()
(robot.libraries.OperatingSystem.OperatingSystem
method), 121

get_name() (robot.output.pyloggingconf.RobotHandler
method), 312

get_process_id() (robot.libraries.Process.Process
method), 127

get_process_object()
(robot.libraries.Process.Process method),

Index 689

Robot Framework Documentation, Release 6.0.2

127
get_process_result()

(robot.libraries.Process.Process method),
127

get_rebot_settings()
(robot.conf.settings.RobotSettings method),
65

get_regexp_matches()
(robot.libraries.String.String method), 134

get_resource_model() (in module
robot.parsing.parser.parser), 392

get_resource_tokens() (in module
robot.parsing.lexer.lexer), 325

get_runner() (robot.running.namespace.KeywordStore
method), 578

get_runner() (robot.running.namespace.Namespace
method), 578

get_selection_from_user() (in module
robot.libraries.Dialogs), 112

get_selections_from_user() (in module
robot.libraries.Dialogs), 112

get_shortdoc_from_html()
(robot.libdocpkg.htmlutils.HtmlToText method),
70

get_slice_from_list()
(robot.libraries.Collections.Collections
method), 104

get_socket() (robot.libraries.Telnet.TelnetConnection
method), 145

get_stat() (robot.model.tagstatistics.TagStatInfo
method), 282

get_substring() (robot.libraries.String.String
method), 136

get_system_encoding() (in module
robot.utils.encodingsniffer), 597

get_time() (robot.libraries.BuiltIn.BuiltIn method),
81

get_token() (robot.parsing.model.statements.Arguments
method), 369

get_token() (robot.parsing.model.statements.Break
method), 385

get_token() (robot.parsing.model.statements.Comment
method), 385

get_token() (robot.parsing.model.statements.Config
method), 386

get_token() (robot.parsing.model.statements.Continue
method), 384

get_token() (robot.parsing.model.statements.DefaultTags
method), 356

get_token() (robot.parsing.model.statements.Documentation
method), 353

get_token() (robot.parsing.model.statements.DocumentationOrMetadata
method), 347

get_token() (robot.parsing.model.statements.ElseHeader

method), 376
get_token() (robot.parsing.model.statements.ElseIfHeader

method), 375
get_token() (robot.parsing.model.statements.EmptyLine

method), 388
get_token() (robot.parsing.model.statements.End

method), 380
get_token() (robot.parsing.model.statements.Error

method), 387
get_token() (robot.parsing.model.statements.ExceptHeader

method), 379
get_token() (robot.parsing.model.statements.FinallyHeader

method), 380
get_token() (robot.parsing.model.statements.Fixture

method), 349
get_token() (robot.parsing.model.statements.ForceTags

method), 355
get_token() (robot.parsing.model.statements.ForHeader

method), 372
get_token() (robot.parsing.model.statements.IfElseHeader

method), 373
get_token() (robot.parsing.model.statements.IfHeader

method), 374
get_token() (robot.parsing.model.statements.InlineIfHeader

method), 375
get_token() (robot.parsing.model.statements.KeywordCall

method), 370
get_token() (robot.parsing.model.statements.KeywordName

method), 364
get_token() (robot.parsing.model.statements.KeywordTags

method), 356
get_token() (robot.parsing.model.statements.LibraryImport

method), 351
get_token() (robot.parsing.model.statements.LoopControl

method), 383
get_token() (robot.parsing.model.statements.Metadata

method), 354
get_token() (robot.parsing.model.statements.MultiValue

method), 348
get_token() (robot.parsing.model.statements.NoArgumentHeader

method), 377
get_token() (robot.parsing.model.statements.ResourceImport

method), 352
get_token() (robot.parsing.model.statements.Return

method), 370
get_token() (robot.parsing.model.statements.ReturnStatement

method), 382
get_token() (robot.parsing.model.statements.SectionHeader

method), 350
get_token() (robot.parsing.model.statements.Setup

method), 365
get_token() (robot.parsing.model.statements.SingleValue

method), 347
get_token() (robot.parsing.model.statements.Statement

690 Index

Robot Framework Documentation, Release 6.0.2

method), 346
get_token() (robot.parsing.model.statements.SuiteSetup

method), 357
get_token() (robot.parsing.model.statements.SuiteTeardown

method), 358
get_token() (robot.parsing.model.statements.Tags

method), 366
get_token() (robot.parsing.model.statements.Teardown

method), 365
get_token() (robot.parsing.model.statements.Template

method), 367
get_token() (robot.parsing.model.statements.TemplateArguments

method), 371
get_token() (robot.parsing.model.statements.TestCaseName

method), 363
get_token() (robot.parsing.model.statements.TestSetup

method), 359
get_token() (robot.parsing.model.statements.TestTeardown

method), 360
get_token() (robot.parsing.model.statements.TestTemplate

method), 361
get_token() (robot.parsing.model.statements.TestTimeout

method), 361
get_token() (robot.parsing.model.statements.Timeout

method), 368
get_token() (robot.parsing.model.statements.TryHeader

method), 378
get_token() (robot.parsing.model.statements.Variable

method), 362
get_token() (robot.parsing.model.statements.VariablesImport

method), 352
get_token() (robot.parsing.model.statements.WhileHeader

method), 381
get_tokens() (in module robot.parsing.lexer.lexer),

325
get_tokens() (robot.parsing.lexer.lexer.Lexer

method), 326
get_tokens() (robot.parsing.model.statements.Arguments

method), 369
get_tokens() (robot.parsing.model.statements.Break

method), 385
get_tokens() (robot.parsing.model.statements.Comment

method), 385
get_tokens() (robot.parsing.model.statements.Config

method), 386
get_tokens() (robot.parsing.model.statements.Continue

method), 384
get_tokens() (robot.parsing.model.statements.DefaultTags

method), 356
get_tokens() (robot.parsing.model.statements.Documentation

method), 353
get_tokens() (robot.parsing.model.statements.DocumentationOrMetadata

method), 347
get_tokens() (robot.parsing.model.statements.ElseHeader

method), 376
get_tokens() (robot.parsing.model.statements.ElseIfHeader

method), 376
get_tokens() (robot.parsing.model.statements.EmptyLine

method), 388
get_tokens() (robot.parsing.model.statements.End

method), 381
get_tokens() (robot.parsing.model.statements.Error

method), 387
get_tokens() (robot.parsing.model.statements.ExceptHeader

method), 379
get_tokens() (robot.parsing.model.statements.FinallyHeader

method), 380
get_tokens() (robot.parsing.model.statements.Fixture

method), 349
get_tokens() (robot.parsing.model.statements.ForceTags

method), 355
get_tokens() (robot.parsing.model.statements.ForHeader

method), 372
get_tokens() (robot.parsing.model.statements.IfElseHeader

method), 373
get_tokens() (robot.parsing.model.statements.IfHeader

method), 374
get_tokens() (robot.parsing.model.statements.InlineIfHeader

method), 375
get_tokens() (robot.parsing.model.statements.KeywordCall

method), 371
get_tokens() (robot.parsing.model.statements.KeywordName

method), 364
get_tokens() (robot.parsing.model.statements.KeywordTags

method), 357
get_tokens() (robot.parsing.model.statements.LibraryImport

method), 351
get_tokens() (robot.parsing.model.statements.LoopControl

method), 383
get_tokens() (robot.parsing.model.statements.Metadata

method), 354
get_tokens() (robot.parsing.model.statements.MultiValue

method), 348
get_tokens() (robot.parsing.model.statements.NoArgumentHeader

method), 377
get_tokens() (robot.parsing.model.statements.ResourceImport

method), 352
get_tokens() (robot.parsing.model.statements.Return

method), 370
get_tokens() (robot.parsing.model.statements.ReturnStatement

method), 382
get_tokens() (robot.parsing.model.statements.SectionHeader

method), 350
get_tokens() (robot.parsing.model.statements.Setup

method), 365
get_tokens() (robot.parsing.model.statements.SingleValue

method), 347
get_tokens() (robot.parsing.model.statements.Statement

Index 691

Robot Framework Documentation, Release 6.0.2

method), 346
get_tokens() (robot.parsing.model.statements.SuiteSetup

method), 357
get_tokens() (robot.parsing.model.statements.SuiteTeardown

method), 358
get_tokens() (robot.parsing.model.statements.Tags

method), 366
get_tokens() (robot.parsing.model.statements.Teardown

method), 366
get_tokens() (robot.parsing.model.statements.Template

method), 367
get_tokens() (robot.parsing.model.statements.TemplateArguments

method), 371
get_tokens() (robot.parsing.model.statements.TestCaseName

method), 363
get_tokens() (robot.parsing.model.statements.TestSetup

method), 359
get_tokens() (robot.parsing.model.statements.TestTeardown

method), 360
get_tokens() (robot.parsing.model.statements.TestTemplate

method), 361
get_tokens() (robot.parsing.model.statements.TestTimeout

method), 362
get_tokens() (robot.parsing.model.statements.Timeout

method), 368
get_tokens() (robot.parsing.model.statements.TryHeader

method), 378
get_tokens() (robot.parsing.model.statements.Variable

method), 362
get_tokens() (robot.parsing.model.statements.VariablesImport

method), 352
get_tokens() (robot.parsing.model.statements.WhileHeader

method), 381
get_value() (robot.parsing.model.statements.Arguments

method), 369
get_value() (robot.parsing.model.statements.Break

method), 385
get_value() (robot.parsing.model.statements.Comment

method), 386
get_value() (robot.parsing.model.statements.Config

method), 386
get_value() (robot.parsing.model.statements.Continue

method), 384
get_value() (robot.parsing.model.statements.DefaultTags

method), 356
get_value() (robot.parsing.model.statements.Documentation

method), 353
get_value() (robot.parsing.model.statements.DocumentationOrMetadata

method), 347
get_value() (robot.parsing.model.statements.ElseHeader

method), 376
get_value() (robot.parsing.model.statements.ElseIfHeader

method), 376
get_value() (robot.parsing.model.statements.EmptyLine

method), 388
get_value() (robot.parsing.model.statements.End

method), 381
get_value() (robot.parsing.model.statements.Error

method), 387
get_value() (robot.parsing.model.statements.ExceptHeader

method), 379
get_value() (robot.parsing.model.statements.FinallyHeader

method), 380
get_value() (robot.parsing.model.statements.Fixture

method), 349
get_value() (robot.parsing.model.statements.ForceTags

method), 355
get_value() (robot.parsing.model.statements.ForHeader

method), 372
get_value() (robot.parsing.model.statements.IfElseHeader

method), 373
get_value() (robot.parsing.model.statements.IfHeader

method), 374
get_value() (robot.parsing.model.statements.InlineIfHeader

method), 375
get_value() (robot.parsing.model.statements.KeywordCall

method), 371
get_value() (robot.parsing.model.statements.KeywordName

method), 364
get_value() (robot.parsing.model.statements.KeywordTags

method), 357
get_value() (robot.parsing.model.statements.LibraryImport

method), 351
get_value() (robot.parsing.model.statements.LoopControl

method), 383
get_value() (robot.parsing.model.statements.Metadata

method), 354
get_value() (robot.parsing.model.statements.MultiValue

method), 348
get_value() (robot.parsing.model.statements.NoArgumentHeader

method), 377
get_value() (robot.parsing.model.statements.ResourceImport

method), 352
get_value() (robot.parsing.model.statements.Return

method), 370
get_value() (robot.parsing.model.statements.ReturnStatement

method), 382
get_value() (robot.parsing.model.statements.SectionHeader

method), 350
get_value() (robot.parsing.model.statements.Setup

method), 365
get_value() (robot.parsing.model.statements.SingleValue

method), 348
get_value() (robot.parsing.model.statements.Statement

method), 346
get_value() (robot.parsing.model.statements.SuiteSetup

method), 357
get_value() (robot.parsing.model.statements.SuiteTeardown

692 Index

Robot Framework Documentation, Release 6.0.2

method), 358
get_value() (robot.parsing.model.statements.Tags

method), 366
get_value() (robot.parsing.model.statements.Teardown

method), 366
get_value() (robot.parsing.model.statements.Template

method), 367
get_value() (robot.parsing.model.statements.TemplateArguments

method), 371
get_value() (robot.parsing.model.statements.TestCaseName

method), 363
get_value() (robot.parsing.model.statements.TestSetup

method), 359
get_value() (robot.parsing.model.statements.TestTeardown

method), 360
get_value() (robot.parsing.model.statements.TestTemplate

method), 361
get_value() (robot.parsing.model.statements.TestTimeout

method), 362
get_value() (robot.parsing.model.statements.Timeout

method), 368
get_value() (robot.parsing.model.statements.TryHeader

method), 378
get_value() (robot.parsing.model.statements.Variable

method), 362
get_value() (robot.parsing.model.statements.VariablesImport

method), 353
get_value() (robot.parsing.model.statements.WhileHeader

method), 381
get_value_from_user() (in module

robot.libraries.Dialogs), 111
get_values() (robot.parsing.model.statements.Arguments

method), 369
get_values() (robot.parsing.model.statements.Break

method), 385
get_values() (robot.parsing.model.statements.Comment

method), 386
get_values() (robot.parsing.model.statements.Config

method), 386
get_values() (robot.parsing.model.statements.Continue

method), 384
get_values() (robot.parsing.model.statements.DefaultTags

method), 356
get_values() (robot.parsing.model.statements.Documentation

method), 353
get_values() (robot.parsing.model.statements.DocumentationOrMetadata

method), 347
get_values() (robot.parsing.model.statements.ElseHeader

method), 377
get_values() (robot.parsing.model.statements.ElseIfHeader

method), 376
get_values() (robot.parsing.model.statements.EmptyLine

method), 388
get_values() (robot.parsing.model.statements.End

method), 381
get_values() (robot.parsing.model.statements.Error

method), 387
get_values() (robot.parsing.model.statements.ExceptHeader

method), 379
get_values() (robot.parsing.model.statements.FinallyHeader

method), 380
get_values() (robot.parsing.model.statements.Fixture

method), 349
get_values() (robot.parsing.model.statements.ForceTags

method), 355
get_values() (robot.parsing.model.statements.ForHeader

method), 372
get_values() (robot.parsing.model.statements.IfElseHeader

method), 373
get_values() (robot.parsing.model.statements.IfHeader

method), 374
get_values() (robot.parsing.model.statements.InlineIfHeader

method), 375
get_values() (robot.parsing.model.statements.KeywordCall

method), 371
get_values() (robot.parsing.model.statements.KeywordName

method), 364
get_values() (robot.parsing.model.statements.KeywordTags

method), 357
get_values() (robot.parsing.model.statements.LibraryImport

method), 351
get_values() (robot.parsing.model.statements.LoopControl

method), 383
get_values() (robot.parsing.model.statements.Metadata

method), 354
get_values() (robot.parsing.model.statements.MultiValue

method), 348
get_values() (robot.parsing.model.statements.NoArgumentHeader

method), 377
get_values() (robot.parsing.model.statements.ResourceImport

method), 352
get_values() (robot.parsing.model.statements.Return

method), 370
get_values() (robot.parsing.model.statements.ReturnStatement

method), 382
get_values() (robot.parsing.model.statements.SectionHeader

method), 350
get_values() (robot.parsing.model.statements.Setup

method), 365
get_values() (robot.parsing.model.statements.SingleValue

method), 348
get_values() (robot.parsing.model.statements.Statement

method), 346
get_values() (robot.parsing.model.statements.SuiteSetup

method), 358
get_values() (robot.parsing.model.statements.SuiteTeardown

method), 358
get_values() (robot.parsing.model.statements.Tags

Index 693

Robot Framework Documentation, Release 6.0.2

method), 366
get_values() (robot.parsing.model.statements.Teardown

method), 366
get_values() (robot.parsing.model.statements.Template

method), 367
get_values() (robot.parsing.model.statements.TemplateArguments

method), 371
get_values() (robot.parsing.model.statements.TestCaseName

method), 363
get_values() (robot.parsing.model.statements.TestSetup

method), 359
get_values() (robot.parsing.model.statements.TestTeardown

method), 360
get_values() (robot.parsing.model.statements.TestTemplate

method), 361
get_values() (robot.parsing.model.statements.TestTimeout

method), 362
get_values() (robot.parsing.model.statements.Timeout

method), 368
get_values() (robot.parsing.model.statements.TryHeader

method), 378
get_values() (robot.parsing.model.statements.Variable

method), 362
get_values() (robot.parsing.model.statements.VariablesImport

method), 353
get_values() (robot.parsing.model.statements.WhileHeader

method), 382
get_variable_value()

(robot.libraries.BuiltIn.BuiltIn method),
81

get_variables() (robot.libraries.BuiltIn.BuiltIn
method), 82

get_version() (in module robot.version), 625
getboolean() (robot.libraries.dialogs_py.InputDialog

method), 175
getboolean() (robot.libraries.dialogs_py.MessageDialog

method), 161
getboolean() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 203
getboolean() (robot.libraries.dialogs_py.PassFailDialog

method), 217
getboolean() (robot.libraries.dialogs_py.SelectionDialog

method), 189
getdouble() (robot.libraries.dialogs_py.InputDialog

method), 175
getdouble() (robot.libraries.dialogs_py.MessageDialog

method), 161
getdouble() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 203
getdouble() (robot.libraries.dialogs_py.PassFailDialog

method), 217
getdouble() (robot.libraries.dialogs_py.SelectionDialog

method), 189
getint() (robot.libraries.dialogs_py.InputDialog

method), 175
getint() (robot.libraries.dialogs_py.MessageDialog

method), 161
getint() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 203
getint() (robot.libraries.dialogs_py.PassFailDialog

method), 217
getint() (robot.libraries.dialogs_py.SelectionDialog

method), 189
GetKeywordArguments (class in

robot.running.dynamicmethods), 551
GetKeywordDocumentation (class in

robot.running.dynamicmethods), 551
GetKeywordNames (class in

robot.running.dynamicmethods), 550
GetKeywordSource (class in

robot.running.dynamicmethods), 551
GetKeywordTags (class in

robot.running.dynamicmethods), 551
GetKeywordTypes (class in

robot.running.dynamicmethods), 551
getparser() (robot.libraries.Remote.TimeoutHTTPSTransport

method), 129
getparser() (robot.libraries.Remote.TimeoutHTTPTransport

method), 129
getter() (robot.utils.misc.classproperty method), 604
getvar() (robot.libraries.dialogs_py.InputDialog

method), 175
getvar() (robot.libraries.dialogs_py.MessageDialog

method), 161
getvar() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 203
getvar() (robot.libraries.dialogs_py.PassFailDialog

method), 217
getvar() (robot.libraries.dialogs_py.SelectionDialog

method), 189
given_prefixes (robot.conf.languages.Bg attribute),

60
given_prefixes (robot.conf.languages.Bs attribute),

39
given_prefixes (robot.conf.languages.Cs attribute),

36
given_prefixes (robot.conf.languages.De attribute),

43
given_prefixes (robot.conf.languages.En attribute),

35
given_prefixes (robot.conf.languages.Es attribute),

51
given_prefixes (robot.conf.languages.Fi attribute),

40
given_prefixes (robot.conf.languages.Fr attribute),

42
given_prefixes (robot.conf.languages.Hi attribute),

64

694 Index

Robot Framework Documentation, Release 6.0.2

given_prefixes (robot.conf.languages.It attribute),
63

given_prefixes (robot.conf.languages.Language at-
tribute), 33

given_prefixes (robot.conf.languages.Nl attribute),
37

given_prefixes (robot.conf.languages.Pl attribute),
49

given_prefixes (robot.conf.languages.Pt attribute),
46

given_prefixes (robot.conf.languages.PtBr at-
tribute), 44

given_prefixes (robot.conf.languages.Ro attribute),
61

given_prefixes (robot.conf.languages.Ru attribute),
53

given_prefixes (robot.conf.languages.Sv attribute),
58

given_prefixes (robot.conf.languages.Th attribute),
47

given_prefixes (robot.conf.languages.Tr attribute),
57

given_prefixes (robot.conf.languages.Uk attribute),
50

given_prefixes (robot.conf.languages.ZhCn at-
tribute), 54

given_prefixes (robot.conf.languages.ZhTw at-
tribute), 56

glob_escape() (in module robot.utils.escaping), 598
GlobalScope (class in robot.running.libraryscopes),

553
GlobalVariables (class in robot.variables.scopes),

610
GlobalVariableValue (class in

robot.variables.resolvable), 609
grab_current() (robot.libraries.dialogs_py.InputDialog

method), 175
grab_current() (robot.libraries.dialogs_py.MessageDialog

method), 161
grab_current() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 203
grab_current() (robot.libraries.dialogs_py.PassFailDialog

method), 217
grab_current() (robot.libraries.dialogs_py.SelectionDialog

method), 189
grab_release() (robot.libraries.dialogs_py.InputDialog

method), 175
grab_release() (robot.libraries.dialogs_py.MessageDialog

method), 161
grab_release() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 203
grab_release() (robot.libraries.dialogs_py.PassFailDialog

method), 217
grab_release() (robot.libraries.dialogs_py.SelectionDialog

method), 189
grab_set() (robot.libraries.dialogs_py.InputDialog

method), 175
grab_set() (robot.libraries.dialogs_py.MessageDialog

method), 161
grab_set() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 203
grab_set() (robot.libraries.dialogs_py.PassFailDialog

method), 217
grab_set() (robot.libraries.dialogs_py.SelectionDialog

method), 189
grab_set_global()

(robot.libraries.dialogs_py.InputDialog
method), 175

grab_set_global()
(robot.libraries.dialogs_py.MessageDialog
method), 161

grab_set_global()
(robot.libraries.dialogs_py.MultipleSelectionDialog
method), 203

grab_set_global()
(robot.libraries.dialogs_py.PassFailDialog
method), 217

grab_set_global()
(robot.libraries.dialogs_py.SelectionDialog
method), 189

grab_status() (robot.libraries.dialogs_py.InputDialog
method), 175

grab_status() (robot.libraries.dialogs_py.MessageDialog
method), 161

grab_status() (robot.libraries.dialogs_py.MultipleSelectionDialog
method), 203

grab_status() (robot.libraries.dialogs_py.PassFailDialog
method), 217

grab_status() (robot.libraries.dialogs_py.SelectionDialog
method), 189

green() (robot.output.console.highlighting.AnsiHighlighter
method), 303

green() (robot.output.console.highlighting.DosHighlighter
method), 303

green() (robot.output.console.highlighting.NoHighlighting
method), 303

grep_file() (robot.libraries.OperatingSystem.OperatingSystem
method), 115

grid() (robot.libraries.dialogs_py.InputDialog
method), 175

grid() (robot.libraries.dialogs_py.MessageDialog
method), 161

grid() (robot.libraries.dialogs_py.MultipleSelectionDialog
method), 203

grid() (robot.libraries.dialogs_py.PassFailDialog
method), 217

grid() (robot.libraries.dialogs_py.SelectionDialog
method), 189

Index 695

Robot Framework Documentation, Release 6.0.2

grid_anchor() (robot.libraries.dialogs_py.InputDialog
method), 176

grid_anchor() (robot.libraries.dialogs_py.MessageDialog
method), 162

grid_anchor() (robot.libraries.dialogs_py.MultipleSelectionDialog
method), 204

grid_anchor() (robot.libraries.dialogs_py.PassFailDialog
method), 218

grid_anchor() (robot.libraries.dialogs_py.SelectionDialog
method), 190

grid_bbox() (robot.libraries.dialogs_py.InputDialog
method), 176

grid_bbox() (robot.libraries.dialogs_py.MessageDialog
method), 162

grid_bbox() (robot.libraries.dialogs_py.MultipleSelectionDialog
method), 204

grid_bbox() (robot.libraries.dialogs_py.PassFailDialog
method), 218

grid_bbox() (robot.libraries.dialogs_py.SelectionDialog
method), 190

grid_columnconfigure()
(robot.libraries.dialogs_py.InputDialog
method), 176

grid_columnconfigure()
(robot.libraries.dialogs_py.MessageDialog
method), 162

grid_columnconfigure()
(robot.libraries.dialogs_py.MultipleSelectionDialog
method), 204

grid_columnconfigure()
(robot.libraries.dialogs_py.PassFailDialog
method), 218

grid_columnconfigure()
(robot.libraries.dialogs_py.SelectionDialog
method), 190

grid_location() (robot.libraries.dialogs_py.InputDialog
method), 176

grid_location() (robot.libraries.dialogs_py.MessageDialog
method), 162

grid_location() (robot.libraries.dialogs_py.MultipleSelectionDialog
method), 204

grid_location() (robot.libraries.dialogs_py.PassFailDialog
method), 218

grid_location() (robot.libraries.dialogs_py.SelectionDialog
method), 190

grid_propagate() (robot.libraries.dialogs_py.InputDialog
method), 176

grid_propagate() (robot.libraries.dialogs_py.MessageDialog
method), 162

grid_propagate() (robot.libraries.dialogs_py.MultipleSelectionDialog
method), 204

grid_propagate() (robot.libraries.dialogs_py.PassFailDialog
method), 218

grid_propagate() (robot.libraries.dialogs_py.SelectionDialog

method), 190
grid_rowconfigure()

(robot.libraries.dialogs_py.InputDialog
method), 176

grid_rowconfigure()
(robot.libraries.dialogs_py.MessageDialog
method), 162

grid_rowconfigure()
(robot.libraries.dialogs_py.MultipleSelectionDialog
method), 204

grid_rowconfigure()
(robot.libraries.dialogs_py.PassFailDialog
method), 218

grid_rowconfigure()
(robot.libraries.dialogs_py.SelectionDialog
method), 190

grid_size() (robot.libraries.dialogs_py.InputDialog
method), 176

grid_size() (robot.libraries.dialogs_py.MessageDialog
method), 162

grid_size() (robot.libraries.dialogs_py.MultipleSelectionDialog
method), 204

grid_size() (robot.libraries.dialogs_py.PassFailDialog
method), 218

grid_size() (robot.libraries.dialogs_py.SelectionDialog
method), 190

grid_slaves() (robot.libraries.dialogs_py.InputDialog
method), 176

grid_slaves() (robot.libraries.dialogs_py.MessageDialog
method), 162

grid_slaves() (robot.libraries.dialogs_py.MultipleSelectionDialog
method), 204

grid_slaves() (robot.libraries.dialogs_py.PassFailDialog
method), 218

grid_slaves() (robot.libraries.dialogs_py.SelectionDialog
method), 190

group() (robot.libraries.dialogs_py.InputDialog
method), 176

group() (robot.libraries.dialogs_py.MessageDialog
method), 162

group() (robot.libraries.dialogs_py.MultipleSelectionDialog
method), 204

group() (robot.libraries.dialogs_py.PassFailDialog
method), 218

group() (robot.libraries.dialogs_py.SelectionDialog
method), 190

H
handle() (robot.output.pyloggingconf.RobotHandler

method), 312
handle() (robot.running.arguments.argumentresolver.DictToKwargs

method), 529
handle_imports() (robot.running.namespace.Namespace

method), 577

696 Index

Robot Framework Documentation, Release 6.0.2

handle_suite_teardown_failures()
(robot.result.executionresult.CombinedResult
method), 414

handle_suite_teardown_failures()
(robot.result.executionresult.Result method),
414

handle_suite_teardown_failures()
(robot.result.model.TestSuite method), 499

handleError() (robot.output.pyloggingconf.RobotHandler
method), 312

Handler() (in module robot.running.handlers), 551
HandlerExecutionFailed, 615
handlers_for() (robot.running.userkeyword.UserLibrary

method), 589
HandlerStore (class in robot.running.handlerstore),

551
handles() (robot.htmldata.htmlfilewriter.CssFileWriter

method), 67
handles() (robot.htmldata.htmlfilewriter.GeneratorWriter

method), 67
handles() (robot.htmldata.htmlfilewriter.JsFileWriter

method), 67
handles() (robot.htmldata.htmlfilewriter.LineWriter

method), 67
handles() (robot.htmldata.htmlfilewriter.ModelWriter

method), 67
handles() (robot.htmldata.jsonwriter.DictDumper

method), 68
handles() (robot.htmldata.jsonwriter.IntegerDumper

method), 68
handles() (robot.htmldata.jsonwriter.MappingDumper

method), 68
handles() (robot.htmldata.jsonwriter.NoneDumper

method), 68
handles() (robot.htmldata.jsonwriter.StringDumper

method), 68
handles() (robot.htmldata.jsonwriter.TupleListDumper

method), 68
handles() (robot.libdocpkg.consoleviewer.ConsoleViewer

class method), 69
handles() (robot.libdocpkg.htmlwriter.LibdocModelWriter

method), 71
handles() (robot.parsing.lexer.blocklexers.BlockLexer

class method), 318
handles() (robot.parsing.lexer.blocklexers.CommentSectionLexer

class method), 320
handles() (robot.parsing.lexer.blocklexers.ErrorSectionLexer

class method), 321
handles() (robot.parsing.lexer.blocklexers.FileLexer

class method), 319
handles() (robot.parsing.lexer.blocklexers.ForLexer

class method), 322
handles() (robot.parsing.lexer.blocklexers.IfLexer

class method), 322

handles() (robot.parsing.lexer.blocklexers.ImplicitCommentSectionLexer
class method), 320

handles() (robot.parsing.lexer.blocklexers.InlineIfLexer
class method), 323

handles() (robot.parsing.lexer.blocklexers.KeywordLexer
class method), 322

handles() (robot.parsing.lexer.blocklexers.KeywordSectionLexer
class method), 320

handles() (robot.parsing.lexer.blocklexers.NestedBlockLexer
class method), 322

handles() (robot.parsing.lexer.blocklexers.SectionLexer
class method), 319

handles() (robot.parsing.lexer.blocklexers.SettingSectionLexer
class method), 319

handles() (robot.parsing.lexer.blocklexers.TaskSectionLexer
class method), 320

handles() (robot.parsing.lexer.blocklexers.TestCaseLexer
class method), 321

handles() (robot.parsing.lexer.blocklexers.TestCaseSectionLexer
class method), 320

handles() (robot.parsing.lexer.blocklexers.TestOrKeywordLexer
class method), 321

handles() (robot.parsing.lexer.blocklexers.TryLexer
class method), 323

handles() (robot.parsing.lexer.blocklexers.VariableSectionLexer
class method), 319

handles() (robot.parsing.lexer.blocklexers.WhileLexer
class method), 322

handles() (robot.parsing.lexer.statementlexers.BreakLexer
class method), 333

handles() (robot.parsing.lexer.statementlexers.CommentLexer
class method), 330

handles() (robot.parsing.lexer.statementlexers.CommentSectionHeaderLexer
class method), 329

handles() (robot.parsing.lexer.statementlexers.ContinueLexer
class method), 333

handles() (robot.parsing.lexer.statementlexers.ElseHeaderLexer
class method), 331

handles() (robot.parsing.lexer.statementlexers.ElseIfHeaderLexer
class method), 331

handles() (robot.parsing.lexer.statementlexers.EndLexer
class method), 332

handles() (robot.parsing.lexer.statementlexers.ErrorSectionHeaderLexer
class method), 329

handles() (robot.parsing.lexer.statementlexers.ExceptHeaderLexer
class method), 332

handles() (robot.parsing.lexer.statementlexers.FinallyHeaderLexer
class method), 332

handles() (robot.parsing.lexer.statementlexers.ForHeaderLexer
class method), 331

handles() (robot.parsing.lexer.statementlexers.IfHeaderLexer
class method), 331

handles() (robot.parsing.lexer.statementlexers.ImplicitCommentLexer
class method), 330

Index 697

Robot Framework Documentation, Release 6.0.2

handles() (robot.parsing.lexer.statementlexers.InlineIfHeaderLexer
class method), 331

handles() (robot.parsing.lexer.statementlexers.KeywordCallLexer
class method), 330

handles() (robot.parsing.lexer.statementlexers.KeywordSectionHeaderLexer
class method), 329

handles() (robot.parsing.lexer.statementlexers.Lexer
class method), 327

handles() (robot.parsing.lexer.statementlexers.ReturnLexer
class method), 332

handles() (robot.parsing.lexer.statementlexers.SectionHeaderLexer
class method), 328

handles() (robot.parsing.lexer.statementlexers.SettingLexer
class method), 330

handles() (robot.parsing.lexer.statementlexers.SettingSectionHeaderLexer
class method), 328

handles() (robot.parsing.lexer.statementlexers.SingleType
class method), 328

handles() (robot.parsing.lexer.statementlexers.StatementLexer
class method), 328

handles() (robot.parsing.lexer.statementlexers.TaskSectionHeaderLexer
class method), 329

handles() (robot.parsing.lexer.statementlexers.TestCaseSectionHeaderLexer
class method), 329

handles() (robot.parsing.lexer.statementlexers.TestOrKeywordSettingLexer
class method), 330

handles() (robot.parsing.lexer.statementlexers.TryHeaderLexer
class method), 332

handles() (robot.parsing.lexer.statementlexers.TypeAndArguments
class method), 328

handles() (robot.parsing.lexer.statementlexers.VariableLexer
class method), 330

handles() (robot.parsing.lexer.statementlexers.VariableSectionHeaderLexer
class method), 328

handles() (robot.parsing.lexer.statementlexers.WhileHeaderLexer
class method), 332

handles() (robot.parsing.parser.blockparsers.BlockParser
method), 389

handles() (robot.parsing.parser.blockparsers.ForParser
method), 390

handles() (robot.parsing.parser.blockparsers.IfParser
method), 390

handles() (robot.parsing.parser.blockparsers.KeywordParser
method), 389

handles() (robot.parsing.parser.blockparsers.NestedBlockParser
method), 390

handles() (robot.parsing.parser.blockparsers.Parser
method), 389

handles() (robot.parsing.parser.blockparsers.TestCaseParser
method), 389

handles() (robot.parsing.parser.blockparsers.TryParser
method), 390

handles() (robot.parsing.parser.blockparsers.WhileParser
method), 390

handles() (robot.parsing.parser.fileparser.CommentSectionParser
method), 391

handles() (robot.parsing.parser.fileparser.FileParser
method), 390

handles() (robot.parsing.parser.fileparser.ImplicitCommentSectionParser
method), 391

handles() (robot.parsing.parser.fileparser.KeywordSectionParser
method), 391

handles() (robot.parsing.parser.fileparser.SectionParser
method), 390

handles() (robot.parsing.parser.fileparser.SettingSectionParser
method), 391

handles() (robot.parsing.parser.fileparser.TestCaseSectionParser
method), 391

handles() (robot.parsing.parser.fileparser.VariableSectionParser
method), 391

handles() (robot.reporting.logreportwriters.RobotModelWriter
method), 395

handles() (robot.running.arguments.typeconverters.BooleanConverter
class method), 533

handles() (robot.running.arguments.typeconverters.ByteArrayConverter
class method), 535

handles() (robot.running.arguments.typeconverters.BytesConverter
class method), 535

handles() (robot.running.arguments.typeconverters.CombinedConverter
class method), 540

handles() (robot.running.arguments.typeconverters.CustomConverter
class method), 541

handles() (robot.running.arguments.typeconverters.DateConverter
class method), 536

handles() (robot.running.arguments.typeconverters.DateTimeConverter
class method), 536

handles() (robot.running.arguments.typeconverters.DecimalConverter
class method), 534

handles() (robot.running.arguments.typeconverters.DictionaryConverter
class method), 539

handles() (robot.running.arguments.typeconverters.EnumConverter
class method), 532

handles() (robot.running.arguments.typeconverters.FloatConverter
class method), 534

handles() (robot.running.arguments.typeconverters.FrozenSetConverter
class method), 540

handles() (robot.running.arguments.typeconverters.IntegerConverter
class method), 533

handles() (robot.running.arguments.typeconverters.ListConverter
class method), 538

handles() (robot.running.arguments.typeconverters.NoneConverter
class method), 537

handles() (robot.running.arguments.typeconverters.PathConverter
class method), 537

handles() (robot.running.arguments.typeconverters.SetConverter
class method), 539

handles() (robot.running.arguments.typeconverters.StringConverter
class method), 533

698 Index

Robot Framework Documentation, Release 6.0.2

handles() (robot.running.arguments.typeconverters.TimeDeltaConverter
class method), 536

handles() (robot.running.arguments.typeconverters.TupleConverter
class method), 538

handles() (robot.running.arguments.typeconverters.TypeConverter
class method), 532

handles() (robot.running.arguments.typeconverters.TypedDictConverter
class method), 538

handles() (robot.testdoc.TestdocModelWriter
method), 624

handles() (robot.utils.htmlformatters.HeaderFormatter
method), 599

handles() (robot.utils.htmlformatters.LineFormatter
method), 599

handles() (robot.utils.htmlformatters.ListFormatter
method), 600

handles() (robot.utils.htmlformatters.ParagraphFormatter
method), 600

handles() (robot.utils.htmlformatters.PreformattedFormatter
method), 600

handles() (robot.utils.htmlformatters.RulerFormatter
method), 599

handles() (robot.utils.htmlformatters.TableFormatter
method), 600

handles() (robot.utils.importer.ByPathImporter
method), 601

handles() (robot.utils.importer.DottedImporter
method), 602

handles() (robot.utils.importer.NonDottedImporter
method), 602

handles_types (robot.parsing.model.statements.Arguments
attribute), 369

handles_types (robot.parsing.model.statements.Break
attribute), 385

handles_types (robot.parsing.model.statements.Comment
attribute), 386

handles_types (robot.parsing.model.statements.Config
attribute), 386

handles_types (robot.parsing.model.statements.Continue
attribute), 384

handles_types (robot.parsing.model.statements.DefaultTags
attribute), 356

handles_types (robot.parsing.model.statements.Documentation
attribute), 353

handles_types (robot.parsing.model.statements.DocumentationOrMetadata
attribute), 347

handles_types (robot.parsing.model.statements.ElseHeader
attribute), 377

handles_types (robot.parsing.model.statements.ElseIfHeader
attribute), 376

handles_types (robot.parsing.model.statements.EmptyLine
attribute), 388

handles_types (robot.parsing.model.statements.End
attribute), 381

handles_types (robot.parsing.model.statements.Error
attribute), 387

handles_types (robot.parsing.model.statements.ExceptHeader
attribute), 379

handles_types (robot.parsing.model.statements.FinallyHeader
attribute), 380

handles_types (robot.parsing.model.statements.Fixture
attribute), 349

handles_types (robot.parsing.model.statements.ForceTags
attribute), 355

handles_types (robot.parsing.model.statements.ForHeader
attribute), 372

handles_types (robot.parsing.model.statements.IfElseHeader
attribute), 373

handles_types (robot.parsing.model.statements.IfHeader
attribute), 374

handles_types (robot.parsing.model.statements.InlineIfHeader
attribute), 375

handles_types (robot.parsing.model.statements.KeywordCall
attribute), 371

handles_types (robot.parsing.model.statements.KeywordName
attribute), 364

handles_types (robot.parsing.model.statements.KeywordTags
attribute), 357

handles_types (robot.parsing.model.statements.LibraryImport
attribute), 351

handles_types (robot.parsing.model.statements.LoopControl
attribute), 383

handles_types (robot.parsing.model.statements.Metadata
attribute), 354

handles_types (robot.parsing.model.statements.MultiValue
attribute), 348

handles_types (robot.parsing.model.statements.NoArgumentHeader
attribute), 377

handles_types (robot.parsing.model.statements.ResourceImport
attribute), 352

handles_types (robot.parsing.model.statements.Return
attribute), 370

handles_types (robot.parsing.model.statements.ReturnStatement
attribute), 382

handles_types (robot.parsing.model.statements.SectionHeader
attribute), 350

handles_types (robot.parsing.model.statements.Setup
attribute), 365

handles_types (robot.parsing.model.statements.SingleValue
attribute), 348

handles_types (robot.parsing.model.statements.Statement
attribute), 346

handles_types (robot.parsing.model.statements.SuiteSetup
attribute), 358

handles_types (robot.parsing.model.statements.SuiteTeardown
attribute), 358

handles_types (robot.parsing.model.statements.Tags
attribute), 367

Index 699

Robot Framework Documentation, Release 6.0.2

handles_types (robot.parsing.model.statements.Teardown
attribute), 366

handles_types (robot.parsing.model.statements.Template
attribute), 367

handles_types (robot.parsing.model.statements.TemplateArguments
attribute), 371

handles_types (robot.parsing.model.statements.TestCaseName
attribute), 363

handles_types (robot.parsing.model.statements.TestSetup
attribute), 359

handles_types (robot.parsing.model.statements.TestTeardown
attribute), 360

handles_types (robot.parsing.model.statements.TestTemplate
attribute), 361

handles_types (robot.parsing.model.statements.TestTimeout
attribute), 362

handles_types (robot.parsing.model.statements.Timeout
attribute), 368

handles_types (robot.parsing.model.statements.TryHeader
attribute), 378

handles_types (robot.parsing.model.statements.Variable
attribute), 362

handles_types (robot.parsing.model.statements.VariablesImport
attribute), 353

handles_types (robot.parsing.model.statements.WhileHeader
attribute), 382

has_setup (robot.model.body.BodyItem attribute), 228
has_setup (robot.model.control.Break attribute), 250
has_setup (robot.model.control.Continue attribute),

249
has_setup (robot.model.control.For attribute), 240
has_setup (robot.model.control.If attribute), 243
has_setup (robot.model.control.IfBranch attribute),

242
has_setup (robot.model.control.Return attribute), 247
has_setup (robot.model.control.Try attribute), 246
has_setup (robot.model.control.TryBranch attribute),

245
has_setup (robot.model.control.While attribute), 241
has_setup (robot.model.keyword.Keyword attribute),

261
has_setup (robot.model.message.Message attribute),

264
has_setup (robot.model.testcase.TestCase attribute),

283
has_setup (robot.model.testsuite.TestSuite attribute),

286
has_setup (robot.output.loggerhelper.Message at-

tribute), 310
has_setup (robot.result.model.Break attribute), 489
has_setup (robot.result.model.Continue attribute),

487
has_setup (robot.result.model.For attribute), 468
has_setup (robot.result.model.ForIteration attribute),

466
has_setup (robot.result.model.If attribute), 477
has_setup (robot.result.model.IfBranch attribute), 475
has_setup (robot.result.model.Keyword attribute), 492
has_setup (robot.result.model.Message attribute), 464
has_setup (robot.result.model.Return attribute), 484
has_setup (robot.result.model.TestCase attribute), 494
has_setup (robot.result.model.TestSuite attribute), 497
has_setup (robot.result.model.Try attribute), 482
has_setup (robot.result.model.TryBranch attribute),

480
has_setup (robot.result.model.While attribute), 473
has_setup (robot.result.model.WhileIteration at-

tribute), 471
has_setup (robot.running.model.Break attribute), 570
has_setup (robot.running.model.Continue attribute),

568
has_setup (robot.running.model.For attribute), 558
has_setup (robot.running.model.If attribute), 563
has_setup (robot.running.model.IfBranch attribute),

561
has_setup (robot.running.model.Keyword attribute),

556
has_setup (robot.running.model.Return attribute),

567
has_setup (robot.running.model.TestCase attribute),

571
has_setup (robot.running.model.TestSuite attribute),

574
has_setup (robot.running.model.Try attribute), 566
has_setup (robot.running.model.TryBranch attribute),

564
has_setup (robot.running.model.While attribute), 560
has_teardown (robot.model.body.BodyItem attribute),

228
has_teardown (robot.model.control.Break attribute),

250
has_teardown (robot.model.control.Continue at-

tribute), 249
has_teardown (robot.model.control.For attribute),

240
has_teardown (robot.model.control.If attribute), 244
has_teardown (robot.model.control.IfBranch at-

tribute), 242
has_teardown (robot.model.control.Return attribute),

247
has_teardown (robot.model.control.Try attribute),

246
has_teardown (robot.model.control.TryBranch

attribute), 245
has_teardown (robot.model.control.While attribute),

241
has_teardown (robot.model.keyword.Keyword at-

tribute), 260

700 Index

Robot Framework Documentation, Release 6.0.2

has_teardown (robot.model.message.Message at-
tribute), 264

has_teardown (robot.model.testcase.TestCase at-
tribute), 283

has_teardown (robot.model.testsuite.TestSuite at-
tribute), 286

has_teardown (robot.output.loggerhelper.Message at-
tribute), 310

has_teardown (robot.result.model.Break attribute),
489

has_teardown (robot.result.model.Continue at-
tribute), 487

has_teardown (robot.result.model.For attribute), 468
has_teardown (robot.result.model.ForIteration

attribute), 466
has_teardown (robot.result.model.If attribute), 477
has_teardown (robot.result.model.IfBranch at-

tribute), 475
has_teardown (robot.result.model.Keyword attribute),

492
has_teardown (robot.result.model.Message attribute),

464
has_teardown (robot.result.model.Return attribute),

484
has_teardown (robot.result.model.TestCase at-

tribute), 494
has_teardown (robot.result.model.TestSuite at-

tribute), 497
has_teardown (robot.result.model.Try attribute), 482
has_teardown (robot.result.model.TryBranch at-

tribute), 480
has_teardown (robot.result.model.While attribute),

473
has_teardown (robot.result.model.WhileIteration at-

tribute), 471
has_teardown (robot.running.model.Break attribute),

570
has_teardown (robot.running.model.Continue at-

tribute), 568
has_teardown (robot.running.model.For attribute),

558
has_teardown (robot.running.model.If attribute), 563
has_teardown (robot.running.model.IfBranch at-

tribute), 561
has_teardown (robot.running.model.Keyword at-

tribute), 556
has_teardown (robot.running.model.Return at-

tribute), 567
has_teardown (robot.running.model.TestCase at-

tribute), 571
has_teardown (robot.running.model.TestSuite at-

tribute), 574
has_teardown (robot.running.model.Try attribute),

566

has_teardown (robot.running.model.TryBranch at-
tribute), 564

has_teardown (robot.running.model.While attribute),
560

has_tests (robot.model.testsuite.TestSuite attribute),
286

has_tests (robot.result.model.TestSuite attribute), 497
has_tests (robot.running.model.TestSuite attribute),

574
HEADER_TOKENS (robot.parsing.lexer.tokens.END at-

tribute), 339
HEADER_TOKENS (robot.parsing.lexer.tokens.EOS at-

tribute), 336
HEADER_TOKENS (robot.parsing.lexer.tokens.Token at-

tribute), 335
HeaderAndBody (class in robot.parsing.model.blocks),

340
HeaderFormatter (class in

robot.utils.htmlformatters), 599
headers (robot.conf.languages.Bg attribute), 60
headers (robot.conf.languages.Bs attribute), 39
headers (robot.conf.languages.Cs attribute), 36
headers (robot.conf.languages.De attribute), 43
headers (robot.conf.languages.En attribute), 35
headers (robot.conf.languages.Es attribute), 52
headers (robot.conf.languages.Fi attribute), 41
headers (robot.conf.languages.Fr attribute), 42
headers (robot.conf.languages.Hi attribute), 64
headers (robot.conf.languages.It attribute), 63
headers (robot.conf.languages.Language attribute), 34
headers (robot.conf.languages.Nl attribute), 38
headers (robot.conf.languages.Pl attribute), 49
headers (robot.conf.languages.Pt attribute), 46
headers (robot.conf.languages.PtBr attribute), 45
headers (robot.conf.languages.Ro attribute), 62
headers (robot.conf.languages.Ru attribute), 53
headers (robot.conf.languages.Sv attribute), 59
headers (robot.conf.languages.Th attribute), 48
headers (robot.conf.languages.Tr attribute), 57
headers (robot.conf.languages.Uk attribute), 50
headers (robot.conf.languages.ZhCn attribute), 55
headers (robot.conf.languages.ZhTw attribute), 56
Hi (class in robot.conf.languages), 63
highlight() (robot.output.console.highlighting.HighlightingStream

method), 303
Highlighter() (in module

robot.output.console.highlighting), 303
HighlightingStream (class in

robot.output.console.highlighting), 303
html (robot.model.message.Message attribute), 262
html (robot.output.loggerhelper.Message attribute), 310
html (robot.result.model.Message attribute), 464
html() (robot.libdocpkg.htmlutils.DocFormatter

method), 70

Index 701

Robot Framework Documentation, Release 6.0.2

html() (robot.reporting.jsbuildingcontext.JsBuildingContext
method), 393

html_chars (robot.libdocpkg.htmlutils.HtmlToText at-
tribute), 70

html_escape() (in module robot.utils.markuputils),
602

html_format() (in module robot.utils.markuputils),
602

html_message (robot.model.message.Message at-
tribute), 262

html_message (robot.output.loggerhelper.Message at-
tribute), 310

html_message (robot.result.model.Message attribute),
464

html_tags (robot.libdocpkg.htmlutils.HtmlToText at-
tribute), 70

html_to_plain_text()
(robot.libdocpkg.htmlutils.HtmlToText method),
71

HtmlFileWriter (class in
robot.htmldata.htmlfilewriter), 67

HtmlFormatter (class in robot.utils.htmlformatters),
599

HtmlTemplate (class in robot.htmldata.template), 68
HtmlToText (class in robot.libdocpkg.htmlutils), 70
HtmlWriter (class in robot.utils.markupwriters), 602

I
iconbitmap() (robot.libraries.dialogs_py.InputDialog

method), 176
iconbitmap() (robot.libraries.dialogs_py.MessageDialog

method), 162
iconbitmap() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 204
iconbitmap() (robot.libraries.dialogs_py.PassFailDialog

method), 218
iconbitmap() (robot.libraries.dialogs_py.SelectionDialog

method), 190
iconify() (robot.libraries.dialogs_py.InputDialog

method), 176
iconify() (robot.libraries.dialogs_py.MessageDialog

method), 162
iconify() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 204
iconify() (robot.libraries.dialogs_py.PassFailDialog

method), 218
iconify() (robot.libraries.dialogs_py.SelectionDialog

method), 190
iconmask() (robot.libraries.dialogs_py.InputDialog

method), 176
iconmask() (robot.libraries.dialogs_py.MessageDialog

method), 162
iconmask() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 204

iconmask() (robot.libraries.dialogs_py.PassFailDialog
method), 218

iconmask() (robot.libraries.dialogs_py.SelectionDialog
method), 190

iconname() (robot.libraries.dialogs_py.InputDialog
method), 177

iconname() (robot.libraries.dialogs_py.MessageDialog
method), 163

iconname() (robot.libraries.dialogs_py.MultipleSelectionDialog
method), 205

iconname() (robot.libraries.dialogs_py.PassFailDialog
method), 219

iconname() (robot.libraries.dialogs_py.SelectionDialog
method), 191

iconphoto() (robot.libraries.dialogs_py.InputDialog
method), 177

iconphoto() (robot.libraries.dialogs_py.MessageDialog
method), 163

iconphoto() (robot.libraries.dialogs_py.MultipleSelectionDialog
method), 205

iconphoto() (robot.libraries.dialogs_py.PassFailDialog
method), 219

iconphoto() (robot.libraries.dialogs_py.SelectionDialog
method), 191

iconposition() (robot.libraries.dialogs_py.InputDialog
method), 177

iconposition() (robot.libraries.dialogs_py.MessageDialog
method), 163

iconposition() (robot.libraries.dialogs_py.MultipleSelectionDialog
method), 205

iconposition() (robot.libraries.dialogs_py.PassFailDialog
method), 219

iconposition() (robot.libraries.dialogs_py.SelectionDialog
method), 191

iconwindow() (robot.libraries.dialogs_py.InputDialog
method), 177

iconwindow() (robot.libraries.dialogs_py.MessageDialog
method), 163

iconwindow() (robot.libraries.dialogs_py.MultipleSelectionDialog
method), 205

iconwindow() (robot.libraries.dialogs_py.PassFailDialog
method), 219

iconwindow() (robot.libraries.dialogs_py.SelectionDialog
method), 191

id (robot.model.body.BodyItem attribute), 228
id (robot.model.control.Break attribute), 250
id (robot.model.control.Continue attribute), 249
id (robot.model.control.For attribute), 240
id (robot.model.control.If attribute), 243
id (robot.model.control.IfBranch attribute), 241
id (robot.model.control.Return attribute), 247
id (robot.model.control.Try attribute), 245
id (robot.model.control.TryBranch attribute), 244
id (robot.model.control.While attribute), 241

702 Index

Robot Framework Documentation, Release 6.0.2

id (robot.model.keyword.Keyword attribute), 261
id (robot.model.message.Message attribute), 263
id (robot.model.stats.SuiteStat attribute), 275
id (robot.model.testcase.TestCase attribute), 284
id (robot.model.testsuite.TestSuite attribute), 286
id (robot.output.loggerhelper.Message attribute), 310
id (robot.result.executionerrors.ExecutionErrors at-

tribute), 412
id (robot.result.model.Break attribute), 489
id (robot.result.model.Continue attribute), 487
id (robot.result.model.For attribute), 468
id (robot.result.model.ForIteration attribute), 466
id (robot.result.model.If attribute), 478
id (robot.result.model.IfBranch attribute), 475
id (robot.result.model.Keyword attribute), 492
id (robot.result.model.Message attribute), 464
id (robot.result.model.Return attribute), 484
id (robot.result.model.TestCase attribute), 494
id (robot.result.model.TestSuite attribute), 497
id (robot.result.model.Try attribute), 482
id (robot.result.model.TryBranch attribute), 480
id (robot.result.model.While attribute), 473
id (robot.result.model.WhileIteration attribute), 471
id (robot.running.model.Break attribute), 570
id (robot.running.model.Continue attribute), 568
id (robot.running.model.For attribute), 559
id (robot.running.model.If attribute), 563
id (robot.running.model.IfBranch attribute), 561
id (robot.running.model.Keyword attribute), 557
id (robot.running.model.Return attribute), 567
id (robot.running.model.TestCase attribute), 571
id (robot.running.model.TestSuite attribute), 574
id (robot.running.model.Try attribute), 566
id (robot.running.model.TryBranch attribute), 564
id (robot.running.model.While attribute), 560
identifiers (robot.variables.finders.EmptyFinder at-

tribute), 608
identifiers (robot.variables.finders.EnvironmentFinder

attribute), 608
identifiers (robot.variables.finders.ExtendedFinder

attribute), 608
identifiers (robot.variables.finders.InlinePythonFinder

attribute), 608
identifiers (robot.variables.finders.NumberFinder

attribute), 608
identifiers (robot.variables.finders.StoredFinder at-

tribute), 608
If (class in robot.model.control), 242
If (class in robot.parsing.model.blocks), 343
If (class in robot.result.model), 476
If (class in robot.running.model), 562
IF (robot.model.body.BodyItem attribute), 228
IF (robot.model.control.Break attribute), 249
IF (robot.model.control.Continue attribute), 248

IF (robot.model.control.For attribute), 239
IF (robot.model.control.If attribute), 243
IF (robot.model.control.IfBranch attribute), 242
IF (robot.model.control.Return attribute), 247
IF (robot.model.control.Try attribute), 246
IF (robot.model.control.TryBranch attribute), 244
IF (robot.model.control.While attribute), 240
IF (robot.model.keyword.Keyword attribute), 260
IF (robot.model.message.Message attribute), 263
IF (robot.output.loggerhelper.Message attribute), 310
IF (robot.parsing.lexer.tokens.END attribute), 339
IF (robot.parsing.lexer.tokens.EOS attribute), 336
IF (robot.parsing.lexer.tokens.Token attribute), 335
IF (robot.result.model.Break attribute), 488
IF (robot.result.model.Continue attribute), 486
IF (robot.result.model.For attribute), 467
IF (robot.result.model.ForIteration attribute), 465
IF (robot.result.model.If attribute), 476
IF (robot.result.model.IfBranch attribute), 474
IF (robot.result.model.Keyword attribute), 491
IF (robot.result.model.Message attribute), 463
IF (robot.result.model.Return attribute), 483
IF (robot.result.model.Try attribute), 481
IF (robot.result.model.TryBranch attribute), 479
IF (robot.result.model.While attribute), 472
IF (robot.result.model.WhileIteration attribute), 470
IF (robot.running.model.Break attribute), 569
IF (robot.running.model.Continue attribute), 568
IF (robot.running.model.For attribute), 558
IF (robot.running.model.If attribute), 562
IF (robot.running.model.IfBranch attribute), 561
IF (robot.running.model.Keyword attribute), 556
IF (robot.running.model.Return attribute), 566
IF (robot.running.model.Try attribute), 565
IF (robot.running.model.TryBranch attribute), 563
IF (robot.running.model.While attribute), 559
if_class (robot.model.body.BaseBody attribute), 229
if_class (robot.model.body.Body attribute), 231
if_class (robot.model.body.Branches attribute), 233
if_class (robot.result.model.Body attribute), 459
if_class (robot.result.model.Branches attribute), 460
if_class (robot.result.model.Iterations attribute), 462
if_class (robot.running.model.Body attribute), 554
IF_ELSE_ROOT (robot.model.body.BodyItem attribute),

228
IF_ELSE_ROOT (robot.model.control.Break attribute),

249
IF_ELSE_ROOT (robot.model.control.Continue at-

tribute), 248
IF_ELSE_ROOT (robot.model.control.For attribute),

239
IF_ELSE_ROOT (robot.model.control.If attribute), 243
IF_ELSE_ROOT (robot.model.control.IfBranch at-

tribute), 242

Index 703

Robot Framework Documentation, Release 6.0.2

IF_ELSE_ROOT (robot.model.control.Return attribute),
247

IF_ELSE_ROOT (robot.model.control.Try attribute),
246

IF_ELSE_ROOT (robot.model.control.TryBranch
attribute), 244

IF_ELSE_ROOT (robot.model.control.While attribute),
240

IF_ELSE_ROOT (robot.model.keyword.Keyword at-
tribute), 260

IF_ELSE_ROOT (robot.model.message.Message at-
tribute), 263

IF_ELSE_ROOT (robot.output.loggerhelper.Message at-
tribute), 310

IF_ELSE_ROOT (robot.result.model.Break attribute),
488

IF_ELSE_ROOT (robot.result.model.Continue at-
tribute), 486

IF_ELSE_ROOT (robot.result.model.For attribute), 467
IF_ELSE_ROOT (robot.result.model.ForIteration

attribute), 465
IF_ELSE_ROOT (robot.result.model.If attribute), 476
IF_ELSE_ROOT (robot.result.model.IfBranch at-

tribute), 474
IF_ELSE_ROOT (robot.result.model.Keyword attribute),

491
IF_ELSE_ROOT (robot.result.model.Message attribute),

463
IF_ELSE_ROOT (robot.result.model.Return attribute),

483
IF_ELSE_ROOT (robot.result.model.Try attribute), 481
IF_ELSE_ROOT (robot.result.model.TryBranch at-

tribute), 479
IF_ELSE_ROOT (robot.result.model.While attribute),

472
IF_ELSE_ROOT (robot.result.model.WhileIteration at-

tribute), 470
IF_ELSE_ROOT (robot.running.model.Break attribute),

569
IF_ELSE_ROOT (robot.running.model.Continue at-

tribute), 568
IF_ELSE_ROOT (robot.running.model.For attribute),

558
IF_ELSE_ROOT (robot.running.model.If attribute), 562
IF_ELSE_ROOT (robot.running.model.IfBranch at-

tribute), 561
IF_ELSE_ROOT (robot.running.model.Keyword at-

tribute), 556
IF_ELSE_ROOT (robot.running.model.Return at-

tribute), 566
IF_ELSE_ROOT (robot.running.model.Try attribute),

565
IF_ELSE_ROOT (robot.running.model.TryBranch at-

tribute), 563

IF_ELSE_ROOT (robot.running.model.While attribute),
559

IfBranch (class in robot.model.control), 241
IfBranch (class in robot.result.model), 474
IfBranch (class in robot.running.model), 560
IfBuilder (class in

robot.running.builder.transformers), 546
IfElseHeader (class in

robot.parsing.model.statements), 372
IfHandler (class in robot.result.xmlelementhandlers),

521
IfHeader (class in robot.parsing.model.statements),

373
IfHeaderLexer (class in

robot.parsing.lexer.statementlexers), 331
IfLexer (class in robot.parsing.lexer.blocklexers), 322
IfParser (class in robot.parsing.parser.blockparsers),

390
IfRunner (class in robot.running.bodyrunner), 550
ignored_dirs (robot.parsing.suitestructure.SuiteStructureBuilder

attribute), 393
ignored_prefixes (robot.parsing.suitestructure.SuiteStructureBuilder

attribute), 393
imag (robot.reporting.stringcache.StringIndex at-

tribute), 401
image_names() (robot.libraries.dialogs_py.InputDialog

method), 177
image_names() (robot.libraries.dialogs_py.MessageDialog

method), 163
image_names() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 205
image_names() (robot.libraries.dialogs_py.PassFailDialog

method), 219
image_names() (robot.libraries.dialogs_py.SelectionDialog

method), 191
image_types() (robot.libraries.dialogs_py.InputDialog

method), 177
image_types() (robot.libraries.dialogs_py.MessageDialog

method), 163
image_types() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 205
image_types() (robot.libraries.dialogs_py.PassFailDialog

method), 219
image_types() (robot.libraries.dialogs_py.SelectionDialog

method), 191
ImplicitCommentLexer (class in

robot.parsing.lexer.statementlexers), 330
ImplicitCommentSectionLexer (class in

robot.parsing.lexer.blocklexers), 320
ImplicitCommentSectionParser (class in

robot.parsing.parser.fileparser), 391
Import (class in robot.running.model), 576
import_() (robot.utils.importer.ByPathImporter

method), 601

704 Index

Robot Framework Documentation, Release 6.0.2

import_() (robot.utils.importer.DottedImporter
method), 602

import_() (robot.utils.importer.NonDottedImporter
method), 602

import_class_or_module()
(robot.utils.importer.Importer method), 600

import_class_or_module_by_path()
(robot.utils.importer.Importer method), 601

import_library() (robot.libraries.BuiltIn.BuiltIn
method), 82

import_library() (robot.running.importer.Importer
method), 552

import_library() (robot.running.namespace.Namespace
method), 577

import_listeners()
(robot.output.listeners.ListenerProxy class
method), 307

import_module() (robot.utils.importer.Importer
method), 601

import_resource() (robot.libraries.BuiltIn.BuiltIn
method), 82

import_resource()
(robot.running.importer.Importer method),
552

import_resource()
(robot.running.namespace.Namespace
method), 577

import_variables()
(robot.libraries.BuiltIn.BuiltIn method),
82

import_variables()
(robot.running.namespace.Namespace
method), 577

import_variables()
(robot.variables.filesetter.PythonImporter
method), 607

import_variables()
(robot.variables.filesetter.YamlImporter
method), 607

ImportCache (class in robot.running.importer), 552
imported() (robot.output.listeners.LibraryListeners

method), 307
imported() (robot.output.listeners.Listeners method),

307
imported() (robot.output.logger.Logger method), 308
Importer (class in robot.running.importer), 552
Importer (class in robot.utils.importer), 600
Imports (class in robot.running.model), 576
imports (robot.running.model.ResourceFile attribute),

576
in_for (robot.parsing.model.blocks.ValidationContext

attribute), 345
in_keyword (robot.parsing.model.blocks.ValidationContext

attribute), 345

in_while (robot.parsing.model.blocks.ValidationContext
attribute), 345

include (robot.conf.settings.RebotSettings attribute),
66

include (robot.conf.settings.RobotSettings attribute),
65

include_suites (robot.model.filter.Filter attribute),
254

include_tags (robot.model.filter.Filter attribute), 254
include_tests (robot.model.filter.Filter attribute),

254
index() (robot.model.body.BaseBody method), 230
index() (robot.model.body.Body method), 232
index() (robot.model.body.Branches method), 233
index() (robot.model.itemlist.ItemList method), 259
index() (robot.model.keyword.Keywords method), 262
index() (robot.model.message.Messages method), 264
index() (robot.model.testcase.TestCases method), 284
index() (robot.model.testsuite.TestSuites method), 288
index() (robot.result.model.Body method), 459
index() (robot.result.model.Branches method), 460
index() (robot.result.model.Iterations method), 462
index() (robot.running.model.Body method), 555
index() (robot.running.model.Imports method), 577
info (robot.model.stats.CombinedTagStat attribute),

276
info (robot.model.stats.TagStat attribute), 276
info() (in module robot.api.logger), 15
info() (in module robot.output.librarylogger), 305
info() (robot.output.console.verbose.VerboseWriter

method), 304
info() (robot.output.filelogger.FileLogger method),

305
info() (robot.output.logger.Logger method), 309
info() (robot.output.loggerhelper.AbstractLogger

method), 309
info() (robot.output.output.Output method), 311
info() (robot.utils.application.DefaultLogger method),

591
info() (robot.utils.importer.NoLogger method), 602
Information, 614
InitFileContext (class in

robot.parsing.lexer.context), 324
InitFileSettings (class in

robot.parsing.lexer.settings), 326
InitHandler() (in module robot.running.handlers),

551
inits (robot.libdocpkg.model.LibraryDoc attribute), 71
INLINE_IF (robot.parsing.lexer.tokens.END attribute),

339
INLINE_IF (robot.parsing.lexer.tokens.EOS attribute),

336
INLINE_IF (robot.parsing.lexer.tokens.Token at-

tribute), 335

Index 705

Robot Framework Documentation, Release 6.0.2

InlineIfHeader (class in
robot.parsing.model.statements), 374

InlineIfHeaderLexer (class in
robot.parsing.lexer.statementlexers), 331

InlineIfLexer (class in
robot.parsing.lexer.blocklexers), 323

InlinePythonFinder (class in
robot.variables.finders), 608

input() (robot.parsing.lexer.blocklexers.BlockLexer
method), 318

input() (robot.parsing.lexer.blocklexers.CommentSectionLexer
method), 320

input() (robot.parsing.lexer.blocklexers.ErrorSectionLexer
method), 321

input() (robot.parsing.lexer.blocklexers.FileLexer
method), 319

input() (robot.parsing.lexer.blocklexers.ForLexer
method), 322

input() (robot.parsing.lexer.blocklexers.IfLexer
method), 322

input() (robot.parsing.lexer.blocklexers.ImplicitCommentSectionLexer
method), 321

input() (robot.parsing.lexer.blocklexers.InlineIfLexer
method), 323

input() (robot.parsing.lexer.blocklexers.KeywordLexer
method), 322

input() (robot.parsing.lexer.blocklexers.KeywordSectionLexer
method), 320

input() (robot.parsing.lexer.blocklexers.NestedBlockLexer
method), 322

input() (robot.parsing.lexer.blocklexers.SectionLexer
method), 319

input() (robot.parsing.lexer.blocklexers.SettingSectionLexer
method), 319

input() (robot.parsing.lexer.blocklexers.TaskSectionLexer
method), 320

input() (robot.parsing.lexer.blocklexers.TestCaseLexer
method), 321

input() (robot.parsing.lexer.blocklexers.TestCaseSectionLexer
method), 320

input() (robot.parsing.lexer.blocklexers.TestOrKeywordLexer
method), 321

input() (robot.parsing.lexer.blocklexers.TryLexer
method), 323

input() (robot.parsing.lexer.blocklexers.VariableSectionLexer
method), 319

input() (robot.parsing.lexer.blocklexers.WhileLexer
method), 322

input() (robot.parsing.lexer.lexer.Lexer method), 326
input() (robot.parsing.lexer.statementlexers.BreakLexer

method), 333
input() (robot.parsing.lexer.statementlexers.CommentLexer

method), 330
input() (robot.parsing.lexer.statementlexers.CommentSectionHeaderLexer

method), 329
input() (robot.parsing.lexer.statementlexers.ContinueLexer

method), 333
input() (robot.parsing.lexer.statementlexers.ElseHeaderLexer

method), 331
input() (robot.parsing.lexer.statementlexers.ElseIfHeaderLexer

method), 331
input() (robot.parsing.lexer.statementlexers.EndLexer

method), 332
input() (robot.parsing.lexer.statementlexers.ErrorSectionHeaderLexer

method), 329
input() (robot.parsing.lexer.statementlexers.ExceptHeaderLexer

method), 332
input() (robot.parsing.lexer.statementlexers.FinallyHeaderLexer

method), 332
input() (robot.parsing.lexer.statementlexers.ForHeaderLexer

method), 331
input() (robot.parsing.lexer.statementlexers.IfHeaderLexer

method), 331
input() (robot.parsing.lexer.statementlexers.ImplicitCommentLexer

method), 330
input() (robot.parsing.lexer.statementlexers.InlineIfHeaderLexer

method), 331
input() (robot.parsing.lexer.statementlexers.KeywordCallLexer

method), 330
input() (robot.parsing.lexer.statementlexers.KeywordSectionHeaderLexer

method), 329
input() (robot.parsing.lexer.statementlexers.Lexer

method), 327
input() (robot.parsing.lexer.statementlexers.ReturnLexer

method), 333
input() (robot.parsing.lexer.statementlexers.SectionHeaderLexer

method), 328
input() (robot.parsing.lexer.statementlexers.SettingLexer

method), 330
input() (robot.parsing.lexer.statementlexers.SettingSectionHeaderLexer

method), 328
input() (robot.parsing.lexer.statementlexers.SingleType

method), 328
input() (robot.parsing.lexer.statementlexers.StatementLexer

method), 328
input() (robot.parsing.lexer.statementlexers.TaskSectionHeaderLexer

method), 329
input() (robot.parsing.lexer.statementlexers.TestCaseSectionHeaderLexer

method), 329
input() (robot.parsing.lexer.statementlexers.TestOrKeywordSettingLexer

method), 330
input() (robot.parsing.lexer.statementlexers.TryHeaderLexer

method), 332
input() (robot.parsing.lexer.statementlexers.TypeAndArguments

method), 328
input() (robot.parsing.lexer.statementlexers.VariableLexer

method), 330
input() (robot.parsing.lexer.statementlexers.VariableSectionHeaderLexer

706 Index

Robot Framework Documentation, Release 6.0.2

method), 328
input() (robot.parsing.lexer.statementlexers.WhileHeaderLexer

method), 332
InputDialog (class in robot.libraries.dialogs_py),

171
insert() (robot.model.body.BaseBody method), 230
insert() (robot.model.body.Body method), 232
insert() (robot.model.body.Branches method), 233
insert() (robot.model.itemlist.ItemList method), 259
insert() (robot.model.keyword.Keywords method),

262
insert() (robot.model.message.Messages method),

264
insert() (robot.model.testcase.TestCases method),

284
insert() (robot.model.testsuite.TestSuites method),

288
insert() (robot.result.model.Body method), 459
insert() (robot.result.model.Branches method), 460
insert() (robot.result.model.Iterations method), 462
insert() (robot.running.model.Body method), 555
insert() (robot.running.model.Imports method), 577
insert_into_list()

(robot.libraries.Collections.Collections
method), 104

IntegerConverter (class in
robot.running.arguments.typeconverters),
533

IntegerDumper (class in robot.htmldata.jsonwriter),
68

interact() (robot.libraries.Telnet.TelnetConnection
method), 145

INTERNAL_UPDATE_FREQUENCY
(robot.libraries.Telnet.TelnetConnection
attribute), 141

is_assign() (in module robot.variables.search), 611
is_assign() (robot.variables.search.VariableMatch

method), 611
is_dict_assign() (in module

robot.variables.search), 611
is_dict_assign() (robot.variables.search.VariableMatch

method), 611
is_dict_variable() (in module

robot.variables.search), 611
is_dict_variable()

(robot.variables.search.VariableMatch
method), 611

is_directory (robot.parsing.suitestructure.SuiteStructure
attribute), 392

is_global (robot.running.libraryscopes.GlobalScope
attribute), 553

is_global (robot.running.libraryscopes.TestCaseScope
attribute), 553

is_global (robot.running.libraryscopes.TestSuiteScope

attribute), 553
is_list_assign() (in module

robot.variables.search), 611
is_list_assign() (robot.variables.search.VariableMatch

method), 611
is_list_variable() (in module

robot.variables.search), 611
is_list_variable()

(robot.variables.search.VariableMatch
method), 611

is_process_running()
(robot.libraries.Process.Process method),
125

is_scalar_assign() (in module
robot.variables.search), 611

is_scalar_assign()
(robot.variables.search.VariableMatch
method), 611

is_scalar_variable() (in module
robot.variables.search), 611

is_scalar_variable()
(robot.variables.search.VariableMatch
method), 611

is_variable() (in module robot.variables.search),
611

is_variable() (robot.variables.search.VariableMatch
method), 611

isatty() (in module robot.utils.misc), 604
isatty() (in module robot.utils.platform), 605
IsLogged (class in robot.output.loggerhelper), 311
It (class in robot.conf.languages), 62
ItemList (class in robot.model.itemlist), 259
items() (robot.model.metadata.Metadata method),

264
items() (robot.utils.dotdict.DotDict method), 596
items() (robot.utils.normalizing.NormalizedDict

method), 605
items() (robot.variables.evaluation.EvaluationNamespace

method), 607
ITERATION (robot.model.body.BodyItem attribute), 228
ITERATION (robot.model.control.Break attribute), 249
ITERATION (robot.model.control.Continue attribute),

248
ITERATION (robot.model.control.For attribute), 239
ITERATION (robot.model.control.If attribute), 243
ITERATION (robot.model.control.IfBranch attribute),

242
ITERATION (robot.model.control.Return attribute), 247
ITERATION (robot.model.control.Try attribute), 246
ITERATION (robot.model.control.TryBranch attribute),

244
ITERATION (robot.model.control.While attribute), 240
ITERATION (robot.model.keyword.Keyword attribute),

260

Index 707

Robot Framework Documentation, Release 6.0.2

ITERATION (robot.model.message.Message attribute),
263

ITERATION (robot.output.loggerhelper.Message at-
tribute), 310

ITERATION (robot.result.model.Break attribute), 488
ITERATION (robot.result.model.Continue attribute),

486
ITERATION (robot.result.model.For attribute), 467
ITERATION (robot.result.model.ForIteration attribute),

465
ITERATION (robot.result.model.If attribute), 476
ITERATION (robot.result.model.IfBranch attribute), 474
ITERATION (robot.result.model.Keyword attribute), 491
ITERATION (robot.result.model.Message attribute), 463
ITERATION (robot.result.model.Return attribute), 483
ITERATION (robot.result.model.Try attribute), 481
ITERATION (robot.result.model.TryBranch attribute),

479
ITERATION (robot.result.model.While attribute), 472
ITERATION (robot.result.model.WhileIteration at-

tribute), 470
ITERATION (robot.running.model.Break attribute), 569
ITERATION (robot.running.model.Continue attribute),

568
ITERATION (robot.running.model.For attribute), 558
ITERATION (robot.running.model.If attribute), 562
ITERATION (robot.running.model.IfBranch attribute),

561
ITERATION (robot.running.model.Keyword attribute),

556
ITERATION (robot.running.model.Return attribute),

566
ITERATION (robot.running.model.Try attribute), 565
ITERATION (robot.running.model.TryBranch attribute),

563
ITERATION (robot.running.model.While attribute), 559
iteration_class (robot.result.model.For attribute),

467
iteration_class (robot.result.model.Iterations at-

tribute), 461
iteration_class (robot.result.model.While at-

tribute), 471
IterationCountLimit (class in

robot.running.bodyrunner), 550
IterationHandler (class in

robot.result.xmlelementhandlers), 521
Iterations (class in robot.result.model), 461
iterations_class (robot.result.model.For at-

tribute), 467
iterations_class (robot.result.model.While

attribute), 471

J
join_command_line()

(robot.libraries.Process.Process method),
128

join_path() (robot.libraries.OperatingSystem.OperatingSystem
method), 119

join_paths() (robot.libraries.OperatingSystem.OperatingSystem
method), 120

js_result (robot.reporting.resultwriter.Results at-
tribute), 401

JsBuildingContext (class in
robot.reporting.jsbuildingcontext), 393

JsExecutionResult (class in
robot.reporting.jsexecutionresult), 394

JsFileWriter (class in
robot.htmldata.htmlfilewriter), 67

JsModelBuilder (class in
robot.reporting.jsmodelbuilders), 394

JsonConverter (class in robot.testdoc), 624
JsonDocBuilder (class in

robot.libdocpkg.jsonbuilder), 71
JsonDumper (class in robot.htmldata.jsonwriter), 68
JsonWriter (class in robot.htmldata.jsonwriter), 68
JsResultWriter (class in robot.reporting.jswriter),

395

K
keep_in_dictionary()

(robot.libraries.Collections.Collections
method), 104

keys() (robot.libraries.dialogs_py.InputDialog
method), 177

keys() (robot.libraries.dialogs_py.MessageDialog
method), 163

keys() (robot.libraries.dialogs_py.MultipleSelectionDialog
method), 205

keys() (robot.libraries.dialogs_py.PassFailDialog
method), 219

keys() (robot.libraries.dialogs_py.SelectionDialog
method), 191

keys() (robot.model.metadata.Metadata method), 264
keys() (robot.utils.dotdict.DotDict method), 596
keys() (robot.utils.normalizing.NormalizedDict

method), 605
keys() (robot.variables.evaluation.EvaluationNamespace

method), 607
Keyword (class in robot.model.keyword), 259
Keyword (class in robot.parsing.model.blocks), 343
Keyword (class in robot.result.model), 490
Keyword (class in robot.running.model), 555
KEYWORD (robot.model.body.BodyItem attribute), 228
KEYWORD (robot.model.control.Break attribute), 249
KEYWORD (robot.model.control.Continue attribute), 248
KEYWORD (robot.model.control.For attribute), 239
KEYWORD (robot.model.control.If attribute), 243
KEYWORD (robot.model.control.IfBranch attribute), 242

708 Index

Robot Framework Documentation, Release 6.0.2

KEYWORD (robot.model.control.Return attribute), 247
KEYWORD (robot.model.control.Try attribute), 246
KEYWORD (robot.model.control.TryBranch attribute),

244
KEYWORD (robot.model.control.While attribute), 240
KEYWORD (robot.model.keyword.Keyword attribute), 260
KEYWORD (robot.model.message.Message attribute), 263
KEYWORD (robot.output.loggerhelper.Message attribute),

310
KEYWORD (robot.parsing.lexer.tokens.END attribute),

339
KEYWORD (robot.parsing.lexer.tokens.EOS attribute),

336
KEYWORD (robot.parsing.lexer.tokens.Token attribute),

334
keyword (robot.parsing.model.statements.KeywordCall

attribute), 370
KEYWORD (robot.result.model.Break attribute), 488
KEYWORD (robot.result.model.Continue attribute), 486
KEYWORD (robot.result.model.For attribute), 467
KEYWORD (robot.result.model.ForIteration attribute),

465
KEYWORD (robot.result.model.If attribute), 477
KEYWORD (robot.result.model.IfBranch attribute), 474
KEYWORD (robot.result.model.Keyword attribute), 491
KEYWORD (robot.result.model.Message attribute), 463
KEYWORD (robot.result.model.Return attribute), 483
KEYWORD (robot.result.model.Try attribute), 481
KEYWORD (robot.result.model.TryBranch attribute), 479
KEYWORD (robot.result.model.While attribute), 472
KEYWORD (robot.result.model.WhileIteration attribute),

470
KEYWORD (robot.running.model.Break attribute), 569
KEYWORD (robot.running.model.Continue attribute), 568
KEYWORD (robot.running.model.For attribute), 558
KEYWORD (robot.running.model.If attribute), 562
KEYWORD (robot.running.model.IfBranch attribute), 561
KEYWORD (robot.running.model.Keyword attribute), 556
KEYWORD (robot.running.model.Return attribute), 566
KEYWORD (robot.running.model.Try attribute), 565
KEYWORD (robot.running.model.TryBranch attribute),

563
KEYWORD (robot.running.model.While attribute), 559
keyword() (in module robot.api.deco), 11
keyword_class (robot.model.body.BaseBody at-

tribute), 229
keyword_class (robot.model.body.Body attribute),

232
keyword_class (robot.model.body.Branches at-

tribute), 233
keyword_class (robot.result.model.Body attribute),

459
keyword_class (robot.result.model.Branches at-

tribute), 460

keyword_class (robot.result.model.Iterations at-
tribute), 462

keyword_class (robot.running.model.Body at-
tribute), 555

keyword_context()
(robot.parsing.lexer.context.FileContext
method), 323

keyword_context()
(robot.parsing.lexer.context.InitFileContext
method), 324

keyword_context()
(robot.parsing.lexer.context.ResourceFileContext
method), 324

keyword_context()
(robot.parsing.lexer.context.TestCaseFileContext
method), 324

KEYWORD_HEADER (robot.parsing.lexer.tokens.END at-
tribute), 339

KEYWORD_HEADER (robot.parsing.lexer.tokens.EOS at-
tribute), 337

KEYWORD_HEADER (robot.parsing.lexer.tokens.Token
attribute), 334

keyword_marker() (robot.output.console.verbose.VerboseWriter
method), 304

KEYWORD_NAME (robot.parsing.lexer.tokens.END at-
tribute), 339

KEYWORD_NAME (robot.parsing.lexer.tokens.EOS
attribute), 337

KEYWORD_NAME (robot.parsing.lexer.tokens.Token at-
tribute), 334

keyword_section()
(robot.parsing.lexer.context.FileContext
method), 323

keyword_section()
(robot.parsing.lexer.context.InitFileContext
method), 324

keyword_section()
(robot.parsing.lexer.context.ResourceFileContext
method), 324

keyword_section()
(robot.parsing.lexer.context.TestCaseFileContext
method), 324

keyword_should_exist()
(robot.libraries.BuiltIn.BuiltIn method),
82

KEYWORD_TAGS (robot.parsing.lexer.tokens.END at-
tribute), 339

KEYWORD_TAGS (robot.parsing.lexer.tokens.EOS
attribute), 337

KEYWORD_TAGS (robot.parsing.lexer.tokens.Token at-
tribute), 334

keyword_tags_setting (robot.conf.languages.Bg
attribute), 60

keyword_tags_setting (robot.conf.languages.Bs

Index 709

Robot Framework Documentation, Release 6.0.2

attribute), 39
keyword_tags_setting (robot.conf.languages.Cs

attribute), 36
keyword_tags_setting (robot.conf.languages.De

attribute), 43
keyword_tags_setting (robot.conf.languages.En

attribute), 35
keyword_tags_setting (robot.conf.languages.Es

attribute), 51
keyword_tags_setting (robot.conf.languages.Fi

attribute), 40
keyword_tags_setting (robot.conf.languages.Fr

attribute), 41
keyword_tags_setting (robot.conf.languages.Hi

attribute), 64
keyword_tags_setting (robot.conf.languages.It

attribute), 62
keyword_tags_setting

(robot.conf.languages.Language attribute),
33

keyword_tags_setting (robot.conf.languages.Nl
attribute), 37

keyword_tags_setting (robot.conf.languages.Pl
attribute), 48

keyword_tags_setting (robot.conf.languages.Pt
attribute), 46

keyword_tags_setting
(robot.conf.languages.PtBr attribute), 44

keyword_tags_setting (robot.conf.languages.Ro
attribute), 61

keyword_tags_setting (robot.conf.languages.Ru
attribute), 53

keyword_tags_setting (robot.conf.languages.Sv
attribute), 58

keyword_tags_setting (robot.conf.languages.Th
attribute), 47

keyword_tags_setting (robot.conf.languages.Tr
attribute), 57

keyword_tags_setting (robot.conf.languages.Uk
attribute), 50

keyword_tags_setting
(robot.conf.languages.ZhCn attribute), 54

keyword_tags_setting
(robot.conf.languages.ZhTw attribute), 55

keyword_timeout (robot.errors.TimeoutError
attribute), 614

KeywordBuilder (class in
robot.reporting.jsmodelbuilders), 394

KeywordBuilder (class in
robot.running.builder.transformers), 545

KeywordCall (class in
robot.parsing.model.statements), 370

KeywordCallLexer (class in
robot.parsing.lexer.statementlexers), 330

KeywordCallTemplate (class in
robot.running.arguments.argumentmapper),
528

KeywordContext (class in
robot.parsing.lexer.context), 325

KeywordDoc (class in robot.libdocpkg.model), 72
KeywordDocBuilder (class in

robot.libdocpkg.robotbuilder), 72
KeywordError, 614
KeywordHandler (class in

robot.result.xmlelementhandlers), 520
KeywordLexer (class in

robot.parsing.lexer.blocklexers), 321
KeywordMarker (class in

robot.output.console.verbose), 304
KeywordMatcher (class in

robot.libdocpkg.consoleviewer), 70
KeywordName (class in

robot.parsing.model.statements), 363
KeywordParser (class in

robot.parsing.parser.blockparsers), 389
KeywordRecommendationFinder (class in

robot.running.namespace), 578
KeywordRemover() (in module

robot.result.keywordremover), 415
KeywordRunner (class in robot.running.bodyrunner),

549
Keywords (class in robot.model.keyword), 261
keywords (robot.libdocpkg.model.LibraryDoc at-

tribute), 71
keywords (robot.model.control.For attribute), 239
keywords (robot.model.testcase.TestCase attribute),

283
keywords (robot.model.testsuite.TestSuite attribute),

286
keywords (robot.result.model.For attribute), 468
keywords (robot.result.model.Keyword attribute), 490
keywords (robot.result.model.TestCase attribute), 494
keywords (robot.result.model.TestSuite attribute), 497
keywords (robot.running.model.For attribute), 559
keywords (robot.running.model.ResourceFile at-

tribute), 576
keywords (robot.running.model.TestCase attribute),

571
keywords (robot.running.model.TestSuite attribute),

575
keywords (robot.running.model.UserKeyword at-

tribute), 576
keywords_header (robot.conf.languages.Bg at-

tribute), 59
keywords_header (robot.conf.languages.Bs at-

tribute), 38
keywords_header (robot.conf.languages.Cs at-

tribute), 35

710 Index

Robot Framework Documentation, Release 6.0.2

keywords_header (robot.conf.languages.De at-
tribute), 42

keywords_header (robot.conf.languages.En at-
tribute), 34

keywords_header (robot.conf.languages.Es at-
tribute), 51

keywords_header (robot.conf.languages.Fi at-
tribute), 40

keywords_header (robot.conf.languages.Fr at-
tribute), 41

keywords_header (robot.conf.languages.Hi at-
tribute), 63

keywords_header (robot.conf.languages.It at-
tribute), 62

keywords_header (robot.conf.languages.Language
attribute), 32

keywords_header (robot.conf.languages.Nl at-
tribute), 37

keywords_header (robot.conf.languages.Pl at-
tribute), 48

keywords_header (robot.conf.languages.Pt at-
tribute), 45

keywords_header (robot.conf.languages.PtBr
attribute), 44

keywords_header (robot.conf.languages.Ro at-
tribute), 60

keywords_header (robot.conf.languages.Ru at-
tribute), 52

keywords_header (robot.conf.languages.Sv at-
tribute), 58

keywords_header (robot.conf.languages.Th at-
tribute), 46

keywords_header (robot.conf.languages.Tr at-
tribute), 56

keywords_header (robot.conf.languages.Uk at-
tribute), 49

keywords_header (robot.conf.languages.ZhCn at-
tribute), 53

keywords_header (robot.conf.languages.ZhTw at-
tribute), 55

KeywordSection (class in
robot.parsing.model.blocks), 342

KeywordSectionHeaderLexer (class in
robot.parsing.lexer.statementlexers), 329

KeywordSectionLexer (class in
robot.parsing.lexer.blocklexers), 320

KeywordSectionParser (class in
robot.parsing.parser.fileparser), 391

KeywordSettings (class in
robot.parsing.lexer.settings), 327

KeywordStore (class in robot.running.namespace),
578

KeywordTags (class in
robot.parsing.model.statements), 356

KeywordTimeout (class in robot.running.timeouts),
548

KILL_TIMEOUT (robot.libraries.Process.Process at-
tribute), 125

kwname (robot.result.model.Break attribute), 489
kwname (robot.result.model.Continue attribute), 487
kwname (robot.result.model.For attribute), 468
kwname (robot.result.model.ForIteration attribute), 466
kwname (robot.result.model.If attribute), 478
kwname (robot.result.model.IfBranch attribute), 475
kwname (robot.result.model.Keyword attribute), 490
kwname (robot.result.model.Return attribute), 484
kwname (robot.result.model.Try attribute), 482
kwname (robot.result.model.TryBranch attribute), 480
kwname (robot.result.model.While attribute), 473
kwname (robot.result.model.WhileIteration attribute),

471
kwname (robot.result.modeldeprecation.DeprecatedAttributesMixin

attribute), 500

L
Language (class in robot.conf.languages), 32
language (robot.parsing.model.statements.Config at-

tribute), 386
Languages (class in robot.conf.languages), 32
languages (robot.conf.settings.RobotSettings at-

tribute), 65
LastStatementFinder (class in

robot.parsing.model.blocks), 345
length_should_be()

(robot.libraries.BuiltIn.BuiltIn method),
83

level (robot.model.message.Message attribute), 262
level (robot.output.loggerhelper.Message attribute),

310
level (robot.result.model.Message attribute), 464
lex() (robot.parsing.lexer.blocklexers.BlockLexer

method), 318
lex() (robot.parsing.lexer.blocklexers.CommentSectionLexer

method), 320
lex() (robot.parsing.lexer.blocklexers.ErrorSectionLexer

method), 321
lex() (robot.parsing.lexer.blocklexers.FileLexer

method), 319
lex() (robot.parsing.lexer.blocklexers.ForLexer

method), 322
lex() (robot.parsing.lexer.blocklexers.IfLexer method),

322
lex() (robot.parsing.lexer.blocklexers.ImplicitCommentSectionLexer

method), 321
lex() (robot.parsing.lexer.blocklexers.InlineIfLexer

method), 323
lex() (robot.parsing.lexer.blocklexers.KeywordLexer

method), 322

Index 711

Robot Framework Documentation, Release 6.0.2

lex() (robot.parsing.lexer.blocklexers.KeywordSectionLexer
method), 320

lex() (robot.parsing.lexer.blocklexers.NestedBlockLexer
method), 322

lex() (robot.parsing.lexer.blocklexers.SectionLexer
method), 319

lex() (robot.parsing.lexer.blocklexers.SettingSectionLexer
method), 319

lex() (robot.parsing.lexer.blocklexers.TaskSectionLexer
method), 320

lex() (robot.parsing.lexer.blocklexers.TestCaseLexer
method), 321

lex() (robot.parsing.lexer.blocklexers.TestCaseSectionLexer
method), 320

lex() (robot.parsing.lexer.blocklexers.TestOrKeywordLexer
method), 321

lex() (robot.parsing.lexer.blocklexers.TryLexer
method), 323

lex() (robot.parsing.lexer.blocklexers.VariableSectionLexer
method), 319

lex() (robot.parsing.lexer.blocklexers.WhileLexer
method), 322

lex() (robot.parsing.lexer.settings.InitFileSettings
method), 326

lex() (robot.parsing.lexer.settings.KeywordSettings
method), 327

lex() (robot.parsing.lexer.settings.ResourceFileSettings
method), 327

lex() (robot.parsing.lexer.settings.Settings method),
326

lex() (robot.parsing.lexer.settings.TestCaseFileSettings
method), 326

lex() (robot.parsing.lexer.settings.TestCaseSettings
method), 327

lex() (robot.parsing.lexer.statementlexers.BreakLexer
method), 333

lex() (robot.parsing.lexer.statementlexers.CommentLexer
method), 330

lex() (robot.parsing.lexer.statementlexers.CommentSectionHeaderLexer
method), 329

lex() (robot.parsing.lexer.statementlexers.ContinueLexer
method), 333

lex() (robot.parsing.lexer.statementlexers.ElseHeaderLexer
method), 331

lex() (robot.parsing.lexer.statementlexers.ElseIfHeaderLexer
method), 331

lex() (robot.parsing.lexer.statementlexers.EndLexer
method), 332

lex() (robot.parsing.lexer.statementlexers.ErrorSectionHeaderLexer
method), 329

lex() (robot.parsing.lexer.statementlexers.ExceptHeaderLexer
method), 332

lex() (robot.parsing.lexer.statementlexers.FinallyHeaderLexer
method), 332

lex() (robot.parsing.lexer.statementlexers.ForHeaderLexer
method), 331

lex() (robot.parsing.lexer.statementlexers.IfHeaderLexer
method), 331

lex() (robot.parsing.lexer.statementlexers.ImplicitCommentLexer
method), 330

lex() (robot.parsing.lexer.statementlexers.InlineIfHeaderLexer
method), 331

lex() (robot.parsing.lexer.statementlexers.KeywordCallLexer
method), 330

lex() (robot.parsing.lexer.statementlexers.KeywordSectionHeaderLexer
method), 329

lex() (robot.parsing.lexer.statementlexers.Lexer
method), 327

lex() (robot.parsing.lexer.statementlexers.ReturnLexer
method), 333

lex() (robot.parsing.lexer.statementlexers.SectionHeaderLexer
method), 328

lex() (robot.parsing.lexer.statementlexers.SettingLexer
method), 330

lex() (robot.parsing.lexer.statementlexers.SettingSectionHeaderLexer
method), 328

lex() (robot.parsing.lexer.statementlexers.SingleType
method), 328

lex() (robot.parsing.lexer.statementlexers.StatementLexer
method), 328

lex() (robot.parsing.lexer.statementlexers.TaskSectionHeaderLexer
method), 329

lex() (robot.parsing.lexer.statementlexers.TestCaseSectionHeaderLexer
method), 329

lex() (robot.parsing.lexer.statementlexers.TestOrKeywordSettingLexer
method), 330

lex() (robot.parsing.lexer.statementlexers.TryHeaderLexer
method), 332

lex() (robot.parsing.lexer.statementlexers.TypeAndArguments
method), 328

lex() (robot.parsing.lexer.statementlexers.VariableLexer
method), 330

lex() (robot.parsing.lexer.statementlexers.VariableSectionHeaderLexer
method), 328

lex() (robot.parsing.lexer.statementlexers.WhileHeaderLexer
method), 332

lex_invalid_section()
(robot.parsing.lexer.context.FileContext
method), 323

lex_invalid_section()
(robot.parsing.lexer.context.InitFileContext
method), 324

lex_invalid_section()
(robot.parsing.lexer.context.ResourceFileContext
method), 324

lex_invalid_section()
(robot.parsing.lexer.context.TestCaseFileContext
method), 324

712 Index

Robot Framework Documentation, Release 6.0.2

lex_setting() (robot.parsing.lexer.context.FileContext
method), 323

lex_setting() (robot.parsing.lexer.context.InitFileContext
method), 325

lex_setting() (robot.parsing.lexer.context.KeywordContext
method), 325

lex_setting() (robot.parsing.lexer.context.LexingContext
method), 323

lex_setting() (robot.parsing.lexer.context.ResourceFileContext
method), 324

lex_setting() (robot.parsing.lexer.context.TestCaseContext
method), 325

lex_setting() (robot.parsing.lexer.context.TestCaseFileContext
method), 324

Lexer (class in robot.parsing.lexer.lexer), 326
Lexer (class in robot.parsing.lexer.statementlexers), 327
lexer_classes() (robot.parsing.lexer.blocklexers.BlockLexer

method), 318
lexer_classes() (robot.parsing.lexer.blocklexers.CommentSectionLexer

method), 320
lexer_classes() (robot.parsing.lexer.blocklexers.ErrorSectionLexer

method), 321
lexer_classes() (robot.parsing.lexer.blocklexers.FileLexer

method), 319
lexer_classes() (robot.parsing.lexer.blocklexers.ForLexer

method), 322
lexer_classes() (robot.parsing.lexer.blocklexers.IfLexer

method), 322
lexer_classes() (robot.parsing.lexer.blocklexers.ImplicitCommentSectionLexer

method), 321
lexer_classes() (robot.parsing.lexer.blocklexers.InlineIfLexer

method), 323
lexer_classes() (robot.parsing.lexer.blocklexers.KeywordLexer

method), 322
lexer_classes() (robot.parsing.lexer.blocklexers.KeywordSectionLexer

method), 320
lexer_classes() (robot.parsing.lexer.blocklexers.NestedBlockLexer

method), 322
lexer_classes() (robot.parsing.lexer.blocklexers.SectionLexer

method), 319
lexer_classes() (robot.parsing.lexer.blocklexers.SettingSectionLexer

method), 319
lexer_classes() (robot.parsing.lexer.blocklexers.TaskSectionLexer

method), 320
lexer_classes() (robot.parsing.lexer.blocklexers.TestCaseLexer

method), 321
lexer_classes() (robot.parsing.lexer.blocklexers.TestCaseSectionLexer

method), 320
lexer_classes() (robot.parsing.lexer.blocklexers.TestOrKeywordLexer

method), 321
lexer_classes() (robot.parsing.lexer.blocklexers.TryLexer

method), 323
lexer_classes() (robot.parsing.lexer.blocklexers.VariableSectionLexer

method), 319

lexer_classes() (robot.parsing.lexer.blocklexers.WhileLexer
method), 322

lexer_for() (robot.parsing.lexer.blocklexers.BlockLexer
method), 318

lexer_for() (robot.parsing.lexer.blocklexers.CommentSectionLexer
method), 320

lexer_for() (robot.parsing.lexer.blocklexers.ErrorSectionLexer
method), 321

lexer_for() (robot.parsing.lexer.blocklexers.FileLexer
method), 319

lexer_for() (robot.parsing.lexer.blocklexers.ForLexer
method), 322

lexer_for() (robot.parsing.lexer.blocklexers.IfLexer
method), 323

lexer_for() (robot.parsing.lexer.blocklexers.ImplicitCommentSectionLexer
method), 321

lexer_for() (robot.parsing.lexer.blocklexers.InlineIfLexer
method), 323

lexer_for() (robot.parsing.lexer.blocklexers.KeywordLexer
method), 322

lexer_for() (robot.parsing.lexer.blocklexers.KeywordSectionLexer
method), 320

lexer_for() (robot.parsing.lexer.blocklexers.NestedBlockLexer
method), 322

lexer_for() (robot.parsing.lexer.blocklexers.SectionLexer
method), 319

lexer_for() (robot.parsing.lexer.blocklexers.SettingSectionLexer
method), 319

lexer_for() (robot.parsing.lexer.blocklexers.TaskSectionLexer
method), 320

lexer_for() (robot.parsing.lexer.blocklexers.TestCaseLexer
method), 321

lexer_for() (robot.parsing.lexer.blocklexers.TestCaseSectionLexer
method), 320

lexer_for() (robot.parsing.lexer.blocklexers.TestOrKeywordLexer
method), 321

lexer_for() (robot.parsing.lexer.blocklexers.TryLexer
method), 323

lexer_for() (robot.parsing.lexer.blocklexers.VariableSectionLexer
method), 319

lexer_for() (robot.parsing.lexer.blocklexers.WhileLexer
method), 322

LexingContext (class in robot.parsing.lexer.context),
323

LibDoc (class in robot.libdoc), 619
libdoc() (in module robot.libdoc), 619
libdoc_cli() (in module robot.libdoc), 619
LibdocHtmlWriter (class in

robot.libdocpkg.htmlwriter), 71
LibdocJsonWriter (class in

robot.libdocpkg.jsonwriter), 71
LibdocModelWriter (class in

robot.libdocpkg.htmlwriter), 71
LibdocOutput (class in robot.libdocpkg.output), 72

Index 713

Robot Framework Documentation, Release 6.0.2

LibdocWriter() (in module robot.libdocpkg.writer),
72

LibdocXmlWriter (class in
robot.libdocpkg.xmlwriter), 73

libname (robot.result.model.Break attribute), 489
libname (robot.result.model.Continue attribute), 487
libname (robot.result.model.For attribute), 469
libname (robot.result.model.ForIteration attribute),

466
libname (robot.result.model.If attribute), 478
libname (robot.result.model.IfBranch attribute), 475
libname (robot.result.model.Keyword attribute), 490
libname (robot.result.model.Return attribute), 485
libname (robot.result.model.Try attribute), 482
libname (robot.result.model.TryBranch attribute), 480
libname (robot.result.model.While attribute), 473
libname (robot.result.model.WhileIteration attribute),

471
libname (robot.result.modeldeprecation.DeprecatedAttributesMixin

attribute), 500
libname (robot.running.librarykeywordrunner.EmbeddedArgumentsRunner

attribute), 552
libname (robot.running.librarykeywordrunner.LibraryKeywordRunner

attribute), 552
libname (robot.running.librarykeywordrunner.RunKeywordRunner

attribute), 552
libname (robot.running.userkeywordrunner.EmbeddedArgumentsRunner

attribute), 590
libname (robot.running.userkeywordrunner.UserKeywordRunner

attribute), 590
libraries (robot.running.namespace.Namespace at-

tribute), 577
LIBRARY (robot.parsing.lexer.tokens.END attribute),

339
LIBRARY (robot.parsing.lexer.tokens.EOS attribute),

337
LIBRARY (robot.parsing.lexer.tokens.Token attribute),

334
library (robot.running.handlers.EmbeddedArgumentsHandler

attribute), 551
library (robot.running.librarykeywordrunner.EmbeddedArgumentsRunner

attribute), 552
library (robot.running.librarykeywordrunner.LibraryKeywordRunner

attribute), 552
library (robot.running.librarykeywordrunner.RunKeywordRunner

attribute), 552
library() (in module robot.api.deco), 11
library() (robot.running.model.Imports method), 577
library_setting (robot.conf.languages.Bg at-

tribute), 59
library_setting (robot.conf.languages.Bs at-

tribute), 38
library_setting (robot.conf.languages.Cs at-

tribute), 35

library_setting (robot.conf.languages.De at-
tribute), 42

library_setting (robot.conf.languages.En at-
tribute), 34

library_setting (robot.conf.languages.Es at-
tribute), 51

library_setting (robot.conf.languages.Fi at-
tribute), 40

library_setting (robot.conf.languages.Fr at-
tribute), 41

library_setting (robot.conf.languages.Hi at-
tribute), 63

library_setting (robot.conf.languages.It at-
tribute), 62

library_setting (robot.conf.languages.Language
attribute), 32

library_setting (robot.conf.languages.Nl at-
tribute), 37

library_setting (robot.conf.languages.Pl at-
tribute), 48

library_setting (robot.conf.languages.Pt at-
tribute), 45

library_setting (robot.conf.languages.PtBr
attribute), 44

library_setting (robot.conf.languages.Ro at-
tribute), 61

library_setting (robot.conf.languages.Ru at-
tribute), 52

library_setting (robot.conf.languages.Sv at-
tribute), 58

library_setting (robot.conf.languages.Th at-
tribute), 47

library_setting (robot.conf.languages.Tr at-
tribute), 56

library_setting (robot.conf.languages.Uk at-
tribute), 49

library_setting (robot.conf.languages.ZhCn at-
tribute), 54

library_setting (robot.conf.languages.ZhTw at-
tribute), 55

LibraryDoc (class in robot.libdocpkg.model), 71
LibraryDocBuilder (class in

robot.libdocpkg.robotbuilder), 72
LibraryDocumentation() (in module

robot.libdocpkg.builder), 69
LibraryImport (class in

robot.parsing.model.statements), 350
LibraryKeywordRunner (class in

robot.running.librarykeywordrunner), 552
LibraryListenerMethods (class in

robot.output.listenermethods), 307
LibraryListeners (class in robot.output.listeners),

307
LibraryScope() (in module

714 Index

Robot Framework Documentation, Release 6.0.2

robot.running.libraryscopes), 553
lift() (robot.libraries.dialogs_py.InputDialog

method), 177
lift() (robot.libraries.dialogs_py.MessageDialog

method), 163
lift() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 205
lift() (robot.libraries.dialogs_py.PassFailDialog

method), 219
lift() (robot.libraries.dialogs_py.SelectionDialog

method), 191
limit (robot.model.control.While attribute), 240
limit (robot.parsing.model.blocks.While attribute), 344
limit (robot.parsing.model.statements.WhileHeader at-

tribute), 381
limit (robot.result.model.While attribute), 473
limit (robot.running.model.While attribute), 560
limit_exceeded() (robot.running.bodyrunner.DurationLimit

method), 550
limit_exceeded() (robot.running.bodyrunner.IterationCountLimit

method), 550
limit_exceeded() (robot.running.bodyrunner.NoLimit

method), 550
limit_exceeded() (robot.running.bodyrunner.WhileLimit

method), 550
LineFormatter (class in robot.utils.htmlformatters),

599
lineno (robot.model.testcase.TestCase attribute), 283
lineno (robot.parsing.lexer.tokens.END attribute), 340
lineno (robot.parsing.lexer.tokens.EOS attribute), 338
lineno (robot.parsing.lexer.tokens.Token attribute), 335
lineno (robot.parsing.model.blocks.Block attribute),

340
lineno (robot.parsing.model.blocks.CommentSection

attribute), 342
lineno (robot.parsing.model.blocks.File attribute), 341
lineno (robot.parsing.model.blocks.For attribute), 344
lineno (robot.parsing.model.blocks.HeaderAndBody

attribute), 341
lineno (robot.parsing.model.blocks.If attribute), 343
lineno (robot.parsing.model.blocks.Keyword attribute),

343
lineno (robot.parsing.model.blocks.KeywordSection

attribute), 342
lineno (robot.parsing.model.blocks.Section attribute),

341
lineno (robot.parsing.model.blocks.SettingSection at-

tribute), 341
lineno (robot.parsing.model.blocks.TestCase at-

tribute), 343
lineno (robot.parsing.model.blocks.TestCaseSection

attribute), 342
lineno (robot.parsing.model.blocks.Try attribute), 344
lineno (robot.parsing.model.blocks.VariableSection at-

tribute), 342
lineno (robot.parsing.model.blocks.While attribute),

344
lineno (robot.parsing.model.statements.Arguments at-

tribute), 369
lineno (robot.parsing.model.statements.Break at-

tribute), 385
lineno (robot.parsing.model.statements.Comment at-

tribute), 386
lineno (robot.parsing.model.statements.Config at-

tribute), 386
lineno (robot.parsing.model.statements.Continue at-

tribute), 384
lineno (robot.parsing.model.statements.DefaultTags

attribute), 356
lineno (robot.parsing.model.statements.Documentation

attribute), 353
lineno (robot.parsing.model.statements.DocumentationOrMetadata

attribute), 347
lineno (robot.parsing.model.statements.ElseHeader at-

tribute), 377
lineno (robot.parsing.model.statements.ElseIfHeader

attribute), 376
lineno (robot.parsing.model.statements.EmptyLine at-

tribute), 388
lineno (robot.parsing.model.statements.End attribute),

381
lineno (robot.parsing.model.statements.Error at-

tribute), 387
lineno (robot.parsing.model.statements.ExceptHeader

attribute), 379
lineno (robot.parsing.model.statements.FinallyHeader

attribute), 380
lineno (robot.parsing.model.statements.Fixture at-

tribute), 349
lineno (robot.parsing.model.statements.ForceTags at-

tribute), 355
lineno (robot.parsing.model.statements.ForHeader at-

tribute), 372
lineno (robot.parsing.model.statements.IfElseHeader

attribute), 373
lineno (robot.parsing.model.statements.IfHeader at-

tribute), 374
lineno (robot.parsing.model.statements.InlineIfHeader

attribute), 375
lineno (robot.parsing.model.statements.KeywordCall

attribute), 371
lineno (robot.parsing.model.statements.KeywordName

attribute), 364
lineno (robot.parsing.model.statements.KeywordTags

attribute), 357
lineno (robot.parsing.model.statements.LibraryImport

attribute), 351
lineno (robot.parsing.model.statements.LoopControl

Index 715

Robot Framework Documentation, Release 6.0.2

attribute), 383
lineno (robot.parsing.model.statements.Metadata at-

tribute), 354
lineno (robot.parsing.model.statements.MultiValue at-

tribute), 348
lineno (robot.parsing.model.statements.NoArgumentHeader

attribute), 377
lineno (robot.parsing.model.statements.ResourceImport

attribute), 352
lineno (robot.parsing.model.statements.Return at-

tribute), 370
lineno (robot.parsing.model.statements.ReturnStatement

attribute), 382
lineno (robot.parsing.model.statements.SectionHeader

attribute), 350
lineno (robot.parsing.model.statements.Setup at-

tribute), 365
lineno (robot.parsing.model.statements.SingleValue at-

tribute), 348
lineno (robot.parsing.model.statements.Statement at-

tribute), 346
lineno (robot.parsing.model.statements.SuiteSetup at-

tribute), 358
lineno (robot.parsing.model.statements.SuiteTeardown

attribute), 358
lineno (robot.parsing.model.statements.Tags attribute),

367
lineno (robot.parsing.model.statements.Teardown at-

tribute), 366
lineno (robot.parsing.model.statements.Template at-

tribute), 367
lineno (robot.parsing.model.statements.TemplateArguments

attribute), 372
lineno (robot.parsing.model.statements.TestCaseName

attribute), 363
lineno (robot.parsing.model.statements.TestSetup at-

tribute), 359
lineno (robot.parsing.model.statements.TestTeardown

attribute), 360
lineno (robot.parsing.model.statements.TestTemplate

attribute), 361
lineno (robot.parsing.model.statements.TestTimeout

attribute), 362
lineno (robot.parsing.model.statements.Timeout

attribute), 368
lineno (robot.parsing.model.statements.TryHeader at-

tribute), 378
lineno (robot.parsing.model.statements.Variable at-

tribute), 363
lineno (robot.parsing.model.statements.VariablesImport

attribute), 353
lineno (robot.parsing.model.statements.WhileHeader

attribute), 382
lineno (robot.result.model.TestCase attribute), 495

lineno (robot.running.model.Break attribute), 569
lineno (robot.running.model.Continue attribute), 567
lineno (robot.running.model.For attribute), 557
lineno (robot.running.model.If attribute), 562
lineno (robot.running.model.IfBranch attribute), 560
lineno (robot.running.model.Keyword attribute), 555
lineno (robot.running.model.Return attribute), 566
lineno (robot.running.model.TestCase attribute), 571
lineno (robot.running.model.Try attribute), 564
lineno (robot.running.model.TryBranch attribute), 563
lineno (robot.running.model.While attribute), 559
lines (robot.parsing.model.statements.Arguments at-

tribute), 369
lines (robot.parsing.model.statements.Break attribute),

385
lines (robot.parsing.model.statements.Comment

attribute), 386
lines (robot.parsing.model.statements.Config at-

tribute), 387
lines (robot.parsing.model.statements.Continue at-

tribute), 384
lines (robot.parsing.model.statements.DefaultTags at-

tribute), 356
lines (robot.parsing.model.statements.Documentation

attribute), 354
lines (robot.parsing.model.statements.DocumentationOrMetadata

attribute), 347
lines (robot.parsing.model.statements.ElseHeader at-

tribute), 377
lines (robot.parsing.model.statements.ElseIfHeader at-

tribute), 376
lines (robot.parsing.model.statements.EmptyLine at-

tribute), 388
lines (robot.parsing.model.statements.End attribute),

381
lines (robot.parsing.model.statements.Error attribute),

387
lines (robot.parsing.model.statements.ExceptHeader

attribute), 379
lines (robot.parsing.model.statements.FinallyHeader

attribute), 380
lines (robot.parsing.model.statements.Fixture at-

tribute), 349
lines (robot.parsing.model.statements.ForceTags at-

tribute), 355
lines (robot.parsing.model.statements.ForHeader at-

tribute), 372
lines (robot.parsing.model.statements.IfElseHeader at-

tribute), 373
lines (robot.parsing.model.statements.IfHeader at-

tribute), 374
lines (robot.parsing.model.statements.InlineIfHeader

attribute), 375
lines (robot.parsing.model.statements.KeywordCall at-

716 Index

Robot Framework Documentation, Release 6.0.2

tribute), 371
lines (robot.parsing.model.statements.KeywordName

attribute), 364
lines (robot.parsing.model.statements.KeywordTags

attribute), 357
lines (robot.parsing.model.statements.LibraryImport

attribute), 351
lines (robot.parsing.model.statements.LoopControl at-

tribute), 383
lines (robot.parsing.model.statements.Metadata

attribute), 354
lines (robot.parsing.model.statements.MultiValue at-

tribute), 349
lines (robot.parsing.model.statements.NoArgumentHeader

attribute), 377
lines (robot.parsing.model.statements.ResourceImport

attribute), 352
lines (robot.parsing.model.statements.Return at-

tribute), 370
lines (robot.parsing.model.statements.ReturnStatement

attribute), 382
lines (robot.parsing.model.statements.SectionHeader

attribute), 350
lines (robot.parsing.model.statements.Setup attribute),

365
lines (robot.parsing.model.statements.SingleValue at-

tribute), 348
lines (robot.parsing.model.statements.Statement at-

tribute), 346
lines (robot.parsing.model.statements.SuiteSetup at-

tribute), 358
lines (robot.parsing.model.statements.SuiteTeardown

attribute), 358
lines (robot.parsing.model.statements.Tags attribute),

367
lines (robot.parsing.model.statements.Teardown at-

tribute), 366
lines (robot.parsing.model.statements.Template at-

tribute), 367
lines (robot.parsing.model.statements.TemplateArguments

attribute), 372
lines (robot.parsing.model.statements.TestCaseName

attribute), 363
lines (robot.parsing.model.statements.TestSetup

attribute), 359
lines (robot.parsing.model.statements.TestTeardown

attribute), 360
lines (robot.parsing.model.statements.TestTemplate at-

tribute), 361
lines (robot.parsing.model.statements.TestTimeout at-

tribute), 362
lines (robot.parsing.model.statements.Timeout at-

tribute), 368
lines (robot.parsing.model.statements.TryHeader at-

tribute), 378
lines (robot.parsing.model.statements.Variable at-

tribute), 363
lines (robot.parsing.model.statements.VariablesImport

attribute), 353
lines (robot.parsing.model.statements.WhileHeader at-

tribute), 382
LineWriter (class in robot.htmldata.htmlfilewriter),

67
link() (robot.reporting.jsbuildingcontext.JsBuildingContext

method), 394
LinkFormatter (class in robot.utils.htmlformatters),

599
links (robot.model.stats.TagStat attribute), 276
list() (robot.libdocpkg.consoleviewer.ConsoleViewer

method), 70
list_directories_in_directory()

(robot.libraries.OperatingSystem.OperatingSystem
method), 122

list_directory() (robot.libraries.OperatingSystem.OperatingSystem
method), 121

list_files_in_directory()
(robot.libraries.OperatingSystem.OperatingSystem
method), 121

list_should_contain_sub_list()
(robot.libraries.Collections.Collections
method), 104

list_should_contain_value()
(robot.libraries.Collections.Collections
method), 104

list_should_not_contain_duplicates()
(robot.libraries.Collections.Collections
method), 104

list_should_not_contain_value()
(robot.libraries.Collections.Collections
method), 105

ListConverter (class in
robot.running.arguments.typeconverters),
537

listener() (robot.libraries.Telnet.TelnetConnection
method), 145

ListenerArguments (class in
robot.output.listenerarguments), 306

ListenerMethod (class in
robot.output.listenermethods), 307

ListenerMethods (class in
robot.output.listenermethods), 307

ListenerProxy (class in robot.output.listeners), 307
Listeners (class in robot.output.listeners), 307
listeners (robot.conf.settings.RobotSettings at-

tribute), 65
ListFormatter (class in robot.utils.htmlformatters),

600
lists_should_be_equal()

Index 717

Robot Framework Documentation, Release 6.0.2

(robot.libraries.Collections.Collections
method), 105

ListVariableTableValue (class in
robot.variables.tablesetter), 612

Location (class in robot.libraries.XML), 157
log (robot.conf.settings.RebotSettings attribute), 66
log (robot.conf.settings.RobotSettings attribute), 65
log() (robot.libraries.BuiltIn.BuiltIn method), 83
log_config (robot.conf.settings.RebotSettings at-

tribute), 66
log_dictionary() (robot.libraries.Collections.Collections

method), 105
log_element() (robot.libraries.XML.XML method),

156
log_environment_variables()

(robot.libraries.OperatingSystem.OperatingSystem
method), 119

log_file() (robot.libraries.OperatingSystem.OperatingSystem
method), 115

log_level (robot.conf.settings.RebotSettings at-
tribute), 66

log_level (robot.conf.settings.RobotSettings at-
tribute), 65

log_list() (robot.libraries.Collections.Collections
method), 105

log_many() (robot.libraries.BuiltIn.BuiltIn method),
83

log_message() (robot.output.listeners.LibraryListeners
method), 307

log_message() (robot.output.listeners.Listeners
method), 307

log_message() (robot.output.logger.Logger method),
308

log_message() (robot.output.xmllogger.XmlLogger
method), 313

log_message() (robot.reporting.outputwriter.OutputWriter
method), 397

log_output() (robot.output.logger.Logger method),
308

log_to_console() (robot.libraries.BuiltIn.BuiltIn
method), 83

log_variables() (robot.libraries.BuiltIn.BuiltIn
method), 84

Logger (class in robot.output.logger), 308
LoggerProxy (class in robot.output.logger), 309
login() (robot.libraries.Telnet.TelnetConnection

method), 143
LogWriter (class in robot.reporting.logreportwriters),

395
longname (robot.model.testcase.TestCase attribute),

284
longname (robot.model.testsuite.TestSuite attribute),

285
longname (robot.result.model.TestCase attribute), 495

longname (robot.result.model.TestSuite attribute), 497
longname (robot.running.librarykeywordrunner.EmbeddedArgumentsRunner

attribute), 552
longname (robot.running.librarykeywordrunner.LibraryKeywordRunner

attribute), 552
longname (robot.running.librarykeywordrunner.RunKeywordRunner

attribute), 552
longname (robot.running.model.TestCase attribute),

571
longname (robot.running.model.TestSuite attribute),

575
longname (robot.running.usererrorhandler.UserErrorHandler

attribute), 589
longname (robot.running.userkeyword.EmbeddedArgumentsHandler

attribute), 590
longname (robot.running.userkeyword.UserKeywordHandler

attribute), 590
longname (robot.running.userkeywordrunner.EmbeddedArgumentsRunner

attribute), 590
longname (robot.running.userkeywordrunner.UserKeywordRunner

attribute), 590
LoopControl (class in

robot.parsing.model.statements), 383
lower() (robot.libraries.dialogs_py.InputDialog

method), 177
lower() (robot.libraries.dialogs_py.MessageDialog

method), 163
lower() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 205
lower() (robot.libraries.dialogs_py.PassFailDialog

method), 219
lower() (robot.libraries.dialogs_py.SelectionDialog

method), 191

M
main() (robot.libdoc.LibDoc method), 619
main() (robot.rebot.Rebot method), 620
main() (robot.run.RobotFramework method), 622
main() (robot.testdoc.TestDoc method), 624
main() (robot.utils.application.Application method),

591
mainloop() (robot.libraries.dialogs_py.InputDialog

method), 177
mainloop() (robot.libraries.dialogs_py.MessageDialog

method), 163
mainloop() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 205
mainloop() (robot.libraries.dialogs_py.PassFailDialog

method), 219
mainloop() (robot.libraries.dialogs_py.SelectionDialog

method), 191
make_connection()

(robot.libraries.Remote.TimeoutHTTPSTransport
method), 129

718 Index

Robot Framework Documentation, Release 6.0.2

make_connection()
(robot.libraries.Remote.TimeoutHTTPTransport
method), 129

manage() (robot.libraries.dialogs_py.InputDialog
method), 177

manage() (robot.libraries.dialogs_py.MessageDialog
method), 163

manage() (robot.libraries.dialogs_py.MultipleSelectionDialog
method), 205

manage() (robot.libraries.dialogs_py.PassFailDialog
method), 219

manage() (robot.libraries.dialogs_py.SelectionDialog
method), 191

map() (robot.running.arguments.argumentmapper.ArgumentMapper
method), 528

map() (robot.running.arguments.argumentspec.ArgumentSpec
method), 530

map() (robot.running.arguments.embedded.EmbeddedArguments
method), 531

MappingDumper (class in robot.htmldata.jsonwriter),
68

mark() (robot.output.console.verbose.KeywordMarker
method), 304

match (robot.variables.search.VariableMatch attribute),
611

match() (robot.model.namepatterns.NamePatterns
method), 270

match() (robot.model.namepatterns.SuiteNamePatterns
method), 270

match() (robot.model.namepatterns.TestNamePatterns
method), 270

match() (robot.model.stats.CombinedTagStat method),
276

match() (robot.model.tags.AndTagPattern method),
277

match() (robot.model.tags.NotTagPattern method), 277
match() (robot.model.tags.OrTagPattern method), 277
match() (robot.model.tags.SingleTagPattern method),

277
match() (robot.model.tags.TagPatterns method), 277
match() (robot.model.tags.Tags method), 277
match() (robot.model.tagstatistics.TagStatDoc

method), 282
match() (robot.model.tagstatistics.TagStatLink

method), 282
match() (robot.reporting.expandkeywordmatcher.ExpandKeywordMatcher

method), 393
match() (robot.result.flattenkeywordmatcher.FlattenByNameMatcher

method), 415
match() (robot.result.flattenkeywordmatcher.FlattenByTagMatcher

method), 415
match() (robot.result.flattenkeywordmatcher.FlattenByTypeMatcher

method), 415
match() (robot.running.arguments.embedded.EmbeddedArguments

method), 531
match() (robot.utils.htmlformatters.HeaderFormatter

method), 599
match() (robot.utils.htmlformatters.RulerFormatter

method), 599
match() (robot.utils.match.Matcher method), 603
match() (robot.utils.match.MultiMatcher method), 603
match_any() (robot.utils.match.Matcher method), 603
match_any() (robot.utils.match.MultiMatcher

method), 603
Matcher (class in robot.utils.match), 603
matches() (robot.running.handlers.EmbeddedArgumentsHandler

method), 551
matches() (robot.running.userkeyword.EmbeddedArgumentsHandler

method), 590
max_assign_length

(robot.conf.settings.RobotSettings attribute), 65
max_error_lines (robot.conf.settings.RobotSettings

attribute), 65
maxargs (robot.running.arguments.argumentspec.ArgumentSpec

attribute), 530
maxsize() (robot.libraries.dialogs_py.InputDialog

method), 177
maxsize() (robot.libraries.dialogs_py.MessageDialog

method), 163
maxsize() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 205
maxsize() (robot.libraries.dialogs_py.PassFailDialog

method), 219
maxsize() (robot.libraries.dialogs_py.SelectionDialog

method), 191
merge (robot.conf.settings.RebotSettings attribute), 66
merge() (robot.result.merger.Merger method), 449
Merger (class in robot.result.merger), 449
Message (class in robot.model.message), 262
Message (class in robot.output.loggerhelper), 309
Message (class in robot.result.model), 463
message (robot.errors.BreakLoop attribute), 618
message (robot.errors.ContinueLoop attribute), 617
message (robot.errors.DataError attribute), 613
message (robot.errors.ExecutionFailed attribute), 615
message (robot.errors.ExecutionFailures attribute), 616
message (robot.errors.ExecutionPassed attribute), 616
message (robot.errors.ExecutionStatus attribute), 615
message (robot.errors.FrameworkError attribute), 613
message (robot.errors.HandlerExecutionFailed at-

tribute), 615
message (robot.errors.Information attribute), 614
message (robot.errors.KeywordError attribute), 614
message (robot.errors.PassExecution attribute), 617
message (robot.errors.RemoteError attribute), 618
message (robot.errors.ReturnFromKeyword attribute),

618
message (robot.errors.RobotError attribute), 613

Index 719

Robot Framework Documentation, Release 6.0.2

message (robot.errors.TimeoutError attribute), 614
message (robot.errors.UserKeywordExecutionFailed

attribute), 616
message (robot.errors.VariableError attribute), 614
MESSAGE (robot.model.body.BodyItem attribute), 228
MESSAGE (robot.model.control.Break attribute), 249
MESSAGE (robot.model.control.Continue attribute), 248
MESSAGE (robot.model.control.For attribute), 239
MESSAGE (robot.model.control.If attribute), 243
MESSAGE (robot.model.control.IfBranch attribute), 242
MESSAGE (robot.model.control.Return attribute), 247
MESSAGE (robot.model.control.Try attribute), 246
MESSAGE (robot.model.control.TryBranch attribute),

244
MESSAGE (robot.model.control.While attribute), 240
MESSAGE (robot.model.keyword.Keyword attribute), 260
MESSAGE (robot.model.message.Message attribute), 263
message (robot.model.message.Message attribute), 262
message (robot.model.totalstatistics.TotalStatistics at-

tribute), 288
MESSAGE (robot.output.loggerhelper.Message attribute),

310
message (robot.output.loggerhelper.Message attribute),

309
MESSAGE (robot.result.model.Break attribute), 488
message (robot.result.model.Break attribute), 489
MESSAGE (robot.result.model.Continue attribute), 486
message (robot.result.model.Continue attribute), 487
MESSAGE (robot.result.model.For attribute), 467
message (robot.result.model.For attribute), 469
MESSAGE (robot.result.model.ForIteration attribute),

465
message (robot.result.model.ForIteration attribute),

466
MESSAGE (robot.result.model.If attribute), 477
message (robot.result.model.If attribute), 478
MESSAGE (robot.result.model.IfBranch attribute), 474
message (robot.result.model.IfBranch attribute), 475
MESSAGE (robot.result.model.Keyword attribute), 491
message (robot.result.model.Keyword attribute), 490
MESSAGE (robot.result.model.Message attribute), 463
message (robot.result.model.Message attribute), 464
MESSAGE (robot.result.model.Return attribute), 483
message (robot.result.model.Return attribute), 485
message (robot.result.model.TestCase attribute), 493
message (robot.result.model.TestSuite attribute), 496
MESSAGE (robot.result.model.Try attribute), 481
message (robot.result.model.Try attribute), 482
MESSAGE (robot.result.model.TryBranch attribute), 479
message (robot.result.model.TryBranch attribute), 480
MESSAGE (robot.result.model.While attribute), 472
message (robot.result.model.While attribute), 473
MESSAGE (robot.result.model.WhileIteration attribute),

470

message (robot.result.model.WhileIteration attribute),
471

message (robot.result.modeldeprecation.DeprecatedAttributesMixin
attribute), 500

MESSAGE (robot.running.model.Break attribute), 569
MESSAGE (robot.running.model.Continue attribute), 568
MESSAGE (robot.running.model.For attribute), 558
MESSAGE (robot.running.model.If attribute), 562
MESSAGE (robot.running.model.IfBranch attribute), 561
MESSAGE (robot.running.model.Keyword attribute), 556
MESSAGE (robot.running.model.Return attribute), 566
MESSAGE (robot.running.model.Try attribute), 565
MESSAGE (robot.running.model.TryBranch attribute),

563
MESSAGE (robot.running.model.While attribute), 559
message (robot.running.status.ParentMessage at-

tribute), 584
message (robot.running.status.SuiteMessage attribute),

584
message (robot.running.status.SuiteStatus attribute),

583
message (robot.running.status.TestMessage attribute),

584
message (robot.running.status.TestStatus attribute),

583
message (robot.utils.error.ErrorDetails attribute), 598
message() (robot.output.console.dotted.DottedOutput

method), 299
message() (robot.output.console.quiet.QuietOutput

method), 304
message() (robot.output.console.verbose.VerboseOutput

method), 304
message() (robot.output.console.verbose.VerboseWriter

method), 304
message() (robot.output.filelogger.FileLogger

method), 305
message() (robot.output.logger.Logger method), 308
message() (robot.output.loggerhelper.AbstractLogger

method), 309
message() (robot.output.output.Output method), 311
message() (robot.output.xmllogger.XmlLogger

method), 313
message() (robot.reporting.outputwriter.OutputWriter

method), 397
message_class (robot.model.body.BaseBody at-

tribute), 229
message_class (robot.model.body.Body attribute),

232
message_class (robot.model.body.Branches at-

tribute), 233
message_class (robot.result.model.Body attribute),

459
message_class (robot.result.model.Branches at-

tribute), 461

720 Index

Robot Framework Documentation, Release 6.0.2

message_class (robot.result.model.Iterations at-
tribute), 462

message_class (robot.running.model.Body at-
tribute), 555

message_level() (robot.reporting.jsbuildingcontext.JsBuildingContext
method), 393

MessageArguments (class in
robot.output.listenerarguments), 306

MessageBuilder (class in
robot.reporting.jsmodelbuilders), 394

MessageDialog (class in robot.libraries.dialogs_py),
157

MessageFilter (class in robot.result.messagefilter),
453

MessageHandler (class in
robot.result.xmlelementhandlers), 523

Messages (class in robot.model.message), 264
messages (robot.result.executionerrors.ExecutionErrors

attribute), 412
messages (robot.result.model.Keyword attribute), 490
Metadata (class in robot.model.metadata), 264
Metadata (class in robot.parsing.model.statements),

354
metadata (robot.model.testsuite.TestSuite attribute),

285
METADATA (robot.parsing.lexer.tokens.END attribute),

339
METADATA (robot.parsing.lexer.tokens.EOS attribute),

337
METADATA (robot.parsing.lexer.tokens.Token attribute),

334
metadata (robot.result.model.TestSuite attribute), 497
metadata (robot.running.model.TestSuite attribute),

575
metadata_setting (robot.conf.languages.Bg at-

tribute), 59
metadata_setting (robot.conf.languages.Bs at-

tribute), 38
metadata_setting (robot.conf.languages.Cs at-

tribute), 36
metadata_setting (robot.conf.languages.De at-

tribute), 42
metadata_setting (robot.conf.languages.En at-

tribute), 34
metadata_setting (robot.conf.languages.Es at-

tribute), 51
metadata_setting (robot.conf.languages.Fi at-

tribute), 40
metadata_setting (robot.conf.languages.Fr at-

tribute), 41
metadata_setting (robot.conf.languages.Hi at-

tribute), 63
metadata_setting (robot.conf.languages.It at-

tribute), 62

metadata_setting (robot.conf.languages.Language
attribute), 33

metadata_setting (robot.conf.languages.Nl at-
tribute), 37

metadata_setting (robot.conf.languages.Pl at-
tribute), 48

metadata_setting (robot.conf.languages.Pt at-
tribute), 45

metadata_setting (robot.conf.languages.PtBr at-
tribute), 44

metadata_setting (robot.conf.languages.Ro at-
tribute), 61

metadata_setting (robot.conf.languages.Ru at-
tribute), 52

metadata_setting (robot.conf.languages.Sv at-
tribute), 58

metadata_setting (robot.conf.languages.Th at-
tribute), 47

metadata_setting (robot.conf.languages.Tr at-
tribute), 56

metadata_setting (robot.conf.languages.Uk at-
tribute), 49

metadata_setting (robot.conf.languages.ZhCn at-
tribute), 54

metadata_setting (robot.conf.languages.ZhTw at-
tribute), 55

MetadataHandler (class in
robot.result.xmlelementhandlers), 523

MetadataItemHandler (class in
robot.result.xmlelementhandlers), 523

MetaHandler (class in
robot.result.xmlelementhandlers), 524

minargs (robot.running.arguments.argumentspec.ArgumentSpec
attribute), 530

minsize() (robot.libraries.dialogs_py.InputDialog
method), 177

minsize() (robot.libraries.dialogs_py.MessageDialog
method), 163

minsize() (robot.libraries.dialogs_py.MultipleSelectionDialog
method), 205

minsize() (robot.libraries.dialogs_py.PassFailDialog
method), 219

minsize() (robot.libraries.dialogs_py.SelectionDialog
method), 191

model_class (robot.parsing.parser.fileparser.CommentSectionParser
attribute), 391

model_class (robot.parsing.parser.fileparser.KeywordSectionParser
attribute), 391

model_class (robot.parsing.parser.fileparser.SectionParser
attribute), 390

model_class (robot.parsing.parser.fileparser.SettingSectionParser
attribute), 391

model_class (robot.parsing.parser.fileparser.TestCaseSectionParser
attribute), 391

Index 721

Robot Framework Documentation, Release 6.0.2

model_class (robot.parsing.parser.fileparser.VariableSectionParser
attribute), 391

model_class() (robot.parsing.parser.fileparser.ImplicitCommentSectionParser
method), 391

ModelCombiner (class in
robot.running.modelcombiner), 577

ModelModifier (class in robot.model.modifier), 265
ModelObject (class in robot.model.modelobject), 265
ModelTransformer (class in

robot.parsing.model.visitor), 389
ModelValidator (class in

robot.parsing.model.blocks), 345
ModelVisitor (class in robot.parsing.model.visitor),

388
ModelWriter (class in robot.htmldata.htmlfilewriter),

67
ModelWriter (class in robot.parsing.model.blocks),

344
move_directory() (robot.libraries.OperatingSystem.OperatingSystem

method), 118
move_file() (robot.libraries.OperatingSystem.OperatingSystem

method), 118
move_files() (robot.libraries.OperatingSystem.OperatingSystem

method), 118
move_to_end() (robot.utils.dotdict.DotDict method),

596
msg() (robot.libraries.Telnet.TelnetConnection

method), 144
mt_interact() (robot.libraries.Telnet.TelnetConnection

method), 145
multi_use (robot.parsing.lexer.settings.InitFileSettings

attribute), 326
multi_use (robot.parsing.lexer.settings.KeywordSettings

attribute), 327
multi_use (robot.parsing.lexer.settings.ResourceFileSettings

attribute), 327
multi_use (robot.parsing.lexer.settings.Settings

attribute), 326
multi_use (robot.parsing.lexer.settings.TestCaseFileSettings

attribute), 326
multi_use (robot.parsing.lexer.settings.TestCaseSettings

attribute), 327
MultiMatcher (class in robot.utils.match), 603
MultipleSelectionDialog (class in

robot.libraries.dialogs_py), 199
MultiValue (class in robot.parsing.model.statements),

348

N
name (robot.conf.languages.Bg attribute), 60
name (robot.conf.languages.Bs attribute), 39
name (robot.conf.languages.Cs attribute), 37
name (robot.conf.languages.De attribute), 43
name (robot.conf.languages.En attribute), 35

name (robot.conf.languages.Es attribute), 52
name (robot.conf.languages.Fi attribute), 41
name (robot.conf.languages.Fr attribute), 42
name (robot.conf.languages.Hi attribute), 64
name (robot.conf.languages.It attribute), 63
name (robot.conf.languages.Language attribute), 34
name (robot.conf.languages.Nl attribute), 38
name (robot.conf.languages.Pl attribute), 49
name (robot.conf.languages.Pt attribute), 46
name (robot.conf.languages.PtBr attribute), 45
name (robot.conf.languages.Ro attribute), 62
name (robot.conf.languages.Ru attribute), 53
name (robot.conf.languages.Sv attribute), 59
name (robot.conf.languages.Th attribute), 48
name (robot.conf.languages.Tr attribute), 57
name (robot.conf.languages.Uk attribute), 50
name (robot.conf.languages.ZhCn attribute), 55
name (robot.conf.languages.ZhTw attribute), 56
name (robot.model.keyword.Keyword attribute), 259
name (robot.model.stats.Stat attribute), 274
name (robot.model.testcase.TestCase attribute), 283
name (robot.model.testsuite.TestSuite attribute), 285
name (robot.output.pyloggingconf.RobotHandler at-

tribute), 313
NAME (robot.parsing.lexer.tokens.END attribute), 339
NAME (robot.parsing.lexer.tokens.EOS attribute), 337
NAME (robot.parsing.lexer.tokens.Token attribute), 334
name (robot.parsing.model.blocks.Keyword attribute),

343
name (robot.parsing.model.blocks.TestCase attribute),

343
name (robot.parsing.model.statements.Fixture attribute),

349
name (robot.parsing.model.statements.KeywordName at-

tribute), 364
name (robot.parsing.model.statements.LibraryImport at-

tribute), 351
name (robot.parsing.model.statements.Metadata at-

tribute), 354
name (robot.parsing.model.statements.ResourceImport

attribute), 351
name (robot.parsing.model.statements.SectionHeader at-

tribute), 350
name (robot.parsing.model.statements.Setup attribute),

365
name (robot.parsing.model.statements.SuiteSetup at-

tribute), 358
name (robot.parsing.model.statements.SuiteTeardown at-

tribute), 359
name (robot.parsing.model.statements.Teardown at-

tribute), 366
name (robot.parsing.model.statements.TestCaseName at-

tribute), 363

722 Index

Robot Framework Documentation, Release 6.0.2

name (robot.parsing.model.statements.TestSetup at-
tribute), 359

name (robot.parsing.model.statements.TestTeardown at-
tribute), 360

name (robot.parsing.model.statements.Variable at-
tribute), 362

name (robot.parsing.model.statements.VariablesImport
attribute), 352

name (robot.result.model.Break attribute), 489
name (robot.result.model.Continue attribute), 487
name (robot.result.model.For attribute), 467
name (robot.result.model.ForIteration attribute), 465
name (robot.result.model.If attribute), 478
name (robot.result.model.IfBranch attribute), 474
name (robot.result.model.Keyword attribute), 491
name (robot.result.model.Return attribute), 485
name (robot.result.model.TestCase attribute), 495
name (robot.result.model.TestSuite attribute), 497
name (robot.result.model.Try attribute), 482
name (robot.result.model.TryBranch attribute), 478
name (robot.result.model.While attribute), 472
name (robot.result.model.WhileIteration attribute), 469
name (robot.result.modeldeprecation.DeprecatedAttributesMixin

attribute), 500
name (robot.running.arguments.customconverters.ConverterInfo

attribute), 531
name (robot.running.dynamicmethods.GetKeywordArguments

attribute), 551
name (robot.running.dynamicmethods.GetKeywordDocumentation

attribute), 551
name (robot.running.dynamicmethods.GetKeywordNames

attribute), 550
name (robot.running.dynamicmethods.GetKeywordSource

attribute), 551
name (robot.running.dynamicmethods.GetKeywordTags

attribute), 551
name (robot.running.dynamicmethods.GetKeywordTypes

attribute), 551
name (robot.running.dynamicmethods.RunKeyword at-

tribute), 551
name (robot.running.model.Keyword attribute), 557
name (robot.running.model.TestCase attribute), 571
name (robot.running.model.TestSuite attribute), 575
name (robot.variables.search.VariableMatch attribute),

611
name_and_arguments

(robot.parsing.lexer.settings.InitFileSettings
attribute), 326

name_and_arguments
(robot.parsing.lexer.settings.KeywordSettings
attribute), 327

name_and_arguments
(robot.parsing.lexer.settings.ResourceFileSettings
attribute), 327

name_and_arguments
(robot.parsing.lexer.settings.Settings attribute),
326

name_and_arguments
(robot.parsing.lexer.settings.TestCaseFileSettings
attribute), 326

name_and_arguments
(robot.parsing.lexer.settings.TestCaseSettings
attribute), 327

name_arguments_and_with_name
(robot.parsing.lexer.settings.InitFileSettings
attribute), 326

name_arguments_and_with_name
(robot.parsing.lexer.settings.KeywordSettings
attribute), 327

name_arguments_and_with_name
(robot.parsing.lexer.settings.ResourceFileSettings
attribute), 327

name_arguments_and_with_name
(robot.parsing.lexer.settings.Settings attribute),
326

name_arguments_and_with_name
(robot.parsing.lexer.settings.TestCaseFileSettings
attribute), 326

name_arguments_and_with_name
(robot.parsing.lexer.settings.TestCaseSettings
attribute), 327

name_type (robot.parsing.lexer.blocklexers.KeywordLexer
attribute), 321

name_type (robot.parsing.lexer.blocklexers.TestCaseLexer
attribute), 321

name_type (robot.parsing.lexer.blocklexers.TestOrKeywordLexer
attribute), 321

NAMED_ONLY (robot.running.arguments.argumentspec.ArgInfo
attribute), 530

NAMED_ONLY_MARKER
(robot.running.arguments.argumentspec.ArgInfo
attribute), 530

NamedArgumentResolver (class in
robot.running.arguments.argumentresolver),
529

NamePatterns (class in robot.model.namepatterns),
270

names (robot.parsing.lexer.settings.InitFileSettings at-
tribute), 326

names (robot.parsing.lexer.settings.KeywordSettings at-
tribute), 327

names (robot.parsing.lexer.settings.ResourceFileSettings
attribute), 326

names (robot.parsing.lexer.settings.Settings attribute),
326

names (robot.parsing.lexer.settings.TestCaseFileSettings
attribute), 326

names (robot.parsing.lexer.settings.TestCaseSettings at-

Index 723

Robot Framework Documentation, Release 6.0.2

tribute), 327
Namespace (class in robot.running.namespace), 577
namespaces (robot.running.context.ExecutionContexts

attribute), 550
NameSpaceStripper (class in robot.libraries.XML),

157
nametowidget() (robot.libraries.dialogs_py.InputDialog

method), 177
nametowidget() (robot.libraries.dialogs_py.MessageDialog

method), 163
nametowidget() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 205
nametowidget() (robot.libraries.dialogs_py.PassFailDialog

method), 219
nametowidget() (robot.libraries.dialogs_py.SelectionDialog

method), 191
NestedBlockLexer (class in

robot.parsing.lexer.blocklexers), 322
NestedBlockParser (class in

robot.parsing.parser.blockparsers), 390
NEW_ENVIRON_IS (robot.libraries.Telnet.TelnetConnection

attribute), 141
NEW_ENVIRON_VALUE

(robot.libraries.Telnet.TelnetConnection
attribute), 141

NEW_ENVIRON_VAR (robot.libraries.Telnet.TelnetConnection
attribute), 141

new_suite_scope()
(robot.output.listenermethods.LibraryListenerMethods
method), 307

new_suite_scope()
(robot.output.listeners.LibraryListeners
method), 307

newline (robot.utils.htmlformatters.LineFormatter at-
tribute), 599

Nl (class in robot.conf.languages), 37
no_conversion_needed()

(robot.running.arguments.typeconverters.BooleanConverter
method), 533

no_conversion_needed()
(robot.running.arguments.typeconverters.ByteArrayConverter
method), 535

no_conversion_needed()
(robot.running.arguments.typeconverters.BytesConverter
method), 535

no_conversion_needed()
(robot.running.arguments.typeconverters.CombinedConverter
method), 540

no_conversion_needed()
(robot.running.arguments.typeconverters.CustomConverter
method), 541

no_conversion_needed()
(robot.running.arguments.typeconverters.DateConverter
method), 536

no_conversion_needed()
(robot.running.arguments.typeconverters.DateTimeConverter
method), 536

no_conversion_needed()
(robot.running.arguments.typeconverters.DecimalConverter
method), 534

no_conversion_needed()
(robot.running.arguments.typeconverters.DictionaryConverter
method), 539

no_conversion_needed()
(robot.running.arguments.typeconverters.EnumConverter
method), 532

no_conversion_needed()
(robot.running.arguments.typeconverters.FloatConverter
method), 534

no_conversion_needed()
(robot.running.arguments.typeconverters.FrozenSetConverter
method), 540

no_conversion_needed()
(robot.running.arguments.typeconverters.IntegerConverter
method), 533

no_conversion_needed()
(robot.running.arguments.typeconverters.ListConverter
method), 538

no_conversion_needed()
(robot.running.arguments.typeconverters.NoneConverter
method), 537

no_conversion_needed()
(robot.running.arguments.typeconverters.PathConverter
method), 537

no_conversion_needed()
(robot.running.arguments.typeconverters.SetConverter
method), 539

no_conversion_needed()
(robot.running.arguments.typeconverters.StringConverter
method), 533

no_conversion_needed()
(robot.running.arguments.typeconverters.TimeDeltaConverter
method), 536

no_conversion_needed()
(robot.running.arguments.typeconverters.TupleConverter
method), 538

no_conversion_needed()
(robot.running.arguments.typeconverters.TypeConverter
method), 532

no_conversion_needed()
(robot.running.arguments.typeconverters.TypedDictConverter
method), 538

no_dynamic_method() (in module
robot.running.dynamicmethods), 550

no_operation() (robot.libraries.BuiltIn.BuiltIn
method), 84

NoArgumentHeader (class in
robot.parsing.model.statements), 377

724 Index

Robot Framework Documentation, Release 6.0.2

NoConnection (class in robot.utils.connectioncache),
596

NoHighlighting (class in
robot.output.console.highlighting), 303

NoInitFileDirectoryParser (class in
robot.running.builder.parsers), 543

NoLimit (class in robot.running.bodyrunner), 550
NoLogger (class in robot.utils.importer), 602
NoMatchError, 146
non_ascii (robot.libraries.Remote.ArgumentCoercer

attribute), 129
NON_DATA_TOKENS (robot.parsing.lexer.tokens.END

attribute), 339
NON_DATA_TOKENS (robot.parsing.lexer.tokens.EOS

attribute), 337
NON_DATA_TOKENS (robot.parsing.lexer.tokens.Token

attribute), 335
NonDottedImporter (class in robot.utils.importer),

601
none_shall_pass() (in module

robot.libraries.Easter), 112
NoneConverter (class in

robot.running.arguments.typeconverters),
537

NoneDumper (class in robot.htmldata.jsonwriter), 68
NoOutput (class in robot.output.console.quiet), 304
NoReturnValueResolver (class in

robot.variables.assigner), 606
normal (robot.model.keyword.Keywords attribute), 261
normalize() (in module robot.utils.normalizing), 604
normalize_path() (robot.libraries.OperatingSystem.OperatingSystem

method), 120
normalize_whitespace() (in module

robot.utils.normalizing), 604
NormalizedDict (class in robot.utils.normalizing),

604
not_keyword() (in module robot.api.deco), 11
NOT_RUN (robot.result.model.Break attribute), 488
not_run (robot.result.model.Break attribute), 489
NOT_RUN (robot.result.model.Continue attribute), 486
not_run (robot.result.model.Continue attribute), 487
NOT_RUN (robot.result.model.For attribute), 467
not_run (robot.result.model.For attribute), 469
NOT_RUN (robot.result.model.ForIteration attribute),

465
not_run (robot.result.model.ForIteration attribute),

466
NOT_RUN (robot.result.model.If attribute), 477
not_run (robot.result.model.If attribute), 478
NOT_RUN (robot.result.model.IfBranch attribute), 474
not_run (robot.result.model.IfBranch attribute), 476
NOT_RUN (robot.result.model.Keyword attribute), 491
not_run (robot.result.model.Keyword attribute), 492
NOT_RUN (robot.result.model.Return attribute), 484

not_run (robot.result.model.Return attribute), 485
NOT_RUN (robot.result.model.StatusMixin attribute), 464
not_run (robot.result.model.StatusMixin attribute), 464
NOT_RUN (robot.result.model.TestCase attribute), 493
not_run (robot.result.model.TestCase attribute), 493
NOT_RUN (robot.result.model.TestSuite attribute), 496
not_run (robot.result.model.TestSuite attribute), 497
NOT_RUN (robot.result.model.Try attribute), 481
not_run (robot.result.model.Try attribute), 482
NOT_RUN (robot.result.model.TryBranch attribute), 479
not_run (robot.result.model.TryBranch attribute), 480
NOT_RUN (robot.result.model.While attribute), 472
not_run (robot.result.model.While attribute), 473
NOT_RUN (robot.result.model.WhileIteration attribute),

470
not_run (robot.result.model.WhileIteration attribute),

471
NOT_SET (robot.result.model.Break attribute), 488
NOT_SET (robot.result.model.Continue attribute), 486
NOT_SET (robot.result.model.For attribute), 467
NOT_SET (robot.result.model.ForIteration attribute),

465
NOT_SET (robot.result.model.If attribute), 477
NOT_SET (robot.result.model.IfBranch attribute), 474
NOT_SET (robot.result.model.Keyword attribute), 491
NOT_SET (robot.result.model.Return attribute), 484
NOT_SET (robot.result.model.StatusMixin attribute), 464
NOT_SET (robot.result.model.TestCase attribute), 493
NOT_SET (robot.result.model.TestSuite attribute), 496
NOT_SET (robot.result.model.Try attribute), 481
NOT_SET (robot.result.model.TryBranch attribute), 479
NOT_SET (robot.result.model.While attribute), 472
NOT_SET (robot.result.model.WhileIteration attribute),

470
NotSet (class in robot.libraries.Collections), 100
NOTSET (robot.running.arguments.argumentspec.ArgInfo

attribute), 530
NotTagPattern (class in robot.model.tags), 277
NullMarkupWriter (class in

robot.utils.markupwriters), 603
NullNamedArgumentResolver (class in

robot.running.arguments.argumentresolver),
529

NumberFinder (class in robot.variables.finders), 608
numerator (robot.reporting.stringcache.StringIndex

attribute), 401

O
OneReturnValueResolver (class in

robot.variables.assigner), 607
open() (robot.libraries.Telnet.TelnetConnection

method), 145
open_connection() (robot.libraries.Telnet.Telnet

method), 141

Index 725

Robot Framework Documentation, Release 6.0.2

OperatingSystem (class in
robot.libraries.OperatingSystem), 112

OPTION (robot.parsing.lexer.tokens.END attribute), 339
OPTION (robot.parsing.lexer.tokens.EOS attribute), 337
OPTION (robot.parsing.lexer.tokens.Token attribute), 335
option_add() (robot.libraries.dialogs_py.InputDialog

method), 177
option_add() (robot.libraries.dialogs_py.MessageDialog

method), 163
option_add() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 205
option_add() (robot.libraries.dialogs_py.PassFailDialog

method), 219
option_add() (robot.libraries.dialogs_py.SelectionDialog

method), 191
option_clear() (robot.libraries.dialogs_py.InputDialog

method), 178
option_clear() (robot.libraries.dialogs_py.MessageDialog

method), 164
option_clear() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 206
option_clear() (robot.libraries.dialogs_py.PassFailDialog

method), 220
option_clear() (robot.libraries.dialogs_py.SelectionDialog

method), 192
option_get() (robot.libraries.dialogs_py.InputDialog

method), 178
option_get() (robot.libraries.dialogs_py.MessageDialog

method), 164
option_get() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 206
option_get() (robot.libraries.dialogs_py.PassFailDialog

method), 220
option_get() (robot.libraries.dialogs_py.SelectionDialog

method), 192
option_readfile()

(robot.libraries.dialogs_py.InputDialog
method), 178

option_readfile()
(robot.libraries.dialogs_py.MessageDialog
method), 164

option_readfile()
(robot.libraries.dialogs_py.MultipleSelectionDialog
method), 206

option_readfile()
(robot.libraries.dialogs_py.PassFailDialog
method), 220

option_readfile()
(robot.libraries.dialogs_py.SelectionDialog
method), 192

OrTagPattern (class in robot.model.tags), 277
Output (class in robot.output.output), 311
output (robot.conf.settings.RebotSettings attribute), 66
output (robot.conf.settings.RobotSettings attribute), 66

output() (robot.output.console.verbose.VerboseWriter
method), 304

output_directory (robot.conf.settings.RebotSettings
attribute), 66

output_directory (robot.conf.settings.RobotSettings
attribute), 66

output_file() (robot.output.console.dotted.DottedOutput
method), 299

output_file() (robot.output.console.verbose.VerboseOutput
method), 304

output_file() (robot.output.filelogger.FileLogger
method), 305

output_file() (robot.output.listeners.LibraryListeners
method), 307

output_file() (robot.output.listeners.Listeners
method), 307

output_file() (robot.output.logger.Logger method),
308

OutputCapturer (class in
robot.running.outputcapture), 578

OutputWriter (class in robot.reporting.outputwriter),
395

overrideredirect()
(robot.libraries.dialogs_py.InputDialog
method), 178

overrideredirect()
(robot.libraries.dialogs_py.MessageDialog
method), 164

overrideredirect()
(robot.libraries.dialogs_py.MultipleSelectionDialog
method), 206

overrideredirect()
(robot.libraries.dialogs_py.PassFailDialog
method), 220

overrideredirect()
(robot.libraries.dialogs_py.SelectionDialog
method), 192

P
pack_propagate() (robot.libraries.dialogs_py.InputDialog

method), 178
pack_propagate() (robot.libraries.dialogs_py.MessageDialog

method), 164
pack_propagate() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 206
pack_propagate() (robot.libraries.dialogs_py.PassFailDialog

method), 220
pack_propagate() (robot.libraries.dialogs_py.SelectionDialog

method), 192
pack_slaves() (robot.libraries.dialogs_py.InputDialog

method), 178
pack_slaves() (robot.libraries.dialogs_py.MessageDialog

method), 164

726 Index

Robot Framework Documentation, Release 6.0.2

pack_slaves() (robot.libraries.dialogs_py.MultipleSelectionDialog
method), 206

pack_slaves() (robot.libraries.dialogs_py.PassFailDialog
method), 220

pack_slaves() (robot.libraries.dialogs_py.SelectionDialog
method), 192

ParagraphFormatter (class in
robot.utils.htmlformatters), 600

parent (robot.model.body.BodyItem attribute), 229
parent (robot.model.control.Break attribute), 250
parent (robot.model.control.Continue attribute), 248
parent (robot.model.control.For attribute), 239
parent (robot.model.control.If attribute), 242
parent (robot.model.control.IfBranch attribute), 241
parent (robot.model.control.Return attribute), 246
parent (robot.model.control.Try attribute), 245
parent (robot.model.control.TryBranch attribute), 244
parent (robot.model.control.While attribute), 240
parent (robot.model.keyword.Keyword attribute), 259
parent (robot.model.message.Message attribute), 262
parent (robot.model.testcase.TestCase attribute), 283
parent (robot.model.testsuite.TestSuite attribute), 285
parent (robot.output.loggerhelper.Message attribute),

311
parent (robot.result.model.Break attribute), 489
parent (robot.result.model.Continue attribute), 487
parent (robot.result.model.For attribute), 469
parent (robot.result.model.ForIteration attribute), 465
parent (robot.result.model.If attribute), 478
parent (robot.result.model.IfBranch attribute), 476
parent (robot.result.model.Keyword attribute), 492
parent (robot.result.model.Message attribute), 464
parent (robot.result.model.Return attribute), 485
parent (robot.result.model.TestCase attribute), 495
parent (robot.result.model.TestSuite attribute), 497
parent (robot.result.model.Try attribute), 482
parent (robot.result.model.TryBranch attribute), 480
parent (robot.result.model.While attribute), 473
parent (robot.result.model.WhileIteration attribute),

469
parent (robot.running.model.Break attribute), 570
parent (robot.running.model.Continue attribute), 568
parent (robot.running.model.For attribute), 559
parent (robot.running.model.If attribute), 563
parent (robot.running.model.IfBranch attribute), 561
parent (robot.running.model.Keyword attribute), 557
parent (robot.running.model.Return attribute), 567
parent (robot.running.model.TestCase attribute), 571
parent (robot.running.model.TestSuite attribute), 575
parent (robot.running.model.Try attribute), 566
parent (robot.running.model.TryBranch attribute), 564
parent (robot.running.model.While attribute), 560
ParentMessage (class in robot.running.status), 584

parse() (robot.parsing.parser.blockparsers.BlockParser
method), 389

parse() (robot.parsing.parser.blockparsers.ForParser
method), 390

parse() (robot.parsing.parser.blockparsers.IfParser
method), 390

parse() (robot.parsing.parser.blockparsers.KeywordParser
method), 389

parse() (robot.parsing.parser.blockparsers.NestedBlockParser
method), 390

parse() (robot.parsing.parser.blockparsers.Parser
method), 389

parse() (robot.parsing.parser.blockparsers.TestCaseParser
method), 389

parse() (robot.parsing.parser.blockparsers.TryParser
method), 390

parse() (robot.parsing.parser.blockparsers.WhileParser
method), 390

parse() (robot.parsing.parser.fileparser.CommentSectionParser
method), 391

parse() (robot.parsing.parser.fileparser.FileParser
method), 390

parse() (robot.parsing.parser.fileparser.ImplicitCommentSectionParser
method), 391

parse() (robot.parsing.parser.fileparser.KeywordSectionParser
method), 391

parse() (robot.parsing.parser.fileparser.SectionParser
method), 390

parse() (robot.parsing.parser.fileparser.SettingSectionParser
method), 391

parse() (robot.parsing.parser.fileparser.TestCaseSectionParser
method), 391

parse() (robot.parsing.parser.fileparser.VariableSectionParser
method), 391

parse() (robot.running.arguments.argumentparser.DynamicArgumentParser
method), 529

parse() (robot.running.arguments.argumentparser.PythonArgumentParser
method), 529

parse() (robot.running.arguments.argumentparser.UserKeywordArgumentParser
method), 529

parse() (robot.running.arguments.embedded.EmbeddedArgumentParser
method), 531

parse() (robot.running.builder.builders.SuiteStructureParser
method), 542

parse_args() (robot.utils.argumentparser.ArgumentParser
method), 592

parse_arguments() (robot.libdoc.LibDoc method),
619

parse_arguments() (robot.rebot.Rebot method),
620

parse_arguments() (robot.run.RobotFramework
method), 622

parse_arguments() (robot.testdoc.TestDoc
method), 624

Index 727

Robot Framework Documentation, Release 6.0.2

parse_arguments()
(robot.utils.application.Application method),
591

parse_init_file()
(robot.running.builder.parsers.BaseParser
method), 542

parse_init_file()
(robot.running.builder.parsers.NoInitFileDirectoryParser
method), 543

parse_init_file()
(robot.running.builder.parsers.RestParser
method), 543

parse_init_file()
(robot.running.builder.parsers.RobotParser
method), 543

parse_re_flags() (in module robot.utils.misc), 604
parse_resource_file()

(robot.running.builder.parsers.BaseParser
method), 542

parse_resource_file()
(robot.running.builder.parsers.NoInitFileDirectoryParser
method), 543

parse_resource_file()
(robot.running.builder.parsers.RestParser
method), 543

parse_resource_file()
(robot.running.builder.parsers.RobotParser
method), 543

parse_response() (robot.libraries.Remote.TimeoutHTTPSTransport
method), 130

parse_response() (robot.libraries.Remote.TimeoutHTTPTransport
method), 129

parse_suite_file()
(robot.running.builder.parsers.BaseParser
method), 542

parse_suite_file()
(robot.running.builder.parsers.NoInitFileDirectoryParser
method), 543

parse_suite_file()
(robot.running.builder.parsers.RestParser
method), 543

parse_suite_file()
(robot.running.builder.parsers.RobotParser
method), 543

parse_xml() (robot.libraries.XML.XML method), 150
Parser (class in robot.parsing.parser.blockparsers),

389
PASS (robot.result.model.Break attribute), 488
PASS (robot.result.model.Continue attribute), 486
PASS (robot.result.model.For attribute), 467
PASS (robot.result.model.ForIteration attribute), 465
PASS (robot.result.model.If attribute), 477
PASS (robot.result.model.IfBranch attribute), 474
PASS (robot.result.model.Keyword attribute), 491

PASS (robot.result.model.Return attribute), 484
PASS (robot.result.model.StatusMixin attribute), 464
PASS (robot.result.model.TestCase attribute), 494
PASS (robot.result.model.TestSuite attribute), 496
PASS (robot.result.model.Try attribute), 481
PASS (robot.result.model.TryBranch attribute), 479
PASS (robot.result.model.While attribute), 472
PASS (robot.result.model.WhileIteration attribute), 470
pass_execution() (robot.libraries.BuiltIn.BuiltIn

method), 84
pass_execution_if()

(robot.libraries.BuiltIn.BuiltIn method),
84

passed (robot.model.stats.Stat attribute), 275
passed (robot.model.totalstatistics.TotalStatistics at-

tribute), 288
passed (robot.result.model.Break attribute), 489
passed (robot.result.model.Continue attribute), 487
passed (robot.result.model.For attribute), 469
passed (robot.result.model.ForIteration attribute), 466
passed (robot.result.model.If attribute), 478
passed (robot.result.model.IfBranch attribute), 476
passed (robot.result.model.Keyword attribute), 492
passed (robot.result.model.Return attribute), 485
passed (robot.result.model.StatusMixin attribute), 464
passed (robot.result.model.TestCase attribute), 495
passed (robot.result.model.TestSuite attribute), 496
passed (robot.result.model.Try attribute), 482
passed (robot.result.model.TryBranch attribute), 480
passed (robot.result.model.While attribute), 473
passed (robot.result.model.WhileIteration attribute),

471
passed (robot.running.status.SuiteStatus attribute), 583
passed (robot.running.status.TestStatus attribute), 583
PassedKeywordRemover (class in

robot.result.keywordremover), 419
PassExecution, 616
PassFailDialog (class in

robot.libraries.dialogs_py), 213
PathConverter (class in

robot.running.arguments.typeconverters),
536

pattern_type (robot.model.control.TryBranch
attribute), 244

pattern_type (robot.parsing.model.blocks.Try
attribute), 344

pattern_type (robot.parsing.model.statements.ExceptHeader
attribute), 379

pattern_type (robot.result.model.TryBranch at-
tribute), 480

pattern_type (robot.running.model.TryBranch at-
tribute), 564

PatternHandler (class in
robot.result.xmlelementhandlers), 522

728 Index

Robot Framework Documentation, Release 6.0.2

patterns (robot.model.control.TryBranch attribute),
244

patterns (robot.parsing.model.blocks.Try attribute),
344

patterns (robot.parsing.model.statements.ExceptHeader
attribute), 379

patterns (robot.result.model.TryBranch attribute),
480

patterns (robot.running.model.TryBranch attribute),
564

pause_execution() (in module
robot.libraries.Dialogs), 111

Pl (class in robot.conf.languages), 48
place_slaves() (robot.libraries.dialogs_py.InputDialog

method), 178
place_slaves() (robot.libraries.dialogs_py.MessageDialog

method), 164
place_slaves() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 206
place_slaves() (robot.libraries.dialogs_py.PassFailDialog

method), 220
place_slaves() (robot.libraries.dialogs_py.SelectionDialog

method), 192
plural_or_not() (in module robot.utils.misc), 604
pop() (robot.model.body.BaseBody method), 230
pop() (robot.model.body.Body method), 232
pop() (robot.model.body.Branches method), 233
pop() (robot.model.itemlist.ItemList method), 259
pop() (robot.model.keyword.Keywords method), 262
pop() (robot.model.message.Messages method), 264
pop() (robot.model.metadata.Metadata method), 264
pop() (robot.model.testcase.TestCases method), 285
pop() (robot.model.testsuite.TestSuites method), 288
pop() (robot.result.model.Body method), 459
pop() (robot.result.model.Branches method), 461
pop() (robot.result.model.Iterations method), 462
pop() (robot.running.model.Body method), 555
pop() (robot.running.model.Imports method), 577
pop() (robot.utils.dotdict.DotDict method), 597
pop() (robot.utils.normalizing.NormalizedDict

method), 605
pop() (robot.variables.evaluation.EvaluationNamespace

method), 607
pop_from_dictionary()

(robot.libraries.Collections.Collections
method), 105

popen_config (robot.libraries.Process.ProcessConfiguration
attribute), 128

popitem() (robot.model.metadata.Metadata method),
264

popitem() (robot.utils.dotdict.DotDict method), 597
popitem() (robot.utils.normalizing.NormalizedDict

method), 605
popitem() (robot.variables.evaluation.EvaluationNamespace

method), 607
positional (robot.running.arguments.argumentspec.ArgumentSpec

attribute), 530
POSITIONAL_ONLY (robot.running.arguments.argumentspec.ArgInfo

attribute), 530
POSITIONAL_ONLY_MARKER

(robot.running.arguments.argumentspec.ArgInfo
attribute), 530

POSITIONAL_OR_NAMED
(robot.running.arguments.argumentspec.ArgInfo
attribute), 530

positionfrom() (robot.libraries.dialogs_py.InputDialog
method), 178

positionfrom() (robot.libraries.dialogs_py.MessageDialog
method), 164

positionfrom() (robot.libraries.dialogs_py.MultipleSelectionDialog
method), 206

positionfrom() (robot.libraries.dialogs_py.PassFailDialog
method), 220

positionfrom() (robot.libraries.dialogs_py.SelectionDialog
method), 192

pre_rebot_modifiers
(robot.conf.settings.RebotSettings attribute), 66

pre_rebot_modifiers
(robot.conf.settings.RobotSettings attribute), 66

pre_run_modifiers
(robot.conf.settings.RobotSettings attribute), 65

PreformattedFormatter (class in
robot.utils.htmlformatters), 600

printable_name() (in module robot.utils.misc), 603
priority (robot.running.modelcombiner.ModelCombiner

attribute), 577
private (robot.running.userkeyword.EmbeddedArgumentsHandler

attribute), 590
private (robot.running.userkeyword.UserKeywordHandler

attribute), 590
Process (class in robot.libraries.Process), 122
process() (robot.utils.argumentparser.ArgFileParser

method), 592
process_empty_suite

(robot.conf.settings.RebotSettings attribute), 66
process_rawq() (robot.libraries.Telnet.TelnetConnection

method), 145
process_should_be_running()

(robot.libraries.Process.Process method),
125

process_should_be_stopped()
(robot.libraries.Process.Process method),
126

ProcessConfiguration (class in
robot.libraries.Process), 128

propagate() (robot.libraries.dialogs_py.InputDialog
method), 178

propagate() (robot.libraries.dialogs_py.MessageDialog

Index 729

Robot Framework Documentation, Release 6.0.2

method), 164
propagate() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 206
propagate() (robot.libraries.dialogs_py.PassFailDialog

method), 220
propagate() (robot.libraries.dialogs_py.SelectionDialog

method), 192
protocol() (robot.libraries.dialogs_py.InputDialog

method), 178
protocol() (robot.libraries.dialogs_py.MessageDialog

method), 164
protocol() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 206
protocol() (robot.libraries.dialogs_py.PassFailDialog

method), 220
protocol() (robot.libraries.dialogs_py.SelectionDialog

method), 192
prune_input() (robot.reporting.jsbuildingcontext.JsBuildingContext

method), 394
Pt (class in robot.conf.languages), 45
PtBr (class in robot.conf.languages), 44
py2to3() (in module robot.utils), 591
py3to2() (in module robot.utils), 591
PythonArgumentParser (class in

robot.running.arguments.argumentparser),
529

PythonCapturer (class in
robot.running.outputcapture), 578

PythonImporter (class in robot.variables.filesetter),
607

pythonpath (robot.conf.settings.RebotSettings at-
tribute), 66

pythonpath (robot.conf.settings.RobotSettings at-
tribute), 66

Q
QuietOutput (class in robot.output.console.quiet),

304
quit() (robot.libraries.dialogs_py.InputDialog

method), 178
quit() (robot.libraries.dialogs_py.MessageDialog

method), 164
quit() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 206
quit() (robot.libraries.dialogs_py.PassFailDialog

method), 220
quit() (robot.libraries.dialogs_py.SelectionDialog

method), 192

R
raise_deprecation_error()

(robot.model.keyword.Keywords class method),
262

raise_error() (robot.utils.connectioncache.NoConnection
method), 596

randomize() (robot.running.model.TestSuite method),
573

randomize_seed (robot.conf.settings.RobotSettings
attribute), 65

randomize_suites (robot.conf.settings.RobotSettings
attribute), 65

randomize_tests (robot.conf.settings.RobotSettings
attribute), 65

Randomizer (class in robot.running.randomizer), 578
rawq_getchar() (robot.libraries.Telnet.TelnetConnection

method), 145
read() (robot.libraries.Telnet.TelnetConnection

method), 144
read() (robot.libraries.Telnet.TerminalEmulator

method), 146
read() (robot.utils.filereader.FileReader method), 599
read_all() (robot.libraries.Telnet.TelnetConnection

method), 145
read_eager() (robot.libraries.Telnet.TelnetConnection

method), 145
read_lazy() (robot.libraries.Telnet.TelnetConnection

method), 146
read_rest_data() (in module robot.utils), 591
read_sb_data() (robot.libraries.Telnet.TelnetConnection

method), 146
read_some() (robot.libraries.Telnet.TelnetConnection

method), 146
read_until() (robot.libraries.Telnet.TelnetConnection

method), 144
read_until() (robot.libraries.Telnet.TerminalEmulator

method), 146
read_until_prompt()

(robot.libraries.Telnet.TelnetConnection
method), 144

read_until_regexp()
(robot.libraries.Telnet.TelnetConnection
method), 144

read_until_regexp()
(robot.libraries.Telnet.TerminalEmulator
method), 146

read_very_eager()
(robot.libraries.Telnet.TelnetConnection
method), 146

read_very_lazy() (robot.libraries.Telnet.TelnetConnection
method), 146

readlines() (robot.utils.filereader.FileReader
method), 599

real (robot.reporting.stringcache.StringIndex at-
tribute), 402

Rebot (class in robot.rebot), 620
rebot() (in module robot), 9
rebot() (in module robot.rebot), 621

730 Index

Robot Framework Documentation, Release 6.0.2

rebot_cli() (in module robot), 9
rebot_cli() (in module robot.rebot), 621
RebotSettings (class in robot.conf.settings), 66
recommend_similar_keywords()

(robot.running.namespace.KeywordRecommendationFinder
method), 578

RecommendationFinder (class in
robot.utils.recommendations), 605

red() (robot.output.console.highlighting.AnsiHighlighter
method), 303

red() (robot.output.console.highlighting.DosHighlighter
method), 303

red() (robot.output.console.highlighting.NoHighlighting
method), 303

regexp_escape() (robot.libraries.BuiltIn.BuiltIn
method), 84

register() (robot.libraries.dialogs_py.InputDialog
method), 178

register() (robot.libraries.dialogs_py.MessageDialog
method), 164

register() (robot.libraries.dialogs_py.MultipleSelectionDialog
method), 206

register() (robot.libraries.dialogs_py.PassFailDialog
method), 220

register() (robot.libraries.dialogs_py.SelectionDialog
method), 192

register() (robot.model.body.BaseBody class
method), 229

register() (robot.model.body.Body class method),
232

register() (robot.model.body.Branches class
method), 233

register() (robot.output.listenermethods.LibraryListenerMethods
method), 307

register() (robot.output.listeners.LibraryListeners
method), 307

register() (robot.parsing.model.statements.Arguments
class method), 369

register() (robot.parsing.model.statements.Break
class method), 385

register() (robot.parsing.model.statements.Comment
class method), 386

register() (robot.parsing.model.statements.Config
class method), 387

register() (robot.parsing.model.statements.Continue
class method), 384

register() (robot.parsing.model.statements.DefaultTags
class method), 356

register() (robot.parsing.model.statements.Documentation
class method), 354

register() (robot.parsing.model.statements.DocumentationOrMetadata
class method), 347

register() (robot.parsing.model.statements.ElseHeader
class method), 377

register() (robot.parsing.model.statements.ElseIfHeader
class method), 376

register() (robot.parsing.model.statements.EmptyLine
class method), 388

register() (robot.parsing.model.statements.End
class method), 381

register() (robot.parsing.model.statements.Error
class method), 387

register() (robot.parsing.model.statements.ExceptHeader
class method), 379

register() (robot.parsing.model.statements.FinallyHeader
class method), 380

register() (robot.parsing.model.statements.Fixture
class method), 349

register() (robot.parsing.model.statements.ForceTags
class method), 355

register() (robot.parsing.model.statements.ForHeader
class method), 372

register() (robot.parsing.model.statements.IfElseHeader
class method), 373

register() (robot.parsing.model.statements.IfHeader
class method), 374

register() (robot.parsing.model.statements.InlineIfHeader
class method), 375

register() (robot.parsing.model.statements.KeywordCall
class method), 371

register() (robot.parsing.model.statements.KeywordName
class method), 364

register() (robot.parsing.model.statements.KeywordTags
class method), 357

register() (robot.parsing.model.statements.LibraryImport
class method), 351

register() (robot.parsing.model.statements.LoopControl
class method), 383

register() (robot.parsing.model.statements.Metadata
class method), 354

register() (robot.parsing.model.statements.MultiValue
class method), 349

register() (robot.parsing.model.statements.NoArgumentHeader
class method), 377

register() (robot.parsing.model.statements.ResourceImport
class method), 352

register() (robot.parsing.model.statements.Return
class method), 370

register() (robot.parsing.model.statements.ReturnStatement
class method), 382

register() (robot.parsing.model.statements.SectionHeader
class method), 350

register() (robot.parsing.model.statements.Setup
class method), 365

register() (robot.parsing.model.statements.SingleValue
class method), 348

register() (robot.parsing.model.statements.Statement
class method), 346

Index 731

Robot Framework Documentation, Release 6.0.2

register() (robot.parsing.model.statements.SuiteSetup
class method), 358

register() (robot.parsing.model.statements.SuiteTeardown
class method), 359

register() (robot.parsing.model.statements.Tags
class method), 367

register() (robot.parsing.model.statements.Teardown
class method), 366

register() (robot.parsing.model.statements.Template
class method), 367

register() (robot.parsing.model.statements.TemplateArguments
class method), 372

register() (robot.parsing.model.statements.TestCaseName
class method), 363

register() (robot.parsing.model.statements.TestSetup
class method), 359

register() (robot.parsing.model.statements.TestTeardown
class method), 360

register() (robot.parsing.model.statements.TestTemplate
class method), 361

register() (robot.parsing.model.statements.TestTimeout
class method), 362

register() (robot.parsing.model.statements.Timeout
class method), 368

register() (robot.parsing.model.statements.TryHeader
class method), 378

register() (robot.parsing.model.statements.Variable
class method), 363

register() (robot.parsing.model.statements.VariablesImport
class method), 353

register() (robot.parsing.model.statements.WhileHeader
class method), 382

register() (robot.result.model.Body class method),
459

register() (robot.result.model.Branches class
method), 461

register() (robot.result.model.Iterations class
method), 462

register() (robot.result.xmlelementhandlers.ArgumentHandler
class method), 526

register() (robot.result.xmlelementhandlers.ArgumentsHandler
class method), 525

register() (robot.result.xmlelementhandlers.AssignHandler
class method), 525

register() (robot.result.xmlelementhandlers.BranchHandler
class method), 521

register() (robot.result.xmlelementhandlers.BreakHandler
class method), 522

register() (robot.result.xmlelementhandlers.ContinueHandler
class method), 522

register() (robot.result.xmlelementhandlers.DocHandler
class method), 523

register() (robot.result.xmlelementhandlers.ElementHandler
class method), 519

register() (robot.result.xmlelementhandlers.ErrorMessageHandler
class method), 526

register() (robot.result.xmlelementhandlers.ErrorsHandler
class method), 526

register() (robot.result.xmlelementhandlers.ForHandler
class method), 520

register() (robot.result.xmlelementhandlers.IfHandler
class method), 521

register() (robot.result.xmlelementhandlers.IterationHandler
class method), 521

register() (robot.result.xmlelementhandlers.KeywordHandler
class method), 520

register() (robot.result.xmlelementhandlers.MessageHandler
class method), 523

register() (robot.result.xmlelementhandlers.MetadataHandler
class method), 523

register() (robot.result.xmlelementhandlers.MetadataItemHandler
class method), 524

register() (robot.result.xmlelementhandlers.MetaHandler
class method), 524

register() (robot.result.xmlelementhandlers.PatternHandler
class method), 522

register() (robot.result.xmlelementhandlers.ReturnHandler
class method), 522

register() (robot.result.xmlelementhandlers.RobotHandler
class method), 519

register() (robot.result.xmlelementhandlers.RootHandler
class method), 519

register() (robot.result.xmlelementhandlers.StatisticsHandler
class method), 527

register() (robot.result.xmlelementhandlers.StatusHandler
class method), 523

register() (robot.result.xmlelementhandlers.SuiteHandler
class method), 520

register() (robot.result.xmlelementhandlers.TagHandler
class method), 524

register() (robot.result.xmlelementhandlers.TagsHandler
class method), 524

register() (robot.result.xmlelementhandlers.TestHandler
class method), 520

register() (robot.result.xmlelementhandlers.TimeoutHandler
class method), 525

register() (robot.result.xmlelementhandlers.TryHandler
class method), 522

register() (robot.result.xmlelementhandlers.ValueHandler
class method), 526

register() (robot.result.xmlelementhandlers.VarHandler
class method), 525

register() (robot.result.xmlelementhandlers.WhileHandler
class method), 521

register() (robot.running.arguments.typeconverters.BooleanConverter
class method), 533

register() (robot.running.arguments.typeconverters.ByteArrayConverter
class method), 535

732 Index

Robot Framework Documentation, Release 6.0.2

register() (robot.running.arguments.typeconverters.BytesConverter
class method), 535

register() (robot.running.arguments.typeconverters.CombinedConverter
class method), 540

register() (robot.running.arguments.typeconverters.CustomConverter
class method), 541

register() (robot.running.arguments.typeconverters.DateConverter
class method), 536

register() (robot.running.arguments.typeconverters.DateTimeConverter
class method), 536

register() (robot.running.arguments.typeconverters.DecimalConverter
class method), 534

register() (robot.running.arguments.typeconverters.DictionaryConverter
class method), 539

register() (robot.running.arguments.typeconverters.EnumConverter
class method), 532

register() (robot.running.arguments.typeconverters.FloatConverter
class method), 534

register() (robot.running.arguments.typeconverters.FrozenSetConverter
class method), 540

register() (robot.running.arguments.typeconverters.IntegerConverter
class method), 533

register() (robot.running.arguments.typeconverters.ListConverter
class method), 538

register() (robot.running.arguments.typeconverters.NoneConverter
class method), 537

register() (robot.running.arguments.typeconverters.PathConverter
class method), 537

register() (robot.running.arguments.typeconverters.SetConverter
class method), 539

register() (robot.running.arguments.typeconverters.StringConverter
class method), 533

register() (robot.running.arguments.typeconverters.TimeDeltaConverter
class method), 536

register() (robot.running.arguments.typeconverters.TupleConverter
class method), 538

register() (robot.running.arguments.typeconverters.TypeConverter
class method), 532

register() (robot.running.arguments.typeconverters.TypedDictConverter
class method), 539

register() (robot.running.model.Body class method),
555

register() (robot.utils.connectioncache.ConnectionCache
method), 595

register_console_logger()
(robot.output.logger.Logger method), 308

register_error_listener()
(robot.output.logger.Logger method), 308

register_error_listener()
(robot.output.output.Output method), 311

register_listeners()
(robot.output.logger.Logger method), 308

register_logger() (robot.output.logger.Logger
method), 308

register_run_keyword() (in module
robot.libraries.BuiltIn), 99

register_syslog() (robot.output.logger.Logger
method), 308

register_xml_logger()
(robot.output.logger.Logger method), 308

relative_source()
(robot.reporting.jsbuildingcontext.JsBuildingContext
method), 393

release() (robot.output.pyloggingconf.RobotHandler
method), 313

release() (robot.running.outputcapture.PythonCapturer
method), 578

reload_library() (robot.libraries.BuiltIn.BuiltIn
method), 84

reload_library() (robot.running.namespace.Namespace
method), 578

Remote (class in robot.libraries.Remote), 128
RemoteError, 618
RemoteResult (class in robot.libraries.Remote), 129
RemovalMessage (class in

robot.result.keywordremover), 449
remove() (robot.model.body.BaseBody method), 230
remove() (robot.model.body.Body method), 232
remove() (robot.model.body.Branches method), 234
remove() (robot.model.itemlist.ItemList method), 259
remove() (robot.model.keyword.Keywords method),

262
remove() (robot.model.message.Messages method),

264
remove() (robot.model.tags.Tags method), 277
remove() (robot.model.testcase.TestCases method),

285
remove() (robot.model.testsuite.TestSuites method),

288
remove() (robot.result.model.Body method), 459
remove() (robot.result.model.Branches method), 461
remove() (robot.result.model.Iterations method), 462
remove() (robot.running.model.Body method), 555
remove() (robot.running.model.Imports method), 577
remove_data_not_needed_in_report()

(robot.reporting.jsexecutionresult.JsExecutionResult
method), 394

remove_directory()
(robot.libraries.OperatingSystem.OperatingSystem
method), 117

remove_duplicates()
(robot.libraries.Collections.Collections
method), 105

remove_element() (robot.libraries.XML.XML
method), 156

remove_element_attribute()
(robot.libraries.XML.XML method), 155

remove_element_attributes()

Index 733

Robot Framework Documentation, Release 6.0.2

(robot.libraries.XML.XML method), 155
remove_elements() (robot.libraries.XML.XML

method), 156
remove_elements_attribute()

(robot.libraries.XML.XML method), 155
remove_elements_attributes()

(robot.libraries.XML.XML method), 155
remove_empty_suites()

(robot.model.testsuite.TestSuite method),
287

remove_empty_suites()
(robot.result.model.TestSuite method), 497

remove_empty_suites()
(robot.running.model.TestSuite method),
575

remove_environment_variable()
(robot.libraries.OperatingSystem.OperatingSystem
method), 119

remove_file() (robot.libraries.OperatingSystem.OperatingSystem
method), 117

remove_files() (robot.libraries.OperatingSystem.OperatingSystem
method), 117

remove_from_dictionary()
(robot.libraries.Collections.Collections
method), 106

remove_from_list()
(robot.libraries.Collections.Collections
method), 106

remove_keywords (robot.conf.settings.RebotSettings
attribute), 66

remove_keywords (robot.conf.settings.RobotSettings
attribute), 66

remove_keywords() (robot.result.model.TestSuite
method), 499

remove_path() (in module robot.pythonpathsetter),
620

remove_string() (robot.libraries.String.String
method), 135

remove_string_using_regexp()
(robot.libraries.String.String method), 135

remove_tags (robot.model.configurer.SuiteConfigurer
attribute), 234

remove_tags (robot.result.configurer.SuiteConfigurer
attribute), 409

remove_tags() (robot.libraries.BuiltIn.BuiltIn
method), 85

remove_values_from_list()
(robot.libraries.Collections.Collections
method), 106

removeFilter() (robot.output.pyloggingconf.RobotHandler
method), 313

RemoveKeywords (class in robot.result.resultbuilder),
501

repeat_keyword() (robot.libraries.BuiltIn.BuiltIn

method), 85
replace() (robot.running.arguments.argumentresolver.VariableReplacer

method), 529
replace_defaults()

(robot.running.arguments.argumentmapper.KeywordCallTemplate
method), 529

replace_list() (robot.variables.replacer.VariableReplacer
method), 609

replace_list() (robot.variables.scopes.GlobalVariables
method), 610

replace_list() (robot.variables.scopes.VariableScopes
method), 609

replace_list() (robot.variables.variables.Variables
method), 612

replace_scalar() (robot.variables.replacer.VariableReplacer
method), 609

replace_scalar() (robot.variables.scopes.GlobalVariables
method), 610

replace_scalar() (robot.variables.scopes.VariableScopes
method), 610

replace_scalar() (robot.variables.variables.Variables
method), 612

replace_string() (robot.libraries.String.String
method), 135

replace_string() (robot.variables.replacer.VariableReplacer
method), 609

replace_string() (robot.variables.scopes.GlobalVariables
method), 610

replace_string() (robot.variables.scopes.VariableScopes
method), 610

replace_string() (robot.variables.variables.Variables
method), 612

replace_string_using_regexp()
(robot.libraries.String.String method), 135

replace_variables()
(robot.libraries.BuiltIn.BuiltIn method),
85

replace_variables()
(robot.running.timeouts.KeywordTimeout
method), 548

replace_variables()
(robot.running.timeouts.TestTimeout method),
548

report (robot.conf.settings.RebotSettings attribute), 66
report (robot.conf.settings.RobotSettings attribute), 66
report() (robot.output.console.dotted.StatusReporter

method), 299
report_config (robot.conf.settings.RebotSettings at-

tribute), 66
report_error() (robot.variables.resolvable.GlobalVariableValue

method), 609
report_error() (robot.variables.resolvable.Resolvable

method), 609
report_error() (robot.variables.tablesetter.DictVariableTableValue

734 Index

Robot Framework Documentation, Release 6.0.2

method), 612
report_error() (robot.variables.tablesetter.ListVariableTableValue

method), 612
report_error() (robot.variables.tablesetter.ScalarVariableTableValue

method), 612
report_error() (robot.variables.tablesetter.VariableTableValueBase

method), 612
report_invalid_syntax()

(robot.running.model.Import method), 576
report_invalid_syntax()

(robot.running.model.Variable method),
576

ReportWriter (class in
robot.reporting.logreportwriters), 395

repr_args (robot.model.body.BodyItem attribute), 229
repr_args (robot.model.control.Break attribute), 250
repr_args (robot.model.control.Continue attribute),

249
repr_args (robot.model.control.For attribute), 238
repr_args (robot.model.control.If attribute), 244
repr_args (robot.model.control.IfBranch attribute),

241
repr_args (robot.model.control.Return attribute), 246
repr_args (robot.model.control.Try attribute), 246
repr_args (robot.model.control.TryBranch attribute),

244
repr_args (robot.model.control.While attribute), 240
repr_args (robot.model.keyword.Keyword attribute),

259
repr_args (robot.model.message.Message attribute),

262
repr_args (robot.model.modelobject.ModelObject at-

tribute), 265
repr_args (robot.model.testcase.TestCase attribute),

283
repr_args (robot.model.testsuite.TestSuite attribute),

285
repr_args (robot.output.loggerhelper.Message at-

tribute), 311
repr_args (robot.result.model.Break attribute), 489
repr_args (robot.result.model.Continue attribute),

487
repr_args (robot.result.model.For attribute), 469
repr_args (robot.result.model.ForIteration attribute),

465
repr_args (robot.result.model.If attribute), 478
repr_args (robot.result.model.IfBranch attribute), 476
repr_args (robot.result.model.Keyword attribute), 492
repr_args (robot.result.model.Message attribute), 464
repr_args (robot.result.model.Return attribute), 485
repr_args (robot.result.model.TestCase attribute), 495
repr_args (robot.result.model.TestSuite attribute), 497
repr_args (robot.result.model.Try attribute), 482
repr_args (robot.result.model.TryBranch attribute),

480
repr_args (robot.result.model.While attribute), 473
repr_args (robot.result.model.WhileIteration at-

tribute), 471
repr_args (robot.running.model.Break attribute), 570
repr_args (robot.running.model.Continue attribute),

568
repr_args (robot.running.model.For attribute), 559
repr_args (robot.running.model.If attribute), 563
repr_args (robot.running.model.IfBranch attribute),

561
repr_args (robot.running.model.Keyword attribute),

557
repr_args (robot.running.model.Return attribute),

567
repr_args (robot.running.model.TestCase attribute),

571
repr_args (robot.running.model.TestSuite attribute),

575
repr_args (robot.running.model.Try attribute), 566
repr_args (robot.running.model.TryBranch attribute),

564
repr_args (robot.running.model.While attribute), 560
request() (robot.libraries.Remote.TimeoutHTTPSTransport

method), 130
request() (robot.libraries.Remote.TimeoutHTTPTransport

method), 129
required (robot.running.arguments.argumentspec.ArgInfo

attribute), 530
Reserved (class in robot.libraries.Reserved), 130
reset() (robot.conf.languages.Languages method), 32
reset() (robot.output.console.highlighting.AnsiHighlighter

method), 303
reset() (robot.output.console.highlighting.DosHighlighter

method), 304
reset() (robot.output.console.highlighting.NoHighlighting

method), 303
reset() (robot.running.importer.Importer method),

552
reset_count() (robot.output.console.verbose.KeywordMarker

method), 304
resizable() (robot.libraries.dialogs_py.InputDialog

method), 178
resizable() (robot.libraries.dialogs_py.MessageDialog

method), 164
resizable() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 206
resizable() (robot.libraries.dialogs_py.PassFailDialog

method), 220
resizable() (robot.libraries.dialogs_py.SelectionDialog

method), 192
Resolvable (class in robot.variables.resolvable), 609
resolve() (robot.running.arguments.argumentmapper.DefaultValue

method), 529

Index 735

Robot Framework Documentation, Release 6.0.2

resolve() (robot.running.arguments.argumentresolver.ArgumentResolver
method), 529

resolve() (robot.running.arguments.argumentresolver.NamedArgumentResolver
method), 529

resolve() (robot.running.arguments.argumentresolver.NullNamedArgumentResolver
method), 529

resolve() (robot.running.arguments.argumentspec.ArgumentSpec
method), 530

resolve() (robot.variables.assigner.NoReturnValueResolver
method), 606

resolve() (robot.variables.assigner.OneReturnValueResolver
method), 607

resolve() (robot.variables.assigner.ScalarsAndListReturnValueResolver
method), 607

resolve() (robot.variables.assigner.ScalarsOnlyReturnValueResolver
method), 607

resolve() (robot.variables.resolvable.GlobalVariableValue
method), 609

resolve() (robot.variables.resolvable.Resolvable
method), 609

resolve() (robot.variables.tablesetter.DictVariableTableValue
method), 612

resolve() (robot.variables.tablesetter.ListVariableTableValue
method), 612

resolve() (robot.variables.tablesetter.ScalarVariableTableValue
method), 612

resolve() (robot.variables.tablesetter.VariableTableValueBase
method), 612

resolve_alias_or_index()
(robot.utils.connectioncache.ConnectionCache
method), 596

resolve_arguments()
(robot.running.handlers.EmbeddedArgumentsHandler
method), 551

resolve_base() (robot.variables.search.VariableMatch
method), 611

resolve_delayed()
(robot.variables.scopes.GlobalVariables
method), 610

resolve_delayed()
(robot.variables.scopes.VariableScopes
method), 610

resolve_delayed()
(robot.variables.store.VariableStore method),
611

resolve_delayed()
(robot.variables.variables.Variables method),
612

resolve_delayed_message()
(robot.output.loggerhelper.Message method),
309

RESOURCE (robot.parsing.lexer.tokens.END attribute),
339

RESOURCE (robot.parsing.lexer.tokens.EOS attribute),

337
RESOURCE (robot.parsing.lexer.tokens.Token attribute),

334
resource (robot.running.model.TestSuite attribute),

572
resource() (robot.running.model.Imports method),

577
resource_setting (robot.conf.languages.Bg at-

tribute), 59
resource_setting (robot.conf.languages.Bs at-

tribute), 38
resource_setting (robot.conf.languages.Cs at-

tribute), 35
resource_setting (robot.conf.languages.De at-

tribute), 42
resource_setting (robot.conf.languages.En at-

tribute), 34
resource_setting (robot.conf.languages.Es at-

tribute), 51
resource_setting (robot.conf.languages.Fi at-

tribute), 40
resource_setting (robot.conf.languages.Fr at-

tribute), 41
resource_setting (robot.conf.languages.Hi at-

tribute), 63
resource_setting (robot.conf.languages.It at-

tribute), 62
resource_setting (robot.conf.languages.Language

attribute), 32
resource_setting (robot.conf.languages.Nl at-

tribute), 37
resource_setting (robot.conf.languages.Pl at-

tribute), 48
resource_setting (robot.conf.languages.Pt at-

tribute), 45
resource_setting (robot.conf.languages.PtBr at-

tribute), 44
resource_setting (robot.conf.languages.Ro at-

tribute), 61
resource_setting (robot.conf.languages.Ru at-

tribute), 52
resource_setting (robot.conf.languages.Sv at-

tribute), 58
resource_setting (robot.conf.languages.Th at-

tribute), 47
resource_setting (robot.conf.languages.Tr at-

tribute), 56
resource_setting (robot.conf.languages.Uk at-

tribute), 49
resource_setting (robot.conf.languages.ZhCn at-

tribute), 54
resource_setting (robot.conf.languages.ZhTw at-

tribute), 55
ResourceBuilder (class in

736 Index

Robot Framework Documentation, Release 6.0.2

robot.running.builder.transformers), 544
ResourceDocBuilder (class in

robot.libdocpkg.robotbuilder), 72
ResourceFile (class in robot.running.model), 576
ResourceFileBuilder (class in

robot.running.builder.builders), 542
ResourceFileContext (class in

robot.parsing.lexer.context), 324
ResourceFileSettings (class in

robot.parsing.lexer.settings), 326
ResourceImport (class in

robot.parsing.model.statements), 351
RestParser (class in robot.running.builder.parsers),

543
Result (class in robot.result.executionresult), 413
result (robot.reporting.resultwriter.Results attribute),

401
result (robot.running.modelcombiner.ModelCombiner

attribute), 577
result_config (robot.libraries.Process.ProcessConfiguration

attribute), 128
Results (class in robot.reporting.resultwriter), 401
ResultVisitor (class in robot.result.visitor), 513
ResultWriter (class in robot.reporting.resultwriter),

400
Return (class in robot.model.control), 246
Return (class in robot.parsing.model.statements), 369
Return (class in robot.result.model), 483
Return (class in robot.running.model), 566
RETURN (robot.model.body.BodyItem attribute), 228
RETURN (robot.model.control.Break attribute), 249
RETURN (robot.model.control.Continue attribute), 248
RETURN (robot.model.control.For attribute), 239
RETURN (robot.model.control.If attribute), 243
RETURN (robot.model.control.IfBranch attribute), 242
RETURN (robot.model.control.Return attribute), 247
RETURN (robot.model.control.Try attribute), 246
RETURN (robot.model.control.TryBranch attribute), 244
RETURN (robot.model.control.While attribute), 240
RETURN (robot.model.keyword.Keyword attribute), 260
RETURN (robot.model.message.Message attribute), 263
RETURN (robot.output.loggerhelper.Message attribute),

310
RETURN (robot.parsing.lexer.tokens.END attribute), 339
RETURN (robot.parsing.lexer.tokens.EOS attribute), 337
RETURN (robot.parsing.lexer.tokens.Token attribute), 334
RETURN (robot.result.model.Break attribute), 488
RETURN (robot.result.model.Continue attribute), 486
RETURN (robot.result.model.For attribute), 467
RETURN (robot.result.model.ForIteration attribute), 465
RETURN (robot.result.model.If attribute), 477
RETURN (robot.result.model.IfBranch attribute), 474
RETURN (robot.result.model.Keyword attribute), 491
RETURN (robot.result.model.Message attribute), 463

RETURN (robot.result.model.Return attribute), 484
RETURN (robot.result.model.Try attribute), 481
RETURN (robot.result.model.TryBranch attribute), 479
RETURN (robot.result.model.While attribute), 472
RETURN (robot.result.model.WhileIteration attribute),

470
RETURN (robot.running.model.Break attribute), 569
RETURN (robot.running.model.Continue attribute), 568
RETURN (robot.running.model.For attribute), 558
RETURN (robot.running.model.If attribute), 562
RETURN (robot.running.model.IfBranch attribute), 561
RETURN (robot.running.model.Keyword attribute), 556
RETURN (robot.running.model.Return attribute), 566
RETURN (robot.running.model.Try attribute), 565
RETURN (robot.running.model.TryBranch attribute), 563
RETURN (robot.running.model.While attribute), 559
return_class (robot.model.body.BaseBody at-

tribute), 229
return_class (robot.model.body.Body attribute), 232
return_class (robot.model.body.Branches attribute),

234
return_class (robot.result.model.Body attribute),

459
return_class (robot.result.model.Branches at-

tribute), 461
return_class (robot.result.model.Iterations at-

tribute), 462
return_class (robot.running.model.Body attribute),

555
return_code (robot.result.executionresult.CombinedResult

attribute), 414
return_code (robot.result.executionresult.Result at-

tribute), 413
return_from_keyword()

(robot.libraries.BuiltIn.BuiltIn method),
85

return_from_keyword_if()
(robot.libraries.BuiltIn.BuiltIn method),
86

RETURN_SETTING (robot.parsing.lexer.tokens.END at-
tribute), 339

RETURN_SETTING (robot.parsing.lexer.tokens.EOS at-
tribute), 337

RETURN_SETTING (robot.parsing.lexer.tokens.Token
attribute), 334

RETURN_STATEMENT (robot.parsing.lexer.tokens.END
attribute), 339

RETURN_STATEMENT (robot.parsing.lexer.tokens.EOS
attribute), 337

RETURN_STATEMENT (robot.parsing.lexer.tokens.Token
attribute), 335

ReturnFromKeyword, 618
ReturnHandler (class in

robot.result.xmlelementhandlers), 522

Index 737

Robot Framework Documentation, Release 6.0.2

ReturnLexer (class in
robot.parsing.lexer.statementlexers), 332

ReturnStatement (class in
robot.parsing.model.statements), 382

ReturnValueResolver() (in module
robot.variables.assigner), 606

reverse() (robot.model.body.BaseBody method), 230
reverse() (robot.model.body.Body method), 232
reverse() (robot.model.body.Branches method), 234
reverse() (robot.model.itemlist.ItemList method), 259
reverse() (robot.model.keyword.Keywords method),

262
reverse() (robot.model.message.Messages method),

264
reverse() (robot.model.testcase.TestCases method),

285
reverse() (robot.model.testsuite.TestSuites method),

288
reverse() (robot.result.model.Body method), 459
reverse() (robot.result.model.Branches method), 461
reverse() (robot.result.model.Iterations method), 462
reverse() (robot.running.model.Body method), 555
reverse() (robot.running.model.Imports method), 577
reverse_list() (robot.libraries.Collections.Collections

method), 106
Ro (class in robot.conf.languages), 60
robot (module), 7
robot() (robot.model.tags.Tags method), 277
robot.api (module), 5, 10
robot.api.deco (module), 11
robot.api.exceptions (module), 12
robot.api.logger (module), 14
robot.api.parsing (module), 15
robot.conf (module), 23
robot.conf.gatherfailed (module), 23
robot.conf.languages (module), 32
robot.conf.settings (module), 65
robot.errors (module), 613
robot.htmldata (module), 67
robot.htmldata.htmlfilewriter (module), 67
robot.htmldata.jsonwriter (module), 68
robot.htmldata.template (module), 68
robot.libdoc (module), 618
robot.libdocpkg (module), 69
robot.libdocpkg.builder (module), 69
robot.libdocpkg.consoleviewer (module), 69
robot.libdocpkg.datatypes (module), 70
robot.libdocpkg.htmlutils (module), 70
robot.libdocpkg.htmlwriter (module), 71
robot.libdocpkg.jsonbuilder (module), 71
robot.libdocpkg.jsonwriter (module), 71
robot.libdocpkg.model (module), 71
robot.libdocpkg.output (module), 72
robot.libdocpkg.robotbuilder (module), 72

robot.libdocpkg.standardtypes (module), 72
robot.libdocpkg.writer (module), 72
robot.libdocpkg.xmlbuilder (module), 73
robot.libdocpkg.xmlwriter (module), 73
robot.libraries (module), 73
robot.libraries.BuiltIn (module), 73
robot.libraries.Collections (module), 100
robot.libraries.DateTime (module), 106
robot.libraries.Dialogs (module), 111
robot.libraries.dialogs_py (module), 157
robot.libraries.Easter (module), 112
robot.libraries.OperatingSystem (module),

112
robot.libraries.Process (module), 122
robot.libraries.Remote (module), 128
robot.libraries.Reserved (module), 130
robot.libraries.Screenshot (module), 130
robot.libraries.String (module), 131
robot.libraries.Telnet (module), 137
robot.libraries.XML (module), 147
robot.model (module), 227
robot.model.body (module), 228
robot.model.configurer (module), 234
robot.model.control (module), 238
robot.model.filter (module), 250
robot.model.fixture (module), 258
robot.model.itemlist (module), 259
robot.model.keyword (module), 259
robot.model.message (module), 262
robot.model.metadata (module), 264
robot.model.modelobject (module), 265
robot.model.modifier (module), 265
robot.model.namepatterns (module), 270
robot.model.statistics (module), 270
robot.model.stats (module), 274
robot.model.suitestatistics (module), 276
robot.model.tags (module), 277
robot.model.tagsetter (module), 277
robot.model.tagstatistics (module), 282
robot.model.testcase (module), 282
robot.model.testsuite (module), 285
robot.model.totalstatistics (module), 288
robot.model.visitor (module), 293
robot.output (module), 298
robot.output.console (module), 298
robot.output.console.dotted (module), 298
robot.output.console.highlighting (mod-

ule), 303
robot.output.console.quiet (module), 304
robot.output.console.verbose (module), 304
robot.output.debugfile (module), 305
robot.output.filelogger (module), 305
robot.output.librarylogger (module), 305

738 Index

Robot Framework Documentation, Release 6.0.2

robot.output.listenerarguments (module),
306

robot.output.listenermethods (module), 307
robot.output.listeners (module), 307
robot.output.logger (module), 308
robot.output.loggerhelper (module), 309
robot.output.output (module), 311
robot.output.pyloggingconf (module), 312
robot.output.stdoutlogsplitter (module),

313
robot.output.xmllogger (module), 313
robot.parsing (module), 318
robot.parsing.lexer (module), 318
robot.parsing.lexer.blocklexers (module),

318
robot.parsing.lexer.context (module), 323
robot.parsing.lexer.lexer (module), 325
robot.parsing.lexer.settings (module), 326
robot.parsing.lexer.statementlexers

(module), 327
robot.parsing.lexer.tokenizer (module),

333
robot.parsing.lexer.tokens (module), 333
robot.parsing.model (module), 340
robot.parsing.model.blocks (module), 340
robot.parsing.model.statements (module),

345
robot.parsing.model.visitor (module), 388
robot.parsing.parser (module), 389
robot.parsing.parser.blockparsers (mod-

ule), 389
robot.parsing.parser.fileparser (module),

390
robot.parsing.parser.parser (module), 391
robot.parsing.suitestructure (module), 392
robot.pythonpathsetter (module), 620
robot.rebot (module), 620
robot.reporting (module), 393
robot.reporting.expandkeywordmatcher

(module), 393
robot.reporting.jsbuildingcontext (mod-

ule), 393
robot.reporting.jsexecutionresult (mod-

ule), 394
robot.reporting.jsmodelbuilders (module),

394
robot.reporting.jswriter (module), 395
robot.reporting.logreportwriters (mod-

ule), 395
robot.reporting.outputwriter (module), 395
robot.reporting.resultwriter (module), 400
robot.reporting.stringcache (module), 401
robot.reporting.xunitwriter (module), 402
robot.result (module), 407

robot.result.configurer (module), 408
robot.result.executionerrors (module), 412
robot.result.executionresult (module), 413
robot.result.flattenkeywordmatcher (mod-

ule), 415
robot.result.keywordremover (module), 415
robot.result.merger (module), 449
robot.result.messagefilter (module), 453
robot.result.model (module), 457
robot.result.modeldeprecation (module),

499
robot.result.resultbuilder (module), 500
robot.result.suiteteardownfailed (mod-

ule), 505
robot.result.visitor (module), 513
robot.result.xmlelementhandlers (module),

519
robot.run (module), 621
robot.running (module), 527
robot.running.arguments (module), 528
robot.running.arguments.argumentconverter

(module), 528
robot.running.arguments.argumentmapper

(module), 528
robot.running.arguments.argumentparser

(module), 529
robot.running.arguments.argumentresolver

(module), 529
robot.running.arguments.argumentspec

(module), 530
robot.running.arguments.argumentvalidator

(module), 531
robot.running.arguments.customconverters

(module), 531
robot.running.arguments.embedded (mod-

ule), 531
robot.running.arguments.typeconverters

(module), 531
robot.running.arguments.typevalidator

(module), 541
robot.running.bodyrunner (module), 549
robot.running.builder (module), 541
robot.running.builder.builders (module),

541
robot.running.builder.parsers (module),

542
robot.running.builder.settings (module),

543
robot.running.builder.transformers (mod-

ule), 544
robot.running.context (module), 550
robot.running.dynamicmethods (module), 550
robot.running.handlers (module), 551
robot.running.handlerstore (module), 551

Index 739

Robot Framework Documentation, Release 6.0.2

robot.running.importer (module), 552
robot.running.librarykeywordrunner (mod-

ule), 552
robot.running.libraryscopes (module), 553
robot.running.model (module), 553
robot.running.modelcombiner (module), 577
robot.running.namespace (module), 577
robot.running.outputcapture (module), 578
robot.running.randomizer (module), 578
robot.running.runkwregister (module), 583
robot.running.signalhandler (module), 583
robot.running.status (module), 583
robot.running.statusreporter (module), 584
robot.running.suiterunner (module), 585
robot.running.testlibraries (module), 589
robot.running.timeouts (module), 548
robot.running.timeouts.posix (module), 549
robot.running.timeouts.windows (module),

549
robot.running.usererrorhandler (module),

589
robot.running.userkeyword (module), 589
robot.running.userkeywordrunner (module),

590
robot.testdoc (module), 623
robot.utils (module), 591
robot.utils.application (module), 591
robot.utils.argumentparser (module), 592
robot.utils.asserts (module), 593
robot.utils.charwidth (module), 595
robot.utils.compress (module), 595
robot.utils.connectioncache (module), 595
robot.utils.dotdict (module), 596
robot.utils.encoding (module), 597
robot.utils.encodingsniffer (module), 597
robot.utils.error (module), 598
robot.utils.escaping (module), 598
robot.utils.etreewrapper (module), 598
robot.utils.filereader (module), 598
robot.utils.frange (module), 599
robot.utils.htmlformatters (module), 599
robot.utils.importer (module), 600
robot.utils.markuputils (module), 602
robot.utils.markupwriters (module), 602
robot.utils.match (module), 603
robot.utils.misc (module), 603
robot.utils.normalizing (module), 604
robot.utils.platform (module), 605
robot.utils.recommendations (module), 605
robot.variables (module), 606
robot.variables.assigner (module), 606
robot.variables.evaluation (module), 607
robot.variables.filesetter (module), 607
robot.variables.finders (module), 608

robot.variables.notfound (module), 608
robot.variables.replacer (module), 609
robot.variables.resolvable (module), 609
robot.variables.scopes (module), 609
robot.variables.search (module), 611
robot.variables.store (module), 611
robot.variables.tablesetter (module), 612
robot.variables.variables (module), 612
robot.version (module), 625
ROBOT_CONTINUE_ON_FAILURE

(robot.api.exceptions.ContinuableFailure
attribute), 13

ROBOT_EXIT_ON_FAILURE
(robot.api.exceptions.FatalError attribute),
13

robot_handler_enabled() (in module
robot.output.pyloggingconf), 312

ROBOT_LIBRARY_SCOPE
(robot.libraries.BuiltIn.BuiltIn attribute),
76

ROBOT_LIBRARY_SCOPE
(robot.libraries.Collections.Collections at-
tribute), 101

ROBOT_LIBRARY_SCOPE
(robot.libraries.OperatingSystem.OperatingSystem
attribute), 113

ROBOT_LIBRARY_SCOPE
(robot.libraries.Process.Process attribute),
125

ROBOT_LIBRARY_SCOPE
(robot.libraries.Remote.Remote attribute),
128

ROBOT_LIBRARY_SCOPE
(robot.libraries.Reserved.Reserved attribute),
130

ROBOT_LIBRARY_SCOPE
(robot.libraries.Screenshot.Screenshot at-
tribute), 131

ROBOT_LIBRARY_SCOPE
(robot.libraries.String.String attribute), 132

ROBOT_LIBRARY_SCOPE
(robot.libraries.Telnet.Telnet attribute), 140

ROBOT_LIBRARY_SCOPE (robot.libraries.XML.XML
attribute), 150

ROBOT_LIBRARY_VERSION
(robot.libraries.BuiltIn.BuiltIn attribute),
76

ROBOT_LIBRARY_VERSION
(robot.libraries.Collections.Collections at-
tribute), 101

ROBOT_LIBRARY_VERSION
(robot.libraries.OperatingSystem.OperatingSystem
attribute), 113

ROBOT_LIBRARY_VERSION

740 Index

Robot Framework Documentation, Release 6.0.2

(robot.libraries.Process.Process attribute),
125

ROBOT_LIBRARY_VERSION
(robot.libraries.Screenshot.Screenshot at-
tribute), 131

ROBOT_LIBRARY_VERSION
(robot.libraries.String.String attribute), 132

ROBOT_LIBRARY_VERSION
(robot.libraries.Telnet.Telnet attribute), 140

ROBOT_LIBRARY_VERSION
(robot.libraries.XML.XML attribute), 150

ROBOT_SKIP_EXECUTION
(robot.api.exceptions.SkipExecution attribute),
14

ROBOT_SUPPRESS_NAME
(robot.api.exceptions.ContinuableFailure
attribute), 13

ROBOT_SUPPRESS_NAME (robot.api.exceptions.Error
attribute), 13

ROBOT_SUPPRESS_NAME
(robot.api.exceptions.Failure attribute), 12

ROBOT_SUPPRESS_NAME
(robot.api.exceptions.FatalError attribute),
13

ROBOT_SUPPRESS_NAME
(robot.api.exceptions.SkipExecution attribute),
14

ROBOT_SUPPRESS_NAME
(robot.libraries.Telnet.NoMatchError at-
tribute), 146

RobotError, 613
RobotFramework (class in robot.run), 622
RobotHandler (class in robot.output.pyloggingconf),

312
RobotHandler (class in

robot.result.xmlelementhandlers), 519
RobotModelWriter (class in

robot.reporting.logreportwriters), 395
RobotNotRunningError, 99
RobotParser (class in robot.running.builder.parsers),

542
RobotSettings (class in robot.conf.settings), 65
RootHandler (class in

robot.result.xmlelementhandlers), 519
rowconfigure() (robot.libraries.dialogs_py.InputDialog

method), 178
rowconfigure() (robot.libraries.dialogs_py.MessageDialog

method), 164
rowconfigure() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 206
rowconfigure() (robot.libraries.dialogs_py.PassFailDialog

method), 220
rowconfigure() (robot.libraries.dialogs_py.SelectionDialog

method), 192

rpa (robot.conf.settings.RebotSettings attribute), 66
rpa (robot.conf.settings.RobotSettings attribute), 66
rpa (robot.model.testsuite.TestSuite attribute), 285
rpa (robot.result.model.TestSuite attribute), 498
rpa (robot.running.model.TestSuite attribute), 575
Ru (class in robot.conf.languages), 52
RulerFormatter (class in robot.utils.htmlformatters),

599
run() (in module robot), 7
run() (in module robot.run), 622
run() (robot.libraries.OperatingSystem.OperatingSystem

method), 113
run() (robot.running.bodyrunner.BodyRunner method),

549
run() (robot.running.bodyrunner.ForInEnumerateRunner

method), 549
run() (robot.running.bodyrunner.ForInRangeRunner

method), 549
run() (robot.running.bodyrunner.ForInRunner

method), 549
run() (robot.running.bodyrunner.ForInZipRunner

method), 549
run() (robot.running.bodyrunner.IfRunner method),

550
run() (robot.running.bodyrunner.KeywordRunner

method), 549
run() (robot.running.bodyrunner.TryRunner method),

550
run() (robot.running.bodyrunner.WhileRunner

method), 549
run() (robot.running.librarykeywordrunner.EmbeddedArgumentsRunner

method), 552
run() (robot.running.librarykeywordrunner.LibraryKeywordRunner

method), 552
run() (robot.running.librarykeywordrunner.RunKeywordRunner

method), 553
run() (robot.running.model.Break method), 569
run() (robot.running.model.Continue method), 567
run() (robot.running.model.For method), 557
run() (robot.running.model.If method), 562
run() (robot.running.model.Keyword method), 555
run() (robot.running.model.Return method), 566
run() (robot.running.model.TestSuite method), 573
run() (robot.running.model.Try method), 564
run() (robot.running.model.While method), 559
run() (robot.running.timeouts.KeywordTimeout

method), 548
run() (robot.running.timeouts.TestTimeout method),

548
run() (robot.running.usererrorhandler.UserErrorHandler

method), 589
run() (robot.running.userkeywordrunner.EmbeddedArgumentsRunner

method), 590
run() (robot.running.userkeywordrunner.UserKeywordRunner

Index 741

Robot Framework Documentation, Release 6.0.2

method), 590
run_and_return_rc()

(robot.libraries.OperatingSystem.OperatingSystem
method), 114

run_and_return_rc_and_output()
(robot.libraries.OperatingSystem.OperatingSystem
method), 114

run_cli() (in module robot), 8
run_cli() (in module robot.run), 622
run_empty_suite (robot.conf.settings.RobotSettings

attribute), 65
run_keyword() (robot.libraries.BuiltIn.BuiltIn

method), 86
run_keyword() (robot.libraries.Remote.Remote

method), 128
run_keyword() (robot.libraries.Remote.XmlRpcRemoteClient

method), 129
run_keyword_and_continue_on_failure()

(robot.libraries.BuiltIn.BuiltIn method), 86
run_keyword_and_expect_error()

(robot.libraries.BuiltIn.BuiltIn method),
86

run_keyword_and_ignore_error()
(robot.libraries.BuiltIn.BuiltIn method),
87

run_keyword_and_return()
(robot.libraries.BuiltIn.BuiltIn method),
87

run_keyword_and_return_if()
(robot.libraries.BuiltIn.BuiltIn method),
87

run_keyword_and_return_status()
(robot.libraries.BuiltIn.BuiltIn method),
87

run_keyword_and_warn_on_failure()
(robot.libraries.BuiltIn.BuiltIn method),
87

run_keyword_if() (robot.libraries.BuiltIn.BuiltIn
method), 87

run_keyword_if_all_tests_passed()
(robot.libraries.BuiltIn.BuiltIn method),
88

run_keyword_if_any_tests_failed()
(robot.libraries.BuiltIn.BuiltIn method),
88

run_keyword_if_test_failed()
(robot.libraries.BuiltIn.BuiltIn method),
88

run_keyword_if_test_passed()
(robot.libraries.BuiltIn.BuiltIn method),
88

run_keyword_if_timeout_occurred()
(robot.libraries.BuiltIn.BuiltIn method),
88

run_keyword_unless()
(robot.libraries.BuiltIn.BuiltIn method),
89

run_keyword_variant() (in module
robot.libraries.BuiltIn), 73

run_keywords() (robot.libraries.BuiltIn.BuiltIn
method), 89

run_process() (robot.libraries.Process.Process
method), 125

RunKeyword (class in robot.running.dynamicmethods),
550

RunKeywordRunner (class in
robot.running.librarykeywordrunner), 552

S
save() (robot.libdocpkg.model.LibraryDoc method),

71
save() (robot.parsing.model.blocks.File method), 341
save() (robot.result.executionresult.CombinedResult

method), 414
save() (robot.result.executionresult.Result method),

414
save_xml() (robot.libraries.XML.XML method), 157
ScalarsAndListReturnValueResolver (class

in robot.variables.assigner), 607
ScalarsOnlyReturnValueResolver (class in

robot.variables.assigner), 607
ScalarVariableTableValue (class in

robot.variables.tablesetter), 612
Screenshot (class in robot.libraries.Screenshot), 130
ScreenshotTaker (class in

robot.libraries.Screenshot), 131
search() (robot.libdocpkg.consoleviewer.KeywordMatcher

method), 70
search_variable() (in module

robot.variables.search), 611
Section (class in robot.parsing.model.blocks), 341
SectionHeader (class in

robot.parsing.model.statements), 349
SectionHeaderLexer (class in

robot.parsing.lexer.statementlexers), 328
SectionLexer (class in

robot.parsing.lexer.blocklexers), 319
SectionParser (class in

robot.parsing.parser.fileparser), 390
selection_clear()

(robot.libraries.dialogs_py.InputDialog
method), 179

selection_clear()
(robot.libraries.dialogs_py.MessageDialog
method), 165

selection_clear()
(robot.libraries.dialogs_py.MultipleSelectionDialog
method), 207

742 Index

Robot Framework Documentation, Release 6.0.2

selection_clear()
(robot.libraries.dialogs_py.PassFailDialog
method), 221

selection_clear()
(robot.libraries.dialogs_py.SelectionDialog
method), 193

selection_get() (robot.libraries.dialogs_py.InputDialog
method), 179

selection_get() (robot.libraries.dialogs_py.MessageDialog
method), 165

selection_get() (robot.libraries.dialogs_py.MultipleSelectionDialog
method), 207

selection_get() (robot.libraries.dialogs_py.PassFailDialog
method), 221

selection_get() (robot.libraries.dialogs_py.SelectionDialog
method), 193

selection_handle()
(robot.libraries.dialogs_py.InputDialog
method), 179

selection_handle()
(robot.libraries.dialogs_py.MessageDialog
method), 165

selection_handle()
(robot.libraries.dialogs_py.MultipleSelectionDialog
method), 207

selection_handle()
(robot.libraries.dialogs_py.PassFailDialog
method), 221

selection_handle()
(robot.libraries.dialogs_py.SelectionDialog
method), 193

selection_own() (robot.libraries.dialogs_py.InputDialog
method), 179

selection_own() (robot.libraries.dialogs_py.MessageDialog
method), 165

selection_own() (robot.libraries.dialogs_py.MultipleSelectionDialog
method), 207

selection_own() (robot.libraries.dialogs_py.PassFailDialog
method), 221

selection_own() (robot.libraries.dialogs_py.SelectionDialog
method), 193

selection_own_get()
(robot.libraries.dialogs_py.InputDialog
method), 179

selection_own_get()
(robot.libraries.dialogs_py.MessageDialog
method), 165

selection_own_get()
(robot.libraries.dialogs_py.MultipleSelectionDialog
method), 207

selection_own_get()
(robot.libraries.dialogs_py.PassFailDialog
method), 221

selection_own_get()

(robot.libraries.dialogs_py.SelectionDialog
method), 193

SelectionDialog (class in
robot.libraries.dialogs_py), 185

send() (robot.libraries.dialogs_py.InputDialog
method), 179

send() (robot.libraries.dialogs_py.MessageDialog
method), 165

send() (robot.libraries.dialogs_py.MultipleSelectionDialog
method), 207

send() (robot.libraries.dialogs_py.PassFailDialog
method), 221

send() (robot.libraries.dialogs_py.SelectionDialog
method), 193

send_content() (robot.libraries.Remote.TimeoutHTTPSTransport
method), 130

send_content() (robot.libraries.Remote.TimeoutHTTPTransport
method), 129

send_headers() (robot.libraries.Remote.TimeoutHTTPSTransport
method), 130

send_headers() (robot.libraries.Remote.TimeoutHTTPTransport
method), 129

send_request() (robot.libraries.Remote.TimeoutHTTPSTransport
method), 130

send_request() (robot.libraries.Remote.TimeoutHTTPTransport
method), 129

send_signal_to_process()
(robot.libraries.Process.Process method),
126

SEPARATOR (robot.parsing.lexer.tokens.END attribute),
339

SEPARATOR (robot.parsing.lexer.tokens.EOS attribute),
337

SEPARATOR (robot.parsing.lexer.tokens.Token at-
tribute), 335

separators (robot.parsing.lexer.statementlexers.ForHeaderLexer
attribute), 331

seq2str() (in module robot.utils.misc), 604
seq2str2() (in module robot.utils.misc), 604
set() (robot.result.keywordremover.RemovalMessage

method), 449
set() (robot.variables.filesetter.VariableFileSetter

method), 607
set() (robot.variables.tablesetter.VariableTableSetter

method), 612
set_debuglevel() (robot.libraries.Telnet.TelnetConnection

method), 146
set_default_log_level()

(robot.libraries.Telnet.TelnetConnection
method), 142

set_earlier_failures()
(robot.errors.BreakLoop method), 618

set_earlier_failures()
(robot.errors.ContinueLoop method), 617

Index 743

Robot Framework Documentation, Release 6.0.2

set_earlier_failures()
(robot.errors.ExecutionPassed method),
616

set_earlier_failures()
(robot.errors.PassExecution method), 617

set_earlier_failures()
(robot.errors.ReturnFromKeyword method),
618

set_element_attribute()
(robot.libraries.XML.XML method), 154

set_element_tag() (robot.libraries.XML.XML
method), 154

set_element_text() (robot.libraries.XML.XML
method), 154

set_elements_attribute()
(robot.libraries.XML.XML method), 155

set_elements_tag() (robot.libraries.XML.XML
method), 154

set_elements_text() (robot.libraries.XML.XML
method), 154

set_encoding() (robot.libraries.Telnet.TelnetConnection
method), 142

set_environment_variable()
(robot.libraries.OperatingSystem.OperatingSystem
method), 119

set_error() (robot.parsing.lexer.tokens.END
method), 340

set_error() (robot.parsing.lexer.tokens.EOS
method), 338

set_error() (robot.parsing.lexer.tokens.Token
method), 335

set_execution_mode()
(robot.result.executionresult.CombinedResult
method), 414

set_execution_mode()
(robot.result.executionresult.Result method),
414

set_from_file() (robot.variables.scopes.GlobalVariables
method), 610

set_from_file() (robot.variables.scopes.VariableScopes
method), 610

set_from_file() (robot.variables.variables.Variables
method), 613

set_from_variable_table()
(robot.variables.scopes.GlobalVariables
method), 610

set_from_variable_table()
(robot.variables.scopes.VariableScopes
method), 610

set_from_variable_table()
(robot.variables.variables.Variables method),
613

set_global() (robot.variables.scopes.SetVariables
method), 610

set_global() (robot.variables.scopes.VariableScopes
method), 610

set_global_variable()
(robot.libraries.BuiltIn.BuiltIn method),
89

set_if_removed() (robot.result.keywordremover.RemovalMessage
method), 449

set_keyword() (robot.variables.scopes.SetVariables
method), 610

set_keyword() (robot.variables.scopes.VariableScopes
method), 610

set_keyword_timeout()
(robot.running.timeouts.TestTimeout method),
548

set_level() (in module robot.output.pyloggingconf),
312

set_level() (robot.output.filelogger.FileLogger
method), 305

set_level() (robot.output.logger.Logger method),
309

set_level() (robot.output.loggerhelper.AbstractLogger
method), 309

set_level() (robot.output.loggerhelper.IsLogged
method), 311

set_level() (robot.output.output.Output method),
311

set_library_search_order()
(robot.libraries.BuiltIn.BuiltIn method),
89

set_list_value() (robot.libraries.Collections.Collections
method), 106

set_local_variable()
(robot.libraries.BuiltIn.BuiltIn method),
90

set_local_variable()
(robot.variables.scopes.VariableScopes
method), 610

set_log_level() (robot.libraries.BuiltIn.BuiltIn
method), 90

set_log_level() (robot.output.listeners.LibraryListeners
method), 307

set_log_level() (robot.output.listeners.Listeners
method), 307

set_log_level() (robot.output.output.Output
method), 311

set_log_level() (robot.output.xmllogger.XmlLogger
method), 313

set_log_level() (robot.reporting.outputwriter.OutputWriter
method), 397

set_modified_time()
(robot.libraries.OperatingSystem.OperatingSystem
method), 121

set_name() (robot.output.pyloggingconf.RobotHandler
method), 313

744 Index

Robot Framework Documentation, Release 6.0.2

set_newline() (robot.libraries.Telnet.TelnetConnection
method), 142

set_option_negotiation_callback()
(robot.libraries.Telnet.TelnetConnection
method), 146

set_prompt() (robot.libraries.Telnet.TelnetConnection
method), 142

set_screenshot_directory()
(robot.libraries.Screenshot.Screenshot
method), 131

set_search_order()
(robot.running.namespace.Namespace
method), 577

set_suite() (robot.variables.scopes.SetVariables
method), 610

set_suite() (robot.variables.scopes.VariableScopes
method), 610

set_suite_documentation()
(robot.libraries.BuiltIn.BuiltIn method),
90

set_suite_metadata()
(robot.libraries.BuiltIn.BuiltIn method),
90

set_suite_variable()
(robot.libraries.BuiltIn.BuiltIn method),
90

set_tags() (robot.libraries.BuiltIn.BuiltIn method),
91

set_tags() (robot.model.testsuite.TestSuite method),
286

set_tags() (robot.result.model.TestSuite method),
498

set_tags() (robot.running.model.TestSuite method),
575

set_task_variable()
(robot.libraries.BuiltIn.BuiltIn method),
91

set_telnetlib_log_level()
(robot.libraries.Telnet.TelnetConnection
method), 142

set_test() (robot.variables.scopes.SetVariables
method), 610

set_test() (robot.variables.scopes.VariableScopes
method), 610

set_test_documentation()
(robot.libraries.BuiltIn.BuiltIn method),
91

set_test_message()
(robot.libraries.BuiltIn.BuiltIn method),
91

set_test_variable()
(robot.libraries.BuiltIn.BuiltIn method),
92

set_timeout() (robot.libraries.Telnet.TelnetConnection

method), 141
set_to_dictionary()

(robot.libraries.Collections.Collections
method), 106

set_variable() (robot.libraries.BuiltIn.BuiltIn
method), 92

set_variable_if() (robot.libraries.BuiltIn.BuiltIn
method), 92

SetConverter (class in
robot.running.arguments.typeconverters),
539

setdefault() (robot.model.metadata.Metadata
method), 265

setdefault() (robot.utils.dotdict.DotDict method),
597

setdefault() (robot.utils.normalizing.NormalizedDict
method), 605

setdefault() (robot.variables.evaluation.EvaluationNamespace
method), 607

setFormatter() (robot.output.pyloggingconf.RobotHandler
method), 313

SetLanguages (class in robot.parsing.parser.parser),
392

setLevel() (robot.output.pyloggingconf.RobotHandler
method), 313

setter() (robot.utils.misc.classproperty method), 604
SETTING_HEADER (robot.parsing.lexer.tokens.END at-

tribute), 339
SETTING_HEADER (robot.parsing.lexer.tokens.EOS at-

tribute), 337
SETTING_HEADER (robot.parsing.lexer.tokens.Token

attribute), 333
setting_section()

(robot.parsing.lexer.context.FileContext
method), 323

setting_section()
(robot.parsing.lexer.context.InitFileContext
method), 325

setting_section()
(robot.parsing.lexer.context.ResourceFileContext
method), 324

setting_section()
(robot.parsing.lexer.context.TestCaseFileContext
method), 324

SETTING_TOKENS (robot.parsing.lexer.tokens.END at-
tribute), 339

SETTING_TOKENS (robot.parsing.lexer.tokens.EOS at-
tribute), 337

SETTING_TOKENS (robot.parsing.lexer.tokens.Token
attribute), 335

SettingLexer (class in
robot.parsing.lexer.statementlexers), 330

Settings (class in robot.parsing.lexer.settings), 326
settings (robot.conf.languages.Bg attribute), 60

Index 745

Robot Framework Documentation, Release 6.0.2

settings (robot.conf.languages.Bs attribute), 39
settings (robot.conf.languages.Cs attribute), 37
settings (robot.conf.languages.De attribute), 43
settings (robot.conf.languages.En attribute), 35
settings (robot.conf.languages.Es attribute), 52
settings (robot.conf.languages.Fi attribute), 41
settings (robot.conf.languages.Fr attribute), 42
settings (robot.conf.languages.Hi attribute), 64
settings (robot.conf.languages.It attribute), 63
settings (robot.conf.languages.Language attribute),

34
settings (robot.conf.languages.Nl attribute), 38
settings (robot.conf.languages.Pl attribute), 49
settings (robot.conf.languages.Pt attribute), 46
settings (robot.conf.languages.PtBr attribute), 45
settings (robot.conf.languages.Ro attribute), 62
settings (robot.conf.languages.Ru attribute), 53
settings (robot.conf.languages.Sv attribute), 59
settings (robot.conf.languages.Th attribute), 48
settings (robot.conf.languages.Tr attribute), 57
settings (robot.conf.languages.Uk attribute), 50
settings (robot.conf.languages.ZhCn attribute), 55
settings (robot.conf.languages.ZhTw attribute), 56
settings_class (robot.parsing.lexer.context.FileContext

attribute), 323
settings_class (robot.parsing.lexer.context.InitFileContext

attribute), 324
settings_class (robot.parsing.lexer.context.KeywordContext

attribute), 325
settings_class (robot.parsing.lexer.context.LexingContext

attribute), 323
settings_class (robot.parsing.lexer.context.ResourceFileContext

attribute), 324
settings_class (robot.parsing.lexer.context.TestCaseContext

attribute), 325
settings_class (robot.parsing.lexer.context.TestCaseFileContext

attribute), 324
settings_header (robot.conf.languages.Bg at-

tribute), 59
settings_header (robot.conf.languages.Bs at-

tribute), 38
settings_header (robot.conf.languages.Cs at-

tribute), 35
settings_header (robot.conf.languages.De at-

tribute), 42
settings_header (robot.conf.languages.En at-

tribute), 34
settings_header (robot.conf.languages.Es at-

tribute), 51
settings_header (robot.conf.languages.Fi at-

tribute), 39
settings_header (robot.conf.languages.Fr at-

tribute), 41

settings_header (robot.conf.languages.Hi at-
tribute), 63

settings_header (robot.conf.languages.It at-
tribute), 62

settings_header (robot.conf.languages.Language
attribute), 32

settings_header (robot.conf.languages.Nl at-
tribute), 37

settings_header (robot.conf.languages.Pl at-
tribute), 48

settings_header (robot.conf.languages.Pt at-
tribute), 45

settings_header (robot.conf.languages.PtBr
attribute), 44

settings_header (robot.conf.languages.Ro at-
tribute), 60

settings_header (robot.conf.languages.Ru at-
tribute), 52

settings_header (robot.conf.languages.Sv at-
tribute), 58

settings_header (robot.conf.languages.Th at-
tribute), 46

settings_header (robot.conf.languages.Tr at-
tribute), 56

settings_header (robot.conf.languages.Uk at-
tribute), 49

settings_header (robot.conf.languages.ZhCn at-
tribute), 53

settings_header (robot.conf.languages.ZhTw at-
tribute), 55

SettingsBuilder (class in
robot.running.builder.transformers), 544

SettingSection (class in
robot.parsing.model.blocks), 341

SettingSectionHeaderLexer (class in
robot.parsing.lexer.statementlexers), 328

SettingSectionLexer (class in
robot.parsing.lexer.blocklexers), 319

SettingSectionParser (class in
robot.parsing.parser.fileparser), 390

Setup (class in robot.parsing.model.statements), 364
SETUP (robot.model.body.BodyItem attribute), 228
SETUP (robot.model.control.Break attribute), 249
SETUP (robot.model.control.Continue attribute), 248
SETUP (robot.model.control.For attribute), 239
SETUP (robot.model.control.If attribute), 243
SETUP (robot.model.control.IfBranch attribute), 242
SETUP (robot.model.control.Return attribute), 247
SETUP (robot.model.control.Try attribute), 246
SETUP (robot.model.control.TryBranch attribute), 244
SETUP (robot.model.control.While attribute), 240
SETUP (robot.model.keyword.Keyword attribute), 260
setup (robot.model.keyword.Keywords attribute), 261
SETUP (robot.model.message.Message attribute), 263

746 Index

Robot Framework Documentation, Release 6.0.2

setup (robot.model.testcase.TestCase attribute), 283
setup (robot.model.testsuite.TestSuite attribute), 285
SETUP (robot.output.loggerhelper.Message attribute),

310
SETUP (robot.parsing.lexer.tokens.END attribute), 339
SETUP (robot.parsing.lexer.tokens.EOS attribute), 337
SETUP (robot.parsing.lexer.tokens.Token attribute), 334
SETUP (robot.result.model.Break attribute), 488
SETUP (robot.result.model.Continue attribute), 486
SETUP (robot.result.model.For attribute), 467
SETUP (robot.result.model.ForIteration attribute), 465
SETUP (robot.result.model.If attribute), 477
SETUP (robot.result.model.IfBranch attribute), 474
SETUP (robot.result.model.Keyword attribute), 491
SETUP (robot.result.model.Message attribute), 463
SETUP (robot.result.model.Return attribute), 484
setup (robot.result.model.TestCase attribute), 495
setup (robot.result.model.TestSuite attribute), 498
SETUP (robot.result.model.Try attribute), 481
SETUP (robot.result.model.TryBranch attribute), 479
SETUP (robot.result.model.While attribute), 472
SETUP (robot.result.model.WhileIteration attribute), 470
setup (robot.running.builder.settings.Defaults at-

tribute), 543
setup (robot.running.builder.settings.TestSettings at-

tribute), 543
SETUP (robot.running.model.Break attribute), 569
SETUP (robot.running.model.Continue attribute), 568
SETUP (robot.running.model.For attribute), 558
SETUP (robot.running.model.If attribute), 562
SETUP (robot.running.model.IfBranch attribute), 561
SETUP (robot.running.model.Keyword attribute), 556
SETUP (robot.running.model.Return attribute), 566
setup (robot.running.model.TestCase attribute), 571
setup (robot.running.model.TestSuite attribute), 575
SETUP (robot.running.model.Try attribute), 565
SETUP (robot.running.model.TryBranch attribute), 563
SETUP (robot.running.model.While attribute), 559
setup_executed() (robot.running.status.SuiteStatus

method), 583
setup_executed() (robot.running.status.TestStatus

method), 583
setup_message (robot.running.status.ParentMessage

attribute), 584
setup_message (robot.running.status.SuiteMessage

attribute), 584
setup_message (robot.running.status.TestMessage

attribute), 584
setup_setting (robot.conf.languages.Bg attribute),

60
setup_setting (robot.conf.languages.Bs attribute),

39
setup_setting (robot.conf.languages.Cs attribute),

36

setup_setting (robot.conf.languages.De attribute),
43

setup_setting (robot.conf.languages.En attribute),
35

setup_setting (robot.conf.languages.Es attribute),
51

setup_setting (robot.conf.languages.Fi attribute),
40

setup_setting (robot.conf.languages.Fr attribute),
42

setup_setting (robot.conf.languages.Hi attribute),
64

setup_setting (robot.conf.languages.It attribute),
62

setup_setting (robot.conf.languages.Language at-
tribute), 33

setup_setting (robot.conf.languages.Nl attribute),
37

setup_setting (robot.conf.languages.Pl attribute),
49

setup_setting (robot.conf.languages.Pt attribute),
46

setup_setting (robot.conf.languages.PtBr at-
tribute), 44

setup_setting (robot.conf.languages.Ro attribute),
61

setup_setting (robot.conf.languages.Ru attribute),
53

setup_setting (robot.conf.languages.Sv attribute),
58

setup_setting (robot.conf.languages.Th attribute),
47

setup_setting (robot.conf.languages.Tr attribute),
57

setup_setting (robot.conf.languages.Uk attribute),
50

setup_setting (robot.conf.languages.ZhCn at-
tribute), 54

setup_setting (robot.conf.languages.ZhTw at-
tribute), 55

setup_skipped_message
(robot.running.status.ParentMessage attribute),
584

setup_skipped_message
(robot.running.status.SuiteMessage attribute),
584

setup_skipped_message
(robot.running.status.TestMessage attribute),
584

setvar() (robot.libraries.dialogs_py.InputDialog
method), 179

setvar() (robot.libraries.dialogs_py.MessageDialog
method), 165

setvar() (robot.libraries.dialogs_py.MultipleSelectionDialog

Index 747

Robot Framework Documentation, Release 6.0.2

method), 207
setvar() (robot.libraries.dialogs_py.PassFailDialog

method), 221
setvar() (robot.libraries.dialogs_py.SelectionDialog

method), 193
SetVariables (class in robot.variables.scopes), 610
shortdoc (robot.libdocpkg.model.KeywordDoc at-

tribute), 72
shortdoc (robot.running.usererrorhandler.UserErrorHandler

attribute), 589
shortdoc (robot.running.userkeyword.EmbeddedArgumentsHandler

attribute), 590
shortdoc (robot.running.userkeyword.UserKeywordHandler

attribute), 590
should_be_byte_string()

(robot.libraries.String.String method), 137
should_be_empty() (robot.libraries.BuiltIn.BuiltIn

method), 92
should_be_equal() (robot.libraries.BuiltIn.BuiltIn

method), 92
should_be_equal_as_integers()

(robot.libraries.BuiltIn.BuiltIn method),
93

should_be_equal_as_numbers()
(robot.libraries.BuiltIn.BuiltIn method),
93

should_be_equal_as_strings()
(robot.libraries.BuiltIn.BuiltIn method),
93

should_be_lower_case()
(robot.libraries.String.String method), 137

should_be_string() (robot.libraries.String.String
method), 136

should_be_title_case()
(robot.libraries.String.String method), 137

should_be_true() (robot.libraries.BuiltIn.BuiltIn
method), 94

should_be_unicode_string()
(robot.libraries.String.String method), 136

should_be_upper_case()
(robot.libraries.String.String method), 137

should_contain() (robot.libraries.BuiltIn.BuiltIn
method), 94

should_contain_any()
(robot.libraries.BuiltIn.BuiltIn method),
94

should_contain_match()
(robot.libraries.Collections.Collections
method), 101

should_contain_x_times()
(robot.libraries.BuiltIn.BuiltIn method),
94

should_end_with() (robot.libraries.BuiltIn.BuiltIn
method), 95

should_exist() (robot.libraries.OperatingSystem.OperatingSystem
method), 115

should_match() (robot.libraries.BuiltIn.BuiltIn
method), 95

should_match_regexp()
(robot.libraries.BuiltIn.BuiltIn method),
95

should_not_be_empty()
(robot.libraries.BuiltIn.BuiltIn method),
95

should_not_be_equal()
(robot.libraries.BuiltIn.BuiltIn method),
96

should_not_be_equal_as_integers()
(robot.libraries.BuiltIn.BuiltIn method),
96

should_not_be_equal_as_numbers()
(robot.libraries.BuiltIn.BuiltIn method),
96

should_not_be_equal_as_strings()
(robot.libraries.BuiltIn.BuiltIn method),
96

should_not_be_string()
(robot.libraries.String.String method), 136

should_not_be_true()
(robot.libraries.BuiltIn.BuiltIn method),
96

should_not_contain()
(robot.libraries.BuiltIn.BuiltIn method),
97

should_not_contain_any()
(robot.libraries.BuiltIn.BuiltIn method),
97

should_not_contain_match()
(robot.libraries.Collections.Collections
method), 101

should_not_end_with()
(robot.libraries.BuiltIn.BuiltIn method),
97

should_not_exist()
(robot.libraries.OperatingSystem.OperatingSystem
method), 115

should_not_match()
(robot.libraries.BuiltIn.BuiltIn method),
97

should_not_match_regexp()
(robot.libraries.BuiltIn.BuiltIn method),
97

should_not_start_with()
(robot.libraries.BuiltIn.BuiltIn method),
97

should_start_with()
(robot.libraries.BuiltIn.BuiltIn method),
98

748 Index

Robot Framework Documentation, Release 6.0.2

show() (robot.libdocpkg.consoleviewer.ConsoleViewer
method), 70

show() (robot.libraries.dialogs_py.InputDialog
method), 179

show() (robot.libraries.dialogs_py.MessageDialog
method), 165

show() (robot.libraries.dialogs_py.MultipleSelectionDialog
method), 207

show() (robot.libraries.dialogs_py.PassFailDialog
method), 221

show() (robot.libraries.dialogs_py.SelectionDialog
method), 193

single_request() (robot.libraries.Remote.TimeoutHTTPSTransport
method), 130

single_request() (robot.libraries.Remote.TimeoutHTTPTransport
method), 129

single_value (robot.parsing.lexer.settings.InitFileSettings
attribute), 326

single_value (robot.parsing.lexer.settings.KeywordSettings
attribute), 327

single_value (robot.parsing.lexer.settings.ResourceFileSettings
attribute), 327

single_value (robot.parsing.lexer.settings.Settings
attribute), 326

single_value (robot.parsing.lexer.settings.TestCaseFileSettings
attribute), 326

single_value (robot.parsing.lexer.settings.TestCaseSettings
attribute), 327

SingleTagPattern (class in robot.model.tags), 277
SingleType (class in

robot.parsing.lexer.statementlexers), 328
SingleValue (class in

robot.parsing.model.statements), 347
size() (robot.libraries.dialogs_py.InputDialog

method), 179
size() (robot.libraries.dialogs_py.MessageDialog

method), 165
size() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 207
size() (robot.libraries.dialogs_py.PassFailDialog

method), 221
size() (robot.libraries.dialogs_py.SelectionDialog

method), 193
sizefrom() (robot.libraries.dialogs_py.InputDialog

method), 179
sizefrom() (robot.libraries.dialogs_py.MessageDialog

method), 165
sizefrom() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 207
sizefrom() (robot.libraries.dialogs_py.PassFailDialog

method), 221
sizefrom() (robot.libraries.dialogs_py.SelectionDialog

method), 193
skip (robot.conf.settings.RobotSettings attribute), 65

SKIP (robot.result.model.Break attribute), 488
SKIP (robot.result.model.Continue attribute), 486
SKIP (robot.result.model.For attribute), 468
SKIP (robot.result.model.ForIteration attribute), 465
SKIP (robot.result.model.If attribute), 477
SKIP (robot.result.model.IfBranch attribute), 474
SKIP (robot.result.model.Keyword attribute), 491
SKIP (robot.result.model.Return attribute), 484
SKIP (robot.result.model.StatusMixin attribute), 464
SKIP (robot.result.model.TestCase attribute), 494
SKIP (robot.result.model.TestSuite attribute), 496
SKIP (robot.result.model.Try attribute), 481
SKIP (robot.result.model.TryBranch attribute), 479
SKIP (robot.result.model.While attribute), 472
SKIP (robot.result.model.WhileIteration attribute), 470
skip() (robot.libraries.BuiltIn.BuiltIn method), 98
skip() (robot.output.filelogger.FileLogger method),

305
skip() (robot.output.logger.Logger method), 309
skip() (robot.output.loggerhelper.AbstractLogger

method), 309
skip() (robot.output.output.Output method), 311
skip_if() (robot.libraries.BuiltIn.BuiltIn method), 98
skip_on_failure (robot.conf.settings.RobotSettings

attribute), 65
skip_on_failure_after_tag_changes

(robot.running.status.TestStatus attribute),
583

skip_teardown_on_exit
(robot.conf.settings.RobotSettings attribute), 65

SkipExecution, 13
skipped (robot.model.stats.Stat attribute), 275
skipped (robot.model.totalstatistics.TotalStatistics at-

tribute), 288
skipped (robot.result.model.Break attribute), 489
skipped (robot.result.model.Continue attribute), 487
skipped (robot.result.model.For attribute), 469
skipped (robot.result.model.ForIteration attribute),

466
skipped (robot.result.model.If attribute), 478
skipped (robot.result.model.IfBranch attribute), 476
skipped (robot.result.model.Keyword attribute), 492
skipped (robot.result.model.Return attribute), 485
skipped (robot.result.model.StatusMixin attribute), 464
skipped (robot.result.model.TestCase attribute), 495
skipped (robot.result.model.TestSuite attribute), 496
skipped (robot.result.model.Try attribute), 483
skipped (robot.result.model.TryBranch attribute), 480
skipped (robot.result.model.While attribute), 473
skipped (robot.result.model.WhileIteration attribute),

471
skipped_tags (robot.conf.settings.RobotSettings at-

tribute), 65

Index 749

Robot Framework Documentation, Release 6.0.2

slaves() (robot.libraries.dialogs_py.InputDialog
method), 179

slaves() (robot.libraries.dialogs_py.MessageDialog
method), 165

slaves() (robot.libraries.dialogs_py.MultipleSelectionDialog
method), 207

slaves() (robot.libraries.dialogs_py.PassFailDialog
method), 221

slaves() (robot.libraries.dialogs_py.SelectionDialog
method), 193

sleep() (robot.libraries.BuiltIn.BuiltIn method), 98
sock_avail() (robot.libraries.Telnet.TelnetConnection

method), 146
sort() (robot.model.body.BaseBody method), 230
sort() (robot.model.body.Body method), 232
sort() (robot.model.body.Branches method), 234
sort() (robot.model.itemlist.ItemList method), 259
sort() (robot.model.keyword.Keywords method), 262
sort() (robot.model.message.Messages method), 264
sort() (robot.model.testcase.TestCases method), 285
sort() (robot.model.testsuite.TestSuites method), 288
sort() (robot.result.model.Body method), 459
sort() (robot.result.model.Branches method), 461
sort() (robot.result.model.Iterations method), 462
sort() (robot.running.model.Body method), 555
sort() (robot.running.model.Imports method), 577
sort_list() (robot.libraries.Collections.Collections

method), 106
source (robot.model.testcase.TestCase attribute), 284
source (robot.model.testsuite.TestSuite attribute), 285
source (robot.result.executionresult.Result attribute),

413
source (robot.result.model.TestCase attribute), 495
source (robot.result.model.TestSuite attribute), 498
source (robot.running.model.Break attribute), 569
source (robot.running.model.Continue attribute), 567
source (robot.running.model.For attribute), 557
source (robot.running.model.If attribute), 562
source (robot.running.model.IfBranch attribute), 560
source (robot.running.model.Keyword attribute), 555
source (robot.running.model.Return attribute), 566
source (robot.running.model.TestCase attribute), 570
source (robot.running.model.TestSuite attribute), 575
source (robot.running.model.Try attribute), 564
source (robot.running.model.TryBranch attribute), 563
source (robot.running.model.UserKeyword attribute),

576
source (robot.running.model.While attribute), 559
source (robot.running.userkeywordrunner.EmbeddedArgumentsRunner

attribute), 590
source (robot.running.userkeywordrunner.UserKeywordRunner

attribute), 590
sourcename (robot.result.model.Keyword attribute),

490

split_command_line()
(robot.libraries.Process.Process method),
127

split_extension()
(robot.libraries.OperatingSystem.OperatingSystem
method), 120

split_from_equals() (in module
robot.utils.escaping), 598

split_log (robot.conf.settings.RebotSettings at-
tribute), 66

split_log (robot.conf.settings.RobotSettings at-
tribute), 66

split_path() (robot.libraries.OperatingSystem.OperatingSystem
method), 120

split_string() (robot.libraries.String.String
method), 135

split_string_from_right()
(robot.libraries.String.String method), 136

split_string_to_characters()
(robot.libraries.String.String method), 136

split_to_lines() (robot.libraries.String.String
method), 133

SplitLogWriter (class in robot.reporting.jswriter),
395

STANDARD (robot.libdocpkg.datatypes.TypeDoc at-
tribute), 70

start() (robot.result.xmlelementhandlers.ArgumentHandler
method), 526

start() (robot.result.xmlelementhandlers.ArgumentsHandler
method), 525

start() (robot.result.xmlelementhandlers.AssignHandler
method), 525

start() (robot.result.xmlelementhandlers.BranchHandler
method), 521

start() (robot.result.xmlelementhandlers.BreakHandler
method), 522

start() (robot.result.xmlelementhandlers.ContinueHandler
method), 522

start() (robot.result.xmlelementhandlers.DocHandler
method), 523

start() (robot.result.xmlelementhandlers.ElementHandler
method), 519

start() (robot.result.xmlelementhandlers.ErrorMessageHandler
method), 526

start() (robot.result.xmlelementhandlers.ErrorsHandler
method), 526

start() (robot.result.xmlelementhandlers.ForHandler
method), 520

start() (robot.result.xmlelementhandlers.IfHandler
method), 521

start() (robot.result.xmlelementhandlers.IterationHandler
method), 521

start() (robot.result.xmlelementhandlers.KeywordHandler
method), 520

750 Index

Robot Framework Documentation, Release 6.0.2

start() (robot.result.xmlelementhandlers.MessageHandler
method), 523

start() (robot.result.xmlelementhandlers.MetadataHandler
method), 523

start() (robot.result.xmlelementhandlers.MetadataItemHandler
method), 524

start() (robot.result.xmlelementhandlers.MetaHandler
method), 524

start() (robot.result.xmlelementhandlers.PatternHandler
method), 522

start() (robot.result.xmlelementhandlers.ReturnHandler
method), 522

start() (robot.result.xmlelementhandlers.RobotHandler
method), 519

start() (robot.result.xmlelementhandlers.RootHandler
method), 519

start() (robot.result.xmlelementhandlers.StatisticsHandler
method), 527

start() (robot.result.xmlelementhandlers.StatusHandler
method), 523

start() (robot.result.xmlelementhandlers.SuiteHandler
method), 519

start() (robot.result.xmlelementhandlers.TagHandler
method), 524

start() (robot.result.xmlelementhandlers.TagsHandler
method), 524

start() (robot.result.xmlelementhandlers.TestHandler
method), 520

start() (robot.result.xmlelementhandlers.TimeoutHandler
method), 525

start() (robot.result.xmlelementhandlers.TryHandler
method), 521

start() (robot.result.xmlelementhandlers.ValueHandler
method), 526

start() (robot.result.xmlelementhandlers.VarHandler
method), 525

start() (robot.result.xmlelementhandlers.WhileHandler
method), 520

start() (robot.result.xmlelementhandlers.XmlElementHandler
method), 519

start() (robot.running.timeouts.KeywordTimeout
method), 548

start() (robot.running.timeouts.TestTimeout method),
548

start() (robot.utils.markupwriters.HtmlWriter
method), 602

start() (robot.utils.markupwriters.NullMarkupWriter
method), 603

start() (robot.utils.markupwriters.XmlWriter
method), 603

start_block() (robot.parsing.model.blocks.ValidationContext
method), 345

start_body_item()
(robot.conf.gatherfailed.GatherFailedSuites

method), 29
start_body_item()

(robot.conf.gatherfailed.GatherFailedTests
method), 24

start_body_item()
(robot.model.configurer.SuiteConfigurer
method), 235

start_body_item()
(robot.model.filter.EmptySuiteRemover
method), 251

start_body_item() (robot.model.filter.Filter
method), 256

start_body_item()
(robot.model.modifier.ModelModifier method),
267

start_body_item()
(robot.model.statistics.StatisticsBuilder
method), 272

start_body_item()
(robot.model.tagsetter.TagSetter method),
279

start_body_item()
(robot.model.totalstatistics.TotalStatisticsBuilder
method), 290

start_body_item()
(robot.model.visitor.SuiteVisitor method),
298

start_body_item()
(robot.output.console.dotted.StatusReporter
method), 300

start_body_item()
(robot.output.xmllogger.XmlLogger method),
316

start_body_item()
(robot.reporting.outputwriter.OutputWriter
method), 397

start_body_item()
(robot.reporting.xunitwriter.XUnitFileWriter
method), 404

start_body_item()
(robot.result.configurer.SuiteConfigurer
method), 409

start_body_item()
(robot.result.keywordremover.AllKeywordsRemover
method), 417

start_body_item()
(robot.result.keywordremover.ByNameKeywordRemover
method), 425

start_body_item()
(robot.result.keywordremover.ByTagKeywordRemover
method), 429

start_body_item()
(robot.result.keywordremover.ForLoopItemsRemover
method), 433

Index 751

Robot Framework Documentation, Release 6.0.2

start_body_item()
(robot.result.keywordremover.PassedKeywordRemover
method), 421

start_body_item()
(robot.result.keywordremover.WaitUntilKeywordSucceedsRemover
method), 442

start_body_item()
(robot.result.keywordremover.WarningAndErrorFinder
method), 446

start_body_item()
(robot.result.keywordremover.WhileLoopItemsRemover
method), 437

start_body_item() (robot.result.merger.Merger
method), 450

start_body_item()
(robot.result.messagefilter.MessageFilter
method), 455

start_body_item()
(robot.result.resultbuilder.RemoveKeywords
method), 502

start_body_item()
(robot.result.suiteteardownfailed.SuiteTeardownFailed
method), 511

start_body_item()
(robot.result.suiteteardownfailed.SuiteTeardownFailureHandler
method), 506

start_body_item()
(robot.result.visitor.ResultVisitor method),
515

start_body_item()
(robot.running.randomizer.Randomizer
method), 580

start_body_item()
(robot.running.suiterunner.SuiteRunner
method), 586

start_break() (robot.conf.gatherfailed.GatherFailedSuites
method), 29

start_break() (robot.conf.gatherfailed.GatherFailedTests
method), 25

start_break() (robot.model.configurer.SuiteConfigurer
method), 235

start_break() (robot.model.filter.EmptySuiteRemover
method), 252

start_break() (robot.model.filter.Filter method),
256

start_break() (robot.model.modifier.ModelModifier
method), 267

start_break() (robot.model.statistics.StatisticsBuilder
method), 272

start_break() (robot.model.tagsetter.TagSetter
method), 279

start_break() (robot.model.totalstatistics.TotalStatisticsBuilder
method), 290

start_break() (robot.model.visitor.SuiteVisitor

method), 297
start_break() (robot.output.console.dotted.StatusReporter

method), 300
start_break() (robot.output.xmllogger.XmlLogger

method), 315
start_break() (robot.reporting.outputwriter.OutputWriter

method), 397
start_break() (robot.reporting.xunitwriter.XUnitFileWriter

method), 404
start_break() (robot.result.configurer.SuiteConfigurer

method), 410
start_break() (robot.result.keywordremover.AllKeywordsRemover

method), 417
start_break() (robot.result.keywordremover.ByNameKeywordRemover

method), 425
start_break() (robot.result.keywordremover.ByTagKeywordRemover

method), 429
start_break() (robot.result.keywordremover.ForLoopItemsRemover

method), 433
start_break() (robot.result.keywordremover.PassedKeywordRemover

method), 421
start_break() (robot.result.keywordremover.WaitUntilKeywordSucceedsRemover

method), 442
start_break() (robot.result.keywordremover.WarningAndErrorFinder

method), 446
start_break() (robot.result.keywordremover.WhileLoopItemsRemover

method), 438
start_break() (robot.result.merger.Merger method),

450
start_break() (robot.result.messagefilter.MessageFilter

method), 455
start_break() (robot.result.resultbuilder.RemoveKeywords

method), 502
start_break() (robot.result.suiteteardownfailed.SuiteTeardownFailed

method), 511
start_break() (robot.result.suiteteardownfailed.SuiteTeardownFailureHandler

method), 506
start_break() (robot.result.visitor.ResultVisitor

method), 516
start_break() (robot.running.randomizer.Randomizer

method), 580
start_break() (robot.running.suiterunner.SuiteRunner

method), 586
start_continue() (robot.conf.gatherfailed.GatherFailedSuites

method), 29
start_continue() (robot.conf.gatherfailed.GatherFailedTests

method), 25
start_continue() (robot.model.configurer.SuiteConfigurer

method), 236
start_continue() (robot.model.filter.EmptySuiteRemover

method), 252
start_continue() (robot.model.filter.Filter

method), 256
start_continue() (robot.model.modifier.ModelModifier

752 Index

Robot Framework Documentation, Release 6.0.2

method), 267
start_continue() (robot.model.statistics.StatisticsBuilder

method), 272
start_continue() (robot.model.tagsetter.TagSetter

method), 279
start_continue() (robot.model.totalstatistics.TotalStatisticsBuilder

method), 290
start_continue() (robot.model.visitor.SuiteVisitor

method), 297
start_continue() (robot.output.console.dotted.StatusReporter

method), 300
start_continue() (robot.output.xmllogger.XmlLogger

method), 315
start_continue() (robot.reporting.outputwriter.OutputWriter

method), 397
start_continue() (robot.reporting.xunitwriter.XUnitFileWriter

method), 404
start_continue() (robot.result.configurer.SuiteConfigurer

method), 410
start_continue() (robot.result.keywordremover.AllKeywordsRemover

method), 417
start_continue() (robot.result.keywordremover.ByNameKeywordRemover

method), 425
start_continue() (robot.result.keywordremover.ByTagKeywordRemover

method), 429
start_continue() (robot.result.keywordremover.ForLoopItemsRemover

method), 433
start_continue() (robot.result.keywordremover.PassedKeywordRemover

method), 421
start_continue() (robot.result.keywordremover.WaitUntilKeywordSucceedsRemover

method), 442
start_continue() (robot.result.keywordremover.WarningAndErrorFinder

method), 446
start_continue() (robot.result.keywordremover.WhileLoopItemsRemover

method), 438
start_continue() (robot.result.merger.Merger

method), 451
start_continue() (robot.result.messagefilter.MessageFilter

method), 455
start_continue() (robot.result.resultbuilder.RemoveKeywords

method), 502
start_continue() (robot.result.suiteteardownfailed.SuiteTeardownFailed

method), 511
start_continue() (robot.result.suiteteardownfailed.SuiteTeardownFailureHandler

method), 507
start_continue() (robot.result.visitor.ResultVisitor

method), 516
start_continue() (robot.running.randomizer.Randomizer

method), 580
start_continue() (robot.running.suiterunner.SuiteRunner

method), 586
start_directory()

(robot.parsing.suitestructure.SuiteStructureVisitor
method), 393

start_directory()
(robot.running.builder.builders.SuiteStructureParser
method), 542

start_errors() (robot.output.xmllogger.XmlLogger
method), 316

start_errors() (robot.reporting.outputwriter.OutputWriter
method), 397

start_errors() (robot.reporting.xunitwriter.XUnitFileWriter
method), 404

start_errors() (robot.result.visitor.ResultVisitor
method), 514

start_for() (robot.conf.gatherfailed.GatherFailedSuites
method), 29

start_for() (robot.conf.gatherfailed.GatherFailedTests
method), 25

start_for() (robot.model.configurer.SuiteConfigurer
method), 236

start_for() (robot.model.filter.EmptySuiteRemover
method), 252

start_for() (robot.model.filter.Filter method), 256
start_for() (robot.model.modifier.ModelModifier

method), 267
start_for() (robot.model.statistics.StatisticsBuilder

method), 272
start_for() (robot.model.tagsetter.TagSetter

method), 279
start_for() (robot.model.totalstatistics.TotalStatisticsBuilder

method), 290
start_for() (robot.model.visitor.SuiteVisitor

method), 295
start_for() (robot.output.console.dotted.StatusReporter

method), 300
start_for() (robot.output.xmllogger.XmlLogger

method), 314
start_for() (robot.reporting.outputwriter.OutputWriter

method), 397
start_for() (robot.reporting.xunitwriter.XUnitFileWriter

method), 404
start_for() (robot.result.configurer.SuiteConfigurer

method), 410
start_for() (robot.result.keywordremover.AllKeywordsRemover

method), 417
start_for() (robot.result.keywordremover.ByNameKeywordRemover

method), 425
start_for() (robot.result.keywordremover.ByTagKeywordRemover

method), 429
start_for() (robot.result.keywordremover.ForLoopItemsRemover

method), 432
start_for() (robot.result.keywordremover.PassedKeywordRemover

method), 421
start_for() (robot.result.keywordremover.WaitUntilKeywordSucceedsRemover

method), 442
start_for() (robot.result.keywordremover.WarningAndErrorFinder

method), 446

Index 753

Robot Framework Documentation, Release 6.0.2

start_for() (robot.result.keywordremover.WhileLoopItemsRemover
method), 438

start_for() (robot.result.merger.Merger method),
451

start_for() (robot.result.messagefilter.MessageFilter
method), 455

start_for() (robot.result.resultbuilder.RemoveKeywords
method), 502

start_for() (robot.result.suiteteardownfailed.SuiteTeardownFailed
method), 511

start_for() (robot.result.suiteteardownfailed.SuiteTeardownFailureHandler
method), 507

start_for() (robot.result.visitor.ResultVisitor
method), 516

start_for() (robot.running.randomizer.Randomizer
method), 580

start_for() (robot.running.suiterunner.SuiteRunner
method), 586

start_for_iteration()
(robot.conf.gatherfailed.GatherFailedSuites
method), 29

start_for_iteration()
(robot.conf.gatherfailed.GatherFailedTests
method), 25

start_for_iteration()
(robot.model.configurer.SuiteConfigurer
method), 236

start_for_iteration()
(robot.model.filter.EmptySuiteRemover
method), 252

start_for_iteration() (robot.model.filter.Filter
method), 256

start_for_iteration()
(robot.model.modifier.ModelModifier method),
267

start_for_iteration()
(robot.model.statistics.StatisticsBuilder
method), 272

start_for_iteration()
(robot.model.tagsetter.TagSetter method),
279

start_for_iteration()
(robot.model.totalstatistics.TotalStatisticsBuilder
method), 290

start_for_iteration()
(robot.model.visitor.SuiteVisitor method),
295

start_for_iteration()
(robot.output.console.dotted.StatusReporter
method), 300

start_for_iteration()
(robot.output.xmllogger.XmlLogger method),
314

start_for_iteration()

(robot.reporting.outputwriter.OutputWriter
method), 398

start_for_iteration()
(robot.reporting.xunitwriter.XUnitFileWriter
method), 404

start_for_iteration()
(robot.result.configurer.SuiteConfigurer
method), 410

start_for_iteration()
(robot.result.keywordremover.AllKeywordsRemover
method), 417

start_for_iteration()
(robot.result.keywordremover.ByNameKeywordRemover
method), 425

start_for_iteration()
(robot.result.keywordremover.ByTagKeywordRemover
method), 430

start_for_iteration()
(robot.result.keywordremover.ForLoopItemsRemover
method), 434

start_for_iteration()
(robot.result.keywordremover.PassedKeywordRemover
method), 421

start_for_iteration()
(robot.result.keywordremover.WaitUntilKeywordSucceedsRemover
method), 442

start_for_iteration()
(robot.result.keywordremover.WarningAndErrorFinder
method), 447

start_for_iteration()
(robot.result.keywordremover.WhileLoopItemsRemover
method), 438

start_for_iteration()
(robot.result.merger.Merger method), 451

start_for_iteration()
(robot.result.messagefilter.MessageFilter
method), 455

start_for_iteration()
(robot.result.resultbuilder.RemoveKeywords
method), 502

start_for_iteration()
(robot.result.suiteteardownfailed.SuiteTeardownFailed
method), 511

start_for_iteration()
(robot.result.suiteteardownfailed.SuiteTeardownFailureHandler
method), 507

start_for_iteration()
(robot.result.visitor.ResultVisitor method),
516

start_for_iteration()
(robot.running.randomizer.Randomizer
method), 580

start_for_iteration()
(robot.running.suiterunner.SuiteRunner

754 Index

Robot Framework Documentation, Release 6.0.2

method), 586
start_if() (robot.conf.gatherfailed.GatherFailedSuites

method), 29
start_if() (robot.conf.gatherfailed.GatherFailedTests

method), 25
start_if() (robot.model.configurer.SuiteConfigurer

method), 236
start_if() (robot.model.filter.EmptySuiteRemover

method), 252
start_if() (robot.model.filter.Filter method), 256
start_if() (robot.model.modifier.ModelModifier

method), 267
start_if() (robot.model.statistics.StatisticsBuilder

method), 272
start_if() (robot.model.tagsetter.TagSetter method),

279
start_if() (robot.model.totalstatistics.TotalStatisticsBuilder

method), 290
start_if() (robot.model.visitor.SuiteVisitor method),

295
start_if() (robot.output.console.dotted.StatusReporter

method), 301
start_if() (robot.output.xmllogger.XmlLogger

method), 313
start_if() (robot.reporting.outputwriter.OutputWriter

method), 398
start_if() (robot.reporting.xunitwriter.XUnitFileWriter

method), 404
start_if() (robot.result.configurer.SuiteConfigurer

method), 410
start_if() (robot.result.keywordremover.AllKeywordsRemover

method), 417
start_if() (robot.result.keywordremover.ByNameKeywordRemover

method), 425
start_if() (robot.result.keywordremover.ByTagKeywordRemover

method), 430
start_if() (robot.result.keywordremover.ForLoopItemsRemover

method), 434
start_if() (robot.result.keywordremover.PassedKeywordRemover

method), 421
start_if() (robot.result.keywordremover.WaitUntilKeywordSucceedsRemover

method), 442
start_if() (robot.result.keywordremover.WarningAndErrorFinder

method), 447
start_if() (robot.result.keywordremover.WhileLoopItemsRemover

method), 438
start_if() (robot.result.merger.Merger method), 451
start_if() (robot.result.messagefilter.MessageFilter

method), 455
start_if() (robot.result.resultbuilder.RemoveKeywords

method), 503
start_if() (robot.result.suiteteardownfailed.SuiteTeardownFailed

method), 511
start_if() (robot.result.suiteteardownfailed.SuiteTeardownFailureHandler

method), 507
start_if() (robot.result.visitor.ResultVisitor method),

516
start_if() (robot.running.randomizer.Randomizer

method), 580
start_if() (robot.running.suiterunner.SuiteRunner

method), 586
start_if_branch()

(robot.conf.gatherfailed.GatherFailedSuites
method), 29

start_if_branch()
(robot.conf.gatherfailed.GatherFailedTests
method), 25

start_if_branch()
(robot.model.configurer.SuiteConfigurer
method), 236

start_if_branch()
(robot.model.filter.EmptySuiteRemover
method), 252

start_if_branch() (robot.model.filter.Filter
method), 256

start_if_branch()
(robot.model.modifier.ModelModifier method),
267

start_if_branch()
(robot.model.statistics.StatisticsBuilder
method), 272

start_if_branch()
(robot.model.tagsetter.TagSetter method),
279

start_if_branch()
(robot.model.totalstatistics.TotalStatisticsBuilder
method), 290

start_if_branch()
(robot.model.visitor.SuiteVisitor method),
296

start_if_branch()
(robot.output.console.dotted.StatusReporter
method), 301

start_if_branch()
(robot.output.xmllogger.XmlLogger method),
314

start_if_branch()
(robot.reporting.outputwriter.OutputWriter
method), 398

start_if_branch()
(robot.reporting.xunitwriter.XUnitFileWriter
method), 405

start_if_branch()
(robot.result.configurer.SuiteConfigurer
method), 410

start_if_branch()
(robot.result.keywordremover.AllKeywordsRemover
method), 417

Index 755

Robot Framework Documentation, Release 6.0.2

start_if_branch()
(robot.result.keywordremover.ByNameKeywordRemover
method), 426

start_if_branch()
(robot.result.keywordremover.ByTagKeywordRemover
method), 430

start_if_branch()
(robot.result.keywordremover.ForLoopItemsRemover
method), 434

start_if_branch()
(robot.result.keywordremover.PassedKeywordRemover
method), 422

start_if_branch()
(robot.result.keywordremover.WaitUntilKeywordSucceedsRemover
method), 442

start_if_branch()
(robot.result.keywordremover.WarningAndErrorFinder
method), 447

start_if_branch()
(robot.result.keywordremover.WhileLoopItemsRemover
method), 438

start_if_branch() (robot.result.merger.Merger
method), 451

start_if_branch()
(robot.result.messagefilter.MessageFilter
method), 455

start_if_branch()
(robot.result.resultbuilder.RemoveKeywords
method), 503

start_if_branch()
(robot.result.suiteteardownfailed.SuiteTeardownFailed
method), 511

start_if_branch()
(robot.result.suiteteardownfailed.SuiteTeardownFailureHandler
method), 507

start_if_branch()
(robot.result.visitor.ResultVisitor method),
516

start_if_branch()
(robot.running.randomizer.Randomizer
method), 580

start_if_branch()
(robot.running.suiterunner.SuiteRunner
method), 587

start_keyword() (robot.conf.gatherfailed.GatherFailedSuites
method), 29

start_keyword() (robot.conf.gatherfailed.GatherFailedTests
method), 25

start_keyword() (robot.model.configurer.SuiteConfigurer
method), 236

start_keyword() (robot.model.filter.EmptySuiteRemover
method), 252

start_keyword() (robot.model.filter.Filter method),
256

start_keyword() (robot.model.modifier.ModelModifier
method), 267

start_keyword() (robot.model.statistics.StatisticsBuilder
method), 272

start_keyword() (robot.model.tagsetter.TagSetter
method), 280

start_keyword() (robot.model.totalstatistics.TotalStatisticsBuilder
method), 291

start_keyword() (robot.model.visitor.SuiteVisitor
method), 294

start_keyword() (robot.output.console.dotted.StatusReporter
method), 301

start_keyword() (robot.output.console.verbose.VerboseOutput
method), 304

start_keyword() (robot.output.filelogger.FileLogger
method), 305

start_keyword() (robot.output.listeners.Listeners
method), 307

start_keyword() (robot.output.logger.Logger
method), 308

start_keyword() (robot.output.logger.LoggerProxy
method), 309

start_keyword() (robot.output.output.Output
method), 311

start_keyword() (robot.output.xmllogger.XmlLogger
method), 313

start_keyword() (robot.reporting.outputwriter.OutputWriter
method), 398

start_keyword() (robot.reporting.xunitwriter.XUnitFileWriter
method), 405

start_keyword() (robot.result.configurer.SuiteConfigurer
method), 410

start_keyword() (robot.result.keywordremover.AllKeywordsRemover
method), 418

start_keyword() (robot.result.keywordremover.ByNameKeywordRemover
method), 424

start_keyword() (robot.result.keywordremover.ByTagKeywordRemover
method), 428

start_keyword() (robot.result.keywordremover.ForLoopItemsRemover
method), 434

start_keyword() (robot.result.keywordremover.PassedKeywordRemover
method), 422

start_keyword() (robot.result.keywordremover.WaitUntilKeywordSucceedsRemover
method), 440

start_keyword() (robot.result.keywordremover.WarningAndErrorFinder
method), 445

start_keyword() (robot.result.keywordremover.WhileLoopItemsRemover
method), 438

start_keyword() (robot.result.merger.Merger
method), 451

start_keyword() (robot.result.messagefilter.MessageFilter
method), 453

start_keyword() (robot.result.resultbuilder.RemoveKeywords
method), 503

756 Index

Robot Framework Documentation, Release 6.0.2

start_keyword() (robot.result.suiteteardownfailed.SuiteTeardownFailed
method), 511

start_keyword() (robot.result.suiteteardownfailed.SuiteTeardownFailureHandler
method), 507

start_keyword() (robot.result.visitor.ResultVisitor
method), 516

start_keyword() (robot.running.randomizer.Randomizer
method), 580

start_keyword() (robot.running.suiterunner.SuiteRunner
method), 587

start_keyword() (robot.variables.scopes.SetVariables
method), 610

start_keyword() (robot.variables.scopes.VariableScopes
method), 609

start_loggers (robot.output.logger.Logger at-
tribute), 308

start_message() (robot.conf.gatherfailed.GatherFailedSuites
method), 30

start_message() (robot.conf.gatherfailed.GatherFailedTests
method), 25

start_message() (robot.model.configurer.SuiteConfigurer
method), 236

start_message() (robot.model.filter.EmptySuiteRemover
method), 252

start_message() (robot.model.filter.Filter method),
256

start_message() (robot.model.modifier.ModelModifier
method), 267

start_message() (robot.model.statistics.StatisticsBuilder
method), 272

start_message() (robot.model.tagsetter.TagSetter
method), 280

start_message() (robot.model.totalstatistics.TotalStatisticsBuilder
method), 291

start_message() (robot.model.visitor.SuiteVisitor
method), 298

start_message() (robot.output.console.dotted.StatusReporter
method), 301

start_message() (robot.output.xmllogger.XmlLogger
method), 316

start_message() (robot.reporting.outputwriter.OutputWriter
method), 395

start_message() (robot.reporting.xunitwriter.XUnitFileWriter
method), 405

start_message() (robot.result.configurer.SuiteConfigurer
method), 410

start_message() (robot.result.keywordremover.AllKeywordsRemover
method), 418

start_message() (robot.result.keywordremover.ByNameKeywordRemover
method), 426

start_message() (robot.result.keywordremover.ByTagKeywordRemover
method), 430

start_message() (robot.result.keywordremover.ForLoopItemsRemover
method), 434

start_message() (robot.result.keywordremover.PassedKeywordRemover
method), 422

start_message() (robot.result.keywordremover.WaitUntilKeywordSucceedsRemover
method), 442

start_message() (robot.result.keywordremover.WarningAndErrorFinder
method), 447

start_message() (robot.result.keywordremover.WhileLoopItemsRemover
method), 438

start_message() (robot.result.merger.Merger
method), 451

start_message() (robot.result.messagefilter.MessageFilter
method), 455

start_message() (robot.result.resultbuilder.RemoveKeywords
method), 503

start_message() (robot.result.suiteteardownfailed.SuiteTeardownFailed
method), 511

start_message() (robot.result.suiteteardownfailed.SuiteTeardownFailureHandler
method), 507

start_message() (robot.result.visitor.ResultVisitor
method), 516

start_message() (robot.running.randomizer.Randomizer
method), 581

start_message() (robot.running.suiterunner.SuiteRunner
method), 587

start_process() (robot.libraries.Process.Process
method), 125

start_result() (robot.output.xmllogger.XmlLogger
method), 316

start_result() (robot.reporting.outputwriter.OutputWriter
method), 398

start_result() (robot.reporting.xunitwriter.XUnitFileWriter
method), 405

start_result() (robot.result.visitor.ResultVisitor
method), 514

start_return() (robot.conf.gatherfailed.GatherFailedSuites
method), 30

start_return() (robot.conf.gatherfailed.GatherFailedTests
method), 25

start_return() (robot.model.configurer.SuiteConfigurer
method), 236

start_return() (robot.model.filter.EmptySuiteRemover
method), 252

start_return() (robot.model.filter.Filter method),
256

start_return() (robot.model.modifier.ModelModifier
method), 268

start_return() (robot.model.statistics.StatisticsBuilder
method), 273

start_return() (robot.model.tagsetter.TagSetter
method), 280

start_return() (robot.model.totalstatistics.TotalStatisticsBuilder
method), 291

start_return() (robot.model.visitor.SuiteVisitor
method), 297

Index 757

Robot Framework Documentation, Release 6.0.2

start_return() (robot.output.console.dotted.StatusReporter
method), 301

start_return() (robot.output.xmllogger.XmlLogger
method), 315

start_return() (robot.reporting.outputwriter.OutputWriter
method), 398

start_return() (robot.reporting.xunitwriter.XUnitFileWriter
method), 405

start_return() (robot.result.configurer.SuiteConfigurer
method), 410

start_return() (robot.result.keywordremover.AllKeywordsRemover
method), 418

start_return() (robot.result.keywordremover.ByNameKeywordRemover
method), 426

start_return() (robot.result.keywordremover.ByTagKeywordRemover
method), 430

start_return() (robot.result.keywordremover.ForLoopItemsRemover
method), 434

start_return() (robot.result.keywordremover.PassedKeywordRemover
method), 422

start_return() (robot.result.keywordremover.WaitUntilKeywordSucceedsRemover
method), 443

start_return() (robot.result.keywordremover.WarningAndErrorFinder
method), 447

start_return() (robot.result.keywordremover.WhileLoopItemsRemover
method), 438

start_return() (robot.result.merger.Merger
method), 451

start_return() (robot.result.messagefilter.MessageFilter
method), 455

start_return() (robot.result.resultbuilder.RemoveKeywords
method), 503

start_return() (robot.result.suiteteardownfailed.SuiteTeardownFailed
method), 511

start_return() (robot.result.suiteteardownfailed.SuiteTeardownFailureHandler
method), 507

start_return() (robot.result.visitor.ResultVisitor
method), 516

start_return() (robot.running.randomizer.Randomizer
method), 581

start_return() (robot.running.suiterunner.SuiteRunner
method), 587

start_splitting_if_needed()
(robot.reporting.jsbuildingcontext.JsBuildingContext
method), 394

start_stat() (robot.output.xmllogger.XmlLogger
method), 316

start_stat() (robot.reporting.outputwriter.OutputWriter
method), 398

start_stat() (robot.reporting.xunitwriter.XUnitFileWriter
method), 405

start_stat() (robot.result.visitor.ResultVisitor
method), 514

start_statistics()

(robot.output.xmllogger.XmlLogger method),
316

start_statistics()
(robot.reporting.outputwriter.OutputWriter
method), 398

start_statistics()
(robot.reporting.xunitwriter.XUnitFileWriter
method), 405

start_statistics()
(robot.result.visitor.ResultVisitor method),
514

start_suite() (robot.conf.gatherfailed.GatherFailedSuites
method), 27

start_suite() (robot.conf.gatherfailed.GatherFailedTests
method), 25

start_suite() (robot.model.configurer.SuiteConfigurer
method), 236

start_suite() (robot.model.filter.EmptySuiteRemover
method), 252

start_suite() (robot.model.filter.Filter method),
254

start_suite() (robot.model.modifier.ModelModifier
method), 268

start_suite() (robot.model.statistics.StatisticsBuilder
method), 270

start_suite() (robot.model.suitestatistics.SuiteStatisticsBuilder
method), 276

start_suite() (robot.model.tagsetter.TagSetter
method), 277

start_suite() (robot.model.totalstatistics.TotalStatisticsBuilder
method), 291

start_suite() (robot.model.visitor.SuiteVisitor
method), 294

start_suite() (robot.output.console.dotted.DottedOutput
method), 298

start_suite() (robot.output.console.dotted.StatusReporter
method), 301

start_suite() (robot.output.console.verbose.VerboseOutput
method), 304

start_suite() (robot.output.filelogger.FileLogger
method), 305

start_suite() (robot.output.logger.Logger method),
308

start_suite() (robot.output.output.Output method),
311

start_suite() (robot.output.xmllogger.XmlLogger
method), 315

start_suite() (robot.reporting.outputwriter.OutputWriter
method), 398

start_suite() (robot.reporting.xunitwriter.XUnitFileWriter
method), 402

start_suite() (robot.result.configurer.SuiteConfigurer
method), 411

start_suite() (robot.result.keywordremover.AllKeywordsRemover

758 Index

Robot Framework Documentation, Release 6.0.2

method), 418
start_suite() (robot.result.keywordremover.ByNameKeywordRemover

method), 426
start_suite() (robot.result.keywordremover.ByTagKeywordRemover

method), 430
start_suite() (robot.result.keywordremover.ForLoopItemsRemover

method), 434
start_suite() (robot.result.keywordremover.PassedKeywordRemover

method), 419
start_suite() (robot.result.keywordremover.WaitUntilKeywordSucceedsRemover

method), 443
start_suite() (robot.result.keywordremover.WarningAndErrorFinder

method), 445
start_suite() (robot.result.keywordremover.WhileLoopItemsRemover

method), 439
start_suite() (robot.result.merger.Merger method),

449
start_suite() (robot.result.messagefilter.MessageFilter

method), 453
start_suite() (robot.result.resultbuilder.RemoveKeywords

method), 501
start_suite() (robot.result.suiteteardownfailed.SuiteTeardownFailed

method), 512
start_suite() (robot.result.suiteteardownfailed.SuiteTeardownFailureHandler

method), 507
start_suite() (robot.result.visitor.ResultVisitor

method), 517
start_suite() (robot.running.context.ExecutionContexts

method), 550
start_suite() (robot.running.libraryscopes.GlobalScope

method), 553
start_suite() (robot.running.libraryscopes.TestCaseScope

method), 553
start_suite() (robot.running.libraryscopes.TestSuiteScope

method), 553
start_suite() (robot.running.namespace.Namespace

method), 577
start_suite() (robot.running.randomizer.Randomizer

method), 578
start_suite() (robot.running.suiterunner.SuiteRunner

method), 585
start_suite() (robot.variables.scopes.SetVariables

method), 610
start_suite() (robot.variables.scopes.VariableScopes

method), 609
start_suite_statistics()

(robot.output.xmllogger.XmlLogger method),
316

start_suite_statistics()
(robot.reporting.outputwriter.OutputWriter
method), 398

start_suite_statistics()
(robot.reporting.xunitwriter.XUnitFileWriter
method), 405

start_suite_statistics()
(robot.result.visitor.ResultVisitor method),
514

start_tag_statistics()
(robot.output.xmllogger.XmlLogger method),
316

start_tag_statistics()
(robot.reporting.outputwriter.OutputWriter
method), 398

start_tag_statistics()
(robot.reporting.xunitwriter.XUnitFileWriter
method), 405

start_tag_statistics()
(robot.result.visitor.ResultVisitor method),
514

start_test() (robot.conf.gatherfailed.GatherFailedSuites
method), 30

start_test() (robot.conf.gatherfailed.GatherFailedTests
method), 26

start_test() (robot.model.configurer.SuiteConfigurer
method), 236

start_test() (robot.model.filter.EmptySuiteRemover
method), 253

start_test() (robot.model.filter.Filter method), 257
start_test() (robot.model.modifier.ModelModifier

method), 268
start_test() (robot.model.statistics.StatisticsBuilder

method), 273
start_test() (robot.model.tagsetter.TagSetter

method), 280
start_test() (robot.model.totalstatistics.TotalStatisticsBuilder

method), 291
start_test() (robot.model.visitor.SuiteVisitor

method), 294
start_test() (robot.output.console.dotted.StatusReporter

method), 301
start_test() (robot.output.console.verbose.VerboseOutput

method), 304
start_test() (robot.output.filelogger.FileLogger

method), 305
start_test() (robot.output.logger.Logger method),

308
start_test() (robot.output.output.Output method),

311
start_test() (robot.output.xmllogger.XmlLogger

method), 315
start_test() (robot.reporting.outputwriter.OutputWriter

method), 398
start_test() (robot.reporting.xunitwriter.XUnitFileWriter

method), 405
start_test() (robot.result.configurer.SuiteConfigurer

method), 411
start_test() (robot.result.keywordremover.AllKeywordsRemover

method), 418

Index 759

Robot Framework Documentation, Release 6.0.2

start_test() (robot.result.keywordremover.ByNameKeywordRemover
method), 426

start_test() (robot.result.keywordremover.ByTagKeywordRemover
method), 430

start_test() (robot.result.keywordremover.ForLoopItemsRemover
method), 434

start_test() (robot.result.keywordremover.PassedKeywordRemover
method), 422

start_test() (robot.result.keywordremover.WaitUntilKeywordSucceedsRemover
method), 443

start_test() (robot.result.keywordremover.WarningAndErrorFinder
method), 445

start_test() (robot.result.keywordremover.WhileLoopItemsRemover
method), 439

start_test() (robot.result.merger.Merger method),
451

start_test() (robot.result.messagefilter.MessageFilter
method), 455

start_test() (robot.result.resultbuilder.RemoveKeywords
method), 503

start_test() (robot.result.suiteteardownfailed.SuiteTeardownFailed
method), 512

start_test() (robot.result.suiteteardownfailed.SuiteTeardownFailureHandler
method), 507

start_test() (robot.result.visitor.ResultVisitor
method), 517

start_test() (robot.running.libraryscopes.GlobalScope
method), 553

start_test() (robot.running.libraryscopes.TestCaseScope
method), 553

start_test() (robot.running.libraryscopes.TestSuiteScope
method), 553

start_test() (robot.running.namespace.Namespace
method), 577

start_test() (robot.running.randomizer.Randomizer
method), 581

start_test() (robot.running.suiterunner.SuiteRunner
method), 587

start_test() (robot.variables.scopes.SetVariables
method), 610

start_test() (robot.variables.scopes.VariableScopes
method), 609

start_total_statistics()
(robot.output.xmllogger.XmlLogger method),
316

start_total_statistics()
(robot.reporting.outputwriter.OutputWriter
method), 398

start_total_statistics()
(robot.reporting.xunitwriter.XUnitFileWriter
method), 405

start_total_statistics()
(robot.result.visitor.ResultVisitor method),
514

start_try() (robot.conf.gatherfailed.GatherFailedSuites
method), 30

start_try() (robot.conf.gatherfailed.GatherFailedTests
method), 26

start_try() (robot.model.configurer.SuiteConfigurer
method), 237

start_try() (robot.model.filter.EmptySuiteRemover
method), 253

start_try() (robot.model.filter.Filter method), 257
start_try() (robot.model.modifier.ModelModifier

method), 268
start_try() (robot.model.statistics.StatisticsBuilder

method), 273
start_try() (robot.model.tagsetter.TagSetter

method), 280
start_try() (robot.model.totalstatistics.TotalStatisticsBuilder

method), 291
start_try() (robot.model.visitor.SuiteVisitor

method), 296
start_try() (robot.output.console.dotted.StatusReporter

method), 301
start_try() (robot.output.xmllogger.XmlLogger

method), 314
start_try() (robot.reporting.outputwriter.OutputWriter

method), 398
start_try() (robot.reporting.xunitwriter.XUnitFileWriter

method), 405
start_try() (robot.result.configurer.SuiteConfigurer

method), 411
start_try() (robot.result.keywordremover.AllKeywordsRemover

method), 418
start_try() (robot.result.keywordremover.ByNameKeywordRemover

method), 426
start_try() (robot.result.keywordremover.ByTagKeywordRemover

method), 430
start_try() (robot.result.keywordremover.ForLoopItemsRemover

method), 434
start_try() (robot.result.keywordremover.PassedKeywordRemover

method), 422
start_try() (robot.result.keywordremover.WaitUntilKeywordSucceedsRemover

method), 443
start_try() (robot.result.keywordremover.WarningAndErrorFinder

method), 447
start_try() (robot.result.keywordremover.WhileLoopItemsRemover

method), 439
start_try() (robot.result.merger.Merger method),

451
start_try() (robot.result.messagefilter.MessageFilter

method), 456
start_try() (robot.result.resultbuilder.RemoveKeywords

method), 503
start_try() (robot.result.suiteteardownfailed.SuiteTeardownFailed

method), 512
start_try() (robot.result.suiteteardownfailed.SuiteTeardownFailureHandler

760 Index

Robot Framework Documentation, Release 6.0.2

method), 508
start_try() (robot.result.visitor.ResultVisitor

method), 517
start_try() (robot.running.randomizer.Randomizer

method), 581
start_try() (robot.running.suiterunner.SuiteRunner

method), 587
start_try_branch()

(robot.conf.gatherfailed.GatherFailedSuites
method), 30

start_try_branch()
(robot.conf.gatherfailed.GatherFailedTests
method), 26

start_try_branch()
(robot.model.configurer.SuiteConfigurer
method), 237

start_try_branch()
(robot.model.filter.EmptySuiteRemover
method), 253

start_try_branch() (robot.model.filter.Filter
method), 257

start_try_branch()
(robot.model.modifier.ModelModifier method),
268

start_try_branch()
(robot.model.statistics.StatisticsBuilder
method), 273

start_try_branch()
(robot.model.tagsetter.TagSetter method),
280

start_try_branch()
(robot.model.totalstatistics.TotalStatisticsBuilder
method), 291

start_try_branch()
(robot.model.visitor.SuiteVisitor method),
296

start_try_branch()
(robot.output.console.dotted.StatusReporter
method), 301

start_try_branch()
(robot.output.xmllogger.XmlLogger method),
314

start_try_branch()
(robot.reporting.outputwriter.OutputWriter
method), 398

start_try_branch()
(robot.reporting.xunitwriter.XUnitFileWriter
method), 405

start_try_branch()
(robot.result.configurer.SuiteConfigurer
method), 411

start_try_branch()
(robot.result.keywordremover.AllKeywordsRemover
method), 418

start_try_branch()
(robot.result.keywordremover.ByNameKeywordRemover
method), 426

start_try_branch()
(robot.result.keywordremover.ByTagKeywordRemover
method), 430

start_try_branch()
(robot.result.keywordremover.ForLoopItemsRemover
method), 434

start_try_branch()
(robot.result.keywordremover.PassedKeywordRemover
method), 422

start_try_branch()
(robot.result.keywordremover.WaitUntilKeywordSucceedsRemover
method), 443

start_try_branch()
(robot.result.keywordremover.WarningAndErrorFinder
method), 447

start_try_branch()
(robot.result.keywordremover.WhileLoopItemsRemover
method), 439

start_try_branch() (robot.result.merger.Merger
method), 452

start_try_branch()
(robot.result.messagefilter.MessageFilter
method), 456

start_try_branch()
(robot.result.resultbuilder.RemoveKeywords
method), 503

start_try_branch()
(robot.result.suiteteardownfailed.SuiteTeardownFailed
method), 512

start_try_branch()
(robot.result.suiteteardownfailed.SuiteTeardownFailureHandler
method), 508

start_try_branch()
(robot.result.visitor.ResultVisitor method),
517

start_try_branch()
(robot.running.randomizer.Randomizer
method), 581

start_try_branch()
(robot.running.suiterunner.SuiteRunner
method), 587

start_user_keyword()
(robot.running.namespace.Namespace
method), 578

start_while() (robot.conf.gatherfailed.GatherFailedSuites
method), 30

start_while() (robot.conf.gatherfailed.GatherFailedTests
method), 26

start_while() (robot.model.configurer.SuiteConfigurer
method), 237

start_while() (robot.model.filter.EmptySuiteRemover

Index 761

Robot Framework Documentation, Release 6.0.2

method), 253
start_while() (robot.model.filter.Filter method),

257
start_while() (robot.model.modifier.ModelModifier

method), 268
start_while() (robot.model.statistics.StatisticsBuilder

method), 273
start_while() (robot.model.tagsetter.TagSetter

method), 280
start_while() (robot.model.totalstatistics.TotalStatisticsBuilder

method), 291
start_while() (robot.model.visitor.SuiteVisitor

method), 296
start_while() (robot.output.console.dotted.StatusReporter

method), 301
start_while() (robot.output.xmllogger.XmlLogger

method), 314
start_while() (robot.reporting.outputwriter.OutputWriter

method), 399
start_while() (robot.reporting.xunitwriter.XUnitFileWriter

method), 405
start_while() (robot.result.configurer.SuiteConfigurer

method), 411
start_while() (robot.result.keywordremover.AllKeywordsRemover

method), 418
start_while() (robot.result.keywordremover.ByNameKeywordRemover

method), 426
start_while() (robot.result.keywordremover.ByTagKeywordRemover

method), 430
start_while() (robot.result.keywordremover.ForLoopItemsRemover

method), 435
start_while() (robot.result.keywordremover.PassedKeywordRemover

method), 422
start_while() (robot.result.keywordremover.WaitUntilKeywordSucceedsRemover

method), 443
start_while() (robot.result.keywordremover.WarningAndErrorFinder

method), 447
start_while() (robot.result.keywordremover.WhileLoopItemsRemover

method), 436
start_while() (robot.result.merger.Merger method),

452
start_while() (robot.result.messagefilter.MessageFilter

method), 456
start_while() (robot.result.resultbuilder.RemoveKeywords

method), 503
start_while() (robot.result.suiteteardownfailed.SuiteTeardownFailed

method), 512
start_while() (robot.result.suiteteardownfailed.SuiteTeardownFailureHandler

method), 508
start_while() (robot.result.visitor.ResultVisitor

method), 517
start_while() (robot.running.randomizer.Randomizer

method), 581
start_while() (robot.running.suiterunner.SuiteRunner

method), 587
start_while_iteration()

(robot.conf.gatherfailed.GatherFailedSuites
method), 30

start_while_iteration()
(robot.conf.gatherfailed.GatherFailedTests
method), 26

start_while_iteration()
(robot.model.configurer.SuiteConfigurer
method), 237

start_while_iteration()
(robot.model.filter.EmptySuiteRemover
method), 253

start_while_iteration()
(robot.model.filter.Filter method), 257

start_while_iteration()
(robot.model.modifier.ModelModifier method),
268

start_while_iteration()
(robot.model.statistics.StatisticsBuilder
method), 273

start_while_iteration()
(robot.model.tagsetter.TagSetter method),
280

start_while_iteration()
(robot.model.totalstatistics.TotalStatisticsBuilder
method), 291

start_while_iteration()
(robot.model.visitor.SuiteVisitor method),
297

start_while_iteration()
(robot.output.console.dotted.StatusReporter
method), 301

start_while_iteration()
(robot.output.xmllogger.XmlLogger method),
315

start_while_iteration()
(robot.reporting.outputwriter.OutputWriter
method), 399

start_while_iteration()
(robot.reporting.xunitwriter.XUnitFileWriter
method), 405

start_while_iteration()
(robot.result.configurer.SuiteConfigurer
method), 411

start_while_iteration()
(robot.result.keywordremover.AllKeywordsRemover
method), 418

start_while_iteration()
(robot.result.keywordremover.ByNameKeywordRemover
method), 426

start_while_iteration()
(robot.result.keywordremover.ByTagKeywordRemover
method), 430

762 Index

Robot Framework Documentation, Release 6.0.2

start_while_iteration()
(robot.result.keywordremover.ForLoopItemsRemover
method), 435

start_while_iteration()
(robot.result.keywordremover.PassedKeywordRemover
method), 422

start_while_iteration()
(robot.result.keywordremover.WaitUntilKeywordSucceedsRemover
method), 443

start_while_iteration()
(robot.result.keywordremover.WarningAndErrorFinder
method), 447

start_while_iteration()
(robot.result.keywordremover.WhileLoopItemsRemover
method), 439

start_while_iteration()
(robot.result.merger.Merger method), 452

start_while_iteration()
(robot.result.messagefilter.MessageFilter
method), 456

start_while_iteration()
(robot.result.resultbuilder.RemoveKeywords
method), 503

start_while_iteration()
(robot.result.suiteteardownfailed.SuiteTeardownFailed
method), 512

start_while_iteration()
(robot.result.suiteteardownfailed.SuiteTeardownFailureHandler
method), 508

start_while_iteration()
(robot.result.visitor.ResultVisitor method),
517

start_while_iteration()
(robot.running.randomizer.Randomizer
method), 581

start_while_iteration()
(robot.running.suiterunner.SuiteRunner
method), 587

StartKeywordArguments (class in
robot.output.listenerarguments), 306

StartSuiteArguments (class in
robot.output.listenerarguments), 306

StartTestArguments (class in
robot.output.listenerarguments), 306

starttime (robot.result.model.Break attribute), 488
starttime (robot.result.model.Continue attribute),

485
starttime (robot.result.model.For attribute), 467
starttime (robot.result.model.ForIteration attribute),

465
starttime (robot.result.model.If attribute), 476
starttime (robot.result.model.IfBranch attribute), 474
starttime (robot.result.model.Keyword attribute), 490
starttime (robot.result.model.Return attribute), 483

starttime (robot.result.model.TestCase attribute), 493
starttime (robot.result.model.TestSuite attribute), 496
starttime (robot.result.model.Try attribute), 481
starttime (robot.result.model.TryBranch attribute),

478
starttime (robot.result.model.While attribute), 471
starttime (robot.result.model.WhileIteration at-

tribute), 469
Stat (class in robot.model.stats), 274
stat (robot.model.suitestatistics.SuiteStatistics at-

tribute), 276
stat_message (robot.result.model.TestSuite at-

tribute), 499
state() (robot.libraries.dialogs_py.InputDialog

method), 179
state() (robot.libraries.dialogs_py.MessageDialog

method), 165
state() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 207
state() (robot.libraries.dialogs_py.PassFailDialog

method), 221
state() (robot.libraries.dialogs_py.SelectionDialog

method), 193
Statement (class in robot.parsing.model.statements),

345
StatementLexer (class in

robot.parsing.lexer.statementlexers), 327
Statistics (class in robot.model.statistics), 270
statistics (robot.result.executionresult.CombinedResult

attribute), 414
statistics (robot.result.executionresult.Result

attribute), 413
statistics (robot.result.model.TestSuite attribute),

498
statistics_config

(robot.conf.settings.RebotSettings attribute), 66
statistics_config

(robot.conf.settings.RobotSettings attribute), 66
StatisticsBuilder (class in

robot.model.statistics), 270
StatisticsBuilder (class in

robot.reporting.jsmodelbuilders), 394
StatisticsHandler (class in

robot.result.xmlelementhandlers), 526
status (robot.errors.BreakLoop attribute), 618
status (robot.errors.ContinueLoop attribute), 617
status (robot.errors.ExecutionFailed attribute), 615
status (robot.errors.ExecutionFailures attribute), 616
status (robot.errors.ExecutionPassed attribute), 616
status (robot.errors.ExecutionStatus attribute), 615
status (robot.errors.HandlerExecutionFailed at-

tribute), 615
status (robot.errors.PassExecution attribute), 617
status (robot.errors.ReturnFromKeyword attribute),

Index 763

Robot Framework Documentation, Release 6.0.2

618
status (robot.errors.UserKeywordExecutionFailed at-

tribute), 616
status (robot.result.model.Break attribute), 487
status (robot.result.model.Continue attribute), 485
status (robot.result.model.For attribute), 467
status (robot.result.model.ForIteration attribute), 465
status (robot.result.model.If attribute), 476
status (robot.result.model.IfBranch attribute), 474
status (robot.result.model.Keyword attribute), 490
status (robot.result.model.Return attribute), 483
status (robot.result.model.TestCase attribute), 493
status (robot.result.model.TestSuite attribute), 498
status (robot.result.model.Try attribute), 481
status (robot.result.model.TryBranch attribute), 478
status (robot.result.model.While attribute), 471
status (robot.result.model.WhileIteration attribute),

469
status (robot.running.status.SuiteStatus attribute), 583
status (robot.running.status.TestStatus attribute), 583
status() (robot.output.console.verbose.VerboseWriter

method), 304
status_rc (robot.conf.settings.RebotSettings at-

tribute), 66
status_rc (robot.conf.settings.RobotSettings at-

tribute), 66
StatusHandler (class in

robot.result.xmlelementhandlers), 523
StatusMixin (class in robot.result.model), 464
StatusReporter (class in

robot.output.console.dotted), 299
StatusReporter (class in

robot.running.statusreporter), 584
stderr (robot.libraries.Process.ExecutionResult

attribute), 128
stdout (robot.libraries.Process.ExecutionResult

attribute), 128
StdoutLogSplitter (class in

robot.output.stdoutlogsplitter), 313
StoredFinder (class in robot.variables.finders), 608
String (class in robot.libraries.String), 131
string() (robot.reporting.jsbuildingcontext.JsBuildingContext

method), 393
StringCache (class in robot.reporting.stringcache),

402
StringConverter (class in

robot.running.arguments.typeconverters),
532

StringDumper (class in robot.htmldata.jsonwriter), 68
StringIndex (class in robot.reporting.stringcache),

401
strings (robot.reporting.jsbuildingcontext.JsBuildingContext

attribute), 394
strip() (robot.libraries.XML.NameSpaceStripper

method), 157
strip_string() (robot.libraries.String.String

method), 136
subtract_date_from_date() (in module

robot.libraries.DateTime), 110
subtract_time_from_date() (in module

robot.libraries.DateTime), 110
subtract_time_from_time() (in module

robot.libraries.DateTime), 111
suite (robot.model.statistics.Statistics attribute), 270
suite (robot.result.executionresult.Result attribute),

413
suite_config (robot.conf.settings.RebotSettings at-

tribute), 66
suite_config (robot.conf.settings.RobotSettings at-

tribute), 65
suite_names (robot.conf.settings.RebotSettings

attribute), 66
suite_names (robot.conf.settings.RobotSettings at-

tribute), 65
suite_separator()

(robot.output.console.verbose.VerboseWriter
method), 304

SUITE_SETUP (robot.parsing.lexer.tokens.END at-
tribute), 339

SUITE_SETUP (robot.parsing.lexer.tokens.EOS at-
tribute), 337

SUITE_SETUP (robot.parsing.lexer.tokens.Token
attribute), 334

suite_setup_setting (robot.conf.languages.Bg
attribute), 59

suite_setup_setting (robot.conf.languages.Bs at-
tribute), 38

suite_setup_setting (robot.conf.languages.Cs at-
tribute), 36

suite_setup_setting (robot.conf.languages.De
attribute), 43

suite_setup_setting (robot.conf.languages.En
attribute), 34

suite_setup_setting (robot.conf.languages.Es at-
tribute), 51

suite_setup_setting (robot.conf.languages.Fi at-
tribute), 40

suite_setup_setting (robot.conf.languages.Fr at-
tribute), 41

suite_setup_setting (robot.conf.languages.Hi at-
tribute), 63

suite_setup_setting (robot.conf.languages.It at-
tribute), 62

suite_setup_setting
(robot.conf.languages.Language attribute),
33

suite_setup_setting (robot.conf.languages.Nl at-
tribute), 37

764 Index

Robot Framework Documentation, Release 6.0.2

suite_setup_setting (robot.conf.languages.Pl at-
tribute), 48

suite_setup_setting (robot.conf.languages.Pt at-
tribute), 45

suite_setup_setting (robot.conf.languages.PtBr
attribute), 44

suite_setup_setting (robot.conf.languages.Ro
attribute), 61

suite_setup_setting (robot.conf.languages.Ru
attribute), 52

suite_setup_setting (robot.conf.languages.Sv at-
tribute), 58

suite_setup_setting (robot.conf.languages.Th at-
tribute), 47

suite_setup_setting (robot.conf.languages.Tr at-
tribute), 56

suite_setup_setting (robot.conf.languages.Uk
attribute), 50

suite_setup_setting (robot.conf.languages.ZhCn
attribute), 54

suite_setup_setting (robot.conf.languages.ZhTw
attribute), 55

SUITE_TEARDOWN (robot.parsing.lexer.tokens.END at-
tribute), 339

SUITE_TEARDOWN (robot.parsing.lexer.tokens.EOS at-
tribute), 337

SUITE_TEARDOWN (robot.parsing.lexer.tokens.Token
attribute), 334

suite_teardown_failed()
(robot.result.model.TestSuite method), 499

suite_teardown_setting
(robot.conf.languages.Bg attribute), 59

suite_teardown_setting
(robot.conf.languages.Bs attribute), 38

suite_teardown_setting
(robot.conf.languages.Cs attribute), 36

suite_teardown_setting
(robot.conf.languages.De attribute), 43

suite_teardown_setting
(robot.conf.languages.En attribute), 34

suite_teardown_setting
(robot.conf.languages.Es attribute), 51

suite_teardown_setting
(robot.conf.languages.Fi attribute), 40

suite_teardown_setting
(robot.conf.languages.Fr attribute), 41

suite_teardown_setting
(robot.conf.languages.Hi attribute), 64

suite_teardown_setting
(robot.conf.languages.It attribute), 62

suite_teardown_setting
(robot.conf.languages.Language attribute),
33

suite_teardown_setting

(robot.conf.languages.Nl attribute), 37
suite_teardown_setting

(robot.conf.languages.Pl attribute), 48
suite_teardown_setting

(robot.conf.languages.Pt attribute), 45
suite_teardown_setting

(robot.conf.languages.PtBr attribute), 44
suite_teardown_setting

(robot.conf.languages.Ro attribute), 61
suite_teardown_setting

(robot.conf.languages.Ru attribute), 52
suite_teardown_setting

(robot.conf.languages.Sv attribute), 58
suite_teardown_setting

(robot.conf.languages.Th attribute), 47
suite_teardown_setting

(robot.conf.languages.Tr attribute), 57
suite_teardown_setting

(robot.conf.languages.Uk attribute), 50
suite_teardown_setting

(robot.conf.languages.ZhCn attribute), 54
suite_teardown_setting

(robot.conf.languages.ZhTw attribute), 55
suite_teardown_skipped()

(robot.result.model.TestSuite method), 499
SuiteBuilder (class in

robot.reporting.jsmodelbuilders), 394
SuiteBuilder (class in

robot.running.builder.transformers), 544
SuiteConfigurer (class in robot.model.configurer),

234
SuiteConfigurer (class in robot.result.configurer),

408
SuiteDocBuilder (class in

robot.libdocpkg.robotbuilder), 72
SuiteHandler (class in

robot.result.xmlelementhandlers), 519
SuiteMessage (class in robot.running.status), 584
SuiteNamePatterns (class in

robot.model.namepatterns), 270
SuiteRunner (class in robot.running.suiterunner), 585
suites (robot.model.suitestatistics.SuiteStatistics at-

tribute), 276
suites (robot.model.testsuite.TestSuite attribute), 285
suites (robot.result.model.TestSuite attribute), 498
suites (robot.running.model.TestSuite attribute), 575
SuiteSetup (class in robot.parsing.model.statements),

357
SuiteStat (class in robot.model.stats), 275
SuiteStatistics (class in

robot.model.suitestatistics), 276
SuiteStatisticsBuilder (class in

robot.model.suitestatistics), 276
SuiteStatus (class in robot.running.status), 583

Index 765

Robot Framework Documentation, Release 6.0.2

SuiteStructure (class in
robot.parsing.suitestructure), 392

SuiteStructureBuilder (class in
robot.parsing.suitestructure), 392

SuiteStructureParser (class in
robot.running.builder.builders), 542

SuiteStructureVisitor (class in
robot.parsing.suitestructure), 393

SuiteTeardown (class in
robot.parsing.model.statements), 358

SuiteTeardownFailed (class in
robot.result.suiteteardownfailed), 509

SuiteTeardownFailureHandler (class in
robot.result.suiteteardownfailed), 505

SuiteVisitor (class in robot.model.visitor), 294
SuiteWriter (class in robot.reporting.jswriter), 395
supports_embedded_args

(robot.running.handlers.EmbeddedArgumentsHandler
attribute), 551

supports_embedded_args
(robot.running.userkeyword.EmbeddedArgumentsHandler
attribute), 590

supports_embedded_args
(robot.running.userkeyword.UserKeywordHandler
attribute), 590

supports_embedded_arguments
(robot.running.usererrorhandler.UserErrorHandler
attribute), 589

supports_kwargs (robot.running.dynamicmethods.RunKeyword
attribute), 551

Sv (class in robot.conf.languages), 57
switch() (robot.utils.connectioncache.ConnectionCache

method), 596
switch_connection()

(robot.libraries.Telnet.Telnet method), 141
switch_process() (robot.libraries.Process.Process

method), 127
system_decode() (in module robot.utils.encoding),

597
system_encode() (in module robot.utils.encoding),

597

T
TableFormatter (class in robot.utils.htmlformatters),

600
tag (robot.result.xmlelementhandlers.ArgumentHandler

attribute), 525
tag (robot.result.xmlelementhandlers.ArgumentsHandler

attribute), 525
tag (robot.result.xmlelementhandlers.AssignHandler at-

tribute), 525
tag (robot.result.xmlelementhandlers.BranchHandler

attribute), 521

tag (robot.result.xmlelementhandlers.BreakHandler at-
tribute), 522

tag (robot.result.xmlelementhandlers.ContinueHandler
attribute), 522

tag (robot.result.xmlelementhandlers.DocHandler at-
tribute), 523

tag (robot.result.xmlelementhandlers.ElementHandler
attribute), 519

tag (robot.result.xmlelementhandlers.ErrorMessageHandler
attribute), 526

tag (robot.result.xmlelementhandlers.ErrorsHandler at-
tribute), 526

tag (robot.result.xmlelementhandlers.ForHandler
attribute), 520

tag (robot.result.xmlelementhandlers.IfHandler at-
tribute), 521

tag (robot.result.xmlelementhandlers.IterationHandler
attribute), 521

tag (robot.result.xmlelementhandlers.KeywordHandler
attribute), 520

tag (robot.result.xmlelementhandlers.MessageHandler
attribute), 523

tag (robot.result.xmlelementhandlers.MetadataHandler
attribute), 523

tag (robot.result.xmlelementhandlers.MetadataItemHandler
attribute), 524

tag (robot.result.xmlelementhandlers.MetaHandler at-
tribute), 524

tag (robot.result.xmlelementhandlers.PatternHandler
attribute), 522

tag (robot.result.xmlelementhandlers.ReturnHandler at-
tribute), 522

tag (robot.result.xmlelementhandlers.RobotHandler at-
tribute), 519

tag (robot.result.xmlelementhandlers.RootHandler at-
tribute), 519

tag (robot.result.xmlelementhandlers.StatisticsHandler
attribute), 526

tag (robot.result.xmlelementhandlers.StatusHandler at-
tribute), 523

tag (robot.result.xmlelementhandlers.SuiteHandler at-
tribute), 519

tag (robot.result.xmlelementhandlers.TagHandler at-
tribute), 524

tag (robot.result.xmlelementhandlers.TagsHandler at-
tribute), 524

tag (robot.result.xmlelementhandlers.TestHandler at-
tribute), 520

tag (robot.result.xmlelementhandlers.TimeoutHandler
attribute), 524

tag (robot.result.xmlelementhandlers.TryHandler
attribute), 521

tag (robot.result.xmlelementhandlers.ValueHandler at-
tribute), 526

766 Index

Robot Framework Documentation, Release 6.0.2

tag (robot.result.xmlelementhandlers.VarHandler
attribute), 525

tag (robot.result.xmlelementhandlers.WhileHandler at-
tribute), 520

TagHandler (class in
robot.result.xmlelementhandlers), 524

TagPattern() (in module robot.model.tags), 277
TagPatterns (class in robot.model.tags), 277
Tags (class in robot.model.tags), 277
Tags (class in robot.parsing.model.statements), 366
tags (robot.model.keyword.Keyword attribute), 260
tags (robot.model.statistics.Statistics attribute), 270
tags (robot.model.tagstatistics.TagStatistics attribute),

282
tags (robot.model.testcase.TestCase attribute), 283
TAGS (robot.parsing.lexer.tokens.END attribute), 339
TAGS (robot.parsing.lexer.tokens.EOS attribute), 337
TAGS (robot.parsing.lexer.tokens.Token attribute), 334
tags (robot.result.model.Break attribute), 490
tags (robot.result.model.Continue attribute), 487
tags (robot.result.model.For attribute), 469
tags (robot.result.model.ForIteration attribute), 467
tags (robot.result.model.If attribute), 478
tags (robot.result.model.IfBranch attribute), 476
tags (robot.result.model.Keyword attribute), 492
tags (robot.result.model.Return attribute), 485
tags (robot.result.model.TestCase attribute), 495
tags (robot.result.model.Try attribute), 483
tags (robot.result.model.TryBranch attribute), 480
tags (robot.result.model.While attribute), 474
tags (robot.result.model.WhileIteration attribute), 471
tags (robot.result.modeldeprecation.DeprecatedAttributesMixin

attribute), 500
tags (robot.running.builder.settings.TestSettings at-

tribute), 544
tags (robot.running.model.Keyword attribute), 557
tags (robot.running.model.TestCase attribute), 571
tags (robot.running.model.UserKeyword attribute), 576
tags (robot.running.userkeywordrunner.EmbeddedArgumentsRunner

attribute), 590
tags (robot.running.userkeywordrunner.UserKeywordRunner

attribute), 590
tags_setting (robot.conf.languages.Bg attribute), 60
tags_setting (robot.conf.languages.Bs attribute), 39
tags_setting (robot.conf.languages.Cs attribute), 36
tags_setting (robot.conf.languages.De attribute), 43
tags_setting (robot.conf.languages.En attribute), 35
tags_setting (robot.conf.languages.Es attribute), 51
tags_setting (robot.conf.languages.Fi attribute), 40
tags_setting (robot.conf.languages.Fr attribute), 41
tags_setting (robot.conf.languages.Hi attribute), 64
tags_setting (robot.conf.languages.It attribute), 62
tags_setting (robot.conf.languages.Language at-

tribute), 33

tags_setting (robot.conf.languages.Nl attribute), 37
tags_setting (robot.conf.languages.Pl attribute), 48
tags_setting (robot.conf.languages.Pt attribute), 46
tags_setting (robot.conf.languages.PtBr attribute),

44
tags_setting (robot.conf.languages.Ro attribute), 61
tags_setting (robot.conf.languages.Ru attribute), 53
tags_setting (robot.conf.languages.Sv attribute), 58
tags_setting (robot.conf.languages.Th attribute), 47
tags_setting (robot.conf.languages.Tr attribute), 57
tags_setting (robot.conf.languages.Uk attribute), 50
tags_setting (robot.conf.languages.ZhCn attribute),

54
tags_setting (robot.conf.languages.ZhTw attribute),

55
TagSetter (class in robot.model.tagsetter), 277
TagsHandler (class in

robot.result.xmlelementhandlers), 524
TagStat (class in robot.model.stats), 275
TagStatDoc (class in robot.model.tagstatistics), 282
TagStatInfo (class in robot.model.tagstatistics), 282
TagStatistics (class in robot.model.tagstatistics),

282
TagStatisticsBuilder (class in

robot.model.tagstatistics), 282
TagStatLink (class in robot.model.tagstatistics), 282
take_screenshot()

(robot.libraries.Screenshot.Screenshot
method), 131

take_screenshot_without_embedding()
(robot.libraries.Screenshot.Screenshot
method), 131

TASK_HEADER (robot.parsing.lexer.tokens.END at-
tribute), 339

TASK_HEADER (robot.parsing.lexer.tokens.EOS at-
tribute), 337

TASK_HEADER (robot.parsing.lexer.tokens.Token
attribute), 334

task_section() (robot.parsing.lexer.context.FileContext
method), 323

task_section() (robot.parsing.lexer.context.InitFileContext
method), 325

task_section() (robot.parsing.lexer.context.ResourceFileContext
method), 324

task_section() (robot.parsing.lexer.context.TestCaseFileContext
method), 324

task_setup_setting (robot.conf.languages.Bg at-
tribute), 59

task_setup_setting (robot.conf.languages.Bs at-
tribute), 39

task_setup_setting (robot.conf.languages.Cs at-
tribute), 36

task_setup_setting (robot.conf.languages.De at-
tribute), 43

Index 767

Robot Framework Documentation, Release 6.0.2

task_setup_setting (robot.conf.languages.En at-
tribute), 34

task_setup_setting (robot.conf.languages.Es at-
tribute), 51

task_setup_setting (robot.conf.languages.Fi at-
tribute), 40

task_setup_setting (robot.conf.languages.Fr at-
tribute), 41

task_setup_setting (robot.conf.languages.Hi at-
tribute), 64

task_setup_setting (robot.conf.languages.It at-
tribute), 62

task_setup_setting
(robot.conf.languages.Language attribute),
33

task_setup_setting (robot.conf.languages.Nl at-
tribute), 37

task_setup_setting (robot.conf.languages.Pl at-
tribute), 48

task_setup_setting (robot.conf.languages.Pt at-
tribute), 45

task_setup_setting (robot.conf.languages.PtBr
attribute), 44

task_setup_setting (robot.conf.languages.Ro at-
tribute), 61

task_setup_setting (robot.conf.languages.Ru at-
tribute), 52

task_setup_setting (robot.conf.languages.Sv at-
tribute), 58

task_setup_setting (robot.conf.languages.Th at-
tribute), 47

task_setup_setting (robot.conf.languages.Tr at-
tribute), 57

task_setup_setting (robot.conf.languages.Uk at-
tribute), 50

task_setup_setting (robot.conf.languages.ZhCn
attribute), 54

task_setup_setting (robot.conf.languages.ZhTw
attribute), 55

task_tags_setting (robot.conf.languages.Bg at-
tribute), 60

task_tags_setting (robot.conf.languages.Bs at-
tribute), 39

task_tags_setting (robot.conf.languages.Cs at-
tribute), 36

task_tags_setting (robot.conf.languages.De at-
tribute), 43

task_tags_setting (robot.conf.languages.En at-
tribute), 34

task_tags_setting (robot.conf.languages.Es at-
tribute), 51

task_tags_setting (robot.conf.languages.Fi
attribute), 40

task_tags_setting (robot.conf.languages.Fr at-

tribute), 41
task_tags_setting (robot.conf.languages.Hi at-

tribute), 64
task_tags_setting (robot.conf.languages.It at-

tribute), 62
task_tags_setting

(robot.conf.languages.Language attribute),
33

task_tags_setting (robot.conf.languages.Nl at-
tribute), 37

task_tags_setting (robot.conf.languages.Pl at-
tribute), 48

task_tags_setting (robot.conf.languages.Pt at-
tribute), 46

task_tags_setting (robot.conf.languages.PtBr at-
tribute), 44

task_tags_setting (robot.conf.languages.Ro at-
tribute), 61

task_tags_setting (robot.conf.languages.Ru at-
tribute), 53

task_tags_setting (robot.conf.languages.Sv at-
tribute), 58

task_tags_setting (robot.conf.languages.Th at-
tribute), 47

task_tags_setting (robot.conf.languages.Tr at-
tribute), 57

task_tags_setting (robot.conf.languages.Uk at-
tribute), 50

task_tags_setting (robot.conf.languages.ZhCn at-
tribute), 54

task_tags_setting (robot.conf.languages.ZhTw at-
tribute), 55

task_teardown_setting (robot.conf.languages.Bg
attribute), 59

task_teardown_setting (robot.conf.languages.Bs
attribute), 39

task_teardown_setting (robot.conf.languages.Cs
attribute), 36

task_teardown_setting (robot.conf.languages.De
attribute), 43

task_teardown_setting (robot.conf.languages.En
attribute), 34

task_teardown_setting (robot.conf.languages.Es
attribute), 51

task_teardown_setting (robot.conf.languages.Fi
attribute), 40

task_teardown_setting (robot.conf.languages.Fr
attribute), 41

task_teardown_setting (robot.conf.languages.Hi
attribute), 64

task_teardown_setting (robot.conf.languages.It
attribute), 62

task_teardown_setting
(robot.conf.languages.Language attribute),

768 Index

Robot Framework Documentation, Release 6.0.2

33
task_teardown_setting (robot.conf.languages.Nl

attribute), 37
task_teardown_setting (robot.conf.languages.Pl

attribute), 48
task_teardown_setting (robot.conf.languages.Pt

attribute), 46
task_teardown_setting

(robot.conf.languages.PtBr attribute), 44
task_teardown_setting (robot.conf.languages.Ro

attribute), 61
task_teardown_setting (robot.conf.languages.Ru

attribute), 53
task_teardown_setting (robot.conf.languages.Sv

attribute), 58
task_teardown_setting (robot.conf.languages.Th

attribute), 47
task_teardown_setting (robot.conf.languages.Tr

attribute), 57
task_teardown_setting (robot.conf.languages.Uk

attribute), 50
task_teardown_setting

(robot.conf.languages.ZhCn attribute), 54
task_teardown_setting

(robot.conf.languages.ZhTw attribute), 55
task_template_setting (robot.conf.languages.Bg

attribute), 60
task_template_setting (robot.conf.languages.Bs

attribute), 39
task_template_setting (robot.conf.languages.Cs

attribute), 36
task_template_setting (robot.conf.languages.De

attribute), 43
task_template_setting (robot.conf.languages.En

attribute), 34
task_template_setting (robot.conf.languages.Es

attribute), 51
task_template_setting (robot.conf.languages.Fi

attribute), 40
task_template_setting (robot.conf.languages.Fr

attribute), 41
task_template_setting (robot.conf.languages.Hi

attribute), 64
task_template_setting (robot.conf.languages.It

attribute), 62
task_template_setting

(robot.conf.languages.Language attribute),
33

task_template_setting (robot.conf.languages.Nl
attribute), 37

task_template_setting (robot.conf.languages.Pl
attribute), 48

task_template_setting (robot.conf.languages.Pt
attribute), 46

task_template_setting
(robot.conf.languages.PtBr attribute), 44

task_template_setting (robot.conf.languages.Ro
attribute), 61

task_template_setting (robot.conf.languages.Ru
attribute), 53

task_template_setting (robot.conf.languages.Sv
attribute), 58

task_template_setting (robot.conf.languages.Th
attribute), 47

task_template_setting (robot.conf.languages.Tr
attribute), 57

task_template_setting (robot.conf.languages.Uk
attribute), 50

task_template_setting
(robot.conf.languages.ZhCn attribute), 54

task_template_setting
(robot.conf.languages.ZhTw attribute), 55

task_timeout_setting (robot.conf.languages.Bg
attribute), 60

task_timeout_setting (robot.conf.languages.Bs
attribute), 39

task_timeout_setting (robot.conf.languages.Cs
attribute), 36

task_timeout_setting (robot.conf.languages.De
attribute), 43

task_timeout_setting (robot.conf.languages.En
attribute), 34

task_timeout_setting (robot.conf.languages.Es
attribute), 51

task_timeout_setting (robot.conf.languages.Fi
attribute), 40

task_timeout_setting (robot.conf.languages.Fr
attribute), 41

task_timeout_setting (robot.conf.languages.Hi
attribute), 64

task_timeout_setting (robot.conf.languages.It
attribute), 62

task_timeout_setting
(robot.conf.languages.Language attribute),
33

task_timeout_setting (robot.conf.languages.Nl
attribute), 37

task_timeout_setting (robot.conf.languages.Pl
attribute), 48

task_timeout_setting (robot.conf.languages.Pt
attribute), 46

task_timeout_setting
(robot.conf.languages.PtBr attribute), 44

task_timeout_setting (robot.conf.languages.Ro
attribute), 61

task_timeout_setting (robot.conf.languages.Ru
attribute), 53

task_timeout_setting (robot.conf.languages.Sv

Index 769

Robot Framework Documentation, Release 6.0.2

attribute), 58
task_timeout_setting (robot.conf.languages.Th

attribute), 47
task_timeout_setting (robot.conf.languages.Tr

attribute), 57
task_timeout_setting (robot.conf.languages.Uk

attribute), 50
task_timeout_setting

(robot.conf.languages.ZhCn attribute), 54
task_timeout_setting

(robot.conf.languages.ZhTw attribute), 55
tasks (robot.parsing.model.blocks.TestCaseSection at-

tribute), 342
tasks_header (robot.conf.languages.Bg attribute), 59
tasks_header (robot.conf.languages.Bs attribute), 38
tasks_header (robot.conf.languages.Cs attribute), 35
tasks_header (robot.conf.languages.De attribute), 42
tasks_header (robot.conf.languages.En attribute), 34
tasks_header (robot.conf.languages.Es attribute), 51
tasks_header (robot.conf.languages.Fi attribute), 40
tasks_header (robot.conf.languages.Fr attribute), 41
tasks_header (robot.conf.languages.Hi attribute), 63
tasks_header (robot.conf.languages.It attribute), 62
tasks_header (robot.conf.languages.Language at-

tribute), 32
tasks_header (robot.conf.languages.Nl attribute), 37
tasks_header (robot.conf.languages.Pl attribute), 48
tasks_header (robot.conf.languages.Pt attribute), 45
tasks_header (robot.conf.languages.PtBr attribute),

44
tasks_header (robot.conf.languages.Ro attribute), 60
tasks_header (robot.conf.languages.Ru attribute), 52
tasks_header (robot.conf.languages.Sv attribute), 58
tasks_header (robot.conf.languages.Th attribute), 46
tasks_header (robot.conf.languages.Tr attribute), 56
tasks_header (robot.conf.languages.Uk attribute), 49
tasks_header (robot.conf.languages.ZhCn attribute),

53
tasks_header (robot.conf.languages.ZhTw attribute),

55
TaskSectionHeaderLexer (class in

robot.parsing.lexer.statementlexers), 329
TaskSectionLexer (class in

robot.parsing.lexer.blocklexers), 320
Teardown (class in robot.parsing.model.statements),

365
TEARDOWN (robot.model.body.BodyItem attribute), 228
TEARDOWN (robot.model.control.Break attribute), 249
TEARDOWN (robot.model.control.Continue attribute),

248
TEARDOWN (robot.model.control.For attribute), 239
TEARDOWN (robot.model.control.If attribute), 243
TEARDOWN (robot.model.control.IfBranch attribute), 242
TEARDOWN (robot.model.control.Return attribute), 247

TEARDOWN (robot.model.control.Try attribute), 246
TEARDOWN (robot.model.control.TryBranch attribute),

244
TEARDOWN (robot.model.control.While attribute), 240
TEARDOWN (robot.model.keyword.Keyword attribute),

261
teardown (robot.model.keyword.Keyword attribute),

259
teardown (robot.model.keyword.Keywords attribute),

261
TEARDOWN (robot.model.message.Message attribute),

263
teardown (robot.model.testcase.TestCase attribute),

283
teardown (robot.model.testsuite.TestSuite attribute),

286
TEARDOWN (robot.output.loggerhelper.Message at-

tribute), 310
TEARDOWN (robot.parsing.lexer.tokens.END attribute),

339
TEARDOWN (robot.parsing.lexer.tokens.EOS attribute),

337
TEARDOWN (robot.parsing.lexer.tokens.Token attribute),

334
TEARDOWN (robot.result.model.Break attribute), 488
TEARDOWN (robot.result.model.Continue attribute), 486
TEARDOWN (robot.result.model.For attribute), 468
TEARDOWN (robot.result.model.ForIteration attribute),

465
TEARDOWN (robot.result.model.If attribute), 477
TEARDOWN (robot.result.model.IfBranch attribute), 475
TEARDOWN (robot.result.model.Keyword attribute), 491
teardown (robot.result.model.Keyword attribute), 492
TEARDOWN (robot.result.model.Message attribute), 463
TEARDOWN (robot.result.model.Return attribute), 484
teardown (robot.result.model.TestCase attribute), 495
teardown (robot.result.model.TestSuite attribute), 498
TEARDOWN (robot.result.model.Try attribute), 481
TEARDOWN (robot.result.model.TryBranch attribute),

479
TEARDOWN (robot.result.model.While attribute), 472
TEARDOWN (robot.result.model.WhileIteration attribute),

470
teardown (robot.running.builder.settings.Defaults at-

tribute), 543
teardown (robot.running.builder.settings.TestSettings

attribute), 543
TEARDOWN (robot.running.model.Break attribute), 569
TEARDOWN (robot.running.model.Continue attribute),

568
TEARDOWN (robot.running.model.For attribute), 558
TEARDOWN (robot.running.model.If attribute), 562
TEARDOWN (robot.running.model.IfBranch attribute),

561

770 Index

Robot Framework Documentation, Release 6.0.2

TEARDOWN (robot.running.model.Keyword attribute),
556

teardown (robot.running.model.Keyword attribute),
557

TEARDOWN (robot.running.model.Return attribute), 566
teardown (robot.running.model.TestCase attribute),

572
teardown (robot.running.model.TestSuite attribute),

575
TEARDOWN (robot.running.model.Try attribute), 565
TEARDOWN (robot.running.model.TryBranch attribute),

563
teardown (robot.running.model.UserKeyword at-

tribute), 576
TEARDOWN (robot.running.model.While attribute), 559
teardown_allowed (robot.running.status.Exit

attribute), 583
teardown_allowed (robot.running.status.SuiteStatus

attribute), 583
teardown_allowed (robot.running.status.TestStatus

attribute), 583
teardown_executed()

(robot.running.status.SuiteStatus method),
583

teardown_executed()
(robot.running.status.TestStatus method),
583

teardown_message (robot.running.status.ParentMessage
attribute), 584

teardown_message (robot.running.status.SuiteMessage
attribute), 584

teardown_message (robot.running.status.TestMessage
attribute), 584

teardown_setting (robot.conf.languages.Bg at-
tribute), 60

teardown_setting (robot.conf.languages.Bs at-
tribute), 39

teardown_setting (robot.conf.languages.Cs at-
tribute), 36

teardown_setting (robot.conf.languages.De at-
tribute), 43

teardown_setting (robot.conf.languages.En at-
tribute), 35

teardown_setting (robot.conf.languages.Es at-
tribute), 51

teardown_setting (robot.conf.languages.Fi at-
tribute), 40

teardown_setting (robot.conf.languages.Fr at-
tribute), 42

teardown_setting (robot.conf.languages.Hi at-
tribute), 64

teardown_setting (robot.conf.languages.It at-
tribute), 63

teardown_setting (robot.conf.languages.Language

attribute), 33
teardown_setting (robot.conf.languages.Nl at-

tribute), 37
teardown_setting (robot.conf.languages.Pl at-

tribute), 49
teardown_setting (robot.conf.languages.Pt at-

tribute), 46
teardown_setting (robot.conf.languages.PtBr at-

tribute), 44
teardown_setting (robot.conf.languages.Ro at-

tribute), 61
teardown_setting (robot.conf.languages.Ru at-

tribute), 53
teardown_setting (robot.conf.languages.Sv at-

tribute), 58
teardown_setting (robot.conf.languages.Th at-

tribute), 47
teardown_setting (robot.conf.languages.Tr at-

tribute), 57
teardown_setting (robot.conf.languages.Uk at-

tribute), 50
teardown_setting (robot.conf.languages.ZhCn at-

tribute), 54
teardown_setting (robot.conf.languages.ZhTw at-

tribute), 56
teardown_skipped_message

(robot.running.status.ParentMessage attribute),
584

teardown_skipped_message
(robot.running.status.SuiteMessage attribute),
584

teardown_skipped_message
(robot.running.status.TestMessage attribute),
584

Telnet (class in robot.libraries.Telnet), 137
TelnetConnection (class in robot.libraries.Telnet),

141
Template (class in robot.parsing.model.statements),

367
TEMPLATE (robot.parsing.lexer.tokens.END attribute),

339
TEMPLATE (robot.parsing.lexer.tokens.EOS attribute),

337
TEMPLATE (robot.parsing.lexer.tokens.Token attribute),

334
template (robot.running.builder.settings.TestSettings

attribute), 543
template (robot.running.model.TestCase attribute),

570
template_set (robot.parsing.lexer.context.KeywordContext

attribute), 325
template_set (robot.parsing.lexer.context.TestCaseContext

attribute), 325
template_set (robot.parsing.lexer.settings.TestCaseSettings

Index 771

Robot Framework Documentation, Release 6.0.2

attribute), 327
template_setting (robot.conf.languages.Bg at-

tribute), 60
template_setting (robot.conf.languages.Bs at-

tribute), 39
template_setting (robot.conf.languages.Cs at-

tribute), 36
template_setting (robot.conf.languages.De at-

tribute), 43
template_setting (robot.conf.languages.En at-

tribute), 35
template_setting (robot.conf.languages.Es at-

tribute), 51
template_setting (robot.conf.languages.Fi at-

tribute), 40
template_setting (robot.conf.languages.Fr at-

tribute), 42
template_setting (robot.conf.languages.Hi at-

tribute), 64
template_setting (robot.conf.languages.It at-

tribute), 63
template_setting (robot.conf.languages.Language

attribute), 33
template_setting (robot.conf.languages.Nl at-

tribute), 37
template_setting (robot.conf.languages.Pl at-

tribute), 49
template_setting (robot.conf.languages.Pt at-

tribute), 46
template_setting (robot.conf.languages.PtBr at-

tribute), 44
template_setting (robot.conf.languages.Ro at-

tribute), 61
template_setting (robot.conf.languages.Ru at-

tribute), 53
template_setting (robot.conf.languages.Sv at-

tribute), 58
template_setting (robot.conf.languages.Th at-

tribute), 47
template_setting (robot.conf.languages.Tr at-

tribute), 57
template_setting (robot.conf.languages.Uk at-

tribute), 50
template_setting (robot.conf.languages.ZhCn at-

tribute), 54
template_setting (robot.conf.languages.ZhTw at-

tribute), 56
TemplateArguments (class in

robot.parsing.model.statements), 371
TerminalEmulator (class in robot.libraries.Telnet),

146
terminate_all_processes()

(robot.libraries.Process.Process method),
126

terminate_process()
(robot.libraries.Process.Process method),
126

TERMINATE_TIMEOUT
(robot.libraries.Process.Process attribute),
125

test() (robot.libraries.Screenshot.ScreenshotTaker
method), 131

test_case_context()
(robot.parsing.lexer.context.TestCaseFileContext
method), 324

test_case_section()
(robot.parsing.lexer.context.FileContext
method), 323

test_case_section()
(robot.parsing.lexer.context.InitFileContext
method), 325

test_case_section()
(robot.parsing.lexer.context.ResourceFileContext
method), 324

test_case_section()
(robot.parsing.lexer.context.TestCaseFileContext
method), 324

test_cases_header (robot.conf.languages.Bg at-
tribute), 59

test_cases_header (robot.conf.languages.Bs at-
tribute), 38

test_cases_header (robot.conf.languages.Cs at-
tribute), 35

test_cases_header (robot.conf.languages.De at-
tribute), 42

test_cases_header (robot.conf.languages.En at-
tribute), 34

test_cases_header (robot.conf.languages.Es at-
tribute), 51

test_cases_header (robot.conf.languages.Fi
attribute), 39

test_cases_header (robot.conf.languages.Fr at-
tribute), 41

test_cases_header (robot.conf.languages.Hi at-
tribute), 63

test_cases_header (robot.conf.languages.It at-
tribute), 62

test_cases_header
(robot.conf.languages.Language attribute),
32

test_cases_header (robot.conf.languages.Nl at-
tribute), 37

test_cases_header (robot.conf.languages.Pl at-
tribute), 48

test_cases_header (robot.conf.languages.Pt at-
tribute), 45

test_cases_header (robot.conf.languages.PtBr at-
tribute), 44

772 Index

Robot Framework Documentation, Release 6.0.2

test_cases_header (robot.conf.languages.Ro at-
tribute), 60

test_cases_header (robot.conf.languages.Ru at-
tribute), 52

test_cases_header (robot.conf.languages.Sv at-
tribute), 58

test_cases_header (robot.conf.languages.Th at-
tribute), 46

test_cases_header (robot.conf.languages.Tr at-
tribute), 56

test_cases_header (robot.conf.languages.Uk at-
tribute), 49

test_cases_header (robot.conf.languages.ZhCn at-
tribute), 53

test_cases_header (robot.conf.languages.ZhTw at-
tribute), 55

test_class (robot.model.testsuite.TestSuite attribute),
285

test_class (robot.result.model.TestSuite attribute),
496

test_class (robot.running.model.TestSuite attribute),
572

test_count (robot.model.testsuite.TestSuite attribute),
286

test_count (robot.result.model.TestSuite attribute),
498

test_count (robot.running.model.TestSuite attribute),
576

test_failed() (robot.running.status.TestStatus
method), 583

test_names (robot.conf.settings.RebotSettings at-
tribute), 67

test_names (robot.conf.settings.RobotSettings at-
tribute), 65

test_or_task() (in module robot.utils.misc), 604
test_separator() (robot.output.console.verbose.VerboseWriter

method), 304
TEST_SETUP (robot.parsing.lexer.tokens.END at-

tribute), 339
TEST_SETUP (robot.parsing.lexer.tokens.EOS at-

tribute), 337
TEST_SETUP (robot.parsing.lexer.tokens.Token at-

tribute), 334
test_setup_setting (robot.conf.languages.Bg at-

tribute), 59
test_setup_setting (robot.conf.languages.Bs at-

tribute), 38
test_setup_setting (robot.conf.languages.Cs at-

tribute), 36
test_setup_setting (robot.conf.languages.De at-

tribute), 43
test_setup_setting (robot.conf.languages.En at-

tribute), 34
test_setup_setting (robot.conf.languages.Es at-

tribute), 51
test_setup_setting (robot.conf.languages.Fi at-

tribute), 40
test_setup_setting (robot.conf.languages.Fr at-

tribute), 41
test_setup_setting (robot.conf.languages.Hi at-

tribute), 64
test_setup_setting (robot.conf.languages.It at-

tribute), 62
test_setup_setting

(robot.conf.languages.Language attribute),
33

test_setup_setting (robot.conf.languages.Nl at-
tribute), 37

test_setup_setting (robot.conf.languages.Pl at-
tribute), 48

test_setup_setting (robot.conf.languages.Pt at-
tribute), 45

test_setup_setting (robot.conf.languages.PtBr
attribute), 44

test_setup_setting (robot.conf.languages.Ro at-
tribute), 61

test_setup_setting (robot.conf.languages.Ru at-
tribute), 52

test_setup_setting (robot.conf.languages.Sv at-
tribute), 58

test_setup_setting (robot.conf.languages.Th at-
tribute), 47

test_setup_setting (robot.conf.languages.Tr at-
tribute), 57

test_setup_setting (robot.conf.languages.Uk at-
tribute), 50

test_setup_setting (robot.conf.languages.ZhCn
attribute), 54

test_setup_setting (robot.conf.languages.ZhTw
attribute), 55

test_skipped() (robot.running.status.TestStatus
method), 583

test_tags_setting (robot.conf.languages.Bg at-
tribute), 59

test_tags_setting (robot.conf.languages.Bs at-
tribute), 39

test_tags_setting (robot.conf.languages.Cs at-
tribute), 36

test_tags_setting (robot.conf.languages.De at-
tribute), 43

test_tags_setting (robot.conf.languages.En at-
tribute), 34

test_tags_setting (robot.conf.languages.Es at-
tribute), 51

test_tags_setting (robot.conf.languages.Fi
attribute), 40

test_tags_setting (robot.conf.languages.Fr at-
tribute), 41

Index 773

Robot Framework Documentation, Release 6.0.2

test_tags_setting (robot.conf.languages.Hi at-
tribute), 64

test_tags_setting (robot.conf.languages.It at-
tribute), 62

test_tags_setting
(robot.conf.languages.Language attribute),
33

test_tags_setting (robot.conf.languages.Nl at-
tribute), 37

test_tags_setting (robot.conf.languages.Pl at-
tribute), 48

test_tags_setting (robot.conf.languages.Pt at-
tribute), 45

test_tags_setting (robot.conf.languages.PtBr at-
tribute), 44

test_tags_setting (robot.conf.languages.Ro at-
tribute), 61

test_tags_setting (robot.conf.languages.Ru at-
tribute), 52

test_tags_setting (robot.conf.languages.Sv at-
tribute), 58

test_tags_setting (robot.conf.languages.Th at-
tribute), 47

test_tags_setting (robot.conf.languages.Tr at-
tribute), 57

test_tags_setting (robot.conf.languages.Uk at-
tribute), 50

test_tags_setting (robot.conf.languages.ZhCn at-
tribute), 54

test_tags_setting (robot.conf.languages.ZhTw at-
tribute), 55

TEST_TEARDOWN (robot.parsing.lexer.tokens.END at-
tribute), 339

TEST_TEARDOWN (robot.parsing.lexer.tokens.EOS at-
tribute), 337

TEST_TEARDOWN (robot.parsing.lexer.tokens.Token at-
tribute), 334

test_teardown_setting (robot.conf.languages.Bg
attribute), 59

test_teardown_setting (robot.conf.languages.Bs
attribute), 38

test_teardown_setting (robot.conf.languages.Cs
attribute), 36

test_teardown_setting (robot.conf.languages.De
attribute), 43

test_teardown_setting (robot.conf.languages.En
attribute), 34

test_teardown_setting (robot.conf.languages.Es
attribute), 51

test_teardown_setting (robot.conf.languages.Fi
attribute), 40

test_teardown_setting (robot.conf.languages.Fr
attribute), 41

test_teardown_setting (robot.conf.languages.Hi

attribute), 64
test_teardown_setting (robot.conf.languages.It

attribute), 62
test_teardown_setting

(robot.conf.languages.Language attribute),
33

test_teardown_setting (robot.conf.languages.Nl
attribute), 37

test_teardown_setting (robot.conf.languages.Pl
attribute), 48

test_teardown_setting (robot.conf.languages.Pt
attribute), 45

test_teardown_setting
(robot.conf.languages.PtBr attribute), 44

test_teardown_setting (robot.conf.languages.Ro
attribute), 61

test_teardown_setting (robot.conf.languages.Ru
attribute), 52

test_teardown_setting (robot.conf.languages.Sv
attribute), 58

test_teardown_setting (robot.conf.languages.Th
attribute), 47

test_teardown_setting (robot.conf.languages.Tr
attribute), 57

test_teardown_setting (robot.conf.languages.Uk
attribute), 50

test_teardown_setting
(robot.conf.languages.ZhCn attribute), 54

test_teardown_setting
(robot.conf.languages.ZhTw attribute), 55

TEST_TEMPLATE (robot.parsing.lexer.tokens.END at-
tribute), 339

TEST_TEMPLATE (robot.parsing.lexer.tokens.EOS at-
tribute), 337

TEST_TEMPLATE (robot.parsing.lexer.tokens.Token at-
tribute), 334

test_template_setting (robot.conf.languages.Bg
attribute), 59

test_template_setting (robot.conf.languages.Bs
attribute), 38

test_template_setting (robot.conf.languages.Cs
attribute), 36

test_template_setting (robot.conf.languages.De
attribute), 43

test_template_setting (robot.conf.languages.En
attribute), 34

test_template_setting (robot.conf.languages.Es
attribute), 51

test_template_setting (robot.conf.languages.Fi
attribute), 40

test_template_setting (robot.conf.languages.Fr
attribute), 41

test_template_setting (robot.conf.languages.Hi
attribute), 64

774 Index

Robot Framework Documentation, Release 6.0.2

test_template_setting (robot.conf.languages.It
attribute), 62

test_template_setting
(robot.conf.languages.Language attribute),
33

test_template_setting (robot.conf.languages.Nl
attribute), 37

test_template_setting (robot.conf.languages.Pl
attribute), 48

test_template_setting (robot.conf.languages.Pt
attribute), 45

test_template_setting
(robot.conf.languages.PtBr attribute), 44

test_template_setting (robot.conf.languages.Ro
attribute), 61

test_template_setting (robot.conf.languages.Ru
attribute), 52

test_template_setting (robot.conf.languages.Sv
attribute), 58

test_template_setting (robot.conf.languages.Th
attribute), 47

test_template_setting (robot.conf.languages.Tr
attribute), 57

test_template_setting (robot.conf.languages.Uk
attribute), 50

test_template_setting
(robot.conf.languages.ZhCn attribute), 54

test_template_setting
(robot.conf.languages.ZhTw attribute), 55

TEST_TIMEOUT (robot.parsing.lexer.tokens.END at-
tribute), 339

TEST_TIMEOUT (robot.parsing.lexer.tokens.EOS
attribute), 337

TEST_TIMEOUT (robot.parsing.lexer.tokens.Token at-
tribute), 334

test_timeout_setting (robot.conf.languages.Bg
attribute), 59

test_timeout_setting (robot.conf.languages.Bs
attribute), 38

test_timeout_setting (robot.conf.languages.Cs
attribute), 36

test_timeout_setting (robot.conf.languages.De
attribute), 43

test_timeout_setting (robot.conf.languages.En
attribute), 34

test_timeout_setting (robot.conf.languages.Es
attribute), 51

test_timeout_setting (robot.conf.languages.Fi
attribute), 40

test_timeout_setting (robot.conf.languages.Fr
attribute), 41

test_timeout_setting (robot.conf.languages.Hi
attribute), 64

test_timeout_setting (robot.conf.languages.It

attribute), 62
test_timeout_setting

(robot.conf.languages.Language attribute),
33

test_timeout_setting (robot.conf.languages.Nl
attribute), 37

test_timeout_setting (robot.conf.languages.Pl
attribute), 48

test_timeout_setting (robot.conf.languages.Pt
attribute), 45

test_timeout_setting
(robot.conf.languages.PtBr attribute), 44

test_timeout_setting (robot.conf.languages.Ro
attribute), 61

test_timeout_setting (robot.conf.languages.Ru
attribute), 52

test_timeout_setting (robot.conf.languages.Sv
attribute), 58

test_timeout_setting (robot.conf.languages.Th
attribute), 47

test_timeout_setting (robot.conf.languages.Tr
attribute), 57

test_timeout_setting (robot.conf.languages.Uk
attribute), 50

test_timeout_setting
(robot.conf.languages.ZhCn attribute), 54

test_timeout_setting
(robot.conf.languages.ZhTw attribute), 55

TestBuilder (class in
robot.reporting.jsmodelbuilders), 394

TestCase (class in robot.model.testcase), 282
TestCase (class in robot.parsing.model.blocks), 342
TestCase (class in robot.result.model), 493
TestCase (class in robot.running.model), 570
TESTCASE_HEADER (robot.parsing.lexer.tokens.END

attribute), 339
TESTCASE_HEADER (robot.parsing.lexer.tokens.EOS

attribute), 337
TESTCASE_HEADER (robot.parsing.lexer.tokens.Token

attribute), 334
TESTCASE_NAME (robot.parsing.lexer.tokens.END at-

tribute), 339
TESTCASE_NAME (robot.parsing.lexer.tokens.EOS at-

tribute), 337
TESTCASE_NAME (robot.parsing.lexer.tokens.Token at-

tribute), 334
TestCaseBuilder (class in

robot.running.builder.transformers), 545
TestCaseContext (class in

robot.parsing.lexer.context), 325
TestCaseFileContext (class in

robot.parsing.lexer.context), 324
TestCaseFileSettings (class in

robot.parsing.lexer.settings), 326

Index 775

Robot Framework Documentation, Release 6.0.2

TestCaseLexer (class in
robot.parsing.lexer.blocklexers), 321

TestCaseName (class in
robot.parsing.model.statements), 363

TestCaseParser (class in
robot.parsing.parser.blockparsers), 389

TestCases (class in robot.model.testcase), 284
TestCaseScope (class in

robot.running.libraryscopes), 553
TestCaseSection (class in

robot.parsing.model.blocks), 342
TestCaseSectionHeaderLexer (class in

robot.parsing.lexer.statementlexers), 329
TestCaseSectionLexer (class in

robot.parsing.lexer.blocklexers), 319
TestCaseSectionParser (class in

robot.parsing.parser.fileparser), 391
TestCaseSettings (class in

robot.parsing.lexer.settings), 327
TestDoc (class in robot.testdoc), 624
testdoc() (in module robot.testdoc), 624
testdoc_cli() (in module robot.testdoc), 624
TestdocModelWriter (class in robot.testdoc), 624
TestHandler (class in

robot.result.xmlelementhandlers), 520
TestLibrary() (in module

robot.running.testlibraries), 589
TestMessage (class in robot.running.status), 584
TestNamePatterns (class in

robot.model.namepatterns), 270
TestOrKeywordLexer (class in

robot.parsing.lexer.blocklexers), 321
TestOrKeywordSettingLexer (class in

robot.parsing.lexer.statementlexers), 330
tests (robot.model.testsuite.TestSuite attribute), 285
tests (robot.result.model.TestSuite attribute), 498
tests (robot.running.model.TestSuite attribute), 576
TestSettings (class in

robot.running.builder.settings), 543
TestSetup (class in robot.parsing.model.statements),

359
TestStatus (class in robot.running.status), 583
TestSuite (class in robot.model.testsuite), 285
TestSuite (class in robot.result.model), 495
TestSuite (class in robot.running.model), 572
TestSuiteBuilder (class in

robot.running.builder.builders), 541
TestSuiteFactory() (in module robot.testdoc), 624
TestSuites (class in robot.model.testsuite), 287
TestSuiteScope (class in

robot.running.libraryscopes), 553
TestTeardown (class in

robot.parsing.model.statements), 359
TestTemplate (class in

robot.parsing.model.statements), 360
TestTimeout (class in

robot.parsing.model.statements), 361
TestTimeout (class in robot.running.timeouts), 548
Th (class in robot.conf.languages), 46
then_prefixes (robot.conf.languages.Bg attribute),

60
then_prefixes (robot.conf.languages.Bs attribute),

39
then_prefixes (robot.conf.languages.Cs attribute),

36
then_prefixes (robot.conf.languages.De attribute),

43
then_prefixes (robot.conf.languages.En attribute),

35
then_prefixes (robot.conf.languages.Es attribute),

51
then_prefixes (robot.conf.languages.Fi attribute),

40
then_prefixes (robot.conf.languages.Fr attribute),

42
then_prefixes (robot.conf.languages.Hi attribute),

64
then_prefixes (robot.conf.languages.It attribute),

63
then_prefixes (robot.conf.languages.Language at-

tribute), 33
then_prefixes (robot.conf.languages.Nl attribute),

38
then_prefixes (robot.conf.languages.Pl attribute),

49
then_prefixes (robot.conf.languages.Pt attribute),

46
then_prefixes (robot.conf.languages.PtBr at-

tribute), 44
then_prefixes (robot.conf.languages.Ro attribute),

61
then_prefixes (robot.conf.languages.Ru attribute),

53
then_prefixes (robot.conf.languages.Sv attribute),

58
then_prefixes (robot.conf.languages.Th attribute),

47
then_prefixes (robot.conf.languages.Tr attribute),

57
then_prefixes (robot.conf.languages.Uk attribute),

50
then_prefixes (robot.conf.languages.ZhCn at-

tribute), 54
then_prefixes (robot.conf.languages.ZhTw at-

tribute), 56
time_left() (robot.running.timeouts.KeywordTimeout

method), 548
time_left() (robot.running.timeouts.TestTimeout

776 Index

Robot Framework Documentation, Release 6.0.2

method), 548
timed_out() (robot.running.timeouts.KeywordTimeout

method), 548
timed_out() (robot.running.timeouts.TestTimeout

method), 548
TimeDeltaConverter (class in

robot.running.arguments.typeconverters),
536

Timeout (class in robot.parsing.model.statements), 368
Timeout (class in robot.running.timeouts.posix), 549
Timeout (class in robot.running.timeouts.windows),

549
timeout (robot.errors.BreakLoop attribute), 618
timeout (robot.errors.ContinueLoop attribute), 617
timeout (robot.errors.ExecutionFailed attribute), 615
timeout (robot.errors.ExecutionFailures attribute), 616
timeout (robot.errors.ExecutionPassed attribute), 616
timeout (robot.errors.ExecutionStatus attribute), 614
timeout (robot.errors.HandlerExecutionFailed at-

tribute), 615
timeout (robot.errors.PassExecution attribute), 617
timeout (robot.errors.ReturnFromKeyword attribute),

618
timeout (robot.errors.UserKeywordExecutionFailed

attribute), 616
timeout (robot.model.keyword.Keyword attribute), 259
timeout (robot.model.testcase.TestCase attribute), 283
TIMEOUT (robot.parsing.lexer.tokens.END attribute),

340
TIMEOUT (robot.parsing.lexer.tokens.EOS attribute),

337
TIMEOUT (robot.parsing.lexer.tokens.Token attribute),

334
timeout (robot.result.model.Break attribute), 490
timeout (robot.result.model.Continue attribute), 487
timeout (robot.result.model.For attribute), 469
timeout (robot.result.model.ForIteration attribute),

467
timeout (robot.result.model.If attribute), 478
timeout (robot.result.model.IfBranch attribute), 476
timeout (robot.result.model.Keyword attribute), 493
timeout (robot.result.model.Return attribute), 485
timeout (robot.result.model.TestCase attribute), 495
timeout (robot.result.model.Try attribute), 483
timeout (robot.result.model.TryBranch attribute), 480
timeout (robot.result.model.While attribute), 474
timeout (robot.result.model.WhileIteration attribute),

471
timeout (robot.result.modeldeprecation.DeprecatedAttributesMixin

attribute), 500
timeout (robot.running.builder.settings.Defaults

attribute), 543
timeout (robot.running.builder.settings.TestSettings at-

tribute), 543

timeout (robot.running.model.Keyword attribute), 557
timeout (robot.running.model.TestCase attribute), 572
timeout_setting (robot.conf.languages.Bg at-

tribute), 60
timeout_setting (robot.conf.languages.Bs at-

tribute), 39
timeout_setting (robot.conf.languages.Cs at-

tribute), 36
timeout_setting (robot.conf.languages.De at-

tribute), 43
timeout_setting (robot.conf.languages.En at-

tribute), 35
timeout_setting (robot.conf.languages.Es at-

tribute), 51
timeout_setting (robot.conf.languages.Fi at-

tribute), 40
timeout_setting (robot.conf.languages.Fr at-

tribute), 42
timeout_setting (robot.conf.languages.Hi at-

tribute), 64
timeout_setting (robot.conf.languages.It at-

tribute), 63
timeout_setting (robot.conf.languages.Language

attribute), 33
timeout_setting (robot.conf.languages.Nl at-

tribute), 37
timeout_setting (robot.conf.languages.Pl at-

tribute), 49
timeout_setting (robot.conf.languages.Pt at-

tribute), 46
timeout_setting (robot.conf.languages.PtBr

attribute), 44
timeout_setting (robot.conf.languages.Ro at-

tribute), 61
timeout_setting (robot.conf.languages.Ru at-

tribute), 53
timeout_setting (robot.conf.languages.Sv at-

tribute), 58
timeout_setting (robot.conf.languages.Th at-

tribute), 47
timeout_setting (robot.conf.languages.Tr at-

tribute), 57
timeout_setting (robot.conf.languages.Uk at-

tribute), 50
timeout_setting (robot.conf.languages.ZhCn at-

tribute), 54
timeout_setting (robot.conf.languages.ZhTw at-

tribute), 56
TimeoutError, 614
TimeoutHandler (class in

robot.result.xmlelementhandlers), 524
TimeoutHTTPSTransport (class in

robot.libraries.Remote), 129
TimeoutHTTPTransport (class in

Index 777

Robot Framework Documentation, Release 6.0.2

robot.libraries.Remote), 129
timestamp (robot.model.message.Message attribute),

262
timestamp (robot.output.loggerhelper.Message at-

tribute), 311
timestamp (robot.result.model.Message attribute), 464
timestamp() (robot.reporting.jsbuildingcontext.JsBuildingContext

method), 393
title() (robot.libraries.dialogs_py.InputDialog

method), 179
title() (robot.libraries.dialogs_py.MessageDialog

method), 165
title() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 207
title() (robot.libraries.dialogs_py.PassFailDialog

method), 221
title() (robot.libraries.dialogs_py.SelectionDialog

method), 193
tk_bisque() (robot.libraries.dialogs_py.InputDialog

method), 179
tk_bisque() (robot.libraries.dialogs_py.MessageDialog

method), 165
tk_bisque() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 207
tk_bisque() (robot.libraries.dialogs_py.PassFailDialog

method), 221
tk_bisque() (robot.libraries.dialogs_py.SelectionDialog

method), 193
tk_focusFollowsMouse()

(robot.libraries.dialogs_py.InputDialog
method), 179

tk_focusFollowsMouse()
(robot.libraries.dialogs_py.MessageDialog
method), 165

tk_focusFollowsMouse()
(robot.libraries.dialogs_py.MultipleSelectionDialog
method), 207

tk_focusFollowsMouse()
(robot.libraries.dialogs_py.PassFailDialog
method), 221

tk_focusFollowsMouse()
(robot.libraries.dialogs_py.SelectionDialog
method), 193

tk_focusNext() (robot.libraries.dialogs_py.InputDialog
method), 180

tk_focusNext() (robot.libraries.dialogs_py.MessageDialog
method), 166

tk_focusNext() (robot.libraries.dialogs_py.MultipleSelectionDialog
method), 208

tk_focusNext() (robot.libraries.dialogs_py.PassFailDialog
method), 222

tk_focusNext() (robot.libraries.dialogs_py.SelectionDialog
method), 194

tk_focusPrev() (robot.libraries.dialogs_py.InputDialog

method), 180
tk_focusPrev() (robot.libraries.dialogs_py.MessageDialog

method), 166
tk_focusPrev() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 208
tk_focusPrev() (robot.libraries.dialogs_py.PassFailDialog

method), 222
tk_focusPrev() (robot.libraries.dialogs_py.SelectionDialog

method), 194
tk_setPalette() (robot.libraries.dialogs_py.InputDialog

method), 180
tk_setPalette() (robot.libraries.dialogs_py.MessageDialog

method), 166
tk_setPalette() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 208
tk_setPalette() (robot.libraries.dialogs_py.PassFailDialog

method), 222
tk_setPalette() (robot.libraries.dialogs_py.SelectionDialog

method), 194
tk_strictMotif() (robot.libraries.dialogs_py.InputDialog

method), 180
tk_strictMotif() (robot.libraries.dialogs_py.MessageDialog

method), 166
tk_strictMotif() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 208
tk_strictMotif() (robot.libraries.dialogs_py.PassFailDialog

method), 222
tk_strictMotif() (robot.libraries.dialogs_py.SelectionDialog

method), 194
tkraise() (robot.libraries.dialogs_py.InputDialog

method), 180
tkraise() (robot.libraries.dialogs_py.MessageDialog

method), 166
tkraise() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 208
tkraise() (robot.libraries.dialogs_py.PassFailDialog

method), 222
tkraise() (robot.libraries.dialogs_py.SelectionDialog

method), 194
to_bytes() (robot.reporting.stringcache.StringIndex

method), 402
to_dictionary() (robot.libdocpkg.datatypes.EnumMember

method), 70
to_dictionary() (robot.libdocpkg.datatypes.TypedDictItem

method), 70
to_dictionary() (robot.libdocpkg.datatypes.TypeDoc

method), 70
to_dictionary() (robot.libdocpkg.model.KeywordDoc

method), 72
to_dictionary() (robot.libdocpkg.model.LibraryDoc

method), 72
to_json() (robot.libdocpkg.model.LibraryDoc

method), 72
Token (class in robot.parsing.lexer.tokens), 333

778 Index

Robot Framework Documentation, Release 6.0.2

token_type (robot.parsing.lexer.statementlexers.BreakLexer
attribute), 333

token_type (robot.parsing.lexer.statementlexers.CommentLexer
attribute), 329

token_type (robot.parsing.lexer.statementlexers.CommentSectionHeaderLexer
attribute), 329

token_type (robot.parsing.lexer.statementlexers.ContinueLexer
attribute), 333

token_type (robot.parsing.lexer.statementlexers.ElseHeaderLexer
attribute), 331

token_type (robot.parsing.lexer.statementlexers.ElseIfHeaderLexer
attribute), 331

token_type (robot.parsing.lexer.statementlexers.EndLexer
attribute), 332

token_type (robot.parsing.lexer.statementlexers.ErrorSectionHeaderLexer
attribute), 329

token_type (robot.parsing.lexer.statementlexers.ExceptHeaderLexer
attribute), 332

token_type (robot.parsing.lexer.statementlexers.FinallyHeaderLexer
attribute), 332

token_type (robot.parsing.lexer.statementlexers.ForHeaderLexer
attribute), 331

token_type (robot.parsing.lexer.statementlexers.IfHeaderLexer
attribute), 331

token_type (robot.parsing.lexer.statementlexers.ImplicitCommentLexer
attribute), 330

token_type (robot.parsing.lexer.statementlexers.InlineIfHeaderLexer
attribute), 331

token_type (robot.parsing.lexer.statementlexers.KeywordCallLexer
attribute), 331

token_type (robot.parsing.lexer.statementlexers.KeywordSectionHeaderLexer
attribute), 329

token_type (robot.parsing.lexer.statementlexers.ReturnLexer
attribute), 332

token_type (robot.parsing.lexer.statementlexers.SectionHeaderLexer
attribute), 328

token_type (robot.parsing.lexer.statementlexers.SettingLexer
attribute), 330

token_type (robot.parsing.lexer.statementlexers.SettingSectionHeaderLexer
attribute), 328

token_type (robot.parsing.lexer.statementlexers.SingleType
attribute), 328

token_type (robot.parsing.lexer.statementlexers.StatementLexer
attribute), 327

token_type (robot.parsing.lexer.statementlexers.TaskSectionHeaderLexer
attribute), 329

token_type (robot.parsing.lexer.statementlexers.TestCaseSectionHeaderLexer
attribute), 329

token_type (robot.parsing.lexer.statementlexers.TestOrKeywordSettingLexer
attribute), 330

token_type (robot.parsing.lexer.statementlexers.TryHeaderLexer
attribute), 332

token_type (robot.parsing.lexer.statementlexers.TypeAndArguments
attribute), 328

token_type (robot.parsing.lexer.statementlexers.VariableLexer
attribute), 330

token_type (robot.parsing.lexer.statementlexers.VariableSectionHeaderLexer
attribute), 328

token_type (robot.parsing.lexer.statementlexers.WhileHeaderLexer
attribute), 332

tokenize() (robot.parsing.lexer.tokenizer.Tokenizer
method), 333

tokenize_variables()
(robot.parsing.lexer.tokens.END method),
340

tokenize_variables()
(robot.parsing.lexer.tokens.EOS method),
338

tokenize_variables()
(robot.parsing.lexer.tokens.Token method),
335

Tokenizer (class in robot.parsing.lexer.tokenizer), 333
top (robot.running.context.ExecutionContexts attribute),

550
total (robot.model.statistics.Statistics attribute), 270
total (robot.model.stats.CombinedTagStat attribute),

276
total (robot.model.stats.Stat attribute), 275
total (robot.model.stats.SuiteStat attribute), 275
total (robot.model.stats.TagStat attribute), 276
total (robot.model.stats.TotalStat attribute), 275
total (robot.model.totalstatistics.TotalStatistics at-

tribute), 288
TotalStat (class in robot.model.stats), 275
TotalStatistics (class in

robot.model.totalstatistics), 288
TotalStatisticsBuilder (class in

robot.model.totalstatistics), 288
touch() (robot.libraries.OperatingSystem.OperatingSystem

method), 122
Tr (class in robot.conf.languages), 56
trace() (in module robot.api.logger), 15
trace() (in module robot.output.librarylogger), 305
trace() (robot.output.filelogger.FileLogger method),

305
trace() (robot.output.logger.Logger method), 309
trace() (robot.output.loggerhelper.AbstractLogger

method), 309
trace() (robot.output.output.Output method), 311
trace() (robot.utils.importer.NoLogger method), 602
traceback (robot.utils.error.ErrorDetails attribute),

598
transient() (robot.libraries.dialogs_py.InputDialog

method), 180
transient() (robot.libraries.dialogs_py.MessageDialog

method), 166
transient() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 208

Index 779

Robot Framework Documentation, Release 6.0.2

transient() (robot.libraries.dialogs_py.PassFailDialog
method), 222

transient() (robot.libraries.dialogs_py.SelectionDialog
method), 194

true_strings (robot.conf.languages.Bg attribute), 60
true_strings (robot.conf.languages.Bs attribute), 39
true_strings (robot.conf.languages.Cs attribute), 36
true_strings (robot.conf.languages.De attribute), 43
true_strings (robot.conf.languages.En attribute), 35
true_strings (robot.conf.languages.Es attribute), 52
true_strings (robot.conf.languages.Fi attribute), 40
true_strings (robot.conf.languages.Fr attribute), 42
true_strings (robot.conf.languages.Hi attribute), 64
true_strings (robot.conf.languages.It attribute), 63
true_strings (robot.conf.languages.Language at-

tribute), 33
true_strings (robot.conf.languages.Nl attribute), 38
true_strings (robot.conf.languages.Pl attribute), 49
true_strings (robot.conf.languages.Pt attribute), 46
true_strings (robot.conf.languages.PtBr attribute),

45
true_strings (robot.conf.languages.Ro attribute), 61
true_strings (robot.conf.languages.Ru attribute), 53
true_strings (robot.conf.languages.Sv attribute), 59
true_strings (robot.conf.languages.Th attribute), 48
true_strings (robot.conf.languages.Tr attribute), 57
true_strings (robot.conf.languages.Uk attribute), 50
true_strings (robot.conf.languages.ZhCn attribute),

54
true_strings (robot.conf.languages.ZhTw attribute),

56
Try (class in robot.model.control), 245
Try (class in robot.parsing.model.blocks), 344
Try (class in robot.result.model), 480
Try (class in robot.running.model), 564
TRY (robot.model.body.BodyItem attribute), 228
TRY (robot.model.control.Break attribute), 249
TRY (robot.model.control.Continue attribute), 248
TRY (robot.model.control.For attribute), 239
TRY (robot.model.control.If attribute), 243
TRY (robot.model.control.IfBranch attribute), 242
TRY (robot.model.control.Return attribute), 247
TRY (robot.model.control.Try attribute), 246
TRY (robot.model.control.TryBranch attribute), 244
TRY (robot.model.control.While attribute), 240
TRY (robot.model.keyword.Keyword attribute), 261
TRY (robot.model.message.Message attribute), 263
TRY (robot.output.loggerhelper.Message attribute), 310
TRY (robot.parsing.lexer.tokens.END attribute), 340
TRY (robot.parsing.lexer.tokens.EOS attribute), 337
TRY (robot.parsing.lexer.tokens.Token attribute), 335
TRY (robot.result.model.Break attribute), 488
TRY (robot.result.model.Continue attribute), 486
TRY (robot.result.model.For attribute), 468

TRY (robot.result.model.ForIteration attribute), 465
TRY (robot.result.model.If attribute), 477
TRY (robot.result.model.IfBranch attribute), 475
TRY (robot.result.model.Keyword attribute), 491
TRY (robot.result.model.Message attribute), 463
TRY (robot.result.model.Return attribute), 484
TRY (robot.result.model.Try attribute), 481
TRY (robot.result.model.TryBranch attribute), 479
TRY (robot.result.model.While attribute), 472
TRY (robot.result.model.WhileIteration attribute), 470
TRY (robot.running.model.Break attribute), 569
TRY (robot.running.model.Continue attribute), 568
TRY (robot.running.model.For attribute), 558
TRY (robot.running.model.If attribute), 562
TRY (robot.running.model.IfBranch attribute), 561
TRY (robot.running.model.Keyword attribute), 556
TRY (robot.running.model.Return attribute), 566
TRY (robot.running.model.Try attribute), 565
TRY (robot.running.model.TryBranch attribute), 564
TRY (robot.running.model.While attribute), 559
try_branch (robot.model.control.Try attribute), 245
try_branch (robot.result.model.Try attribute), 483
try_branch (robot.running.model.Try attribute), 566
try_class (robot.model.body.BaseBody attribute),

229
try_class (robot.model.body.Body attribute), 232
try_class (robot.model.body.Branches attribute), 234
try_class (robot.result.model.Body attribute), 459
try_class (robot.result.model.Branches attribute),

461
try_class (robot.result.model.Iterations attribute),

462
try_class (robot.running.model.Body attribute), 555
TRY_EXCEPT_ROOT (robot.model.body.BodyItem at-

tribute), 228
TRY_EXCEPT_ROOT (robot.model.control.Break

attribute), 249
TRY_EXCEPT_ROOT (robot.model.control.Continue at-

tribute), 248
TRY_EXCEPT_ROOT (robot.model.control.For at-

tribute), 239
TRY_EXCEPT_ROOT (robot.model.control.If attribute),

243
TRY_EXCEPT_ROOT (robot.model.control.IfBranch at-

tribute), 242
TRY_EXCEPT_ROOT (robot.model.control.Return at-

tribute), 247
TRY_EXCEPT_ROOT (robot.model.control.Try at-

tribute), 246
TRY_EXCEPT_ROOT (robot.model.control.TryBranch

attribute), 244
TRY_EXCEPT_ROOT (robot.model.control.While

attribute), 240

780 Index

Robot Framework Documentation, Release 6.0.2

TRY_EXCEPT_ROOT (robot.model.keyword.Keyword at-
tribute), 261

TRY_EXCEPT_ROOT (robot.model.message.Message at-
tribute), 263

TRY_EXCEPT_ROOT (robot.output.loggerhelper.Message
attribute), 310

TRY_EXCEPT_ROOT (robot.result.model.Break at-
tribute), 488

TRY_EXCEPT_ROOT (robot.result.model.Continue at-
tribute), 486

TRY_EXCEPT_ROOT (robot.result.model.For attribute),
468

TRY_EXCEPT_ROOT (robot.result.model.ForIteration
attribute), 465

TRY_EXCEPT_ROOT (robot.result.model.If attribute),
477

TRY_EXCEPT_ROOT (robot.result.model.IfBranch at-
tribute), 475

TRY_EXCEPT_ROOT (robot.result.model.Keyword at-
tribute), 491

TRY_EXCEPT_ROOT (robot.result.model.Message at-
tribute), 463

TRY_EXCEPT_ROOT (robot.result.model.Return at-
tribute), 484

TRY_EXCEPT_ROOT (robot.result.model.Try attribute),
481

TRY_EXCEPT_ROOT (robot.result.model.TryBranch at-
tribute), 479

TRY_EXCEPT_ROOT (robot.result.model.While at-
tribute), 472

TRY_EXCEPT_ROOT (robot.result.model.WhileIteration
attribute), 470

TRY_EXCEPT_ROOT (robot.running.model.Break at-
tribute), 569

TRY_EXCEPT_ROOT (robot.running.model.Continue at-
tribute), 568

TRY_EXCEPT_ROOT (robot.running.model.For at-
tribute), 558

TRY_EXCEPT_ROOT (robot.running.model.If attribute),
562

TRY_EXCEPT_ROOT (robot.running.model.IfBranch at-
tribute), 561

TRY_EXCEPT_ROOT (robot.running.model.Keyword at-
tribute), 556

TRY_EXCEPT_ROOT (robot.running.model.Return at-
tribute), 566

TRY_EXCEPT_ROOT (robot.running.model.Try at-
tribute), 565

TRY_EXCEPT_ROOT (robot.running.model.TryBranch
attribute), 564

TRY_EXCEPT_ROOT (robot.running.model.While at-
tribute), 559

TryBranch (class in robot.model.control), 244
TryBranch (class in robot.result.model), 478

TryBranch (class in robot.running.model), 563
TryBuilder (class in

robot.running.builder.transformers), 547
TryHandler (class in

robot.result.xmlelementhandlers), 521
TryHeader (class in robot.parsing.model.statements),

378
TryHeaderLexer (class in

robot.parsing.lexer.statementlexers), 331
TryLexer (class in robot.parsing.lexer.blocklexers),

323
TryParser (class in

robot.parsing.parser.blockparsers), 390
TryRunner (class in robot.running.bodyrunner), 550
TupleConverter (class in

robot.running.arguments.typeconverters),
538

TupleListDumper (class in
robot.htmldata.jsonwriter), 68

type (robot.libdocpkg.robotbuilder.ResourceDocBuilder
attribute), 72

type (robot.libdocpkg.robotbuilder.SuiteDocBuilder at-
tribute), 72

type (robot.model.body.BodyItem attribute), 228
type (robot.model.control.Break attribute), 250
type (robot.model.control.Continue attribute), 248
type (robot.model.control.For attribute), 238
type (robot.model.control.If attribute), 242
type (robot.model.control.IfBranch attribute), 241
type (robot.model.control.Return attribute), 246
type (robot.model.control.Try attribute), 245
type (robot.model.control.TryBranch attribute), 244
type (robot.model.control.While attribute), 240
type (robot.model.keyword.Keyword attribute), 259
type (robot.model.message.Message attribute), 262
type (robot.model.stats.CombinedTagStat attribute),

276
type (robot.model.stats.SuiteStat attribute), 275
type (robot.model.stats.TagStat attribute), 276
type (robot.model.stats.TotalStat attribute), 275
type (robot.output.loggerhelper.Message attribute), 311
type (robot.parsing.lexer.tokens.END attribute), 340
type (robot.parsing.lexer.tokens.EOS attribute), 338
type (robot.parsing.lexer.tokens.Token attribute), 335
type (robot.parsing.model.blocks.If attribute), 343
type (robot.parsing.model.blocks.Try attribute), 344
type (robot.parsing.model.statements.Arguments

attribute), 368
type (robot.parsing.model.statements.Break attribute),

384
type (robot.parsing.model.statements.Comment at-

tribute), 385
type (robot.parsing.model.statements.Config attribute),

386

Index 781

Robot Framework Documentation, Release 6.0.2

type (robot.parsing.model.statements.Continue at-
tribute), 383

type (robot.parsing.model.statements.DefaultTags at-
tribute), 355

type (robot.parsing.model.statements.Documentation
attribute), 353

type (robot.parsing.model.statements.DocumentationOrMetadata
attribute), 347

type (robot.parsing.model.statements.ElseHeader at-
tribute), 376

type (robot.parsing.model.statements.ElseIfHeader at-
tribute), 375

type (robot.parsing.model.statements.EmptyLine
attribute), 388

type (robot.parsing.model.statements.End attribute),
380

type (robot.parsing.model.statements.Error attribute),
387

type (robot.parsing.model.statements.ExceptHeader at-
tribute), 378

type (robot.parsing.model.statements.FinallyHeader at-
tribute), 379

type (robot.parsing.model.statements.Fixture attribute),
349

type (robot.parsing.model.statements.ForceTags at-
tribute), 354

type (robot.parsing.model.statements.ForHeader
attribute), 372

type (robot.parsing.model.statements.IfElseHeader at-
tribute), 373

type (robot.parsing.model.statements.IfHeader at-
tribute), 373

type (robot.parsing.model.statements.InlineIfHeader at-
tribute), 374

type (robot.parsing.model.statements.KeywordCall at-
tribute), 370

type (robot.parsing.model.statements.KeywordName at-
tribute), 363

type (robot.parsing.model.statements.KeywordTags at-
tribute), 356

type (robot.parsing.model.statements.LibraryImport at-
tribute), 350

type (robot.parsing.model.statements.LoopControl at-
tribute), 383

type (robot.parsing.model.statements.Metadata at-
tribute), 354

type (robot.parsing.model.statements.MultiValue
attribute), 349

type (robot.parsing.model.statements.NoArgumentHeader
attribute), 377

type (robot.parsing.model.statements.ResourceImport
attribute), 351

type (robot.parsing.model.statements.Return attribute),
369

type (robot.parsing.model.statements.ReturnStatement
attribute), 382

type (robot.parsing.model.statements.SectionHeader at-
tribute), 350

type (robot.parsing.model.statements.Setup attribute),
364

type (robot.parsing.model.statements.SingleValue at-
tribute), 348

type (robot.parsing.model.statements.Statement at-
tribute), 345

type (robot.parsing.model.statements.SuiteSetup at-
tribute), 357

type (robot.parsing.model.statements.SuiteTeardown at-
tribute), 358

type (robot.parsing.model.statements.Tags attribute),
366

type (robot.parsing.model.statements.Teardown at-
tribute), 365

type (robot.parsing.model.statements.Template at-
tribute), 367

type (robot.parsing.model.statements.TemplateArguments
attribute), 371

type (robot.parsing.model.statements.TestCaseName at-
tribute), 363

type (robot.parsing.model.statements.TestSetup at-
tribute), 359

type (robot.parsing.model.statements.TestTeardown at-
tribute), 359

type (robot.parsing.model.statements.TestTemplate at-
tribute), 360

type (robot.parsing.model.statements.TestTimeout at-
tribute), 361

type (robot.parsing.model.statements.Timeout at-
tribute), 368

type (robot.parsing.model.statements.TryHeader
attribute), 378

type (robot.parsing.model.statements.Variable at-
tribute), 362

type (robot.parsing.model.statements.VariablesImport
attribute), 352

type (robot.parsing.model.statements.WhileHeader at-
tribute), 381

type (robot.result.model.Break attribute), 490
type (robot.result.model.Continue attribute), 487
type (robot.result.model.For attribute), 469
type (robot.result.model.ForIteration attribute), 465
type (robot.result.model.If attribute), 478
type (robot.result.model.IfBranch attribute), 476
type (robot.result.model.Keyword attribute), 493
type (robot.result.model.Message attribute), 464
type (robot.result.model.Return attribute), 485
type (robot.result.model.Try attribute), 483
type (robot.result.model.TryBranch attribute), 480
type (robot.result.model.While attribute), 474

782 Index

Robot Framework Documentation, Release 6.0.2

type (robot.result.model.WhileIteration attribute), 469
type (robot.running.arguments.typeconverters.BooleanConverter

attribute), 533
type (robot.running.arguments.typeconverters.ByteArrayConverter

attribute), 535
type (robot.running.arguments.typeconverters.BytesConverter

attribute), 534
type (robot.running.arguments.typeconverters.CombinedConverter

attribute), 540
type (robot.running.arguments.typeconverters.CustomConverter

attribute), 541
type (robot.running.arguments.typeconverters.DateConverter

attribute), 536
type (robot.running.arguments.typeconverters.DateTimeConverter

attribute), 535
type (robot.running.arguments.typeconverters.DecimalConverter

attribute), 534
type (robot.running.arguments.typeconverters.DictionaryConverter

attribute), 539
type (robot.running.arguments.typeconverters.EnumConverter

attribute), 532
type (robot.running.arguments.typeconverters.FloatConverter

attribute), 534
type (robot.running.arguments.typeconverters.FrozenSetConverter

attribute), 540
type (robot.running.arguments.typeconverters.IntegerConverter

attribute), 533
type (robot.running.arguments.typeconverters.ListConverter

attribute), 537
type (robot.running.arguments.typeconverters.NoneConverter

attribute), 537
type (robot.running.arguments.typeconverters.PathConverter

attribute), 537
type (robot.running.arguments.typeconverters.SetConverter

attribute), 539
type (robot.running.arguments.typeconverters.StringConverter

attribute), 532
type (robot.running.arguments.typeconverters.TimeDeltaConverter

attribute), 536
type (robot.running.arguments.typeconverters.TupleConverter

attribute), 538
type (robot.running.arguments.typeconverters.TypeConverter

attribute), 531
type (robot.running.arguments.typeconverters.TypedDictConverter

attribute), 538
type (robot.running.model.Break attribute), 570
type (robot.running.model.Continue attribute), 568
type (robot.running.model.For attribute), 559
type (robot.running.model.If attribute), 563
type (robot.running.model.IfBranch attribute), 561
type (robot.running.model.Keyword attribute), 557
type (robot.running.model.Return attribute), 567
type (robot.running.model.Try attribute), 566
type (robot.running.model.TryBranch attribute), 564

type (robot.running.model.While attribute), 560
type (robot.running.timeouts.KeywordTimeout at-

tribute), 548
type (robot.running.timeouts.TestTimeout attribute),

548
type_docs (robot.libdocpkg.model.LibraryDoc at-

tribute), 71
type_name (robot.running.arguments.typeconverters.BooleanConverter

attribute), 533
type_name (robot.running.arguments.typeconverters.ByteArrayConverter

attribute), 535
type_name (robot.running.arguments.typeconverters.BytesConverter

attribute), 535
type_name (robot.running.arguments.typeconverters.CombinedConverter

attribute), 540
type_name (robot.running.arguments.typeconverters.CustomConverter

attribute), 541
type_name (robot.running.arguments.typeconverters.DateConverter

attribute), 536
type_name (robot.running.arguments.typeconverters.DateTimeConverter

attribute), 535
type_name (robot.running.arguments.typeconverters.DecimalConverter

attribute), 534
type_name (robot.running.arguments.typeconverters.DictionaryConverter

attribute), 539
type_name (robot.running.arguments.typeconverters.EnumConverter

attribute), 532
type_name (robot.running.arguments.typeconverters.FloatConverter

attribute), 534
type_name (robot.running.arguments.typeconverters.FrozenSetConverter

attribute), 540
type_name (robot.running.arguments.typeconverters.IntegerConverter

attribute), 533
type_name (robot.running.arguments.typeconverters.ListConverter

attribute), 538
type_name (robot.running.arguments.typeconverters.NoneConverter

attribute), 537
type_name (robot.running.arguments.typeconverters.PathConverter

attribute), 537
type_name (robot.running.arguments.typeconverters.SetConverter

attribute), 539
type_name (robot.running.arguments.typeconverters.StringConverter

attribute), 532
type_name (robot.running.arguments.typeconverters.TimeDeltaConverter

attribute), 536
type_name (robot.running.arguments.typeconverters.TupleConverter

attribute), 538
type_name (robot.running.arguments.typeconverters.TypeConverter

attribute), 531
type_name (robot.running.arguments.typeconverters.TypedDictConverter

attribute), 538
TypeAndArguments (class in

robot.parsing.lexer.statementlexers), 328
TypeConverter (class in

Index 783

Robot Framework Documentation, Release 6.0.2

robot.running.arguments.typeconverters),
531

TYPED_DICT (robot.libdocpkg.datatypes.TypeDoc at-
tribute), 70

TypedDictConverter (class in
robot.running.arguments.typeconverters),
538

TypedDictItem (class in robot.libdocpkg.datatypes),
70

TypeDoc (class in robot.libdocpkg.datatypes), 70
types (robot.running.arguments.argumentspec.ArgInfo

attribute), 530
types (robot.running.arguments.argumentspec.ArgumentSpec

attribute), 530
types_reprs (robot.running.arguments.argumentspec.ArgInfo

attribute), 530
TypeValidator (class in

robot.running.arguments.typevalidator),
541

U
Uk (class in robot.conf.languages), 49
unbind() (robot.libraries.dialogs_py.InputDialog

method), 180
unbind() (robot.libraries.dialogs_py.MessageDialog

method), 166
unbind() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 208
unbind() (robot.libraries.dialogs_py.PassFailDialog

method), 222
unbind() (robot.libraries.dialogs_py.SelectionDialog

method), 194
unbind_all() (robot.libraries.dialogs_py.InputDialog

method), 180
unbind_all() (robot.libraries.dialogs_py.MessageDialog

method), 166
unbind_all() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 208
unbind_all() (robot.libraries.dialogs_py.PassFailDialog

method), 222
unbind_all() (robot.libraries.dialogs_py.SelectionDialog

method), 194
unbind_class() (robot.libraries.dialogs_py.InputDialog

method), 180
unbind_class() (robot.libraries.dialogs_py.MessageDialog

method), 166
unbind_class() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 208
unbind_class() (robot.libraries.dialogs_py.PassFailDialog

method), 222
unbind_class() (robot.libraries.dialogs_py.SelectionDialog

method), 194
unescape() (robot.utils.escaping.Unescaper method),

598

unescape_variable_syntax() (in module
robot.variables.search), 611

Unescaper (class in robot.utils.escaping), 598
unhandled_tokens (robot.parsing.parser.blockparsers.BlockParser

attribute), 389
unhandled_tokens (robot.parsing.parser.blockparsers.ForParser

attribute), 390
unhandled_tokens (robot.parsing.parser.blockparsers.IfParser

attribute), 390
unhandled_tokens (robot.parsing.parser.blockparsers.KeywordParser

attribute), 389
unhandled_tokens (robot.parsing.parser.blockparsers.NestedBlockParser

attribute), 390
unhandled_tokens (robot.parsing.parser.blockparsers.TestCaseParser

attribute), 389
unhandled_tokens (robot.parsing.parser.blockparsers.TryParser

attribute), 390
unhandled_tokens (robot.parsing.parser.blockparsers.WhileParser

attribute), 390
unregister() (robot.output.listenermethods.LibraryListenerMethods

method), 307
unregister() (robot.output.listeners.LibraryListeners

method), 307
unregister_console_logger()

(robot.output.logger.Logger method), 308
unregister_logger() (robot.output.logger.Logger

method), 308
unregister_xml_logger()

(robot.output.logger.Logger method), 308
unstrip() (robot.libraries.XML.NameSpaceStripper

method), 157
update() (robot.libraries.dialogs_py.InputDialog

method), 180
update() (robot.libraries.dialogs_py.MessageDialog

method), 166
update() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 208
update() (robot.libraries.dialogs_py.PassFailDialog

method), 222
update() (robot.libraries.dialogs_py.SelectionDialog

method), 194
update() (robot.model.metadata.Metadata method),

265
update() (robot.utils.dotdict.DotDict method), 597
update() (robot.utils.normalizing.NormalizedDict

method), 605
update() (robot.variables.evaluation.EvaluationNamespace

method), 607
update() (robot.variables.scopes.GlobalVariables

method), 610
update() (robot.variables.scopes.SetVariables

method), 610
update() (robot.variables.store.VariableStore

method), 611

784 Index

Robot Framework Documentation, Release 6.0.2

update() (robot.variables.variables.Variables
method), 613

update_idletasks()
(robot.libraries.dialogs_py.InputDialog
method), 180

update_idletasks()
(robot.libraries.dialogs_py.MessageDialog
method), 166

update_idletasks()
(robot.libraries.dialogs_py.MultipleSelectionDialog
method), 208

update_idletasks()
(robot.libraries.dialogs_py.PassFailDialog
method), 222

update_idletasks()
(robot.libraries.dialogs_py.SelectionDialog
method), 194

usage (robot.reporting.logreportwriters.LogWriter at-
tribute), 395

usage (robot.reporting.logreportwriters.ReportWriter
attribute), 395

user_agent (robot.libraries.Remote.TimeoutHTTPSTransport
attribute), 130

user_agent (robot.libraries.Remote.TimeoutHTTPTransport
attribute), 129

UserErrorHandler (class in
robot.running.usererrorhandler), 589

UserKeyword (class in robot.running.model), 576
UserKeywordArgumentParser (class in

robot.running.arguments.argumentparser),
529

UserKeywordExecutionFailed, 616
UserKeywordHandler (class in

robot.running.userkeyword), 589
UserKeywordRunner (class in

robot.running.userkeywordrunner), 590
UserLibrary (class in robot.running.userkeyword),

589

V
validate() (robot.libdoc.LibDoc method), 619
validate() (robot.parsing.model.blocks.Block

method), 340
validate() (robot.parsing.model.blocks.CommentSection

method), 342
validate() (robot.parsing.model.blocks.File method),

341
validate() (robot.parsing.model.blocks.For method),

344
validate() (robot.parsing.model.blocks.HeaderAndBody

method), 341
validate() (robot.parsing.model.blocks.If method),

343

validate() (robot.parsing.model.blocks.Keyword
method), 343

validate() (robot.parsing.model.blocks.KeywordSection
method), 342

validate() (robot.parsing.model.blocks.Section
method), 341

validate() (robot.parsing.model.blocks.SettingSection
method), 341

validate() (robot.parsing.model.blocks.TestCase
method), 343

validate() (robot.parsing.model.blocks.TestCaseSection
method), 342

validate() (robot.parsing.model.blocks.Try method),
344

validate() (robot.parsing.model.blocks.VariableSection
method), 342

validate() (robot.parsing.model.blocks.While
method), 344

validate() (robot.parsing.model.statements.Arguments
method), 369

validate() (robot.parsing.model.statements.Break
method), 385

validate() (robot.parsing.model.statements.Comment
method), 386

validate() (robot.parsing.model.statements.Config
method), 387

validate() (robot.parsing.model.statements.Continue
method), 384

validate() (robot.parsing.model.statements.DefaultTags
method), 356

validate() (robot.parsing.model.statements.Documentation
method), 354

validate() (robot.parsing.model.statements.DocumentationOrMetadata
method), 347

validate() (robot.parsing.model.statements.ElseHeader
method), 376

validate() (robot.parsing.model.statements.ElseIfHeader
method), 376

validate() (robot.parsing.model.statements.EmptyLine
method), 388

validate() (robot.parsing.model.statements.End
method), 381

validate() (robot.parsing.model.statements.Error
method), 387

validate() (robot.parsing.model.statements.ExceptHeader
method), 379

validate() (robot.parsing.model.statements.FinallyHeader
method), 380

validate() (robot.parsing.model.statements.Fixture
method), 349

validate() (robot.parsing.model.statements.ForceTags
method), 355

validate() (robot.parsing.model.statements.ForHeader
method), 372

Index 785

Robot Framework Documentation, Release 6.0.2

validate() (robot.parsing.model.statements.IfElseHeader
method), 373

validate() (robot.parsing.model.statements.IfHeader
method), 374

validate() (robot.parsing.model.statements.InlineIfHeader
method), 375

validate() (robot.parsing.model.statements.KeywordCall
method), 371

validate() (robot.parsing.model.statements.KeywordName
method), 364

validate() (robot.parsing.model.statements.KeywordTags
method), 357

validate() (robot.parsing.model.statements.LibraryImport
method), 351

validate() (robot.parsing.model.statements.LoopControl
method), 383

validate() (robot.parsing.model.statements.Metadata
method), 354

validate() (robot.parsing.model.statements.MultiValue
method), 349

validate() (robot.parsing.model.statements.NoArgumentHeader
method), 377

validate() (robot.parsing.model.statements.ResourceImport
method), 352

validate() (robot.parsing.model.statements.Return
method), 370

validate() (robot.parsing.model.statements.ReturnStatement
method), 382

validate() (robot.parsing.model.statements.SectionHeader
method), 350

validate() (robot.parsing.model.statements.Setup
method), 365

validate() (robot.parsing.model.statements.SingleValue
method), 348

validate() (robot.parsing.model.statements.Statement
method), 346

validate() (robot.parsing.model.statements.SuiteSetup
method), 358

validate() (robot.parsing.model.statements.SuiteTeardown
method), 359

validate() (robot.parsing.model.statements.Tags
method), 367

validate() (robot.parsing.model.statements.Teardown
method), 366

validate() (robot.parsing.model.statements.Template
method), 367

validate() (robot.parsing.model.statements.TemplateArguments
method), 372

validate() (robot.parsing.model.statements.TestCaseName
method), 363

validate() (robot.parsing.model.statements.TestSetup
method), 359

validate() (robot.parsing.model.statements.TestTeardown
method), 360

validate() (robot.parsing.model.statements.TestTemplate
method), 361

validate() (robot.parsing.model.statements.TestTimeout
method), 362

validate() (robot.parsing.model.statements.Timeout
method), 368

validate() (robot.parsing.model.statements.TryHeader
method), 378

validate() (robot.parsing.model.statements.Variable
method), 362

validate() (robot.parsing.model.statements.VariablesImport
method), 353

validate() (robot.parsing.model.statements.WhileHeader
method), 381

validate() (robot.rebot.Rebot method), 621
validate() (robot.run.RobotFramework method), 622
validate() (robot.running.arguments.argumentvalidator.ArgumentValidator

method), 531
validate() (robot.running.arguments.embedded.EmbeddedArguments

method), 531
validate() (robot.running.arguments.typevalidator.TypeValidator

method), 541
validate() (robot.testdoc.TestDoc method), 624
validate() (robot.utils.application.Application

method), 591
validate() (robot.variables.assigner.AssignmentValidator

method), 606
validate_assignment()

(robot.variables.assigner.VariableAssignment
method), 606

validate_command()
(robot.libdocpkg.consoleviewer.ConsoleViewer
class method), 69

validate_flatten_keyword() (in module
robot.result.flattenkeywordmatcher), 415

validate_model() (robot.parsing.model.blocks.Block
method), 340

validate_model() (robot.parsing.model.blocks.CommentSection
method), 342

validate_model() (robot.parsing.model.blocks.File
method), 341

validate_model() (robot.parsing.model.blocks.For
method), 344

validate_model() (robot.parsing.model.blocks.HeaderAndBody
method), 341

validate_model() (robot.parsing.model.blocks.If
method), 343

validate_model() (robot.parsing.model.blocks.Keyword
method), 343

validate_model() (robot.parsing.model.blocks.KeywordSection
method), 342

validate_model() (robot.parsing.model.blocks.Section
method), 341

validate_model() (robot.parsing.model.blocks.SettingSection

786 Index

Robot Framework Documentation, Release 6.0.2

method), 341
validate_model() (robot.parsing.model.blocks.TestCase

method), 343
validate_model() (robot.parsing.model.blocks.TestCaseSection

method), 342
validate_model() (robot.parsing.model.blocks.Try

method), 344
validate_model() (robot.parsing.model.blocks.VariableSection

method), 342
validate_model() (robot.parsing.model.blocks.While

method), 344
validate_type_dict()

(robot.running.arguments.typevalidator.TypeValidator
method), 541

ValidationContext (class in
robot.parsing.model.blocks), 345

value (robot.parsing.lexer.tokens.END attribute), 340
value (robot.parsing.lexer.tokens.EOS attribute), 338
value (robot.parsing.lexer.tokens.Token attribute), 335
value (robot.parsing.model.statements.Documentation

attribute), 353
value (robot.parsing.model.statements.Metadata

attribute), 354
value (robot.parsing.model.statements.SingleValue at-

tribute), 347
value (robot.parsing.model.statements.Template at-

tribute), 367
value (robot.parsing.model.statements.TestTemplate at-

tribute), 361
value (robot.parsing.model.statements.TestTimeout at-

tribute), 362
value (robot.parsing.model.statements.Timeout at-

tribute), 368
value (robot.parsing.model.statements.Variable at-

tribute), 362
value_types (robot.running.arguments.typeconverters.BooleanConverter

attribute), 533
value_types (robot.running.arguments.typeconverters.ByteArrayConverter

attribute), 535
value_types (robot.running.arguments.typeconverters.BytesConverter

attribute), 535
value_types (robot.running.arguments.typeconverters.CombinedConverter

attribute), 540
value_types (robot.running.arguments.typeconverters.CustomConverter

attribute), 541
value_types (robot.running.arguments.typeconverters.DateConverter

attribute), 536
value_types (robot.running.arguments.typeconverters.DateTimeConverter

attribute), 535
value_types (robot.running.arguments.typeconverters.DecimalConverter

attribute), 534
value_types (robot.running.arguments.typeconverters.DictionaryConverter

attribute), 539
value_types (robot.running.arguments.typeconverters.EnumConverter

attribute), 532
value_types (robot.running.arguments.typeconverters.FloatConverter

attribute), 534
value_types (robot.running.arguments.typeconverters.FrozenSetConverter

attribute), 540
value_types (robot.running.arguments.typeconverters.IntegerConverter

attribute), 533
value_types (robot.running.arguments.typeconverters.ListConverter

attribute), 537
value_types (robot.running.arguments.typeconverters.NoneConverter

attribute), 537
value_types (robot.running.arguments.typeconverters.PathConverter

attribute), 537
value_types (robot.running.arguments.typeconverters.SetConverter

attribute), 539
value_types (robot.running.arguments.typeconverters.StringConverter

attribute), 532
value_types (robot.running.arguments.typeconverters.TimeDeltaConverter

attribute), 536
value_types (robot.running.arguments.typeconverters.TupleConverter

attribute), 538
value_types (robot.running.arguments.typeconverters.TypeConverter

attribute), 532
value_types (robot.running.arguments.typeconverters.TypedDictConverter

attribute), 538
ValueHandler (class in

robot.result.xmlelementhandlers), 526
values (robot.model.control.For attribute), 238
values (robot.model.control.Return attribute), 246
values (robot.parsing.model.blocks.For attribute), 344
values (robot.parsing.model.statements.Arguments at-

tribute), 369
values (robot.parsing.model.statements.Break at-

tribute), 385
values (robot.parsing.model.statements.Continue at-

tribute), 384
values (robot.parsing.model.statements.DefaultTags

attribute), 356
values (robot.parsing.model.statements.End attribute),

381
values (robot.parsing.model.statements.FinallyHeader

attribute), 380
values (robot.parsing.model.statements.ForceTags at-

tribute), 355
values (robot.parsing.model.statements.ForHeader at-

tribute), 372
values (robot.parsing.model.statements.KeywordTags

attribute), 357
values (robot.parsing.model.statements.LoopControl

attribute), 383
values (robot.parsing.model.statements.MultiValue at-

tribute), 348
values (robot.parsing.model.statements.NoArgumentHeader

attribute), 377

Index 787

Robot Framework Documentation, Release 6.0.2

values (robot.parsing.model.statements.Return at-
tribute), 370

values (robot.parsing.model.statements.ReturnStatement
attribute), 382

values (robot.parsing.model.statements.Tags attribute),
367

values (robot.parsing.model.statements.TryHeader at-
tribute), 378

values (robot.result.model.For attribute), 469
values (robot.result.model.Return attribute), 485
values (robot.running.model.For attribute), 559
values (robot.running.model.Return attribute), 567
values() (robot.model.metadata.Metadata method),

265
values() (robot.running.importer.ImportCache

method), 552
values() (robot.utils.dotdict.DotDict method), 597
values() (robot.utils.normalizing.NormalizedDict

method), 605
values() (robot.variables.evaluation.EvaluationNamespace

method), 607
VAR_NAMED (robot.running.arguments.argumentspec.ArgInfo

attribute), 530
VAR_POSITIONAL (robot.running.arguments.argumentspec.ArgInfo

attribute), 530
VarHandler (class in

robot.result.xmlelementhandlers), 525
Variable (class in robot.parsing.model.statements),

362
Variable (class in robot.running.model), 576
variable (robot.model.control.TryBranch attribute),

244
VARIABLE (robot.parsing.lexer.tokens.END attribute),

340
VARIABLE (robot.parsing.lexer.tokens.EOS attribute),

337
VARIABLE (robot.parsing.lexer.tokens.Token attribute),

334
variable (robot.parsing.model.blocks.Try attribute),

344
variable (robot.parsing.model.statements.ExceptHeader

attribute), 379
variable (robot.result.model.TryBranch attribute),

480
variable (robot.running.model.TryBranch attribute),

564
variable_files (robot.conf.settings.RobotSettings

attribute), 65
VARIABLE_HEADER (robot.parsing.lexer.tokens.END

attribute), 340
VARIABLE_HEADER (robot.parsing.lexer.tokens.EOS

attribute), 337
VARIABLE_HEADER (robot.parsing.lexer.tokens.Token

attribute), 333

variable_not_found() (in module
robot.variables.notfound), 608

variable_section()
(robot.parsing.lexer.context.FileContext
method), 323

variable_section()
(robot.parsing.lexer.context.InitFileContext
method), 325

variable_section()
(robot.parsing.lexer.context.ResourceFileContext
method), 324

variable_section()
(robot.parsing.lexer.context.TestCaseFileContext
method), 324

variable_should_exist()
(robot.libraries.BuiltIn.BuiltIn method),
98

variable_should_not_exist()
(robot.libraries.BuiltIn.BuiltIn method),
98

VariableAssigner (class in
robot.variables.assigner), 606

VariableAssignment (class in
robot.variables.assigner), 606

VariableError, 613
VariableFileSetter (class in

robot.variables.filesetter), 607
VariableFinder (class in robot.variables.finders),

608
VariableIterator (class in robot.variables.search),

611
VariableLexer (class in

robot.parsing.lexer.statementlexers), 330
VariableMatch (class in robot.variables.search), 611
VariableReplacer (class in

robot.running.arguments.argumentresolver),
529

VariableReplacer (class in
robot.variables.replacer), 609

Variables (class in robot.variables.variables), 612
variables (robot.conf.settings.RobotSettings at-

tribute), 65
variables (robot.model.control.For attribute), 238
VARIABLES (robot.parsing.lexer.tokens.END attribute),

340
VARIABLES (robot.parsing.lexer.tokens.EOS attribute),

337
VARIABLES (robot.parsing.lexer.tokens.Token at-

tribute), 334
variables (robot.parsing.model.blocks.For attribute),

343
variables (robot.parsing.model.statements.ForHeader

attribute), 372
variables (robot.result.model.For attribute), 469

788 Index

Robot Framework Documentation, Release 6.0.2

variables (robot.result.model.ForIteration attribute),
465

variables (robot.running.model.For attribute), 559
variables (robot.running.model.ResourceFile at-

tribute), 576
variables() (robot.running.model.Imports method),

577
variables_header (robot.conf.languages.Bg at-

tribute), 59
variables_header (robot.conf.languages.Bs at-

tribute), 38
variables_header (robot.conf.languages.Cs at-

tribute), 35
variables_header (robot.conf.languages.De at-

tribute), 42
variables_header (robot.conf.languages.En at-

tribute), 34
variables_header (robot.conf.languages.Es at-

tribute), 51
variables_header (robot.conf.languages.Fi at-

tribute), 39
variables_header (robot.conf.languages.Fr at-

tribute), 41
variables_header (robot.conf.languages.Hi at-

tribute), 63
variables_header (robot.conf.languages.It at-

tribute), 62
variables_header (robot.conf.languages.Language

attribute), 32
variables_header (robot.conf.languages.Nl at-

tribute), 37
variables_header (robot.conf.languages.Pl at-

tribute), 48
variables_header (robot.conf.languages.Pt at-

tribute), 45
variables_header (robot.conf.languages.PtBr at-

tribute), 44
variables_header (robot.conf.languages.Ro at-

tribute), 60
variables_header (robot.conf.languages.Ru at-

tribute), 52
variables_header (robot.conf.languages.Sv at-

tribute), 58
variables_header (robot.conf.languages.Th at-

tribute), 46
variables_header (robot.conf.languages.Tr at-

tribute), 56
variables_header (robot.conf.languages.Uk at-

tribute), 49
variables_header (robot.conf.languages.ZhCn at-

tribute), 53
variables_header (robot.conf.languages.ZhTw at-

tribute), 55
variables_setting (robot.conf.languages.Bg at-

tribute), 59
variables_setting (robot.conf.languages.Bs at-

tribute), 38
variables_setting (robot.conf.languages.Cs at-

tribute), 35
variables_setting (robot.conf.languages.De at-

tribute), 42
variables_setting (robot.conf.languages.En at-

tribute), 34
variables_setting (robot.conf.languages.Es at-

tribute), 51
variables_setting (robot.conf.languages.Fi

attribute), 40
variables_setting (robot.conf.languages.Fr at-

tribute), 41
variables_setting (robot.conf.languages.Hi at-

tribute), 63
variables_setting (robot.conf.languages.It at-

tribute), 62
variables_setting

(robot.conf.languages.Language attribute),
32

variables_setting (robot.conf.languages.Nl at-
tribute), 37

variables_setting (robot.conf.languages.Pl at-
tribute), 48

variables_setting (robot.conf.languages.Pt at-
tribute), 45

variables_setting (robot.conf.languages.PtBr at-
tribute), 44

variables_setting (robot.conf.languages.Ro at-
tribute), 61

variables_setting (robot.conf.languages.Ru at-
tribute), 52

variables_setting (robot.conf.languages.Sv at-
tribute), 58

variables_setting (robot.conf.languages.Th at-
tribute), 47

variables_setting (robot.conf.languages.Tr at-
tribute), 56

variables_setting (robot.conf.languages.Uk at-
tribute), 49

variables_setting (robot.conf.languages.ZhCn at-
tribute), 54

variables_setting (robot.conf.languages.ZhTw at-
tribute), 55

VariableScopes (class in robot.variables.scopes),
609

VariableSection (class in
robot.parsing.model.blocks), 341

VariableSectionHeaderLexer (class in
robot.parsing.lexer.statementlexers), 328

VariableSectionLexer (class in
robot.parsing.lexer.blocklexers), 319

Index 789

Robot Framework Documentation, Release 6.0.2

VariableSectionParser (class in
robot.parsing.parser.fileparser), 391

VariablesImport (class in
robot.parsing.model.statements), 352

VariableStore (class in robot.variables.store), 611
VariableTableSetter (class in

robot.variables.tablesetter), 612
VariableTableValue() (in module

robot.variables.tablesetter), 612
VariableTableValueBase (class in

robot.variables.tablesetter), 612
VerboseOutput (class in

robot.output.console.verbose), 304
VerboseWriter (class in

robot.output.console.verbose), 304
version() (robot.libdocpkg.consoleviewer.ConsoleViewer

method), 70
view() (robot.libdocpkg.consoleviewer.ConsoleViewer

method), 70
visit() (robot.model.body.BaseBody method), 230
visit() (robot.model.body.Body method), 232
visit() (robot.model.body.Branches method), 234
visit() (robot.model.control.Break method), 250
visit() (robot.model.control.Continue method), 249
visit() (robot.model.control.For method), 239
visit() (robot.model.control.If method), 243
visit() (robot.model.control.IfBranch method), 241
visit() (robot.model.control.Return method), 247
visit() (robot.model.control.Try method), 245
visit() (robot.model.control.TryBranch method), 244
visit() (robot.model.control.While method), 240
visit() (robot.model.itemlist.ItemList method), 259
visit() (robot.model.keyword.Keyword method), 260
visit() (robot.model.keyword.Keywords method), 262
visit() (robot.model.message.Message method), 263
visit() (robot.model.message.Messages method), 264
visit() (robot.model.statistics.Statistics method), 270
visit() (robot.model.stats.CombinedTagStat method),

276
visit() (robot.model.stats.Stat method), 275
visit() (robot.model.stats.SuiteStat method), 275
visit() (robot.model.stats.TagStat method), 276
visit() (robot.model.stats.TotalStat method), 275
visit() (robot.model.suitestatistics.SuiteStatistics

method), 276
visit() (robot.model.tagstatistics.TagStatistics

method), 282
visit() (robot.model.testcase.TestCase method), 284
visit() (robot.model.testcase.TestCases method), 285
visit() (robot.model.testsuite.TestSuite method), 287
visit() (robot.model.testsuite.TestSuites method), 288
visit() (robot.model.totalstatistics.TotalStatistics

method), 288

visit() (robot.output.loggerhelper.Message method),
311

visit() (robot.parsing.model.blocks.FirstStatementFinder
method), 345

visit() (robot.parsing.model.blocks.LastStatementFinder
method), 345

visit() (robot.parsing.model.blocks.ModelValidator
method), 345

visit() (robot.parsing.model.blocks.ModelWriter
method), 345

visit() (robot.parsing.model.visitor.ModelTransformer
method), 389

visit() (robot.parsing.model.visitor.ModelVisitor
method), 389

visit() (robot.parsing.parser.parser.SetLanguages
method), 392

visit() (robot.parsing.suitestructure.SuiteStructure
method), 392

visit() (robot.result.executionerrors.ExecutionErrors
method), 413

visit() (robot.result.executionresult.CombinedResult
method), 415

visit() (robot.result.executionresult.Result method),
414

visit() (robot.result.model.Body method), 459
visit() (robot.result.model.Branches method), 461
visit() (robot.result.model.Break method), 490
visit() (robot.result.model.Continue method), 487
visit() (robot.result.model.For method), 469
visit() (robot.result.model.ForIteration method), 465
visit() (robot.result.model.If method), 478
visit() (robot.result.model.IfBranch method), 476
visit() (robot.result.model.Iterations method), 463
visit() (robot.result.model.Keyword method), 493
visit() (robot.result.model.Message method), 464
visit() (robot.result.model.Return method), 485
visit() (robot.result.model.TestCase method), 495
visit() (robot.result.model.TestSuite method), 498
visit() (robot.result.model.Try method), 483
visit() (robot.result.model.TryBranch method), 480
visit() (robot.result.model.While method), 474
visit() (robot.result.model.WhileIteration method),

469
visit() (robot.running.builder.parsers.ErrorReporter

method), 543
visit() (robot.running.builder.transformers.ForBuilder

method), 546
visit() (robot.running.builder.transformers.IfBuilder

method), 547
visit() (robot.running.builder.transformers.KeywordBuilder

method), 546
visit() (robot.running.builder.transformers.ResourceBuilder

method), 545
visit() (robot.running.builder.transformers.SettingsBuilder

790 Index

Robot Framework Documentation, Release 6.0.2

method), 544
visit() (robot.running.builder.transformers.SuiteBuilder

method), 544
visit() (robot.running.builder.transformers.TestCaseBuilder

method), 545
visit() (robot.running.builder.transformers.TryBuilder

method), 547
visit() (robot.running.builder.transformers.WhileBuilder

method), 548
visit() (robot.running.model.Body method), 555
visit() (robot.running.model.Break method), 570
visit() (robot.running.model.Continue method), 568
visit() (robot.running.model.For method), 559
visit() (robot.running.model.If method), 563
visit() (robot.running.model.IfBranch method), 562
visit() (robot.running.model.Imports method), 577
visit() (robot.running.model.Keyword method), 557
visit() (robot.running.model.Return method), 567
visit() (robot.running.model.TestCase method), 572
visit() (robot.running.model.TestSuite method), 576
visit() (robot.running.model.Try method), 566
visit() (robot.running.model.TryBranch method), 564
visit() (robot.running.model.While method), 560
visit_Arguments()

(robot.running.builder.transformers.KeywordBuilder
method), 546

visit_Block() (robot.parsing.model.blocks.ModelValidator
method), 345

visit_break() (robot.conf.gatherfailed.GatherFailedSuites
method), 30

visit_break() (robot.conf.gatherfailed.GatherFailedTests
method), 26

visit_break() (robot.model.configurer.SuiteConfigurer
method), 237

visit_break() (robot.model.filter.EmptySuiteRemover
method), 253

visit_break() (robot.model.filter.Filter method),
257

visit_break() (robot.model.modifier.ModelModifier
method), 268

visit_break() (robot.model.statistics.StatisticsBuilder
method), 273

visit_break() (robot.model.tagsetter.TagSetter
method), 280

visit_break() (robot.model.totalstatistics.TotalStatisticsBuilder
method), 291

visit_break() (robot.model.visitor.SuiteVisitor
method), 297

visit_break() (robot.output.console.dotted.StatusReporter
method), 302

visit_break() (robot.output.xmllogger.XmlLogger
method), 316

visit_break() (robot.reporting.outputwriter.OutputWriter
method), 399

visit_break() (robot.reporting.xunitwriter.XUnitFileWriter
method), 406

visit_break() (robot.result.configurer.SuiteConfigurer
method), 411

visit_break() (robot.result.keywordremover.AllKeywordsRemover
method), 418

visit_break() (robot.result.keywordremover.ByNameKeywordRemover
method), 426

visit_break() (robot.result.keywordremover.ByTagKeywordRemover
method), 431

visit_break() (robot.result.keywordremover.ForLoopItemsRemover
method), 435

visit_break() (robot.result.keywordremover.PassedKeywordRemover
method), 422

visit_break() (robot.result.keywordremover.WaitUntilKeywordSucceedsRemover
method), 443

visit_break() (robot.result.keywordremover.WarningAndErrorFinder
method), 448

visit_break() (robot.result.keywordremover.WhileLoopItemsRemover
method), 439

visit_break() (robot.result.merger.Merger method),
452

visit_break() (robot.result.messagefilter.MessageFilter
method), 456

visit_break() (robot.result.resultbuilder.RemoveKeywords
method), 504

visit_break() (robot.result.suiteteardownfailed.SuiteTeardownFailed
method), 512

visit_break() (robot.result.suiteteardownfailed.SuiteTeardownFailureHandler
method), 508

visit_break() (robot.result.visitor.ResultVisitor
method), 517

visit_Break() (robot.running.builder.transformers.ForBuilder
method), 546

visit_Break() (robot.running.builder.transformers.IfBuilder
method), 547

visit_Break() (robot.running.builder.transformers.KeywordBuilder
method), 546

visit_Break() (robot.running.builder.transformers.TestCaseBuilder
method), 545

visit_Break() (robot.running.builder.transformers.TryBuilder
method), 547

visit_Break() (robot.running.builder.transformers.WhileBuilder
method), 547

visit_break() (robot.running.randomizer.Randomizer
method), 581

visit_break() (robot.running.suiterunner.SuiteRunner
method), 587

visit_Config() (robot.parsing.parser.parser.SetLanguages
method), 392

visit_continue() (robot.conf.gatherfailed.GatherFailedSuites
method), 30

visit_continue() (robot.conf.gatherfailed.GatherFailedTests
method), 26

Index 791

Robot Framework Documentation, Release 6.0.2

visit_continue() (robot.model.configurer.SuiteConfigurer
method), 237

visit_continue() (robot.model.filter.EmptySuiteRemover
method), 253

visit_continue() (robot.model.filter.Filter
method), 257

visit_continue() (robot.model.modifier.ModelModifier
method), 268

visit_continue() (robot.model.statistics.StatisticsBuilder
method), 273

visit_continue() (robot.model.tagsetter.TagSetter
method), 280

visit_continue() (robot.model.totalstatistics.TotalStatisticsBuilder
method), 291

visit_continue() (robot.model.visitor.SuiteVisitor
method), 297

visit_continue() (robot.output.console.dotted.StatusReporter
method), 302

visit_continue() (robot.output.xmllogger.XmlLogger
method), 316

visit_continue() (robot.reporting.outputwriter.OutputWriter
method), 399

visit_continue() (robot.reporting.xunitwriter.XUnitFileWriter
method), 406

visit_continue() (robot.result.configurer.SuiteConfigurer
method), 411

visit_continue() (robot.result.keywordremover.AllKeywordsRemover
method), 418

visit_continue() (robot.result.keywordremover.ByNameKeywordRemover
method), 426

visit_continue() (robot.result.keywordremover.ByTagKeywordRemover
method), 431

visit_continue() (robot.result.keywordremover.ForLoopItemsRemover
method), 435

visit_continue() (robot.result.keywordremover.PassedKeywordRemover
method), 423

visit_continue() (robot.result.keywordremover.WaitUntilKeywordSucceedsRemover
method), 443

visit_continue() (robot.result.keywordremover.WarningAndErrorFinder
method), 448

visit_continue() (robot.result.keywordremover.WhileLoopItemsRemover
method), 439

visit_continue() (robot.result.merger.Merger
method), 452

visit_continue() (robot.result.messagefilter.MessageFilter
method), 456

visit_continue() (robot.result.resultbuilder.RemoveKeywords
method), 504

visit_continue() (robot.result.suiteteardownfailed.SuiteTeardownFailed
method), 512

visit_continue() (robot.result.suiteteardownfailed.SuiteTeardownFailureHandler
method), 508

visit_continue() (robot.result.visitor.ResultVisitor
method), 517

visit_Continue() (robot.running.builder.transformers.ForBuilder
method), 546

visit_Continue() (robot.running.builder.transformers.IfBuilder
method), 547

visit_Continue() (robot.running.builder.transformers.KeywordBuilder
method), 546

visit_Continue() (robot.running.builder.transformers.TestCaseBuilder
method), 545

visit_Continue() (robot.running.builder.transformers.TryBuilder
method), 547

visit_Continue() (robot.running.builder.transformers.WhileBuilder
method), 548

visit_continue() (robot.running.randomizer.Randomizer
method), 581

visit_continue() (robot.running.suiterunner.SuiteRunner
method), 587

visit_DefaultTags()
(robot.running.builder.transformers.SettingsBuilder
method), 544

visit_directory()
(robot.parsing.suitestructure.SuiteStructureVisitor
method), 393

visit_directory()
(robot.running.builder.builders.SuiteStructureParser
method), 542

visit_Documentation()
(robot.running.builder.transformers.KeywordBuilder
method), 545

visit_Documentation()
(robot.running.builder.transformers.ResourceBuilder
method), 545

visit_Documentation()
(robot.running.builder.transformers.SettingsBuilder
method), 544

visit_Documentation()
(robot.running.builder.transformers.TestCaseBuilder
method), 545

visit_Error() (robot.running.builder.parsers.ErrorReporter
method), 543

visit_errors() (robot.output.xmllogger.XmlLogger
method), 317

visit_errors() (robot.reporting.outputwriter.OutputWriter
method), 399

visit_errors() (robot.reporting.xunitwriter.XUnitFileWriter
method), 402

visit_errors() (robot.result.visitor.ResultVisitor
method), 514

visit_file() (robot.parsing.suitestructure.SuiteStructureVisitor
method), 393

visit_file() (robot.running.builder.builders.SuiteStructureParser
method), 542

visit_for() (robot.conf.gatherfailed.GatherFailedSuites
method), 30

visit_for() (robot.conf.gatherfailed.GatherFailedTests

792 Index

Robot Framework Documentation, Release 6.0.2

method), 26
visit_for() (robot.model.configurer.SuiteConfigurer

method), 237
visit_for() (robot.model.filter.EmptySuiteRemover

method), 253
visit_for() (robot.model.filter.Filter method), 257
visit_for() (robot.model.modifier.ModelModifier

method), 268
visit_for() (robot.model.statistics.StatisticsBuilder

method), 273
visit_for() (robot.model.tagsetter.TagSetter

method), 280
visit_for() (robot.model.totalstatistics.TotalStatisticsBuilder

method), 292
visit_for() (robot.model.visitor.SuiteVisitor

method), 295
visit_for() (robot.output.console.dotted.StatusReporter

method), 302
visit_for() (robot.output.xmllogger.XmlLogger

method), 317
visit_for() (robot.reporting.outputwriter.OutputWriter

method), 399
visit_for() (robot.reporting.xunitwriter.XUnitFileWriter

method), 406
visit_for() (robot.result.configurer.SuiteConfigurer

method), 411
visit_for() (robot.result.keywordremover.AllKeywordsRemover

method), 415
visit_for() (robot.result.keywordremover.ByNameKeywordRemover

method), 427
visit_for() (robot.result.keywordremover.ByTagKeywordRemover

method), 431
visit_for() (robot.result.keywordremover.ForLoopItemsRemover

method), 435
visit_for() (robot.result.keywordremover.PassedKeywordRemover

method), 423
visit_for() (robot.result.keywordremover.WaitUntilKeywordSucceedsRemover

method), 443
visit_for() (robot.result.keywordremover.WarningAndErrorFinder

method), 448
visit_for() (robot.result.keywordremover.WhileLoopItemsRemover

method), 439
visit_for() (robot.result.merger.Merger method),

452
visit_for() (robot.result.messagefilter.MessageFilter

method), 456
visit_for() (robot.result.resultbuilder.RemoveKeywords

method), 504
visit_for() (robot.result.suiteteardownfailed.SuiteTeardownFailed

method), 512
visit_for() (robot.result.suiteteardownfailed.SuiteTeardownFailureHandler

method), 508
visit_for() (robot.result.visitor.ResultVisitor

method), 517

visit_For() (robot.running.builder.transformers.ForBuilder
method), 546

visit_For() (robot.running.builder.transformers.IfBuilder
method), 547

visit_For() (robot.running.builder.transformers.KeywordBuilder
method), 546

visit_For() (robot.running.builder.transformers.TestCaseBuilder
method), 545

visit_For() (robot.running.builder.transformers.TryBuilder
method), 547

visit_For() (robot.running.builder.transformers.WhileBuilder
method), 547

visit_for() (robot.running.randomizer.Randomizer
method), 581

visit_for() (robot.running.suiterunner.SuiteRunner
method), 588

visit_for_iteration()
(robot.conf.gatherfailed.GatherFailedSuites
method), 30

visit_for_iteration()
(robot.conf.gatherfailed.GatherFailedTests
method), 26

visit_for_iteration()
(robot.model.configurer.SuiteConfigurer
method), 237

visit_for_iteration()
(robot.model.filter.EmptySuiteRemover
method), 253

visit_for_iteration() (robot.model.filter.Filter
method), 257

visit_for_iteration()
(robot.model.modifier.ModelModifier method),
268

visit_for_iteration()
(robot.model.statistics.StatisticsBuilder
method), 273

visit_for_iteration()
(robot.model.tagsetter.TagSetter method),
281

visit_for_iteration()
(robot.model.totalstatistics.TotalStatisticsBuilder
method), 292

visit_for_iteration()
(robot.model.visitor.SuiteVisitor method),
295

visit_for_iteration()
(robot.output.console.dotted.StatusReporter
method), 302

visit_for_iteration()
(robot.output.xmllogger.XmlLogger method),
317

visit_for_iteration()
(robot.reporting.outputwriter.OutputWriter
method), 399

Index 793

Robot Framework Documentation, Release 6.0.2

visit_for_iteration()
(robot.reporting.xunitwriter.XUnitFileWriter
method), 406

visit_for_iteration()
(robot.result.configurer.SuiteConfigurer
method), 411

visit_for_iteration()
(robot.result.keywordremover.AllKeywordsRemover
method), 418

visit_for_iteration()
(robot.result.keywordremover.ByNameKeywordRemover
method), 427

visit_for_iteration()
(robot.result.keywordremover.ByTagKeywordRemover
method), 431

visit_for_iteration()
(robot.result.keywordremover.ForLoopItemsRemover
method), 435

visit_for_iteration()
(robot.result.keywordremover.PassedKeywordRemover
method), 423

visit_for_iteration()
(robot.result.keywordremover.WaitUntilKeywordSucceedsRemover
method), 443

visit_for_iteration()
(robot.result.keywordremover.WarningAndErrorFinder
method), 448

visit_for_iteration()
(robot.result.keywordremover.WhileLoopItemsRemover
method), 439

visit_for_iteration()
(robot.result.merger.Merger method), 452

visit_for_iteration()
(robot.result.messagefilter.MessageFilter
method), 456

visit_for_iteration()
(robot.result.resultbuilder.RemoveKeywords
method), 504

visit_for_iteration()
(robot.result.suiteteardownfailed.SuiteTeardownFailed
method), 512

visit_for_iteration()
(robot.result.suiteteardownfailed.SuiteTeardownFailureHandler
method), 508

visit_for_iteration()
(robot.result.visitor.ResultVisitor method),
517

visit_for_iteration()
(robot.running.randomizer.Randomizer
method), 581

visit_for_iteration()
(robot.running.suiterunner.SuiteRunner
method), 588

visit_ForceTags()

(robot.running.builder.transformers.SettingsBuilder
method), 544

visit_if() (robot.conf.gatherfailed.GatherFailedSuites
method), 31

visit_if() (robot.conf.gatherfailed.GatherFailedTests
method), 26

visit_if() (robot.model.configurer.SuiteConfigurer
method), 237

visit_if() (robot.model.filter.EmptySuiteRemover
method), 253

visit_if() (robot.model.filter.Filter method), 257
visit_if() (robot.model.modifier.ModelModifier

method), 269
visit_if() (robot.model.statistics.StatisticsBuilder

method), 273
visit_if() (robot.model.tagsetter.TagSetter method),

281
visit_if() (robot.model.totalstatistics.TotalStatisticsBuilder

method), 292
visit_if() (robot.model.visitor.SuiteVisitor method),

295
visit_if() (robot.output.console.dotted.StatusReporter

method), 302
visit_if() (robot.output.xmllogger.XmlLogger

method), 317
visit_if() (robot.reporting.outputwriter.OutputWriter

method), 399
visit_if() (robot.reporting.xunitwriter.XUnitFileWriter

method), 406
visit_if() (robot.result.configurer.SuiteConfigurer

method), 411
visit_if() (robot.result.keywordremover.AllKeywordsRemover

method), 419
visit_if() (robot.result.keywordremover.ByNameKeywordRemover

method), 427
visit_if() (robot.result.keywordremover.ByTagKeywordRemover

method), 431
visit_if() (robot.result.keywordremover.ForLoopItemsRemover

method), 435
visit_if() (robot.result.keywordremover.PassedKeywordRemover

method), 423
visit_if() (robot.result.keywordremover.WaitUntilKeywordSucceedsRemover

method), 444
visit_if() (robot.result.keywordremover.WarningAndErrorFinder

method), 448
visit_if() (robot.result.keywordremover.WhileLoopItemsRemover

method), 439
visit_if() (robot.result.merger.Merger method), 452
visit_if() (robot.result.messagefilter.MessageFilter

method), 456
visit_if() (robot.result.resultbuilder.RemoveKeywords

method), 504
visit_if() (robot.result.suiteteardownfailed.SuiteTeardownFailed

method), 512

794 Index

Robot Framework Documentation, Release 6.0.2

visit_if() (robot.result.suiteteardownfailed.SuiteTeardownFailureHandler
method), 508

visit_if() (robot.result.visitor.ResultVisitor method),
517

visit_If() (robot.running.builder.transformers.ForBuilder
method), 546

visit_If() (robot.running.builder.transformers.IfBuilder
method), 547

visit_If() (robot.running.builder.transformers.KeywordBuilder
method), 546

visit_If() (robot.running.builder.transformers.TestCaseBuilder
method), 545

visit_If() (robot.running.builder.transformers.TryBuilder
method), 547

visit_If() (robot.running.builder.transformers.WhileBuilder
method), 547

visit_if() (robot.running.randomizer.Randomizer
method), 582

visit_if() (robot.running.suiterunner.SuiteRunner
method), 588

visit_if_branch()
(robot.conf.gatherfailed.GatherFailedSuites
method), 31

visit_if_branch()
(robot.conf.gatherfailed.GatherFailedTests
method), 26

visit_if_branch()
(robot.model.configurer.SuiteConfigurer
method), 237

visit_if_branch()
(robot.model.filter.EmptySuiteRemover
method), 253

visit_if_branch() (robot.model.filter.Filter
method), 258

visit_if_branch()
(robot.model.modifier.ModelModifier method),
269

visit_if_branch()
(robot.model.statistics.StatisticsBuilder
method), 274

visit_if_branch()
(robot.model.tagsetter.TagSetter method),
281

visit_if_branch()
(robot.model.totalstatistics.TotalStatisticsBuilder
method), 292

visit_if_branch()
(robot.model.visitor.SuiteVisitor method),
296

visit_if_branch()
(robot.output.console.dotted.StatusReporter
method), 302

visit_if_branch()
(robot.output.xmllogger.XmlLogger method),

317
visit_if_branch()

(robot.reporting.outputwriter.OutputWriter
method), 399

visit_if_branch()
(robot.reporting.xunitwriter.XUnitFileWriter
method), 406

visit_if_branch()
(robot.result.configurer.SuiteConfigurer
method), 412

visit_if_branch()
(robot.result.keywordremover.AllKeywordsRemover
method), 415

visit_if_branch()
(robot.result.keywordremover.ByNameKeywordRemover
method), 427

visit_if_branch()
(robot.result.keywordremover.ByTagKeywordRemover
method), 431

visit_if_branch()
(robot.result.keywordremover.ForLoopItemsRemover
method), 435

visit_if_branch()
(robot.result.keywordremover.PassedKeywordRemover
method), 423

visit_if_branch()
(robot.result.keywordremover.WaitUntilKeywordSucceedsRemover
method), 444

visit_if_branch()
(robot.result.keywordremover.WarningAndErrorFinder
method), 448

visit_if_branch()
(robot.result.keywordremover.WhileLoopItemsRemover
method), 439

visit_if_branch() (robot.result.merger.Merger
method), 452

visit_if_branch()
(robot.result.messagefilter.MessageFilter
method), 456

visit_if_branch()
(robot.result.resultbuilder.RemoveKeywords
method), 504

visit_if_branch()
(robot.result.suiteteardownfailed.SuiteTeardownFailed
method), 513

visit_if_branch()
(robot.result.suiteteardownfailed.SuiteTeardownFailureHandler
method), 508

visit_if_branch()
(robot.result.visitor.ResultVisitor method),
518

visit_if_branch()
(robot.running.randomizer.Randomizer
method), 582

Index 795

Robot Framework Documentation, Release 6.0.2

visit_if_branch()
(robot.running.suiterunner.SuiteRunner
method), 588

visit_keyword() (robot.conf.gatherfailed.GatherFailedSuites
method), 27

visit_keyword() (robot.conf.gatherfailed.GatherFailedTests
method), 23

visit_keyword() (robot.model.configurer.SuiteConfigurer
method), 238

visit_keyword() (robot.model.filter.EmptySuiteRemover
method), 250

visit_keyword() (robot.model.filter.Filter method),
258

visit_keyword() (robot.model.modifier.ModelModifier
method), 269

visit_keyword() (robot.model.statistics.StatisticsBuilder
method), 270

visit_keyword() (robot.model.tagsetter.TagSetter
method), 278

visit_keyword() (robot.model.totalstatistics.TotalStatisticsBuilder
method), 289

visit_keyword() (robot.model.visitor.SuiteVisitor
method), 294

visit_keyword() (robot.output.console.dotted.StatusReporter
method), 302

visit_keyword() (robot.output.xmllogger.XmlLogger
method), 317

visit_keyword() (robot.reporting.outputwriter.OutputWriter
method), 399

visit_keyword() (robot.reporting.xunitwriter.XUnitFileWriter
method), 402

visit_keyword() (robot.result.configurer.SuiteConfigurer
method), 412

visit_keyword() (robot.result.keywordremover.AllKeywordsRemover
method), 415

visit_keyword() (robot.result.keywordremover.ByNameKeywordRemover
method), 427

visit_keyword() (robot.result.keywordremover.ByTagKeywordRemover
method), 431

visit_keyword() (robot.result.keywordremover.ForLoopItemsRemover
method), 435

visit_keyword() (robot.result.keywordremover.PassedKeywordRemover
method), 420

visit_keyword() (robot.result.keywordremover.WaitUntilKeywordSucceedsRemover
method), 444

visit_keyword() (robot.result.keywordremover.WarningAndErrorFinder
method), 448

visit_keyword() (robot.result.keywordremover.WhileLoopItemsRemover
method), 440

visit_keyword() (robot.result.merger.Merger
method), 452

visit_keyword() (robot.result.messagefilter.MessageFilter
method), 457

visit_keyword() (robot.result.resultbuilder.RemoveKeywords

method), 504
visit_keyword() (robot.result.suiteteardownfailed.SuiteTeardownFailed

method), 509
visit_keyword() (robot.result.suiteteardownfailed.SuiteTeardownFailureHandler

method), 505
visit_keyword() (robot.result.visitor.ResultVisitor

method), 518
visit_Keyword() (robot.running.builder.transformers.KeywordBuilder

method), 545
visit_Keyword() (robot.running.builder.transformers.ResourceBuilder

method), 545
visit_Keyword() (robot.running.builder.transformers.SuiteBuilder

method), 544
visit_keyword() (robot.running.randomizer.Randomizer

method), 578
visit_keyword() (robot.running.suiterunner.SuiteRunner

method), 588
visit_KeywordCall()

(robot.running.builder.transformers.ForBuilder
method), 546

visit_KeywordCall()
(robot.running.builder.transformers.IfBuilder
method), 546

visit_KeywordCall()
(robot.running.builder.transformers.KeywordBuilder
method), 546

visit_KeywordCall()
(robot.running.builder.transformers.TestCaseBuilder
method), 545

visit_KeywordCall()
(robot.running.builder.transformers.TryBuilder
method), 547

visit_KeywordCall()
(robot.running.builder.transformers.WhileBuilder
method), 547

visit_KeywordSection()
(robot.running.builder.transformers.SettingsBuilder
method), 544

visit_KeywordTags()
(robot.running.builder.transformers.ResourceBuilder
method), 545

visit_KeywordTags()
(robot.running.builder.transformers.SettingsBuilder
method), 544

visit_LibraryImport()
(robot.running.builder.transformers.ResourceBuilder
method), 545

visit_LibraryImport()
(robot.running.builder.transformers.SettingsBuilder
method), 544

visit_message() (robot.conf.gatherfailed.GatherFailedSuites
method), 31

visit_message() (robot.conf.gatherfailed.GatherFailedTests
method), 27

796 Index

Robot Framework Documentation, Release 6.0.2

visit_message() (robot.model.configurer.SuiteConfigurer
method), 238

visit_message() (robot.model.filter.EmptySuiteRemover
method), 254

visit_message() (robot.model.filter.Filter method),
258

visit_message() (robot.model.modifier.ModelModifier
method), 269

visit_message() (robot.model.statistics.StatisticsBuilder
method), 274

visit_message() (robot.model.tagsetter.TagSetter
method), 281

visit_message() (robot.model.totalstatistics.TotalStatisticsBuilder
method), 292

visit_message() (robot.model.visitor.SuiteVisitor
method), 298

visit_message() (robot.output.console.dotted.StatusReporter
method), 302

visit_message() (robot.output.xmllogger.XmlLogger
method), 317

visit_message() (robot.reporting.outputwriter.OutputWriter
method), 399

visit_message() (robot.reporting.xunitwriter.XUnitFileWriter
method), 406

visit_message() (robot.result.configurer.SuiteConfigurer
method), 412

visit_message() (robot.result.keywordremover.AllKeywordsRemover
method), 419

visit_message() (robot.result.keywordremover.ByNameKeywordRemover
method), 427

visit_message() (robot.result.keywordremover.ByTagKeywordRemover
method), 431

visit_message() (robot.result.keywordremover.ForLoopItemsRemover
method), 435

visit_message() (robot.result.keywordremover.PassedKeywordRemover
method), 423

visit_message() (robot.result.keywordremover.WaitUntilKeywordSucceedsRemover
method), 444

visit_message() (robot.result.keywordremover.WarningAndErrorFinder
method), 445

visit_message() (robot.result.keywordremover.WhileLoopItemsRemover
method), 440

visit_message() (robot.result.merger.Merger
method), 453

visit_message() (robot.result.messagefilter.MessageFilter
method), 457

visit_message() (robot.result.resultbuilder.RemoveKeywords
method), 504

visit_message() (robot.result.suiteteardownfailed.SuiteTeardownFailed
method), 513

visit_message() (robot.result.suiteteardownfailed.SuiteTeardownFailureHandler
method), 509

visit_message() (robot.result.visitor.ResultVisitor
method), 518

visit_message() (robot.running.randomizer.Randomizer
method), 582

visit_message() (robot.running.suiterunner.SuiteRunner
method), 588

visit_Metadata() (robot.running.builder.transformers.SettingsBuilder
method), 544

visit_ResourceImport()
(robot.running.builder.transformers.ResourceBuilder
method), 545

visit_ResourceImport()
(robot.running.builder.transformers.SettingsBuilder
method), 544

visit_result() (robot.output.xmllogger.XmlLogger
method), 317

visit_result() (robot.reporting.outputwriter.OutputWriter
method), 400

visit_result() (robot.reporting.xunitwriter.XUnitFileWriter
method), 406

visit_result() (robot.result.visitor.ResultVisitor
method), 514

visit_return() (robot.conf.gatherfailed.GatherFailedSuites
method), 31

visit_return() (robot.conf.gatherfailed.GatherFailedTests
method), 27

visit_return() (robot.model.configurer.SuiteConfigurer
method), 238

visit_return() (robot.model.filter.EmptySuiteRemover
method), 254

visit_return() (robot.model.filter.Filter method),
258

visit_return() (robot.model.modifier.ModelModifier
method), 269

visit_return() (robot.model.statistics.StatisticsBuilder
method), 274

visit_return() (robot.model.tagsetter.TagSetter
method), 281

visit_return() (robot.model.totalstatistics.TotalStatisticsBuilder
method), 292

visit_return() (robot.model.visitor.SuiteVisitor
method), 297

visit_return() (robot.output.console.dotted.StatusReporter
method), 302

visit_return() (robot.output.xmllogger.XmlLogger
method), 317

visit_return() (robot.reporting.outputwriter.OutputWriter
method), 400

visit_return() (robot.reporting.xunitwriter.XUnitFileWriter
method), 406

visit_return() (robot.result.configurer.SuiteConfigurer
method), 412

visit_return() (robot.result.keywordremover.AllKeywordsRemover
method), 419

visit_return() (robot.result.keywordremover.ByNameKeywordRemover
method), 427

Index 797

Robot Framework Documentation, Release 6.0.2

visit_return() (robot.result.keywordremover.ByTagKeywordRemover
method), 431

visit_return() (robot.result.keywordremover.ForLoopItemsRemover
method), 436

visit_return() (robot.result.keywordremover.PassedKeywordRemover
method), 423

visit_return() (robot.result.keywordremover.WaitUntilKeywordSucceedsRemover
method), 444

visit_return() (robot.result.keywordremover.WarningAndErrorFinder
method), 448

visit_return() (robot.result.keywordremover.WhileLoopItemsRemover
method), 440

visit_return() (robot.result.merger.Merger
method), 453

visit_return() (robot.result.messagefilter.MessageFilter
method), 457

visit_return() (robot.result.resultbuilder.RemoveKeywords
method), 504

visit_return() (robot.result.suiteteardownfailed.SuiteTeardownFailed
method), 513

visit_return() (robot.result.suiteteardownfailed.SuiteTeardownFailureHandler
method), 509

visit_return() (robot.result.visitor.ResultVisitor
method), 518

visit_Return() (robot.running.builder.transformers.KeywordBuilder
method), 546

visit_return() (robot.running.randomizer.Randomizer
method), 582

visit_return() (robot.running.suiterunner.SuiteRunner
method), 588

visit_ReturnStatement()
(robot.running.builder.transformers.ForBuilder
method), 546

visit_ReturnStatement()
(robot.running.builder.transformers.IfBuilder
method), 547

visit_ReturnStatement()
(robot.running.builder.transformers.KeywordBuilder
method), 546

visit_ReturnStatement()
(robot.running.builder.transformers.TestCaseBuilder
method), 545

visit_ReturnStatement()
(robot.running.builder.transformers.TryBuilder
method), 547

visit_ReturnStatement()
(robot.running.builder.transformers.WhileBuilder
method), 547

visit_SettingSection()
(robot.running.builder.transformers.SuiteBuilder
method), 544

visit_Setup() (robot.running.builder.transformers.TestCaseBuilder
method), 545

visit_stat() (robot.output.xmllogger.XmlLogger

method), 316
visit_stat() (robot.reporting.outputwriter.OutputWriter

method), 400
visit_stat() (robot.reporting.xunitwriter.XUnitFileWriter

method), 406
visit_stat() (robot.result.visitor.ResultVisitor

method), 514
visit_Statement()

(robot.parsing.model.blocks.FirstStatementFinder
method), 345

visit_Statement()
(robot.parsing.model.blocks.LastStatementFinder
method), 345

visit_Statement()
(robot.parsing.model.blocks.ModelValidator
method), 345

visit_Statement()
(robot.parsing.model.blocks.ModelWriter
method), 344

visit_statistics()
(robot.output.xmllogger.XmlLogger method),
317

visit_statistics()
(robot.reporting.outputwriter.OutputWriter
method), 400

visit_statistics()
(robot.reporting.xunitwriter.XUnitFileWriter
method), 402

visit_statistics()
(robot.result.visitor.ResultVisitor method),
514

visit_suite() (robot.conf.gatherfailed.GatherFailedSuites
method), 31

visit_suite() (robot.conf.gatherfailed.GatherFailedTests
method), 27

visit_suite() (robot.model.configurer.SuiteConfigurer
method), 234

visit_suite() (robot.model.filter.EmptySuiteRemover
method), 254

visit_suite() (robot.model.filter.Filter method),
258

visit_suite() (robot.model.modifier.ModelModifier
method), 265

visit_suite() (robot.model.statistics.StatisticsBuilder
method), 274

visit_suite() (robot.model.tagsetter.TagSetter
method), 281

visit_suite() (robot.model.totalstatistics.TotalStatisticsBuilder
method), 292

visit_suite() (robot.model.visitor.SuiteVisitor
method), 294

visit_suite() (robot.output.console.dotted.StatusReporter
method), 302

visit_suite() (robot.output.xmllogger.XmlLogger

798 Index

Robot Framework Documentation, Release 6.0.2

method), 317
visit_suite() (robot.reporting.outputwriter.OutputWriter

method), 400
visit_suite() (robot.reporting.xunitwriter.XUnitFileWriter

method), 406
visit_suite() (robot.result.configurer.SuiteConfigurer

method), 408
visit_suite() (robot.result.keywordremover.AllKeywordsRemover

method), 419
visit_suite() (robot.result.keywordremover.ByNameKeywordRemover

method), 427
visit_suite() (robot.result.keywordremover.ByTagKeywordRemover

method), 431
visit_suite() (robot.result.keywordremover.ForLoopItemsRemover

method), 436
visit_suite() (robot.result.keywordremover.PassedKeywordRemover

method), 423
visit_suite() (robot.result.keywordremover.WaitUntilKeywordSucceedsRemover

method), 444
visit_suite() (robot.result.keywordremover.WarningAndErrorFinder

method), 448
visit_suite() (robot.result.keywordremover.WhileLoopItemsRemover

method), 440
visit_suite() (robot.result.merger.Merger method),

453
visit_suite() (robot.result.messagefilter.MessageFilter

method), 457
visit_suite() (robot.result.resultbuilder.RemoveKeywords

method), 504
visit_suite() (robot.result.suiteteardownfailed.SuiteTeardownFailed

method), 513
visit_suite() (robot.result.suiteteardownfailed.SuiteTeardownFailureHandler

method), 509
visit_suite() (robot.result.visitor.ResultVisitor

method), 518
visit_suite() (robot.running.randomizer.Randomizer

method), 582
visit_suite() (robot.running.suiterunner.SuiteRunner

method), 588
visit_suite_statistics()

(robot.output.xmllogger.XmlLogger method),
317

visit_suite_statistics()
(robot.reporting.outputwriter.OutputWriter
method), 400

visit_suite_statistics()
(robot.reporting.xunitwriter.XUnitFileWriter
method), 406

visit_suite_statistics()
(robot.result.visitor.ResultVisitor method),
514

visit_SuiteSetup()
(robot.running.builder.transformers.SettingsBuilder
method), 544

visit_SuiteTeardown()
(robot.running.builder.transformers.SettingsBuilder
method), 544

visit_tag_statistics()
(robot.output.xmllogger.XmlLogger method),
317

visit_tag_statistics()
(robot.reporting.outputwriter.OutputWriter
method), 400

visit_tag_statistics()
(robot.reporting.xunitwriter.XUnitFileWriter
method), 406

visit_tag_statistics()
(robot.result.visitor.ResultVisitor method),
514

visit_Tags() (robot.running.builder.transformers.KeywordBuilder
method), 546

visit_Tags() (robot.running.builder.transformers.TestCaseBuilder
method), 545

visit_Teardown() (robot.running.builder.transformers.KeywordBuilder
method), 546

visit_Teardown() (robot.running.builder.transformers.TestCaseBuilder
method), 545

visit_Template() (robot.running.builder.transformers.TestCaseBuilder
method), 545

visit_TemplateArguments()
(robot.running.builder.transformers.ForBuilder
method), 546

visit_TemplateArguments()
(robot.running.builder.transformers.IfBuilder
method), 546

visit_TemplateArguments()
(robot.running.builder.transformers.TestCaseBuilder
method), 545

visit_TemplateArguments()
(robot.running.builder.transformers.TryBuilder
method), 547

visit_TemplateArguments()
(robot.running.builder.transformers.WhileBuilder
method), 547

visit_test() (robot.conf.gatherfailed.GatherFailedSuites
method), 27

visit_test() (robot.conf.gatherfailed.GatherFailedTests
method), 23

visit_test() (robot.model.configurer.SuiteConfigurer
method), 238

visit_test() (robot.model.filter.EmptySuiteRemover
method), 250

visit_test() (robot.model.filter.Filter method), 258
visit_test() (robot.model.modifier.ModelModifier

method), 269
visit_test() (robot.model.statistics.StatisticsBuilder

method), 270
visit_test() (robot.model.tagsetter.TagSetter

Index 799

Robot Framework Documentation, Release 6.0.2

method), 277
visit_test() (robot.model.totalstatistics.TotalStatisticsBuilder

method), 288
visit_test() (robot.model.visitor.SuiteVisitor

method), 294
visit_test() (robot.output.console.dotted.StatusReporter

method), 299
visit_test() (robot.output.xmllogger.XmlLogger

method), 317
visit_test() (robot.reporting.outputwriter.OutputWriter

method), 400
visit_test() (robot.reporting.xunitwriter.XUnitFileWriter

method), 402
visit_test() (robot.result.configurer.SuiteConfigurer

method), 412
visit_test() (robot.result.keywordremover.AllKeywordsRemover

method), 419
visit_test() (robot.result.keywordremover.ByNameKeywordRemover

method), 427
visit_test() (robot.result.keywordremover.ByTagKeywordRemover

method), 431
visit_test() (robot.result.keywordremover.ForLoopItemsRemover

method), 436
visit_test() (robot.result.keywordremover.PassedKeywordRemover

method), 420
visit_test() (robot.result.keywordremover.WaitUntilKeywordSucceedsRemover

method), 444
visit_test() (robot.result.keywordremover.WarningAndErrorFinder

method), 448
visit_test() (robot.result.keywordremover.WhileLoopItemsRemover

method), 440
visit_test() (robot.result.merger.Merger method),

449
visit_test() (robot.result.messagefilter.MessageFilter

method), 457
visit_test() (robot.result.resultbuilder.RemoveKeywords

method), 501
visit_test() (robot.result.suiteteardownfailed.SuiteTeardownFailed

method), 509
visit_test() (robot.result.suiteteardownfailed.SuiteTeardownFailureHandler

method), 505
visit_test() (robot.result.visitor.ResultVisitor

method), 518
visit_test() (robot.running.randomizer.Randomizer

method), 578
visit_test() (robot.running.suiterunner.SuiteRunner

method), 585
visit_TestCase() (robot.running.builder.transformers.SuiteBuilder

method), 544
visit_TestCase() (robot.running.builder.transformers.TestCaseBuilder

method), 545
visit_TestCaseSection()

(robot.running.builder.transformers.SettingsBuilder
method), 544

visit_TestSetup()
(robot.running.builder.transformers.SettingsBuilder
method), 544

visit_TestTeardown()
(robot.running.builder.transformers.SettingsBuilder
method), 544

visit_TestTemplate()
(robot.running.builder.transformers.SettingsBuilder
method), 544

visit_TestTimeout()
(robot.running.builder.transformers.SettingsBuilder
method), 544

visit_Timeout() (robot.running.builder.transformers.KeywordBuilder
method), 546

visit_Timeout() (robot.running.builder.transformers.TestCaseBuilder
method), 545

visit_total_statistics()
(robot.output.xmllogger.XmlLogger method),
318

visit_total_statistics()
(robot.reporting.outputwriter.OutputWriter
method), 400

visit_total_statistics()
(robot.reporting.xunitwriter.XUnitFileWriter
method), 406

visit_total_statistics()
(robot.result.visitor.ResultVisitor method),
514

visit_try() (robot.conf.gatherfailed.GatherFailedSuites
method), 31

visit_try() (robot.conf.gatherfailed.GatherFailedTests
method), 27

visit_try() (robot.model.configurer.SuiteConfigurer
method), 238

visit_try() (robot.model.filter.EmptySuiteRemover
method), 254

visit_try() (robot.model.filter.Filter method), 258
visit_try() (robot.model.modifier.ModelModifier

method), 269
visit_try() (robot.model.statistics.StatisticsBuilder

method), 274
visit_try() (robot.model.tagsetter.TagSetter

method), 281
visit_try() (robot.model.totalstatistics.TotalStatisticsBuilder

method), 292
visit_try() (robot.model.visitor.SuiteVisitor

method), 296
visit_try() (robot.output.console.dotted.StatusReporter

method), 302
visit_try() (robot.output.xmllogger.XmlLogger

method), 318
visit_Try() (robot.parsing.model.blocks.ModelValidator

method), 345
visit_try() (robot.reporting.outputwriter.OutputWriter

800 Index

Robot Framework Documentation, Release 6.0.2

method), 400
visit_try() (robot.reporting.xunitwriter.XUnitFileWriter

method), 406
visit_try() (robot.result.configurer.SuiteConfigurer

method), 412
visit_try() (robot.result.keywordremover.AllKeywordsRemover

method), 419
visit_try() (robot.result.keywordremover.ByNameKeywordRemover

method), 427
visit_try() (robot.result.keywordremover.ByTagKeywordRemover

method), 432
visit_try() (robot.result.keywordremover.ForLoopItemsRemover

method), 436
visit_try() (robot.result.keywordremover.PassedKeywordRemover

method), 423
visit_try() (robot.result.keywordremover.WaitUntilKeywordSucceedsRemover

method), 444
visit_try() (robot.result.keywordremover.WarningAndErrorFinder

method), 448
visit_try() (robot.result.keywordremover.WhileLoopItemsRemover

method), 440
visit_try() (robot.result.merger.Merger method),

453
visit_try() (robot.result.messagefilter.MessageFilter

method), 457
visit_try() (robot.result.resultbuilder.RemoveKeywords

method), 504
visit_try() (robot.result.suiteteardownfailed.SuiteTeardownFailed

method), 513
visit_try() (robot.result.suiteteardownfailed.SuiteTeardownFailureHandler

method), 509
visit_try() (robot.result.visitor.ResultVisitor

method), 518
visit_Try() (robot.running.builder.transformers.ForBuilder

method), 546
visit_Try() (robot.running.builder.transformers.IfBuilder

method), 547
visit_Try() (robot.running.builder.transformers.KeywordBuilder

method), 546
visit_Try() (robot.running.builder.transformers.TestCaseBuilder

method), 545
visit_Try() (robot.running.builder.transformers.TryBuilder

method), 547
visit_Try() (robot.running.builder.transformers.WhileBuilder

method), 547
visit_try() (robot.running.randomizer.Randomizer

method), 582
visit_try() (robot.running.suiterunner.SuiteRunner

method), 588
visit_try_branch()

(robot.conf.gatherfailed.GatherFailedSuites
method), 31

visit_try_branch()
(robot.conf.gatherfailed.GatherFailedTests

method), 27
visit_try_branch()

(robot.model.configurer.SuiteConfigurer
method), 238

visit_try_branch()
(robot.model.filter.EmptySuiteRemover
method), 254

visit_try_branch() (robot.model.filter.Filter
method), 258

visit_try_branch()
(robot.model.modifier.ModelModifier method),
269

visit_try_branch()
(robot.model.statistics.StatisticsBuilder
method), 274

visit_try_branch()
(robot.model.tagsetter.TagSetter method),
281

visit_try_branch()
(robot.model.totalstatistics.TotalStatisticsBuilder
method), 292

visit_try_branch()
(robot.model.visitor.SuiteVisitor method),
296

visit_try_branch()
(robot.output.console.dotted.StatusReporter
method), 303

visit_try_branch()
(robot.output.xmllogger.XmlLogger method),
318

visit_try_branch()
(robot.reporting.outputwriter.OutputWriter
method), 400

visit_try_branch()
(robot.reporting.xunitwriter.XUnitFileWriter
method), 407

visit_try_branch()
(robot.result.configurer.SuiteConfigurer
method), 412

visit_try_branch()
(robot.result.keywordremover.AllKeywordsRemover
method), 419

visit_try_branch()
(robot.result.keywordremover.ByNameKeywordRemover
method), 427

visit_try_branch()
(robot.result.keywordremover.ByTagKeywordRemover
method), 432

visit_try_branch()
(robot.result.keywordremover.ForLoopItemsRemover
method), 436

visit_try_branch()
(robot.result.keywordremover.PassedKeywordRemover
method), 423

Index 801

Robot Framework Documentation, Release 6.0.2

visit_try_branch()
(robot.result.keywordremover.WaitUntilKeywordSucceedsRemover
method), 444

visit_try_branch()
(robot.result.keywordremover.WarningAndErrorFinder
method), 448

visit_try_branch()
(robot.result.keywordremover.WhileLoopItemsRemover
method), 440

visit_try_branch() (robot.result.merger.Merger
method), 453

visit_try_branch()
(robot.result.messagefilter.MessageFilter
method), 457

visit_try_branch()
(robot.result.resultbuilder.RemoveKeywords
method), 505

visit_try_branch()
(robot.result.suiteteardownfailed.SuiteTeardownFailed
method), 513

visit_try_branch()
(robot.result.suiteteardownfailed.SuiteTeardownFailureHandler
method), 509

visit_try_branch()
(robot.result.visitor.ResultVisitor method),
518

visit_try_branch()
(robot.running.randomizer.Randomizer
method), 582

visit_try_branch()
(robot.running.suiterunner.SuiteRunner
method), 588

visit_Variable() (robot.running.builder.transformers.ResourceBuilder
method), 545

visit_Variable() (robot.running.builder.transformers.SuiteBuilder
method), 544

visit_VariableSection()
(robot.running.builder.transformers.SettingsBuilder
method), 544

visit_VariablesImport()
(robot.running.builder.transformers.ResourceBuilder
method), 545

visit_VariablesImport()
(robot.running.builder.transformers.SettingsBuilder
method), 544

visit_while() (robot.conf.gatherfailed.GatherFailedSuites
method), 31

visit_while() (robot.conf.gatherfailed.GatherFailedTests
method), 27

visit_while() (robot.model.configurer.SuiteConfigurer
method), 238

visit_while() (robot.model.filter.EmptySuiteRemover
method), 254

visit_while() (robot.model.filter.Filter method),

258
visit_while() (robot.model.modifier.ModelModifier

method), 269
visit_while() (robot.model.statistics.StatisticsBuilder

method), 274
visit_while() (robot.model.tagsetter.TagSetter

method), 281
visit_while() (robot.model.totalstatistics.TotalStatisticsBuilder

method), 292
visit_while() (robot.model.visitor.SuiteVisitor

method), 296
visit_while() (robot.output.console.dotted.StatusReporter

method), 303
visit_while() (robot.output.xmllogger.XmlLogger

method), 318
visit_while() (robot.reporting.outputwriter.OutputWriter

method), 400
visit_while() (robot.reporting.xunitwriter.XUnitFileWriter

method), 407
visit_while() (robot.result.configurer.SuiteConfigurer

method), 412
visit_while() (robot.result.keywordremover.AllKeywordsRemover

method), 419
visit_while() (robot.result.keywordremover.ByNameKeywordRemover

method), 428
visit_while() (robot.result.keywordremover.ByTagKeywordRemover

method), 432
visit_while() (robot.result.keywordremover.ForLoopItemsRemover

method), 436
visit_while() (robot.result.keywordremover.PassedKeywordRemover

method), 423
visit_while() (robot.result.keywordremover.WaitUntilKeywordSucceedsRemover

method), 444
visit_while() (robot.result.keywordremover.WarningAndErrorFinder

method), 449
visit_while() (robot.result.keywordremover.WhileLoopItemsRemover

method), 440
visit_while() (robot.result.merger.Merger method),

453
visit_while() (robot.result.messagefilter.MessageFilter

method), 457
visit_while() (robot.result.resultbuilder.RemoveKeywords

method), 505
visit_while() (robot.result.suiteteardownfailed.SuiteTeardownFailed

method), 513
visit_while() (robot.result.suiteteardownfailed.SuiteTeardownFailureHandler

method), 509
visit_while() (robot.result.visitor.ResultVisitor

method), 518
visit_While() (robot.running.builder.transformers.ForBuilder

method), 546
visit_While() (robot.running.builder.transformers.IfBuilder

method), 547
visit_While() (robot.running.builder.transformers.KeywordBuilder

802 Index

Robot Framework Documentation, Release 6.0.2

method), 546
visit_While() (robot.running.builder.transformers.TestCaseBuilder

method), 545
visit_While() (robot.running.builder.transformers.TryBuilder

method), 547
visit_While() (robot.running.builder.transformers.WhileBuilder

method), 547
visit_while() (robot.running.randomizer.Randomizer

method), 582
visit_while() (robot.running.suiterunner.SuiteRunner

method), 588
visit_while_iteration()

(robot.conf.gatherfailed.GatherFailedSuites
method), 31

visit_while_iteration()
(robot.conf.gatherfailed.GatherFailedTests
method), 27

visit_while_iteration()
(robot.model.configurer.SuiteConfigurer
method), 238

visit_while_iteration()
(robot.model.filter.EmptySuiteRemover
method), 254

visit_while_iteration()
(robot.model.filter.Filter method), 258

visit_while_iteration()
(robot.model.modifier.ModelModifier method),
269

visit_while_iteration()
(robot.model.statistics.StatisticsBuilder
method), 274

visit_while_iteration()
(robot.model.tagsetter.TagSetter method),
281

visit_while_iteration()
(robot.model.totalstatistics.TotalStatisticsBuilder
method), 292

visit_while_iteration()
(robot.model.visitor.SuiteVisitor method),
297

visit_while_iteration()
(robot.output.console.dotted.StatusReporter
method), 303

visit_while_iteration()
(robot.output.xmllogger.XmlLogger method),
318

visit_while_iteration()
(robot.reporting.outputwriter.OutputWriter
method), 400

visit_while_iteration()
(robot.reporting.xunitwriter.XUnitFileWriter
method), 407

visit_while_iteration()
(robot.result.configurer.SuiteConfigurer

method), 412
visit_while_iteration()

(robot.result.keywordremover.AllKeywordsRemover
method), 419

visit_while_iteration()
(robot.result.keywordremover.ByNameKeywordRemover
method), 428

visit_while_iteration()
(robot.result.keywordremover.ByTagKeywordRemover
method), 432

visit_while_iteration()
(robot.result.keywordremover.ForLoopItemsRemover
method), 436

visit_while_iteration()
(robot.result.keywordremover.PassedKeywordRemover
method), 423

visit_while_iteration()
(robot.result.keywordremover.WaitUntilKeywordSucceedsRemover
method), 444

visit_while_iteration()
(robot.result.keywordremover.WarningAndErrorFinder
method), 449

visit_while_iteration()
(robot.result.keywordremover.WhileLoopItemsRemover
method), 440

visit_while_iteration()
(robot.result.merger.Merger method), 453

visit_while_iteration()
(robot.result.messagefilter.MessageFilter
method), 457

visit_while_iteration()
(robot.result.resultbuilder.RemoveKeywords
method), 505

visit_while_iteration()
(robot.result.suiteteardownfailed.SuiteTeardownFailed
method), 513

visit_while_iteration()
(robot.result.suiteteardownfailed.SuiteTeardownFailureHandler
method), 509

visit_while_iteration()
(robot.result.visitor.ResultVisitor method),
518

visit_while_iteration()
(robot.running.randomizer.Randomizer
method), 582

visit_while_iteration()
(robot.running.suiterunner.SuiteRunner
method), 589

VisitorFinder (class in
robot.parsing.model.visitor), 388

W
wait_for_process()

(robot.libraries.Process.Process method),

Index 803

Robot Framework Documentation, Release 6.0.2

126
wait_until_created()

(robot.libraries.OperatingSystem.OperatingSystem
method), 116

wait_until_keyword_succeeds()
(robot.libraries.BuiltIn.BuiltIn method),
98

wait_until_removed()
(robot.libraries.OperatingSystem.OperatingSystem
method), 116

wait_variable() (robot.libraries.dialogs_py.InputDialog
method), 180

wait_variable() (robot.libraries.dialogs_py.MessageDialog
method), 166

wait_variable() (robot.libraries.dialogs_py.MultipleSelectionDialog
method), 208

wait_variable() (robot.libraries.dialogs_py.PassFailDialog
method), 222

wait_variable() (robot.libraries.dialogs_py.SelectionDialog
method), 194

wait_visibility()
(robot.libraries.dialogs_py.InputDialog
method), 180

wait_visibility()
(robot.libraries.dialogs_py.MessageDialog
method), 166

wait_visibility()
(robot.libraries.dialogs_py.MultipleSelectionDialog
method), 208

wait_visibility()
(robot.libraries.dialogs_py.PassFailDialog
method), 222

wait_visibility()
(robot.libraries.dialogs_py.SelectionDialog
method), 194

wait_window() (robot.libraries.dialogs_py.InputDialog
method), 180

wait_window() (robot.libraries.dialogs_py.MessageDialog
method), 166

wait_window() (robot.libraries.dialogs_py.MultipleSelectionDialog
method), 208

wait_window() (robot.libraries.dialogs_py.PassFailDialog
method), 222

wait_window() (robot.libraries.dialogs_py.SelectionDialog
method), 194

WaitUntilKeywordSucceedsRemover (class in
robot.result.keywordremover), 440

waitvar() (robot.libraries.dialogs_py.InputDialog
method), 180

waitvar() (robot.libraries.dialogs_py.MessageDialog
method), 166

waitvar() (robot.libraries.dialogs_py.MultipleSelectionDialog
method), 208

waitvar() (robot.libraries.dialogs_py.PassFailDialog

method), 222
waitvar() (robot.libraries.dialogs_py.SelectionDialog

method), 194
warn() (in module robot.api.logger), 15
warn() (in module robot.output.librarylogger), 305
warn() (robot.output.filelogger.FileLogger method),

305
warn() (robot.output.logger.Logger method), 309
warn() (robot.output.loggerhelper.AbstractLogger

method), 309
warn() (robot.output.output.Output method), 311
warn() (robot.utils.importer.NoLogger method), 602
WarningAndErrorFinder (class in

robot.result.keywordremover), 445
when_prefixes (robot.conf.languages.Bg attribute),

60
when_prefixes (robot.conf.languages.Bs attribute),

39
when_prefixes (robot.conf.languages.Cs attribute),

36
when_prefixes (robot.conf.languages.De attribute),

43
when_prefixes (robot.conf.languages.En attribute),

35
when_prefixes (robot.conf.languages.Es attribute),

51
when_prefixes (robot.conf.languages.Fi attribute),

40
when_prefixes (robot.conf.languages.Fr attribute),

42
when_prefixes (robot.conf.languages.Hi attribute),

64
when_prefixes (robot.conf.languages.It attribute),

63
when_prefixes (robot.conf.languages.Language at-

tribute), 33
when_prefixes (robot.conf.languages.Nl attribute),

38
when_prefixes (robot.conf.languages.Pl attribute),

49
when_prefixes (robot.conf.languages.Pt attribute),

46
when_prefixes (robot.conf.languages.PtBr at-

tribute), 44
when_prefixes (robot.conf.languages.Ro attribute),

61
when_prefixes (robot.conf.languages.Ru attribute),

53
when_prefixes (robot.conf.languages.Sv attribute),

58
when_prefixes (robot.conf.languages.Th attribute),

47
when_prefixes (robot.conf.languages.Tr attribute),

57

804 Index

Robot Framework Documentation, Release 6.0.2

when_prefixes (robot.conf.languages.Uk attribute),
50

when_prefixes (robot.conf.languages.ZhCn at-
tribute), 54

when_prefixes (robot.conf.languages.ZhTw at-
tribute), 56

While (class in robot.model.control), 240
While (class in robot.parsing.model.blocks), 344
While (class in robot.result.model), 471
While (class in robot.running.model), 559
WHILE (robot.model.body.BodyItem attribute), 228
WHILE (robot.model.control.Break attribute), 249
WHILE (robot.model.control.Continue attribute), 248
WHILE (robot.model.control.For attribute), 239
WHILE (robot.model.control.If attribute), 243
WHILE (robot.model.control.IfBranch attribute), 242
WHILE (robot.model.control.Return attribute), 247
WHILE (robot.model.control.Try attribute), 246
WHILE (robot.model.control.TryBranch attribute), 244
WHILE (robot.model.control.While attribute), 240
WHILE (robot.model.keyword.Keyword attribute), 261
WHILE (robot.model.message.Message attribute), 263
WHILE (robot.output.loggerhelper.Message attribute),

310
WHILE (robot.parsing.lexer.tokens.END attribute), 340
WHILE (robot.parsing.lexer.tokens.EOS attribute), 337
WHILE (robot.parsing.lexer.tokens.Token attribute), 335
WHILE (robot.result.model.Break attribute), 488
WHILE (robot.result.model.Continue attribute), 486
WHILE (robot.result.model.For attribute), 468
WHILE (robot.result.model.ForIteration attribute), 465
WHILE (robot.result.model.If attribute), 477
WHILE (robot.result.model.IfBranch attribute), 475
WHILE (robot.result.model.Keyword attribute), 491
WHILE (robot.result.model.Message attribute), 463
WHILE (robot.result.model.Return attribute), 484
WHILE (robot.result.model.Try attribute), 481
WHILE (robot.result.model.TryBranch attribute), 479
WHILE (robot.result.model.While attribute), 472
WHILE (robot.result.model.WhileIteration attribute), 470
WHILE (robot.running.model.Break attribute), 569
WHILE (robot.running.model.Continue attribute), 568
WHILE (robot.running.model.For attribute), 558
WHILE (robot.running.model.If attribute), 562
WHILE (robot.running.model.IfBranch attribute), 561
WHILE (robot.running.model.Keyword attribute), 556
WHILE (robot.running.model.Return attribute), 566
WHILE (robot.running.model.Try attribute), 565
WHILE (robot.running.model.TryBranch attribute), 564
WHILE (robot.running.model.While attribute), 559
while_class (robot.model.body.BaseBody attribute),

229
while_class (robot.model.body.Body attribute), 232

while_class (robot.model.body.Branches attribute),
234

while_class (robot.result.model.Body attribute), 459
while_class (robot.result.model.Branches attribute),

461
while_class (robot.result.model.Iterations attribute),

463
while_class (robot.running.model.Body attribute),

555
WhileBuilder (class in

robot.running.builder.transformers), 547
WhileHandler (class in

robot.result.xmlelementhandlers), 520
WhileHeader (class in

robot.parsing.model.statements), 381
WhileHeaderLexer (class in

robot.parsing.lexer.statementlexers), 332
WhileIteration (class in robot.result.model), 469
WhileLexer (class in robot.parsing.lexer.blocklexers),

322
WhileLimit (class in robot.running.bodyrunner), 550
WhileLoopItemsRemover (class in

robot.result.keywordremover), 436
WhileParser (class in

robot.parsing.parser.blockparsers), 390
WhileRunner (class in robot.running.bodyrunner),

549
winfo_atom() (robot.libraries.dialogs_py.InputDialog

method), 181
winfo_atom() (robot.libraries.dialogs_py.MessageDialog

method), 167
winfo_atom() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 209
winfo_atom() (robot.libraries.dialogs_py.PassFailDialog

method), 223
winfo_atom() (robot.libraries.dialogs_py.SelectionDialog

method), 195
winfo_atomname() (robot.libraries.dialogs_py.InputDialog

method), 181
winfo_atomname() (robot.libraries.dialogs_py.MessageDialog

method), 167
winfo_atomname() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 209
winfo_atomname() (robot.libraries.dialogs_py.PassFailDialog

method), 223
winfo_atomname() (robot.libraries.dialogs_py.SelectionDialog

method), 195
winfo_cells() (robot.libraries.dialogs_py.InputDialog

method), 181
winfo_cells() (robot.libraries.dialogs_py.MessageDialog

method), 167
winfo_cells() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 209
winfo_cells() (robot.libraries.dialogs_py.PassFailDialog

Index 805

Robot Framework Documentation, Release 6.0.2

method), 223
winfo_cells() (robot.libraries.dialogs_py.SelectionDialog

method), 195
winfo_children() (robot.libraries.dialogs_py.InputDialog

method), 181
winfo_children() (robot.libraries.dialogs_py.MessageDialog

method), 167
winfo_children() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 209
winfo_children() (robot.libraries.dialogs_py.PassFailDialog

method), 223
winfo_children() (robot.libraries.dialogs_py.SelectionDialog

method), 195
winfo_class() (robot.libraries.dialogs_py.InputDialog

method), 181
winfo_class() (robot.libraries.dialogs_py.MessageDialog

method), 167
winfo_class() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 209
winfo_class() (robot.libraries.dialogs_py.PassFailDialog

method), 223
winfo_class() (robot.libraries.dialogs_py.SelectionDialog

method), 195
winfo_colormapfull()

(robot.libraries.dialogs_py.InputDialog
method), 181

winfo_colormapfull()
(robot.libraries.dialogs_py.MessageDialog
method), 167

winfo_colormapfull()
(robot.libraries.dialogs_py.MultipleSelectionDialog
method), 209

winfo_colormapfull()
(robot.libraries.dialogs_py.PassFailDialog
method), 223

winfo_colormapfull()
(robot.libraries.dialogs_py.SelectionDialog
method), 195

winfo_containing()
(robot.libraries.dialogs_py.InputDialog
method), 181

winfo_containing()
(robot.libraries.dialogs_py.MessageDialog
method), 167

winfo_containing()
(robot.libraries.dialogs_py.MultipleSelectionDialog
method), 209

winfo_containing()
(robot.libraries.dialogs_py.PassFailDialog
method), 223

winfo_containing()
(robot.libraries.dialogs_py.SelectionDialog
method), 195

winfo_depth() (robot.libraries.dialogs_py.InputDialog

method), 181
winfo_depth() (robot.libraries.dialogs_py.MessageDialog

method), 167
winfo_depth() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 209
winfo_depth() (robot.libraries.dialogs_py.PassFailDialog

method), 223
winfo_depth() (robot.libraries.dialogs_py.SelectionDialog

method), 195
winfo_exists() (robot.libraries.dialogs_py.InputDialog

method), 181
winfo_exists() (robot.libraries.dialogs_py.MessageDialog

method), 167
winfo_exists() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 209
winfo_exists() (robot.libraries.dialogs_py.PassFailDialog

method), 223
winfo_exists() (robot.libraries.dialogs_py.SelectionDialog

method), 195
winfo_fpixels() (robot.libraries.dialogs_py.InputDialog

method), 181
winfo_fpixels() (robot.libraries.dialogs_py.MessageDialog

method), 167
winfo_fpixels() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 209
winfo_fpixels() (robot.libraries.dialogs_py.PassFailDialog

method), 223
winfo_fpixels() (robot.libraries.dialogs_py.SelectionDialog

method), 195
winfo_geometry() (robot.libraries.dialogs_py.InputDialog

method), 181
winfo_geometry() (robot.libraries.dialogs_py.MessageDialog

method), 167
winfo_geometry() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 209
winfo_geometry() (robot.libraries.dialogs_py.PassFailDialog

method), 223
winfo_geometry() (robot.libraries.dialogs_py.SelectionDialog

method), 195
winfo_height() (robot.libraries.dialogs_py.InputDialog

method), 181
winfo_height() (robot.libraries.dialogs_py.MessageDialog

method), 167
winfo_height() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 209
winfo_height() (robot.libraries.dialogs_py.PassFailDialog

method), 223
winfo_height() (robot.libraries.dialogs_py.SelectionDialog

method), 195
winfo_id() (robot.libraries.dialogs_py.InputDialog

method), 181
winfo_id() (robot.libraries.dialogs_py.MessageDialog

method), 167
winfo_id() (robot.libraries.dialogs_py.MultipleSelectionDialog

806 Index

Robot Framework Documentation, Release 6.0.2

method), 209
winfo_id() (robot.libraries.dialogs_py.PassFailDialog

method), 223
winfo_id() (robot.libraries.dialogs_py.SelectionDialog

method), 195
winfo_interps() (robot.libraries.dialogs_py.InputDialog

method), 181
winfo_interps() (robot.libraries.dialogs_py.MessageDialog

method), 167
winfo_interps() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 209
winfo_interps() (robot.libraries.dialogs_py.PassFailDialog

method), 223
winfo_interps() (robot.libraries.dialogs_py.SelectionDialog

method), 195
winfo_ismapped() (robot.libraries.dialogs_py.InputDialog

method), 181
winfo_ismapped() (robot.libraries.dialogs_py.MessageDialog

method), 167
winfo_ismapped() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 209
winfo_ismapped() (robot.libraries.dialogs_py.PassFailDialog

method), 223
winfo_ismapped() (robot.libraries.dialogs_py.SelectionDialog

method), 195
winfo_manager() (robot.libraries.dialogs_py.InputDialog

method), 181
winfo_manager() (robot.libraries.dialogs_py.MessageDialog

method), 167
winfo_manager() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 209
winfo_manager() (robot.libraries.dialogs_py.PassFailDialog

method), 223
winfo_manager() (robot.libraries.dialogs_py.SelectionDialog

method), 195
winfo_name() (robot.libraries.dialogs_py.InputDialog

method), 181
winfo_name() (robot.libraries.dialogs_py.MessageDialog

method), 167
winfo_name() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 209
winfo_name() (robot.libraries.dialogs_py.PassFailDialog

method), 223
winfo_name() (robot.libraries.dialogs_py.SelectionDialog

method), 195
winfo_parent() (robot.libraries.dialogs_py.InputDialog

method), 181
winfo_parent() (robot.libraries.dialogs_py.MessageDialog

method), 167
winfo_parent() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 209
winfo_parent() (robot.libraries.dialogs_py.PassFailDialog

method), 223
winfo_parent() (robot.libraries.dialogs_py.SelectionDialog

method), 195
winfo_pathname() (robot.libraries.dialogs_py.InputDialog

method), 181
winfo_pathname() (robot.libraries.dialogs_py.MessageDialog

method), 167
winfo_pathname() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 209
winfo_pathname() (robot.libraries.dialogs_py.PassFailDialog

method), 223
winfo_pathname() (robot.libraries.dialogs_py.SelectionDialog

method), 195
winfo_pixels() (robot.libraries.dialogs_py.InputDialog

method), 181
winfo_pixels() (robot.libraries.dialogs_py.MessageDialog

method), 167
winfo_pixels() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 209
winfo_pixels() (robot.libraries.dialogs_py.PassFailDialog

method), 223
winfo_pixels() (robot.libraries.dialogs_py.SelectionDialog

method), 195
winfo_pointerx() (robot.libraries.dialogs_py.InputDialog

method), 181
winfo_pointerx() (robot.libraries.dialogs_py.MessageDialog

method), 167
winfo_pointerx() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 209
winfo_pointerx() (robot.libraries.dialogs_py.PassFailDialog

method), 223
winfo_pointerx() (robot.libraries.dialogs_py.SelectionDialog

method), 195
winfo_pointerxy()

(robot.libraries.dialogs_py.InputDialog
method), 182

winfo_pointerxy()
(robot.libraries.dialogs_py.MessageDialog
method), 168

winfo_pointerxy()
(robot.libraries.dialogs_py.MultipleSelectionDialog
method), 210

winfo_pointerxy()
(robot.libraries.dialogs_py.PassFailDialog
method), 224

winfo_pointerxy()
(robot.libraries.dialogs_py.SelectionDialog
method), 196

winfo_pointery() (robot.libraries.dialogs_py.InputDialog
method), 182

winfo_pointery() (robot.libraries.dialogs_py.MessageDialog
method), 168

winfo_pointery() (robot.libraries.dialogs_py.MultipleSelectionDialog
method), 210

winfo_pointery() (robot.libraries.dialogs_py.PassFailDialog
method), 224

Index 807

Robot Framework Documentation, Release 6.0.2

winfo_pointery() (robot.libraries.dialogs_py.SelectionDialog
method), 196

winfo_reqheight()
(robot.libraries.dialogs_py.InputDialog
method), 182

winfo_reqheight()
(robot.libraries.dialogs_py.MessageDialog
method), 168

winfo_reqheight()
(robot.libraries.dialogs_py.MultipleSelectionDialog
method), 210

winfo_reqheight()
(robot.libraries.dialogs_py.PassFailDialog
method), 224

winfo_reqheight()
(robot.libraries.dialogs_py.SelectionDialog
method), 196

winfo_reqwidth() (robot.libraries.dialogs_py.InputDialog
method), 182

winfo_reqwidth() (robot.libraries.dialogs_py.MessageDialog
method), 168

winfo_reqwidth() (robot.libraries.dialogs_py.MultipleSelectionDialog
method), 210

winfo_reqwidth() (robot.libraries.dialogs_py.PassFailDialog
method), 224

winfo_reqwidth() (robot.libraries.dialogs_py.SelectionDialog
method), 196

winfo_rgb() (robot.libraries.dialogs_py.InputDialog
method), 182

winfo_rgb() (robot.libraries.dialogs_py.MessageDialog
method), 168

winfo_rgb() (robot.libraries.dialogs_py.MultipleSelectionDialog
method), 210

winfo_rgb() (robot.libraries.dialogs_py.PassFailDialog
method), 224

winfo_rgb() (robot.libraries.dialogs_py.SelectionDialog
method), 196

winfo_rootx() (robot.libraries.dialogs_py.InputDialog
method), 182

winfo_rootx() (robot.libraries.dialogs_py.MessageDialog
method), 168

winfo_rootx() (robot.libraries.dialogs_py.MultipleSelectionDialog
method), 210

winfo_rootx() (robot.libraries.dialogs_py.PassFailDialog
method), 224

winfo_rootx() (robot.libraries.dialogs_py.SelectionDialog
method), 196

winfo_rooty() (robot.libraries.dialogs_py.InputDialog
method), 182

winfo_rooty() (robot.libraries.dialogs_py.MessageDialog
method), 168

winfo_rooty() (robot.libraries.dialogs_py.MultipleSelectionDialog
method), 210

winfo_rooty() (robot.libraries.dialogs_py.PassFailDialog

method), 224
winfo_rooty() (robot.libraries.dialogs_py.SelectionDialog

method), 196
winfo_screen() (robot.libraries.dialogs_py.InputDialog

method), 182
winfo_screen() (robot.libraries.dialogs_py.MessageDialog

method), 168
winfo_screen() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 210
winfo_screen() (robot.libraries.dialogs_py.PassFailDialog

method), 224
winfo_screen() (robot.libraries.dialogs_py.SelectionDialog

method), 196
winfo_screencells()

(robot.libraries.dialogs_py.InputDialog
method), 182

winfo_screencells()
(robot.libraries.dialogs_py.MessageDialog
method), 168

winfo_screencells()
(robot.libraries.dialogs_py.MultipleSelectionDialog
method), 210

winfo_screencells()
(robot.libraries.dialogs_py.PassFailDialog
method), 224

winfo_screencells()
(robot.libraries.dialogs_py.SelectionDialog
method), 196

winfo_screendepth()
(robot.libraries.dialogs_py.InputDialog
method), 182

winfo_screendepth()
(robot.libraries.dialogs_py.MessageDialog
method), 168

winfo_screendepth()
(robot.libraries.dialogs_py.MultipleSelectionDialog
method), 210

winfo_screendepth()
(robot.libraries.dialogs_py.PassFailDialog
method), 224

winfo_screendepth()
(robot.libraries.dialogs_py.SelectionDialog
method), 196

winfo_screenheight()
(robot.libraries.dialogs_py.InputDialog
method), 182

winfo_screenheight()
(robot.libraries.dialogs_py.MessageDialog
method), 168

winfo_screenheight()
(robot.libraries.dialogs_py.MultipleSelectionDialog
method), 210

winfo_screenheight()
(robot.libraries.dialogs_py.PassFailDialog

808 Index

Robot Framework Documentation, Release 6.0.2

method), 224
winfo_screenheight()

(robot.libraries.dialogs_py.SelectionDialog
method), 196

winfo_screenmmheight()
(robot.libraries.dialogs_py.InputDialog
method), 182

winfo_screenmmheight()
(robot.libraries.dialogs_py.MessageDialog
method), 168

winfo_screenmmheight()
(robot.libraries.dialogs_py.MultipleSelectionDialog
method), 210

winfo_screenmmheight()
(robot.libraries.dialogs_py.PassFailDialog
method), 224

winfo_screenmmheight()
(robot.libraries.dialogs_py.SelectionDialog
method), 196

winfo_screenmmwidth()
(robot.libraries.dialogs_py.InputDialog
method), 182

winfo_screenmmwidth()
(robot.libraries.dialogs_py.MessageDialog
method), 168

winfo_screenmmwidth()
(robot.libraries.dialogs_py.MultipleSelectionDialog
method), 210

winfo_screenmmwidth()
(robot.libraries.dialogs_py.PassFailDialog
method), 224

winfo_screenmmwidth()
(robot.libraries.dialogs_py.SelectionDialog
method), 196

winfo_screenvisual()
(robot.libraries.dialogs_py.InputDialog
method), 182

winfo_screenvisual()
(robot.libraries.dialogs_py.MessageDialog
method), 168

winfo_screenvisual()
(robot.libraries.dialogs_py.MultipleSelectionDialog
method), 210

winfo_screenvisual()
(robot.libraries.dialogs_py.PassFailDialog
method), 224

winfo_screenvisual()
(robot.libraries.dialogs_py.SelectionDialog
method), 196

winfo_screenwidth()
(robot.libraries.dialogs_py.InputDialog
method), 182

winfo_screenwidth()
(robot.libraries.dialogs_py.MessageDialog

method), 168
winfo_screenwidth()

(robot.libraries.dialogs_py.MultipleSelectionDialog
method), 210

winfo_screenwidth()
(robot.libraries.dialogs_py.PassFailDialog
method), 224

winfo_screenwidth()
(robot.libraries.dialogs_py.SelectionDialog
method), 196

winfo_server() (robot.libraries.dialogs_py.InputDialog
method), 182

winfo_server() (robot.libraries.dialogs_py.MessageDialog
method), 168

winfo_server() (robot.libraries.dialogs_py.MultipleSelectionDialog
method), 210

winfo_server() (robot.libraries.dialogs_py.PassFailDialog
method), 224

winfo_server() (robot.libraries.dialogs_py.SelectionDialog
method), 196

winfo_toplevel() (robot.libraries.dialogs_py.InputDialog
method), 182

winfo_toplevel() (robot.libraries.dialogs_py.MessageDialog
method), 168

winfo_toplevel() (robot.libraries.dialogs_py.MultipleSelectionDialog
method), 210

winfo_toplevel() (robot.libraries.dialogs_py.PassFailDialog
method), 224

winfo_toplevel() (robot.libraries.dialogs_py.SelectionDialog
method), 196

winfo_viewable() (robot.libraries.dialogs_py.InputDialog
method), 182

winfo_viewable() (robot.libraries.dialogs_py.MessageDialog
method), 168

winfo_viewable() (robot.libraries.dialogs_py.MultipleSelectionDialog
method), 210

winfo_viewable() (robot.libraries.dialogs_py.PassFailDialog
method), 224

winfo_viewable() (robot.libraries.dialogs_py.SelectionDialog
method), 196

winfo_visual() (robot.libraries.dialogs_py.InputDialog
method), 182

winfo_visual() (robot.libraries.dialogs_py.MessageDialog
method), 168

winfo_visual() (robot.libraries.dialogs_py.MultipleSelectionDialog
method), 210

winfo_visual() (robot.libraries.dialogs_py.PassFailDialog
method), 224

winfo_visual() (robot.libraries.dialogs_py.SelectionDialog
method), 196

winfo_visualid() (robot.libraries.dialogs_py.InputDialog
method), 182

winfo_visualid() (robot.libraries.dialogs_py.MessageDialog
method), 168

Index 809

Robot Framework Documentation, Release 6.0.2

winfo_visualid() (robot.libraries.dialogs_py.MultipleSelectionDialog
method), 210

winfo_visualid() (robot.libraries.dialogs_py.PassFailDialog
method), 224

winfo_visualid() (robot.libraries.dialogs_py.SelectionDialog
method), 196

winfo_visualsavailable()
(robot.libraries.dialogs_py.InputDialog
method), 183

winfo_visualsavailable()
(robot.libraries.dialogs_py.MessageDialog
method), 169

winfo_visualsavailable()
(robot.libraries.dialogs_py.MultipleSelectionDialog
method), 211

winfo_visualsavailable()
(robot.libraries.dialogs_py.PassFailDialog
method), 225

winfo_visualsavailable()
(robot.libraries.dialogs_py.SelectionDialog
method), 197

winfo_vrootheight()
(robot.libraries.dialogs_py.InputDialog
method), 183

winfo_vrootheight()
(robot.libraries.dialogs_py.MessageDialog
method), 169

winfo_vrootheight()
(robot.libraries.dialogs_py.MultipleSelectionDialog
method), 211

winfo_vrootheight()
(robot.libraries.dialogs_py.PassFailDialog
method), 225

winfo_vrootheight()
(robot.libraries.dialogs_py.SelectionDialog
method), 197

winfo_vrootwidth()
(robot.libraries.dialogs_py.InputDialog
method), 183

winfo_vrootwidth()
(robot.libraries.dialogs_py.MessageDialog
method), 169

winfo_vrootwidth()
(robot.libraries.dialogs_py.MultipleSelectionDialog
method), 211

winfo_vrootwidth()
(robot.libraries.dialogs_py.PassFailDialog
method), 225

winfo_vrootwidth()
(robot.libraries.dialogs_py.SelectionDialog
method), 197

winfo_vrootx() (robot.libraries.dialogs_py.InputDialog
method), 183

winfo_vrootx() (robot.libraries.dialogs_py.MessageDialog

method), 169
winfo_vrootx() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 211
winfo_vrootx() (robot.libraries.dialogs_py.PassFailDialog

method), 225
winfo_vrootx() (robot.libraries.dialogs_py.SelectionDialog

method), 197
winfo_vrooty() (robot.libraries.dialogs_py.InputDialog

method), 183
winfo_vrooty() (robot.libraries.dialogs_py.MessageDialog

method), 169
winfo_vrooty() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 211
winfo_vrooty() (robot.libraries.dialogs_py.PassFailDialog

method), 225
winfo_vrooty() (robot.libraries.dialogs_py.SelectionDialog

method), 197
winfo_width() (robot.libraries.dialogs_py.InputDialog

method), 183
winfo_width() (robot.libraries.dialogs_py.MessageDialog

method), 169
winfo_width() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 211
winfo_width() (robot.libraries.dialogs_py.PassFailDialog

method), 225
winfo_width() (robot.libraries.dialogs_py.SelectionDialog

method), 197
winfo_x() (robot.libraries.dialogs_py.InputDialog

method), 183
winfo_x() (robot.libraries.dialogs_py.MessageDialog

method), 169
winfo_x() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 211
winfo_x() (robot.libraries.dialogs_py.PassFailDialog

method), 225
winfo_x() (robot.libraries.dialogs_py.SelectionDialog

method), 197
winfo_y() (robot.libraries.dialogs_py.InputDialog

method), 183
winfo_y() (robot.libraries.dialogs_py.MessageDialog

method), 169
winfo_y() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 211
winfo_y() (robot.libraries.dialogs_py.PassFailDialog

method), 225
winfo_y() (robot.libraries.dialogs_py.SelectionDialog

method), 197
WITH_NAME (robot.parsing.lexer.tokens.END attribute),

340
WITH_NAME (robot.parsing.lexer.tokens.EOS attribute),

337
WITH_NAME (robot.parsing.lexer.tokens.Token at-

tribute), 334
with_traceback() (robot.api.exceptions.ContinuableFailure

810 Index

Robot Framework Documentation, Release 6.0.2

method), 13
with_traceback() (robot.api.exceptions.Error

method), 13
with_traceback() (robot.api.exceptions.Failure

method), 12
with_traceback() (robot.api.exceptions.FatalError

method), 13
with_traceback() (robot.api.exceptions.SkipExecution

method), 14
with_traceback() (robot.errors.BreakLoop

method), 618
with_traceback() (robot.errors.ContinueLoop

method), 617
with_traceback() (robot.errors.DataError

method), 613
with_traceback() (robot.errors.ExecutionFailed

method), 615
with_traceback() (robot.errors.ExecutionFailures

method), 616
with_traceback() (robot.errors.ExecutionPassed

method), 616
with_traceback() (robot.errors.ExecutionStatus

method), 615
with_traceback() (robot.errors.FrameworkError

method), 613
with_traceback() (robot.errors.HandlerExecutionFailed

method), 615
with_traceback() (robot.errors.Information

method), 614
with_traceback() (robot.errors.KeywordError

method), 614
with_traceback() (robot.errors.PassExecution

method), 617
with_traceback() (robot.errors.RemoteError

method), 618
with_traceback() (robot.errors.ReturnFromKeyword

method), 618
with_traceback() (robot.errors.RobotError

method), 613
with_traceback() (robot.errors.TimeoutError

method), 614
with_traceback() (robot.errors.UserKeywordExecutionFailed

method), 616
with_traceback() (robot.errors.VariableError

method), 614
with_traceback() (robot.libraries.BuiltIn.RobotNotRunningError

method), 99
with_traceback() (robot.libraries.Telnet.NoMatchError

method), 146
withdraw() (robot.libraries.dialogs_py.InputDialog

method), 183
withdraw() (robot.libraries.dialogs_py.MessageDialog

method), 169
withdraw() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 211
withdraw() (robot.libraries.dialogs_py.PassFailDialog

method), 225
withdraw() (robot.libraries.dialogs_py.SelectionDialog

method), 197
wm_aspect() (robot.libraries.dialogs_py.InputDialog

method), 183
wm_aspect() (robot.libraries.dialogs_py.MessageDialog

method), 169
wm_aspect() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 211
wm_aspect() (robot.libraries.dialogs_py.PassFailDialog

method), 225
wm_aspect() (robot.libraries.dialogs_py.SelectionDialog

method), 197
wm_attributes() (robot.libraries.dialogs_py.InputDialog

method), 183
wm_attributes() (robot.libraries.dialogs_py.MessageDialog

method), 169
wm_attributes() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 211
wm_attributes() (robot.libraries.dialogs_py.PassFailDialog

method), 225
wm_attributes() (robot.libraries.dialogs_py.SelectionDialog

method), 197
wm_client() (robot.libraries.dialogs_py.InputDialog

method), 183
wm_client() (robot.libraries.dialogs_py.MessageDialog

method), 169
wm_client() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 211
wm_client() (robot.libraries.dialogs_py.PassFailDialog

method), 225
wm_client() (robot.libraries.dialogs_py.SelectionDialog

method), 197
wm_colormapwindows()

(robot.libraries.dialogs_py.InputDialog
method), 183

wm_colormapwindows()
(robot.libraries.dialogs_py.MessageDialog
method), 169

wm_colormapwindows()
(robot.libraries.dialogs_py.MultipleSelectionDialog
method), 211

wm_colormapwindows()
(robot.libraries.dialogs_py.PassFailDialog
method), 225

wm_colormapwindows()
(robot.libraries.dialogs_py.SelectionDialog
method), 197

wm_command() (robot.libraries.dialogs_py.InputDialog
method), 183

wm_command() (robot.libraries.dialogs_py.MessageDialog
method), 169

Index 811

Robot Framework Documentation, Release 6.0.2

wm_command() (robot.libraries.dialogs_py.MultipleSelectionDialog
method), 211

wm_command() (robot.libraries.dialogs_py.PassFailDialog
method), 225

wm_command() (robot.libraries.dialogs_py.SelectionDialog
method), 197

wm_deiconify() (robot.libraries.dialogs_py.InputDialog
method), 184

wm_deiconify() (robot.libraries.dialogs_py.MessageDialog
method), 170

wm_deiconify() (robot.libraries.dialogs_py.MultipleSelectionDialog
method), 212

wm_deiconify() (robot.libraries.dialogs_py.PassFailDialog
method), 226

wm_deiconify() (robot.libraries.dialogs_py.SelectionDialog
method), 198

wm_focusmodel() (robot.libraries.dialogs_py.InputDialog
method), 184

wm_focusmodel() (robot.libraries.dialogs_py.MessageDialog
method), 170

wm_focusmodel() (robot.libraries.dialogs_py.MultipleSelectionDialog
method), 212

wm_focusmodel() (robot.libraries.dialogs_py.PassFailDialog
method), 226

wm_focusmodel() (robot.libraries.dialogs_py.SelectionDialog
method), 198

wm_forget() (robot.libraries.dialogs_py.InputDialog
method), 184

wm_forget() (robot.libraries.dialogs_py.MessageDialog
method), 170

wm_forget() (robot.libraries.dialogs_py.MultipleSelectionDialog
method), 212

wm_forget() (robot.libraries.dialogs_py.PassFailDialog
method), 226

wm_forget() (robot.libraries.dialogs_py.SelectionDialog
method), 198

wm_frame() (robot.libraries.dialogs_py.InputDialog
method), 184

wm_frame() (robot.libraries.dialogs_py.MessageDialog
method), 170

wm_frame() (robot.libraries.dialogs_py.MultipleSelectionDialog
method), 212

wm_frame() (robot.libraries.dialogs_py.PassFailDialog
method), 226

wm_frame() (robot.libraries.dialogs_py.SelectionDialog
method), 198

wm_geometry() (robot.libraries.dialogs_py.InputDialog
method), 184

wm_geometry() (robot.libraries.dialogs_py.MessageDialog
method), 170

wm_geometry() (robot.libraries.dialogs_py.MultipleSelectionDialog
method), 212

wm_geometry() (robot.libraries.dialogs_py.PassFailDialog
method), 226

wm_geometry() (robot.libraries.dialogs_py.SelectionDialog
method), 198

wm_grid() (robot.libraries.dialogs_py.InputDialog
method), 184

wm_grid() (robot.libraries.dialogs_py.MessageDialog
method), 170

wm_grid() (robot.libraries.dialogs_py.MultipleSelectionDialog
method), 212

wm_grid() (robot.libraries.dialogs_py.PassFailDialog
method), 226

wm_grid() (robot.libraries.dialogs_py.SelectionDialog
method), 198

wm_group() (robot.libraries.dialogs_py.InputDialog
method), 184

wm_group() (robot.libraries.dialogs_py.MessageDialog
method), 170

wm_group() (robot.libraries.dialogs_py.MultipleSelectionDialog
method), 212

wm_group() (robot.libraries.dialogs_py.PassFailDialog
method), 226

wm_group() (robot.libraries.dialogs_py.SelectionDialog
method), 198

wm_iconbitmap() (robot.libraries.dialogs_py.InputDialog
method), 184

wm_iconbitmap() (robot.libraries.dialogs_py.MessageDialog
method), 170

wm_iconbitmap() (robot.libraries.dialogs_py.MultipleSelectionDialog
method), 212

wm_iconbitmap() (robot.libraries.dialogs_py.PassFailDialog
method), 226

wm_iconbitmap() (robot.libraries.dialogs_py.SelectionDialog
method), 198

wm_iconify() (robot.libraries.dialogs_py.InputDialog
method), 184

wm_iconify() (robot.libraries.dialogs_py.MessageDialog
method), 170

wm_iconify() (robot.libraries.dialogs_py.MultipleSelectionDialog
method), 212

wm_iconify() (robot.libraries.dialogs_py.PassFailDialog
method), 226

wm_iconify() (robot.libraries.dialogs_py.SelectionDialog
method), 198

wm_iconmask() (robot.libraries.dialogs_py.InputDialog
method), 184

wm_iconmask() (robot.libraries.dialogs_py.MessageDialog
method), 170

wm_iconmask() (robot.libraries.dialogs_py.MultipleSelectionDialog
method), 212

wm_iconmask() (robot.libraries.dialogs_py.PassFailDialog
method), 226

wm_iconmask() (robot.libraries.dialogs_py.SelectionDialog
method), 198

wm_iconname() (robot.libraries.dialogs_py.InputDialog
method), 184

812 Index

Robot Framework Documentation, Release 6.0.2

wm_iconname() (robot.libraries.dialogs_py.MessageDialog
method), 170

wm_iconname() (robot.libraries.dialogs_py.MultipleSelectionDialog
method), 212

wm_iconname() (robot.libraries.dialogs_py.PassFailDialog
method), 226

wm_iconname() (robot.libraries.dialogs_py.SelectionDialog
method), 198

wm_iconphoto() (robot.libraries.dialogs_py.InputDialog
method), 184

wm_iconphoto() (robot.libraries.dialogs_py.MessageDialog
method), 170

wm_iconphoto() (robot.libraries.dialogs_py.MultipleSelectionDialog
method), 212

wm_iconphoto() (robot.libraries.dialogs_py.PassFailDialog
method), 226

wm_iconphoto() (robot.libraries.dialogs_py.SelectionDialog
method), 198

wm_iconposition()
(robot.libraries.dialogs_py.InputDialog
method), 185

wm_iconposition()
(robot.libraries.dialogs_py.MessageDialog
method), 171

wm_iconposition()
(robot.libraries.dialogs_py.MultipleSelectionDialog
method), 213

wm_iconposition()
(robot.libraries.dialogs_py.PassFailDialog
method), 227

wm_iconposition()
(robot.libraries.dialogs_py.SelectionDialog
method), 199

wm_iconwindow() (robot.libraries.dialogs_py.InputDialog
method), 185

wm_iconwindow() (robot.libraries.dialogs_py.MessageDialog
method), 171

wm_iconwindow() (robot.libraries.dialogs_py.MultipleSelectionDialog
method), 213

wm_iconwindow() (robot.libraries.dialogs_py.PassFailDialog
method), 227

wm_iconwindow() (robot.libraries.dialogs_py.SelectionDialog
method), 199

wm_manage() (robot.libraries.dialogs_py.InputDialog
method), 185

wm_manage() (robot.libraries.dialogs_py.MessageDialog
method), 171

wm_manage() (robot.libraries.dialogs_py.MultipleSelectionDialog
method), 213

wm_manage() (robot.libraries.dialogs_py.PassFailDialog
method), 227

wm_manage() (robot.libraries.dialogs_py.SelectionDialog
method), 199

wm_maxsize() (robot.libraries.dialogs_py.InputDialog

method), 185
wm_maxsize() (robot.libraries.dialogs_py.MessageDialog

method), 171
wm_maxsize() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 213
wm_maxsize() (robot.libraries.dialogs_py.PassFailDialog

method), 227
wm_maxsize() (robot.libraries.dialogs_py.SelectionDialog

method), 199
wm_minsize() (robot.libraries.dialogs_py.InputDialog

method), 185
wm_minsize() (robot.libraries.dialogs_py.MessageDialog

method), 171
wm_minsize() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 213
wm_minsize() (robot.libraries.dialogs_py.PassFailDialog

method), 227
wm_minsize() (robot.libraries.dialogs_py.SelectionDialog

method), 199
wm_overrideredirect()

(robot.libraries.dialogs_py.InputDialog
method), 185

wm_overrideredirect()
(robot.libraries.dialogs_py.MessageDialog
method), 171

wm_overrideredirect()
(robot.libraries.dialogs_py.MultipleSelectionDialog
method), 213

wm_overrideredirect()
(robot.libraries.dialogs_py.PassFailDialog
method), 227

wm_overrideredirect()
(robot.libraries.dialogs_py.SelectionDialog
method), 199

wm_positionfrom()
(robot.libraries.dialogs_py.InputDialog
method), 185

wm_positionfrom()
(robot.libraries.dialogs_py.MessageDialog
method), 171

wm_positionfrom()
(robot.libraries.dialogs_py.MultipleSelectionDialog
method), 213

wm_positionfrom()
(robot.libraries.dialogs_py.PassFailDialog
method), 227

wm_positionfrom()
(robot.libraries.dialogs_py.SelectionDialog
method), 199

wm_protocol() (robot.libraries.dialogs_py.InputDialog
method), 185

wm_protocol() (robot.libraries.dialogs_py.MessageDialog
method), 171

wm_protocol() (robot.libraries.dialogs_py.MultipleSelectionDialog

Index 813

Robot Framework Documentation, Release 6.0.2

method), 213
wm_protocol() (robot.libraries.dialogs_py.PassFailDialog

method), 227
wm_protocol() (robot.libraries.dialogs_py.SelectionDialog

method), 199
wm_resizable() (robot.libraries.dialogs_py.InputDialog

method), 185
wm_resizable() (robot.libraries.dialogs_py.MessageDialog

method), 171
wm_resizable() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 213
wm_resizable() (robot.libraries.dialogs_py.PassFailDialog

method), 227
wm_resizable() (robot.libraries.dialogs_py.SelectionDialog

method), 199
wm_sizefrom() (robot.libraries.dialogs_py.InputDialog

method), 185
wm_sizefrom() (robot.libraries.dialogs_py.MessageDialog

method), 171
wm_sizefrom() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 213
wm_sizefrom() (robot.libraries.dialogs_py.PassFailDialog

method), 227
wm_sizefrom() (robot.libraries.dialogs_py.SelectionDialog

method), 199
wm_state() (robot.libraries.dialogs_py.InputDialog

method), 185
wm_state() (robot.libraries.dialogs_py.MessageDialog

method), 171
wm_state() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 213
wm_state() (robot.libraries.dialogs_py.PassFailDialog

method), 227
wm_state() (robot.libraries.dialogs_py.SelectionDialog

method), 199
wm_title() (robot.libraries.dialogs_py.InputDialog

method), 185
wm_title() (robot.libraries.dialogs_py.MessageDialog

method), 171
wm_title() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 213
wm_title() (robot.libraries.dialogs_py.PassFailDialog

method), 227
wm_title() (robot.libraries.dialogs_py.SelectionDialog

method), 199
wm_transient() (robot.libraries.dialogs_py.InputDialog

method), 185
wm_transient() (robot.libraries.dialogs_py.MessageDialog

method), 171
wm_transient() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 213
wm_transient() (robot.libraries.dialogs_py.PassFailDialog

method), 227
wm_transient() (robot.libraries.dialogs_py.SelectionDialog

method), 199
wm_withdraw() (robot.libraries.dialogs_py.InputDialog

method), 185
wm_withdraw() (robot.libraries.dialogs_py.MessageDialog

method), 171
wm_withdraw() (robot.libraries.dialogs_py.MultipleSelectionDialog

method), 213
wm_withdraw() (robot.libraries.dialogs_py.PassFailDialog

method), 227
wm_withdraw() (robot.libraries.dialogs_py.SelectionDialog

method), 199
write() (in module robot.api.logger), 15
write() (in module robot.output.librarylogger), 305
write() (robot.htmldata.htmlfilewriter.CssFileWriter

method), 67
write() (robot.htmldata.htmlfilewriter.GeneratorWriter

method), 67
write() (robot.htmldata.htmlfilewriter.HtmlFileWriter

method), 67
write() (robot.htmldata.htmlfilewriter.JsFileWriter

method), 67
write() (robot.htmldata.htmlfilewriter.LineWriter

method), 67
write() (robot.htmldata.htmlfilewriter.ModelWriter

method), 67
write() (robot.htmldata.jsonwriter.JsonWriter

method), 68
write() (robot.libdocpkg.htmlwriter.LibdocHtmlWriter

method), 71
write() (robot.libdocpkg.htmlwriter.LibdocModelWriter

method), 71
write() (robot.libdocpkg.jsonwriter.LibdocJsonWriter

method), 71
write() (robot.libdocpkg.xmlwriter.LibdocXmlWriter

method), 73
write() (robot.libraries.Telnet.TelnetConnection

method), 143
write() (robot.output.console.highlighting.HighlightingStream

method), 303
write() (robot.output.filelogger.FileLogger method),

305
write() (robot.output.logger.Logger method), 309
write() (robot.output.loggerhelper.AbstractLogger

method), 309
write() (robot.output.output.Output method), 311
write() (robot.parsing.model.blocks.ModelWriter

method), 344
write() (robot.reporting.jswriter.JsResultWriter

method), 395
write() (robot.reporting.jswriter.SplitLogWriter

method), 395
write() (robot.reporting.jswriter.SuiteWriter method),

395
write() (robot.reporting.logreportwriters.LogWriter

814 Index

Robot Framework Documentation, Release 6.0.2

method), 395
write() (robot.reporting.logreportwriters.ReportWriter

method), 395
write() (robot.reporting.logreportwriters.RobotModelWriter

method), 395
write() (robot.reporting.xunitwriter.XUnitWriter

method), 402
write() (robot.testdoc.TestdocModelWriter method),

624
write_bare() (robot.libraries.Telnet.TelnetConnection

method), 143
write_control_character()

(robot.libraries.Telnet.TelnetConnection
method), 143

write_data() (robot.testdoc.TestdocModelWriter
method), 624

write_json() (robot.htmldata.jsonwriter.JsonWriter
method), 68

write_results() (robot.reporting.resultwriter.ResultWriter
method), 401

write_until_expected_output()
(robot.libraries.Telnet.TelnetConnection
method), 143

X
XML (class in robot.libraries.XML), 147
xml_escape() (in module robot.utils.markuputils),

602
XmlDocBuilder (class in robot.libdocpkg.xmlbuilder),

73
XmlElementHandler (class in

robot.result.xmlelementhandlers), 519
XmlLogger (class in robot.output.xmllogger), 313
XmlRpcRemoteClient (class in

robot.libraries.Remote), 129
XmlWriter (class in robot.utils.markupwriters), 602
xunit (robot.conf.settings.RebotSettings attribute), 67
xunit (robot.conf.settings.RobotSettings attribute), 66
XUnitFileWriter (class in

robot.reporting.xunitwriter), 402
XUnitWriter (class in robot.reporting.xunitwriter),

402

Y
YamlImporter (class in robot.variables.filesetter), 607
yellow() (robot.output.console.highlighting.AnsiHighlighter

method), 303
yellow() (robot.output.console.highlighting.DosHighlighter

method), 304
yellow() (robot.output.console.highlighting.NoHighlighting

method), 303

Z
ZhCn (class in robot.conf.languages), 53

ZhTw (class in robot.conf.languages), 55

Index 815

	Entry points
	Public API
	All packages
	robot package

	Indices
	Python Module Index
	Index

